A novel approach to the placement problem for FPGAs based on genetic algorithms.

Veredas Ramírez, Francisco Javier. (2017). A novel approach to the placement problem for FPGAs based on genetic algorithms. Master Thesis, Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
Veredas_Ramirez_FranciscoJavier_TFM.pdf Veredas_Ramirez_FranciscoJavier_TFM.pdf application/pdf 2.57MB

Título A novel approach to the placement problem for FPGAs based on genetic algorithms.
Autor(es) Veredas Ramírez, Francisco Javier
Abstract This Master's thesis investigates the critical path optimization in the FPGA's placement. An initial investigation of the FPGA's placement problem shows that the minimization of the traditional cost function used in the simulated annealing's placement not always produce a minimal critical path. Therefore, it is proposed to use the routing algorithm as a cost function to improve the nal critical path. The experimental results conrm that this new cost function has better quality results than the traditional cost function, at the expenses of longer execution time. A genetic algorithm using the routing algorithm as a cost function is found to reduce the execution time meanwhile is maintained a minimal critical path. The use of genetic algorithms with the new cost function will be useful in those cases where a minimum critical path is needed. Furthermore, this work investigates the use of genetic algorithm using the traditional cost function. In this case, no better critical path in comparison with a simulated annealing's placement is observed.
Notas adicionales Trabajo de Fin de Máster. Máster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones. UNED
Materia(s) Ingeniería Informática
Editor(es) Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial
Director/Tutor Carmona Suárez, Enrique Javier
Fecha 2017-07-07
Formato application/pdf
Identificador bibliuned:master-ETSInformatica-IAA-Fjveredas
http://e-spacio.uned.es/fez/view/bibliuned:master-ETSInformatica-IAA-Fjveredas
Idioma eng
Versión de la publicación acceptedVersion
Nivel de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de recurso master Thesis
Tipo de acceso Acceso abierto

 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 35 Visitas, 5 Descargas  -  Estadísticas en detalle
Creado: Thu, 12 Dec 2019, 18:46:21 CET