CO2 Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size

Santiago, Rubén, Lemus, Jesús, Hospital-Benito, Daniel, Moya, Cristian, Bedia, Jorge, Alonso-Morales, Noelia, Rodríguez, Juan J. y Palomar, Jose . (2019) CO2 Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size. ACS Sustainable Chem. Eng. 2019, 7, 15,

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
SantiagoLorenzo_Ruben_ParticleSizeCO2CaptureIonicLiquids.pdf SantiagoLorenzo_Ruben_ParticleSizeCO2CaptureIonicLiquids.pdf application/pdf 1.91MB

Título CO2 Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size
Autor(es) Santiago, Rubén
Lemus, Jesús
Hospital-Benito, Daniel
Moya, Cristian
Bedia, Jorge
Alonso-Morales, Noelia
Rodríguez, Juan J.
Palomar, Jose
Materia(s) Ingeniería Industrial
Abstract CO2 capture by fixed-bed sorption has been evaluated using Supported Ionic Liquid Phase (SILP) based on the ionic liquid 1-butyl-3-methylimidazolium acetate ([bmim][acetate]). The SILP sorbent was prepared with three remarkably different mean particle sizes and characterized by porous texture, morphology, thermal stability, and elemental composition. The thermodynamics and kinetics of the CO2 capture process has been studied, testing the effects of SILP particle size, sorption temperature, gas flow rate, and CO2 partial pressure. The CO2 sorption isotherms at different temperatures were obtained by gravimetric measurements, revealing that the equilibrium sorption capacity is only due to the IL incorporated on the silica support of SILP. The experimental isotherms were successfully fitted to the Langmuir−Freundlich model. Fixed-bed experiments of CO2 capture were carried out to evaluate the performance of the SILP sorbents at different operating conditions. All the breakthrough curves were well described by a linear driving force model. The obtained kinetic coefficients revealed that the CO2 sorption rate in fixed-bed linearly increases when decreasing the SILP particle size and increasing the operating temperature. Higher CO2 partial pressure in the inlet gas stream led to a faster mass transfer rate, affecting both the mass transfer driving force and kinetic coefficient. Aspen Adsorption simulator was successfully applied to model the fixed-bed operation, highlighting the role of the particle size on separation efficiency. Simulations results indicate that at very low CO2 partial pressure chemical absorption is the controlling step, while increasing that partial pressure shifts the regime toward diffusion into the SILP. This methodology will allow designing CO2 sorption systems based on SILPs that fulfill the separation requirements at given conditions (CO2 partial pressure and temperature), minimizing the SILP needs by optimizing the particle size and type of IL.
Palabras clave CO2 capture
Ionic liquids
SILP
Fixed-bed
Particle size
Kinetics
Fecha 2019-06-27
Identificador bibliuned:DptoIEEC-ETSI-Articulos-Rsantiago-0001
http://e-spacio.uned.es/fez/view/bibliuned:DptoIEEC-ETSI-Articulos-Rsantiago-0001
DOI - identifier 10.1021/acssuschemeng.9b02277
ISSN - identifier 13089–13097
Número de Volumen 7
Número de Issue 15
Publicado en la Revista ACS Sustainable Chem. Eng. 2019, 7, 15,
Versión de la publicación acceptedVersion
Tipo de recurso Article
Notas adicionales The registered version of this article, first published in ACS Sustainable Chem. Eng, is available online at the publisher's website: ACS Publications, https://doi.org/10.1021/acssuschemeng.9b02277
Notas adicionales La versión registrada de este artículo, publicado por primera vez en ACS Sustainable Chem. Eng, está disponible en línea en el sitio web del editor: ACS Publications, https://doi.org/10.1021/acssuschemeng.9b02277

 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 54 Visitas, 21 Descargas  -  Estadísticas en detalle
Creado: Mon, 15 Jan 2024, 22:34:03 CET