A quantum evolutionary approach to solving the team formation problem in social networks

Álvarez Lois, Pedro Pablo. (2019). A quantum evolutionary approach to solving the team formation problem in social networks Master Thesis, Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
Alvarez_Lois_PedroPablo_TFM.pdf Alvarez_Lois_PedroPablo_TFM.pdf application/pdf 2.67MB

Título A quantum evolutionary approach to solving the team formation problem in social networks
Autor(es) Álvarez Lois, Pedro Pablo
Abstract Recent advances in information and communication technologies have led to the expansion of collaborative work. Complex problems in science, engineering, or business are being solved by teams of people working closely with one another. However, forming teams of experts is a computationally challenging problem that requires powerful solution techniques. A metaheuristic algorithm that incorporates some of the principles of quantum computing into an evolutionary structure is presented. The resulting Quantum Evolutionary Algorithm (QEA) has the ability to produce an adequate balance between intensification and diversification during the search process. Numerical experiments have shown that the QEA is able to significantly improve the quality of the solutions for hard instances of the team formation problem, particularly when compared to a standard genetic algorithm. The successful performance of the algorithm requires careful parameter tuning, as well as a mechanism to effectively share information across the population of candidate solutions.
Notas adicionales Trabajo de Fin de Máster. Máster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones. UNED
Materia(s) Ingeniería Informática
Editor(es) Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial
Director/Tutor Fernández Galán, Severino
Fecha 2019-09-24
Formato application/pdf
Identificador bibliuned:master-ETSInformatica-IAA-Ppalvarez
http://e-spacio.uned.es/fez/view/bibliuned:master-ETSInformatica-IAA-Ppalvarez
Idioma eng
Versión de la publicación acceptedVersion
Nivel de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de recurso master Thesis
Tipo de acceso Acceso abierto

 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 34 Visitas, 17 Descargas  -  Estadísticas en detalle
Creado: Fri, 09 Oct 2020, 23:02:01 CET