
Ph.D. Dissertation

Contributions to Networked and
Event-Triggered Control

of Linear Systems

(Contribuciones al Control en Red Basado en Eventos
para Sistemas Lineales)

María Guinaldo Losada
Physicist and Computer Scientist
from Universidad de Salamanca

Departamento de Informática y Automática
E.T.S. de Ingeniería Informática

Universidad Nacional de Educación a Distancia

Madrid, 2013

Department Informática y Automática

Faculty E.T.S. de Ingenieŕıa Informática

Dissertation Title Contributions to Networked and
Event-Triggered Control
of Linear Systems

Author Maŕıa Guinaldo Losada

Academic Degree Physicist and Computer Scientist
Universidad de Salamanca

Advisors Dr. Sebastián Dormido Bencomo
Dr. José Sánchez Moreno

Abstract

The development of new network technologies in the last decades has made possi-

ble its application to a noticeable heterogeneity of control systems. This applica-

tion has given birth to a new family of control architectures, known as Networked

Control Systems (NCS). In NCS, sensors, actuators, and controllers are connected

through a shared band-limited digital communication network. In this regard,

event-based control has been examined to reduce the communication between

the components of a networked control loop. Moreover, NCS also suffer from

other communication imperfections such as delays and packet losses. The goal of

this thesis is to design and implement novel strategies to help solve some of the

problems that arise in NCS. The framework is restricted to linear systems.

First, a single loop architecture is investigated and the proposed solution

consists of designing new elements in the control loop which act as interfaces

between the conventional components (controllers, sensor, and actuators) and

the network. The use of event-triggered control helps to decrease the frequency

of communication, and an anticipative controller, based on a model, computes

finite-length signal predictions to better cope with network delays and packet

losses. The proposed method has been implemented and two applications have

been developed to facilitate the inclusion of conventional controllers in NCS.

Secondly, several distributed event-based control strategies are provided to

reduce communication and actuation in networked interconnected systems. The

proposed design guarantees the system stability, certain level of performance,

and the existence of a positive lower bound for the inter-event time. The possible

model uncertainties that characterize large-scale interconnected systems, and the

effect of network imperfections such as delays or packet losses are analyzed. Two

communication protocols are investigated to deal with this latter problem.

Finally, tools to implement distributed event-based control in networked mo-

bile robots are provided. An interactive simulator has been developed to offer

flexibility when defining the conditions of the experiment. The distributed event-

based control algorithms are also applied in a testbed of mobile robots.

To my family

Acknowledgments

My most sincere gratitude to all the people that made this thesis possible.

First of all, to my advisors José Sánchez Moreno and Sebastián Dormido

Bencomo, for giving me the opportunity to do this work, for their support, en-

couragement, trust and inspiration during all these years, which have helped me

to grow personally and professionally. Thank you so much.

To professors Denis Gillet, Karl H. Johansson, and Carlos Canudas de Wit,

for inviting me to visit their home institutions, for broadening my research inter-

est, and for the shared work. I would also like to thank Dr. Christophe Salzmann

for helping me with the first experimental results of my Ph.D., Dr. Dimos V.

Dimarogonas, who supervised my work at KTH, for all the meetings and useful

suggestions, and Dr. Daniel Lehmann for his advice on event-based control.

To all the professors at the Departamento de Informática y Automática. I

would like to extend special thanks to Raquel Dormido and Natividad Duro for

facilitating so much my start as a docent, and to Sebastián Dormido-Canto for

all his advice and help. I would also like to thank Pilar Riego for all the help

given with administrative issues.

To my colleagues at the department Miguel Ángel, Vı́ctor, David, and Luis,

and also to the past members. Special thanks to Dictino for his useful comments

regarding stability, to Ernesto for helping me with the experimental results, and

to Jesús who is always willing to help. I would also like to express my gratitude

to Héctor Vargas for his friendship and his support at the beginning of my Ph.D.

I had the pleasure of working with Gonzalo Farias as well. Thank you for the

help with Ejs.

To Eladio Sanz and Belén Pérez-Lancho, who introduced me into the auto-

matic control. Thank you Eladio for affording me the opportunity of meeting

Sebastián, and for all your help and support.

During my Ph.D. I have met a lot of people from academia. I would like

to thank the people from the Automatic Control Laboratory (KTH) and to the

NeCS team (INRIA), where I had the opportunity to work. My special thanks go

to António, Pablo, Giovanni, Ruggero and Luis for making it easier to be away

from home, and for their friendship.

To my family, especially to my mother Filo and my father Vı́ctor for giving

me the best they can and for the values they taught me such as responsibility and

perseverance. To my brother Vı́ctor for being always there. To Maŕıa Panero for

her positiveness and enthusiasm.

To my friends who are the best support one can have. My special gratitude

to Raquel and Ana for being my family in Madrid during these years. Thank you

to David, Noelia, Chisi, Pilar and Bea for their encouragement, to los Molineros

for all the unforgettable moments, and to the friends I made in Colegio César

Carlos.

Finally, there is one person remaining who has been essential for me in this

time, Luis. Thank you so much for all your support, patience and love.

María Guinaldo Losada

Madrid, May 2013

Contents

1 Introduction 1

1.1 Control over networks . 2

1.1.1 General issues . 2

1.1.2 Work in the area of control over network 5

1.2 System architecture . 8

1.2.1 Single loop schemes . 9

1.2.2 Multi-loop schemes . 10

1.3 Event-based control . 13

1.3.1 Preliminaries . 13

1.3.2 Event-based control and NCS 14

1.4 Model-based control in NCS . 18

1.5 Objectives of the Thesis . 20

1.6 Outlines and Contributions . 21

1.7 Publications and projects . 24

2 Anticipative Control Design in Internet-like Networks 29

2.1 Introduction . 30

2.2 Contributions of this chapter . 31

2.3 Assumptions . 32

2.4 The Controller Adaptation Layer (CAL) 36

viii Contents

2.4.1 Packets processing . 36

2.4.2 Control sequence computation 37

2.5 The Process Adaptation Layer (PAL) 38

2.6 Event-based anticipative control 40

2.6.1 CAL design for event-based control 41

2.6.2 PAL design for event-based control 43

2.7 Stability analysis . 44

2.7.1 Analysis of the maximum RTT and the model uncertainties 48

2.7.2 Analysis of the error bounds 50

2.8 Disturbance estimator . 52

2.8.1 Stability analysis . 56

2.9 Output-based event-triggered control 58

2.9.1 PAL design for output measurement 60

2.9.2 CAL design for output measurement 61

2.9.3 Stability analysis . 63

2.9.4 PI anticipative control . 66

2.10 Centralized anticipative control for N subsystems 68

2.10.1 The scheduler . 71

2.11 Conclusions . 72

3 Implementation and Experimental Evaluation of the Anticipative

Control 75

3.1 Contributions of this chapter . 75

3.2 Experimental framework . 76

3.2.1 Prototypes overview . 77

3.3 Implementing the CAL and the PAL in LAbVIEW 80

3.3.1 Implementation of the PAL 81

3.3.2 Implementation of the CAL 82

3.4 Experimental results . 83

3.4.1 Performance of event-based control 84

3.4.2 Response to disturbances 87

Contents ix

3.4.3 PI anticipative controller 89

3.4.4 Network: delays and packet losses 91

3.5 Conclusions . 94

4 Distributed event-based control for interconnected linear systems 97

4.1 Introduction . 97

4.2 Contributions of this chapter . 99

4.3 Background and problem statement 100

4.3.1 Matrix and perturbations analysis 100

4.3.2 Problem statement . 103

4.4 Event-based control strategy . 106

4.5 Results for perfect decoupling . 108

4.5.1 Static trigger functions . 112

4.5.2 Pure exponential trigger functions 112

4.5.3 Simulation results . 113

4.6 The non-perfect decoupling case 117

4.6.1 Simulation results . 120

4.7 Extension to discrete-time systems 121

4.7.1 System description . 121

4.7.2 Discrete-time trigger functions 123

4.7.3 Stability analysis . 124

4.8 Conclusions . 126

5 Extensions and improvements of the distributed event-based con-

trol 129

5.1 Introduction . 130

5.2 Contributions of this chapter . 132

5.3 Extension to non-reliable network 133

5.3.1 Transmission protocols . 134

5.3.2 Performance analysis for perfect decoupling 138

5.3.3 Performance analysis for non perfect decoupling 147

5.3.4 Simulation results . 151

x Contents

5.4 Reducing actuation in distributed control systems 154

5.4.1 Trigger functions . 155

5.4.2 Performance analysis . 158

5.4.3 Simulation results . 163

5.5 Model-based design . 167

5.5.1 Main result . 169

5.5.2 Simulation results . 172

5.6 Conclusions . 173

6 Simulation Tools and Application Example of the DEBC: Networked

Mobile Robots 175

6.1 Introduction . 175

6.2 Contributions of this chapter . 177

6.3 Formation Control for Networked Mobile Robots 177

6.3.1 Multi-Agent Systems and the Consensus Problem 178

6.3.2 Formation Control . 180

6.3.3 Model of non-holonomic mobile robots 182

6.3.4 Time-Schedule Control . 185

6.3.5 Robot Wireless Communication Protocols 186

6.4 MaSS: Multi-agent Systems Simulator 188

6.4.1 Existing tools . 189

6.4.2 Description of the GUI . 190

6.4.3 Modeling a multi-agent system in Ejs 192

6.4.4 Using MaSS . 197

6.5 Application example to a real testbed 202

6.5.1 Experimental framework . 203

6.5.2 Experimental results . 204

6.6 Conclusions . 211

7 Conclusions and Future Work 213

7.1 Conclusions . 213

7.2 Future work . 215

Contents xi

Bibliography 217

APPENDICES 237

A Prototypes models 239

A.1 The QUANSER SRV-02 setup . 239

A.2 The flexible link: QUANSER SRV-02 series 241

B Proofs 245

B.1 Proof of Theorem 2.2 . 245

B.2 Proof of Theorem 2.3 . 246

B.3 Proof of Theorem 4.2 . 247

B.4 Derivation of (4.45) . 249

B.5 Proof of Theorem 4.3 . 250

B.6 Proof of Proposition 5.2 . 252

B.7 Proof of Theorem 5.3 . 253

B.8 Proof of Theorem 5.4 . 254

B.9 Proof of Theorem 5.5 . 255

B.10 Proof of Theorem 5.6 . 256

C Software 259

C.1 Implementation of the CAL and the PAL in LabVIEW 260

C.2 User Manual of MaSS . 263

C.2.1 Background . 263

C.2.2 The Graphical User Interface 265

C.2.3 Examples of Usage . 271

D Resumen en Castellano 275

D.1 Control a través de redes . 276

D.1.1 Cuestiones generales . 276

D.1.2 Trabajos en el área de control sobre redes 279

D.2 Arquitectura . 283

D.2.1 Sistemas con un único lazo de control 283

xii Contents

D.2.2 Sistemas con múltiples lazos de control 285

D.3 Control basado en eventos . 288

D.3.1 Preliminares . 288

D.3.2 Control basado en eventos y SCR 289

D.4 Control basado en modelo en SCR 293

D.5 Objetivos de la tesis . 295

D.6 Guión y Contribuciones de la Tesis 296

D.7 Publicaciones y Proyectos . 299

D.8 Conclusiones y ĺıneas futuras de investigación 302

D.8.1 Conclusiones . 302

D.8.2 Trabajos futuros . 304

List of Abbreviations

AAC Anytime Attention Control
ACK Ackwnowledgment
AODV Ad-hoc On Demand distance Vector
API Application Programming Interface
CAL Controller Adaptive Layer
CBE Control Basado en Eventos
CCD Charge-Coupled Device
DAQ Data Acquisition
DUN Dial-up Networking
Ejs Easy Java Simulation
EPFL École Polytechnique Fédérale de Lausanne
GUI Graphical User Interface
DEBC Distributed Event-Based Control
DSR Dynamic Source Routing
GUUB Globally Uniformly Ultimately Bounded
IDTS Input Difference Transmission Scheme
I/O Input/Output
IAE Integral Absolute Error
IFAC International Federation of Automatic Control
LEACH Low Energy Adaptive Clustering Hierarchy
LMI Linear Matrix Inequality
LAN Local-Area Network
LTI Linear Time Invariant
MB Model Based
MIMO Multiple Input Multiple Output
MAC Minimum Attention Control
MaSS Multi-agent Systems Simulator

xiv Contents

MPC Model Predictive Control
NCS Networked Control Systems
PAL Process Adaptive Layer
PAN Personal Area Network
PID Proportional Integral Derivative
PERM Permission
PPP Point-to-Point Protocol
RF Radio Frequency
RPL Routing Protocol for Low power and lossy networks
RTT Round Trip Time
TCP Transmission Control Protocol
TS Time Stamp
SCR Sistemas de Control en Red
SISO Single Input Single Output
UDP User Datagram Protocol
UNED Universidad de Educación a Distancia
UwR Update when Receive
VI Virtual Instruments
VRML Virtual eality Markup Language
WfA Wait for All
WNCS Wireless Networked Control System
WSAN Wireless Sensor/Actuator Network
WSN Wireless Sensors Network
ZOH Zero Order Hold

List of Symbols

Indices

(·)∗ Conjugate transpose of a matrix
(·)−1 Inverse of a matrix
(·)T Transpose of a vector or matrix
−→
(·) Collection of elements
(̂·) Estimated signal or matrix
(·)0 Initial value
(·)b Broadcasted signal
(·)C Refering to the controller (Signal or matrix)
(·)d Discrete-time (matrix)
(·)u Refering to the control input u
(·)x Refering to the state x
(·)∆ Refering to the coupling ∆
(·)i/(·)i Refering to a subsystem i

(·)i→j/(·)i→j Refering to transmission from a subsystem i to j
(·)max Maximum value
(·)min Minimum value

Scalars

n Dimension of the state vector
m Dimension of the input vector
r Dimension of the output vector

xvi Contents

k Counter
` Counter
t Continuous time
τ Delay
Ts Sampling time
TW Waiting time
c Event constant threshold
tk Event time
ki Event time (discrete time)
τ? Delay bound
P ? Maximum number of consecutive packet losses
λ(A) Eigenvalues of A
κ(A) Condition number of A (κ(A) = ‖A‖‖A−1‖)

Vectors

x State vector
u Input vector
w Disturbance vector
y Output vector
v Noise vector
e State error
ey Output error
ysp Set-point
ε Set-point tracking error
ξ Augmented state vector
r Desired inter-vehicle relative position vector
1 Column vector whose components are ones

Matrices

A System matrix
B Input matrix
C Output matrix
D Feedforward matrix
K Feedback gain

Contents xvii

AK System matrix of a closed-loop system (AK = A+BK)
Uk Control sequence
X̂k State prediction sequence
Ŷk Output prediction sequence
ACL Closed loop matrix for output measurement
Hij Interaction term between i and j

Lij Decoupling gain
∆ij Coupling term between i and j

0 Null matrix of appropriate size

Functions

f(·) Trigger function
O Order
S Size
Lf Fréchet derivative of a matrix function f

Sets

N Set of natural numbers
R Set of Real Numbers
C Set of complex numbers
Ni Set of neighbors of agent i
V Set of vertices of a graph G
E Set of edges of a graph G

List of Tables

2.1 Parameters of the subsystems. 72

3.1 Performance parameters of the three frameworks depicted in Fig-

ure 3.8. 87

3.2 Performance parameters for different values of average RTT. 93

3.3 Performance parameters for different values of p. 93

4.1 Comparison of time-triggered and event-triggered strategies. 116

4.2 Inter-event times for different N . 117

4.3 Values of ‖∆d‖2 for several sampling times and number of subsys-

tems, and ‖AdK‖. 126

5.1 Delays bounds (5.5) and (5.14) for different values of c0 and for

WfA and UwR protocols. 147

5.2 Delays for different values of c0 and N 151

5.3 Average broadcasting period variations with N 165

5.4 Average transmission and control update events with cu. 166

5.5 Inter-event times for different N . 173

6.1 Wireless communication technologies for mobile robots. 187

6.2 Number of events generated by each robot. 208

xx List of Tables

6.3 Wvi and Wωi with event-based and periodic communications for

each robot. 210

6.4 Number of events generated by each robot. 210

A.1 SRV-02 model parameters. 243

A.2 Flexible link model parameters. 243

List of Figures

1.1 General layout of electrical grids. By MBizon [CC-BY-3.0 [com13]],

via Wikimedia Commons. 3

1.2 Unmanned aerial vehicles providing surveillance and communica-

tions, borrowed from [Las10]. 4

1.3 Remote surgery support system, borrowed from [Uch03]. 5

1.4 Generic NCS architecture. 6

1.5 Single loop schemes in NCS. 10

1.6 Centralized control of multiple plants. 11

1.7 Distributed control of multiple plants. 12

1.8 Examples of triggering rules. 15

1.9 Model-based controller. 19

2.1 Examples of delays and data dropouts. 34

2.2 Proposed architecture for packet-based NCS. 35

2.3 Packets processing by the CAL layer. 37

2.4 Control sequence computation by the CAL layer. 38

2.5 Packets processing by the PAL layer. 40

2.6 Control and state sequences computation by the CAL layer in the

event-based design. 42

2.7 Surface defined by (2.23). 50

xxii List of Figures

2.8 Comparative of the state (solid line) and the model (dotted line),

and the error bound. k denotes the sampling time, ki, ki+1 the

events occurrence, and τi, τi+1 the delays. 52

2.9 Comparative of the state (solid line) and the model (dotted line),

and the error bound. k denotes the sampling time, ki, ki+1 the

events occurrence, and τi, τi+1 the delays. 53

2.10 Disturbances estimation. The estimated values are represented by

the dotted line, and the actual values by the solid line. 58

2.11 PAL design for output measurement. 60

2.12 CAL design of a centralized anticipative controller for N plants. . . 70

2.13 Priority assigned by the scheduler to each of the subsystems. . . . 72

3.1 Scheme of the experimental framework. 76

3.2 QUANSER SRV-02 gear. 78

3.3 Step and impulse response of the SRV-02 gear model (3.1) with

the PI controller (3.2). 78

3.4 The flexible link: a) View of the module and b) model. 79

3.5 Step (left) and impulse (right) response of the flexible link model

(3.3) with the feedback gain (3.4). 80

3.6 Screenshot of the anticipative controller block in LabVIEW. 84

3.7 Step response for the event based controller with c = 0.05 (blue),

c = 0.1 (red), and c = 0.2 (green). 85

3.8 Performance comparative of the local controller (blue), the remote

controller with Q = 1 (green), and the remote controller with

Q = 20 (red). 87

3.9 Disturbance rejection with (blue) and without (red) disturbance

estimation. 88

3.10 Disturbance rejection with (blue) and without (red) disturbance

estimation. 89

3.11 Disturbance estimation. Top: ŵ1 (blue), ŵ2 (cyan). Bottom: ŵ3

(blue), ŵ4 (cyan). 89

List of Figures xxiii

3.12 Comparison of time-based (blue) and event-based (red) PI antici-

pative controllers. 90

3.13 Measured RTT in three experiments: 10 AM (red), 3 PM (green),

8 PM (blue). 91

3.14 Output, control signal and events generation when the anticipative

controller runs in the server (blue), the average delay is 20 ms (red),

50 ms (green), 100 ms (magenta), and 230 ms (cyan). 92

3.15 Output, control signal and events generation for p = 0 (blue),

p = 0.2 (red), p = 0.4 (green), p = 0.6 (magenta), and p = 0.8

(cyan). 94

4.1 Networked interconnected system. 99

4.2 Scheme of a node, consisting of a digital microprocessor and dy-

namics (left), and block diagram of the tasks carried out by the

microprocessor. 104

4.3 a) Static trigger functions, b) Proposed trigger functions. 107

4.4 Graphical solution of (4.38). 113

4.5 Scheme of the network of the inverted pendulums. 114

4.6 Simulation results with trigger function (4.26) with c0 = 0.02, c1 = 0.115

4.7 Simulation results with trigger functions (4.26) with c0 = 0.02,

c1 = 0.5, α = 0.8. 116

4.8 System response when N =50 for ‖∆ij‖ ≤ 0.1‖Hij‖. Trigger func-

tion parameters: c0 = 0.02, c1 = 0.3, α = 0.5. 121

4.9 Comparative of time-continuous (green) and discrete-time (orange)

trigger functions, Ts = 0.1 (left), Ts = 0.2 (right). 124

5.1 Example of state inconsistency of the signal xb,1 and its copy xb,1→2

in other node of the network. 134

5.2 Update mechanism of WfA (a) and b)) and UwR (c) and d)) pro-

tocols. 137

xxiv List of Figures

5.3 Influence of c1 and α on the delay bound (5.17) (left) and (5.22)

(right). The case c1 = 0.5, α = 0.8 are 1.53 ms and 3.57 ms,

respectively. 148

5.4 Behavior of the subsystem 2 with WfA (red), UwR (green) proto-

cols, and a ideal network (blue). 152

5.5 Difference between a) WfA and b) UwR protocols in updating

the state information. Only the first component of the state is

depicted: xb,2 (blue), xb,2→1 (red), and xb,2→3 (green). 153

5.6 Behavior of the agent 2 with trigger functions (5.3) (c0 = 0.05)

(green, magenta) and (5.16) (c1 = 0.5, α = 0.8) (blue, red), with

3.57 ms as upper bound on the delay. a) (x21 , x22), b) (xb,21 , xb,22). 154

5.7 Illustrative example of transmission and control update events be-

tween a system compound of two agents. 157

5.8 Scheme of the coupled pendulums mesh. 164

5.9 xi1 for a 6× 6 mesh of inverted pendulums. 165

5.10 State (above) and control signals (below) for agent (2,2) with cx =

0.02 + 0.5e−0.6t, cu = 0.1. 166

5.11 Model-based control scheme for the node i. 167

5.12 Comparison of model-based event-triggered control and Chapter 4

approach. 169

5.13 Simulation result with trigger functions (4.26) for the design of

Chapter 4 (red) and the distributed model-based control (blue).

The dashed line (magenta) represents the piecewise function x̂1,1. . 173

6.1 Examples of a) undirected and b) directed graphs. 179

6.2 Examples of formations of four agents in the plane. 181

6.3 Non-holonomic mobile robot. 183

6.4 View of the GUI. 191

6.5 Scheme of one node. 193

6.6 Screenshot of Evolution pages in Ejs. 194

6.7 Structure of a data packet. 196

List of Figures xxv

6.8 Example of chronogram. Delivered packets are in orange, red ar-

rows are lost packets, and green arrows correspond to discarded

packets. 199

6.9 Example of experiment with a leader at different instants of time. . 200

6.10 Matlab figure corresponding to the trajectories of the agents in the

experiment 4. 202

6.11 Distance to the formation, packets rate, and performance corre-

sponding to experiment 4 (Matlab figure). 202

6.12 Experimental framework block diagram. Dotted lines represent

wireless communications, and the exchange of information between

hardware and software components is symbolized by solid lines. . . 204

6.13 Scheme of the communication topology, initial formation (left) and

desired formation (right). 205

6.14 Representation in the plane of the trajectories of each robot for

time-triggered (left) and event-triggered (right) communications

and consensus protocols. Agent 2 (blue), agent 3 (red), agent 4

(green), and agent 5 (magenta). The initial an final positions are

marked with crosses and circles of the same color, respectively. . . 206

6.15 Shots of the consensus protocol experiment with event-triggered

communications at six instants of time. 207

6.16 Distance to the formation over time for time-triggered (above) and

event-triggered (below) communications and consensus protocols.

Agent 2 (blue), agent 3 (red), agent 4 (green), and agent 5 (magenta).207

6.17 Control signals: a) vi time-triggered, b) vi event-triggered, c) ωi

time-triggered, d) ωi event-triggered approaches. Agent 2 (blue),

agent 3 (red), agent 4 (green), and agent 5 (magenta). 209

6.18 Scheme of the communication topology, initial formation (left) and

desired formation (right). 210

xxvi List of Figures

6.19 Representation in the plane of the trajectories of each robot for

time-triggered (left) and event-triggered (right) communications.

Agent 2 (blue), agent 3 (red), agent 4 (green), and agent 5 (ma-

genta). The initial an final positions are marked with crosses and

circles of the same color, respectively. The desired formation is

represented by the circles in light colors. 211

A.1 Electrical circuit of the SRV-02 gear. 239

C.1 Screenshot of the implementation of the CAL in LabVIEW. 260

C.2 Screenshot of the implementation of the PAL in LabVIEW. 261

C.3 Screenshot of the GUI at the Client in LabVIEW. 262

C.4 Screenshot of the GUI at the Server in LabVIEW. 262

C.5 Cover of the user manual of MaSS available at http://lab.dia.

uned.es/mass. 264

C.6 Graphical User Interface. 266

C.7 Prefixed experiments. 267

C.8 Example of chronogram. Delivered packets are in orange, red ar-

rows are lost packets, and green arrows correspond to discarded

packets. 269

C.9 Example of usage, snapshot 1. 271

C.10 Example of usage, snapshot 2. 272

C.11 Initial view of Example 2. 273

C.12 Matlab figure for the experiments of Example 2. 274

D.1 Diseño genérico de redes de energía. Imagen por MBizon [CC-BY-

3.0 [com13]], a través de Wikimedia Commons. 277

D.2 Vehículos aéreos no tripulados para vigilancia y comunicaciones.

Imagen tomada prestada de [Las10]. 278

D.3 Sistema de cirugía teleasistida. Imagen tomada prestada de [Uch03].279

D.4 Arquitectura genérica de un SCR. 280

D.5 Posibles esquemas de un SCR en un lazo de control. 284

D.6 Control centralizado de múltiples plantas. 285

http://lab.dia.uned.es/mass
http://lab.dia.uned.es/mass

List of Figures xxvii

D.7 Sistema de control distribuido. 287

D.8 Diferentes reglas de disparo por eventos. 289

D.9 Controlador basado en modelo. 294

1
Introduction

Summary

Control loops that are closed over a communication network have become more

and more common as the hardware devices for networks and network nodes have

become cheaper. The advantages of using digital communication networks are

manifold, and not only from the point of view of the applications. However, net-

works also pose some challenges such as bandwidth limitations, delays or packet

losses.

This chapter presents an overview of networked control systems, including aspects

related to the network and the control. In particular, the influence of the type of

network, the system architecture, and some of the most relevant approaches to

deal with the communication imperfections that characterize networks are dis-

cussed. The focus also lies on event-based control, which has been shown to be

effective in control over networks. In addition, the contributions and the outline

of this thesis are given, where insights about the main goals of the dissertation

and a brief description of each chapter are provided.

Finally, the results obtained in the development of the thesis (conference and jour-

nal papers) and the research projects that supported this work are mentioned.

2 1 Introduction

1.1 Control over networks

1.1.1 General issues

The development of network technology in the last decades has made possible its

application to control systems. Now, networked control is a strong research area

in control systems. Indeed, at least two of the technical areas of the International

Federation of Automatic Control (IFAC) are devoted to this field, and there also

exists an increasing number of specialized conferences and workshops.

In Networked Control Systems (NCS), sensors, actuators, and controllers are

connected through a shared band-limited digital communication network. The

use of a multipurpose shared network to connect spatially distributed elements

results in manifold advantages that are the reason of the success of NCS:

• Network structured systems offer flexible architectures, making easier the

reconfiguration of the system parts and allowing a simpler addition of new

elements to it.

• They generally reduce installation and maintenance costs, due to the re-

duction in the wiring required in a point-to-point paradigm.

• As a consequence of the previous statement, diagnosis and fault detection

are easier tasks.

NCS have also opened up a complete new range of real-world applications, such

as mobile sensor networks [HE04, OFL04], distributed power systems and smart

grids [MAW05, BZ11] (see Figure 1.1), intelligent transportation systems [MS06],

formation control of autonomous vehicles [SS05, GKKP06], surveillance [BCM+10,

CM02] (see Figure 1.2), remote surgery [MWC+04] (see Figure 1.3), and many

more.

However the use of a shared network introduces new challenges and makes the

analysis and design of NCS complex. Conventional control theories with many

ideal assumptions, such as synchronized control, non-delayed sensing and actua-

tion and unlimited bandwidth, must be re-evaluated before they are applied to

1.1 Control over networks 3

Figure 1.1: General layout of electrical grids. By MBizon [CC-BY-3.0
[com13]], via Wikimedia Commons.

NCS. Improving communication networks and protocols to increase the reliability

is a partial solution. Thus, new control algorithms must be developed in order

to deal with communication imperfections and constraints [Hee10], which can be

summarized as follows:

• Limited bandwidth: Any communication network can only carry a finite

amount of information per unit of time, and this can have a severe effect on

the control system. In most digital networks, data are transmitted in atomic

units called packets. Packets can be divided into the payload (user data)

and the control information (headers) required for the transmission. The

maximum size of the payload depends on the protocol and goes from 1500

bytes in Ethernet to 8 bytes in some Radio Frequency protocols [mOw10].

• Variable communication delays: The transmission of one packet from one

node in the network to another node is not instantaneous and can take a

variable amount of time which depends on highly variable network condi-

4 1 Introduction

Figure 1.2: Unmanned aerial vehicles providing surveillance and communi-
cations, borrowed from [Las10].

tions such as congestion, channel quality or the protocol. This can affect the

control performance in several ways. First, the transmitted information is

delayed. Time-delayed systems are by themselves a topic of research. They

have been vastly investigated out of the NCS context [NRC07], showing

that the stability analysis is more involved than delay-free systems. Sec-

ondly, delays can induce variable sampling intervals. A significant number

of results have attempted to characterize a maximum upper bound on the

sampling interval for which stability of the system can be guaranteed (see

[HNY07] and references there in).

• Packet dropouts: A packet can be lost due to transmission errors in physical

network links, channel congestion or corrupted packets rejected in-transit.

Also, in control applications packets can be discarded and treated as lost

if they arrive “out of date”, for instance, if an updated packet had already

been received.

• Quantization: A quantizer is a function that maps a real-valued function

into a piecewise constant function taking on a finite set of values. In NCS,

the finite word length of the packets induces errors in the transmitted signals

over the network.

1.1 Control over networks 5

Figure 1.3: Remote surgery support system, borrowed from [Uch03].

Another key issue that distinguishes NCS from conventional control systems is

the architecture. The general structure of NCS is depicted in Figure 1.4. It

consists of several (sub-)systems, which may be physically interconnected. The

respective sensor (S), actuator (A), and controller (C) nodes may be widespread

within the entire system and connected arbitrarily through the network. Section

1.2 covers this aspect in more detail.

1.1.2 Work in the area of control over network

Most of the work in the area of NCS is inclined to model them into conventional

control systems with some of the communication constraints described above.

This usually involves a complete, and often complex, re-design of conventional

controllers, which, moreover, can result to be conservative [ZLR09].

In [Hee10], an overview of the main lines of research in stabilizing controller

synthesis of NCS is given. All the methods assume hard bounds on the com-

munication imperfections such as delays, transmission intervals and maximum

number of consecutive packet dropouts. Another usual restriction in these de-

signs is that the synthesis conditions are LMI-based, which restricts the problem

to linear plants. These approaches can be summarized as follows:

6 1 Introduction

NETWORK

C

C C C
Σ3 A S

Σ1 A S

Σj A S
Σi A S

Σk A S

Σ2 A S

Figure 1.4: Generic NCS architecture.

• The discrete-time approach, in which NCS are modeled in discrete-time.

The delay and the sampling interval represent the uncertainty of the system

based on which LMI-based stability conditions are derived. See for instance

[DHvdWH11].

• The sampled-data approach uses (impulsive) delay-differential equations.

Stability conditions are LMIs resulting of extensions of the classical Lyapu-

nov-Krasovskii functional for linear plants and controllers. See [NHT08].

• In the emulation approach [HTVdWN10], the stability of NCS is assessed by

combining continuous-time Lyapunov functions of the network-free closed-

loop system and the network protocol.

There are also some contributions in the field of robust control. H∞ and H2/H∞

controllers have been proposed to deal with the presence of unreliable channels

in the control loops, such as [YHL05, SS05, MOB+12].

The following two sections will analyze the particularities of two types of net-

works: Internet-like networks and wireless networks, and how they can differently

affect the control system.

1.1 Control over networks 7

Internet-like networks

Internet-based control systems allow remote monitoring and adjustment of plants

over the Internet, which makes the control systems benefit from the ways of

retrieving data and reacting to plant fluctuations from anywhere around the

world at any time.

Internet-like communication networks are based on packets that can carry a

larger amount of data than is required for a control system without consuming

additional network resources. Thus, rather than sending individual values, finite-

length signal predictions can be transmitted. This is the motivation of the so

called packet-based control.

A common approach is to use model-based control to emulate future states of

the plant and, therefore predictions for the control signal. The idea of combining

packet-based control and Model Predictive Control (MPC) was first introduced in

[Bem98] in the context of teleoperation. Since then, other authors have exploited

the principle of MPC in packet-based NCS [KJA06, QSG07, MJVR08, VF09,

ICMS11].

Other alternatives have been studied to reduce the computational effort re-

quired by MPC. One of them is the so called anticipative control which estimates

the future state of the system based on a model that considers delays [NH06],

but with no optimization. The resultant control sequence may not be optimal,

but its calculation consumes an insignificant slot of time compared as to MPC.

Anticipative controllers have been proposed in [ESDCM07, GSD11] for dif-

ferent network architectures.

Wireless networks

Recently, some work devoted to enabling control applications over wireless net-

works has begun to appear. The motivation of the interest in wireless networks

comes from the cheap deployment and the increase of flexibility in getting rid

of cabling. Early works focus the controller design on wireless sensor/actuator

networks (WSANs) under ideal network assumption. However, the communica-

8 1 Introduction

tion imperfections cannot be neglected from the implementation point of view.

Moreover, these imperfections are much severe than in wired networks.

The communications community is also directing efforts into enabling reliable

wireless networks for control applications, so that low-latency and hard-real-time

constraints could be met [Maz10]. Also, WSANs arise new challenges with respect

to cabled NCS. The most important one is the energy efficiency in devices powered

by batteries, which impose computation and communication constraints on the

WSAN design. Several factors determine the energy consumption. One of them

is the data rate transmission, which also has influences on the network delay and

packet dropouts. In general, reducing the number of transmitted packets per

second yields a larger battery life for the wireless device. The packet size also has

an impact on energy consumption, which increases with the packet size. However,

the energy consumption per transmitted byte decreases with packet size due to

the cost of protocols overheads [JER+10]. Most of the implementations use small

and fixed size packets, since the required data for control applications are few.

In the proposed solutions in the literature, communication protocols are de-

signed mainly to achieve high reliability and high energy efficiency for various

applications of Wireless Sensor Networks (WSNs) and not specifically for control

applications [AKK04, BDWL10]. More recently, a joint design of control and

communication parameters has been proposed in [AAJ+11] to optimize energy

consumption while guaranteeing a desired control performance.

However, the majority in the literature considers periodic transmission, sam-

pling, and actuation. Recently, aperiodic sampling techniques have been pro-

posed to more efficiently address the issues of wireless networks. A review of

these techniques is presented in Section 1.3.

1.2 System architecture

The general architecture of NCS has been shown in Figure 1.4, in which the nodes

are widespread across the network. Particular schemes that are considered in this

thesis are described more in detail next.

1.2 System architecture 9

1.2.1 Single loop schemes

In a single loop scheme, there are a controller node (C) and a plant with the

corresponding actuator (A) and sensor (S). How these elements are located gives

the different NCS configuration depicted in Figure 1.5. Note that the information

is transmitted at discrete instances of time through the network. It is assumed

that the element that transmits data to the network has the ability of converting

data from continuous to discrete time, and the element that receives information

from the network is able to transform a discrete signal into a continuous signal.

We further consider full state x(t) and output y(t) measurement scenarios. The

dashed lines represent the flow of information at discrete instances of time, gener-

ically denoted as tk, such discrete instances of time being either equidistant in

time or not.

Figure 1.5a shows the case of a collocated controller with the sensor, and

the control inputs are transmitted through the network. Examples of works in

which this is the preferred scheme are [ESDCM07, QSG08]. In the architecture

of Figure 1.5b the controller is collocated with the actuator and only the plant

measurements are sent through the network. Hence, the control signal is directly

applied to the actuator. This is the considered scheme in, for example, [GCHM06,

LL10, LL11b].

A more general scheme is depicted in Figure 1.5c, in which the network is at

both sides of the controller. When a measurement is received by the controller,

a new control input is computed and transmitted back to the plant. Assume

that the information transmitted through the network is delayed. While in the

collocated controllers of figures 1.5a and 1.5b the delay can be measured because

the loop is closed through the network only between two elements of the loop, in

a remote controller scheme the delays from the sensor to the controller and from

the controller to the actuator cannot be known independently and only the sum

of both delays can be computed.

In this thesis, the studied architecture for the single-loop case corresponds to

the remote controller (Figure 1.5c), which is the focus of the study of the chapters

10 1 Introduction

a) b)

c)

Plant A S

NETWORK

C

)(

/)(

ty

tx

)(

/)(

k

k

ty

tx

)(tu

)(ktu

)(

/)(

k

k

ty

tx

)(ktu

NETWORK

C Plant A S)(

/)(

ty

tx)(tu)(tu

)(

/)(

k

k

ty

tx

)(

/)(

k

k

ty

tx

NETWORK

C Plant A S
)(

/)(

ty

tx)(tu

)(

/)(

ty

tx

)(ktu)(ktu

Figure 1.5: Single loop schemes in NCS.

2 and 3.

1.2.2 Multi-loop schemes

For multi-loop schemes, the possibilities of how to locate the different elements

of the control loops are manifold. We focus on two architectures, which are the

most common in the literature and from the implementation point of view.

The first architecture has a single controller which receives measurements from

different sensors and send control updates to one or more actuators (centralized

control). In general, these elements may be attached to the same system or to

different plants.

Secondly, a distributed control approach is considered. Specifically, it is as-

sumed that each node in the network has its own controller and needs to com-

municate with other nodes in the network for control purposes.

Centralized control

The centralized control approach for a multi-loop architecture is shown in Figure

1.6. The sensor nodes transmit the measurements to the controller through the

network. Whereas in Figure 1.6 we consider that each plant has a sensor and

an actuator, it might be the case of having a single plant with several sensors

1.2 System architecture 11

NETWORK

C

Σ1
A S Σ2

A S

Σ3
A S ΣN

A S

)(/)(i

ki

i

ki tytx)}({ i

kj tu

Figure 1.6: Centralized control of multiple plants.

responsible for monitoring the state of the plant and several actuators. The

interconnections between the subsystems are represented by the bold solid line.

Depending on the complexity of the problem, the controller may have to

switch between different sub-controllers if, for instance, there is a sub-controller

for each plant, or, a single multi-variable controller can be designed in the case

of a single plant with several sensors and actuators.

Regardless the nature of the problem, the controller has to process the dif-

ferent measurements received from the sensor nodes, denoted as xi(tik) (full-state

measurement) or yi(tik) (output measurement), and compute the corresponding

control inputs uj(tik), where tik denotes the sampling time instance. We consider

that a measurement xi(tik)/yi(tik) can involve the computation of more than one

control input uj(tik) since coupling between the sub-systems is accepted.

A centralized networked controller usually requires the use of buffers that

induce additional delays to the network and computational delays. This process-

ing delay, which is the elapsed time between the reception of the measurement

xi(tik)/yi(tik) and the start of the computation of uj(tik), is not negligible when

the number of control loops increases.

Though some strategies can be taken to mitigate this problem, for instance,

the design of a network scheduler which decides when a node transmits [AAJ+11],

a centralized controller is not convenient for large-scale systems.

For this reason, there has been ongoing interest in the design of decentralized

control systems. We note, however, that this is not an easy task. Even basic

12 1 Introduction

NETWORK

C

C

C
C

)(i

ki tx
)}({ j

kj tx

Σi
A S

Σ1
A S

Σ2
A S

Σ3
A S

)(tui

Figure 1.7: Distributed control of multiple plants.

notions such as stability become non trivial in a decentralized framework [WD73,

GSS05]. In some implementations where the number of sensors and actuators

is not large, a networked centralized controller can outperform the decentralized

one if the reliability of the communication channel is guaranteed [SGQ08].

Distributed control

Many control systems are built in decentralized structure using a large number of

simple single-input single-output (SISO) controllers enabling a stable operation of

most unit operations. However, this approach is not the optimal control solution

because in these structures the subsystems do not communicate between them

even if they significantly interact. By contrast, the distributed control approach

relies on the assumption that the information about the controllers from other

loops is exploited in designing the controllers. Since controllers may require to

communicate, the communication network turns to be part of the design problem.

Two types of interconnections are distinguished. In the first one, a subsys-

tem can be physically interconnected to others, i.e., the state of a subsystem i

directly drives the dynamics of another subsystem j. This fact can be used in

the control design of the subsystem j to compensate this interconnection if the

state of the subsystem i is available at j. This includes large-scale MIMO plants

that can be split up into a set of physically coupled systems. The second type

of interconnection is when the need of communication between the controllers

1.3 Event-based control 13

comes from the fact that the system tries to achieve a common objective. This

leads to cooperative control. The usual terminology to refer to these systems in

which the gathering of information from individual parts is used to control the

global behavior of the networked system is multi-agent systems.

A scheme of a distributed control system is depicted in Figure 1.7. Each

node i can be physically encapsulated (dotted line) and includes the subsystem

and the local controller, which receives at discrete instances of time tik the local

state xi(tik) and also the set of states xj(tkj) of other subsystems (also called

agents) measured at different instances of time tkj . The agents that transmit

information to i are known as its neighborhood and correspond to the ones that

are interconnected with agent i.

1.3 Event-based control

1.3.1 Preliminaries

Though the physical world is analogical, most of the control applications are im-

plemented in digital platforms that require the information in a control loop to be

exchanged in a discrete-time manner between sensors, actuators, and controllers.

Traditionally, instant times at which this exchange is carried out are equidistant

between each other, i.e., are given by a sampling period. The frequency of sam-

pling has to guarantee the stability of the system under all possible scenarios, and

this can sometimes yield a conservative choice of the sampling period. Moreover,

all tasks are executed periodically independently of the state of the plant.

In recent years, the idea of taking into account the plant state to decide when

to execute the control and sampling tasks has had an increasing interest. In

event-based control systems information is exchanged in the control loop when

a certain condition in the state is violated. Hence, there is an adaptation to the

needs of the process at any time.

However, there is no uniform terminology when referring to this concept. One

can find in the literature the terms of event-based control, event-triggered con-

14 1 Introduction

trol, send-on-delta control, level-crossing control, self-triggered control, minimum

attention control, anytime attention control, and many more. All of them have

basically the same idea, but vary in the implementation.

