González Crevillén, AgustínMayorga Martinez, Carmen C.Zelenka, JaroslavRimpelová, SilvieRuml, TomášPumera, Martin2024-10-072024-10-072021-08-21Agustín G. Crevillen, Carmen C. Mayorga-Martinez, Jaroslav Zelenka, Silvie Rimpelová, Tomáš Ruml, Martin Pumera, 3D-printed transmembrane glycoprotein cancer biomarker aptasensor, Applied Materials Today, Volume 24, 2021, 101153, ISSN 2352-9407, https://doi.org/10.1016/j.apmt.2021.101153.2352-9407https://doi.org/10.1016/j.apmt.2021.101153https://hdl.handle.net/20.500.14468/23938Este es el manuscrito aceptado del artículo. La versión registrada fue publicada por primera vez en Elsevier, Applied Materials Today, Volume 24, 2021, 101153, ISSN 2352-9407, está disponible en línea en el sitio web del editor: https://doi.org/10.1016/j.apmt.2021.101153. This is the accepted manuscript of the article. The Version of Record was first published in Elsevier, Applied Materials Today, Volume 24, 2021, 101153, ISSN 2352-9407, is available online at the publisher's website: https://doi.org/10.1016/j. apmt.2021.101153.Point-of-care, easy to manufacture, and low cost detection of cancer biomarkers is crucial for fighting the early stage disease. 3D printing allows delocalized printing at remote locations with updates/upgrades available globally via electronic files. Mucin 1 (MUC1) is a protein that is overexpressed in a number of epithelial cancers and is a key factor in advancement of the disease. Here we show the simple point-of-care 3D printing fabrication of a MUC1 aptasensor using a nanocarbon/polymer filament. Efficacy of the 3D-printed aptasensor is demonstrated by monitoring the expression and release of MUC1 in breast cancer cell cultures. Such a simple, low cost, and easy to locally fabricate cancer biosensor will have a large impact on the field of cancer diagnostics.eninfo:eu-repo/semantics/openAccess23 Química3D-printed Transmembrane Glycoprotein Cancer Biomarker AptasensorartículoAdditive manufacturingAptamerBreast cancer cellsBiomarkerSensor