A novel energy conversion system based on supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants

Linares, José Ignacio, Montes, María José, Cantizano, Alexis y Sánchez, Consuelo . (2020) A novel energy conversion system based on supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants. Applied Energy, 263, 114644

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
Linares_AppliedEnergy_2020.pdf Linares_AppliedEnergy_2020.pdf application/pdf 881.42KB

Título A novel energy conversion system based on supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants
Autor(es) Linares, José Ignacio
Montes, María José
Cantizano, Alexis
Sánchez, Consuelo
Materia(s) Energías Renovables
Abstract Power tower concentrating solar plants with thermal energy storage will play a key role in the transition to a low carbon scenario, thanks to be a dispatchable renewable energy system. The ternary MgCl2/KCl/NaCl salt appears as one of the most promising due to its lower melting point, higher heat capacity, lower cost and stability up to 800 °C. A cavity-type receiver has been selected because minimizes radiation heat loss at high working temperatures, compared to an external-type receiver, since all commercial selective coatings degrade in air. Supercritical Brayton power cycle is chosen for the power block because it can surpass 50% efficiency, even when working in dry cooling conditions, and printed circuit heat exchangers are usually recommended due to its ability to support the high pressures. However, plugging/clogging issues arise in their small channels when using molten salts. This paper proposes a novel supercritical CO2 Bayton power cycle whose heat power is supplied through the low pressure side (over 85 bar) allowing the use of shell and tube heat exchangers, achieving a higher compactness and a lower investment. Thus, different options based on the recompression layout with intercooling and reheating have been investigated in both dry and wet cooling scenarios. Reheating is recommended for wet cooling, reaching 54.6% efficiency and an investment of 8662 $/kWe; intercooling with reheating is the best option for dry cooling, reaching 52.6% efficiency and an investment of 8742 $/kWe.
Palabras clave supercritical CO2
recompression Brayton power cycle
concentrated solar plant
shell and tube heat exchanger
ternary chloride molten salt
cavity receiver
Editor(es) Elsevier
Fecha 2020-02-09
Formato application/pdf
Identificador bibliuned:DptoIE-ETSI-ACES2030-0004
http://e-spacio.uned.es/fez/view/bibliuned:DptoIE-ETSI-ACES2030-0004
DOI - identifier https://doi.org/10.1016/j.apenergy.2020.114644
Publicado en la Revista Applied Energy, 263, 114644
Idioma eng
Versión de la publicación acceptedVersion
Relacionado con el proyecto: info:eu-repo/grantAgreement/S2018/EMT-4319
Tipo de recurso Article
Derechos de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de acceso Acceso abierto
Notas adicionales This is the Accepted Manuscript of an article published by ELSEVIER in "Applied Energy" on 1 April 2020, available online:https://doi.org/10.1016/j.apenergy.2020.114644 -- Este es el manuscrito aceptado de un artículo publicado por ELSEVIER en "Applied Energy" el 1 abril 2020, disponible en línea: https://doi.org/10.1016/j.apenergy.2020.114644
Notas adicionales Proyecto ACES2030-CM (Alta Concentración Energía Solar) S2018/EMT4319

 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 82 Visitas, 30 Descargas  -  Estadísticas en detalle
Creado: Mon, 15 Nov 2021, 22:49:29 CET