Despite of its recent popularization, event-based sampling is not actually a

new concept, and its origins date back to the late 50s when [Ell59] argued that the

most appropriate sampling method is to transmit data when there is a significant

change in the signal. Later on the 60s and 70s, an heuristic method called adaptive

sampling [DFP62] was popularized. The objective was to reduce the number of

samplings without degrading the system performance, evaluating in each interval

the sampling period.

More recently, [Arz99] implemented the event-based control into a PID con-

troller showing that the number of control updates was reduced without degrading

the performance of the system. In [HGvZ+99] level-crossing control was applied

to control the angular position of a motor with a low-resolution sensor.

The first analytical results were for first order linear stochastic systems in

[rB03], showing that under certain conditions the event-based control has a better

performance than the periodic control. But the real impulse to the event-based

control came out few years later when many researchers realized the benefits

of applying this theory to networked control systems. Next section presents a

literature review of event-based control applied to NCS.

1.3.2 Event-based control and NCS

Last decade has been prolific in the field of event-based control, and the lack of an-

alytical results has been overcome. Also, experimental results have demonstrated

a more efficient usage of the network bandwidth than periodic transmission.

In most implementations, an event is triggered when the error of the plant

exceeds a tolerable bound. How this error and this bound are defined distinguish

the different approaches in the literature.

If the error is defined as the difference between the state of the last event

occurrence and the current state, and the bound is defined as a constant, the

1.3 Event-based control 15

2x

1x

c

t

V

1kt1kt kt

a) b) c)

kt t

c

x

1kt 1kt

cte k)(

))((ktxV

))((ktxS

Figure 1.8: Examples of triggering rules.

trigger rule is

‖e(t)‖ = ‖x(t)− x(tk)‖ ≤ c,

and the usual terminology to define it is deadband control. tk refers to the

instant of the last event and t is the current instant of time. The value of c

determines the performance of the system and the ultimate set in which the state

of the plant is confined around the equilibrium. Figures 1.8a and 1.8b depict two

examples of deadband control for an unidimensional state and two dimensional

state, respectively. Related works to deadband control are [HSvdB08, San06].

Deadband control does not generally yield asymptotic stability. And so, some

researchers have investigated triggering rules to fulfill this. One example is pre-

sented in [Tab07] and the error is bounded by the state at the current time

‖e(t)‖ = ‖x(t)− x(tk)‖ ≤ σ‖x(t)‖.

This approach yields the system asymptotic stability but the inter-event times

become shorter when the system reaches the equilibrium. However, in [Tab07]

it is shown that a minimal inter-event time is guaranteed to exist only under

suitable assumptions. This is an important issue in event-based control: the

Zeno behavior, i.e. the occurrence of two consecutive events at the same time,

has to be excluded. The parameter σ is designed according to some properties of

the Lyapunov function.

Other authors have exploited the idea of using Lyapunov methods to define

the triggering rule [MAT09]. An event is triggered when the value of the Lya-

punov function of the closed loop system for the last broadcasted state reaches a

16 1 Introduction

certain threshold of performance (see Figure 1.8c):

V (x, t) ≤ S(x, t).

Recently, other time-dependent triggering rules have been proposed to reach the

desired point asymptotically. In [GDJ+11, SDJ13], the trigger functions for single

integrators and linear interconnected systems, respectively, bound the error as

‖e(t)‖ ≤ c1e
−αt,

which has the aforementioned property, guaranteeing a lower bound for the inter-

execution times.

Sensor networks are special case of networked control systems in which the

energy consumption plays a crucial role. Thus, event-triggering approaches are

convenient in sensor networks since the number of transmissions can be decreased.

However, it has been discussed [AT10b, MT08, Ara11] that the most of the energy

consumed in a sensor node comes from the task of monitoring the measured

variable(s) rather than the transmission. The event-triggering rules discussed

above require the continuous monitoring of the state. For this reason, a new

approach known as self-triggered control has emerged in the recent years.

Self-triggering policies determine the next execution time tk+1 by a function

of the last measurement of the state xk. The sensor nodes do not monitor the

process until they are waken up at time tk+1, they take the measurement and

transmit it, and the next execution time is computed again. The concept of self-

triggering was first suggested by [VMF03]. Self-triggered control can be regarded

as a software-based emulation of event-triggered control. It has been studied

for linear systems [WL09, MAT10], and applied to sensor and actuator networks

in [MT08, TFJB10, AAJ+11, CMV+10]. A general problem of this scheme is

the consideration of unknown effects, such as model uncertainties or unknown

exogenous disturbances. To cope with all these effects conservative results have

to be derived to guarantee the stability of the self-triggered control loop which

may lead to relatively short sampling intervals in practice [WL10]. A so-called

1.3 Event-based control 17

hybrid sensor communication is proposed in [Ara11] as a trade-off between the

event-based and self-triggered mechanism in Wireless Networked Control Systems

(WNCS) for linear systems. Still, the disturbance rejection cannot be completely

guaranteed and the control is centralized, which makes difficult the extension to

large number of nodes.

Another approach is the Minimum Attention Control (MAC). It maximizes

the time interval between executions of the control task, while guaranteeing a

certain level of closed-loop performance [AT10a, DTH12]. It is similar to self-

triggered control in the sense that the objective is to have as few control task

executions as possible but it is typically not designed using emulation-based ap-

proaches. Although in [DTH12] an approach based on extended control Lyapunov

functions allows to solve the problem online alleviating the computational burden

as experienced in [AT10a], MAC is by far less robust against delays or distur-

bances than event-based control. Similar problems present the so-called Anytime

Control methods which are an alternative way to handle limited computation

and communication resources [GQ10, GFB11, Gup09]. The Anytime Attention

Control (AAC), proposed in [AT10a], assumes that after each execution of the

control task, the control input cannot be recomputed for a certain amount of

time that is specified by a scheduler, and finds a control input that maximizes

the performance of the closed-loop system.

The triggering rules presented previously are all based on full state measure-

ment, although in practice the full state is not often available. If the same setups

are tried to be used for output feedback controllers, the Zeno behavior might

occur, as pointed out in [DH12].

The existing output-based event-triggered controllers can be categorized in

observer-based or not. [LL11a, LL11c] belong to the first category. The measured

state is replaced in the trigger function by the estimated state provided by the

observer [LL11a] or the filter [LL11c]. The second direction is to use a different

structure in the controller. A dynamical output-based controller is proposed in

[DH10]. Using mixed event-triggering mechanisms, the ultimate boundedness

can be guaranteed while excluding the Zeno behavior. A level crossing sampling

18 1 Introduction

solution with quantization in the control signal is presented in [KB06], where a

LTI continuous-time controller is emulated.

All the approaches described above consider Zero-order hold at the actuator,

i.e., the control input computed at event times is hold constant till the next

event occurrence. Although this consideration of “doing nothing” between events

simplifies the analysis, it is been shown that if a precise model of the plant

is available, a control input generator can emulate the continuous-time state

feedback loop and under certain constraints get a better performance than a zero-

order hold [LL10]. The idea of taking advantage of a model in NCS and working

in open loop is not new and was introduced in [MA02, MA03a], but the updates

from the system are periodic not event-triggered. However, emulation approaches

such as [LL10] require synchronization of all the elements in the control loop, and

this constraint is difficult to meet in the case of remote controllers or in distributed

paradigms.

Some of the cited works and others consider a multi-loop architecture and

a decentralized controller such as [MT11, MC11, Mol11, GA12, DH12] or a dis-

tributed control [WL08, WL11, GDJ+11, SDJ13].

Finally, few existing works explicitly consider the effect of other communica-

tion constraints such as delays, packet dropouts or quantization in event-based

control. One of the most relevant results is presented in [LL12], which is an

extension of the previous paper [LL10]. Also, in [GA11a] an implementation to

compensate delays is presented, and [WL11, GLS+12] discuss distributed imple-

mentations of event-triggering in imperfect networks.

1.4 Model-based control in NCS

As said before, most of the approaches in the literature consider a Zero Order

Hold (ZOH) which holds the last received value so that the output is a piecewise

constant signal.

Consider the scheme of a collocated controller with the actuator as in Figure

1.5a. The last measurement is held constant and the controller computes the

1.4 Model-based control in NCS 19

Model

C
)(ˆ tx

)(tu

)(tu

)(ktx

Figure 1.9: Model-based controller.

control signal u(t) which is piecewise constant. Now assume that a model of the

plant is available and, instead of holding the last received value, an estimate of

the state of the plant can be used between two consecutive receptions. This is

the idea of the model-triggered control. The controller is replaced by the element

depicted in Figure 1.9. The controller C computes the control output based on the

state predicted by the model x̂(t), which is initialized when a new measurement

x(tk) is received.

As mentioned in the previous section, the concept of model-based NCS (MB-

NCS) was first introduced by [MA02, MA03a]. Since then, Antsaklis and co-

workers have published different extensions such as discrete-time models [EA09]

or time-varying transmission times [MA04].

Other control approaches, that use a model in the design where usually a

discrete-time model is iterated to generate future control inputs, have been com-

mented in Section 1.1.2.

An event-based framework in which a model is used in both event detector

and the controller to emulate the continuous state feedback controller is presented

in [LL10, Leh11], as already mentioned.

Finally, a MB-NCS framework with event-triggered control is also presented

in [GA11a] in which time-varying delays and model uncertainties are considered.

Also, decentralized [GA12] and distributed [GLS+12] MB implementations have

been proposed.

In general, model-based control allows increasing the sampling period (peri-

odic control) or enlarging the inter-event times (event-based control). Ideally, if

there are not model uncertainties and the system is not affected by any distur-

bance, the model perfectly estimates the state of the plant by knowing the initial

20 1 Introduction

state. Hence, the purpose of combining model-based and event-triggered control

is to reduce the number of events with respect to a ZOH approach.

1.5 Objectives of the Thesis

The main objective of this thesis is to contribute to solve some of the problems

that arise in Networked Control Systems, with a special focus on event-based

control. The contributions are twofold: the design of such strategies and their

implementation. This main objective can be split into:

• The design of a new architecture for networked control systems, by includ-

ing new elements in the control loop which act as interfaces between the

conventional components (controllers, sensor, and actuators) and the net-

work. The purpose of the new architecture is to take advantage of the

flexibility offered by the use of the network while maintaining the stability

of the system and dealing with the communication imperfections. More

specifically, the objective is to decrease the frequency of communication

via event-based control and to cope with network delays and packet losses

sending finite-length signal predictions.

• The implementation of prototypes of the proposed solutions so that the

conventional controllers can be reused without spending much time in their

conversion to a networked control system.

• The design of distributed event-based control approaches for networked sys-

tems. The objective is to design transmission and actuation policies that

decrease the amount of communication while guaranteeing a certain level

of performance and the exclusion of Zeno behavior. The proposed design

will deal with the possible model uncertainties that characterize large-scale

interconnected systems. Also, communication protocols will be investigated

to deal with the problem of network delays and data dropouts, while the

existence of a positive lower bound for the inter-event time has to be pre-

served, since this is one of the major problems of the existing approaches

1.6 Outlines and Contributions 21

in the literature.

• To provide and implement tools to apply distributed event-based control.

The motivation behind this objective is twofold: the application to the

education environment in which we are immersed as well as a means of

testing the control algorithms under a wide range of scenarios before the

implementation in real platforms. Also, the validation over a testbed will

be given.

1.6 Outlines and Contributions

This thesis has been structured as follows:

• Chapter 2. Anticipative Control Design in Internet-like Net-

works. Chapter 2 presents the analysis and the design of remote controllers

for packet-based NCS, following the paradigm of anticipative controllers.

The remote controller uses a model of the plant and a basis controller to

compute a sequence of future control actions to compensate the effect of

delays and packet dropouts. The design of two middleware layers between

the process and the network, and between the controller and the network

is proposed as a means of hiding the elements which do not belong to a

conventional control loop. Event-based transmission rules are proposed to

save network bandwidth. The stability of the system is proved to be Glob-

ally Ultimately Uniformly Boundeded (GUUB) when some constraints are

imposed on the network delay. Different extensions such as disturbance esti-

mators, output measurement and LTI anticipative controllers are discussed,

preserving the Globally Ultimately Uniformly Boundedness property of the

system. Finally, a centralized remote controller for a multi-loop architecture

is presented. This work was published in part in the IET Control Theory

and Applications (see [GSD11]), presented in the 49th IEEE Conference on

Decision and Control (see [GSD10]), and included in the Proceedings of the

XXXIII Jornadas de Automática (see [GSDD12]).

22 1 Introduction

• Chapter 3. Implementation and Experimental Evaluation of the

Anticipative Control. The experimental framework in which the antic-

ipative controller presented in Chapter 2 has been evaluated is reported

in Chapter 3. The description of the plants, the implementations of the

middleware layers in LabVIEW and the experimental results enhancing the

goodness of the proposed design are also given. The related publications to

this chapter are the same as for Chapter 2.

• Chapter 4. Distributed Event-Based Control for Interconnected

Linear Systems. Chapter 4 presents a distributed event-based control

strategy for a networked dynamical system consisting of N linear time-

invariant interconnected subsystems. The proposed triggering rules, which

depend on local information only, can guarantee the asymptotic convergence

to the equilibrium and the existence of a lower bound for the broadcasting

period. The problem is initially solved for perfect decoupled systems, and

then the results are extended for non-perfect decoupling, since that con-

straint is difficult to meet in practice. The coupling terms are treated as a

perturbation of the nominal system, and the existing classical analysis on

the sensitivity of the matrix exponential and matrix powers is applied to

infer constraints on the coupling terms so the asymptotic stability property

is preserved. This work was presented in the 50th IEEE Conference on

Decision and Control [GDJ+11] and an extended version has been accepted

for publication [GDJ+13].

• Chapter 5. Extensions and Improvements of the Distributed

Event-Based Control. Chapter 5 focuses on two aspects. The first aspect

is to study of the effect of realistic communication in the distributed event-

based control design presented in Chapter 4. Even though event-based

control has been shown to reduce the communication to face the problem

of reduced bandwidth, network delays and packet losses cannot be avoided.

Hence, the consequences of a non-reliable channel are analyzed, and up-

per bounds on the delay and the number of consecutive packet losses are

1.6 Outlines and Contributions 23

derived for different situations. Secondly, two improvements are proposed.

The first one is based on the fact that the frequency of actuation may be

high in distributed control schemes if the neighborhood of the subsystem

is large, even if each agent is not transmitting so often. To deal with this

problem an error function is defined for the control input and a second set

of trigger functions is proposed to deal with this problem, updating the

control law when a condition is violated. The second improvement relies

on the existence of smart actuators, so that continuous-time signals can be

applied instead of constant piecewise signals (ZOH). A model-based control

design is proposed in which each agent has knowledge of the dynamics of

its neighborhood. Based on this model, it estimates its state continuously

and computes the control law accordingly. A certain model uncertainty is

assumed and the performance of the Chapter 4 approach and model based

designs are compared based on this model uncertainty. Parts of this work

were presented in the CDC of 2011 and 2012 (see [GDJ+11, GLS+12]), and

the model based approach is also included in the accepted paper mentioned

in Chapter 4.

• Chapter 6. Simulation Tools and Application Example of the

DEBC: Networked Mobile Robots. The formation control of net-

worked mobile robots can be taken as an example of multi-agent systems

in which the group of robots achieves a common objective (the formation)

by means of distributed control laws and event-based communications. An

interactive simulator to emulate this kind of setups has been developed. In

particular, the formation control from a consensus problem point of view

under a wide range of network conditions and multiple experiments can be

studied with this platform. The interactivity of the tool with the final user

has been in the focus of the developers, as well as offering flexibility to define

the experiment conditions. Moreover, multiple parameters can be changed

on-line while running a simulation by simple click-and-drag actions in the

graphical interface. The DEBC algorithms have been also implemented in

a testbed of mobile robots, and the results are presented. This work has

24 1 Introduction

been published in the IEEE Network Magazine (simulation tool) [GFF+12]

and the application to a real platform has been submitted to Sensors.

• Chapter 7. Conclusions and Future Work. The conclusions and

future research steps are given.

1.7 Publications and projects

Journal Papers

1. M. Guinaldo, J. Sánchez, S. Dormido. A co-design strategy of NCS for

treacherous network conditions. IET Control Theory & Applications, 5(16):

1906-1915, 2011.

2. M. Guinaldo, G. Farias, E. Fabregas, J. Sánchez, S. Dormido-Canto, S.

Dormido. An Interactive Simulator for Networked Mobile Robots. IEEE

Network Magazine, 26(3): 14-20, 2012.

3. M. Guinaldo, D.V. Dimarogonas, K.H. Johansson, J. Sánchez, S. Dormido.

Distributed Event-Based Control Strategies for Interconnected Linear Sys-

tems. IET Control Theory & Applications, 2013, Accepted on 1st February

2013, doi: 10.1049/iet-cta.2012.0525.

4. M. Guinaldo, E. Fabregas, G. Farias, S. Dormido-Canto, D. Chaos, J.

Sánchez, S. Dormido. Mobile robots experimental environment with event-

based wireless communications. Submitted to Sensors (current state: major

revision).

5. E. Fabregas, G. Farias, S. Dormido-Canto, M. Guinaldo, J. Sánchez, S.

Dormido. Virtual and real laboratory for teaching mobile robotic. Submit-

ted to IEEE Transactions on Industrial Electronics.

1.7 Publications and projects 25

Conference Papers

1. M. Guinaldo, J. Sánchez, S. Dormido. Diseño de un Sistema de Control

Anticipativo Basado en Paquetes para Control en Red. 9a Conferencia

Iberoamericana en Sistemas, Cibernética e Informática (CISCI 2010), July

2010, Orlando.

2. M. Guinaldo, J. Sánchez, S. Dormido. A Packet-based Network Control

System Architecture for Teleoperation and Remote Laboratories. 49th

IEEE Conference on Decision and Control (CDC), December 2010, At-

lanta.

3. M. Guinaldo, D.V. Dimarogonas, K.H. Johansson, J. Sánchez, S. Dormido.

Distributed Event-Based Control for Interconnected Linear Systems. 50th

IEEE Conference on Decision and Control and European Control Confer-

ence (CDC-ECC), December 2011, Orlando.

4. M. Guinaldo, J. Sánchez, S. Dormido, M.A. Delgado. Control en red basado

en eventos de múltiples plantas remotas. XXXIII Jornadas de Automática,

September 2012, Vigo.

5. M. Guinaldo, D. Lehmann, J. Sánchez, S. Dormido, K.H. Johansson. Dis-

tributed Event-Triggered Control with Network Delays and Packet-losses.

51th IEEE Conference on Decision and Control (CDC), December 2012,

Maui.

6. M. Guinaldo, J. Sánchez, S. Dormido. Contribuciones al control en red

basado en eventos para sistemas lineales. XI Simposio CEA de Ingeniería

de Control, April 2013, Valencia.

7. M. Guinaldo, D. Lehmann, J. Sánchez, S. Dormido, K.H. Johansson. Re-

ducing communication and actuation in distributed control systems. Sub-

mitted to the 51th IEEE Conference on Decision and Control, 2013.

26 1 Introduction

Other Publications

1. M. Guinaldo, B. Pérez-Lancho, E. Sanz. Laboratorio virtual para el apren-

dizaje del control térmico en edificios. V Jornadas de Enseñanza a Través

de Internet/Web de la Ingenieŕıa de Sistemas y Automática, September

2007, Zaragoza.

2. M. Guinaldo, E. Sanz, S. Dormido. Laboratorio Virtual Basado en Web

para Aprendizaje de Física usando Ejs. XXIX Jornadas de Automática,

September 2008, Tarragona.

3. M. Guinaldo, J. Sánchez, H. Vargas, S. Dormido. Laboratorio basado en

Web del sistema bola y viga para el entrenamiento de estrategias de control

avanzado. XXX Jornadas de Automática, September 2009, Valladolid.

4. M. Guinaldo, H.Vargas, J. Sánchez, S. Dormido. Web-Based Control Lab-

oratory: The Ball and Beam System. 8th IFAC Symposium on Advances

in Control Education (ACE09), October 2009, Kumamoto.

5. M. Guinaldo, J. Sánchez, H. Vargas, S. Dormido. An Advanced Web-

based Control Laboratory for the Ball and Beam System. 9th Portuguese

Conference on Automatic Control (CONTROLO’2010), September 2010,

Coimbra.

6. M. Guinaldo, L. de la Torre, R. Heradio, S. Dormido. A Virtual and Remote

Control Laboratory in Moodle: The Ball and Beam System. Submitted to

the 10th IFAC Symposium Advances in Control Education, 2013.

Research Projects

The results obtained in the framework of this dissertation have been supported

by different research projects:

• Event-based modeling, simulation, and control (2007-2012). Spanish Min-

istry of Science and Technology, CICYT (Ref. DPI2007-61068). Partic-

ipants: UNED (Spain), University of Murcia (Spain). Directed by Prof.

Sebastián Dormido Bencomo.

1.7 Publications and projects 27

• MACROBIO: Modeling, simulation, control and optimization of photobior-

reactors (2012-2014). Spanish Ministry of Economy and Competitiveness,

CICYT (Ref. DPI2011-27818-C02-2). Participants: UNED (Spain). Di-

rected by Prof. José Sánchez Moreno.

• Event-based control of distributed and collaborative systems (2012-2014).

Spanish Ministry of Economy and Competitiveness, CICYT (Ref. DPI2012-

31303). Participants: UNED (Spain). Directed by Prof. Sebastián Dormido

Bencomo.

2
Anticipative Control Design in

Internet-like Networks

Summary

This chapter presents the analysis and design of anticipative controllers for packet-

based NCS. The remote controller uses a model of the plant and a basis controller

to compute a sequence of future control actions to compensate the effect of de-

lays and packet dropouts. This sequence is stored into the actuator buffer and is

applied synchronously at each sampling time.

Two middleware layers between the process and the network, and between the

controller and the network are designed to hide the elements which do not belong

to a conventional control loop.

First, an scheme in which the sensor sends the measurements periodically is pre-

sented initially, and an event-based approach is proposed afterwards for a more

efficient usage of the network bandwidth.

The system results to be GUUB when some constraints are imposed to the net-

work delay. Different extensions such as disturbance estimators, output mea-

surement and LTI anticipative controllers are discussed, preserving the GUUB

property of the system. Finally, a centralized remote controller for a multi-loop

architecture is presented.

30 2 Anticipative Control Design in Internet-like Networks

2.1 Introduction

While conventional control loops are designed to work with circuit-switching net-

works, where dedicated communication channels provide almost constant bit rate

and delay, networks such as the Internet are based on packets, carrying larger

amount of information at less predictable rates.

One aspect inherit to packet-based networks is transmission overhead. Pack-

ets can be split into the header and the payload, which may be filled with useless

information to reach the minimum packet size. As a consequence, transmitting

a few bits per packet has essentially the same bandwidth cost as transmitting

hundreds of them. Thus, rather than sending individual values, finite-length

signal predictions can be transmitted. This is the motivation of the so called

packet-based control [GT04, ZLR09] or receding horizon control [QSG07].

To achieve this, a common approach is to use model-based control to em-

ulate future states of the plant and, therefore predictions for the control sig-

nal. The idea of combining packet-based control and Model Predictive Control

(MPC) was first introduce in [Bem98] in the context of teleoperation. Since

then, other authors have exploited the principle of MPC in packet-based NCS

[KJA06, QSG07, MJVR08, VF09, ICMS11].

The influence of the model uncertainty of model-based NCS was studied in

[MA04]. In [CB08], extended to nonlinear systems in [GCB12], the constraints

imposed by communication protocols on state measurement access are addressed.

Among the alternatives studied to prevent the computational effort required

by MPC, the anticipative controller estimates the future state of the system based

on a model that considers delays [NH06]. Anticipative controllers and the use of

actuator buffers have been proposed for packet-based NCS in [ESDCM07, GSD11]

for different network architectures.

Whereas these approaches results in a more efficient usage of the network

bandwidth and possible enlargement of transmission intervals, few publications

have combined receding horizon control and event triggering. In [ESDCM07], a

transmission protocol named as Input Difference Transmission Scheme (IDTS),

2.2 Contributions of this chapter 31

that calculates a new control sequence at every time step but only transmits

to the actuator when the difference between the new sequence and that in the

buffer has exceeded a threshold. In [GDJ+11] the sensor sends measurements to

the controller if the difference between the predicted state by a model, which is

sent with the predictions of the control signal, and the measured state crosses

a given level. More recently, a model-based periodic event-triggered control is

exploited to reduce the number of transmissions [HD13], where two frameworks

are proposed, perturbed linear and piecewise linear systems, to achieved global

exponential stability and `2 gain performance.

The outline of this chapter is as follows. The original contributions are given

in Section 2.2. Section 2.3 states the assumptions that are taken in this chapter.

The guidelines of the design of middleware layers are given in sections 2.4 and 2.5,

which are adapted to an event-triggered scheme in Section 2.6. The stability of the

system is studied in Section 2.7, and sections 2.8-2.10 present different extensions

such as disturbance estimation, output measurement, and the centralized control

of N loops. Finally, conclusions end the chapter.

2.2 Contributions of this chapter

In this chapter, a middleware approach is proposed for networked control systems.

Two adaptation layers made up the novel design. The first layer is in between

the process and the network and the second one serves as an interface between

the network and the controller. The use of event-triggering is incorporated in the

design in order to reduce the transmission frequency. The controller generates

sequences of future control actions and states of the plant and sends them to the

process, where the corresponding middleware layer decides which element is used

at each sampling time.

One of the novel contributions is that the proposed design is aware of a more

efficient usage of the bandwidth but also of facing delays and packet losses without

assuming clock synchronization of the elements in the control loop, in contrast

to other works in the literature such as [NH06, QSG07, QSG08, ZLR09, HD13].

32 2 Anticipative Control Design in Internet-like Networks

Moreover, the model-based controller avoids the additional delays caused by the

computational time required by MPC, and so the proposed approach seems es-

pecially adequate in processes with fast dynamics. Also, the theoretical analysis

ensures the stability of the system if the network delay is upper bounded.

Another contribution of this chapter is the design of event-triggering for out-

put measurements that combines the two existing approaches in the literature:

estimation of the state by an observer or a filter, and the use of a different con-

troller to full state feedback. The goal is to overcome the limited computation

of the sensor and the actuator and the lack of synchronization of these elements

with the controller. LTI controllers and a Luenberger observer are combined to

preserve the stability of the system when full measurement cannot be assumed.

The disturbance estimator proposed in [LL10] is adapted to the remote con-

troller scheme and improved in the sense that the matrix A does not require to

be invertible and the model uncertainty can be also partially compensated.

Finally, another original contribution is the centralized anticipative-controller

design when decentralized control cannot be implemented due to computation

constraints in the elements of the control loop. The effectiveness of the centralized

approach is analyzed and we show that the same performance than for periodic

implementations and a single plant can be achieved with this approach if the

number of processes is not large.

2.3 Assumptions

In the sequel of this chapter the following assumptions hold:

• System architecture: There is a single control loop with a remote controller,

i.e., Figure 1.5c. We assume that the sensor and the actuator have a very

limited computation capacity and the controller is the element which makes

the computation effort. The actuator processes the incoming packets and

store the data into a buffer. The sensor measures the state at each sampling

time and is able to compare it to a reference value and, in case, to trigger

an event. The remote controller also has a buffer to store the incoming

2.3 Assumptions 33

measurements.

• System dynamics: We consider linear plants and a sampling period denoted

by Ts, that meets Nyquist criteria. Thus, the system dynamics is given by

x(k + 1) = Adx(k) +Bdu(k) + w(k), x(0) = x0 (2.1)

y(k) = Cx(k) + v(k), (2.2)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control signal, w(k) ∈ Rn is

the disturbance, and v(k) ∈ Rr is the measurement noise, both of which are

bounded. Matrices (Ad, Bd) are obtained from a continuous model (A,B)

for the sampling period Ts

Ad = eATs (2.3)

Bd =
∫ Ts

0
eAsBds. (2.4)

The pair (A,B) is controllable.

• Measures of time: All the instances or intervals of time, such as delays, the

occurrence of events, etc. are given as integer numbers k ∈ N, so that the

measurements in units of time are tk which are multiple of the sampling

period, i.e., tk = kTs.

• Controller: The basis controller is assumed to be state feedback if the full

state is measurable, and LTI if only the output is measured. However, the

framework can be extended to other controllers that stabilize the plant in

a network-free system configuration.

• Clocks synchronization: The elements at the plant side (sensor, actuator

and event detector1) are ruled by the same clock and hence, clock synchro-

nization is assumed for them. By contrast, the remote controller clock is not

synchronized with any of the other elements in the control loop and works

1The event detector can be a software or hardware component to determine the time instances
of the occurrence of an event

34 2 Anticipative Control Design in Internet-like Networks

Sensor

Controller

Actuator

k k+1 k+2 k+3 k+4

RTT(k)

τsc

τca

Figure 2.1: Examples of delays and data dropouts.

asynchronously. When a new measurement is received by the controller, it

computes a new sequence of future control values.

• Network: We consider Internet-like networks. Hence, network protocols

such as Transmission Control Protocol (TCP) or User Datagram Protocol

(UDP) can be used, and so the size of the packets payload is around 500

bytes [Eva98]. It is assumed that there are not powered-batteries devices

so that energy consumption is not affected by the packet length. Moreover,

packets can experience long delays or be lost during transmissions across

the network.

Example 2.1: A simple chronogram is shown in Figure 2.1 to illustrate the phenomenon of

delays and packet losses. The system is sampled at discrete time instances k, k + 1, The

transmission of measurements from the sensor to the controller can be delayed by a quantity

denoted as τsc. Information sent from the controller to the actuator can also suffer from

delay τca. The Round Trip Time (RTT) denotes the number of sampling times that takes

data to go from the process to the controller and back to the process, i.e.,

RTT = min{l : l ∈ N, τsc + τca < lTs}.

Data can also be dropped as depicted in Figure 2.1 between k+1 and k+3. As a consequence,

the actuator does not received updated control inputs in the interval marked in blue.

2.3 Assumptions 35

NETWORK CAL PAL
Basis

Controller

Plant

A

S

)()()1(kuBkxAkx dd

)(kx

)(ku

State

packet

State

packet

Control

packet

Control

packet

)(ˆ lx

)(lu

τsc

τca

Figure 2.2: Proposed architecture for packet-based NCS.

The proposed architecture is shown in Figure 2.2. On the left side, the linear

plant is sampled according to a sampling period Ts at discrete instances of time k.

On the right hand side, the basis controller computes control signals for incom-

ing states (real measurements or estimations based on previous measurements)

denoted by x̂(l), where in general l 6= k. The two intermediate elements between

the plant and the network and the network and the basis controller, respectively,

are two middleware layers. The concept of middleware for NCS is described in

[GBK09] and it is used here to separate all the elements in the design from the

classical components of a control loop.

We next briefly describe these two layers:

• The Controller Adaptation Layer (CAL) receives and processes the state

packets sent from the plant side. Its main tasks are to estimate the future

states of the plant and to interact with the basis controller to compute the

sequences of future control actions. Hence, the main element of this layer

is the model of the plant.

• The Process Adaptation Layer (PAL) receives the control packets and de-

cides which control input is applied at each sampling time. Also, in an

event-based approach, it decides when to transmit the measurements to

the controller through the network.

The state packets basically contain measurements taken from the plant. The

structure of the control packets is described later in the chapter but the main

element is the sequence of future control actions.

36 2 Anticipative Control Design in Internet-like Networks

2.4 The Controller Adaptation Layer (CAL)

This section describes how the CAL works. The tasks carried out by this layer

includes the processing of packets, the update of a parameter that we denote

by the Round Trip Time (RTT), the interaction with the basis controller to

generate future control actions (anticipative controller), and the sending of the

control packets.

Consider the discrete-time plant (2.1), (2.2). Assume that the discrete-time

model used by the anticipative controller is given by

x̂(k + 1) = Âdx̂(k) + B̂du(k), (2.5)

where x̂(k) ∈ Rn is the estimated state. We assume that in general Ad 6= Âd, Bd 6=

B̂d and we denote the model uncertainty as Ād = Âd −Ad, B̄d = B̂d −Bd.

Future states of the plant are estimated by this model in two different steps

after the reception of a new state packet that we describe next.

2.4.1 Packets processing

The processing of the incoming packets is depicted in Figure 2.3. The packet

payload is extracted and interpreted according to a given structure. Specifically,

the payload of the state packets includes the following information:

• The measured state x(k).

• The plant local time k.

• A time stamp TSu of the controller local time. TSu allows to identify the

control sequence Uh, h < k, which was being applied at the time of the

measurement of x(k).

• An index iu. If the computed control sequences have a size of Q elements,

iu is the number of element of the sequence Uh which was being applied at

the time of the measurement of x(k).

2.4 The Controller Adaptation Layer (CAL) 37

)(kx

uu iTS ,

)(kRTT

hU
Model

dd BA ˆ,ˆ

min

)(ˆ minkx Basis

Controller

CAL

Packet

processing

State

packet

Figure 2.3: Packets processing by the CAL layer.

A second type of packets is also received. Every time a control packet is received

by the plant and before processing it, a small time-stamped packet is sent back

to the CAL which uses this time stamp to update the value of the RTT and its

minimum value denoted by τmin. τmin ∈ N gives the fastest transmission from

the controller to the plant and the other way back:

τmin = min{RTT (k), ∀k ∈ N}.

The first action is to check that k is a subsequent time to previous processed

packets. If this condition is fulfilled, the state of the plant at time k + τmin is

estimated by the model using the aforementioned information, and x̂(k + τmin)

is taken as the initial state to compute the next control sequence.

2.4.2 Control sequence computation

Definition 2.1. The control sequence Uk is a set of Q future control values that

are calculated based on the system model (2.5) for the state packet containing

x(k) and received by the controller after the transmission through the network

from the sensor to the controller.

Once x̂(k + τmin) is estimated based on the information received, the control

input for this state is computed. Let us first assume a state feedback control law,

so that

u(k + τmin) = Kx̂(k + τmin)

is the first element of the control sequence. Thus, the state estimation for the

38 2 Anticipative Control Design in Internet-like Networks

Model

dd BA ˆ,ˆ

Basis

Controller

CAL
)(ˆ min jkx

)(min jku …

1j

kU

Packet

encapsulation
min

uTS

Control

packet

Figure 2.4: Control sequence computation by the CAL layer.

next sampling time is

x̂(k + τmin + 1) = Âdx̂(k + τmin) + B̂du(k + τmin) = (Âd + B̂dK)x̂(k + τmin).

The model and the basis controller interact Q − 1 times to generate the control

sequence Uk of size Q. In general, the j + 1 element of Uk can be written as

Uk(j + 1) = u(k + τmin + j) = K(Âd + B̂dK)j x̂(k + τmin), 0 ≤ j ≤ Q− 1.

This process is depicted in Figure 2.4. The value u(k + τmin + j) is computed

based on the estimation of x̂(k+ τmin + j), it is used to estimate the state at the

next sampling time x̂(k+τmin+ j+1), and it is saved as the j+1 element of Uk.

When this process is completed, the control sequence is saved in a look-up table

indexed by a time stamp, and the packet is encapsulated. The time stamp of the

controller local time TSu and the value of τmin are also included in the packet.

2.5 The Process Adaptation Layer (PAL)

On the plant side, the PAL layer determines the control signal to apply. The

packets received from the controller between two consecutive sampling times are

enqueued (a priori, more than one packet can arrive). As they can arrive out of

order, they are time-stamped to distinguish which control sequence was calculated

last. The latest computed control sequence is stored in a buffer, and the rest of

the packets are discarded because they contain obsolete values calculated with

2.5 The Process Adaptation Layer (PAL) 39

prior states of the plant. Thus, there is a queue for the incoming packets and one

buffer which contains the current control sequence that is being handled.

The previous section pointed out that the first element of the control sequence

for the sampling time k is calculated based on an estimated state x̂(k + τmin).

However, the time between the measurement of the state x(k) and the reception

of the control sequence Uk will generally be greater than τmin. Let us denote

this elapsed time as τ(k). The value of τ(k) is measured by subtracting k from

the value of the local clock and it is compared to τmin. The difference reveals

how many sampling times have passed, or how many elements of Uk should be

discarded because they are obsolete values. This value is denoted as i0 (i0 =

τ(k) − τmin). The first i0 elements of Uk are then discarded, and the i0 + 1

element is the first element to apply. Figure 2.5 depicts these actions taken by

the PAL.

As the incoming packets queue is checked at each sampling time, if a new

packet does not arrive the next element of the control sequence stored in the

buffer is applied. Thus, the received control sequence is applied synchronously at

each sampling time until a new one is received. In general, at any time we have:

u =

Uk(i0 + 1) if Uk received in the last sampling period

Uk(i0 + 1 + j) if (no newer packet received) AND (i0 + 1 + j < Q)

Uk(Q) OR 0 otherwise,
(2.6)

where j ∈ N+ denotes an index that is incremented at each sampling time if a

new packet is not received.

The last case of (2.6) shows that either zero or the previous control value is

applied when the last element of the control sequence Uk(Q) is reached. This

choice depends on the process dynamics.

Example 2.2: Assume that the sampling period for a given plant is Ts = 5ms and that, at

a given instance of time, the value of τmin is of two sampling periods, i.e., 10 ms. Thus, for

a measurement x(k) received by the controller, the value of x̂(k + 2) is estimated and the

40 2 Anticipative Control Design in Internet-like Networks

min

Plant

PAL

Packet

processing

Control

packet
kU

k
+
-
-

…

0i
)(0min iku

Figure 2.5: Packets processing by the PAL layer.

control sequence Uk computed as described before. Assume that when Uk is received at the

PAL, the local time is k+5, that is, between the measurement of x(k) and the reception of the

control sequence, five sampling periods have passed (25 ms). Hence, the first three elements

of Uk are discarded and Uk(4) is applied since i0 = (k+ 5)− k− τmin = k+ 5− k− 2 = 3.

The PAL is also in charge of sending the state packets to the controller. When

the transmission is periodic, this takes place at each discrete time k. However, if

the information is transmitted in an event-based fashion, an event detector has

to be included in the scheme. We next present the changes in both the CAL and

PAL layers to support the event-based policies.

2.6 Event-based anticipative control

In event-based policies, an event is detected when a certain condition is violated.

Thus, let us define the assumptions that we have taken in the design:

• Error: The error e(k) is defined as the difference between the current mea-

surement state x(k) and the estimated state x̂(k) at the sampling time k.

That is

e(k) = x̂(k)− x(k). (2.7)

• Trigger function: Let us denote the trigger function as f(e(k)). It detects

the occurrence of an event when its value crosses zero from negative to

positive. Thus, the trigger condition is f(e(k)) ≥ 0. For instance, if we

want to bound the error by a constant threshold, the trigger function turns

2.6 Event-based anticipative control 41

to be

f(e(k)) = ‖e(k)‖ − c, (2.8)

where ‖.‖ is the euclidian norm and c is the constant threshold.

Furthermore, we denote by ki, i ∈ N the the discrete time instances k at

which an event is detected.

It is assumed that the constant c is chosen and the process is sampled fast

enough so that the event detection is precise and ‖e(ki)‖ ≈ c. Note that

being strict, the equality can only be ensured in continuous time.

• Event detector: The event detector is the physical element which monitors

the trigger condition. This element is collocated with the sensor and when

an event is detected, the measurement is sent to the controller.

2.6.1 CAL design for event-based control

According to the assumptions above, an event is detected when the norm of the

difference between the state predicted by the model and the actual state crosses a

certain threshold (see (2.8)). Thus, the predictions of the model must be available

at each sampling time at the plant side. Since this information is computed by

the controller, it has to be transmitted through the network and included in the

control packets.

Definition 2.2. The predicted states sequence X̂k is a set of Q future plant states

predicted by the model (2.5). The jth element of X̂k corresponds to the state

given by the model (2.5) after applying the jth element of the control sequence

Uk, i.e.,

X̂k(j) = (Âd + B̂dK)j x̂(k + τmin).

Furthermore, since measurements are only transmitted to the controller at ki, i ∈

N, i.e., when an event occurs, the predicted states and control sequences can be

denoted as X̂ki and Uki , respectively.

Figure 2.6 illustrates the new design of the CAL. The predicted states se-

42 2 Anticipative Control Design in Internet-like Networks

Model

dd BA ˆ,ˆ

Basis

Controller

CAL

)(ˆ min jkx i

)(min jku i

Packet

encapsulation

Control

packet
TSu

τmin

…

1j
ikX̂

j+1

Uki …

Figure 2.6: Control and state sequences computation by the CAL layer in
the event-based design.

quence X̂ki is highlighted respect to the rest of the elements which are encapsu-

lated to result in a control packet.

Remark 2.1. Note that the length of the control sequence Uki has to be cut down

to include X̂ki in the control packet. Specifically, if we denote by QP the length

of Uk when measurements are sent to the controller periodically, and by QEB

the length of Uki in the event-based design, it holds that

QEB = m

n+m
QP ,

where n is the state dimension and m the number of control inputs.

Example 2.3: Let us consider that the network protocol is UDP. The size of the payload of

UDP packets is 508 bytes [Eva98] and a float value only consumes 4 bytes. Thus, if m = 1

we can compute the value of QP as

QP = 508 bytes− S[TSu]− S[τmin]
4 bytes = 508− 4− 4

4 = 125,

where S is the operator size of. We assume that all the elements of the control packets are

float. Therefore, the number of future control sent in an control packet is 125.

However, an event-based design cuts down this value to QEB = 125
n+1 . For example if n = 4,

then QEB = 25.

2.6 Event-based anticipative control 43

2.6.2 PAL design for event-based control

How the PAL works has been presented in Section 2.5. In an event-based scheme,

packets are processed in a similar way, since the described mechanism is asyn-

chronous. The main difference is that the predicted states sequence X̂ki is also

received. Due to the correspondence between the elements of X̂ki and Uki , the

algorithm described in Section 2.5 is also applied to X̂ki . For instance, if the first

i0 elements of Uki are discarded because they are obsolete values, for the same

reason the first i0 elements of X̂ki are also discarded.

However, the detection of events has to be included in the PAL design. The

code of this new module of the PAL is given by Algorithm 2.1. The control

and state predictions sequences are received as inputs as well as the computed

index i0. The error and the trigger function are initialized to default values (lines

2-3). The state of the plant is measured at each sampling time, and the error

and trigger functions are computed (lines 7-9). The event condition is checked at

each sampling time (line 10). In case an en event is triggered, the module delivers

x(ki) and the index value as outputs.

