Persona:
Araujo Serna, M. Lourdes

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-7657-4794
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Araujo Serna
Nombre de pila
M. Lourdes
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Automatic Recommendation of Forum Threads and Reinforcement Activities in a Data Structure and Programming Course
    (MDPI, 2023-09-21) Plaza Morales, Laura; Araujo Serna, M. Lourdes; López Ostenero, Fernando; Martínez Romo, Juan
    Online learning is quickly becoming a popular choice instead of traditional education. One of its key advantages lies in the flexibility it offers, allowing individuals to tailor their learning experiences to their unique schedules and commitments. Moreover, online learning enhances accessibility to education, breaking down geographical and economical boundaries. In this study, we propose the use of advanced natural language processing techniques to design and implement a recommender that supports e-learning students by tailoring materials and reinforcement activities to students’ needs. When a student posts a query in the course forum, our recommender system provides links to other discussion threads where related questions have been raised and additional activities to reinforce the study of topics that have been challenging. We have developed a content-based recommender that utilizes an algorithm capable of extracting key phrases, terms, and embeddings that describe the concepts in the student query and those present in other conversations and reinforcement activities with high precision. The recommender considers the similarity of the concepts extracted from the query and those covered in the course discussion forum and the exercise database to recommend the most relevant content for the student. Our results indicate that we can recommend both posts and activities with high precision (above 80%) using key phrases to represent the textual content. The primary contributions of this research are three. Firstly, it centers on a remarkably specialized and novel domain; secondly, it introduces an effective recommendation approach exclusively guided by the student’s query. Thirdly, the recommendations not only provide answers to immediate questions, but also encourage further learning through the recommendation of supplementary activities.
  • Publicación
    Discovering HIV related information by means of association rules and machine learning
    (Nature Research, 2022-10-22) Araujo Serna, M. Lourdes; Martínez Romo, Juan; Bisbal, Otilia; Sanchez de Madariaga, Ricardo; The Cohort of the National AIDS Network (CoRIS); https://orcid.org/0000-0003-3746-3378
    Acquired immunodeficiency syndrome (AIDS) is still one of the main health problems worldwide. It is therefore essential to keep making progress in improving the prognosis and quality of life of affected patients. One way to advance along this pathway is to uncover connections between other disorders associated with HIV/AIDS-so that they can be anticipated and possibly mitigated. We propose to achieve this by using Association Rules (ARs). They allow us to represent the dependencies between a number of diseases and other specific diseases. However, classical techniques systematically generate every AR meeting some minimal conditions on data frequency, hence generating a vast amount of uninteresting ARs, which need to be filtered out. The lack of manually annotated ARs has favored unsupervised filtering, even though they produce limited results. In this paper, we propose a semi-supervised system, able to identify relevant ARs among HIV-related diseases with a minimal amount of annotated training data. Our system has been able to extract a good number of relationships between HIV-related diseases that have been previously detected in the literature but are scattered and are often little known. Furthermore, a number of plausible new relationships have shown up which deserve further investigation by qualified medical experts.