Ureña, N.Vargas Ureña, Antonio Manuel2024-12-172024-12-172024-04-08N. Ureña, A.M. Vargas, Numerical solution to a Parabolic-ODE Solow model with spatial diffusion and technology-induced motility, Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913, ISSN 0377-0427, https://doi.org/10.1016/j.cam.2024.1159131879-1778https://doi.org/10.1016/j.cam.2024.115913https://hdl.handle.net/20.500.14468/24954This is an Accepted Manuscript of an article published by Elsevier in "Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913", available at: https://doi.org/10.1016/j.cam.2024.115913. (https://www.sciencedirect.com/science/article/pii/S0377042724001638) Este es el manuscrito aceptado del artículo publicado por Elsevier en "Journal of Computational and Applied Mathematics, Volume 447, 2024, 115913", disponible en línea: https://doi.org/10.1016/j.cam.2024.115913. (https://www.sciencedirect.com/science/article/pii/S0377042724001638)This work studies a parabolic-ODE PDE’s system which describes the evolution of the physical capital “k” and technological progress “A”, using a meshless method in one and two dimensional bounded domain with regular boundary. The well-known Solow model is extended by considering the spatial diffusion of both capital and technology. Moreover, we study the case in which no spatial diffusion of the technology progress occurs. For such models, we propound schemes based on the Generalized Finite Difference method and prove the convergence of the numerical solution to the continuous one. Several examples show the dynamics of the model for a wide range of parameters. These examples illustrate the accuary of the numerical method.eninfo:eu-repo/semantics/openAccess12 Matemáticas::1206 Análisis numérico53 Ciencias Económicas::5307 Teoría económica::5307.07 Previsión económicaNumerical solution to a Parabolic-ODE Solow model with spatial diffusion and technology-induced motilityartículoSolow modelGeneralized Finite DifferenceMeshless methodParabolic PDEs