Note that an event is detected when either f(e(k)) crosses zero or i0 + j

equals Q̄, where Q̄ is Q̄ = Q − τmax, and τmax is the upper bound on the RTT

whose value will be derived in the stability analysis. This constraint is imposed to

prevent that the last element of the control sequence is reached without receiving

a new control packet.

Input: Uki
, X̂ki

, i0 with ki < k
Output: x(ki+1), i0 + j

1: j := 0
2: e(k) := 0
3: f(e(k)) := −1
4: while i0 + j < Q̄ and f(e(k)) < 0 do
5: j := j + 1
6: Apply Uki(i0 + j)
7: Measure x(k)
8: x̂(k) := X̂ki(i0 + j)
9: e(k) := x̂(k)− x(k)

10: Compute f(e(k))
11: end while

Algorithm 2.1: PAL event-detection algorithm.

44 2 Anticipative Control Design in Internet-like Networks

Remark 2.2. We assumed that the computational power at the plant side is very

limited. Note that the instructions of Algorithm 2.1 are very simple. The maxi-

mum complexity is in the computation of f(e(k)). We have preserved this nota-

tion for the sake of generality, but in practice we will consider trigger functions

of the form (2.8). Thus, the computation is reduced to compare the error to a

constant threshold.

2.7 Stability analysis

The event-based policy (2.8) allows to reduce the communication in the control

loop, but the price to pay is that asymptotic stability is no guaranteed, but the

Globally Ultimately Uniformly Boundedness of the state can be proved.

Definition 2.3. The system (2.1)-(2.2) is Globally Ultimately Uniformly Bound-

eded (GUUB) if for all x(0) ∈ Rn there exists a positive constant a and a time

k∗ such that ‖x(k)‖ ≤ a,∀k ≥ k∗.

Let us first assume that disturbances are equal to zero and full state measure-

ments are available. Then it follows that

x(k + 1) = Adx(k) +BdKx̂(k), (2.9)

since the anticipative control defines the control law as the feedback of the pre-

dicted state for any sampling time k. Equation (2.9) can be rewritten in terms

of the error (2.7) as

x(k + 1) = (Ad +BdK)x(k) +BdKe(k). (2.10)

Note that in the PAL layer an event is triggered whenever ‖e(k)‖ ≥ c. However,

the error will increase until a new control sequence is received. The next assump-

tion establishes a bound on the maximum elapsed time between the detection of

an event and the reception of a more recent control packet (RTT).

2.7 Stability analysis 45

Assumption 2.1. The elapsed time between the event detection and, therefore, the

transmission of a state packet to the controller, and the reception of a more recent

control packet (RTT) is bounded by an upper bound denoted by τmax. Moreover,

this upper bound is always smaller than the minimum inter-event time:

τmax < ki+1 − ki, ∀i ∈ N.

Remark 2.3. In the elapsed time between the occurrence of an event and the

reception of a new control sequence, packets can be dropped or experience delay.

Hence, a flow control protocol (e.g. acknowledgments) to detect packet losses and

transmission of a new measurement may be required in the event-based approach.

For simplicity, let us denote the cited interval as τ(ki) or simply as τ .

Assumption 2.1 constrains the model uncertainty and/or the maximum allow-

able number of sampling periods the system (2.2) can run in open loop (without

receiving new control sequences from the remote controller). The derivation of

these constraints will be given later in the section. First, the following result to

bound the error at any time k is given as a consequence of Assumption 2.1.

Proposition 2.1. If Assumption 2.1 holds, the error defined as (2.7) is bounded

by

‖e(k)‖ ≤ 2c. (2.11)

Proof. From Assumption 2.1 it follows that

‖e(ki + τ)− e(ki)‖ < c,∀τ ≤ τmax,

since no event is detected in this interval.

According to the assumptions of Section 2.6, the error at the event detection

is ‖e(ki)‖ ≈ c. Thus, assuming that this approximation is exact

‖e(ki + τ)‖ ≤ ‖e(ki)‖+ ‖e(ki + τ)− e(ki)‖ ≤ 2c,

which concludes the proof.

46 2 Anticipative Control Design in Internet-like Networks

Remark 2.4. Assumption 2.1 has allowed to establish a bound on the error e(k),

for all k. Alternatively, the upper bound on the RTT could be set to an arbitrary

integer number of minimum inter-event times:

τmax < ν(ki+1 − ki), ν ∈ N. (2.12)

Thus, an equivalent result to Proposition 2.1 would be derived:

‖e(k)‖ ≤ (ν + 1)c.

Note, however, that if the error was increased, the performance would degrade.

Let us denote AdK = Ad + BdK to simplify the notation.Because AdK is

assumed to be Hurwitz, there exists a P = P T > 0 such that

ATdKPAdK − P = −Q, (2.13)

where Q = QT > 0. And let us define the following Lyapunov function:

V (x) = xTPx. (2.14)

The main result of the section is presented next. The error e(k) can be interpreted

as an external perturbation due to the mismatch between the real dynamics of

the process and the model, and the network imperfections.

Theorem 2.1. If Assumption 2.1 holds, the state of the system (2.10) when the

remote controller runs according to the model (2.5) and the event detector is

defined by (2.8), is GUUB with bound

‖x‖ ≤
√
λmax(P)
λmin(P) (σ‖AdK‖+ ‖BdK‖)2c, (2.15)

where

σ =
‖KTBT

d PAdK‖+
√
‖KTBT

d PAdK‖2 + λmin(Q)‖KTBT
d PBdK‖

λmin(Q) , (2.16)

2.7 Stability analysis 47

λmin(P) and λmax(P) are the minimum and maximum eigenvalues of P , respec-

tively, and λmin(Q) the minimum eigenvalue of Q.

Proof. The forward difference of the Lyapunov function (2.14) for (2.10) is

∆V (k) = xT (k + 1)Px(k + 1)− xT (k)Px(k)

=
(
AdKx(k) +BdKe(k)

)T
P
(
AdKx(k) +BdKe(k)

)
− xT (k)Px(k)

= −xT (k)Qx(k) + 2eT (k)(BdK)TPAdKx(k) + eT (k)(BdK)TPBdKe(k),

which is upper bounded by

∆V (k) ≤− λmin(Q)‖x(k)‖2 + 2‖(BdK)TPAdK‖‖e(k)‖‖x(k)‖

+ ‖(BdK)TPBdK‖‖e(k)‖2. (2.17)

The right hand side of (2.17) is an algebraic second order equation in ‖x(k)‖ such

that the Lyapunov function decreases whenever

‖x(k)‖ ≥ σ‖e(k)‖,

where σ is given in (2.16).

According to Proposition 2.1, the error at any time k is bounded by 2c. Hence,

∆V < 0 in the region ‖x(k)‖ > 2cσ. Thus, the state decreases until it reaches

this region. If we denote by k∗ the time instant at which the state enters this

region and according to (2.10), it follows that

‖x(k∗ + 1)‖ ≤ (σ‖AdK‖+ ‖BdK‖)2c.

Then the state can leave the region so the Lyapunov function decreases again,

and the space enclosed by the maximum of the Lyapunov function in k∗ + 1

is an ultimate bound for the state. If the inequalities λmin(P)‖x‖2 ≤ xTPx ≤

λmax(P)‖x‖2 are used, it is derived that the state x(k) remains bounded by (2.15)

∀k ≥ k∗, and this concludes the proof.

48 2 Anticipative Control Design in Internet-like Networks

2.7.1 Analysis of the maximum RTT and the model un-

certainties

Assumption 2.1 has made possible to establish a bound on the error of the system

and therefore the presented stability results. However, it also imposes some

constraints on the maximum RTT for the network and/or the model uncertainty

of the remote controller.

Assume that the last event occurred at time ki. The error at the next sampling

time is

e(ki + 1) = x̂(ki + 1)− x(ki + 1) = (Âd + B̂dK)x̂(ki)−
(
Adx(ki) +BdKx̂(ki)

)
= (Ād + B̄dK)x(ki) + (Âd + B̄dK)e(ki). (2.18)

In general, if a new control sequence is not received in τ sampling periods, the

PAL layer continuous applying control values from the same control sequence.

Thus,

x(ki + τ) = Aτdx(ki) +
(τ∑
j=1

Aτ−jd BdKÂ
j
dK

)
x̂(ki)

=
(
Aτd +

τ∑
j=1

Aτ−jd BdKÂ
j
dK

)
x(ki) +

(τ∑
j=1

Aτ−jd BdKÂ
j
dK

)
e(ki). (2.19)

The error at k + τ is e(ki + τ) = x̂(ki)− x(ki), thus

e(ki + τ) = ÂτdK x̂(ki)− x(ki + τ) = ÂτdKe(ki) + ÂτdKx(ki)− x(ki + τ),

where x(ki + τ) is given in (2.19).

The maximum RTT can be derived imposing that

‖e(ki + τmax)− e(ki)‖ < c,

which yields to a complicated expression which depends not only on the system

and model dynamics but also on the state at the last event x(ki). It is not possible

to derive an analytical solution for it, but the feasibility of the solution requires

2.7 Stability analysis 49

a bound for x(ki) ∀ki. Its existence is guaranteed from the results in Theorem

2.1.

However, it is possible to derive an analytical solution when the model un-

certainty can be approximated to zero so that Ād ≈ 0, B̄d ≈ 0. In this case, the

evolution of e(k) in (2.18) is approximated by e(ki + 1) ≈ Âde(ki). Thus, after τ

sampling periods it is given by

e(ki + τ) ≈ Âτde(ki) ≈ Aτde(ki). (2.20)

Thus, according to Proposition 2.1, it holds that

‖e(ki + τmax)− e(ki)‖ = ‖(Aτmaxd − I)e(ki)‖ < c.

Since ‖e(ki)‖ ≈ c, an upper bound for the maximum allowable RTT will be the

solution of

‖Aτmaxd − I‖ < 1, τmax ∈ N, (2.21)

which is independent of the value of c.

Remark 2.5. According to Remark 2.4, if the condition imposed to τmax was

(2.12), it could be proven straightforward that (2.21) would turn into

‖Aτmaxd − I‖ < ν.

Example 2.4: Assume that the scalar system

ẋ(t) = ax(t) + bu(t), a, b ∈ R, (2.22)

is sampled with a sampling period Ts. An anticipative controller based on events is designed

for this system, in which the event detector detects an event whenever the error crosses a

threshold c. Assume that there is no model uncertainty in the anticipative controller. Let us

compute the maximum allowable RTT for the system (2.22).

It holds that Ad = eaTs . Thus, according to (2.21), it holds that

|eaTsτmax − 1| < 1.

50 2 Anticipative Control Design in Internet-like Networks

0

2

4

6
0.02 0.04 0.06 0.08 0.1

0

20

40

60

80

100

120

140

T (s)

a

τ
m
a
x

20

40

60

80

100

120

s

Figure 2.7: Surface defined by (2.23).

Since a ∈ R, this is equivalent to eaTsτmax < 2. Thus,

τmax <
log(2)
aTs

. (2.23)

Note that τmax is feasible only if a > 0, because stable processes remain stable when there

are not model uncertainties and no disturbances.

For example if a = 1 and Ts = 50 ms, log(2)
aTs

= 13.86 and the maximum RTT is τmax = 13

sampling periods. In Figure 2.7 the surface that bounds the region defined by (2.23) is

depicted to illustrate the feasible range of τmax as a function of a and Ts, where a ∈ [0.1, 5]

and Ts ∈ [10, 100] ms.

2.7.2 Analysis of the error bounds

The analysis has shown that the system is GUUB when Assumption 2.1 holds, and

consequently, the error is upper bounded by 2c (see Proposition 2.1). However,

one question that can be raised is what is the minimum value of the error that

can be achieved with the prediction of the state at time k + τmin.

Under ideal network conditions, i.e., the network is reliable and the transmis-

sion delays between sensor-controller and controller-actuator are zero, the error

e(k) = x̂(k)− x(k) is reset to zero after the occurrence of an event.

2.7 Stability analysis 51

Also, if the delay τ can be measured because the architecture has a different

configuration (e.g. Figure 1.5a), the state of the plant at the time instance k+ τ

can be estimated, and the error is reset to zero if the model is perfect.

However, the fact that only statistics of the RTT can be known and the

elements in the control loop are not synchronized, makes difficult to achieve this

situation. In fact, if the RTT equals τmin the error will reach its minimum value

and its closure to zero will depend on the model uncertainty and the value of

τmin.

Thus, assume that the last event occurred at k = ki. According to (2.19), the

state at ki + τmin is

x(ki + τmin) =
(
Aτmind +

τmin∑
j=1

Aτmin−jd BdKÂ
j
dK

)
x(ki)

+
(τmin∑
j=1

Aτmin−jd BdKÂ
j
dK

)
e(ki).

While the prediction that the model gives is

x̂(ki + τmin) =
(
Âτmind +

τmin∑
j=1

Âτmin−jd B̂dK
(
ÂdK

)j)
x(ki)

+
(τmin∑
j=1

Âτmin−jd B̂dKÂ
j
dK

)
e(ki).

Then, it follows that the error is

e(ki + τmin) =
(
Âτmind −Aτmind +

τmin∑
j=1

(Âτmin−jd B̂d −Aτmin−jd Bd)K
(
ÂdK

)j)
x(ki)

+
(τmin∑
j=1

(Âτmin−jd B̂d −Aτmin−jd Bd)KÂjdK
)
e(ki). (2.24)

Note that the right hand side of (2.24) is zero if Ad = Âd and Bd = B̂d, and

different from zero otherwise. Moreover, it depends on the state x(ki).

Example 2.5: In order to illustrate the previous analysis, Figure 2.8 shows the real and the

estimated state of a certain plant, and the norm of the error in an interval of time, assuming

that the model uncertainty is bounded by ‖Ād‖ ≤ 0.1‖Ad‖, ‖B̄d‖ ≤ 0.1‖Bd‖ and n = 2.

52 2 Anticipative Control Design in Internet-like Networks

x
1
(k
),
x̂
1
(k
)

x
2
(k
),
x̂
2
(k
)

0

c

2c

k

‖
e
(k
)‖

ki+1 , ki + τi+1ki, ki + τi

Figure 2.8: Comparative of the state (solid line) and the model (dotted
line), and the error bound. k denotes the sampling time, ki, ki+1 the events
occurrence, and τi, τi+1 the delays.

At time ki an event is detected, but the next control sequence is not received at the plant

time after τi sampling periods. Note that at ki+ τi the norm of the error decreases and then

it increases until ‖e(k)‖ reaches the bound c again. This time the RTT is τi+1 > τi, as it

can be observed from the figure. However, the error decreases to a value which is closer to

zero than in the previous event ki, showing the effect of x(ki) over ‖e(k)‖ when there is a

certain error in the model.

In contrast, when the model is perfect, the value that reaches the error after the reception

of a new control sequence only depends on τi. This is illustrated on Figure 2.9, in which

‖e(ki + τi)‖ = ‖e(ki+1 + τi+1)‖ because τi = τi+1.

2.8 Disturbance estimator

According to (2.1), the system is affected by disturbances w(k) ∈ Rn. However,

until now his fact has not been taken into account to predict future states of

the plant according to (2.5). Disturbances can be estimated using the informa-

tion given by the measurement error to improve the behavior of the anticipative

control and reduce the number of events.

In [LL10], disturbances are estimated at event times assuming that they are

2.8 Disturbance estimator 53

0

x
1
(k
),
x̂
1
(k
)

0
x
2
(k
),
x̂
2
(k
)

0

c

2c

k

‖
e
(k
)‖

ki+1 , ki + τi+1ki, ki + τi

Figure 2.9: Comparative of the state (solid line) and the model (dotted
line), and the error bound. k denotes the sampling time, ki, ki+1 the events
occurrence, and τi, τi+1 the delays.

constant between events in the proposed emulation approach, which mimics the

continuous state feedback control. One constraint of the design is that the matrix

A must be invertible, which excludes integrators from the dynamics of the system.

In this section we present a disturbance estimator for the remote anticipa-

tive controller which does not require A to be invertible and considers model

mismatch. The following assumptions hold henceforth:

• The system dynamics is given by (2.1) and (2.2).

• The model of the CAL layer estimates future states of the plant according

to

x̂(k + 1) = Âdx̂(k) + B̂du(k) + ŵ(k), (2.25)

where ŵ(k) is the estimated disturbance at time k.

• The state x(k) is measurable.

• When a state packet is received with a measurement taken at time k, the

disturbance is estimated before computing the next control sequence Uk,

and held constant in the next steps.

Hence, the disturbance estimator is a new element to include in the CAL layer.

54 2 Anticipative Control Design in Internet-like Networks

According to (2.1) and (2.25), the error dynamics is given by

e(k+1) = x̂(k+1)−x(k+1) = Âdx̂(k)−Adx(k)+(B̂d−Bd)u(k)+(ŵ(k)−w(k)),

(2.26)

where u(k) is given by (2.6). The disturbance w(k) could be calculated if the rest

of the terms of (2.26) were known. However, the model mismatch is unknown.

Therefore, if the approximation Ād ≈ 0, B̄d ≈ 0 is taken, the value of w(k) can

be computed at the next sampling time k + 1 (after measuring x(k + 1)) as

ŵ(k+ 1) = Âd(x̂(k)−x(k)) + ŵ(k)− e(k+ 1) = ŵ(k) + Âde(k)− e(k+ 1). (2.27)

Let us denote q the number of sampling periods between the reception of the

last control sequence and the detection of an event. In absence of disturbances,

the error at k + q can be approximated to e(k + q) ≈ Âqde(k) (see (2.20)). This

approximation turns into

e(k + q) = Âqde(k) +
q−1∑
j=0

Âjd(ŵ(k + j)− w(k + j))

when disturbances are included in the model.

Because ŵ(k) is assumed to be held constant in this interval, the disturbance

can be estimated at time k + q as

ŵ(k + q) = ŵ(k) +
(q−1∑
j=0

Âjd

)−1
(Âqde(k)− e(k + q)). (2.28)

Example 2.6: Consider that the system is a double integrator:

ẋ(t) =

0 1

0 0

 · x(t) +

0

1

 · u(t).

The system is sampled with every 50 ms. Thus, it follows that

Âd =

1 0.05

0 1

 .

2.8 Disturbance estimator 55

If (
∑q−1
j=0 Â

j
d)−1 is computed for different values of q, for instance, q = 5, 10 and 50, we get

q = 5→

0.2 −0.02

0 0.2

 , q = 10→

0.1 −0.0225

0 0.1

 , q = 50→

0.02 −0.0245

0 0.02

 .

Note that A is not invertible, but
∑q−1
j=0 Â

j
d is, allowing to estimate w(k). It is also interesting

to remark that the diagonal elements of the resulting matrix decreases with q. This makes

sense with the transmission policy, since q takes large values when no event is detected,

meaning that the estimation of the disturbance is good. The term that gives the correction

in (2.28) is weighted by (
∑q−1
j=0 Â

j
d)−1. Thus, the larger the q, the correction the smaller.

Note that e(k) in (2.28), which denotes the error between the estimated state

and the measured state at the time of the reception of the control sequence is

in general non-zero. This information as well as the error at the time of the

detection of the event must be known. This implies that both values have to be

transmitted from the PAL to the CAL. Thus, the state packets must include the

following information:

• The measurement which triggered the event x(ki).

• A time stamp TSu of the controller local time. TSu allows to identify the

control sequence Uki−1 , ki−1 < ki, which was being applied at the time of

the measurement of x(ki).

• The index iu which is the number of element of the sequence Uki−1 which

was being applied at the time of the measurement of x(ki).

• The error between the predicted state by the model (2.25) and the measured

state after receiving Uki−1 . If the number of sampling periods between this

instant of time and the detection of the event at time ki is qi, hence this

value is e(ki − qi).

• The error e(ki) when the event is detected.

• The number of sampling periods qi.

According to this, the code executed by the CAL is illustrated in Algorithm 2.2.

56 2 Anticipative Control Design in Internet-like Networks

Note that once ŵ(ki) is estimated, it is used in the estimation of x̂(ki+ τmin) and

the computation of Uki , X̂ki .

Input: x(ki), TSu, iu, e(ki − qi), e(ki), qi
Output: Uki

, X̂ki

1: ŵ(ki − qi) := getFromLookupTable(TSu)
2: ŵ(ki) := ŵ(ki − qi) + (

∑qi−1
j=0 Âjd)−1(Âqi

d e(ki − qi)− e(ki))
3: [u(ki) . . . u(ki + τmin)] := getFromLookupTable(TSu, iu, τmin)
4: x̂(k) := x(ki)
5: for j = 1→ τmin do
6: x̂(k + 1) := Âdx̂(k) + B̂du(ki + j − 1) + ŵ(ki)
7: x̂(k) := x̂(k + 1)
8: end for
9: x̂(ki + τmin) := x̂(k)

10: Uki(1) = Kx̂(ki + τmin)
11: X̂ki(1) = (Âd + B̂dK)x̂(ki + τmin) + ŵ(ki)
12: for j = 2→ Q do
13: Uki

(j) = KX̂ki
(j − 1)

14: X̂ki
(j) = (Âd + B̂dK)X̂ki

(j − 1) + ŵ(ki)
15: end for

Algorithm 2.2: Code executed in the CAL for disturbance estimation.

Remark 2.6. Note that we have explicitly considered state feedback control for

the sake of clarity, but this algorithm can be easily extended to other control

laws.

Remark 2.7. Note that ŵ(k) includes the effect of the disturbance w(k) and also

of the model uncertainty Ād, B̄d. Both effects cannot be separated with the

proposed approach, but are compensated, though.

2.8.1 Stability analysis

Stability results can be derived when disturbances affect the system in a similar

way as Theorem 2.1 if bounded disturbances are assumed:

‖w(k)‖ ≤ wmax.

In this case, it is proven that the Lyapunov function (2.14) satisfying (2.13)

decreases to reach a region whose size depends on the bound of the error ‖e(k)‖

and the disturbances ‖w(k)‖.

2.8 Disturbance estimator 57

Before stating the main result of this section, let us rewrite (2.1) in terms of

e(k) as

x(k + 1) = AdKx(k) +BdKe(k) + w(k). (2.29)

Theorem 2.2. If Assumption 2.1 holds and the disturbances are bounded by

‖w(k)‖ ≤ wmax, the state of the system (2.29) when the remote controller runs

according to the model (2.25) and the event detector is defined by (2.8), is GUUB

with bound

‖x‖ ≤
√
λmax(P)
λmin(P)

(
‖AdK‖δwx + ‖BK‖2c+ wmax

)
, (2.30)

where

δwx =
δb +

√
δ2
b + 4δaδc

2δa
(2.31)

δa = λmin(Q) (2.32)

δb = ‖(BdK)TPAdK‖2c+ ‖PAdK‖wmax (2.33)

δc = ‖(BdK)TPBdK‖4c2 + 4‖PBdK‖wmaxc+ λmax(P)w2
max. (2.34)

Proof. The proof can be found in the Appendix B on page 245.

Example 2.7: In this example a system modeled as a double integrator is considered, and

sampled with Ts = 5 ms:

x̂(k + 1) =

1 0.005

0 1

 x̂(k) +

−0.0001

−0.0380

u(k).

The trigger function is defined with c = 0.05. The model uncertainty is known to be

‖Ād‖ < 0.2‖Ad‖, ‖B̄d‖ < 0.2‖Bd‖. Disturbances affecting the system are bounded by 0.01,

and change the value every second to a new random value in [−0.01, 0.01].

Figure 2.10 shows the state of the system (solid line), the prediction given by the model

(dashed line), the norm of the error, the control input and the real and estimated disturbances.

Note that the major number of the events occur for small values of time (when the state of

the system is far from the equilibrium), and when the value of the disturbance changes. The

difference between the real and the estimated states is not well appreciated due to the scale

and the small value of c.

58 2 Anticipative Control Design in Internet-like Networks

−5

0

5

x
1
(k

),
x̂

1
(k

)

−5

0

5

x
2
(k

),
x̂

2
(k

)

0

0.05

0.1

k
e
(k

)k

−5

0

5

u
(k

)

0 5 10
−5

0

5

10
x 10

−3

t (s)

w
1
(k

),
ŵ

1
(k

)

0 5 10
−0.02

−0.01

0

0.01

t (s)

w
2
(k

),
ŵ

2
(k

)

Figure 2.10: Disturbances estimation. The estimated values are represented
by the dotted line, and the actual values by the solid line.

2.9 Output-based event-triggered control

This section presents a method to anticipative control when the state x(k) cannot

be measured and the only available information at each sampling time is the

output y(k). The extension of event-triggered control to output measurement is

not trivial [HJT12]. One may think that an intuitive solution is to redefine the

error as

ey(k) = ŷ(k)− y(k), (2.35)

define a trigger function such that ‖ey(ki)‖ ≈ c, and extend the analysis to derive

‖ey(k)‖ ≤ 2c. However, the boundedness of ey(k) does not imply the boundedness

of x̂(k) − x(k), which is required to proof the stability of the system when the

basis controller is state feedback.

There are two directions to solve the problem in the literature. One direction

is to process the measurements by an observer or a filter. For instance, in [LL11a]

an state observer is proposed. The error function is replaced by x̂(k) − x̃(k),

2.9 Output-based event-triggered control 59

where x̃(k) is the observed state. The analysis shows that the property of GUUB

is preserved. In [LL11c], a Kalman filter approach is presented.

The second direction is to use a different structure in the controller. A dy-

namical output-based controller is proposed in [DH10]. Using a mixed event-

triggering mechanisms, the ultimate boundedness can be guaranteed while ex-

cluding the Zeno behavior. A level crossing sampling solution with quantization

in the control signal is presented in [KB06], where a LTI continuous-time con-

troller is emulated.

The first direction would make easier to extend the design of Section 2.6 and

the stability results of Section 2.7. However, a computational cost is required in

the PAL layer to observe the state, and it has been assumed that the computa-

tional capacity at the process side is very limited.

The design proposed in this thesis is a mixed solution of the two directions

aforementioned. On the one hand, an observer is required to recover the state

of the system in order to estimate future control values by the iteration of the

plant model and the basis controller. However, since the observer needs to be

implemented in the controller side, this does not allow to use the observation in

the trigger functions. Thus, the error is defined as (2.35), and the trigger function

for output measurement is

f(ey(k)) = ‖ey(k)‖ − cy. (2.36)

On the other hand, since only boundedness of the output error can be guaranteed,

let us consider the following LTI discrete-time controller

xC(k + 1) = ACxC(k) +BC ŷ(k) (2.37)

u(k) = CCxC(k) +DC ŷ(k), (2.38)

for the basis controller. xC(k) is the state of the controller, and AC , BC , CC and

DC are matrices of the appropriate dimensions. We assume that the controller

is designed to render the system asymptotically stable when ŷ(k) is replaced by

y(k). We further assume that the pair (Ad, C) is observable and that a model is

60 2 Anticipative Control Design in Internet-like Networks

Plant

PAL

Packet

processing

and

encapsulation

Control

packet

Incoming

sequence

management

Collect output

vector

Event detector

State

packet

)(ˆ ky

)(ku

)(ky

0))((kef y

y

ii kk ,YU ˆ

Figure 2.11: PAL design for output measurement.

available and it is given by (Âd, B̂d), and Ĉ = C. Finally, disturbances affecting

the system (2.2) are not considered for simplicity. However, the measurement

noise v(k) might not zero but bounded by vmax.

The description of how both Controller and Process Adaptation Layers can

be adapted to this new scenario is given next.

2.9.1 PAL design for output measurement

The tasks of the PAL can be divided into four modules (see Figure 2.11):

• Packet processing and encapsulation: This module includes the packet pro-

cessing (incoming packets) and packet encapsulation (outcoming packets)

tasks, which are basically the same than for state measurement.

• Incoming sequence management: This module is in charge of selecting the

control input at each sampling time, as described in Section 2.5. Since

event-triggering is supported, it also manages sequence of predictions given

by the model. This sequence has been denoted as X̂ki for state measure-

ment. For output-based control, the controller sends Ŷki referring to a

sequence of predicted outputs. The details of how Ŷki is computed can be

found in the next section.

• Event detector: It monitors the system output at each sampling time. If the

2.9 Output-based event-triggered control 61

Input: Uki
, Ŷki

, i0 with ki < k
Output: −→y , i0 + j

1: j := 0
2: −→y := []
3: ey(k) := 0
4: f(ey(k)) := −1
5: while i0 + j < Q̄ and f(ey(k)) < 0 do
6: j := j + 1
7: Apply Uki

(i0 + j)
8: Measure y(k)
9: −→y := [−→y , y(k)]

10: ŷ(k) := Ŷki(i0 + j)
11: ey(k) := ŷ(k)− y(k)
12: Compute f(ey(k))
13: end while

Algorithm 2.3: PAL event-detection algorithm for output measurement.

error (2.35) exceeds a certain threshold, i.e., the trigger function becomes

positive, an event is generated. This is illustrated in Algorithm 2.3.

• The completely novel module in the PAL for output measurement is the

one in charge of collecting an output vector denoted as −→y . The measured

outputs y(k) at each sampling time k between the reception of a control

packet and the detection of a new event are stored in −→y (see Algorithm

2.3). This information is used by the PAL to estimate the state of the plant

via an state observer. Note that −→y can actually be a matrix if the system

has multiple outputs. Since the inter-event time is limited by the fact that

an event is triggered when the index of the control sequence reaches the

value Q̄, there is no need in imposing an additional constraint to the length

of −→y .

According to Figure 2.11, the event detector informs when to stop collecting the

output vector and then a new packet is encapsulated and sent to the controller.

2.9.2 CAL design for output measurement

Three are the novelties in the CAL design respect to the ideas presented in

sections 2.4 and 2.6.1:

• The controller structure: The new basis controller is given by (2.37)-(2.38).

Hence, it receives from the model the predicted output of the plant ŷ(k), it

62 2 Anticipative Control Design in Internet-like Networks

computes its next internal state according to (2.37) and the control input

as (2.38).

• The model needs to compute an estimation of the state of the plant x̂(k)

according to (2.5), but only ŷ(k) = Cx̂(k) is required by the controller.

• In 2.6.1, a predicted states sequence X̂ki is generated and sent to the pro-

cess. This information is not useful anymore since the state is not mea-

surable, therefore, a predicted outputs sequence Ŷki is used instead. Since

we have assumed that Ĉ = C, it holds that Ŷki = CX̂ki . Note that one

advantage of this approach is that the length of Uki for an output-based

scheme is, in general, larger than for full state measurement in event-based

communications (see Remark 2.1).

• Since x(ki) is no longer available, it is estimated by a state observer using

the information in −→y , generating future states of the plant after that. We

next describe this more in detail.

A Luenberger observer of the state

A Luenberger observer of the form

x̃(k + 1) = (Âd − LC)x̃(k) + B̂du(k) + Ly(k), x̃(0) = x̃0

ỹ(k) = Cx̃(k)

is used to obtain the state x(k), being (Âd − LC) Hurwitz. We use the notation

x̃(k) rather than x̂(k) to differentiate it from the model predictions given by

(2.5). Anytime a new state packet is received at the controller side, the code

of Algorithm 2.4 is executed. The length of −→y is calculated first, that is, the

number of sampling times between the reception of the last control sequence at

the process side and the detection of the last event. Based on this information,

and on TSu and iu (received with the state packet as well), we can determine

the control inputs applied at the actuator during this period by checking them in

a look-up table (see Section 2.4). Then, the Luenberger observer estimates the

2.9 Output-based event-triggered control 63

Input: −→y , TSu, iu
Output: x̃(ki)

1: n := dim(−→y)
2: [u(ki − n− 1) . . . u(ki)] := getFromLookupTable(TSu, iu, n)
3: for j = 1→ n do
4: y(ki − n− 1 + j) := −→y (j)
5: x̃(ki−n+j) := (Âd−LC)x̃(ki−n−1+j)+B̂du(ki−n−1+j)+Ly(ki−n−1+j)
6: x̃(ki − n− 1 + j) := x̃(ki − n+ j)
7: end for

Algorithm 2.4: Luenberger observer state estimation.

plant state x(ki) corresponding to the last output measurement y(ki), which is

the last element of the output vector −→y .

Thus, in an output-based scenario, the state x(ki) is replaced by x̃(ki) to

estimate x̂(ki + τmin) first, and after that, to generate the control sequence Uki .

2.9.3 Stability analysis

To formulate the analysis, let us gather the equations that describe the dynamics

of both the system and the controller

x(k + 1) = Adx(k) +Bdu(k) (2.39)

y(k) = Cx(k) + v(k) (2.40)

xC(k + 1) = ACxC(k) +BC ŷ(k) (2.41)

u(k) = CCxC(k) +DC ŷ(k), (2.42)

with the error defined as (2.35) and the trigger function (2.36). This can be

rewritten as

 x(k + 1)

xC(k + 1)

 =

Ad +BdDCC BdCC

BCC AC

 x(k)

xC(k)

+

BdDC

BC

(ey(k) + v(k)
)
.

Let us define the augmented state vector of the system by combining process and

controller ξT (k) =
(
xT (k) xTC(k)

)
, and the matrices

ACL =

Ad +BdDCC BdCC

BCC AC

 , (2.43)

64 2 Anticipative Control Design in Internet-like Networks

F =

BdDC

BC

 . (2.44)

Thus, the closed-loop system-controller dynamics is

ξ(k + 1) = ACLξ(k) + Fey(k) + Fv(k). (2.45)

Equation (2.45) compacts the dynamics of the system and the controller. It can

be seen as a perturbed version of ξ(k + 1) = ACLξ(k). Hence, if we assume

that the controller is designed so that ACL (see (2.43)) is Hurwitz, there exist a

P = P T such that

ATCLPACL − P = −Q, Q = QT .

We define the Lyapunov function

V (ξ) = ξT (k)Pξ(k). (2.46)

The unperturbed system ξ(k+1) = ACLξ(k) converges asymptotically to the ori-

gin. Nevertheless, when event-triggering (2.36) is considered and measurements

are affected by noise, only GUUB of ξ(k) can be achieved.

Let us consider that Assumption 2.1 holds. The result of Proposition 2.1 can

be extended to the error ey(k) straightforward, so that

‖ey(k)‖ ≤ 2cy, ∀k.

The following theorem is equivalent to Theorem 2.1 but for output measurement

and the proposed controller design. The error ey(k) and the measurement noise

v(k) perturb the system. The error ey(k) is a contribution of both the model

uncertainties and the network imperfections, whereas v(k) is inherited from the

measurement itself.

Theorem 2.3. If Assumption 2.1 holds, the augmented state ξ(k) of the system-

controller (2.45), when the event detector is defined by (2.36) and the measure-

2.9 Output-based event-triggered control 65

ment noise is bounded ‖v(k)‖ ≤ vmax, is GUUB with bound

‖ξ‖ ≤
√
λmax(P)
λmin(P) (σξ‖ACL‖+ ‖F‖)(2cy + vmax), (2.47)

where

σξ =
‖F TPACL‖+

√
‖F TPACL‖2 + λmin(Q)‖F TPF‖

λmin(Q) . (2.48)

Proof. The proof can be found in the Appendix B on page 246.

Remark 2.8. A similar analysis to sections 2.7.1 and 2.7.2 can be done for output

measurement to derive the constraints on the delay and model uncertainty that

guarantee that Assumption 2.1 holds.

For output measurement, the state of the process at the event time is not

available and it is estimated via the Luenberger observer (see Section 2.9.2).

This causes an initial error to estimate future states of the plant. Specifically,

the recursive equation for the observation error ẽ(k) is

ẽ(k + 1) = x̃(k + 1)− x(k + 1)

= Âdx̃(k) + L
(
y(k)− ỹ(k)

)
+ B̂du(k)

−Adx(k)−Bdu(k)

= Ādx(k) + B̄du(k) + (Âd − LC)ẽ(k) + Lv(k). (2.49)

Note that if there are not model uncertainties and no measurement noise, the

observation error converges asymptotically to zero, and only boundedness can be

proved otherwise.

The observation error (2.49) can be rewritten in terms of the augmented state

ξ(k) if u(k) is replaced by (2.38). It yields

ẽ(k + 1) = Ādx(k) + B̄d
(
CCxc(k) +DC ŷ(k)

)
+ (Âd − LC)ẽ(k) + Lv(k)

=
(
Ād + B̄dDCC B̄dCC

)
ξ(k) + (Âd − LC)ẽ(k) +

(
L+ B̄dDC

)
v(k).

Thus, the error is bounded due to the results of Theorem 2.3, the boundedness

of v(k), and because (Âd − LC) is Hurwitz.

66 2 Anticipative Control Design in Internet-like Networks

2.9.4 PI anticipative control

The proportional-integral-derivative (PID) controller has been and is currently

applied to solve many control problems. Even though many controller choices

are currently available, PID controllers are still by far the most widely used form

of feedback control. In process industry it is know that more than 90% of the

control loops are regulated by PID controllers [rH06]. Most of such controllers

are Proportional Integral (PI), since the derivative part is usually not used in

practice [rH06].

For this reason, we particularize the previous results for output measurement

and LTI controllers to the PI controller, but including the set-point tracking.

The tracking error ε(k) is defined as ε(k) = ysp− y(k), where ysp is this reference

signal.

State representation of a PI controller

A conventional continuous-time PI controller can be written as

u(t) = Kp

(
(bysp − y(t)) + 1

Ti

∫ t

0
(ysp − y(τ))dτ

)
.

The state of the controller xC can be defined as

ẋC(t) = Kp

Ti
(ysp − y(t)). (2.50)

So that the control signal u(t) is then

u(t) = xC(t) +Kp
(
bysp − y(t)

)
. (2.51)

A discrete time formulation for (2.50) and (2.51) can be derived using the Euler

method. It yields

xC(k + 1) = xC(k)− Kp

Ti
Ts
(
bysp − y(k)

)
u(k) = xC(k) +

(
bysp − y(k)

)
.

2.9 Output-based event-triggered control 67

It follows that AC = 1, BC = −KpTs
Ti

, CC = 1, and DC = −Kp. This allows to

derive (2.45) when the basis LTI controller is PI and for set-point tracking ysp as

ξ(k+1) =

Ad −KpBdC Bd

−KpTs
Ti

C 1

 ξ(k)+

−KpBd

−KpTs
Ti

(ey(k)+v(k)
)
+

KpbBd

KpTs
Ti

 ysp.
(2.52)

The output is

y(k) =
(
C 0

)
ξ(k) + v(k),

and the control input

u(k) =
(
−KpC 1

)
ξ(k) +Kp

(
ysp − ey(k)− v(k)

)
.

Control and predicted states sequences computation

The control and the predicted output sequences have not been explicitly com-

puted in this section. We derive them next for the PI controller to include the

set-point tracking, but the results also hold for any ACL and F of the form (2.43)

and (2.44).

A model version of (2.52) can be defined to deduce the control and the pre-

dicted output sequences. Thus,

ξ̂(k + 1) = ÂCLξ̂(k) + F̂bysp, (2.53)

where

ÂCL =

Âd −KpB̂dC B̂d

−KpTs
Ti

C 1

 F̂b =

KpbB̂d

KpTs
Ti

 . (2.54)

Note that x̂C = xC , but the compact form of (2.53) simplifies the expressions.

After estimating x̂(ki + τmin) and therefore, ξ̂(ki + τmin), the j element of the

predicted output sequence Ŷki , i.e.,
(
C 0

)
ξ̂(ki + τmin + j), is

Ŷki(j) =
(
C 0

)[
ÂjCLξ̂(ki + τmin) +

j−1∑
l=0

ÂlCLF̂bysp
]
, (2.55)

68 2 Anticipative Control Design in Internet-like Networks

assuming that the set-point value remains constant. And the j + 1 element of

the control sequence Uki , i.e.,
(
−KPC 1

)
ξ̂(ki + τmin + j) +Kpbysp, is

Uki(j + 1) =
(
−KPC 1

)[
ÂjCLξ̂(k + τmin) +

j−1∑
l=0

ÂlCLF̂bysp
]

+KP bysp. (2.56)

2.10 Centralized anticipative control for N subsystems

The proposed scheme can be extended to the control of N subsystems from a

centralized controller. From the process perspective, it works exactly the same

as in a single control loop scenario. Indeed, each subsystem has its PAL layer,

which does not require any new module in the design. However, the controller

has to handle with the income and outcome of packets from/to different plants.

Moreover, the processes can be far away from each other and the communication

constraints can be different in each control loop.

Thus, new elements has to be added to the CAL design to handle with these

new requirements. But before describing the proposed architectures, let us enu-

merate the following assumptions:

• The system dynamics is given by

xi(k + 1) = Aidxi(k) +Bi
dui(k) + wi(k), xi(0) = x0,i (2.57)

yi(k) = Cixi(k) + vi(k), i = 1, . . . , N, (2.58)

where xi(k) ∈ Rni is the state of the subsystem i, ui(k) ∈ Rmi is the control

signal of the subsystem i, wi(k) ∈ Rni is the disturbance and vi(k) ∈ Rri

is the measurement noise, both of which are bounded, and Aid, B
i
d, C

i are

matrices of appropriate dimensions. The subsystems can have different

dynamics and even more, different dimensions.

• There is a model for each plant given by

x̂i(k + 1) = Âidx̂i(k) + B̂i
dui(k), (2.59)

2.10 Centralized anticipative control for N subsystems 69

where x̂i(k) is the estimated state. The model iterates with the basic con-

troller to generate the corresponding sequences.

• We assume full state measurement and that the basis controller runs ac-

cording to state feedback

ui(k) = Kix̂i(k), (2.60)

although the framework for output measurement and LTI controllers, such

as PI, can also be applied.

• The transmission of measurements of each subsystem is event triggered.

The error is defined as

ei(k) = x̂i(k)− xi(k). (2.61)

An event is detected and, therefore, a transmission from the sensor to the

controller occurs, when the trigger function of the plant i crosses zero, that

is, fi(ei(k)) ≥ 0.

The proposed design is shown in Figure 2.12. There are N plants distributed

across the network and a centralized controller consisting of N basis controllers,

one for each plant. A single CAL is in charge of processing the incoming pack-

ets, computing the control and predicted state sequences and encapsulating the

control packets. In this case, there are N sources of state packets. The CAL

differentiates them thanks to the packets heading.

Once the source is identified, and the packet is processed, the CAL switches

over the models to choose the one of the corresponding plant. The procedure

described for a single loop to compute the control and predicted states sequences

also applies to the multi-loop case. Denote them as Ui
k and X̂i

k, respectively.

Note that the measurement of the minimum RTT is taken for each loop.

Denote this parameter as τ imin. Moreover, there is a look-up table of computed

control sequences for each subsystem. Therefore, the centralized controller must

have both computational and storing capacity. Both requirements increase with

70 2 Anticipative Control Design in Internet-like Networks

CAL

Packet

processing

and

encapsulation

Control

packet

Model 1 B. Contr. 1

Scheduler

Model N B. Contr. N

State

packet

NETWORK

Plant 1

Plant N

PAL

PAL

Figure 2.12: CAL design of a centralized anticipative controller for N plants.

the number of subsystems.

Also the computational speed is an important issue since it directly influences

the waiting delays on the packet queues. In general, the time a packet is waiting

in a queue before being processed depends on this computational speed and also

on the number of subsystems. This delay is added to the network of the control

loop and can negatively affect the performance.

Thus, a new element is included in the design of the CAL named as the

scheduler. When there is more than one incoming packet, the scheduler decides

which request is processed first. We describe how it works next.

Example 2.8: Let us consider a set of N scalar systems

ẋi(t) = aixi(t) + biui(t).

Each of them is sampled with a sampling period hi. In the Example 2.4 an upper bound on

the delay has been derived for the maximum RTT τmax when a single system is considered

so that Assumption 2.1 holds. This value is given by τmax < log 2
ah .

When the number of controlled plants increase, the waiting delays on the packet queues

in the controller also grows. If T jc is the computational time required to process a packet,

compute the arguments of a new control packet, and encapsulate the new control packet for

the process j, the worst case of the waiting time τ iW for another process i can be computed

2.10 Centralized anticipative control for N subsystems 71

as

τ iW =
N∑
j=1,
j 6=i

T jc .

Thus, the maximum allowable delay for the channel plant i-controller turns to be

τ imax <
log 2
aihi

− τ iW .

2.10.1 The scheduler

The purpose of the scheduler is to assign the priority of each packet when there

is more than one packet in the queue of the incoming packets. The criteria

considered in the algorithm are:

• The dynamics of the plant: Systems with fast or unstable dynamics are

served first.

• The quality of the communication link between the controller and the plant:

The slower connection, the higher priority.

• The time of the last processed packet: If a plant sent a packet because the

actuator buffer was running out of data, the priority of the request increases.

Mathematically, the priority can be computed as

πi(k) = πi0 + λ
τ imin

1
N

∑N
j=1 τ

j
min

+ µ
iiu
Qi
, (2.62)

where iiu is the iu index at the subsystem i (the number of element of the control

sequence which was being applied at the time of the measurement of xi(k)), and

Qi is the size of the control sequence. Note that Qi differs from one system to

another when the dimension of the states is different.

Hence, each plant has an initial priority πi0 that is the priority of the plant

in a centralized controller scenario but in absence of network. Then, the value

of πi0 is modified according to the second and third criteria by the second and

third term, respectively. The parameters λ and µ in (2.62) are design parameters

to adjust in order to give more or less relevance to each of the factors described

above.

72 2 Anticipative Control Design in Internet-like Networks

Table 2.1: Parameters of the subsystems.

No. Subsystem πi0 Qi

1 1 25
2 1 25
3 2 15
4 3 15

Example 2.9: Let us consider a system formed by four subsystems, each of one has an initial

priority πio and state dimension, which sets the value of Qi, as given in Table 2.1. Let us set

λ = 1.5 and µ = 1.2.

The priority πi assigned by the scheduler to each subsystem is shown in Figure 2.13c. This πi

is computed taking into account the values of iiu (Figure 2.13b) and τ imin (Figure 2.13a), both

of which change during the simulation period. The subsystem 1 (blue line) and subsystem 2

(green line) has an initial priority of 1. The subsystem 3 (red line) has π3
0 = 2 and, finally,

π4
0 = 3 (magenta line). Notice that, for instance, π3 > π4 in k ∈ [64, 71] even though

π3
0 < π4

0 . Also, in k ∈ [11, 13], π1 > {π2, π3, π4} although it has the lowest initial priority.

The reason is that τ1
min = max{τ imin, i = 1, . . . , 4} for this period of time.

2.11 Conclusions

An anticipative controller for packet-based NCS has been presented. The de-

sign of the middleware layers named as Controller Adaptation Layer (CAL) and

Process Adaptation Layer (PAL) constitutes the main contribution to the NCS

0

50

τ
i m
i
n

0

10

20

i
i u

0 10 20 30 40 50 60 70 80 90

2

4

6

k

π
i

Figure 2.13: Priority assigned by the scheduler to each of the subsystems.

2.11 Conclusions 73

architecture.

A model of the plant predicts future states of the plant and, with this in-

formation, generates future control actions. The proposed design is improved

with a disturbance estimator which allows reducing the differences between the

measured and the predicted state.

The design has been extended to output measurements and LTI controllers.

Also, a Luenberger observer is used in the CAL to estimate the state of the plant

in the inter-event time so that future states of the plant can be predicted and,

hence, future control actions can be derived.

The analysis has been particularized for PI controllers and, finally, a remote

centralized controller has been presented for the N -control loops case, being the

scheduler the main novelty respect to the single loop scheme.

The next chapter will present the experimental results to evaluate the pro-

posed design.

3
Implementation and Experimental

Evaluation of the Anticipative Control

Summary

This Chapter describes the implementation of the anticipative controller of Chap-

ter 2 and the experimental results obtained with this implementation. First, the

experimental framework is described. The PAL is hosted in a server, which ac-

quires the measurements and is connected to the network. The controller and

the CAL can be at any computer connected to the Internet.

Two are the processes in which the design has been evaluated: a servo motor and

a flexible link. The description of these prototypes is given, and the design of the

basis controller is presented.

The experimental evaluation consists of testing the design over a range of possible

situations and also finding the best set of parameters. The influence of the trigger

function and the effect of disturbances and network imperfections are analyzed.

Finally, the results are discussed thoroughly.

3.1 Contributions of this chapter

The main contribution of this chapter is the implementation of the two mid-

dleware layers proposed in Chapter 2 from a high-level programming point of

view. The proposed architecture facilitates the reuse of conventional controllers

76 3 Implementation and Experimental Evaluation of the Anticipative Control

C CAL

Wireless

Wired

INTERNET

PAL

Client

Server

Router Router

Plant

C CAL

Client

Figure 3.1: Scheme of the experimental framework.

in networked control with little effort if a model of the process is available.

Moreover, several experiments have been designed to test the controller under

treacherous network conditions.

3.2 Experimental framework

In order to evaluate the proposed design, we have made use of the infrastructure

of remote laboratories located in the Automatic Control Laboratory of UNED in

Madrid. These laboratories are used by students to conduct their experiments

remotely thanks to the web-based environment developed [Var10], which is based

on a client-server architecture [KCC04].

Traditionally, in the client-server architecture controller and process are at

the server-side (the real-time control loop) and the user gets remotely the state

of the plant, modifies the parameters of the controller, and observes how the

plant reacts to them (the asynchronous supervision loop) [VSD09].

Hence, the implementation changes to adapt this environment to work using

the remote anticipative controller described in Chapter 2 are given in next pages.

An scheme of the experimental framework is shown in Figure 3.1. The PAL

is hosted at the server side, which is connected to the Internet. The remote

controller and the CAL are at the client side, which also provide an interface for

the user. The communication with the process side can be wired or wireless.

3.2 Experimental framework 77

We were particularly interested in testing the performance of the anticipative

controller in processes with fast and/or unstable dynamics since they introduce a

more challenging environment. On the one hand, small-time constant processes

(10-100 ms) need lower sampling periods than the average of the measured RTT.

If the system has not fast dynamics, the presence of the network could be over-

looked, since the characteristic times of those processes are several orders higher

than the network delay. On the other hand, the control of unstable processes has

to meet hard requirements. Delays and data dropouts can easily unstabilize the

control loop.

The description of the plants used in the experiments is given next.

3.2.1 Prototypes overview

The QUANSER SRV-02 setup

The SRV-02 device (see Figure 3.2) is a DC servo-motor located at the Automatic

Control Laboratory of UNED in Madrid. It is specifically designed to experiment

with angular position, as it has a decoder which determines the angle of the gear.

For this reason, this setup can be used for different experiments. The speed is

not measured, so it must be estimated from position measurements. The model

for the plant can be found in Appendix A, which yields

G(s) = −46.7
s2 + 33.3s. (3.1)

In the state space representation, the state vector is xT = (x1 x2), y = x1 = θ,

x2 = θ̇, being θ the angle of the gear.

The plant is sampled every 10 ms to satisfy the Nyquist-Shannon theorem.

Thus, the discrete-time system is

Âd =

1 0.008505

0 0.7168

 , B̂d =

−0.002096

−0.3972

 , C = (1 0).

A PI controller has been design to control the angle. The parameters of this

78 3 Implementation and Experimental Evaluation of the Anticipative Control

Figure 3.2: QUANSER SRV-02 gear.

Step Response

Time (seconds)

A
ng

ul
ar

 p
os

iti
on

 (
ra

d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

Impulse Response

Time (seconds)

A
ng

ul
ar

 p
os

iti
on

 (
ra

d)

0 0.5 1 1.5 2 2.5 3 3.5
−2

0

2

4

Figure 3.3: Step and impulse response of the SRV-02 gear model (3.1) with
the PI controller (3.2).

controller are

KP = −2.5, Ti = 1. (3.2)

The rising time, settling time, and overshoot are 0.36 s, 2.78 s, and 16.10%,

respectively, with these parameters for a step command.

The step and impulse responses of the SRV-02 model (3.1) for this controller

design are given in Figure 3.3.

The flexible link: QUANSER SRV-02 series

Figure 3.4 depicts the Flexible Link module coupled to the SRV02 plant described

above. The module is attached to the SRV02 load gear by two thumbscrews.

3.2 Experimental framework 79

a) b)

𝜃 + 𝛼

𝜃

Torque

Spring Torque: 𝐽𝑠𝑡𝑖𝑓𝑓𝛼

Figure 3.4: The flexible link: a) View of the module and b) model.

The control objective is to respond to angular position commands with min-

imal amount of vibration and overshoot of the link.

To get a complete model of a flexible link is beyond the scope of this frame-

work. In controlling the extreme end of the link, it is sufficient to use a simplified

model that will adequately describe the motion of the endpoint. Figure 3.4b de-

picts the simplified model. The derivation of the model can be found in Appendix

A. It results in

ẋ1

ẋ2

ẋ3

ẋ4

=

0 0 1 0

0 0 0 1

0 592 32 0

0 −947.3 −32 0

x1

x2

x3

x4

+

0

0

−56.2

56.2

u, (3.3)

where x1 = θ, x2 = θ̇, x3 = α, x4 = α̇, θ is the angle of the gear and α is the arm

deflection.

A feedback gain K is design to control the system:

K = (17.3205 − 24.7388 1.7164 0.5007), (3.4)

that sets the poles at {−48.13,−35.34,−8.43 + 11.50i,−8.43 − 11.50i}. If there

is an external reference in the angular position, the input to the controller is the

control error. The response of the model (3.3) with the feedback gain (3.4) to

step and impulse inputs is illustrated in Figure 3.5. Note that the control error

and not the state are depicted.

80 3 Implementation and Experimental Evaluation of the Anticipative Control

−1

−0.5

0

0.5

1

θ
(r

a
d
)

−0.5

0

0.5

α
(r

a
d
)

−10

−5

0

5

10

θ̇
(r

a
d
/
s)

0 0.2 0.4 0.6 0.8
−10

−5

0

5

10

α̇
(r

a
d
/
s)

Response to Initial Conditions

Time (seconds)

S
ta

te

−0.4

−0.2

0

0.2

0.4

−0.4

−0.2

0

0.2

0.4

−50

0

50

0 0.2 0.4 0.6 0.8

−50

0

50

Impulse Response

Time (seconds)

Figure 3.5: Step (left) and impulse (right) response of the flexible link
model (3.3) with the feedback gain (3.4).

3.3 Implementing the CAL and the PAL in LAbVIEW

LabVIEW is a graphical programming language developed by National Instru-

ments in 1968 [Lab13]. In its origins, LabVIEW was developed for data acqui-

sition and instrumentation control. However, last versions of LabVIEW allow

users to use it for many other purposes: process control, industrial automation,

modeling and simulation, digital signal processing, remote operation, real-time

programming, etc.

Programs developed with G, the graphical language of LabVIEW, are named

VI (Virtual Instruments) due to its instrumentation-related origins. A VI is made

up connecting multiple blocks, existing libraries of blocks for many purposes: vi-

3.3 Implementing the CAL and the PAL in LAbVIEW 81

sion, I/O hardware, mathematical calculations, simulation, Internet protocols,

process control, database access, etc. One of the main reasons to use LabVIEW

is its simplicity since users with low knowledge of programming can develop pro-

grams, difficult to write using traditional programming languages [Tra00, Blu07].

In a traditional experimentation environment, i.e., when the execution of

the all control tasks (readings from sensors, executions of the control code, and

writing to actuators) takes place in a local application, the required regularity is

achieved by using threads and DAQ board interrupts.

However, the proposed design for remote experimentation demands to im-

plement additional threads to manage the communication. LabVIEW seems

adequate here, since it provides simple multi-thread programming using Timed

Loop blocks. These blocks allow programmers to include multiple threads in a

single virtual instrument (VI), and running these threads at different sampling

periods and with different priorities. Moreover, these threads can also work asyn-

chronously, i.e., the next execution of the loop will not take place until a new

event occurs, for example, the reception of a new packet in the communication

thread.

In the remote experimentation framework described in [Var10], the control

thread receives a critical time priority, whereas the communication task has a

lower priority, referring both of which to the server side. However, when the

control is remote, the communication thread has a higher priority since the control

loop is closed through the network.

The main features of the middleware layers are given next.

3.3.1 Implementation of the PAL

This layer has three threads:

• Receive commands: Once an UDP connection is open, the loop is not ex-

ecuted until a request arrives. When a new control packet is received, the

data is desencapsulated and enqued in a buffer created for this purpose.

This thread also sends back a small packet with the time stamp to the

82 3 Implementation and Experimental Evaluation of the Anticipative Control

address from which it received the control packet, but to a different port.

This allows measuring the RTT.

• Hardware access: It is the most important thread, since it reads from sen-

sors, writes to actuators, selects the control input to apply, collects the

output vector in output based control, and decides when a new measure-

ment has to be transmitted to the controller. It is executed at the frequency

required to sample the plant.

The most important block is the one that manages the control and state/out-

put sequences. At each sampling time, it checks the queue when the data

from the new incoming packets is stored. If a most recent data is available,

it discards the sequences that were being processed and decides the first

element in each of the sequences that will be used.

• Send measurements: It is executed with the same frequency that the hard-

ware access. This thread checks the measurements queue. If new mea-

surements have been enqueued, i.e., if a new event has been triggered, the

data is encapsulated in a new state packet and transmitted to the controller

through the network.

It can be argued that sending back a packet to measure the RTT increases the

network traffic. However, this action is similar to the acknowledgment that many

protocols use but it is not required by UDP. The reason for using UDP, and

for instance not TCP, is that UDP reduces latency over reliability, and this is

preferable as the experimental results will show. The block diagram of this layer

as well as the GUI at the server can be found in Appendix C.

3.3.2 Implementation of the CAL

In order to execute the controller, the application at the server side must be

running, otherwise an error is reported. This layer also has three threads:

• Receive measurements: This thread opens an UDP connection that remains

listening until a new state packet is received. It extracts the data and

enqueues it in the measurement queue.

3.4 Experimental results 83

• Control and send commands: This is the most critical thread, since it

process the measurements and computes the state/output and control se-

quences. The measurement queue is checked. If it is not empty, it reads

the data, estimates the disturbance and the state that the plant will have

after τmin sampling periods, and then the computation of the anticipative

controller starts. The anticipative controller block, the most important,

has three inputs: the aforementioned estimated state and the disturbance,

the basis controller, and the model of the plant. And it has two output:

the state/output sequence and the set of future control values. Once this

computation is finished, it encapsulates the data, and sends a new control

packet to the server.

A screenshot of the block diagram for this thread is shown in Figure 3.6.

Two cases are distinguished. When the controller type is “0”, this is inter-

preted as state feedback controller so that the state sequence is computed,

whereas the output sequence is generated if the controller type is “1”, i.e.,

a PI controller.

• Measure RTT: As indicated in the implementation of the PAL, packets are

sent back with the time stamp to measure the quality of the channel (RTT).

This loop, with lower priority than the other two, is in charge of extracting

this information.

The complete block diagram of the CAL as well as the GUI at the client side can

be found in the Appendix C.

3.4 Experimental results

In order to evaluate the performance of the controller design proposed in Chapter

2, the influence of the parameter c of the trigger function is studied, and the

step response of the anticipative controller is compared to other frameworks.

Moreover, the effectiveness of the disturbance estimation is assessed.

The flexible link described in Section 3.2.1 is used for this evaluation since

84 3 Implementation and Experimental Evaluation of the Anticipative Control

Model

State feedback
controller.type==0

PI
controller.type==1

State/output
& control
sequences

Figure 3.6: Screenshot of the anticipative controller block in LabVIEW.

it is a higher order process than the SRV-02 setup, although the PI anticipative

controller is tested over this device. Finally, some properties of the network are

analyzed and additional experiments are performed on the SRV-02 gear.

3.4.1 Performance of event-based control

An anticipative controller based on the model (3.3) and the feedback gain (3.4)

is designed for the flexible link presented in Figure 3.4. The system is sampled

with h = 10 ms, and the driver provided by Quanser is used to emulate full state

measurement because the sensors only provides measurements of θ and α.

Influence of the trigger function

First, we afford the study of the influence of the parameter c of the trigger function

(2.8). The response to an angular position step command is shown in Figure 3.7.

Three values are considered: c = 0.05 (blue), c = 0.1 (red), and c = 0.2 (green).

The angle of the gear x1, the arm deflection x2, the control input, and the events

execution are depicted.

3.4 Experimental results 85

−0.5

0

0.5

x
1
(r

a
d
)

−0.05

0

0.05

x
2
(r

a
d
)

0 0.5 1 1.55 2 2.55 3

−5

0

5

t (s)

u
(t

)

1

2

3

E
v
e
n
ts

Figure 3.7: Step response for the event based controller with c = 0.05
(blue), c = 0.1 (red), and c = 0.2 (green).

Note that the performance in the three situations is similar, and the main

differences are in the number of triggered events. If c = 0.05, the frequency of

generation of events is high when the system reaches the final set around the

equilibrium. These events are possibly caused by the noise in the measurements.

Thus, this fact should be taken into account when designing the trigger function.

Another interesting phenomenon can be observed, for instance, in the second

design (c = 0.1). In the interval of time (1.5, 3) s, the detection of an event usually

involves an additional transmission very close to the previous one. This occurs

when the RTT is larger than the sampling period. Since a new control packet has

not been received, another state packet is transmitted asking for control actions.

Thus, the previous transmission is considered as lost. Note that the packets are

not acknowledged in the proposed protocol. Alternatively, acknowledgment of

packets can be set up with a convenient waiting time.

86 3 Implementation and Experimental Evaluation of the Anticipative Control

Finally, it can be noticed that when the system reaches the final set around

the set point, the frequency of transmission is almost constant with a transmission

period around 100-140 ms, since an event is also enforced when the number of

the remaining elements in the actuator buffers is below the parameter Q̄ (see

Algorithm 2.1).

Performance comparative

Figure 3.8 shows the system response for three different frameworks:

1. Classical control scheme: The conventional state feedback controller is lo-

cated at the process side (classical control scheme).

2. Remote state feedback: The state feedback controller receives measure-

ments and sends control actions through the network without using a model

and/or compensation of network effects with event-triggered sampling and

c = 0.1.

3. Remote state feedback controller with anticipative strategy: The anticipative

controller proposed with the state feedback basis controller with sequence

length Q = 20 (length of control and prediction sequences), and the trigger

function with c = 0.1.

The three previous frameworks have the same controller tuning and what change

is only the control architecture. The performance of the three frameworks is

summed up in Table 3.1. It can be noticed that in the second case (green) the

response exhibits a slower response because the actuator does not receive in time

a control action and applies zero, whereas the settling time and the overshoot

for the state feedback controller (blue) and the proposed design (red) are similar.

If the number of events from the second and third frameworks are compared, it

leads to a reduction of 64% in the number of transmission is obtained.

The Integral Absolute Error (IAE) is computed for the three frameworks and

for the first component of the output vector as

IAE =
∫ tf

t0
|ε(t)|dt,

3.4 Experimental results 87

−0.5

0

0.5

x
1
(r

ad
)

−0.05

0

0.05

x
2
(r

ad
)

0 0.5 1 1.5 2 2.5 3
−10

0

10

t (s)

u
(t

)

Figure 3.8: Performance comparative of the local controller (blue), the
remote controller with Q = 1 (green), and the remote controller with Q = 20
(red).

where ε(t) = ySP − y(t). The IAE is increased with event-triggered due to the

existence of a stationary error that varies with c. Nevertheless, the IAE is reduced

with the anticipative strategy (framework 3) respect to the second framework.

3.4.2 Response to disturbances

The disturbance estimator is evaluated if a step disturbance is induced in the

input while a step command is given to the angular position. Figure 3.9 shows

the system response in two situations: When the disturbance estimator module is

included in the CAL, and when it is not. Observe that the system rejects better

the disturbance in the first case. Moreover, the number of events accounts for

Table 3.1: Performance parameters of the three frameworks depicted in
Figure 3.8.

Framework Rise time (s) Settling time (s) Overshoot (%) IAE Events
1 0.13 0.91 40.01 0.063 300
2 0.29 0.43 0.00 0.114 182
3 0.17 0.71 46.64 0.086 65

88 3 Implementation and Experimental Evaluation of the Anticipative Control

−0.5

0

0.5

x
1
(r

a
d
)

−0.05

0

0.05

x
2
(r

a
d
)

0 0,5 1 1,5 2 2,5 3 4
−5

0

5

t (s)

u
(t

)

Figure 3.9: Disturbance rejection with (blue) and without (red) disturbance
estimation.

50.13% and 59.84% of the sampling times, respectively. Thus, the disturbance

estimator not only provides better performance but also a lower transmission

rate.

Another example is given in Figure 3.10. The system is in the equilibrium and

it is perturbed in the output, by pushing the flexible link in one direction first,

and next to the opposite direction. Note that the controller exhibits much better

behavior when the disturbance is estimated. Such estimation is shown in Figure

3.11. Each plot corresponds to a component of the estimated disturbance vector

ŵ(k). Note that the signals are piecewise constant and each update corresponds

to the reception of a new state packet, i.e., the occurrence of an event.

The number of events is reduced even more and accounts for almost the half

of the events without disturbances estimation. In order to avoid that the noise

has influence on the disturbance computation, a threshold is defined so that ŵ(k)

is set to zero if the estimation is below this threshold. If this strategy is not

taken, additional events may be generated.

3.4 Experimental results 89

−0.2

0

0.2

0.4

x
1
(r

ad
)

−0.05

0

0.05

x
2
(r

a
d
)

0 1 2 3 4 5 6 7
−5

0

5

t (s)

u
(t

)

Figure 3.10: Disturbance rejection with (blue) and without (red) distur-
bance estimation.

−5

0

5
x 10

−3

ŵ
2
(r
ad

)

−0.02

0

0.02

ŵ
1
(r
ad

)

−0.5

0

0.5

ŵ
3
(r
ad

/s
)

0 1 2 3 4 5 6 7
−0.5

0

0.5

t (s)

ŵ
4
(r
ad

/s
)

Figure 3.11: Disturbance estimation. Top: ŵ1 (blue), ŵ2 (cyan). Bottom:
ŵ3 (blue), ŵ4 (cyan).

3.4.3 PI anticipative controller

In order to test the design for LTI anticipative controllers, the PI controller

(3.2) is taken as the basis controller. This has been the proposed solution when

90 3 Implementation and Experimental Evaluation of the Anticipative Control

5 10 15 20 25 30 35
80

100

120

140

160

180

200

220

t (s)

θ
(o
)

Angular Position

0 10 20 30 40 50
0

200

400

600

800

1000
Index usage

index

#
ti
m
es

Figure 3.12: Comparison of time-based (blue) and event-based (red) PI
anticipative controllers.

only output measurements are available. For the SRV-02 gear, the output is the

angular position θ. As remarked in Section 2.9, one of the benefits of measuring

the output is that the horizon of the predictions can be enlarged.

The performance of the PI anticipative controller over the SRV-02 gear is

analyzed in two different situations:

1. The controller is anticipative with a length of predictions N = 50, but with

periodic transmission from the sensor to the controller.

2. Such transmission is event-triggered (2.36) with cy = 0.1 rad, and the rest

of the parameters are the same.

The results for a particular experience are shown in Figure 3.12. On the left hand

side, the output is displayed when the reference is a square wave. The results

highlight the benefits of the event-based communication. If the parameter cy is

selected properly, the system response is similar to the time-based case, but the

exchange of data plant-controller through the network is considerably reduced.

Note, however, that there is a stationary error not compensated, defined by cy.

On the right hand side of Figure 3.12 the parameter denoted Index usage is

depicted. This parameter represents the number of times that the element index,

index = 1, . . . , N of any control sequence {Uk, k ∈ N} has been applied by the

actuator.

We remind that the first i0 elements are discarded according to the current

3.4 Experimental results 91

0 5 10 15 20 25 30 35 40
0

50

100

150

t (s)

R
T
T

(m
s)

Figure 3.13: Measured RTT in three experiments: 10 AM (red), 3 PM
(green), 8 PM (blue).

measurement of the RTT, and the subsequent elements are applied until a most

recent computation is received.

If the time-based event-based transmission policies are compared, a more

efficient usage of the received control sequences in the event-triggered approach

is appreciated.

Note that the indices at which the peak values are reached are basically the

same, but the index usage of the subsequent elements rapidly decreases in the

periodic transmission, since they are only used in case the delay is large enough

so that new data has not been received yet. However, new control packets are

not requested until the error exceeds the threshold cy or the index reaches the

bound Q̄ in event-triggering.

3.4.4 Network: delays and packet losses

An interesting property to study is the RTT that characterize this framework. In

particular, when the remote controller connects to a wireless network the relia-

bility decreases. Three samples of data taken at different times of the day for the

wireless network are depicted in Figure 3.13. It can be observed that the mini-

mum value remains almost constant around 8 ms in the three situations. There is

not a predictable profile and, apparently, there are random peaks. These sudden

increments may be due to increase of network traffic or the server providing other

services. The maximum values correspond to the dotted lines.

92 3 Implementation and Experimental Evaluation of the Anticipative Control

0

2

4

θ
(r
ad

)

0 1 2 3 4 5
t (s)

E
ve
n
ts

−5

0

5

u
(t
)

Figure 3.14: Output, control signal and events generation when the antici-
pative controller runs in the server (blue), the average delay is 20 ms (red),
50 ms (green), 100 ms (magenta), and 230 ms (cyan).

The network-induced delay and the packet dropouts are intrinsic properties to

the communication channel and cannot be predetermined. Hence, studying the

system under different network conditions is a difficult task a priori. However,

artificial delays or packet losses can be induced from the user application. The

effect of both phenomena over the system performance is discussed next.

Study of the delay impact

If the theoretical upper bound is computed according to (2.21) for the SRV-02

gear model (3.1), it follows that ‖Aτd − I‖ < 1 is satisfied if τ < 23 sampling

periods, that is, 230 ms when the sampling period is 10 ms. This result holds

assuming that the model is perfect, obtaining a more conservative upper bound

if model uncertainties are considered.

An experiment to set the value of the average RTT to 20 ms, 50 ms, 100 ms,

and 230 ms has been designed by introducing artificial delays. Figure 3.14 shows

the obtained results for the SRV-02 gear for the PI controller (3.2). If the delay

increases, the performance of the system degrades, slowing down the response to

3.4 Experimental results 93

Table 3.2: Performance parameters for different values of average RTT.

RTT (ms) Rise time (s) Settling time (s) Overshoot
0 0.38 0.45 0.00
20 0.32 0.63 0.00
50 0.28 1.25 2.34
100 0.37 1.20 4.67
230 1.16 2.87 2.09

a step change in the reference. However, the controller achieves acceptable results

even for RTT values of 230 ms, that is, more than 20 times the plant sampling

period. Moreover, the behavior is really closed to the model (see Figure 3.3) for

delays of 20 and 50 ms.

Note that the number of events increases with the delay, since the sensor

sends an new measurement after the detection of an event if it has note received

an updated control packet.

The rise time, settling time, and overshoot have been computed for the five

cases described above. The results are summarized in Table 3.2. The settling

time increases with the RTT, whereas the rise time is preserved in adequate values

except in the last case.

Study of the packets dropouts impact

As a delay, a packet loss cannot be predetermined in the Internet, but, as in the

previous case, it can be caused artificially. This allows testing the robustness of

the designed approach for a set of values of probability of data dropouts.

The chance of not losing a packet has been modeled by a Bernoulli discrete

distribution with a probability of success q, so that the probability of losing a

Table 3.3: Performance parameters for different values of p.

p Rise time (s) Settling time (s) Overshoot
0.0 0.35 0.40 0.00
0.2 0.34 0.42 0.00
0.4 0.34 0.45 0.00
0.6 0.32 0.55 15.92
0.8 0.59 0.92 18.10

94 3 Implementation and Experimental Evaluation of the Anticipative Control

0

2

4

θ
(r
ad

)

−10

0

10

u
(t
)

0 1 2 3 4 5
t (s)

E
ve
n
ts

Figure 3.15: Output, control signal and events generation for p = 0 (blue),
p = 0.2 (red), p = 0.4 (green), p = 0.6 (magenta), and p = 0.8 (cyan).

packet is p = 1 − q. As an example, Figure 3.15 shows the system response for

different values of p. For example, a value of p = 0.4 means that 40% of the

packets will be lost in average. The output of the system, the control input and

the events triggered for values of p = 0, 0.2, 0.4, 0.6, and 0.8, are depicted. The

system exhibits good behavior if p ≤ 0.6 as the rise and settling times are almost

the same in this interval (see Table 3.3), and the degradation of performance is

evident if only one of each five packets are delivered. Note that a high value

of p causes an increase in the overshoot, whereas this phenomenon is not so

appreciated with large RTTs (see Table 3.2).

If the generation of events is analyzed, it can be noticed that a high rate of

packet losses involve a lower transmission rate that large delays. Thus, we can

say that packet losses are preferable to large latency of the network.

3.5 Conclusions

The proposed architecture in Chapter 2 has been implemented and evaluated

in a framework in which the remote controller communicates with the process

3.5 Conclusions 95

through the Internet.

The middleware layers CAL and PAL have been implemented in LabVIEW,

which provides a simple multi-thread programming framework required for appli-

cations in which tasks such as data-acquisition and communication are critical.

The remote controller has been tested over two devices, a DC motor and

a flexible link, and state-feedback, and PI controllers have been taken as basis

controllers.

The experimental results have analyzed the influence of the architecture,

the design of the trigger function, or the impact of network delays and packet

dropouts. The event-based anticipative controller has been shown to be efficient

against delays and packet dropouts, while reducing the need of communication.

Moreover, the designed disturbance estimator has been also evaluated, show-

ing that disturbances can be rejected effectively.

4
Distributed event-based control for

interconnected linear systems

Summary

This chapter presents a distributed event-based control (DEBC) strategy for a

networked dynamical system consisting of N linear time-invariant interconnected

subsystems. Each subsystem broadcasts its state over the network according to

certain triggering rules which depend on local information only. The system can

converge asymptotically to the equilibrium point under the proposed control de-

sign, and the existence of a lower bound for the broadcasting period is guaranteed.

The problem is solved assuming that the control law is able to decouple the sub-

systems and a continuous time system, and the results are extended to non-perfect

decoupling and discrete-time systems afterwards.

4.1 Introduction

Power or traffic networks can be seen as the interconnection of subsystems through

a network, characterized by a large number of variables and uncertainties. The

centralized control of such large-scale systems in a networked environment would

require a very accurate knowledge of the interaction between these subsystems

and the consumption of a lot of computation and network resources. Hence, there

is a natural interest in applying event-triggering to decentralized NCS.

98 4 Distributed event-based control for interconnected linear systems

There are some recent contributions on distributed event-triggered control

[DFJ12, DPSW11, GDJ+11, MT11, SDJ13, WL11]. The basic idea in all these

contributions is that each subsystem (also called agent or node) decides when to

transmit the measurements based only on local information. In the most common

implementations, an event is triggered when the error of the system exceeds a

tolerable bound.

A distributed event-triggered control has been proposed in [DFJ12, SDJ13]

restricted to multi-agent systems and average consensus problems. In [MT11]

self-triggered policies are proposed to avoid the constant checking of the trigger

condition. However, the control system is less robust against disturbances under

these policies since these cannot be detected in the inter-event times.

In [WL11] a decentralized control1 for large-scale systems is proposed under

the assumption of week coupling. The design of the event triggering threshold is

based on Lyapunov methods and it ensures input-to-state stability of nonlinear

systems. However, a positive lower bound for the broadcasting period, i.e., the

minimum difference between successive broadcasting times, may not be achievable

when the system approaches the origin. This might cause severe problems since

it would require the detection of events and transmission of data infinitely fast

due to possible Zeno behaviors. In a previous work of the same authors [WL08],

the design is restricted to linear systems with perfect decoupling.

A distributed event-triggered control has also been examined in [DPSW11],

in which the gains measuring the degree of interconnection satisfy a generalized

small-gain condition. This design does not prevent from Zeno behavior, and a

constant threshold-like condition is proposed to overcome this issue.

This chapter presents a DEBC for interconnected linear systems, which can be

represented as different nodes which communicates through a shared network, as

in Figure 4.1. Solid lines represent the coupling between nodes. Neighboring rela-

tionships are defined in the sense of dynamical interactions between subsystems.

Measurements are transmitted through the network to achieve the equilibria of

1Decentralized control neglects the interaction between the subsystems and designs a local
controller for each subsystem, whereas the local regulators exchange information among them
in distributed control

4.2 Contributions of this chapter 99

NETWORK

Subsystem 1 Subsystem 2 Subsystem N

Figure 4.1: Networked interconnected system.

the system. The outline of this chapter is as follows. Section 4.2 summarizes

the contributions of this chapter. Some background on matrix analysis and the

problem statement are given in Section 4.3. The proposed event-triggered control

is presented in Section 4.4. Results for perfect decoupled systems are given in

Section 4.5, and Section 4.6 widens these results to a more general framework.

An extension to discrete-time systems is given in Section 4.7. Finally, conclusions

end the chapter.

4.2 Contributions of this chapter

One of the issues mentioned in the introduction is the difficulty to achieve asymp-

totic convergence to the equilibria while excluding the Zeno behavior. We show

that this can be accomplished by the proposed trigger mechanism with time-

dependent trigger functions. If the parameters of these trigger functions are

adequately selected, the system presents asymptotic stability while guarantee-

ing a lower bound for the minimum inter-event time, which can be analytically

derived. With regards to [WL11, WL08, GA12], the triggering mechanism does

not continuously depend on the state of the system but on the error between

the current and the latest broadcasted state, which results in that the number of

generated events decreases when the system is close to the equilibrium point.

The problem is initially solved for perfect decoupled systems, and then the

results are extended for non-perfect decoupling, since that constraint is difficult

to achieve in practice. Moreover, the interconnection terms are not required to

by symmetric in contrast to [WL08], [GA12].

100 4 Distributed event-based control for interconnected linear systems

The coupling terms are treated as a perturbation of the nominal system, and

the existing classical analysis on the sensitivity of the matrix exponential [VL77]

and matrix powers [AMH09] is applied to infer constraints on the coupling terms

so the asymptotic stability property is preserved.

4.3 Background and problem statement

Some classical results from matrix analysis, which are used for obtaining the

analytical results of this chapter, are presented first. The problem statement is

given afterwards.

4.3.1 Matrix and perturbations analysis

Let A ∈ Cn×n be a complex matrix, and let us denote

A∗ = (āji), (4.1)

λ(A) = {λ : det(A− λI) = 0}, (4.2)

κ(A) = ‖A‖‖A−1‖ (0 /∈ λ(A)), (4.3)

λmax(A) = max{<e(λ) : λ ∈ λ(A)}, (4.4)

where ‖ · ‖ denotes the induced 2-norm.

The matrix exponential of A is defined as eAt =
∑∞
k=0

(At)k
k! . Through this

chapter, the stability of the system is proved using some hints that are summa-

rized in this section to bound ‖eAt‖.

Bounding the matrix exponential

In [VL77] various norms are discussed to bound the exponential. Three are of

particular interest:

• Log norms. If µmax(A) is defined as µmax(A) = max{µ : µ ∈ λ((A +

A∗)/2)}, then

‖eAt‖ ≤ eµmax(A)t.

4.3 Background and problem statement 101

An interesting corollary can be inferred from the property above. Let Y be

an invertible matrix such that A = Y BY −1. It follows that

‖eAt‖ = ‖Y eBtY −1‖ ≤ κ(Y)eµmax(B)t, (4.5)

where κ(Y) is defined according to (4.3).

Thus, assume that A is diagonalizable, i.e., there exists a matrix D, where

D = diag(λi(A)), and a matrix V of eigenvectors, such that A = V DV −1.

From (4.5), it holds that

‖eAt‖ ≤ κ(V)eµmax(D)t = κ(V)eλmax(D)t = κ(V)eλmax(A)t, (4.6)

where λmax(A) is defined according to (4.4).

• Jordan canonical form. Recall the Jordan decomposition theorem which

states that if A ∈ Cn×n, then there exists an invertible matrix X ∈ Cn×n

such that

X−1AX = Jm1(λ1)× · · · × Jm1(λp) ≡ J,

where

Jk ≡ Jmk(λk) =

λk 1 0

0 λk
. . .

... . . . 1

0 0 . . . λk

∈ Cmk×mk , k = 1, . . . , p.

By taking norms and defining m = max{m1, . . . ,mp}, it can be proved that

[VL77]

‖eAt‖ ≤ m · κ(X)eλmax(A)t max
0≤r≤m−1

tr

r! . (4.7)

Note that X may not be unique but it is assumed that it is chosen such

that κ(X) is minimized.

• Schur decomposition bound. The Schur decomposition states that there

102 4 Distributed event-based control for interconnected linear systems

exists a unitary Q ∈ Cn×n such that

Q∗AQ = D +N, (4.8)

where D is the diagonal matrix D = diag(λi) and N is strictly upper

triangular. The following upper bound can be obtained [VL77]

‖eAt‖ ≤ eλmax(A)t
n−1∑
k=0

‖Nt‖2

k! . (4.9)

Perturbation bounds

The second aspect that is brought up in this section is the existing perturbation

analysis on the eigenvalues and the matrix exponential, i.e., how the eigenvalues

and the bound on the matrix exponential change when A is perturbed by E.

The following theorem studies the perturbation of the eigenvalues of a matrix

A when A is diagonalizable:

Theorem [BF60]. If A is diagonalizable (V −1AV = D), the eigenvalues λ̃i of

A+ E satisfy

min
λj∈λ(A)

|λ̃i − λj | ≤ κ(V)‖E‖. (4.10)

The previous result has been extended to defective, i.e., non diagonalizable,

matrices in [Chu86]:

Theorem [Chu86]. Let consider the Schur decomposition (4.8). Then for λ̃i ∈

λ(A+ E)

min
λj∈λ(A)

|λ̃i − λj | ≤ max{θ1, θ
1/n
1 }, (4.11)

where θ1 = ‖E‖
∑n−1
k=0 ‖N‖k.

Finally, a result from semigroup theory (see [Kat66]) states that if ‖eAt‖ ≤

ceβt for some constants c and β, then

‖e(A+E)t‖ ≤ ce(β+c‖E‖)t. (4.12)

4.3 Background and problem statement 103

Perturbation analysis and matrix powers

In discrete time systems the matrix exponential is replaced by the matrix power.

Thus, a bound on (A + E)p is required. We introduce the concept of Fréchet

derivative for this purpose.

Definition [Hig08]. Let A,E ∈ Cn×n. The Fréchet derivative of a matrix function

f at A in the direction of E is a linear operator Lf that maps E to Lf (A,E)

such that

f(A+ E)− F (A)− Lf (A,E) = O(‖E‖2),

for all E ∈ Cn×n. The Fréchet derivative may not exist, but if it does it is unique.

The following lemma characterize the Fréchet derivative of the function Xp.

Lemma [AMH09]. Let A,E ∈ Cn×n. If LXp(A,E) denotes the Fréchet deriva-

tive of Xp at A in the direction of E, then

LXp(A,E) =
p−1∑
j=0

Ap−1−jEAj .

This means that the p power of A+ E is

(A+ E)p = Ap +
p−1∑
j=0

Ap−1−jEAj +O(‖E‖2).

Then, it is a logical consequence the following

‖(A+ E)p‖ ≤ ‖Ap‖+ ‖
p−1∑
j=0

Ap−1−jEAj‖+O(‖E‖2). (4.13)

4.3.2 Problem statement

Consider a system of N linear time-invariant subsystems. The dynamics of each

subsystem is given by

ẋi(t) = Aixi(t) +Biui(t) +
∑
j∈Ni

Hijxj(t), ∀i = 1, ..., N (4.14)

104 4 Distributed event-based control for interconnected linear systems

Dynamics

Microprocessor

Subsystem i

ijb Njtx),(,)(, tx ib

)(txi)(tui

Microprocessor

Event

detector
Controller

Receive Transmit

Figure 4.2: Scheme of a node, consisting of a digital microprocessor and
dynamics (left), and block diagram of the tasks carried out by the micropro-
cessor.

where Ni is the set of “neighbors” of the subsystem i, i.e., the set of subsystems

that directly drive agent i’s dynamics, and Hij is the interaction term between

agent i and agent j, and Hij 6= Hji might hold. The state xi of the ith agent has

dimension ni, ui is the mi-dimensional local control signal of agent i, and Ai, Bi

and Hij are matrices of appropriate dimensions.

In each node or subsystem, we can distinguish the dynamical part strictly

speaking and a microprocessor in charge of monitoring the plant state, computing

the control signal and the communication tasks (see Figure 4.2).

Each agent i sends its state through the network at discrete time instances.

Specifically, the agent i can only communicate with the set of agents on its neigh-

borhood Ni. The transmission occurs when an event is triggered. We denote by

{tik}∞k=0 the times at which an event is detected in the agent i, where tik < tik+1

for all k.

