Instability and symmetry breaking in binary evaporating thin films over a solid spherical dome

Shi, Xingyi, Rodríguez-Hakim, Mariana, Shaqfeh, Eric S. G. y Fuller, Gerald G. . (2021) Instability and symmetry breaking in binary evaporating thin films over a solid spherical dome. Journal of Fluid Mechanics, Volume 915, 25 May 2021, A45

Ficheros (Some files may be inaccessible until you login with your e-spacio credentials)
Nombre Descripción Tipo MIME Size
RODRIGUEZ_HAKIM_Mariana_InstabilityAndSymmetr.pdf RODRIGUEZ_HAKIM_Mariana_InstabilityAndSymmetr.pdf application/pdf 1.22MB

Título Instability and symmetry breaking in binary evaporating thin films over a solid spherical dome
Autor(es) Shi, Xingyi
Rodríguez-Hakim, Mariana
Shaqfeh, Eric S. G.
Fuller, Gerald G.
Materia(s) Física
Abstract We examine the axisymmetric and non-axisymmetric flows of thin fluid films over a spherical glass dome. A thin film is formed by raising a submerged dome through a silicone oil mixture composed of a volatile, low surface tension species (1 cSt, solvent) and a non-volatile species at a higher surface tension (5 cSt, initial solute volume fraction ϕ0). Evaporation of the 1 cSt silicone oil establishes a concentration gradient and, thus, a surface tension gradient that drives a Marangoni flow that leads to the formation of an initially axisymmetric mound. Experimentally, when ϕ0⩽0.3%, the mound grows axisymmetrically for long times (Rodríguez-Hakim et al., Phys. Rev. Fluids, vol. 4, 2019, pp. 1–22), whereas when ϕ0⩾0.35%, the mound discharges in a preferred direction, thereby breaking symmetry. Using lubrication theory and numerical solutions, we demonstrate that, under the right conditions, external disturbances can cause an imbalance between the Marangoni flow and the capillary flow, leading to symmetry breaking. In both experiments and simulations, we observe that (i) the apparent, most amplified disturbance has an azimuthal wavenumber of unity, and (ii) an enhanced Marangoni driving force (larger ϕ0)leads to an earlier onset of the instability. The linear stability analysis shows that capillarity and diffusion stabilize the system, while Marangoni driving forces contribute to the growth in the disturbances.
Editor(es) Cambridge University Press
Fecha 2021-05-25
Formato application/pdf
Identificador bibliuned:DptoFF-FCIE-Articulos-Mrodriguez-0004
http://e-spacio.uned.es/fez/view/bibliuned:DptoFF-FCIE-Articulos-Mrodriguez-0004
DOI - identifier https://doi.org/10.1017/jfm.2021.136
ISSN - identifier 0022-112; eISSN: 1469-7645
Nombre de la revista Journal of Fluid Mechanics
Número de Volumen 915
Publicado en la Revista Journal of Fluid Mechanics, Volume 915, 25 May 2021, A45
Idioma eng
Versión de la publicación acceptedVersion
Tipo de recurso Article
Derechos de acceso y licencia http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
Tipo de acceso Acceso abierto
Notas adicionales This is an Accepted Manuscript of an article published by Cambridge University Press in "Journal of Fluid Mechanics, Volume 915, 25 May 2021, A45", available at: https://doi.org/10.1017/jfm.2021.136
Notas adicionales Este es el manuscrito aceptado del artículo publicado por Cambridge University Press en "Journal of Fluid Mechanics, Volume 915, 25 May 2021, A45", disponible en línea: https://doi.org/10.1017/jfm.2021.136

Tipo de documento: Artículo de revista
Collections: Departamento de Física Fundamental (UNED). Artículos
Set de artículo
Set de openaire
 
Versiones
Versión Tipo de filtro
Contador de citas: Google Scholar Search Google Scholar
Estadísticas de acceso: 31 Visitas, 17 Descargas  -  Estadísticas en detalle
Creado: Mon, 05 Feb 2024, 21:26:00 CET