Probabilistic Graphical Models for the Tuning of Systems

Bermejo Delgado, Iñigo. (2012). Probabilistic Graphical Models for the Tuning of Systems Master Thesis, Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial.

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
Bermejo_Delgado_Inigo_TFM.pdf Bermejo_Delgado_Inigo_TFM.pdf application/pdf 878.96KB

Título Probabilistic Graphical Models for the Tuning of Systems
Autor(es) Bermejo Delgado, Iñigo
Abstract Probabilistic Graphical Models (PGMs) have been widely praised for their declarative nature and their capability for complex reasoning with uncertainty, but when applied to real-world complex domains, the resulting model is usually large and highly inter-connected. This usually brings two main problems: rst, the construction and maintenance of the model turns into a time-consuming, tedious and error-prone task. And second, the computational cost of inference soars with the number of links in the model. Therefore it seems necessary to come up with tools that will alleviate the issues that arise when dealing with large PGMs. In this Master Thesis we have proposed and implemented methods and techniques to help in the process of creation and maintenance of large PGMs. Besides, we describe the process of modelling the problem of programming Cochlear Implants, i.e. adjusting parameters for their optimal performance with the use of PGMs. The new concepts and algorithms we have developed for this purpose are also presented in this Master Thesis. Even if inspired by the needs arisen throughout the development of this real-world application, they are valid for other domains, such as the tuning of systems with adjustable parameters.
Notas adicionales Trabajo de Fin de Máster. Máster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones. UNED
Materia(s) Ingeniería Informática
Editor(es) Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial.
Director/Tutor Díez Vegas, Francisco Javier
Fecha 2012-09-27
Formato application/pdf
Identificador bibliuned:master-ETSInformatica-IAA-Ibermejo
http://e-spacio.uned.es/fez/view/bibliuned:master-ETSInformatica-IAA-Ibermejo
Idioma eng
Versión de la publicación acceptedVersion
Nivel de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de recurso master Thesis
Tipo de acceso Acceso abierto

 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 100 Visitas, 26 Descargas  -  Estadísticas en detalle
Creado: Mon, 12 Jul 2021, 19:31:50 CET