Publicación:
Minimum Modulus Visualization of Algebraic Fractals

Cargando...
Miniatura
Fecha
2023-08
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
Atribución-NoComercial-SinDerivadas 4.0 Internacional
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
Fractals are a family of shapes formed by irregular and fragmented patterns. They can be classified into two main groups: geometric and algebraic. Whereas the former are characterized by a fixed geometric replacement rule, the latter are defined by a recurrence function in the complex plane. The classical method for visualizing algebraic fractals considers the sequence of complex numbers originated from each point in the complex plane. Thus, each original point is colored depending on whether its generated sequence escapes to infinity. The present work introduces a novel visualization method for algebraic fractals. This method colors each original point by taking into account the complex number with minimum modulus within its generated sequence. The advantages of the novel method are twofold: on the one hand, it preserves the fractal view that the classical method offers of the escape set boundary and, on the other hand, it additionally provides interesting visual details of the prisoner set (the complement of the escape set). The novel method is comparatively evaluated with other classical and non-classical visualization methods of fractals, giving rise to aesthetic views of prisoner sets.
Descripción
Categorías UNESCO
Palabras clave
Complex plane, iterated complex function, algebraic fractal, visualization, minimum modulus
Citación
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra