Workforce Distribution in Dynamic Multi-Agent Systems

Millán Ruiz, David. (2010). Workforce Distribution in Dynamic Multi-Agent Systems Master Thesis, Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial.

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
Millan_Ruiz_David_TFM.pdf Millan_Ruiz_David_TFM.pdf application/pdf 1.56MB

Título Workforce Distribution in Dynamic Multi-Agent Systems
Autor(es) Millán Ruiz, David
Abstract This work describes a novel approach to workforce distribution in dynamic multi-agent systems based on backboard architectures. These environments entail quick adaptations to a changing environment that only fast greedy heuristics can handle. These greedy heuristics consist of a continuous re-planning, considering the current state of the system. As these decisions are greedily taken, the workforce distribution may be poor for middle and/or long term planning due to incessant wrong movements. The use of parallel memetic algorithms, which are more complex than classical, ad-hoc heuristics, can guide us towards more accurate solutions. In order to apply parallel memetic algorithms to such a dynamic environment, we propose a reformulation of the traditional problem, which combines predictions of future situations with a precise search mechanism, by enlarging or diminishing the timeframe considered. The size of the time-frame depends upon the dynamism of the system (smaller when there is high dynamism and larger when there is low dynamism). This work demonstrates how nearly optimal solutions each v seconds (size of the time-frame) outperforms continuous bad distributions when the right size of the time-frame is determined, and predictions and optimisations are properly carried out. Specifically, we propose a neural network for predicting future system variables and a parallel memetic algorithm to perform the assignment of incoming tasks to the right agents, which outperforms other conventional approaches. Additionally, we propose a modification of the resilient back-propagation algorithm and evolutionary operators based on meta-heuristics. To conclude, we test out our method on a real-world production environment from Telefónica which is a large multinational telephone operator.
Notas adicionales Trabajo de Fin de Máster. Máster Universitario en I.A. Avanzada: Fundamentos, Métodos y Aplicaciones. UNED
Materia(s) Ingeniería Informática
Editor(es) Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería Informática. Departamento de Inteligencia Artificial.
Director/Tutor Fernández Galán, Severino
Fecha 2010-07
Formato application/pdf
Identificador bibliuned:master-ETSInformatica-IAA-Dmillan
http://e-spacio.uned.es/fez/view/bibliuned:master-ETSInformatica-IAA-Dmillan
Idioma eng
Versión de la publicación acceptedVersion
Nivel de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de recurso master Thesis
Tipo de acceso Acceso abierto

 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 60 Visitas, 15 Descargas  -  Estadísticas en detalle
Creado: Fri, 02 Jul 2021, 18:32:14 CET