The broadcasted state is denoted by xb,i. The broadcasted states are used in

the control law. Hence, the control signal is updated in a node, at least, when a

new measurement is transmitted and/or received. In particular, the control law

for each subsystem is

ui(t) = Kixb,i(t) +
∑
j∈Ni

Lijxb,j(t), ∀i = 1, ..., N (4.15)

where Ki is the feedback gain for the nominal subsystem i. We assume that

Ai +BiKi is Hurwitz. Lij is a set of decoupling gains.

Let us define the error ei(t) between the state and the latest broadcasted state

as

ei(t) = xb,i(t)− xi(t) = xi(tik)− xi(t), t ∈ [tik, tik+1). (4.16)

4.3 Background and problem statement 105

Rewriting (4.14) in terms of ei(t) and the control law (4.15), we obtain

ẋi(t) = AK,ixi(t) +BiKiei(t) +
∑
j∈Ni

(
∆ijxj(t) +BiLijej(t)

)
, (4.17)

where AK,i = Ai + BiKi, and ∆ij = BiLij + Hij are the coupling terms. In

general, ∆ij 6= 0 since the interconnections between the subsystems may be not

well known, there might be model uncertainties or the matrix Bi does not have

full rank.

We also define

AK = diag(AK,1, AK,2, ..., AK,N) (4.18)

B = diag(B1, B2, ..., BN) (4.19)

K =

K1 L12 · · · L1N

L21 K2 · · · L2N
...

...

LN1 LN2 · · · KN

(4.20)

∆ =

0 ∆12 · · · ∆1N

∆21 0 · · · ∆2N
...

...

∆N1 ∆N2 · · · 0

(4.21)

and the stack vectors

x = (xT1 , xT2 , ..., xTN)T (4.22)

e = (eT1 , eT2 , ..., eTN)T (4.23)

as the state and error vectors of the overall system. Note that Hij , Lij ,∆ij := 0

if j /∈ Ni. Let also be n =
N∑
i=1

ni the state and error dimension.

The dynamics of the overall system is given by

ẋ(t) = (AK + ∆)x(t) +BKe(t). (4.24)

106 4 Distributed event-based control for interconnected linear systems

As the broadcasted states xb,i remain constant between consecutive events,

the error dynamics in each interval is given by

ė(t) = −(AK + ∆)x(t)−BKe(t). (4.25)

The above definition allows to study the stability of the overall system. These

equations are valid as long as the following three time instances are simultaneous:

the detection of the event, the transmission of the state xb,i from one node, and

the reception in all neighboring nodes. When delays and packet dropouts can

occur in the transmission, (4.24) and (4.25) do not generally hold. The extension

to non-reliable communications is given in Chapter 5.

4.4 Event-based control strategy

The occurrence of an event, i.e., a broadcast over the network and a control law

update, is defined by the trigger functions fi which depend on local information

of agent i only and take values in R. The sequence of broadcasting times tik
is determined recursively by the event trigger function as tik+1 = inf{t : t >

tik, fi(t) > 0}. Particularly, we consider trigger functions of the form

fi(t, ei(t)) = ‖ei(t)‖ − (c0 + c1e
−αt), α > 0 (4.26)

where c0 ≥ 0, c1 ≥ 0 but both parameters cannot be zero simultaneously, and the

error is defined in (4.16).

The motivations of these trigger functions (4.26) are the following. On one

hand, static trigger functions (c1 = 0) have been vastly studied in the literature,

see e. g. [HSvdB08, LL10]. In that case, the error is bounded by ‖ei(t)‖ ≤ c0

∀t and c0 determines the ultimate set in which the state of the plant is confined

around the equilibrium. Large values of c0 allow reducing the number of events

but degrades the performance. On the contrary, small values of c0 give better

performance but the average inter-event time, defined as T ik = tik+1− tik decreases

considerably.

4.4 Event-based control strategy 107

10 cc

)(tei

t

0c
)(tei

t

0c

a) b)

Figure 4.3: a) Static trigger functions, b) Proposed trigger functions.

On the other hand, event-triggering rules derived using Lyapunov analysis

are usually of the form ‖ei(t)‖ ≤ σi‖xi(t)‖. The asymptotic convergence to the

equilibrium is guaranteed but a positive lower bound for the inter-event time may

not be guaranteed when approaching the desired equilibria ([WL11, GA12]). In

contrast, we will prove that trigger functions (4.26) can give good performance

while decreasing the number of events and guaranteeing a minimum inter-event

time even if c0 = 0, if the parameters are adequately selected.

Throughout this chapter we will refer to the Zeno behavior. This phenomenon

must be avoided and the design has to guarantee the existence of a lower bound

for the inter-event time, since it might cause severe problems because it would

require the detection of events and transmission of data infinitely fast.

Example 4.1: A static trigger function is depicted on the left hand side of Figure 4.3. The

error is bounded by the constant threshold c0. Note that the error is reset after the occurrence

of an event and that the inter-event time is always positive, since the error cannot reach the

threshold again at the same time instance.

On the right side, trigger functions of the form (4.26) are represented. Note that the threshold

decreases with time and the error is bounded by c0 + c1 at t = 0 and by c0 when t→∞. If

c0 = 0, this bound goes to zero when time increases and asymptotic stability can be achieved.

The stability properties of the proposed event-based control are derived next.

First, the results for perfect decoupling are presented, i.e., when ∆ = 0 holds.

The extension to the perturbed case is given afterwards.

Though perfect decoupling is difficult to achieve in practice, this case is ana-

lyzed because the analytical results are simpler, and then the effect of the coupling

terms can be examined from them.

108 4 Distributed event-based control for interconnected linear systems

4.5 Results for perfect decoupling

If the matching condition holds, i.e., ∆ij +BiLij = 0, (4.17) is transformed into

ẋi(t) = AK,ixi(t) +BiKiei(t) +
∑
j∈Ni

BiLijej(t), (4.27)

and the dynamics of the overall system is given by

ẋ(t) = AKx(t) +BKe(t). (4.28)

Assumption 4.1. We assume that AK,i, i = 1, . . . , N is diagonalizable so that

there exists a matrix Di = diag(λk(AK,i)) and an invertible matrix of eigenvectors

Vi such that AK,i = ViDiV
−1
i .

This assumption facilitates the calculations since (4.5) can be applied, but the

extension to general Jordan blocks is achievable as discussed later in the section.

The following theorem states that the system (4.28) with trigger functions

defined as in (4.26) converges to a specified region around the equilibrium point

which, without loss of generality, is assumed to be (0, . . . , 0)T . Moreover, if c0 = 0

the convergence is asymptotical to the origin. The functions (4.26) bound the

errors ‖ei(t)‖ ≤ c0 + c1e
−αt, since an event is triggered as soon as the norm of

ei(t) crosses the threshold c0 + c1e
−αt.

Theorem 4.1. Consider the closed-loop system (4.28) and trigger functions of

the form (4.26), with 0 < α < |λmax(AK)|. Then, for all initial conditions

x(0) ∈ Rn, and t > 0, it holds

‖x(t)‖ ≤κ(V)
(‖BK‖√Nc0
|λmax(AK)| + e−|λmax(AK)|t(‖x(0)‖− (4.29)

‖BK‖
√
N(c0
|λmax(AK)| + c1

|λmax(AK)| − α)
)

+ e−αt‖BK‖
√
Nc1

|λmax(AK)| − α
)
,

where λmax(AK) and κ(V) are defined according to (4.4) and (4.3), respectively,

being V the matrix of the eigenvectors of AK .

4.5 Results for perfect decoupling 109

Furthermore, the closed-loop system does not exhibit Zeno behavior.

Proof. The analytical solution of (4.28) is

x(t) = eAKtx(0) +
t∫

0

eAK(t−s)BKe(s)ds. (4.30)

From Assumption 4.1 the matrix AK is diagonalizable by construction, because

each diagonal block AKi is. Then it follows that eAK = V eDV −1, with V =

diag(Vi) is a block diagonal matrix too. According to (4.5), ‖eAKt‖ can be

bounded by κ(V)eλmax(AK)t. Because AK is Hurwitz, λmax(AK) < 0. Thus,

‖eAKt‖ ≤ κ(V)e−|λmax(AK)|t.

Consequently, the state can be bounded by

‖x(t)‖ ≤ κ(V)(e−|λmax(AK)|t‖x(0)‖+
t∫

0

e−|λmax(AK)|(t−s)‖BK‖‖e(s)‖ds).

The trigger condition fi(t, ei(t)) > 0 enforces ‖ei(t)‖ ≤ c0 + c1e
−αt so that

‖e(s)‖ ≤
√
N(c0 + c1e

−αs), ∀s ∈ [0, t].

It follows that

‖x(t)‖ ≤κ(V)
(
e−|λmax(AK)|t‖x(0)‖

+
t∫

0

√
Ne−|λmax(AK)|(t−s)‖BK‖(c0 + c1e

−αs)
)
.

If the integral is solved:

‖x(t)‖ ≤κ(V)
(
e−|λmax(AK)|t‖x(0)‖+ ‖BK‖

√
Nc0

|λmax(AK)| (1− e
−|λmax(AK)|t)

+ ‖BK‖
√
Nc1

|λmax(AK)| − α(e−αt − e−|λmax(AK)|t)
)
,

which by reordering terms yield (4.29), proving the first part of the theorem.

110 4 Distributed event-based control for interconnected linear systems

Note that (4.29) can be upper bounded by

‖x(t)‖ ≤ κ(V)
(
‖x(0)‖e−|λmax(AK)|t + ‖BK‖

√
Nc0

|λmax(AK)| + ‖BK‖
√
Nc1

|λmax(AK)|−αe
−αt), (4.31)

by omitting the negative terms.

We next show that the broadcasting period is lower bounded. Let us first

assume that c0, c1 6= 0. If t∗ refers to the last event time occurrence, ‖ei(t∗)‖ = 0,

and fi(t∗) = −c0 − c1e
−αt∗ < 0. Therefore agent i cannot trigger at the same

time instant. From (4.16) it falls out that between two consecutive events we

have ėi(t) = −ẋi(t), thus

‖ei(t)‖ ≤
∫ t

t∗
‖ẋi(s)‖ds.

Furthermore, from (4.28) it can be derived

‖ẋ(t)‖ ≤ ‖AK‖‖x(t)‖+ ‖BK‖‖e(t)‖ ≤ ‖AK‖‖x(t)‖+ ‖BK‖
√
N(c0 + c1e

−αt∗).

As from definition (4.22) we have ‖ẋi(t)‖ ≤ ‖ẋ(t)‖, and if the last event occurred

at time t∗ > 0

‖ei(t)‖ ≤
t∫

t∗

‖ẋ(s)‖ds ≤
t∫

t∗

(
‖AK‖‖x(s)‖+ ‖BK‖e(s)

)
ds,

and ‖x(t)‖ ≤ ‖x(t∗)‖ holds in (4.31). Thus, defining the following constants

k1 = κ(V)‖AK‖‖x(0)‖ (4.32)

k2 = ‖BK‖
√
Nc1

(κ(V)‖AK‖
|λmax(AK)| − α + 1

)
(4.33)

k3 = ‖BK‖
√
Nc0

(κ(V)‖AK‖
|λmax(AK)| + 1

)
, (4.34)

the error can be bounded as

‖ei(t)‖ ≤
t∫

t∗

‖ẋ(s)‖ds ≤
t∫

t∗

(k1e
−|λmax(AK)|s + k2e

−αs + k3)ds.

4.5 Results for perfect decoupling 111

Because e−|λmax(AK)|s ≤ e−|λmax(AK)|t∗ and e−αs ≤ e−αt∗ , ∀s ≥ t∗, it holds that

‖ei(t)‖ ≤
t∫

t∗

(k1e
−|λmax(AK)|t∗ + k2e

−αt∗ + k3)ds (4.35)

= (k1e
−|λmax(AK)|t∗ + k2e

−αt∗ + k3)(t− t∗) ≤ (k1 + k2 + k3)(t− t∗).

The next event will not be triggered before ‖ei(t)‖ = c0 + c1e
−αt ≥ c0. Thus a

lower bound on the inter-events time is given by

Tmin = c0
k1 + k2 + k3

, (4.36)

which is a positive quantity. Hence, the inter-event time is lower bounded, and

the Zeno behavior is excluded.

Remark 4.1. Note that the integrability of e(t) in (4.30) is justified by the defini-

tion of the event-triggered functions fi(ei(t)), which by continuity guarantee that

ei(t) cannot be updated to zero immediately after it had done so. Thus there is

an arbitrarily small, yet positive lower bound on the interexecution times. Thus

the right hand side of the ODE that described the closed loop system is piecewise

continuous. Note that the specific lower bound on the interexecution times is

established in the final part of the proof.

Remark 4.2. Theorem 4.1 establishes a bound for the overall system state x(t).

In the perfect decoupling case, it can be proved, following the same procedure

than in the proof of Theorem 4.1, that the state of each agent i is bounded by

‖xi(t)‖ ≤κ(Vi)
(µic0
|λmax(AK,i)|

+ e−|λmax(AK,i)|t(‖xi(0)‖−

µi(
c0

|λmax(AK,i)|
+ c1
|λmax(AK,i)| − α

)
)

+ e−αtµic1
|λmax(AK,i)| − α

)
,

where µi = ‖BiKi‖ +
∑
j∈Ni ‖BiLij‖. This expression can be derived due to

the fact that Lij perfectly decouples the system and the bound on the errors is

‖ej(t)‖ ≤ c0 + c1e
−αt.

However, the bound (4.29) allows to derive the extension to non-perfect de-

112 4 Distributed event-based control for interconnected linear systems

coupling easily.

Remark 4.3. If Assumption 4.1 does not hold, the results can be extended noting

that ‖eAKt‖ can be bounded by either using the Jordan Canonical form, and

hence (4.7) holds, or the Schur decomposition bound (4.9). In both cases the

bound is governed by the exponential of λmax(AK), which is negative. Thus,

the stability of the system is guaranteed though the speed of convergence to the

equilibria decreases.

We next analyze two particular cases: static trigger functions, i.e., c1 = 0,

and pure exponential trigger functions, i.e., c0 = 0.

4.5.1 Static trigger functions

If c1 = 0 in (4.26), the error is bounded by ‖ei(t)‖ ≤ c0. The analytical ex-

pressions of Theorem 4.1 can be adapted to this case, and the state is bounded

by

‖x(t)‖ ≤ κ(V)
(‖BK‖√Nc0
|λmax(AK)| + e−|λmax(AK)|t(‖x(0)‖ − ‖BK‖

√
N

c0
|λmax(AK)|

))
.

Also, the lower bound for the inter-event time (4.36) becomes Tmin = c0
k1+k3

,

because k2 = 0 if c1 = 0.

4.5.2 Pure exponential trigger functions

In the case c0 = 0 the error is bounded by ‖ei(t)‖ ≤ c1e
−αt, and so the error goes

to zero when times goes to infinity. The state bound (4.31) can be particularized

for pure exponential trigger functions as follows

‖x(t)‖ ≤ κ(V)
(
‖x(0)‖e−|λmax(AK)|t + ‖BK‖

√
Nc1

|λmax(AK)|−αe
−αt). (4.37)

In order to prove that the Zeno behavior is excluded, we consider the bound on

‖ei(t)‖ defined in (4.35) before the last inequality, i.e.

‖ei(t)‖ ≤ (k1e
−|λmax(AK)|t∗ + k2e

−αt∗)T,

4.5 Results for perfect decoupling 113

T

e
−αT

k1+ k2

c1
T

k2

c1
T

Solution of (4.38)

Tmin

Figure 4.4: Graphical solution of (4.38).

where T = t − t∗ and k1, k2 are defined in (4.32)-(4.33). Note that k3 = 0 since

c0 = 0.

The next event is not triggered before ‖ei(t)‖ = c1e
−αt. Thus, a lower bound

on the inter-event intervals is given by

(
k1
c1
e(α−|λmax(AK)|)t∗ + k2

c1

)
T = e−αT . (4.38)

The right hand side of (4.38) is always positive. Moreover, for α < |λmax(AK)|

the left hand side is strictly positive as well, and the term in brackets is upper

bounded by k2+k1
c1

and lower bounded by k2/c1, and this yields to a positive

value of T for all t∗ ≥ 0. The existence of the solution Tmin can also be depicted

graphically (see Figure 4.4). The solution is given by the intersection of the

exponential curve e−αT and the straight line between the two bounds whose

slope depends on t∗. Thus, there is no Zeno behavior.

4.5.3 Simulation results

System description

In order to demonstrate the effectiveness of the event-based control strategy, let

us consider the system consisting of a collection of N inverted pendulums of mass

m and length l coupled by springs with rate k as in Figure 4.5. This setup will

114 4 Distributed event-based control for interconnected linear systems

1x 2x 3x Nx

Figure 4.5: Scheme of the network of the inverted pendulums.

be used throughout this and the next chapter.

The problem of coupled oscillators has numerous applications in fields as

medicine, physics or communications [Ste07, DGA08], and the inverted pendu-

lum is a well-known control engineering problem. The inverted pendulums are

physically connected by springs and we desire to design control laws to reach the

equilibrium as well as to decouple the system. The state of a pendulum i is broad-

casted to its neighbors in the chain at discrete times given by the communication

strategy.

Each subsystem can be described as follows:

ẋi(t) =

 0 1
g
l −

aik
ml2 0

xi(t) +

 0

1
ml2

ui +
∑
j∈Ni

 0 0
hijk
ml2 0

xj(t)

where xi(t) =
(
xi1(t) xi2(t)

)T is the state, ai is the number of springs connected

to the ith pendulum, and hij = 1,∀j ∈ Ni and 0 otherwise.

State-feedback gains and decoupling gains are designed so that the system is

perfectly decoupled, and each decoupled subsystem poles are at -1 and -2. This

yields the following control law:

ui(t) =
(
−3ml2 aik − ml2

4 (8 + 4g
l)
)
xb,i(t) +

∑
j∈Ni

(
−k 0

)
xb,j(t)

where xb,i(t) =
(
xb,i1(t) xb,i2(t)

)T . In the following, the system parameters are

4.5 Results for perfect decoupling 115

t

−2

0

2

x
i,
1
(t
)

2

4

E
v
e
n
ts

0 5 10 15
−20

0

20

t (s)

u
i(
t)

a)

b)

c)

Figure 4.6: Simulation results with trigger function (4.26) with c0 = 0.02,
c1 = 0.

set to g = 10,m = 1, l = 2, and k = 5.

We next provide several simulation results in order to enhance the theoretical

results presented previously in the section and to illustrate the advantages of

trigger functions (4.26) respect to constant threshold triggering. Furthermore,

we also compare some of these results with the ones obtained in [WL08].

Static trigger functions

The output of the system and the sequence of events for N = 4 with trigger

functions (4.26) with c0 = 0.02, c1 = 0 is shown in Figure 4.6 for initial conditions

x(0) =
(
− 1.3352 0 1.0996 0 − 0.8639 0 0.6283 0

)T . The output, the

time instances at which events are generated in each subsystem, and the applied

control signal are depicted. Note that the inter-event times are very small when

the system is far from the equilibria.

Time-dependent trigger functions

The output of the system and the sequence of events for N = 4 and the same

initial conditions than in the previous example when the trigger function is de-

fined as in (4.26) with parameters c0 = 0.02, c1 = 0.5, and α = 0.8 is shown in

Figure 4.7.

116 4 Distributed event-based control for interconnected linear systems

−2

0

2

x
i,
1
(t
)

2

4
E
v
e
n
ts

0 5 10 15
−20

0

20

t (s)

u
i(
t)

a)

b)

c)

Figure 4.7: Simulation results with trigger functions (4.26) with c0 = 0.02,
c1 = 0.5, α = 0.8.

The convergence of the system to a small region (c0 = 0.02) around equilib-

rium point is guaranteed due to the time-dependency in the trigger functions.

The event generation is shown in Figure 4.7.b. The system converges to zero

with few events. Note that the agent that generates the highest number of events

is agent 2 (in red) and this value is 24 over a period of 15 seconds. Table 4.1

compares the proposed event-triggered approach to periodic control.

The bandwidth of the closed loop subsystem is 0.8864 rad/s and the sampling

period should be between (0.1772, 0.3544) s, according to [FPW97], i.e., (42, 85)

transmissions in a 15 s time, whereas the value for the minimum and maximum

inter-event times are 0.1690 and 2.260, respectively. Furthermore, this compari-

son is even unfair with the event-based approach, since once the system is around

the equilibrium point, the broadcasting periods take values around 1-2 s.

Observe also that the control signals are piecewise constant (Figure 4.7c).

They are updated if an event is triggered by the agent or its neighbors.

Table 4.2 extends this study for a larger number of agents. Several simulations

Table 4.1: Comparison of time-triggered and event-triggered strategies.
No. updates {T ik}min (s) {T ik}max (s)

Time-triggered (42, 85) 0.177 0.3544
Event-triggered 24 0.1690 2.260

4.6 The non-perfect decoupling case 117

Table 4.2: Inter-event times for different N .
N 10 50 100 150 200

Trigger condition {T ik}min (s) 0.053 0.031 0.015 0.019 0.009
(4.26) {T ik}mean (s) 0.565 0.565 0.567 0.572 0.568
Trigger condition {T ik}mean (s) 0.1149 0.1175 0.1152 0.1180 0.1177
of [WL08]

were performed for different initial conditions for each value of N . Minimum

and mean values of the inter-event times T ik were calculated for the set of the

simulations with the same number of agents. We see that the broadcasting period

remains almost constant when the number of agents increases. Thus, the amount

of communication for the overall network grows linearly with N .

Moreover, if we compare these results to [WL08], we see that the proposed

scheme can provide around five times larger broadcast periods. For example, for

a number of pendulums of N = 100, trigger functions of the form (4.26) give a

mean broadcasting period of 0.567, while the trigger functions in [WL08] give a

mean value of 0.1152.

Though the scheme in [WL08] ensures asymptotic stability, we guarantee

the convergence to an arbitrary small region around the origin with c0 6= 0.

Alternatively, one can choose c0 = 0 to get rid of this drawback.

4.6 The non-perfect decoupling case

In this section the effect of the coupling terms ∆ij is analyzed. In (4.24) ∆ can

be seen as a perturbation to AK . Thus, the stability results of Section 4.5 are

modified according to this perturbation.

The next lemma provides a bound for ‖∆‖ that ensures that AK + ∆ is

Hurwitz. We assume that Assumption 4.1 holds. The discussion to defective

matrix is given afterwards.

Lemma 4.1. If κ(V)‖∆‖ < |λmax(AK)| holds, the eigenvalues λ̃i of AK + ∆ have

negative real part.

118 4 Distributed event-based control for interconnected linear systems

Proof. According to the Bauer-Fike theorem (see (4.10) on page 102), it follows

that

min
λj∈λ(AK)

|λ̃i − λj | ≤ κ(V)‖∆‖.

Assume that λ̃i = α̃i + iβ̃i and λj = αj + iβj . Then, it holds that

|λ̃i − λj | =
√

(α̃i − αj)2 + (β̃i − βj)2 > |α̃i − αj |.

Because AK is Hurwitz, αj < 0, ∀j, and according to the definition of λmax(AK)

(4.4), then it yields |λmax(AK)| ≤ |αj |,∀j. Moreover, if κ(V)‖∆‖ < |λmax(AK)|,

κ(V)‖∆‖ is also upper bounded by |αj |,∀j. Thus, α̃i is negative, because if it

was positive

|α̃i − αj | = α̃i + |αj | > |αj | ≥ |λmax(AK)| > κ(V)‖∆‖,

that would contradict the theorem of Bauer-Fike. Hence, α̃i is negative, and this

concludes the proof.

Remark 4.4. If AK is defective, then the restraint over ∆ that guarantees that

the eigenvalues of AK + ∆ have negative real part can be obtained from (4.11),

enforcing max{θ1, θ
1/n
1 } < |λmax(AK)|.

Hence, before stating the main results of this section, the following assumption

is required.

Assumption 4.2. The coupling terms ∆ij are such that κ(V)‖∆‖ < |λmax(AK)|

holds.

The next theorem generalizes the results of Theorem 4.1 when ‖∆‖ is con-

strained by Assumption 4.2. The proof can be found in the Appendix B on page

247.

Theorem 4.2. Consider the closed-loop system (4.24) and trigger functions of

the form (4.26), with 0 < α < |λmax(AK)| − κ(V)‖∆‖. Then, if assumptions

4.1 and 4.2 hold, for all initial conditions x(0) ∈ Rn, and t > 0, the state of the

4.6 The non-perfect decoupling case 119

overall system is upper bounded as follows:

‖x(t)‖ ≤κ(V)
(

‖BK‖
√
Nc0

|λmax(AK)|−κ(V)‖∆‖ + e−(|λmax(AK)|−κ(V)‖∆‖)t(‖x(0)‖−

‖BK‖
√
N(c0
|λmax(AK)|−κ(V)‖∆‖ + c1

|λmax(AK)|−κ(V)‖∆‖−α)
)

+ e−αt ‖BK‖
√
Nc1

|λmax(AK)|−κ(V)‖∆‖−α

)
. (4.39)

Furthermore, the inter-event times are lower bounded by

T∆,min = c0
k∆,1 + k∆,2 + k∆,3

, (4.40)

where

k∆,1 = κ(V)‖AK + ∆‖‖x(0)‖ (4.41)

k∆,2 = ‖BK‖
√
Nc1

(κ(V)‖AK + ∆‖
|λmax(AK)| − κ(V)‖∆‖ − α + 1

)
(4.42)

k∆,3 = ‖BK‖
√
Nc0

(κ(V)‖AK + ∆‖
|λmax(AK)| − κ(V)‖∆‖ + 1

)
. (4.43)

Remark 4.5. Less conservative results can be derived from Theorem 4.2 if the

coupling terms are small enough that the following approximations can be taken

eκ(V)‖∆‖t ≈ 1 + κ(V)‖∆‖t,
1

1− κ(V)‖∆‖
|λmax(AK)|

≈ 1 + κ(V)‖∆‖
|λmax(AK)| ,

1
1− κ(V)‖∆‖

|λmax(AK)|−α

≈ 1 + κ(V)‖∆‖
|λmax(AK)|−α .

In this situation, it falls out that the state can be upper bounded by

‖x(t)‖ ≤κ(V)
(
‖BK‖

√
Nc0β0

|λmax(AK)| + e−|λmax(AK)|t(1 + κ(V)‖∆‖t)
(
‖x(0)‖−

‖BK‖
√
N(c0β0
|λmax(AK)| + c1β1

|λmax(AK)|−α)
)

+ e−αt ‖BK‖
√
Nc1β1

|λmax(AK)|−α

)
, (4.44)

where β0 = 1 + κ(V)‖∆‖
|λmax(AK)| , β1 = 1 + κ(V)‖∆‖

|λmax(AK)|−α .

A similar approximation will be useful when dealing with discrete-time sys-

tems in Section 4.7, and this is why it is brought up here.

120 4 Distributed event-based control for interconnected linear systems

It can also be proven (see the Appendix B, page 249) that if these approxi-

mation are taken, the lower bound for the inter-event times can be computed as

follows:

T ′∆,min =
−b∆ +

√
b2∆ + 4a∆c0

2a∆
, (4.45)

where

a∆ = 0.5κ(V)‖∆‖k∆,1

b∆ = k∆,1 + k∆,2 + k∆,3,

if k∆,2 and k∆,3 are approximated as

k∆,2 ≈ ‖BK‖
√
Nc1

(κ(V)‖AK+∆‖β1
|λmax(AK)|−α + 1

)
,

k∆,3 ≈ ‖BK‖
√
Nc0

(κ(V)‖AK+∆‖β0
|λmax(AK)| + 1

)
.

4.6.1 Simulation results

The effect of the coupling terms over the performance of the system is illustrated

next. Let us consider the same setup that for the perfect decoupling (see Figure

4.5). Assume that the length of the chain of inverted pendulums is N = 50

and that the matching condition does not hold, that is the terms ∆ij 6= 0 for

j ∈ Ni. Specifically, coupling terms ∆ij are randomly induced such that ‖∆ij‖ ≤

0.1‖Hij‖, j ∈ Ni, and these terms act as a disturbance to the system.

If ‖∆‖ and λmax(AK + ∆) are computed for this simulation, we get 0.3242

and −0.7433, respectively. Thus, a more conservative value of α than in the

perfect decoupled case is required to ensure the stability of the system. Thus,

the selected parameters of (4.26) are c0 = 0.02, c1 = 0.3 and α = 0.5 to guarantee

equivalent performance specifications.

Figure 4.8 shows the output, the events generated and the control signal for

the nodes 2, 3, 4, 10 and 50, respectively. A disturbance is induced at time

t = 7s at the pendulum 3 (blue line). Observe how the disturbance also affects

the neighbors of the third node, 2 and 4 (red lines). This effect can be noticed in

4.7 Extension to discrete-time systems 121

−2

0

2

x
i
,1
(t

)

2

3

4

10

50

E
ve

n
ts

0 5 10 15
−20

0

20

t (s)

u
i
(t

)

Figure 4.8: System response when N=50 for ‖∆ij‖ ≤ 0.1‖Hij‖. Trigger
function parameters: c0 = 0.02, c1 = 0.3, α = 0.5.

the output of the subsystem, the events generation and the control law. However,

there is no effect over nodes which are far away from the third one (green lines).

We can conclude that the event-based communication respects somehow the

idea of neighborhood in a large scale system. Specifically, in a interconnected lin-

ear system, even if the system is not perfectly decoupled, the generation of events

at a node takes place when something occurs (for instance, a disturbance), and

an area around this node starts communicating in order to reject the disturbance,

but the rest of the system is not affected.

4.7 Extension to discrete-time systems

4.7.1 System description

The previous analysis considers that the state of the subsystems is monitored

continuously. However, in practice, most of the hardware platforms only provide

periodical implementations of the measurement and actuation tasks.

Hence, let us consider that each subsystem i is sampled at predefined instances

122 4 Distributed event-based control for interconnected linear systems

of time given by a sampling period Ts. And let us denote by

Ad,i = eAiTs , Bd,i =
∫ Ts

0
Bie

Aisds, Hd,ij =
∫ Ts

0
Hije

Aisds (4.46)

Thus, the discrete-time dynamical equation describing each subsystem is

xi(`+ 1) = Ad,ixi(`) +Bd,iui(`) +
∑
j∈Ni

Hd,ijxj(`). (4.47)

The control law is given by

ui(`) = Kd,ixb,i(`) +
∑
j∈Ni

Ld,ijxb,j(`), (4.48)

where xb,i(`) is the last broadcasted state, Kd,i is the feedback gain and Ld,ij

are the decoupling gains for the discrete-time subsystem i. The error is defined

again as the difference between the last broadcasted state and the measured state.

Thus,

ei(`) = xb,i(`)− xi(`), (4.49)

and (4.47) can be rewritten in terms of the error ei(`) as

xi(`+ 1) = AdK,ixi(`) +Bd,iKd,iei(`) +
∑
j∈Ni

∆d,ijxj(`) +Bd,iLd,ijej(`), (4.50)

where AdK,i = Ad,i + Bd,iKd,i and ∆d,ij = Bd,iLd,ij + Hd,ij . Kd,i is designed so

that all the eigenvalues of AdK,i lie inside the unit circle.

If we define:

AdK = diag(AdK,1, AdK,2, ..., AdK,N) (4.51)

B = diag(Bd,1, Bd,2, ..., Bd,N) (4.52)

Kd =

Kd,1 Ld,12 · · · Ld,1N

Ld,21 Kd,2 · · · Ld,2N
...

...

Ld,N1 Ld,N2 · · · Kd,N

(4.53)

4.7 Extension to discrete-time systems 123

∆d =

0 ∆d,12 · · · ∆d,1N

∆d,21 0 · · · ∆d,2N
...

...

∆d,N1 ∆d,N2 · · · 0

(4.54)

and the overall system state and error, respectively, as

x = (xT1 , xT2 , ..., xTN)T (4.55)

e = (eT1 , eT2 , ..., eTN)T , (4.56)

it follows that

x(`+ 1) = (AdK + ∆d)x(`) +BdKde(`) (4.57)

4.7.2 Discrete-time trigger functions

Trigger functions of the form (4.26) are difficult to implement in digital platforms

since they involve a decaying exponential. Therefore, for discrete-time systems

we propose the following functions

fi(ei(`)) = ‖ei(`)‖ − (c0 + c1α
`
d), 0 < αd < 1 (4.58)

since they can be assimilated to (4.26) for discrete-time instances.

The instances of discrete-time at which events are detected are denoted as `ik
and are defined recursively as follows:

`ik+1 = inf{` > `ik, fi(ei(`)) ≥ 0}.

Example 4.2: Let us consider a trigger function fi(ei(t)) = ‖ei(t)‖ − (0.01 + 0.5e−0.8t)

in continuous-time t, which bounds the error ‖ei(t)‖ ≤ (0.01 + 0.5e−0.8t). This bound is

depicted in Figure 4.9 (green line). Assume that this system is sampled:

• With a sampling period Ts = 0.1.

• With a sampling period Ts = 0.2.

Trigger functions of the form (4.58) can be defined with the same values for c0 and c1 and

124 4 Distributed event-based control for interconnected linear systems

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

t

E
r
r
o
r
b
o
u
n
d

Ts = 0.1

0 2 4 6
t

Ts = 0.2

Figure 4.9: Comparative of time-continuous (green) and discrete-time (or-
ange) trigger functions, Ts = 0.1 (left), Ts = 0.2 (right).

with αd = e−αTs . This yields values αd = 0.9231 and αd = 0.8521, respectively.

The error bounds for both cases is shown in Figure 4.9. Note that this bound is a piecewise

constant function and changes at the sampling time instances.

4.7.3 Stability analysis

Theorems 4.1 (perfect decoupling) and 4.2 (non perfect decoupling) sum up the

stability results for the continuous time system. Equivalent results can be derived

for the discrete-time system (4.57).

However, a remark should be pointed out first. Whereas in continuous time

the state is monitored continuously and this ensures that the error ei(t) is strictly

upper bounded by c0 + c1e
−αt, in discrete-time systems it might occur that for

a given `, ‖ei(`)‖ < c0 + c1α
`
d, but ‖ei(` + 1)‖ > c0 + c1α

`+1
d , so that the error

reached the bound in the inter sampling time.

In order to deal with this phenomenon, we state the following assumption.

Assumption 4.3. Fast sampling is assumed [HI01] so that events occur in all

probability at the sampling times `. Hence, ‖ei(`ik)‖ ≈ c0 +c1α
`ik
d for some ` = `ik.

The next theorem states that the system (4.57), when trigger functions (4.58)

are used, converges to a region around the origin, which depends on c0.

4.7 Extension to discrete-time systems 125

The proof of the theorem can be found in the Appendix B on page 250, being

two the clues to follow the proof. First, all the eigenvalues of AdK lie inside

the unit circle, so that |λM (AdK)|` < 1,∀` ≥ 0 and |λM (AdK)|` `→∞−−−→ 0, being

λM (AdK) the maximum of the eigenvalues of AdK . Secondly, the perturbation

analysis for matrix powers, and in particular (4.13), can be applied.

Before enouncing the theorem, the following assumption is required:

Assumption 4.4. AdK is diagonalizable so that AdK = VdDdV
−1
d , and the coupling

terms are such that κ(Vd)‖∆d‖ < 1− |λM (AdK)|, where κ(Vd) = ‖Vd‖‖V −1
d ‖ and

λM (AdK) is the eigenvalue of AdK with the closer magnitude to 1. Furthermore,

it is assumed that ∆d is such that the second order terms can be approximated

to zero O(‖∆d‖2) ≈ 0.

Note that when αd 6= 0, and additional constraint is imposed to the coupling

terms. Specifically, the condition |λM (AKd)| + κ(Vd)‖∆d‖ < α < 1 ensures the

convergence to the equilibria.

Theorem 4.3. Consider the closed-loop system (4.57) and trigger functions of

the form (4.58), where |λM (AKd)|+ κ(Vd)‖∆d‖ < α < 1. If Assumptions 4.3 and

4.4 hold, then, for all initial conditions x(0) ∈ Rn and ` > 0, it holds

‖x(`)‖ ≤ κ(Vd)
(
‖BdKd‖

√
Nc0

1−|λM (AdK)|βd,0 + |λM (AdK)|`
(
‖x(0)‖ − ‖BdKd‖

√
Nc0

1−|λM (AdK)|βd,0

− ‖BdKd‖
√
Nc1

αd−|λM (AdK)|βd,1 + κ(Vd)‖∆d‖
|λM (AdK)|`

(
‖x(0)‖ − ‖BdKd‖

√
Nc0

1−|λM (AdK)| −
‖BdKd‖

√
Nc1

αd−|λM (AdK)|
))

+ α`d
‖BdKd‖

√
Nc1

αd−|λM (AdK)|βd,1

)
, (4.59)

where

βd,0 = 1 + κ(Vd)‖∆d‖
1− |λM (AdK)| (4.60)

βd,1 = 1 + κ(Vd)‖∆d‖
α− |λM (AdK)| . (4.61)

Note that the results are equivalent to (4.44) for discrete-time systems.

Remark 4.6. If perfect decoupling can be achieved, then ‖∆d‖ = 0, which yields

126 4 Distributed event-based control for interconnected linear systems

Table 4.3: Values of ‖∆d‖2 for several sampling times and number of
subsystems, and ‖AdK‖.

N 10 20 50 100 200 ‖AdK‖
Ts = 1 ms 0.739e−7 0.986e−7 0.929e−7 0.989e−7 1.019e−7 0.0037
Ts = 5 ms 1.780e−6 1.785e−6 2.435e−6 2.732e−6 2.736e−6 0.0185
Ts = 10 ms 0.729e−5 0.868e−5 0.924e−5 0.923e−5 1.044e−5 0.0369
Ts = 20 ms 2.655e−5 3.610e−5 3.754e−5 4.066e−5 4.627e−5 0.0735

βd,0, βd,1 = 1. Thus, (4.59) is simplified:

‖x(`)‖ ≤ κ(Vd)
(
‖BdKd‖

√
Nc0

1−|λM (AdK)| + |λM (AdK)|`
(
‖x(0)‖ − ‖BdKd‖

√
Nc0

1−|λM (AdK)|

− ‖BdKd‖
√
Nc1

αd−|λM (AdK)|

)
+ α`d

‖BdKd‖
√
Nc1

αd−|λM (AdK)|

)
.

Example 4.3: In this example we study how restrictive is the approximation taken in As-

sumption 4.4 concerning the norm of ‖∆d‖, i.e., O(‖∆d‖2) ≈ 0. Let us consider the scenario

of Section 4.6.1, in which ‖∆‖ was computed to be 0.3242.

The value of ‖∆d‖2 has been computed for various sampling times and number of agents.

Table 4.3 depicts the results. Observe that the change of ‖∆d‖2 with the number of agents

is not remarkable, and that it increases with the sampling period. The last column on the

right shows the value of ‖AdK‖ for each sampling period, as it remains constant with the

number of agents.

If ‖AdK‖ and ‖∆d‖2 are compared, the smaller Ts, the better the rate. Since fast sampling

is assumed (see Assumption 4.3), it can be concluded that the approximation is fair enough.

4.8 Conclusions

A novel distributed event-based control strategy for linear interconnected sub-

systems has been presented. The events are generated by the agents based on

local information only, broadcasting their state over the network. The proposed

time-dependent trigger functions preserve the desired convergence properties and

guarantee the existence of a strictly positive lower bound for the broadcast period,

excluding the Zeno behavior.

4.8 Conclusions 127

The perfect decoupling case has been considered first to simplify the anal-

ysis. Since perfect decoupling is difficult to achieve in many situations due to

model uncertainties or the matrix Bi does not have full rank, the influence of the

coupling terms has been analyzed and the constraints that guarantee that the

stability of the system is preserved have been derived.

Because most of the hardware platforms only provide periodical implementa-

tions of the measurement and actuation tasks, the analysis has been extended to

discrete-time systems.

5
Extensions and improvements of the

distributed event-based control

Summary

This chapter is focused on two aspects. The first aspect is the study of how

realistic communication affects the distributed event-based control presented in

Chapter 4. We analyze the consequences of a non-reliable channel, and upper

bounds on the delay and the number of consecutive packet losses are obtained for

different situations. Two communications protocols are proposed and analytical

results are derived for perfect and non-perfect decoupling.

The second aspect that this chapter accounts for is the proposal of some im-

provements to the design described in Chapter 4. First, a novel implementation

is presented to reduce the number of control updates allowing a more efficient us-

age of the limited resources of embedded microprocessors. In the previous design,

the adaption frequency of the control input may be high when the neighborhood

is large even if each agent is not transmitting so often. The design is based on

two sets of trigger functions. The first set decides when to transmit an update

for the broadcasted state and the second set checks a predefined control error at

broadcasting events, updating only when this error exceeds a given threshold.

The second improvement of the DEBC has a different goal, which is to reduce

as much as possible the communication through the network even if the load of

the microprocessor is increased. We present a distributed model-based control

130 5 Extensions and improvements of the distributed event-based control

design in which each agent has certain knowledge of the dynamics of its neigh-

borhood. Based on this model, the subsystem estimates its state continuously

and computes the control law accordingly. Model uncertainty is assumed and the

performance of the Chapter 4’s and model-based designs are compared.

5.1 Introduction

Event-based control and non-reliable networks

Even though event-based control has been shown to reduce the communication to

face the problem of reduced bandwidth, network delays and packet losses cannot

be avoided [BA11]. However, up to now, only a reduced number of papers has

considered the effect of these issues on event-based control and just a few works

have addressed a decentralized implementation to cope with them.

Early papers [CH08, RJ09] study simple stochastic systems and investigate

the event-based control performance in dependence upon the medium access

mechanism applied.

In [GA11a, LL12], delays are compensated by model-based event-triggered

approaches and the measurement of the delay. However, these schemes are diffi-

cult to implement in a distributed scenario since measuring transmission delays

for any transmission between two nodes requires clock synchronization in the

entire network.

In distributed control, one paper that takes into account delays and packet

losses is [WL11]. As stated in this paper, one problem that might present trig-

ger functions of the form ‖ei(t)‖ ≤ σi‖xi(t)‖ is that for unreliable networks a

lower bound for the broadcasting period cannot be guaranteed when the system

approaches the origin, being this the main drawback of the cited work. The

proposed approach in Section 5.3 solves this problem for linear systems.

5.1 Introduction 131

Reducing the actuation in event-based control

The importance of reducing the number of control actions in order to save energy

has been showed up in recent publications such as [JHC07, RJJ08, DTH12].

In [JHC07] a first-order linear stochastic process is sampled periodically and a

sporadic controller decides whether to apply a new control action based on the

cost of control actions. In [RJJ08] and [DTH12] optimization problems are solved

in order to not exceed certain limits on the switching rate, and to maximize the

time elapsed between two consecutive executions of the control task, respectively.

