Neural network model, based on time series, to forecast availability in the bike-shared systems

Gutiérrez Gómez, Bosco. (2021). Neural network model, based on time series, to forecast availability in the bike-shared systems Master Thesis, Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
Gutierrez_Gomez_JuanBosco_TFM.pdf Gutierrez_Gomez_JuanBosco_TFM.pdf application/pdf 853.79KB

Título Neural network model, based on time series, to forecast availability in the bike-shared systems
Autor(es) Gutiérrez Gómez, Bosco
Abstract The rental of the public system of shared bicycles is a service aimed at all citizens of the city of Madrid and Barcelona, as an alternative element of clean transport that contributes to a more sustainable mobility model and the promotion of more balanced transport habits and healthy. Mobility services are increasingly based on technology and data collection, not only directly related to mobility flows, but also to other variables that affect it to a greater extent such as meteorology, pollution, strikes and temporary events. Knowing where, when and how people move is key to matching supply with demand. A better understanding of their behavior will allow us to better adapt these transport systems and optimize resources. It is necessary to predict how the system will behave to anticipate movements. Deep learning techniques have shown significant improvements in prediction over traditional models, but some difficulties and open questions remain regarding their applicability, accuracy, and ability to provide practical information. Our approach in this paper is based on comparing different models capable of predicting at least 6 hours in advance which stations are likely to be full or empty.
Notas adicionales Trabajo de Fin de Máster Universitario en Investigación en Inteligencia Artificial. UNED
Materia(s) Ingeniería Informática
Editor(es) Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial
Director/Tutor Aznarte Mellado, José Luis
Medrano López, Rodrígo de
Fecha 2021-09-30
Formato application/pdf
Identificador bibliuned:master-ETSInformatica-IIA-Bgutierrez
http://e-spacio.uned.es/fez/view/bibliuned:master-ETSInformatica-IIA-Bgutierrez
Idioma eng
Versión de la publicación acceptedVersion
Nivel de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de recurso master Thesis
Tipo de acceso Acceso abierto

 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 70 Visitas, 27 Descargas  -  Estadísticas en detalle
Creado: Mon, 03 Oct 2022, 19:52:27 CET