Leonori, TommasoMagliocca, Martina2024-11-202024-11-202019-05Tommaso Leonori, Martina Magliocca. Comparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growth. Communications on Pure and Applied Analysis, 2019, 18(6): 2923-2960. doi: 10.3934/cpaa.20191311534-0392; e-ISSN: 1553-5258https://doi.org/10.3934/cpaa.2019131https://hdl.handle.net/20.500.14468/24440In this paper we deal with uniqueness of unbounded solutions to the following problem (formula pergented) where QT = (0, T) × Ω is the parabolic cylinder, Ω is an open subset of RN, N ≥ 2, 1 < p < N, and the right hand side H(t, x, ξ): (0, T) × Ω × RN → R exhibits a superlinear growth with respect to the gradient term. © 2019 American Institute of Mathematical Sciences.eninfo:eu-repo/semantics/openAccess12 MatemáticasComparison results for unbounded solutions for a parabolic Cauchy-Dirichlet problem with superlinear gradient growthartículoUniquenessnonlinear parabolic equationsunbounded solutionsnonlinear lower order terms