Furthermore, reducing actuation is also important because some actuators

are subject to wear. After some time in operation, this wear may result in phe-

nomena that deteriorate the control performance, such as friction or hysteresis

in mechanical actuators [rH06].

In a single control loop the reduction of communication usually implies the

reduction of actuator updates [Tab07, ESDCM07]. However, this does not nec-

essary hold in distributed systems.

Recent contributions in distributed event-triggered control follow basically

two directions. The first approach assumes sophisticated measurement devices

in order to get relative measurements of neighboring nodes. It focuses on the

design of triggering rules to reduce the number of the actuator updates for a

more efficient usage of the limited resources of embedded processors, in which

the control task shares computational and communication resources with other

tasks [DFJ12, PF12]. The second approach tries to reduce the communication

between the subsystems, as already described in detail in this thesis (see for

instance [GDJ+11, MT11, PTNA11, SDJ13, WL11]).

On the one hand, the drawback of the first direction is obvious and lies in the

requirement of the measurement devices to provide the relevant relative infor-

mation. On the other hand, the second approach might lead to a very frequent

adaption of the control input, specially if the number of neighbors is large. In

fact, the control signal is updated whenever a new measurement is received from

a neighboring agent. To the best of our knowledge, both aspects, i.e., reduction

132 5 Extensions and improvements of the distributed event-based control

of actuation and communication, have not been considered simultaneously in the

context of distributed control systems. This is addressed in Section 5.4.

Distributed model-based control

The previous approaches hold a constant control input in the inter-event time.

In contrast, model-based control [MA03b] takes advantage of the knowledge of

the dynamics of the system to generate a control signal based on the prediction

given by the model. However, just a few publications have exploited this idea

with event-triggered sampling. An emulation approach is presented in [LL10] for

a single loop in which a control input generator and an event generator emulate

the continuous-time state feedback controller. In [SDJ11], the control signal is

sampled by a first-order hold, according to the double-integrator dynamics. In

[GDJ+11], a distributed model-based design for perfect decoupled interconnected

linear systems is presented. Finally, in [GA12], centralized and decentralized

approaches of model-based event-triggered control are presented for symmetric

interconnections.

In Section 5.5 the results of [GDJ+11] are extended to non-perfect decoupling

showing that the transmission rate can be reduced if the model is accurate enough.

5.2 Contributions of this chapter

The first contribution of this chapter is the design of a network protocol that

does not require the synchronous update of all the nodes in a given neighborhood

when the transmission of data is subject to delay and packet losses, in contrast to

[WL11]. Under certain requirements, upper bounds on the allowable delay and

the maximum number of consecutive packet losses can be derived.

Another contribution related to the unreliability of the network, is that the

system can asymptotically converge to the equilibria while the Zeno behavior

is excluded with the proposed design. Moreover, we show that time-dependent

trigger functions can provide larger upper bounds on the delay than constant

thresholds.

5.3 Extension to non-reliable network 133

The design proposed in Section 5.4 addresses the problem of reducing com-

munication and actuation simultaneously, which has not been yet studied in dis-

tributed control systems.

Another contribution is the analysis of the inter-event times for a distributed

model-based approach with model uncertainty. For instance, in the decentralized

model-based approach of [GA12] no analysis of the inter-event times is conducted.

We also prove that, when the model uncertainty fulfills a certain condition, the

model-based approach gives larger minimum inter-event times. Respect to the

aforementioned work of [LL10], we assume that the dynamics of each subsystem

are not perfectly known and we evaluate the effect of these model uncertainties.

Moreover, in the design of [LL10] an invertibility condition is imposed to the ma-

trix A which describes the system-free dynamics. This constraint is not required

in Section 5.5.

5.3 Extension to non-reliable network

Consider the linear interconnected system described in Chapter 4 (4.14)

ẋi(t) = Aixi(t) +Biui(t) +
∑
j∈Ni

Hijxj(t), ∀i = 1, ..., N, (5.1)

and the control law (4.15)

ui(t) = Kixb,i(t) +
∑
j∈Ni

Lijxb,j(t), ∀i = 1, ..., N. (5.2)

In an ideal network scenario, the detection of an event, the broadcast of the

corresponding state xb,i, and its reception in all neighboring nodes are assumed

to be simultaneous.

However, in a non-reliable network, a broadcasted state may be received in

the neighbors with delay, or even more, not be received at all. This may yield

state inconsistency. In this context, this concept was introduced for the first time

by [WL11].

134 5 Extensions and improvements of the distributed event-based control

21, bx

1

1t

1,bx

1

2t

21

1

 21

2

t

t

Figure 5.1: Example of state inconsistency of the signal xb,1 and its copy
xb,1→2 in other node of the network.

Definition 5.1. A distributed event-based control design preserves state consis-

tency if any broadcasted state is updated synchronously in each neighboring

agent.

Example 5.1: In Figure 5.1 an example of state inconsistency is presented. Assume that the

piecewise signal xb,1 is updated at event times denoted by t1k, k ∈ N, and sent through the

network to update the copy of the signal xb,1→2 accordingly. We denote by τ1→2
k , k ∈ N,

the communication delay experienced in the broadcast. If the transmission is not subject

to delay, both signals xb,1 and xb,1→2 are identical. However, this is not the situation in

the example of Figure 5.1. In the time intervals [t11, t11 + τ1→2
1) and [t12, t12 + τ1→2

2) both

signals are not equal. Hence, there is a state inconsistency since xb,1(t) 6= xb,1→2(t),∀t ∈

[t11, t11 + τ1→2
1) ∪ [t12, t12 + τ1→2

2).

Therefore, a communication protocol should be defined to avoid state in-

consistencies or to deal with them. In this thesis, two different protocols are

proposed. The first one is designed to preserve state consistency by the trans-

mission of additional signals to synchronize the nodes in the neighborhood. This

constraint is relaxed by the second protocol which allows the neighboring agents

to use different versions of the broadcasted states.

5.3.1 Transmission protocols

Before describing the proposed protocols, let us first introduce some notation.

5.3 Extension to non-reliable network 135

Definition 5.2. We denote by τ i→jk the delay in the transmission of the state xi(tik)

of agent i to its neighbor j, j ∈ Ni, at time tik, and by τ̄ ik

τ̄ ik = max
{
τ i→jk , j ∈ Ni

}
.

Definition 5.3. We denote by P ki→j the number of successive packet losses in the

transmission of the state xi(tik) of agent i to its neighbor j, j ∈ Ni, at time tik,

and by P ki the maximum of P ki→j for all j ∈ Ni.

We now introduce the basic assumption that imposes constraints on delays

and the number of consecutive packet dropouts.

Assumption 5.1. We assume that the maximum delay and the number of suc-

cessive packet dropouts which occur in the transmission of information from the

subsystem i to its neighbors j ∈ Ni, denoted by (τ?)i and P ?i , respectively, are

such that no event is generated before all the neighbors have successfully received

the broadcasted state xb,i.

The second important consideration is that the sender i knows that the data

has been successfully received by j by getting an acknowledgment signal (ACK).

If an ACK is not received before a waiting time denoted by T iW , the packet is

treated as lost. How to determine T iW is analyzed later on, but it seems logical

to set this value larger than the maximum delay.

If agent i has not received an acknowledgment of the reception of all the

neighbors after the waiting time T iW , we propose two alternatives that denoted

by Wait for All (WfA) and Update when Receive (UwR).

WfA protocol

The state at tik + T iW is broadcasted again to all the neighbors. If after waiting

T iW an ACK is not received from all j ∈ Ni, the retransmission takes place again,

and so on. This process can occur at most P ?i + 1 times. Once all the neighbors

have successfully received the data, agent i sends a permission signal (PERM)

so that the previously transmitted data can be used to update the control law

136 5 Extensions and improvements of the distributed event-based control

(4.15). Both signals ACK and PERM are assumed to be delivered with a delay

approximated by zero over a reliable channel.

A very similar protocol is presented in [WL11]. As stated there, the reason

to use a PERM signal and to retransmit the state to all the neighbors instead of

only retransmitting to those from which an ACK signal has not been received,

is to preserve the state consistency (see Definition 5.1). Since the broadcasted

data is not valid until a PERM signal is received from agent i, all the neighboring

agents update the value at the same time and therefore, the value of the error ei

is the same in all nodes. This allows to define stack vectors for the state x(t) and

the error signal e(t) so that the stability of the overall system can be studied as

in the ideal network case.

UwR protocol

The previous protocol simplifies the analysis but it has some drawbacks. First, all

nodes in the neighborhood have to wait for the slower connection (longer delay) to

process the received data. Secondly, the WfA protocol may involve unnecessary

transmission, since if an agent did not received the measurement, the broadcast

would take place again with an updated measurement for all the neighbors. Fi-

nally, the ACK signal is vastly used in network protocols to guarantee reliability

of packet transfers, but the PERM demands a more involved communication

protocol. In order to overcome these drawbacks, in the new protocol:

• Agent i waits T iW to get acknowledgments from the neighbors. To those

agents j ∈ Ni from which it did not receive the ACK signal, it sends the

state xi(tik + T iW) at time tik + T iW . Agent i may transmit before the next

event at most P ?i + 1 times.

• Let us denote by Ni(t) ⊆ Ni the agents to which the subsystem i transmits

information at time t. In contrast to WfA, agent i only transmits a new

measurement to those agents from which it has not received the ACK signal.

If the last event occurred at time tik and t ∈ [tik, tik+1), thus

∀j ∈ Ni, /∈ Ni(t) ∃ti→jk : tik ≤ t
i→j
k < t,

5.3 Extension to non-reliable network 137

)(1

1 ktx

Agent 2

1

kt

)(1

1 ktx

Agent 1

)(1

11 ktx

1

kt
1

1kt

)(1

11, kb txx

1

k

Agent 2

)(1

121, kb txx

21

k

ACK PERM

 a) b) c) d)

c0

0

c

0

)(1 te

0

)(21 te

0

)(1

1 ktx

Agent 1

)(1

11 ktx

Agent 2

1

kt
1

1kt

)(1

11, kb txx

)(1

11, kb txx

1

k

)(1 tec0

0

)(1 tec

0

Continuous

state evolution

Broadcasted

State d)(1, txb

Last reception

of d 1,bx

Agent 1

c0

c0

)(1

1 ktx

1

kt

Agent 2

21

k

0

0

c0

c0
Error d)(1 te

Virtual error

11, xxb

Agent 1

Figure 5.2: Update mechanism of WfA (a) and b)) and UwR (c) and d))
protocols.

where ti→jk is the time of the successful broadcast to agent j. Hence if at

time t the node j is not in Ni(t) it means that it has correctly received a

broadcasted state after the occurrence of the last event and it has confirmed

this reception with an ACK signal.

• The number of consecutive packet losses and the network delay are upper-

bounded for each agent i, according to Assumption 5.1. Thus, it must

hold

Ni((tik+1)−) = ∅,

where (tik+1)− refers to the instant time before tik+1. I.e., all neighbors have

successfully received the state of agent i before the next event occurance.

Example 5.2: In order to clarify the difference between both protocols, a simple example is

given in Figure 5.2. A system with two agents is depicted. Assume that Agent 1 detects an

event at time t1k and broadcast its state x1(t1k) to its neighbor Agent 2. The transmission

is delayed by τ1
k and Agent 2 sends then the ACK signal. In the scenario of WfA protocol,

138 5 Extensions and improvements of the distributed event-based control

once the ACK signal is received by Agent 1 (see Figure 5.2a), the PERM signal is sent (both

signals are assumed to be sent and received instantaneously), and both agents update the

broadcasted state in the control law at the same time t1k + τ1
k (see 5.2b). Thus, xb,1 takes

the same value at any time in both agents and, hence, e1(t) is the same in the dynamics of

Agent 1 and 2.

For the UwR protocol, the update in Agent 1 is applied immediately at time t1k (see Figure

5.2c), whereas the receiver updates the state information at time t1k+τ1→2
k (τ1

k and τ1→2
k are

the same), as illustrated in Figure 5.2d. Thus, in the interval [t1k, t1k + τ1→2
k) the broadcasted

state xb,1 has different values in the two nodes and consequently the error e1 considered in

Agent 1 differs from the error affecting the dynamics of Agent 2.

Note that Agent 2 does not monitor e1 since it only knows the state of Agent 1 at event

times. It is drawn in the figure to clarify the difference between the two protocols.

The performance of both protocols is analyzed next. We first assume that

perfect decoupling (∆ij = 0) can be achieved, since the analysis is simplified and

moreover, upper bounds on the delay and packet losses can be derived for each

agent, giving less conservative results, as already discussed in Remark 4.2. The

results for the general case when the matching condition does not hold are derived

afterwards. For simplicity, Assumption 4.1 applies (diagonalization of AK,i).

The focus of the analysis is on constant trigger functions, since they allow to

derive analytical expressions for the delay. However, a positive upper bound on

the delay can also be derived for time-dependent trigger functions and the proof

can be found in the Appendix B. The obtained expression can be solved for some

given parameters to provide a numerical solution.

5.3.2 Performance analysis for perfect decoupling

We firstly investigate the performance of the event-based control with constant

threshold obtained by using WfA protocol. After that, we extend these results to

the situation which uses UwR. Finally, we discuss an extension to time-dependent

trigger functions.

5.3 Extension to non-reliable network 139

Properties of event-triggered control using WfA protocol

Let us consider trigger functions (4.26) with c1 = 0 and c0 > 0, that is

fi(ei(t)) = ‖ei(t)‖ − c0, c0 > 0. (5.3)

Let us first assume that the communication can only experience delays but no

packet dropouts.

Communication with delays

Proposition 5.1. Let us consider trigger functions of the form (5.3) and the

WfA protocol. If Assumption 5.1 holds, the error of any subsystem i is upper

bounded by ‖ei(t)‖ < 2c0.

Proof. Assume that the last event occurred at time tik and that the maximum

transmission delay to its neighbors is τ̄ ik. It follows that

‖
∫ tik+τ̄ ik

ti
k

ėi(s)ds‖ = ‖ei(tik + τ̄ ik)− ei(tik)‖ < c0, (5.4)

has to be satisfied (see (5.3)) because no event is generated in the time interval

[tik, tik+1) from Assumption 5.1. Since an event has occurred at time tik, ‖ei(tik)‖ =

c0 holds and, from (5.4) it holds ‖ei(tik + τ̄ ik)‖ < 2c0, which is valid for any time

t.

The previous result allows stating the next theorem. An analytical upper

bound on the delay is derived, which is also the lower bound on the inter-event

time, while the convergence of xi(t) to a region around the equilibrium is guar-

anteed.

Theorem 5.1. If the network delay is upper bounded by

(τ?)i = c0

‖AK,i‖κ(Vi)‖xi(0)‖+µi
(
1+
‖AK,i‖κ(Vi)
|λmax(AK,i)|

)
2c0
, (5.5)

where µi = ‖BiKi‖ +
∑
j∈Ni ‖BiLij‖, and λmax(AK,i) and κ(Vi) are defined ac-

140 5 Extensions and improvements of the distributed event-based control

cording to (4.4) and (4.3), respectively, then any broadcasted state xb,i of any

subsystem i ∈ 1, . . . , N is successfully received by the neighbors j ∈ Ni before a

new event occurs, and the inter-event time is lower bounded tik+1 − tik ≥ (τ?)i.

Moreover, for all initial conditions xi(0) and t > 0 it holds

‖xi(t)‖ ≤ κ(Vi)
(µi2c0

|λmax(AK,i)|
+ e−|λmax(AK,i)|t(‖xi(0)‖ − µi2c0

|λmax(AK,i)|

))
. (5.6)

Proof. In order to prove the theorem, let us assume that Assumption 5.1 holds.

The analysis will derive an upper bound for the delay which preserves this

assumption. The error in the time interval [tik, tik + τ̄ ik) is given by

ei(tik + τ̄ ik)− ei(tik) = xi(tik)− xi(tik + τ̄ ik),

since the broadcasted state xb,i is not updated in any agent before the time

instance tik + τ̄ ik according to the WfA protocol, so that xb,i(tik + τ̄ ik) = xb,i(tik) =

xi(tik−1) holds. This yields

ei(tik+τ̄ ik)−ei(tik) =
(
I−eAK,iτ̄ ik

)
xi(tik)+

∫ τ̄ ik

0
eAK,is

(
BiKiei(s)+Bi

∑
j∈Ni

Lijej(s)
)
ds,

based on which the upper bound for the delay τ̄ ik can be derived as

(τ?)ik =arg min
τ̄ i
k
≥0

{
‖
(
I − eAK,iτ̄ ik

)
xi(tik)

+
∫ τ̄ ik

0
eAK,is

(
BiKiei(s) +Bi

∑
j∈Ni

Lijej(s)
)
ds‖ = c0

}
.

Note that this bound depends on xi(tik). In order to guarantee the existence

of the bound for the delay, we need to find an upper bound of the state for any tik.

The state at any time is given by xi(t) = eAK,itxi(0) +
∫ t
0 e

AK,i(t−s)
(
BiKiei(s) +

Bi
∑
j∈Ni Lijej(s)

)
ds. The error is bounded by ‖ei(t)‖ < 2c0,∀i by Proposition

5.1. Thus, a bound on xi(t) can be calculated following the methodology of

Chapter 4 as (5.6).

5.3 Extension to non-reliable network 141

Note that (5.6) is upper bounded by

‖xi(t)‖ ≤ κ(Vi)
(‖BiKi‖2c0 + (

∑
j∈Ni ‖BiLij‖)2c0

|λmax(AK,i)|
+ ‖xi(0)‖

)
, ∀t, (5.7)

if the negative terms are omitted, and using that e−|λmax(AK,i)|t ≤ 1, ∀t ≥ 0.

In order to derive an upper bound for the delay for any t, we recall that

ėi(t) = −AK,ixi(t)−BiKiei(t)−
∑
j∈Ni

BiLijej(t)

holds in the interval t ∈ [tik−1+τ̄ ik−1, t
i
k+τ̄ ik) for any two consecutive events tik−1, t

i
k,

and, in particular, it holds in the subinterval [tik, tik + τ̄ ik) ⊂ [tik−1 + τ̄ ik−1, t
i
k + τ̄ ik).

Hence, ėi(t) can be bounded as

‖ėi(t)‖ =‖AK,ixi(t) +BiKiei(t) +
∑
j∈Ni

BiLijej(t)‖

≤ ‖AK,i‖‖xi(t)‖+ ‖BiKi‖‖ei(t)‖+
∑
j∈Ni
‖BiLij‖‖ej(t)‖. (5.8)

The state xi(t) can be bounded according to (5.7), and for the error it holds that

‖ei(t)‖ < 2c (see Proposition 5.1). Thus, (5.8) can be integrated straightforward

in the interval [tik, tik + τ̄ ik), and it yields

‖ei(tik + τ̄ ik)− ei(tik)‖ ≤
(
‖AK,i‖κ(Vi)

(
‖xi(0)‖+

(‖BiKi‖+
∑

j∈Ni
‖BiLij‖)2c0

|λmax(AK,i)|

)
+ (‖BiKi‖+

∑
j∈Ni

‖BiLij‖)2c0
)
τ̄ ik.

Thus, the delay bound (5.5) for agent i ensures that Assumption 5.1 is not vio-

lated, and this concludes the proof.

Communication with delays and packet losses. The previous analysis

was focused on the effect of delays exclusively. However, in practice, delays and

packet losses may occur simultaneously.

Corollary 5.1. Assume that the maximum number of consecutive packet losses

is upper bounded by P ?i , and the transmission delay τ ik is upper bounded by a

142 5 Extensions and improvements of the distributed event-based control

constant τ̄ i given by

τ̄ i = (τ?)i

P ?i + 1 , (5.9)

where (τ?)i is given by (5.5). Assume also that the waiting time T iW of the WfA

protocol is set to τ̄ i. Then, there is a successful broadcast before the occurrence

of a new event and the state of each agent i is bounded by (5.6).

Proof. Assuming that an event was triggered at time tik. The accumulated error

after P ?i consecutive packet losses and a transmission delay τ̄ ik ≤ τ̄ i is

(ei(tik + T iW)− ei(tik)) + (ei(tik + 2T iW)− ei(tik + T iW)) + ...︸ ︷︷ ︸
P?

i times

+ (ei(tik + P ?i T
i
W + τ̄ ik)− ei(tik + P ?i T

i
W))

= ei(tik + P ?i T
i
W + τ̄ ik)− ei(tik). (5.10)

Since P ?i T iW+τ̄ ik ≤ P ?i T iW+τ̄ i = (P ?i +1)τ̄ i = (τ?)i, and (τ?)i is also the minimum

inter-event time for the system, this implies that ‖ei(tik+P ?i T iW+τ̄ ik)−ei(tik)‖ < c0.

Hence, ‖ei(t)‖ < 2c0 holds and so does the bound (5.6).

Remark 5.1. Note that the maximum number of consecutive packet dropouts P ?i

and the maximum tolerable delay τ̄ i are correlated. A large value of P ?i implies

small values of τ̄ i and vice versa. This way, there is a trade-off between both

parameters.

Properties of event-triggered control using UwR protocol

In this section we study the UwR protocol, where the main issue is to keep track

of the different versions of the broadcasted states. First, some definitions are

introduced to adapt the previous analysis to this new scenario.

Definition 5.4. We denote {ti→jk } the set of successful broadcasting times from

agent i to agents j ∈ Ni, and the error

ei→j(t) = xb,i→j(ti→jk)− xi(t), t ∈ [ti→jk , ti→jk+1), (5.11)

where xb,i→j(ti→jk) is the last successful broadcasted state from agent i to agent

5.3 Extension to non-reliable network 143

j, j ∈ Ni.

With this definition, the dynamics of agent i is given by

ẋi(t) = AK,ixi(t) +BiKiei(t) +
∑
j∈Ni

BiLijej→i(t) (5.12)

with ei(t) the agent i’s version of the error. We assume that agent i automatically

updates its broadcasted state in its control law and does not need to wait to

receive an acknowledgment of successful receptions from its neighbors. With

these prerequisites the following theorem is obtained.

Theorem 5.2. If the network delay is upper bounded by

τ̄ i = (τ?)i

P ?i + 1 , (5.13)

where P ?i is the maximum number of consecutive packet losses and

(τ?)i = c0

‖AK,i‖κ(Vi)‖xi(0)‖+µ̄i
(
1+
‖AK,i‖κ(Vi)
|λmax(AK,i)|

)
2c0
, (5.14)

with µ̄i = 1
2‖BiKi‖+

∑
j∈Ni ‖BiLij‖, and the waiting time T iW of the UwR protocol

is set to τ̄ i, then any broadcasted state xb,i is successfully received by all the

neighbors of the subsystem i before a new event occurs. Moreover, the local inter-

event times tik+1 − tik are lower bounded by (5.14), and for any initial condition

xi(0) and for any t > 0, it holds

‖xi(t)‖ ≤ κ(Vi)
(µ̄i2c0

|λmax(AK,i)|
+ e−|λmax(AK,i)|t(‖xi(0)‖ − µ̄i2c0

|λmax(AK,i)|

))
. (5.15)

Proof. According to the UwR protocol, ‖ei(t)‖ ≤ c0 holds and ei(t) 6= ei→j(t), in

general. However, as Assumption 5.1 applies, ‖ei→j(ti→jk) − ei(tik)‖ < c0 yields

‖ei→j(t)‖ < 2c0.

Thus, a bound on the state can be derived from (5.12) in a similar way as in

Theorem 5.1 and (5.15) holds. The proof of the first part of the theorem can be

obtained by following the proof of Theorem 5.1, since in the interval [tik, t
i→j
k) the

144 5 Extensions and improvements of the distributed event-based control

state information xb,i→j remains constant in the agent j, so that ėi→j(t) = −ẋi(t)

holds. If the error ei→j(t) is integrated in the interval [tik, t
i→j
k) considering that

the state is bounded by (5.15), and that the error is bounded as discussed above,

then (5.14) is derived. Finally, (5.13) can be derived as in Corollary 5.1.

Remark 5.2. Note that the delay bound for WfA and UwR protocols are different

(see (5.5), (5.14)). Since µ̄i < µi, under the same initial conditions UwR allows

larger delays.

Time-dependent trigger functions

Let us consider trigger functions (4.26) with c0 = 0 and c1 > 0 for simplicity:

fi(ei(t)) = ‖ei(t)‖ − c1e
−αt, α > 0. (5.16)

The case c0, c1 > 0 is equivalent to having a constant threshold from the analytical

point of view.

The motivation of trigger functions of the form (5.16) has been already dis-

cussed. Besides, in Chapter 4, it has been proved graphically that the inter-event

time is lower bounded if α < |λmax(AK)| (see Section 4.5.2).

Hence, under Assumption 5.1, it seems reasonable that is possible to derive

an upper bound on the delay allowing less conservative results.

We next briefly present the obtained results for WfA and UwR protocols. The

proofs have been moved to Appendix B, since they are derived following similar

steps to the previous results.

Performance of WfA protocol. A result equivalent to Proposition 5.1 is

derived.

Proposition 5.2. Let us consider trigger functions of the form (5.16) and WfA

protocol. If Assumption 5.1 holds, the error of any subsystem i is upper bounded

by ‖ei(t)‖ < c1(1 + eατ
?)e−αt, where τ? > 0 is the maximum transmission delay

in the system.

Proof. The proof can be found in Appendix B on page 252.

5.3 Extension to non-reliable network 145

Note that the value of τ? is unknown. Its existence is assumed, and the

following theorem will prove it, giving the expression to compute it numerically.

Theorem 5.3. Let α < |λmax(AK,i)|, ∀i = 1, . . . , N . If the network delay for any

broadcast in the system (5.1) is upper bounded by

τ? = min{(τ?)i, i = 1, . . . , N} (5.17)

being (τ?)i the solution of

(k1,i
c1

+ k2,i
c1

(1 + eα(τ?)i)
)
(τ?)i = e−α(τ?)i , (5.18)

and

k1,i = ‖AK,i‖κ(Vi)‖xi(0)‖ (5.19)

k2,i = (‖AK,i‖κ(Vi)
1

|λmax(AK,i)|−α
+ 1)µic1, (5.20)

then any broadcasted state xb,i is successfully received by the neighbors j ∈ Ni

before a new event occurs. Hence, the inter-event times are lower bounded tik+1−

tik ≥ τ?. Moreover, for all initial conditions xi(0) and t > 0 it holds

‖xi(t)‖ ≤ κ(Vi)
(µic1(1+eατ?)e−αt

|λmax(AK,i)|−α
+ e−|λmax(AK,i)|t(‖xi(0)‖ − µic1(1+eατ?)e−αt

|λmax(AK,i)|−α

))
.

(5.21)

Proof. The proof can be found in Appendix B on page 253.

Performance of UwR protocol. Under this protocol, the system dynamics

is given by (5.12). Note that equivalently to the results for constant threshold,

it holds that ‖ei(t)‖ ≤ c1e
−αt and ‖ei→j(t)‖ < c1(1 + eατ

?)e−αt, where τ? > 0 is

the upper bound on the delay derived in the next theorem.

Theorem 5.4. Let α < |λmax(AK,i)|, ∀i = 1, . . . , N . If the network delay for any

broadcast in the system (5.1) is upper bounded by

τ? = min{(τ?)i, i = 1, . . . , N} (5.22)

146 5 Extensions and improvements of the distributed event-based control

being (τ?)i the solution of

(k1,i
c1

+ k2,i
c1

+ k3,i
c1

(
1 + eα(τ?)i))(τ?)i = e−α(τ?)i , (5.23)

and

k1,i = ‖AK,i‖κ(Vi)‖xi(0)‖ (5.24)

k2,i = ‖BiKi‖(1 + κ(Vi)‖AK,i‖
|λmax(AK,i)| − α

)c1 (5.25)

k3,i =
∑
j∈Ni
‖BiLij‖(1 + κ(Vi)‖AK,i‖

|λmax(AK,i)| − α
)c1, (5.26)

then any broadcasted state xb,i is successfully received by the neighbors j ∈ Ni

before a new event occurs. Hence, the inter-event times are lower bounded tik+1−

tik ≥ τ?. Moreover, for all initial conditions xi(0) and t > 0 it holds

‖xi(t)‖ ≤ κ(Vi)
(µ̄i(τ?)c1e−αt

|λmax(AK,i)|−α
+e−|λmax(AK,i)|t(‖xi(0)‖− µ̄i(τ?)c1e−αt

|λmax(AK,i)|−α

))
, (5.27)

where µ̄i(τ?) = ‖BiKi‖+
∑
j∈Ni ‖BiLij‖(1 + eατ

?).

Proof. The proof can be found in Appendix B on page 254.

Note that trigger functions (5.16) ensures the asymptotic convergence to the

origin while guaranteeing a lower bound for the minimum inter-event time if the

delay is below τ?. This cannot be achieved if the triggering conditions are of the

form ‖ei(t)‖ ≤ σi‖xi(t)‖, as pointed out in [WL11].

Example 5.3: Let us consider the chain of inverted pendulums of Figure 4.5 and the control

design described in Section 4.5.3. This example illustrates the influence of the parameters of

the trigger functions on the upper bound on the delay.

Table 5.1 shows the most conservative computed delay among the subsystems in the network

for different values of c0 in trigger functions 5.3 and for WfA and UwR protocols. Note that

the difference between the value of (τ?)i given by the two protocols increases with c0 and

that the UwR protocol always allows larger (less conservative) values on the delay.

Trigger functions 5.16 depend on two parameters c1 and α. Figure 5.3 depicts the bounds on

the delay for a set of values of c1 ∈ [0.1, 1] and α ∈ [0.1, 0.95] so that α < |λmax(AK)| = 1

5.3 Extension to non-reliable network 147

Table 5.1: Delays bounds (5.5) and (5.14) for different values of c0 and for
WfA and UwR protocols.

c0 0.01 0.02 0.05 0.1
(τ?)iWfA (ms) 0.347 0.613 1.140 1.624
(τ?)iUwR (ms) 0.363 0.666 1.329 2.054

is satisfied. The figure on the left shows the results for the WfA protocol (solution of (5.18)),

and the one on the right for UwR (solution of (5.23)). Observe that τ? is always greater

when the transmissions are ruled by the UwR protocol.

If the solutions given for constant trigger functions and time-dependent trigger functions are

compared, it can be noticed that the results are better in the second case. Furthermore, if we

take the values of the parameters used in Section 4.5.3, constant thresholds (c0 = 0.02) gives

values of τ? around 0.6 ms, whereas for the exponential threshold (c1 = 0.5 and α = 0.8),

τ? is three (WfA) and five times (UwR) greater. It can be concluded that time-dependent

trigger functions are a better choice because they provide asymptotic convergence and they

also allow longer delays in the network.

5.3.3 Performance analysis for non perfect decoupling

If perfect decoupling cannot be assumed, the formulation changes. In order to

illustrate it, let us consider an ideal network first. As it has been shown in

Chapter 4, the dynamics of each agent can be rewritten in terms of the error as

ẋi(t) = AK,ixi(t) +BiKiei(t) +
∑
j∈Ni

(
∆ijxj(t) +BiLijej(t)

)
.

Note that if ∆ij 6= 0, the dynamics of ẋi(t) explicitly depends on xj(t), ∀j ∈ Ni.

Thus, ‖xi(t)‖ cannot be upper bounded if ‖xj(t)‖ is not. But at the same time,

the dynamics of xj(t) depends on the neighborhood, and then there is a vicious

circle.

Hence, one possible solution to this problem is to treat it as in Chapter 4,

and rewrite the equations in terms of the overall system state and error as

ẋ(t) = (AK + ∆)x(t) +BKe(t), (5.28)

148 5 Extensions and improvements of the distributed event-based control

0

0.5

1

0

0.5

1

0

1

2

3

x 10
−3

α

Protocol WfA

X: 0.8

Y: 0.5

Z: 0.00153

c1

τ
(s
)

0

0.5

1

0

0.5

1

0

2

4

6

8

x 10
−3

α

X: 0.8

Y: 0.5

Z: 0.003572

Protocol UwR

c1

τ
(s
)

Figure 5.3: Influence of c1 and α on the delay bound (5.17) (left) and (5.22)
(right). The case c1 = 0.5, α = 0.8 are 1.53 ms and 3.57 ms, respectively.

where all the matrices and vectors are defined in (4.18)-(4.23).

Let us assume that the communication is subject to delays and packet losses.

If the state consistency is preserved, for instance if WfA protocol is considered,

(5.28) holds because the update of broadcasted states is synchronized. Under

certain assumptions on the error bound (e.g., Proposition 5.1), an equivalent

analysis to the perfect decoupling case can be inferred for (5.28). However, if the

state consistency cannot be guaranteed (UwR protocol), a different approach is

required to handle the problem.

For the sake of simplicity, we next show the formulation which solves this

situation for constant trigger functions (5.3).

Solving the state inconsistency

Let us recall the definition of the error (5.11). If perfect decoupling does not hold

and the transmissions over the network are governed by the UwR protocol, the

dynamics of each subsystem is given by

ẋi(t) = AK,ixi(t) +
∑
j∈Ni

∆ijxj(t) +BiKiei(t) +
∑
j∈Ni

BiLijej→i(t). (5.29)

5.3 Extension to non-reliable network 149

Let us define the following set of matrices

Mi = Bi
(
Li1 Li2 . . . Lii−1 Ki Lii+1 . . . LiN

)
, ∀i = 1, . . . , N, (5.30)

with Lij = 0 if j /∈ Ni, and the matrix

M =

M1 0 . . . 0

0 M2 . . . 0
...

0 0 . . . MN

, (5.31)

where 0 is a n× nN matrix whose elements are all zero.

Denote by

−→e Ti =
(
eT1→i e

T
2→i . . . e

T
i−1→i e

T
i e

T
i+1→i . . . e

T
N→i

)
, ∀i = 1, . . . , N, (5.32)

with ej→i = 0 if j /∈ Ni, and

−→e T =
(−→e T1 . . . −→e TN

)
. (5.33)

With these definitions, the dynamics of the overall system is

ẋ(t) = (AK + ∆)x(t) + M−→e (t). (5.34)

Lemma 5.1. If Assumption 5.1 holds and trigger functions (5.3) and the UwR

protocol are considered, the error (5.33) is bounded by

‖−→e (t)‖ ≤ c0

√√√√N + 4
N∑
i=1
|Ni| = c̄0. (5.35)

Proof. From (5.33) it follows that

‖−→e (t)‖ ≤

√√√√√ N∑
i=1
‖ei(t)‖2 +

N∑
i=1

∑
j∈Ni
‖ei→j(t)‖2.

150 5 Extensions and improvements of the distributed event-based control

Under the UwR protocol, ‖ei(t)‖ ≤ c0 and ‖ei→j(t)‖ < 2c0 hold. It yields

‖−→e (t)‖ <

√√√√√ N∑
i=1

c2
0 +

N∑
i=1

∑
j∈|Ni|

(2c0)2 =

√√√√c2
0(N + 4

N∑
i=1
|Ni|),

which is equivalent to (5.35).

The previous result shows that due to the state inconsistency, the bound on

the error increases. For instance, if WfA protocol is used, the error is bounded

by ‖e(t)‖ < 2
√
Nc0, which is a lower upper bound than (5.35). Otherwise, if

the opposite is assumed, it follows that 3
4N >

∑N
i=1 |Ni| must hold by enforcing

c̄0 = c0

√
N + 4

∑N
i=1 |Ni| < 2

√
Nc0. However, this cannot be satisfied for a

connected topology.

Larger upper bounds on the error involve more conservative upper bounds on

the maximum delay. Hence, it can be expected that the analytic results for the

state inconsistency and non-perfect decoupling are more tight. The outcome is

enounced in the next theorem.

Theorem 5.5. If the network delay is upper bounded by

τ? = c0
‖AK+∆‖κ(V)‖x(0)‖+µmax

(
1+ ‖AK+∆‖κ(V)
|λmax(AK)|−κ(V)‖∆‖

)
c̄0
, (5.36)

where µmax = max{‖Mi‖, i = 1, . . . , N}, then any broadcasted state xb,i is suc-

cessfully received by the neighbors j ∈ Ni before a new event occurs. Hence,

the inter-event times are lower bounded tik+1 − tik ≥ τ?. Moreover, for all initial

conditions x(0) and t > 0 it holds

‖x(t)‖ ≤κ(V)
(µmaxc̄0

|λmax(AK,i)|−κ(V)‖∆‖

+ e−(|λmax(AK)|−κ(V)‖∆‖)t(‖x(0)‖ − µmaxc̄0

|λmax(AK)|−κ(V)‖∆‖

))
. (5.37)

Proof. The proof can be found in Appendix B on page 255.

Example 5.4: In this example we illustrate the conservativism of Theorem 5.5 when esti-

mating τ?, even though the UwR protocol provides better results for perfect decoupling.

5.3 Extension to non-reliable network 151

Table 5.2: Delays for different values of c0 and N .

c0
N 0.01 0.02 0.05 0.1
10 0.089 0.110 0.191 0.284
20 0.063 0.077 0.129 0.196
50 0.040 0.048 0.080 0.122
100 0.028 0.034 0.057 0.086
200 0.020 0.024 0.040 0.061

Let us consider the system specifications of Section 4.6.1. The upper bound on the delay

τ? computed according to (5.36) for different values of c0 and N is given in Table 5.2. The

values are expressed in milliseconds.

Given that c̄0 depends on N , the tolerable delay is reduced when the number of agents in-

creases. This fact did not have influence in the case of perfect decoupling. Moreover, the

increase of the dimension of the matrices with N also influences the bound negatively.

Remark 5.3. The conservativism of (5.36) comes from the fact that the individual

dynamics of the subsystems cannot be decoupled and the system has to be treated

as a whole. However, this does not mean that the system, in practice, cannot

tolerate longer delays, simply just the analytical approach taken only guarantees

stability for τ ≤ τ?.

5.3.4 Simulation results

Performance

To illustrate the theoretical results, let us consider the system in Figure 4.5 with

N = 4 and x(0) = (−0.9425 0 1.0472 0 0.6283 0 − 1.4137 0)T . The

system behavior is investigated in three situations:

1. Ideal communication channel.

2. Non-ideal network using WfA protocol.

3. Non-ideal network using UwR protocol.

152 5 Extensions and improvements of the distributed event-based control

0

0.5

1

x
1
(t
)

−0,7

0,3

0,1
x
2
(t
)

1
2
3

E
ve
n
ts

0 5 10 15
−20

−10

0

t (s)

u
(t
)

Figure 5.4: Behavior of the subsystem 2 with WfA (red), UwR (green)
protocols, and a ideal network (blue).

Let us consider static trigger functions. The upper bounds on the delay have

been already computed for WfA and UwR protocols and for different values of

the parameter c0 and summarized in Table 5.1.

Let c0 = 0.05 and a delay generated randomly between zero and the corre-

sponding upper bound specified in Table 5.1 (1.150 ms for WfA and 1.329 for

UwR). The state of subsystem 2, the events time and the control input u(t) are

depicted in Figure 5.4 for the three situations stated above. The behavior of the

subsystem is similar in the three cases as the effect of delays in the performance

is mitigated by means of the two proposed protocols.

Note that even though the delay does not significantly affect the performance,

it has an impact on the sequence of events. This is an interesting property of

event-based control, because the delay in one transmission affects the occurrence

of future events.

WfA vs. UwR

In order to illustrate the difference between WfA and UwR in more detail, Figure

5.5 extracts a short time interval showing how the broadcasted state xb,2 of Agent

5.3 Extension to non-reliable network 153

1.664 1.665 1.666 1.667 1.668 1.669 1.67 1.671 1.672
0,3

0,35

0,4

t

x
1
a
g
e
n
t
2

1.63 1.631 1.632 1.633 1.634 1.635 1.636 1.637 1.638
0.3

0.35

0.4

x
1

a
g
e
n
t
2

a)

b)

s)(

Figure 5.5: Difference between a) WfA and b) UwR protocols in updating
the state information. Only the first component of the state is depicted: xb,2
(blue), xb,2→1 (red), and xb,2→3 (green).

2 is used in the system. Since Agent 2 is an inner pendulum, it has two neighbors.

For WfA protocol the three copies of xb,2 (one in Agent 2, one in Agent 1, and

the third in Agent 3) are identical. All the neighbors wait for the last reception

(xb,2→3 in the depicted case) at time t = 1.668 s to update the value of xb (Figure

5.5a), which is depicted by the green solid line. In contrast, using the UwR

protocol (Figure 5.5b), whenever an event is triggered in Agent 2, its state is

broadcasted and immediately updated in Agent 2. The neighbors also update as

soon as they receive the broadcasted state. Note that the events times are not the

same in the two protocols because the time of one update affects the generation

of future events, as mentioned before.

Time-dependent trigger function

If time-dependent trigger functions of the form (5.16) with parameters c1 = 0.5

and α = 0.8 are taken, the upper bound on the delay is 1.43 ms (WfA) and 3.57

ms (UwR), according to Figure 5.3. Thus, the UwR protocol will be used in this

example, as it provides a less restrictive result.

The performance of the system under the time-dependent trigger functions is

compared with the behavior using the static-trigger functions for (τ?)i = 3.57 ms.

154 5 Extensions and improvements of the distributed event-based control

−1

0

1

x
a
ge
n
t
2

0 5 10 15
−1

0

1

t (s)

x
b
ag
en
t
2

a)

b)

Figure 5.6: Behavior of the agent 2 with trigger functions (5.3) (c0 = 0.05)
(green, magenta) and (5.16) (c1 = 0.5, α = 0.8) (blue, red), with 3.57 ms
as upper bound on the delay. a) (x21 , x22), b) (xb,21 , xb,22).

The results are shown in Figure 5.6. The state of agent 2 (x21 , x22) is depicted

in Figure 5.6a, and Figure 5.6b shows the broadcasted states (xb,21 , xb,22). The

broadcasted state for the constant threshold looks like a continuous function due

to the high frequency of events detection, whereas piecewise constant functions

are clearly appreciated in the time-dependent trigger function case.

Note that the number of updates in the broadcasted state (number of events)

decreases with trigger functions (5.16) and the performance around the equilibria

is better with respect to (5.3). Moreover, the minimum and mean inter-event

times have been computed according for these simulation results, resulting in 3.9

ms and 353 ms, respectively, for (5.3), and 1.2 ms, which agrees with the results

of Table 5.1, and 215 ms for (5.16). Hence, the time-dependent trigger functions

are an interesting alternative in non-ideal networks.

