Logotipo del repositorio
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Filtrar búsqueda
  • Depositar
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Blanco Aza, Daniel"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Publicación
    Privacy Analysis in Mobile Apps and Social Networks Using AI Techniques
    (IEEE - Institute of Electrical and Electronics Engineers, 2024-09-17) Blanco Aza, Daniel; Robles Gómez, Antonio; Pastor Vargas, Rafael; Tobarra Abad, María de los Llanos; Vidal Balboa, Pedro; Méndez Suárez, Mariano
    In the current landscape of mobile applications and social networks, privacy concerns have become paramount due to the extensive collection and processing of personal data. Therefore, this paper presents a comprehensive review of the state-of-the-art on automated privacy risk analysis in mobile applications and social networks. This review includes various methodologies, tools and frameworks that use ML and NLP systems to assess and ensure compliance with privacy regulations, such as the GDPR. Through a careful application of the PRISMA methodology, key studies have been systematically analyzed. Our findings reveal significant progress in the integration of automated techniques for assessing privacy risks.
Enlaces de interés

Aviso legal

Política de privacidad

Política de cookies

Reclamaciones, sugerencias y felicitaciones

Recursos adicionales

Biblioteca UNED

Depósito de datos de investigación

Portal de investigación UNED

InvestigaUNED

Contacto

Teléfono: 913988766 / 6633 / 7891 / 6172

Correo: repositoriobiblioteca@adm.uned.es