Cargando...
Miniatura
Fecha
2021-08-16
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editorial
MDPI

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
The ability of a metal to be subjected to forming processes depends mainly on its plastic behavior and, thus, the mechanical properties belonging to this region of the stress–strain curve. Forming techniques are among the most widespread metalworking procedures in manufacturing, and aluminum alloys are of great interest in fields as diverse as the aerospace sector or the food industry. A precise characterization of the mechanical properties is crucial to estimate the forming capability of equipment, but also for a robust numerical modeling of metal forming processes. Characterizing a material is a very relevant task in which large amounts of resources are invested, and this paper studies how to optimize a multilayer neural network to be able to make, through machine learning, precise and accurate predictions about the mechanical properties of wrought aluminum alloys. This study focuses on the determination of the ultimate tensile strength, closely related to the strain hardening of a material; more precisely, a methodology is developed that, by randomly partitioning the input dataset, performs training and prediction cycles that allow estimating the average performance of each fully-connected topology. In this way, trends are found in the behavior of the networks, and it is established that, for networks with at least 150 perceptrons in their hidden layers, the average predictive error stabilizes below 4%. Beyond this point, no really significant improvements are found, although there is an increase in computational requirements.
Descripción
The registered version of this article, first published in “Metals, 11, 2021", is available online at the publisher's website: MDPI, https://doi.org/10.3390/met11081289
La versión registrada de este artículo, publicado por primera vez en “Metals, 11, 2021", está disponible en línea en el sitio web del editor: MDPI, https://doi.org/10.3390/met11081289
Categorías UNESCO
Palabras clave
aluminum alloy, artificial neural network, mechanical property, UTS, machine learning, topological optimization, metal forming
Citación
Merayo, D., Rodríguez-Prieto, A., & Camacho, A. M. (2021). Topological Optimization of Artificial Neural Networks to Estimate Mechanical Properties in Metal Forming Using Machine Learning. Metals, 11(8), 1289. https://doi.org/10.3390/met11081289
Centro
E.T.S. de Ingenieros Industriales
Departamento
Ingeniería de Construcción y Fabricación
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
Datos de investigación relacionados