5.4 Reducing actuation in distributed control systems

This section presents a distributed control design where the goal is not only to

reduce communication but also the number of control updates in each node. Note

that in a single control loop the reduction of communication usually implies the

reduction of actuator updates [Tab07, ESDCM07], which does not necessary hold

5.4 Reducing actuation in distributed control systems 155

in distributed systems.

The control law is computed in (4.15) based on the broadcasted states. Thus,

u(t) is a piecewise constant function. Accordingly, the control law of agent i

is updated when an event is triggered by itself or any of its neighbors. This

might lead to very frequent control updates if the number of neighbors was large.

However, the change of the control signal ui(t) might be small due to, e.g., a

weak coupling. In this situation an update of the control signal is generally not

needed.

We propose a new control law in which ui(t) is not updated at each broad-

casting event, but when an additional condition is fulfilled. We consider two

mechanisms driven by events. The first one is the transmission of information

between nodes (transmission events), and the second one is the update of the con-

trol law (control update events). Note that the transmission events correspond to

the considered events up to now. The description of both sets of trigger-functions

is given next.

5.4.1 Trigger functions

Transmission events

The occurrence of a transmission event is defined by trigger functions fx,i which

only depend on local information of agent i and take values in R.

The sequence of broadcasting times tik are determined recursively by the event

trigger function as

tik+1 = inf{t : t > tik, fx,i(t) > 0}

. We define the error between the current state xi and the latest broadcasted

state xb,i as

ex,i(t) = xb,i(t)− xi(t), (5.38)

and we consider time-dependent trigger functions defined by

fx,i(t, ex,i(t)) = ‖ex,i(t)‖ − cx,0 − cx,1e−αt, (5.39)

156 5 Extensions and improvements of the distributed event-based control

with cx,0 > 0, cx,1 ≥ 0, and α > 0. An event is detected when fx,i(t, ex,i(t)) > 0,

and the error ex,i is reset to zero. Note that the error remains bounded by

‖ex,i(t)‖ ≤ cx,0 + cx,1e
−αt. (5.40)

This type of trigger functions has been shown to decrease the number of events

while maintaining a good performance of the system. The case cx,0 = 0 is ex-

cluded. The reason is discussed later. However, the case cx,1 = 0 is admitted

leading to static trigger functions.

Control update events

Let us denote the time instants at which the control update of the agent i occurs

as {til}∞l=0, ∀i = 1, . . . , N .

The control law is defined for the inter-event time period as

ub,i(t) = Kixb,i(til) +
∑
j∈Ni

Lijxb,j(til), t ∈ [til, til+1). (5.41)

In order to determine the occurrence of an event, we define

eu,i(t) = ub,i(t)− ui(t), (5.42)

where ui(t) is given by (4.15). The set of trigger functions is given by

fu,i(eu,i(t)) = ‖eu,i(t)‖ − cu, cu > 0. (5.43)

The sequence of control updates is determined recursively. However, whereas the

transmission events can occur at any time t because xi(t) is a continuous function,

ui(t) in (4.15) is not continuous but piecewise constant and only changes its value

at transmission events. This means that the events on the control update are a

subsequence of the transmission events.

Denote N̄i = i ∪Ni and {tN̄ik } the set {tik} ∪ {t
j
k}, j ∈ Ni. Thus,

til+1 = inf{tN̄ik : tN̄ik > til, fu,i(t
N̄i
k) > 0}.

5.4 Reducing actuation in distributed control systems 157

cx

0

cu

0
1

kt
1

1kt

)(1

1 ktx

)(1

11 ktx

)(1

11, kb txx

)(1

111, kb txx

)(1, tex

)(1 tu

)(1, tub

)(1, teu

)(1

1, kb tx)(1

11, kb tx

Network

Agent 1

)(2

2, kb tx

Continuous

state evolution

State used by

the controller

Computed

control input

Applied

control input

2

kt

Figure 5.7: Illustrative example of transmission and control update events
between a system compound of two agents.

Hence, it holds {til} ⊂ {t
N̄i
k }.

Example 5.5: An example of the proposed design is given in Figure 5.7. Assume that Agent

1 sends and receives information to/from its neighborhood through a network. At t = t2k

it receives a broadcasted state xb,2 from Agent 2. Agent 1 computes u1 according to the

new value received. For example, if Agent 2 is its unique neighbor, u1(t2k) = K1xb,1(t2k) +

L12xb,2(t2k) = K1xb,1(t1k−1)+L12xb,2(t2k), where t1k−1 is assumed to be the last broadcasting

event time for Agent 1. After computing u1, Agent 1 checks whether the difference between

this value and the current control signal applied exceeds the threshold cu. Since this threshold

is not exceeded, it does not update ub,1. At t = t1k, Agent 1 detects an event because ex,1

reaches the threshold cx. x1(t1k) is broadcasted through the network and u1 is computed

again. Given that ‖eu,1‖ < cu, ub,1 is not modified. Finally, a new event occurs at t = t1k+1

resulting in a broadcast and a control update since ‖eu,1‖ ≥ cu. Note that ub,1(t) = u1(t)

(eu,1 = 0) for t < t2k and t ≥ t1k+1 but this does not hold in the meantime.

158 5 Extensions and improvements of the distributed event-based control

5.4.2 Performance analysis

The dynamics of the subsystems (4.14) with control law (5.41) is

ẋi(t) = Aixi(t) +Biub,i(t) +
∑
j∈Ni

Hijxj(t).

It can be rewritten in terms of the errors ex,i(t) and eu,i(t) handled by the trigger

functions (5.39) and (5.43). respectively, as

ẋi(t) = AK,ixi(t) +
∑
j∈Ni

∆ijxj(t) +BiKiex,i(t) +Bi
∑
j∈Ni

Lijex,j(t) +Bieu,i(t).

Let us define the stack vectors

eTx =
(
eTx,1 . . . e

T
x,N

)
eTu =

(
eTu,1 . . . e

T
u,N

)
, (5.44)

and consider the usual definitions for x(t) and the matrices AK , B,K, and ∆

given in (4.18).

Accordingly, the overall system dynamics is given by

ẋ(t) = (AK + ∆)x(t) +BKex(t) +Beu(t). (5.45)

As the broadcasted states xb,i remain constant between consecutive events, the

dynamics of the state error in each interval are given by

ėx(t) = −(AK + ∆)x(t)−BKex(t)−Beu(t). (5.46)

The state error of the overall system is bounded by

‖ex(t)‖ ≤
√
N(cx,0 + cx,1e

−αt)

according to (5.40). However, eu(t) is not strictly bounded by cu because ui(t) is

not a continuous function but piecewise constant.

5.4 Reducing actuation in distributed control systems 159

The following assumption let us establish a bound on the control error.

Assumption 5.2. The occurrence of simultaneous transmission events in any neigh-

borhood N̄i is not allowed, i.e., two neighboring nodes cannot transmit at the

same instance of time.

The previous assumption seems reasonable from the network protocol perspec-

tive. Assumption 5.2 might induce delays in the case where two nodes attempted

to transmit at the same time. However, we assume that this delay is negligible

in this section. The effect of delays and packet losses on event-triggered control

of distributed control systems has been already studied in Section 5.3. Hence,

similar results could be inferred assuming that the induced delay were at most

the bound derived for the transmission delay in the cited section.

Moreover, in case that two broadcasted states were received by one agent, it

could enqueue the data and do the computation of the control law sequentially.

Lemma 5.2. If Assumption 5.2 holds, the control error of the subsystem i is

bounded by

‖eu,i(t)‖ ≤ c̄u,i(t), (5.47)

with

c̄u,i(t) = cu + (cx,0 + cx,1e
−αt) ·max{‖Ki‖, ‖Lij‖ : j ∈ Ni}.

Proof. Assume that the last broadcasting event on the subsystem i occurred at

t = tN̄ik , meaning that its own events and the neighbors’ are included. If this last

event does not yield a control update it means that ‖eu,i(tN̄ik)‖ < cu. Assume

that at t = tN̄ik+1 there is a new broadcast in N̄i which triggers a control event.

There are two possibilities:

• The subsystem i triggers the event. Thus,

‖eu,i(tN̄ik+1)‖ = ‖eu,i(tN̄ik) + ui(tN̄ik)− ui(tN̄ik+1)‖

= ‖eu,i(tN̄ik) +Ki(xb,i(tN̄ik)− xb,i(tN̄ik+1))‖

≤ ‖eu,i(tN̄ik)‖+ ‖Ki‖‖xb,i(tN̄ik)− xb,i(tN̄ik+1)‖,

160 5 Extensions and improvements of the distributed event-based control

that is upper bounded by

‖eu,i(tN̄ik+1)‖ ≤ cu + ‖Ki‖(cx,0 + cx,1e
−αtN̄i

k+1).

• The event has been triggered for any neighbor j ∈ Ni, it yields

‖eu,i(tN̄ik+1)‖ = ‖eu,i(tN̄ik) + Lij(xb,j(tN̄ik)− xb,j(tN̄ik+1))‖

≤ cu + ‖Lij‖(cx,0 + cx,1e
−αtN̄i

k+1).

Since this holds for all t, and if the worst case is considered, it yields (5.47).

Lemma 5.3. If Assumption 5.2 holds, the control error of the overall system is

bounded by

‖eu(t)‖ ≤
√
N(cu + ‖µ(K)‖max(cx,0 + cx,1e

−αt)) = c̄u(t), (5.48)

where

µ(K) =

‖K1‖ ‖L12‖ · · · ‖L1N‖

‖L21‖ ‖K2‖ · · · ‖L2N‖
...

...

‖LN1‖ ‖LN2‖ · · · ‖KN‖

, (5.49)

and ‖ · ‖max denotes the entry-wise max norm of a matrix.

Proof. From (5.44) and (5.47) it follows that

‖eu(t)‖ ≤

√√√√ N∑
i=1
‖eu,i‖2(t) ≤

√√√√ N∑
i=1

c̄2
u,i(t) ≤

√
N(max{c̄u,i(t)})2,

which is equivalent to (5.48).

Remark 5.4. Note that, although constant trigger functions are defined for the

update of the control actions, the effective bound on the control input is time

variant due to the trigger mechanism applied on the state error.

5.4 Reducing actuation in distributed control systems 161

Main result

Assume that Assumptions 4.1 and 4.2 hold. Thus, the following result can be

stated.

Theorem 5.6. Consider the interconnected linear system (5.45). If trigger func-

tions (5.39) are used to broadcast the state with 0 < α < |λmax(AK)| −κ(V)‖∆‖,

and trigger functions (5.43) for the control update, then, for all initial conditions

x(0) and t ≥ 0, it follows that

‖x(t)‖ ≤σ1 + (κ(V)‖x(0)‖ − σ1 − σ2)e−(|λmax(AK)|−κ(V)‖∆‖)t + σ2e
−αt, (5.50)

where

σ1 = κ(V)
√
N

(‖BK‖+ ‖B‖‖µ(K)‖max)cx,0 + ‖B‖cu
|λmax(AK)| − κ(V)‖∆‖ (5.51)

σ2 = κ(V)
√
N

(‖BK‖+ ‖B‖‖µ(K)‖max)cx,1
|λmax(AK)| − κ(V)‖∆‖ − α . (5.52)

Furthermore, the system does not exhibit Zeno behavior, being the lower bound

for the inter-execution times

Tx,min = cx,0

γ1 +
√
N(γ2 + γ3 + γ4)

, (5.53)

where

γ1 = κ(V)‖x(0)‖‖AK + ∆‖

γ2 = (‖BK‖+ ‖B‖‖µ(K)‖max)cx,0
(
1 + κ(V)‖AK+∆‖

|λmax(AK)|−κ(V)‖∆‖

)
γ3 = (‖BK‖+ ‖B‖‖µ(K)‖max)cx,1

(
1 + κ(V)‖AK+∆‖

|λmax(AK)|−κ(V)‖∆‖−α

)
γ4 = ‖B‖cu

(
1 + κ(V)‖AK+∆‖

|λmax(AK)|−κ(V)‖∆‖

)
.

Proof. The proof can be found in the Appendix B on page 256.

The lower bound found for the inter-event times (see (5.53)) is strictly positive

since cx,0 > 0.

162 5 Extensions and improvements of the distributed event-based control

Discussion

The previous analysis is based on two sets of trigger functions to detect trans-

mission and control updates events. One concern that can be raised is how the

values of the parameters of these trigger functions can be selected or if there is

any relationship between them.

Let us first assume the case cx,1 = 0 yielding to static trigger functions. It

follows that ‖ex,i(t)‖ ≤ cx,0 and ‖eu,i(t)‖ ≤ cu + cx,0 ·max{‖Ki‖, ‖Lij‖ : j ∈ Ni}

∀t ≥ 0, according to (5.40) and (5.47), respectively.

Assume that the last control update event occurred at t = t∗ and denote the

number of transmission events between t∗ and the next broadcast as ne. A lower

bound for ne can be derived following the ideas of Lemma 5.2:

‖eu,i(t)− eu,i(t∗)‖ = ‖eu,i(t)‖ ≤
ne∑
k=1

cx,0 ·max{‖Ki‖, ‖Lij‖ : j ∈ Ni}

= necx,0max{‖Ki‖, ‖Lij‖ : j ∈ Ni}

and the next control update event will not be triggered before

‖eu,i‖ = cu ≤ cu + cx,0max{‖Ki‖, ‖Lij‖ : j ∈ Ni}.

Thus,

nie ≥
cu

cx,0max{‖Ki‖, ‖Lij‖ : j ∈ Ni}
. (5.54)

Equation (5.54) shows the trade-off between cu and cx,0 and gives insights on how

one of these parameters should be chosen according to the other one.

Moreover, (5.54) can be translated into a relationship between the inter-

execution times of the control law (5.41), denoted T iu,min, and the minimum

broadcasting period (5.53). It holds that

T iu,min ≥ nieTx,min ≥
cu

(γ1 +
√
N(γ2 + γ4))max{‖Ki‖, ‖Lij‖ : j ∈ Ni}

.

Note that γ3 = 0 because we are analyzing the case cx,1 = 0. Let Tu,min be

5.4 Reducing actuation in distributed control systems 163

Tu,min = min{T iu,min}. It yields

Tu,min ≥
cu

(γ1 +
√
N(γ2 + γ4))‖µ(K)‖max

.

Hence, cx,0 and cu can be chosen to meet some constraints on Tx,min and Tu,min.

In the design of Section 5.4.1 the case cx,0 = 0 was excluded and the reason

is given next. Assume that cx,0 = 0. Thus, following the steps of the previous

case, ‖eu,i(t)‖ ≤ necx,1e
−αt∗max{‖Ki‖, ‖Lij‖ : j ∈ Ni}, where ne is the number

of broadcasting events and t∗ the time of the last control update event. Moreover,

the next event is not triggered before ‖eu,i‖ reaches the threshold cu. In this case,

it holds that

ne ≥
cu

cx,1e−αt
∗max{‖Ki‖, ‖Lij‖ : j ∈ Ni}

. (5.55)

Note that the lower bound for ne in (5.55) goes to infinity when t∗ →∞, which

means that when the time values are large, many transmission events are required

to trigger a new control update and may lead to small inter-event times. One

possible solution is to accommodate the threshold cu to the decreasing bound on

the state cx,1e−αt.

5.4.3 Simulation results

System topology

Let us consider the system presented in Section 4.5.3 but with a different topol-

ogy. Specifically, the mesh of inverted pendulums is depicted in Figure 5.8. The

dynamics of the subsystem change in this scheme, and three types of agents can

be distinguished: the ones in the corners with two neighbors, the ones in the

borders (excluding the corners) with three neighbors, and the inner pendulums

with four nodes to communicate with. Moreover, movement is assumed to be in

the XY plane.

Each subsystem can be described as

164 5 Extensions and improvements of the distributed event-based control

N

N

Figure 5.8: Scheme of the coupled pendulums mesh.

ẋi =

Ai 0

0 Ai

xi +

Bi 0

0 Bi

ui +
∑
j∈Ni

Hij 0

0 Hij

xj ,

where

Ai =

 0 1
g
l −

|Ni|k
ml2 0

 , Bi =

 0

1
ml2

 , Hij =

 0 0

k
ml2 0

 ,

and xi = (xi1 xi2 xi3 xi4)T , ui = (ui1 ui2)T .

The feedback gains Ki are designed to place the poles at {−2,−2,−1,−1}.

The decoupling gains are designed to decouple the system with uncertainties

bounded by κ(Vi)‖∆ij‖ < 0.35|λmax(AK,i)|.

Performance

Figure 5.9 shows the output of the system in a 3D space for a mesh of 6 × 6

pendulums. The coordinates in the XY plane over time are plotted. Trigger

functions with cx,0 = 0.02, cx,1 = 0.5, α = 0.6, and cu = 0.1 are considered.

Let us focus on one particular subsystem, for example the agent (2,2) (second

row, second column). The state and the control signals are illustrated in Figure

5.10. The number of broadcasting events in all the neighborhood of this particular

agent, which has four neighbors, is 170, while the number of control updates in

5.4 Reducing actuation in distributed control systems 165

−1

0

10
5

10
15

−1

−0.5

0

0.5

1

θx

t(s)

θ
y

Figure 5.9: xi1 for a 6× 6 mesh of inverted pendulums.

the agent (2,2) is 90, so that 47% of the transmissions do not end into a control

update because the threshold cu is not reached.

If this experiment is repeated for the case in which trigger functions (5.43)

are not considered (Chapter 4 approach), the number of broadcasting events in

the neighborhood of (2,2) is 140, which is equal to the number of control updates.

Thus, as expected, the proposed design with trigger functions (5.43) might

cause an increase of network transmissions, in this case 21% while saving almost

half of the changes on the control signal.

Moreover, if we compute the average broadcasting period for the entire net-

work as T̄x = N2tsim
No. events it yields 0.5202 s for the first case and 0.5954 s for the case

without using the event-triggered control update. Hence, for the overall network

the difference is not relevant. These results are extended for different values of

N in Table 5.3. Note that the variations of the average period with the number

of agents are not significant.

The influence of the parameter cu for given parameters cx,0 = 0.02, cx,1 = 0.5,

and α = 0.6 can be analyzed and the results are illustrated in Table 5.4. For a

Table 5.3: Average broadcasting period variations with N .

N ×N 16 36 64 81 100
T̄x 0.5422 0.5202 0.4813 0.4676 0.4765

166 5 Extensions and improvements of the distributed event-based control

−1

0

1

2

x
(2
,2
)

0 5 10 15
−10

0

10

t(s)

u
(2
,2
)

Figure 5.10: State (above) and control signals (below) for agent (2,2) with
cx = 0.02 + 0.5e−0.6t, cu = 0.1.

mesh of 6× 6 subsystems the following values are computed for each value of cu

and simulation time t = 15 s:

• Average number of transmissions through the network defined as n̄x =∑N2

i=1 |{t
i
k}|

N2 |Ni|, where |{tik}| is the cardinality of the set {tik} and |Ni| is the

average for the number of neighboring agents.

• Average number of control updates defined as n̄u =
∑N2

i=1 |{t
i
l}|

N2 .

Note that the best choice of cu, cx,0, and cx,1 depends on the implementation costs

of the communication and actuation processes, and the required values for the

lower bounds on the transmission and control update inter-event times. For this

particular example, it can be said that a value cu ∈ [0.05, 0.1] would be a good

option because the decrease of the control events is notable while the increase

in communication events is assumable. If cu = 0.02 all broadcasting events lead

into a control update (n̄u is actually larger than n̄x, but this is due to the error

induced by the statistical treatment of data).

Table 5.4: Average transmission and control update events with cu.

cu 0.02 0.05 0.1 0.2
n̄x 86.20 83.98 95.46 181.48
n̄u 93.11 75.00 67.28 57.58

5.5 Model-based design 167

Model

Model

C

)(i

ki tx

)(ˆ txi

)(tui

iii KBA ˆˆ

111

ˆˆ
jjj KBA

Model

iNiNiN jjj KBA ˆˆ

…
 Ni

Model-based controller

…

…

)(t
iNj

x̂

1
ˆ

jx)(t

iNj
x)(iNj

kt

1j
x)(1j

kt

…

Figure 5.11: Model-based control scheme for the node i.

5.5 Model-based design

Model-based event-triggered control has been shown to reduce the amount of

communication in a control loop [LL10]. Ideally, if the plant is stable, there are

not model uncertainties or external disturbances, the control input u(t) can be

determined in a feedforward manner and no communication over the feedback

link is necessary [Leh11].

The distributed approach presented in this section shows that if the model uncer-

tainty fulfills a certain condition, the model-based approach gives larger minimum

inter-event times than the zero-order hold approach of Chapter 4. We assume

that each agent has knowledge of the dynamics of its neighborhood.

In particular, let us define the model-based control law for each agent as

ui(t) = Kix̂i(t) +
∑
j∈Ni

Lij x̂j(t), (5.56)

where x̂i now represents the state estimation of xi given by the model (Âi, B̂i) of

each agent, and ÂK,i = Âi + B̂iKi. Let us define ÂK = diag(ÂK,1, . . . , ÂK,n).

The error ei(t) is redefined as

ei(t) = x̂i(t)− xi(t), (5.57)

168 5 Extensions and improvements of the distributed event-based control

and is reset at events’ occurrence. In particular, x̂i(t) is computed in the inter-

event times as

x̂i(t) = eÂK,i(t−t
i
k)xi(tik), ∀t ∈ [tik, tik+1). (5.58)

Note that (5.58) does not include the coupling effect since the decoupling gains

Lij are designed to compensate the model of the interconnections Hij . Thus,

if ∆ij 6= 0 it is because these interconnections are partially unknown or perfect

decoupling may not be possible due to, e.g., the matrix Bi not having full rank.

Therefore, each agent i has a model of its dynamics and of its neighborhood

Ni. Based on this model, it estimates its state denoted as x̂i(t) to compute ui(t)

in (5.56). This idea is illustrated in Figure 5.11. Note that this is an extension

of the model-based controller depicted in Figure 1.9. In the distributed approach

the controller C has Ni + 1 inputs and one output. A block that represents the

model of one subsystem is reset when a new broadcasted state is received.

When the state estimation x̂i(t) differs a given quantity from xi(t), which de-

pends on the trigger function, a new event is generated and the estimation is reset

to the new measured state. For instance, x̂i might deviate from xi due to model

uncertainties on AK,i, disturbances, and the effect of the non-perfect decoupling.

Furthermore, the agent i broadcasts the new measurement to its neighbors, which

also update their estimations according to the new value received from agent i.

Figure 5.12 shows an example of the previous idea. In previous sections, the

control law of each agent i was computed based on the broadcasted measurements

and it was a piecewise constant function. Now, the control is computed using a

model-based approach in the inter-event times and is reset when a new event is

triggered.

Remark 5.5. Note that x̂i(t) is used instead of xi(t) in the control law (5.56) in

order to preserve the property that the agent i and all its neighbors have the

same version of ei(t). Alternatively, (4.24) can be redefined to deal with the

aforementioned approach.

5.5 Model-based design 169

ttik tik+1

(t) fi(ei(t
i
k+1)) > 0

(t)

xi(t
i
k+1)

xi(t
i
k) x i

xi

b

Figure 5.12: Comparison of model-based event-triggered control and Chap-
ter 4 approach.

5.5.1 Main result

If we consider the trigger function defined in (4.26) and for the new error defined

in (5.57), the state will be also bounded by (4.39). However, the lower bound for

the inter-event time will have a different expression.

Definition 5.5. Let us define

Ā := Â−A

B̄ := B̂ −B

ĀK := ÂK −AK = Ā+ B̄K, (5.59)

which represent the model uncertainty of the overall system without interconnec-

tions.

Assumption 5.3. We assume that the values of c0 and c1 and the initial conditions

x(0) satisfy the following constraint:

√
N(c0 + c1)

‖x(0)‖+ ‖BK‖
√
Nc0

λ∆
+ ‖BK‖

√
Nc1

λ∆−α

< κ(V)‖AK + ∆‖ − ‖ĀK‖ − ‖∆‖
‖ÂK‖

, (5.60)

where λ∆ = |λmax(AK)| − κ(V)‖∆‖.

Remark 5.6. Equation (5.60) is feasible only if the right hand side is strictly

positive, since c0 + c1 > 0. This gives a maximum value of the model uncertainty

170 5 Extensions and improvements of the distributed event-based control

for a given bound on the norm of the coupling terms matrix or vice versa.

Theorem 5.7. If Assumption 5.3 holds, the lower bound of the broadcasting pe-

riod for the system (4.24), under the control law (5.56), and with triggering func-

tions (4.26), 0 < α < |λmax(AK)| − κ(V)‖∆‖, is greater than (4.40).

Proof. Define the overall system state estimation as x̂ = (x̂T1 , . . . , x̂TN)T . Let’s

prove that the bound for the inter-events time is larger in the model-based ap-

proach.

If the last event occurred at t∗, the error in the inter-event time is ‖ei(t)‖ ≤∫ t
t∗ ‖ėi(s)‖ds. In this interval, it also holds that

‖ėi(t)‖ = ‖ ˙̂xi(t)− ẋi(t)‖ ≤ ‖ ˙̂x(t)− ẋ(t)‖.

Observe that

˙̂x(t)− ẋ(t) = ÂK x̂(t)−
(
(AK + ∆)x(t) +BKe(t)

)
= (ĀK −∆)x(t) + (ÂK −BK)e(t).

Then

‖ėi(t)‖ ≤ ‖ĀK −∆‖‖x(t)‖+ ‖ÂK −BK‖‖e(t)‖

≤ ‖ĀK −∆‖‖x(t)‖+ ‖ÂK −BK‖
√
N(c0 + c1e

−αt) (5.61)

Assume that c0, c1 6= 0. It holds that c0 + c1e
−αt ≤ c0 + c1e

−αt∗ . As already

stated, the bound on the state of Theorem 4.2 holds, and can be upper bounded

as

‖x(t)‖ ≤ κ(V)
(
‖x(0)‖e−λ∆t + ‖BK‖

√
Nc0

λ∆
+ ‖BK‖

√
Nc1

λ∆−α e−αt
)
.

Moreover, it holds that ‖ĀK −∆‖ ≤ ‖ĀK‖+ ‖∆‖. Thus, the error

‖ei(t)‖ ≤
t∫
t∗
‖ė(s)‖ds ≤

(
(‖ĀK‖+ ‖∆‖)κ(V)

(
‖x(0)‖e−λ∆t

∗ + ‖BK‖
√
Nc0

λ∆

+ ‖BK‖
√
Nc1

λ∆−α e−αt
∗)+ ‖ÂK −BK‖

√
N(c0 + c1e

−αt∗)
)
(t− t∗), (5.62)

5.5 Model-based design 171

It follows that ‖ei(t)‖ ≤ (k̂∆,1 + k̂∆,2 + k̂∆,3)(t− t∗), where

k̂∆,1 = κ(V)‖x(0)‖(‖ĀK‖+ ‖∆‖)

k̂∆,2 =
(κ(V)(‖ĀK‖+‖∆‖)‖BK‖

λ∆−α + ‖ÂK −BK‖
)√
Nc1

k̂∆,3 =
(κ(V)(‖ĀK‖+‖∆‖)‖BK‖

λ∆
+ ‖ÂK −BK‖

)√
Nc0. (5.63)

The next event will not occur before ‖ei(t)‖ = c0 + c1e
−αt ≥ c0. This condition

gives a lower bound for the broadcasting period

T̂∆,min = c0

k̂∆,1 + k̂∆,2 + k̂∆,3
, (5.64)

that is larger than the lower bound in (4.40) if k̂∆,1 + k̂∆,2 + k̂∆,3 < k∆,1 + k∆,2 +

k∆,3, which is equivalent to

(‖ÂK −BK‖−‖BK‖)
√
N(c0 + c1) < (‖AK + ∆‖ − ‖ĀK‖ − ‖∆‖)

(
‖x(0)‖

+ ‖BK‖
√
Nc0

λ∆
+ ‖BK‖

√
Nc1

λ∆−α

)
,

After some manipulations

√
N(c0 + c1)

‖x(0)‖+ ‖BK‖
√
Nc0

λ∆
+ ‖BK‖

√
Nc1

λ∆−α

< κ(V)‖AK + ∆‖ − ‖ĀK‖ − ‖∆‖
‖ÂK −BK‖ − ‖BK‖

. (5.65)

The denominator on the right hand side can be bounded as:

‖ÂK −BK‖ − ‖BK‖ ≤ ‖ÂK‖+ ‖BK‖ − ‖BK‖ = ‖ÂK‖.

Then if Assumption 5.3 holds, (5.65) is fulfilled. Thus, the lower bound for the

broadcasting period is larger for the model-based approach.

Remark 5.7. Note that in (5.65) it holds that ‖AK +∆‖−‖ĀK‖−‖∆‖ ≤ ‖AK‖−

‖ĀK‖. Thus, if ‖ĀK‖ ≈ 0, the right hand side of (5.65) can be approximated to

κ(V).

Example 5.6: Let us consider a system consisting of N identical subsystems whose closed

172 5 Extensions and improvements of the distributed event-based control

loop eigenvalues are {−1,−2}. Thus, |λmax(AK)| = 1. Assume that the coupling can be

bounded as κ(V)‖∆‖ ≤ 0.1|λmax(AK)| and that the parameters of the trigger functions are

chosen so that

c0 = 0.01|λmax(AK)|, c0 = 0.5|λmax(AK)|, α = 0.8|λmax(AK)|.

This yields c0/λ∆ = 0.011, c1/(λ∆ − α) = 5.

Thus, the left hand side of (5.65) is 0.51|λmax(AK)|/κ(V)(5.01
√
N‖BK‖+ ‖x(0)‖). If we

approximate ‖ÂK‖ ' ‖AK‖, the constraint to the model uncertainty is

‖ĀK‖ ≤ ‖ÂK‖
(

1− 0.51 |λmax(AK)|
κ(V)(5.01

√
N‖BK‖+ ‖x(0)‖)

)
. (5.66)

The first constraint for the feasibility of (5.66) is that the right hand side is positive, which

imposes some conditions on the initial values. Then, for given values of κ(V), ‖BK‖, ‖x(0)‖

and ÂK , the upper bound on ‖ĀK‖ can be computed.

5.5.2 Simulation results

Next, the performance of the model-based approach is demonstrated and com-

pared to the results of Section 4.5.3. Let us consider trigger functions fi(ei(t)) =

0.02 + 0.5e−0.8t. Figure 5.13 compares the output of agent 1 of a chain of four

inverted pendulums. Observe that, for this case, the model-based approach re-

duces the number of events in more than a third (from 23 (in red) to 9 (in blue)).

Note that the control law is not a constant piecewise function.

The results of Table 4.2 compared the mean and minimum inter-event times

of the approach of Chapter 4 and the approach proposed in [WL08] for a set of

values in the number of subsystems. Table 5.5 extends those results with the

model-based design.

Note that when the controller uses a model, the average and the minimum

value of the inter-event times are enlarged, as predicted by Theorem 5.7.

5.6 Conclusions 173

−1.5

−1

−0.5

0

0.5

x
1 1

1

0 5 10 15

0

10

20

t (s)

u
1
(t
)

1E
ve
n
ts

Figure 5.13: Simulation result with trigger functions (4.26) for the design of
Chapter 4 (red) and the distributed model-based control (blue). The dashed
line (magenta) represents the piecewise function x̂1,1.

Table 5.5: Inter-event times for different N .
N 10 50 100 150 200

Trigger condition {T ik}min (s) 0.053 0.031 0.015 0.019 0.009
(4.26), Chapter 4 {T ik}mean (s) 0.565 0.565 0.567 0.572 0.568
Trigger condition {T ik}min (s) 0.6816 0.3025 0.219 0.0963 0.132
(4.26), MB control {T ik}mean (s) 1.430 1.500 1.477 1.668 1.581
Trigger condition {T ik}mean (s) 0.1149 0.1175 0.1152 0.1180 0.1177
[WL08]

5.6 Conclusions

This chapter has presented an extension of the distributed control design of Chap-

ter 4 to non reliable networks. Two transmission protocols have been proposed as

means of dealing with the effects of non reliable networks. Upper bounds on the

delay and maximum number of consecutive packet dropouts have been derived

for different situations. One of the main contributions of this chapter is the proof

of the existence of a lower bound on the inter-event times and the asymptotic

convergence to the origin if time-dependent trigger functions are used.

Additionally, it has been illustrated how the actuation rate can be reduced in

interconnected system if triggering functions are used also in the update of the

174 5 Extensions and improvements of the distributed event-based control

control law. The existing trade-off between communication and actuation have

been shown analytically and through simulations.

Finally, a model-based approach has been proposed showing that the mini-

mum inter-event times can be enlarged if the model uncertainty satisfies certain

conditions.

6
Simulation Tools and Application

Example of the DEBC: Networked

Mobile Robots

Summary

The formation control of networked mobile robots is an example of multi-agent

systems in which a group of robots achieve a common objective (the formation) by

applying distributed control laws and event-based communications. This chapter

gives a description of the problem, some of most common approaches to model

these systems, and how the distributed event-triggered policies can be useful

to reduce communication. An interactive simulator named MaSS (Multi-agent

Systems Simulator) has been developed to emulate this kind of setups. The user

interface of this tool is described, and the software implementation of the real

counterparts is given. Some examples of usage are given to illustrate how the

network and the model of the system can be configured interactively by the user.

The DEBC algorithms have been also implemented in a testbed of real mobile

robots, and the results are presented.

6.1 Introduction

In large scale systems, the interconnection of subsystems can be physical or intro-

duced through the control law, such as the case of cooperative control problems in

multi-agent systems. The focus of this chapter is on the second type of intercon-

176 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

nections, which is also an interesting field to apply the decentralized event-trigger

strategies studied in previous chapters for physically coupled systems.

One example of a group objective for multi-agent systems is the reaching of

a state agreement or consensus, i.e., all agents are supposed to converge to a

common point or state value. Such consensus problems have a variety of applica-

tions in flocking, attitude synchronization in satellite swarms, distributed sensor

networks, congestion control in communication networks, or formation control

[OSFM07]. We are particularly interested in the last field of application since

achieving a stable formation is analogous to reaching consensus. The formation

control problem based on consensus algorithms can be applied to mobile robots

[RBA07], which can be modeled as non-holonomic vehicles.

A centralized approach to formation control makes difficult the scalability

of the problem and it is more sensitive to failure or joining of agents, obsta-

cles in the operating environment, or other external influences, than a neighbor-

based coordination strategy. Recent developments in the fields of communication

technology, wireless technology, and embedded devices have made possible the

implementation of these decentralized techniques in autonomous mobile robots,

since agents are able to exchange information through a shared communication

network, mainly wireless.

Though the problem of multi-agent systems with event-based communications

have been recently addressed [DL12, SDJ13], the study of the effect of communi-

cation networks over the control performance, and in particular over the forma-

tion control, requires still many simulations because of the mutual and complex

influence between control and communication algorithms. Normally, the simu-

lation of networked control systems is done for a specific scenario. Researchers

generally write their programming codes for their particular problems to obtain

the simulation results or they use commercial software such as Matlab/Simulink

to develop simulation tools. The main drawback of these solutions is that, in gen-

eral, they are not so flexible and interactive, and it may be necessary to connect

them to additional software to simulate the network counterpart.

Apart from the lack of simulation tools for multi-agent systems, the evalua-

6.3 Formation Control for Networked Mobile Robots 177

tion of the cited communication strategies has been not carried out so far in an

experimental platform.

The outline of the chapter is as follows. Section 6.3 presents an overview of the

formation control for networked mobile robots. The description of the developed

simulator MaSS is given in Section 6.4. The description of the testbed over which

the DEBC algorithms have been implemented, and the obtained experimental

results are presented.

6.2 Contributions of this chapter

The simulator described in this chapter fills the gap of integrated tools to sim-

ulate the formation control of autonomous agents. The aspects regarding the

control and the communication of a group of networked robots are all merged in

a single tool, which is, moreover, license free. The high degree of interactivity

and flexibility provides a large set of possible experiments in which the coupling

between control and communication can be analyzed.

The triggering mechanisms described in Chapter 4 as well as periodic commu-

nications are implemented. This implementation has been also carried out over

a testbed of mobile robots, showing the benefits of using event-driven communi-

cations.

6.3 Formation Control for Networked Mobile Robots

This section backgrounds the problem under consideration. First, an overview

of multi-agent systems and the consensus problem is given. After that, the for-

mation control is studied as an extension of the consensus problem. The model

for non-holonomic vehicles that has been used in the implementation is provided

subsequently. Finally, the possible transmission policies and the communication

protocols for wireless robotics are discussed.

178 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

6.3.1 Multi-Agent Systems and the Consensus Problem

To set the complete model of this setup, we need to define two features: the

agents’ dynamics and the communication. The simplest model to represent the

communication topology of a multi-agent system is a graph G = {V, E}, where

the nodes V correspond to agents and the edges E between nodes represent com-

munication links between agents. We say that G is connected if there is a path

for any pair of nodes in the network.

According to [OSM04], a simple consensus algorithm to reach an agreement

regarding the state of N single integrator agents of the form ẋi(t) = ui(t) can be

expressed as an nth order linear system on a graph

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)). (6.1)

The dynamics of the group of agents can be written as

ẋ(t) = −Lx(t) (6.2)

where L is the Laplacian graph of the network (or the communication graph) and

its elements are defined as follows

lij =

−1 if j ∈ Ni

|Ni| if j = i,

(6.3)

where |Ni| refers to the number of neighbors of the agent i.

Let us also define the adjacency matrix A of G with entries

aij =

1 if (j, i) ∈ E

0 otherwise ,

and the degree matrix D as the diagonal matrix with diagonal elements di equal

to |Ni|, so that L = D −A.

6.3 Formation Control for Networked Mobile Robots 179

1 2

3 4

5

1 2

3 4

5

a) b)

Figure 6.1: Examples of a) undirected and b) directed graphs.

Example 6.1: Assume a five node multi-agent network with the communication graph de-

picted in Figure 6.1a. In this example, the node 1 can communicate with nodes 2 and 3 but

not with nodes 4 or 5. It holds that V = {1, 2, 3, 4, 5} and

E = {(1, 2), (1, 3), (2, 1), (2, 3), (2, 5), (3, 1), (3, 2), (3, 4), (4, 3), (4, 5), (5, 2), (5, 4)},

and it follows that D = diag(2, 3, 3, 2, 2) and

L =

2 −1 −1 0 0
−1 3 −1 0 −1
−1 −1 3 −1 0

0 0 −1 2 −1
0 −1 0 −1 2

 , A =

0 1 1 0 0
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
0 1 0 1 0

 .

Based on analytical tools from algebraic graph theory, it can be shown that

if the graph is connected, then there is an unique equilibrium state for (6.2) of

the form xeq = α1, where α = 1
N

∑N
i=1 xi(0) and 1 = (1 . . . 1)T [OSFM07].

The above results hold for undirected graphs, i.e., for bidirectional commu-

nications: for any pair (i, j) ∈ E there is another edge (j, i) ∈ E . In a directed

communication graph, there is at least one pair of nodes whose communication is

unidirectional. An example is given in Figure 6.1b. In this case, the node 2 trans-

mits to node 3, but the communication is not allowed in the opposite direction.

Also, nodes 4 and 5 are unidirectionally connected.

For directed graphs, Ni is defined as the set of agents from which agent i

receives information. Note that the Laplacian and adjacency matrices are not

symmetric in this case. Still a consensus can be reached if there is a directed

path connecting any two arbitrary nodes (i, j) of the graph [OSFM07].

180 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

There are also in the literature extensions regarding the agents dynamics

[RBA07, RA07, SSB09, NC10]. For double integrator dynamics ẋi,1(t) = xi,2(t),

ẋi,2(t) = ui(t), the consensus algorithm as introduced in [RA07] is given by

ui(t) =
∑
j∈Ni

(xj,1(t)− xi,1(t)) + γ(xj,2(t)− xi,2(t)), (6.4)

where γ > 0.

For connected and undirected graphs, [RA07] shows that the consensus of

double integrators is achieved, but the agents’ states do not converge to a constant

value but to a state of constant velocity vi = 1
N

∑
j∈Ni xi,2(0), and

lim
t→∞

xi,1(t) = 1
N

N∑
i=1

xi,1(0) + t

N

N∑
i=1

xi,2(0).

In [RMC06], results for nth order consensus are given, and [SSB09, NC10]

study the consensus when the dynamics of each agent is an nth order linear control

system. For instance, for N identical agents of the form ẋi(t) = Axi(t)+Bui(t), a

feedback gain K can be found so that the consensus is reached with the following

control law

ui(t) = K
∑
j∈Ni

(xj(t)− xi(t)).

6.3.2 Formation Control

Last years, the formation control problem of multi-vehicles systems has attracted

the attention of the control community due to its commercial and military appli-

cations. There are several approaches in the literature to distributed formation

control [OSFM07]. Here the focus is on consensus-based controllers in which

formations are represented by vectors of relative positions of neighboring agents.

Let us denote by rij the desired inter-vehicle relative-position vector (see

example in Figure 6.2). For single integrator agents, the following control law

ui(t) =
∑
j∈Ni

(xj(t)− xi(t)− rij), (6.5)

6.3 Formation Control for Networked Mobile Robots 181

i

j

rij

Figure 6.2: Examples of formations of four agents in the plane.

yields the group to achieve the objective of the formation [FM04].

According to (6.5), the overall system dynamics is given by

ẋ(t) = −Lx(t)− r, (6.6)

where ri =
∑
j∈Ni rij , i = 1, . . . , N .

There are some extensions of the protocol above regarding agents dynamics.

For instance, in [LWCV05] the vehicles dynamics are modeled as linear systems,

and a feedback gain is derived under certain conditions.

An example of three different formations in the plane is given in Figure 6.2.

In this case, rij are the (x, y) coordinates of the desired distance between nodes.

Formations with leaders

A special situation occurs when one of the agents does not receive information

from any of the others. Essentially this means that the others are forced to ar-

range their positions in response to the motion of that agent, which is called

the leader of the formation. This problem is known as leader-follower consensus

[LDH09]. Note that if there are multiple leaders where two of them are not coordi-

nately moving, then the formation cannot be asymptotically reached. Hence, let

us assume from now ahead that there is only one leader, if any, in the formation.

The existence of a leader makes the communication graph G directed by

definition, and the row corresponding to the leader in L, A, and D is zero,

and therefore, these matrices are not invertible. For this reason, some authors

[FM04, HH07, NC10] define L, A, and D for the group of vehicles excluding the

leader, and define a new diagonal matrix B, whose diagonal entries are bi = 1 if

182 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

agent i receives information from the leader, and bi = 0 otherwise.

