The contribution of linguistic features to automatic machine translation evaluation

Amigó, Enrique, Giménez, Jesús, Gonzalo, Julio y Verdejo, Felisa(2009) .The contribution of linguistic features to automatic machine translation evaluation. .En: . ()

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
Documento.pdf Pdf del documento application/pdf

Titulo The contribution of linguistic features to automatic machine translation evaluation
Autor(es) Amigó, Enrique
Giménez, Jesús
Gonzalo, Julio
Verdejo, Felisa
Materia(s) Informática
Resumen A number of approaches to Automatic MT Evaluation based on deep linguistic knowledge have been suggested. However, n-gram based metrics are still today the dominant approach. The main reason is that the advantages of employing deeper linguistic information have not been clarified yet. In this work, we propose a novel approach for meta-evaluation of MT evaluation metrics, since correlation cofficient against human judges do not reveal details about the advantages and disadvantages of particular metrics. We then use this approach to investigate the benefits of introducing linguistic features into evaluation metrics. Overall, our experiments show that (i) both lexical and linguistic metrics present complementary advantages and (ii) combining both kinds of metrics yields the most robust metaevaluation performance.
Fecha 2009-08-02
Formato application/pdf
Identificador http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-MA2VICMR-1045
bibliuned:DptoLSI-ETSI-MA2VICMR-1045
Idioma eng
Fuente Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 306–314,Suntec, Singapore, 2-7 August 2009
Versión de la publicación publishedVersion
Relacionado con el proyecto: info:eu-repo/grantAgreement/S2009/TIC-1542
Nivel de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de recurso lecture
Tipo de acceso Acceso abierto

 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 230 Visitas, 338 Descargas  -  Estadísticas en detalle
Creado: Fri, 21 Nov 2014, 14:19:27 CET