The leader will move according to its dynamics and initial conditions, or

by a given control law, and the rest of the agents will follow it to maintain the

formation. For example, if the leader moves with constant velocity v0, ẋ0(t) = v0,

the following protocol can be defined for the single integrator followers

ui(t) =
∑
j∈Ni

(xj(t)− xi(t)− rij) + bi(x0(t)− xi(t)− ri0). (6.7)

6.3.3 Model of non-holonomic mobile robots

Single or double integrators do not describe properly the dynamics of most of com-

mercial mobile robots, since these cannot move in any direction instantaneously.

In robotics, holonomicity refers to the relationship between the controllable and

total degrees of freedom of a given robot. If the controllable degrees of freedom

are less than the total degrees of freedom the vehicle is non-holonomic.

The non-holonomic model of a mobile robot is depicted in Figure 6.3. The

distance between the back and the front wheels is denoted by d. It is assumed a

single front wheel in this case.

The equations of motion are given by [RA07]

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

miv̇i = fi

Jiω̇i = τi (6.8)

where (xi, yi) is the position in the plane of agent i, θi is the orientation, vi is

the linear velocity, ωi is the angular velocity, fi is the force, τi is the torque, mi

is the mass, and Ji is the mass moment of inertia.

6.3 Formation Control for Networked Mobile Robots 183

Figure 6.3: Non-holonomic mobile robot.

To avoid the non-holonomic constraint introduced by (6.8), let us define

x̄i = xi + d cos θi

ȳi = yi + d sin θi. (6.9)

according to Figure 6.3.

As proposed in [LBY03], the dynamics of the mobile robot can be reformulated

in terms of these coordinates as

 ˙̄xi

˙̄yi

 =

cos θi −d sin θi

sin θi d cos θi

vi
ωi

 . (6.10)

If vi and ωi are considered as the control inputs, the dynamics of the mobile

robot is modeled by a first order model. Alternatively, second time-derivatives

can be computed to produce a second order model

¨̄xi

¨̄yi

 =

−viωi sin θi − dω2
i cos θi

viωi cos θi − dω2
i sin θi

+

 1
m cos θi − d

J sin θi
1
m sin θi d

J cos θi

fi
τi

 , (6.11)

where fi and τi are the control inputs.

Therefore, the formation control problem is formulated as follows: design

control laws so that the formation is reached while applying a consensus-based

coordination scheme. According to that, in the next pages a control law is de-

184 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

signed for the first order model (6.10). After that, the example proposed in

[RA07, Sey10] to control the second-order model (6.11) is presented.

Formation control of first-order non-holonomic mobile robots

The control law ui = (vi, ωi) in (6.10) to reach the desired formation is

vi
ωi

 =

cos θi −d sin θi

sin θi d cos θi

−1

∑
j∈Ni(x̄j − x̄i − (rx,j − rx,i))∑
j∈Ni(ȳj − ȳi − (ry,j − ry,i))

 , (6.12)

where (rx,i, ry,i) are the predefined relative position offsets with respect to the

formation center. From (6.10) and (6.12), it follows that

 ˙̄xi

˙̄yi

 =

∑
j∈Ni(x̄j − x̄i − (rx,j − rx,i))∑
j∈Ni(ȳj − ȳi − (ry,j − ry,i))

 . (6.13)

If stack vectors for the overall system are defined as x̄T = (x̄1 . . . x̄N), ȳT =

(ȳ1 . . . ȳN), rTx = (rx,1 . . . rx,N), and rTy = (ry,1 . . . ry,N), it yields

 ˙̄x

˙̄y

 = −

L 0

0 L

x̄− rx
ȳ − ry

 . (6.14)

Note that the control law (6.12) decouples the system, giving an equivalent

results to (6.6) for single integrators. The group of robots reaches the formation

and the center of this formation is the average of the robots initial positions.

Formation control of second-order non-holonomic mobile robots

According to [RA07], the following feedback linearization can be used in order to

transform the dynamics (6.11) to two decoupled double-integrators

fi
τi

 =

 1
m cos θi − d

J sin θi
1
m sin θi d

J cos θi

−1 viωi sin θi + dω2

i cos θi + f̄i

−viωi cos θi + dω2
i sin θi + τ̄i

 , (6.15)

6.3 Formation Control for Networked Mobile Robots 185

which yields to ¨̄xi

¨̄yi

 =

f̄i
τ̄i

 .
The control law (6.4) can be extended to the formation control problem, giving

the following coordination rule for the group of mobile robots

f̄
τ̄

 = −

L γxL 0 0

0 0 L γyL

x̄− rx

˙̄x

ȳ − ry

˙̄y

, (6.16)

where γx, γy > 0, f̄ = (f̄1 . . . f̄N)T , and τ̄ = (τ̄1 . . . τ̄N)T .

The center of the formation depends on the robots initial positions, and the

group moves with a velocity equal to the average of the initial velocities.

6.3.4 Time-Schedule Control

The formation control laws (6.12) and (6.16) have been proposed for first and sec-

ond order models, respectively, of non-holonomic mobile robots. However, these

control laws require the continuous measurement of the robot and the neighbors

state, which is not achievable in practice, as we have already discussed.

The most common approach is to set a periodic scheduling of measurement

samplings, control updates, and broadcasting over the network. Alternatively,

event-triggering policies for multi-agent systems [SDJ13, DL12] can be adapted

to the formation control problem by redefining the previous control laws as a

function of last broadcasted states:

vi
ωi

 =

cos θi −d sin θi

sin θi d cos θi

−1

∑
j∈Ni

(x̄b,j − x̄b,i − (rx,j − rx,i))

∑
j∈Ni

(ȳb,j − ȳb,i − (ry,j − ry,i))

 (6.17)

186 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

f̄i
τ̄i

 =

∑
j∈Ni

(ˆ̄xj − ˆ̄xi − (rx,j − rx,i) + γx(˙̄xb,j − ˙̄xb,i)
)

∑
j∈Ni

(ˆ̄yj − ˆ̄yi − (ry,j − ry,i) + γy(˙̄yb,j − ˙̄yb,i)
)
 , (6.18)

where

ˆ̄xi = x̄b,i + (t− tik) ˙̄xb,i

ˆ̄yi = ȳb,i + (t− tik) ˙̄yb,i,

and x̄b,i, ȳb,i, ˙̄xb,i, and ˙̄yb,i are the last broadcasted values of x̄i, ȳi, ˙̄xi, and ˙̄yi, re-

spectively, and tik refers to the last broadcasting time of the robot i. The position

(x̄i, ȳi) is approximated by (ˆ̄xi, ˆ̄yi) in (6.18), as proposed in [Sey10]. This can be

assimilated to a model-based estimation.

The occurrence of an event is determined by trigger functions, where the error

of the robot i is defined as

ei =

ex,i
ey,i

 =

x̄b,i − x̄i
ȳb,i − ȳi

for first-order dynamics, and for second-order systems as

ei =

ex,i

γxeẋ,i

ey,i

γyeẏ,i

=

ˆ̄xi − x̄i

γx(˙̄xb,i − ˙̄xi)

ˆ̄yi − ȳi

γy(˙̄yb,i − ˙̄yi)

.

6.3.5 Robot Wireless Communication Protocols

In early robot wireless communications, infrared technology was applied in a large

scale because of its low cost. But infrared waves cannot pass through obstacles,

the communication rate using this technology is poor and the transmission relia-

bility low. Currently Radio Frequency (RF) technology has become the preferred

in the design of mobile robot communication systems. Robots can communicate

6.3 Formation Control for Networked Mobile Robots 187

Table 6.1: Wireless communication technologies for mobile robots.

Infrared IEEE 802.11b/g/n Bluetooth
Band (GHz) 2.4/2.5 2.4/2.5

(Up to) Data-rate (Mbps) 0.1-0.4 11/54/150 1-3
Range (m) 4 140-250 5-100
Power (W) 5E-3 0.4-4 1E-3-0.1

Network structure PPP Infrastructure and ad hoc Ad hoc

with others by RF point-to-point links or broadcasting mechanisms. The prolif-

eration of Internet-like networks has motivated the research to address wireless

LAN (IEEE 802.11), Bluetooth standards, and ad-hoc networking in mobile robot

systems.

The main features of these three wireless communication technologies for mo-

bile robot communications are illustrated in Table 6.1. Wi-Fi (the brand name

for products following IEEE 802.11 standards) uses the same radio frequencies as

Bluetooth, but with higher power, resulting in higher bit rates and better range

from the base station. The nearest equivalents to Bluetooth are the DUN (Dial-

up Networking) profile, which allows devices to act as modem interfaces, and the

PAN (Personal Area Network) profile, which allows for ad-hoc networking.

A wireless communication link is characterized by long bandwidth-delay, dy-

namic connectivity, and error-prone transmission. The robots are often equipped

with low-cost low-power short-range wireless network interfaces, which only allow

direct communication with their near neighbors. Hence, it is virtually impossible

for each node to know the entire network topology at a given time [WLZ05].

Moreover, many in the field on networking argued that Internet protocols were

not convenient to achieve robustness and scalability for such distributed architec-

ture [KDHH+11], and there has been a proliferation of new protocols plenty of

good ideas from the academic and commercial domains but with few impact in the

real world. Examples of routing protocols for mobile ad-hoc networks are Ad-hoc

On Demand distance Vector (AODV) [PR97], Dynamic Source Routing (DSR)

[JM96], while Low Energy Adaptive Clustering Hierarchy (LEACH) [HCB02] is

a cluster-based protocol that includes distributed cluster formation and a hierar-

188 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

chical clustering algorithm. Finally, Routing Protocol for Low power and lossy

networks (RPL) [WTB+12] is a IP-based protocol for this kind of networks.

Three important features usually serve to evaluate the performance of a pro-

tocol [Mar10]:

• Energy efficiency: Low energy consumption is a major objective for battery

equipped devices.

• End-to-end reliability: Reliability is measured as the packet delivery ratio

from each transmitter to the destination. A maximization of the reliability

may require a large number of packet overhead and retransmissions, thus

increasing the energy consumption.

• End-to-end delay: At network layer, delay is computed for successfully

received packets at the destination. A minimization of the delay requires a

high utilization of the transmission resources and a very low duty cycling

between nodes, thus requiring high energy expenditure.

Hence, there is a trade-off between latency, packet losses, and energy consump-

tion in the protocol design. Moreover, when the protocol is devoted to control

applications, it must guarantee the stability of the control system. Despite the

proposal of numerous routing protocols for energy efficient wireless networks,

there is not yet a definite solution.

6.4 MaSS: Multi-agent Systems Simulator

The many control and system configuration options needed to simulate a multi-

agent system demand Graphical User Interfaces (GUI) with high degree of in-

teractivity and flexibility. The GUI designed in this work is intended to make

rapid prototyping and simulation of wireless autonomous agents which execute

distributed control algorithms and perform event-based communications.

The simulator allows users to define the characteristics of the network and test

the control algorithm and the triggering mechanism that rules the control updates

under many possible scenarios before implementing them into a real platform of

6.4 MaSS: Multi-agent Systems Simulator 189

networked robots. Nevertheless, the simulator has been designed keeping the

interaction with the user relatively simple and intuitive in order to also be used

as a pedagogical tool for advanced engineering control courses.

For this purpose, Easy Java Simulations (Ejs) was chosen for the development

of the simulation platform. Ejs is a free software tool that helps to create dy-

namic, interactive scientific simulations in Java language and which offers a high

degree of flexibility as well as high-level graphical capabilities and an increased

degree of interactivity [Esq04]. Ejs is based on an original simplification of the

model-view-control paradigm, structuring the simulation into two main parts: the

model and the view. The model describes the behavior of the system using vari-

ables, ordinary differential equations, and Java code. The view is intended to:

(1) provide a visual representation of the more relevant properties of the model

and its dynamic behavior; and (2) facilitate the user’s interaction on the model.

Additional libraries in Java can also be imported.

In this section, a short background of other existing tools is given. After that,

the simulator is described, including the GUI and the system modeling with Ejs.

6.4.1 Existing tools

Most of the simulators for the formation control of a team of networked vehi-

cles/robots use different software to emulate the real control and the network

counterparts, which are connected and synchronized afterwards.

Some companies dedicated to the design and manufacture of autonomous

mobile robotic systems provide the software to simulate their products. For

example, MobileSim [VH08] is an open-source Amigobot and Pioneer simulator

[Mob13], also provided by Mobile Robots Inc. It has a customizable interface

for users to design and simulate different models of MobileRobots/ActivMedia

robots [Mob13]. However, most operations are run through commands and the

supported protocols are specific for these robots.

Also in the academical world some research groups have developed software

to compare experimental test-beds. Because the Matlab/Simulink is a well-

known environment in the control and communication community, it is frequently

190 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

present in these developments. For example, in PiccSIM [NPEJ07] the dynam-

ics and the control algorithm are implemented in Simulink, and ns-2 [ntNS12] is

used for the simulation of the network. In [Mas11], we can find another example.

In this case, the software is produced with the Matlab Virtual Reality Markup

Language (VRML) Toolbox. Outside the robotic community, NetMarSys is a

specific simulator for networked marine vehicles [VAP08] and it is also based on

Matlab.

All of these tools have a common characteristic: the lack of interactivity and

flexibility. Although they usually have a GUI, most of the operations carried out

by the user are through commands, or the change of the parameters requires to

restart the simulation and run it again.

On the contrary, the interactivity provided by the proposed simulator allows

user to immediately appreciate the effect of any change in the control or the

network counterparts over the system. Moreover, when more than one software

tool needs to be installed, the communication between them becomes a tough

problem and the final user has to spend some time installing and synchronizing

them. The main advantage of integrating all in one tool is that it is easy to

study all aspects of communication and control in networked robots, including

the interaction between them.

6.4.2 Description of the GUI

The user interface of the MaSS simulator is shown in Figure 6.4. It has five main

panels, a menu bar, and a small task bar. The two upper panels of the interface

provide a quick view of the multi-agent system and a time plot of the output and

control signals. The top left panel (No. 3) shows an animation of the complete

multi-agent system. Each agent is numbered and shows a trace of its trajectories.

Network links are depicted as arrows between agents.

The agents connected by links are known as neighbors. By default, the links

provide bidirectional communication, although one way communication is also

allowed. So, in Figure 6.4, it is simulated a multi-agent system with four robots

linked by three bidirectional links: 0 ↔ 1, 1 ↔ 2, 2 ↔ 3. Finally, this panel

6.4 MaSS: Multi-agent Systems Simulator 191

1

2

3 4

5 6

7

Figure 6.4: View of the GUI.

allows speeding up or down the simulation by dragging the slider Simulation vel.

The lower left panel, named Agent Parameters (No. 5), allows users to set

the number of agents in the system, as well as to add and remove a particular

agent. Using this panel, it is also possible to set an agent as leader, which means

that the agent can be moved (i.e., dragged by the user) freely in the coordinate

system, and the rest of the agents moves to keep the desired formation. The

links between the leader and its neighbors are changed to unidirectional links

automatically.

The two time plots on the top right panel (No. 4), which are grouped in the

System Signals tab, display the relative distance to the desired formation as well

as the control actions of each agent. There are also plots grouped in the Network

Signals tab (shown in Figure 6.4), which provide mainly information about the

dispatched and arrival time of the packets. The average network delay is also

shown in this tab.

The lower panel, named Network Parameters (No. 7), is devoted to configure

the behavior of the network. Users can choose the drop down list Delay to set a

constant or variable network delay. Packet loss probability can be set by using

192 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

the drop down list Packet Loss. The topology of the network (bidirectional or

unidirectional links) can be changed after pressing the button Topology and click-

ing on the agents to be connected. Advanced network functionalities, such as flow

control or automatic acknowledgment packets, can be set as well. Additionally,

the user can configure a bit error rate in the transmission of packets.

The lower right panel Control Parameters (No. 6) is used to specify the time-

scheduling communication and control. This option specifies the conditions that

trigger the sending of packets from one agent to its neighbors in order to update

the control actions. The events can be triggered periodically or when the position

of an agent has changed and it is greater than a threshold (send on delta policy).

The components of the interface described earlier provide the basic functional-

ity required to operate the application. However, there are also advanced options

available in the menu bar (No. 1) which provides some additional features such

as the possibility to:

• Specify the dynamic model of the agents (first order, second order) and

define coupling terms which dynamically couple neighboring agents.

• Select a predefined multi-agent system configuration to perform with the

simulator.

• Load and save user-defined multi-agent system configurations.

The interface is completed with a top task bar (No. 2) that provides buttons to

start, pause, and reset the simulation. Finally, there is a button to save the state

variables of the agents and the system configuration in Matlab language in order

to perform further analysis of a simulation.

6.4.3 Modeling a multi-agent system in Ejs

The model of each node in the multi-agent system is basically the same described

in Chapter 4 (Figure 6.5) for interconnected systems, but specifically assuming

that the information is sent through the network in packets of a given structure,

which is detailed later.

6.4 MaSS: Multi-agent Systems Simulator 193

Dynamics

Microprocessor

Agent i

)(txi)(tui

Microprocessor

Event

detector
Controller

Receive Transmit

)(, tx jb
...)(, tx ib

...

Figure 6.5: Scheme of one node.

Hence, the simulator has to implement:

• The system dynamics, including the agents dynamics and the topology of

the system.

• The tasks performed by the microprocessor, i.e., deciding when to broadcast

the state, computing the control law and transmitting and receiving the

packets through the network.

• The network itself, that is, the process of transmitting information from one

node to another, taking into account the properties defined by the user.

We next describe the implementation of the three aspects mentioned above.

The system dynamics

Ejs provides an interface to define the dynamics of a system through differential

equations. Moreover, we can specify the dynamics of a set of entities. Several

pages of differential equations are allowed but only one can be enabled at a given

time instant. It is the programmer task to take care of possible inconsistencies

when switching from one dynamics to another.

Example 6.2: Figure 6.6 shows the Ejs pages where the dynamics of the multi-agent system

is defined. The page above, which is enabled by default, corresponds to the first order

model (6.10). The page for the second order model (6.11) is shown below. When the user

changes the model of the agents through the GUI a method is executed to enable the selected

dynamics and to disable the old ones. It also captures the current time as the initial time of

the new experiment and resets the control inputs.

Besides the dynamics of the agents, the communication graph is initialized to

194 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

Enabled
dynamics

Disabled
dynamics

Set of
DOE

Figure 6.6: Screenshot of Evolution pages in Ejs.

a default value and it is updated when a new experiment is selected or new links

are added/removed by the user.

The microprocessor

The first task that the microprocessor performs is the detection of events by

monitoring the state of the agent (event-based policies) and the internal clock

(periodic triggering). Ejs provides specific pages to define the events detection

and the routine to execute after the triggering. This routine is executed at the

time of the detection of the event, i.e., the simulation is “stopped” until the

procedure is completed.

Listings 6.1 and 6.2 show an example for first order dynamics. An event is

detected when the variable tol reaches the zero value. If the transmission policy

is event-triggered, tol=0 when e[i] (‖ei‖) reaches the threshold c. Note that

in the periodic case the event to detect is the time instance that equals the next

sampling time (line 11 in Listing 6.1), where incr is an internal count and tpo

6.4 MaSS: Multi-agent Systems Simulator 195

Listing 6.1: Code to detect events.
1 /* Event-triggering */
2 if(control_type.equals("Events: c cte")||control_type.equals("Events: c var."))
3 {
4 c=(c0+c1*Math.exp(-alpha*(t-ti)));
5 e[i]=computeError(x_b[i][i],x[i],y_b[i][i],y[i]);
6 tol=c-e[i];
7 }
8 /* Periodic sampling. Parameter c is reconverted to Ts */
9 else {

10 c=c0;
11 tol=incr*c-(t-tpo);
12 }
13 return tol;

is the time at which the periodic sampling started.

The broadcasted state of an agent i to a neighbor j is denoted as (x b[i][j],

y b[i][j]). Hence, (x b[i][i], y b[i][i]) refers to the last broadcasted state

of the agent i, which immediately updates the value. The value of (x b[i][j],

y b[i][j]) may neither be the same in different neighbors nor equal to (x b[i][i],

y b[i][i]) at a given time for unreliable networks.

The second task executed by the microprocessor is the computation of the

control law, i.e., (6.12) for the first order model and (6.15) for the second order

model. The update of the control law is performed only at event times (line 3 in

Listing 6.2) and holds constant between events.

Finally, the microprocessor is in charge of encapsulating the data into a packet,

sending it over the network, reading the incoming packets, and extracting the

data.

The structure of a packet is shown in Figure 6.7. The header field identifies

the packet and contains the sender and the receiver address devices. The payload

contains the data to transmit (state and time stamp). The frame control and

check sequence are not used in this implementation.

For each packet, the MaSS simulator associates a value to the delay, determines

if the packet is successfully transmitted or not, and corrupts the data in the

packet with a given probability. This is represented on the right of Figure 6.7.

Moreover, if the Acknowledgment signal is required, the receiver sends an

ACK packet to confirm the reception. The ACK packets are assumed to be

196 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

Listing 6.2: Routine of treatment of events.
1 x_b[i][i]=x[i];
2 y_b[i][i]=y[i];
3 u[i]=control1(i,x_b[i],y_b[i],th,x_ref,y_ref);
4 broadcast(i);
5 t_b[i]=t;
6 colorTransmission[i]=new java.awt.Color(255,128,0);
7 N_events=N_events+1;
8 if(control_type.equals("Periodic"))
9 incr=incr+1;

always delivered with a short delay (10 ms) due to its small size. If an ACK is

not received before a given waiting time, the packet is treated as lost, but not

retry occurs and the agent will send a new packet after the occurrence of a new

event.

The network

The MaSS simulator implements the network as a collection of buffers. The

packets are stored in these data structures and the reaching to the destination

is also handled by Ejs events. A class named as packet and the corresponding

methods have been implemented to encapsulate the communications functions.

Short examples of code are given in Listing 6.3. In lines 2-9 the code to detect

the next network event is shown. When the simulation time t reaches the value

t min, the routine of treatment of events is executed (lines 11-16). The variable

dim st refers to the dimension of the state, which is 2 in this example (first order

model).

More than one network event may need to be handled at a given time, for

instance, if the network delay is set to be constant or zero, a broadcasted state

should be received at the same time in all the neighbors. In this case, the requests

are processed sequentially though from the simulation time point of view all

Frame

Control

Packet

ID

Address

Info
Broadcasted state xi Time Stamp

Check

Seq.

Delay

P. loss

Errors
Header Payload Footer

Figure 6.7: Structure of a data packet.

6.4 MaSS: Multi-agent Systems Simulator 197

Listing 6.3: Code to compute the next reception time of a packet (lines 2-9) and to execute
after the detection of an event (lines 11-16).
1 /* Code to detect the time of the next packet reception time */
2 double t_min0=100+t;
3 t_min=t_min0;
4 double tol=0.1;
5 t_min=getNextPacketTime();
6 if (t_min<t_min0) {
7 tol=-(t-t_min);
8 }
9 return tol;

10 /* Routine executed when an event is detected */
11 NpendPacket=getPacketsToAttend();
12 int dim_st=2;
13 for(int i=0;i<NpendPacket;i++) {
14 processPacket(i,dim_st);
15 prepareNextReception(i);
16 }

receptions are simultaneous, preserving the distributed architecture of the system.

Listing 6.4 shows extracts of the functions getNextPacketTime() (line 5 in

Listing 6.3) and getPacketsToAttend() (line 11 in Listing 6.3). Each receiver

agent j has a buffer of a given capacity buffer cap, in which the packets are

virtually stored until they are processed or discarded.

6.4.4 Using MaSS

We next describe some examples of how to use MaSS.

Experiment 1: Bidirectional communication links, constant delay,

first order model

Let us assume that the system goes from an initial configuration to the formation

of Figure 6.4 with the following bidirectional links: 0↔ 1, 1↔ 2, 2↔ 3.

In this case, the communication is bidirectional and delayed 100 ms in every

link. The trigger mechanism is defined as fi(ei(t)) = ‖ei(t)‖−0.002−0.25e−0.65t,

which means that the threshold to trigger the events is not constant and decrease

as time increases. Thus, large errors are allowed when the robots are far away

from the desired formation, but when they get close, events are triggered to

prevent from stationary errors.

The chronogram at the bottom of the right hand side of Figure 6.4 reflects

198 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

Listing 6.4: Extracts of code of getNextPacketTime() and getPacketsToAttend().
1 /* Begin of getNextPacketTime */
2 double getNextPacketTime () {
3 double t_min=100+t;
4 ...
5 int i_buffer=0;
6 while(i_buffer<buffer_cap) {
7 p2=nextPacket(buffer[j]);
8 if(p2!=null && ((packet)p2).getTS()!=-1.0) {
9 if((((packet)p2).getDelay()+((packet)p2).getTS())<t_min) {

10 t_min=((packet)p2).getDelay()+((packet)p2).getTS();
11 }
12 }
13 i_buffer+=1;
14 }
15 ...
16 return t_min;
17 }
18 /* Begin of getPacketsToAttend() */
19 int getPacketsToAttend() {
20 int NpendPackets=0;
21 ...
22 p2=nextPacket(pendPackets[j]);
23 if(p2!=null && ((packet)p2).getTS()!=-1.0) {
24 if((((packet)p2).getDelay()+((packet)p2).getTS())==t_min) {
25 i_min[NpendPackets]=i;
26 j_min[NpendPackets]=j;
27 NpendPackets+=1;
28 }
29 }
30 ...
31 return NpendPackets;
32 }

the described characteristics of the links. For example, at time 8.5 s Agent 2

broadcasts its state to its neighbors, which are Agent 3 and 1 from the definition

of the topology. The orange arrows represent packets correctly delivered. Because

the probability of losing a packet is zero, all packets are delivered. Moreover, all

arrows have the same slope since the delay of the network is constant and equal

to 100 ms.

Experiment 2: Directed graph, random delay, packet losses, sec-

ond order model

Let us change the topology of the network removing the link 1→ 2 and adding the

links 1→ 3, 3→ 0. This can be done online by clicking on the button Change...,

then on the two agents involved in the link, and finally selecting Delete or Add.

Let us give a value of 20% to the probability of losing a packet, define the delay

6.4 MaSS: Multi-agent Systems Simulator 199

Figure 6.8: Example of chronogram. Delivered packets are in orange, red
arrows are lost packets, and green arrows correspond to discarded packets.

as random with maximum value of 300 ms and set to true the checkbox of Flow

control. Moreover, let us change the dynamics of the vehicles to a second order

non-holonomic model, and select a different experiment to change the desired

formation. Figure 6.8 shows the packets flow chronogram in a time slot.

The red arrows correspond to lost packets. For example, at time 17.35 s, the

agent 1 sent a packet to its neighbor 0, but for some reason the communication

link was broken. Note that defining a packet loss probability gives a time varying

topology. Packet losses can be caused by interference with other networks, the

presence of obstacles or packet collisions, and these losses have a direct effect over

the control performance. Note that because we have changed the topology, the

agent 1 does not transmit information to agent 2 (as in Figure 6.4), but to agent

3; and agent 3 does so to agent 0.

The third type of arrow is green colored and corresponds to packets arrived

correctly but discarded because they contained old information. In Figure 6.8,

agent 2 discards one packet from agent 3 at time 16.1 s because it has already

received a measured from 3 which was taken later on time. Other packets are

discarded at time 17.54 s and 17.62 s.

Experiment 3: Designating a leader

An interesting experiment is the behavior of the system when there is a leader

in the group. A leader determines by itself the actions to take, which from the

communication point of view means that it sends its state to its neighbors but it

200 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

t = 20 s t = 27 s

t = 30 s t = 34 s

a)

c)

b)

d)

Figure 6.9: Example of experiment with a leader at different instants of
time.

does not receive information from them.

Thus, once the system has reached the formation aforementioned, we add a

new agent, labeled as 4, and we define it as leader of the group (see Figure 6.9a).

Figures 6.9b, 6.9c, and 6.9d depict the animation of how the other agents move

to get the formation around the leader at different instants of time. If you look at

the red cross, you see that the leader did not move. Note that at the beginning,

the four agents were spatially distributed in a circle of a given radius, which seems

as a square. Because we add a new agent, the desired formation changes to a

pentagon to keep the agents equidistant between each other.

Experiment 4: Save data to Matlab file

Another interesting capability of the simulator is to store the data in a Matlab file

to further analysis. This is very useful when other same experiment is performed

to the system under the variation of a parameter and compare the performance

6.4 MaSS: Multi-agent Systems Simulator 201

afterwards. So, as an example let us consider the following scenario:

• Agents’ model: 4 first-order non-holonomic vehicles.

• Desired formation: A square of 0.85 u. side.

• Communication method: Event-triggered with constant threshold c0 =

0.025.

• Acknowledgment of packets.

• Network delay: Constant, 100 ms,

and let us analyze the results when 1) packets dropouts are modeled as a Bernoulli

distribution of probability p = 0.1, and 2) packet dropouts are influenced by

transmission rate assuming that when this rate increases so does the probability

of packet collisions.

The results are presented in Figure 6.10 and 6.11. The trajectories of the

agents for both cases are depicted in Figure 6.10. The initial and final positions

are marked with crosses and circles, respectively. The blue lines correspond to

Case 1 and the red lines to Case 2. Observe that in both cases the formation is

reached, though the final positions are different because the consensus algorithm

only preserves relative distances and the final absolute positions depend on initial

conditions and disturbances.

In Figure 6.11a the distance to the formation di =
√

(x̄i − rx,i)2 + (ȳi − ry,i)2

is depicted. Observe that in Case 2 there is an oscillatory behavior and the

formation is reached later due to the degradation of the network performance

(Figure 6.11c). The network performance is defined as the ratio of delivered to

sent packets.

The packet transmission rate is shown in 6.11b. One can conclude that the

degradation of the performance of the network has a direct effect into the perfor-

mance of the system.

202 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

Figure 6.10: Matlab figure corresponding to the trajectories of the agents
in the experiment 4.

0

0.5

1

1.5

0

200

400

600

P
ac

ke
ts

ra
te

(
1
)

0 5 10 15
0

0.5

1

(s)

P
er

fo
rm

a
n
ce

a)

b)

c)

d
i
(m

)
s

t

-

Figure 6.11: Distance to the formation, packets rate, and performance
corresponding to experiment 4 (Matlab figure).

6.5 Application example to a real testbed

The DEBC has been implemented in a testbed of real mobile robots. The proto-

types taken for experimentation are the Moway robots [mOw13], which are built

on low-cost components but still have high potential for experimentation in an

educational environment.

The experimental framework and the experimental results are presented next.

6.5 Application example to a real testbed 203

6.5.1 Experimental framework

The experimental framework used to test DEBC is part of a remote laboratory

developed to teach robotics. A full description of this laboratory can be found in

[Fab13].

Moway mobile robots

Moway robots are autonomous small programmable robots mainly designed to

develop practical applications in an educational environment. The components

of these robots are: a microcontroller, two independent servo motors, a battery,

a light sensor, a temperature sensor, four infrared sensors, two infrared line sen-

sors, four LEDs diodes, three-axis accelerometer, a speaker tone generator, and

a microphone. All these peripherals are connected to the microcontroller respon-

sible for governing the robot [mOw13]. Another important component is the RF

(Radio Frequency) module that enables wireless communication with other RF

devices.

The main handicap of these prototypes is the need of an external device

to measure the position and orientation. In order to overcome this problem,

additional components are required. The description of these elements is provided

next.

Measurement and communication systems

Measurement and communication systems are depicted in Figure 6.12. Several

hardware and software components exchange information to perform both tasks:

• CCD camera: It is installed on the ceiling of the laboratory, and it captures

the video that will be processed by a software tool to determine the robots

position and orientation. It is connected to a computer via a FireWire port.

• SwissTrack: This application is an open source tool developed at EPFL to

track objects using a camera or a recorded video as input source [CSdM+06,

LRCC08]. Hence, the values of xi, yi and θi are determined by this soft-

204 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

SwissTrack
Gateway

module

RF USB CCD cam

RF RF RF

Figure 6.12: Experimental framework block diagram. Dotted lines represent
wireless communications, and the exchange of information between hardware
and software components is symbolized by solid lines.

ware, which processes the incoming images from the CCD camera. This

information is retrieved via TCP/IP in form of packets.

• Gateway Module: This application is running at the same computer than

SwissTrack, and it is in charge of processing the measurements and sending

the data through the RF USB device to the robots.

This architecture emulates the position sensors of the robots. Each of them

receives its state, sends it to its neighbors when required, and computes the

control law (vi and ωi).

6.5.2 Experimental results

Experiment 1: Consensus protocol

Description of the experiment. Let us consider four mobile robots, labeled

as 2, 3, 4, and 5. The communication topology as well as the initial and desired

formation is depicted in Figure 6.13. The graph has directed links, but the

consensus can be reached, and hence, the formation, because there is a directed

path connecting any two arbitrary nodes of the graph [OSFM07]. The initial

6.5 Application example to a real testbed 205

3 4

2 5 2 4 3

5

Figure 6.13: Scheme of the communication topology, initial formation (left)
and desired formation (right).

conditions are:

x(0) = (0 60 −50 0)T

y(0) = (0 0 0 40)T

θ(0) = (198 280 262 179)T ,

and the desired inter-vehicle relative-position vector r = (rx, ry) is

rx = (−20 −20 20 20)T

ry = (−20 20 20 −20)T . (6.19)

The control law is computed according to (6.17).

Time-triggered vs. event-triggered communications. The experiment

described above is performed with time-triggered communications and with event-

triggered communications. The period is set to Ts = 250 ms in the time-triggered

case. The value of Ts should not be below 200 ms due to the constraints imposed

by the measurement and communication systems, and by the robots microcon-

troller. The threshold of the trigger function is set to a constant value c0 = 4

cm. A larger value would cause an excessive formation error, and a smaller value

would not provide much benefit respect to periodic communication. Moreover,

the measurements taken by the camera have an estimated error around 2 cm.

The results for both approaches are illustrated in Figure 6.14. The formation

is reached in both cases but the center of the formation is different although the

initial conditions are the same. This is a side effect of real communications, since

206 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

−50 0 50
−80

−60

−40

−20

0

20

40

60

80
Event-triggered

x (cm)
−50 0 50

−80

−60

−40

−20

0

20

40

60

80

x (cm)

Time-triggered

y
(c
m
)

Figure 6.14: Representation in the plane of the trajectories of each robot for
time-triggered (left) and event-triggered (right) communications and consen-
sus protocols. Agent 2 (blue), agent 3 (red), agent 4 (green), and agent 5
(magenta). The initial an final positions are marked with crosses and circles
of the same color, respectively.

the trajectories of the robots are affected by delays, communication losses, etc.

Six shots of the experiment for the event-based communication case are shown

in Figure 6.15. Note that the formation is almost reached at t = 10 s. This is

also illustrated if the distance to the formation is computed as

di =
√

(x̄i − rx,i)2 + (ȳi − ry,i)2

for each robot. Figure 6.16 depicts di over time. For the event-based case, di is

almost equal for the four agents at t = 11.5 s. However, disturbances possibly

affect the robot 4, which is the latest robot to stop.

If periodic and event-driven communications are compared, the time instant

at which the formation is reached is similar in both approaches. However, if

the amount of communication required is computed for both cases, the goodness

of the event is highlighted. The number of events is summarized in Table 6.2.

The total number of communications is the number of events plus the result of

multiplying the number of events by the number of agents to which each robot

sends information. This accounts for 356, whereas the number of transmissions

6.5 Application example to a real testbed 207

2

3

4

5 5

4

3

2
2

2
2

2

3

3 3
3

4

4
4

4

5

5

5 5

y x

t = 0.0 s t = 2.5 s t = 5.0 s

t = 7.5 s t = 10.0 s t = 20.0 s

Figure 6.15: Shots of the consensus protocol experiment with event-
triggered communications at six instants of time.

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

d
i
(c
m
)

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

t (s)

d
i
(c
m
)

Figure 6.16: Distance to the formation over time for time-triggered (above)
and event-triggered (below) communications and consensus protocols. Agent
2 (blue), agent 3 (red), agent 4 (green), and agent 5 (magenta).

for the periodic approach is

(tf − t0
Ts

+1)×(No. robots+No. links) = 89×(4+5) = 801 transmissions, (6.20)

where t0 = 0 s and tf = 22 s.

Energy consumption. The number of transmissions is related to the energy

consumption. The RF module of the Moway robots has the following character-

istics [mOw10]:

• Transmission current It: 11.3 mA

208 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

Table 6.2: Number of events generated by each robot.

Robot No. events No. broadcasts
2 26 52
3 36 36
4 54 54
5 49 49

Total: 165 191

• Reception current Ir: 12.3 mA

• Average voltage VRF : 2.75 V

• Duration of transmission/reception δtRF (estimated): 10 ms.

Note that the number of receptions and transmissions have to be considered

separately to compute the energy consumption. When an event is detected by

the Gateway module, the state is transmitted to the robot. Thus, energy is

consumed in the reception at the robot. Then, the robot sends this information

to the neighbors. This process consumes energy in the transmission (at the

sender) and in the reception (at the receiver). Thus, the energy consumption due

to the transmission/reception of the RF modules for the event-triggered approach

is:

EET = VRF δtRF
(
No. events× Ir + No. broadcasts× (Ir + It)

)
= 2.75[V] · 0.01[s] ·

(
165 · 0.123[A] + 191 · (0.123[A] + 0.113[A])

)
= 1.80[J].

According to the aforesaid and to (6.20), it follows that the energy consumption

for the time driven approach is

ETT = 2.75[V] · 0.05[s] · (809 · 0.123[A] + 89 · 5 · 0.113[A]) = 4.09[J].

Thus, the energy consumption is reduced 56 % with event-triggered communica-

tions in this experiment.

However, the following question can be raised: Does this reduction in com-

munication cause an increase in the energy consumption by other tasks such as

6.5 Application example to a real testbed 209

−100

0

100

v
i

−10

0

10
ω
i

−100

0

100

v
i

0 2 4 6 8 10 12 14 16 18 20 22
−10

0

10

t (s)

ω
i

a)

b)

c)

d)

Figure 6.17: Control signals: a) vi time-triggered, b) vi event-triggered, c)
ωi time-triggered, d) ωi event-triggered approaches. Agent 2 (blue), agent
3 (red), agent 4 (green), and agent 5 (magenta).

actuation? The evolution of control law values is depicted in Figure 6.17. The

values of vi and wi obtained from (6.17) are scaled by constant gains, and then

the library that controls the motors of the Moway robots converts the calculated

signals into commands that are applied to each motor. Hence, it is difficult to

evaluate the energy consumed, but still possible to compare the efficiency of time-

driven and event-driven approaches if the following parameters are computed:

Wvi =
∫ tf

t0
|vi(t)|dt (6.21)

Wωi =
∫ tf

t0
|ωi(t)|dt. (6.22)

The results are summed up in Table 6.3. As expected, event-driven communica-

tions does not yield an increase in Vvi and Wωi . Moreover, an additional benefit

is the reduction of the microprocessor load, since the actuation task is updated

less often, and this also reduces the energy consumption.

Experiment 2: Leader-follower protocol

The experiment described in the previous section is repeated when a leader of the

group is defined. Specifically, the communication graph is redefined as depicted

in Figure 6.18, and the robot 2 is the leader. It computes its control law to reach

210 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

Table 6.3: Wvi and Wωi with event-based and periodic communications for
each robot.

Periodic Event-based
Robot Wvi Wωi Wvi Wωi

2 404.43 35.35 285.50 22.28
3 119.68 11.47 166.55 13.89
4 658.92 66.16 360.01 36.85
5 375.92 35.29 332.80 44.80

Table 6.4: Number of events generated by each robot.

Robot No. events No. broadcasts
2 9 18
3 21 21
4 37 37
5 48 0

Total: 111 76

its desired position [−20,−20] as

v2

ω2

 =

cos θ2 −d sin θ2

sin θ2 d cos θ2

−1−20− x̄b,2

−20− ȳb,2

 .

The experiment is performed with time-triggered communications and with

event-triggered communications, and the results comparative is illustrated in Fig-

ure 6.19. The consensus is not longer reached due to the existence of a leader,

and the final positions are equal to the desired inter-vehicle relative-position vec-

tor r (6.19). In the event-based approach, the number of events for each robot

accounts for 9, 21, 37, and 48 (see Table 6.4), whereas in the periodic case the

number of executions of the measurement task is 73 for each robot. This yields

3 4

2 5 2 4 3

5

Figure 6.18: Scheme of the communication topology, initial formation (left)
and desired formation (right).

6.6 Conclusions 211

−50 0 50
−80

−60

−40

−20

0

20

40

60

80

x (cm)

y
(c

m
)

−50 0 50
−80

−60

−40

−20

0

20

40

60

80

x (cm)

Figure 6.19: Representation in the plane of the trajectories of each robot
for time-triggered (left) and event-triggered (right) communications. Agent
2 (blue), agent 3 (red), agent 4 (green), and agent 5 (magenta). The initial
an final positions are marked with crosses and circles of the same color,
respectively. The desired formation is represented by the circles in light
colors.

a total number of transmissions of 191 for the event-based case, and 584 for the

periodic case (computed as in (6.20)). Similar conclusions can be extracted for

the energy consumption as in the consensus protocol.

Note that the robots does not exactly achieve the formation. This might be

because of measurement errors by the camera, actuators deadzone, etc. Another

problem that is illustrated in the experiment is the loss of communication. For

instance, the robot 2 does not receive its position from the measurement system

(see Figure 6.19 right). Hence, events are not detected even if the robot is moving,

the control law is not updated, and the current state is not send to the neighbors.

6.6 Conclusions

The formation control of mobile robots has been presented as an application

example in which the use of DEBC can be useful. An interactive simulator has

been developed in which the system dynamics, the control task, and the network

effects have been modeled. The tool offers high flexibility and allows to test the

model under a wide range of scenarios. Several examples of how the simulator

can be used have been provided.

212 6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots

The DEBC has been also implemented over a real testbed of mobile robots.

The experimental results illustrate the reduction in the number of transmissions

with event-based communications, which implies energy saving. They also mani-

fest some of the problems that need to be faced when dealing with a real system

such as loss of communication, measurement errors or actuators deadzone.

7
Conclusions and Future Work

7.1 Conclusions

This thesis has addressed several problems of NCS, with special attention on the

reduction of the amount of communication between the different components pre-

sented in the networked control loop, but also on tackling other induced problems

such as delays or packet losses. Event-triggered policies have shown to be effec-

tive to cope with this problems in the studied scenarios, and several applications

have been implemented to back the theoretical results.

More specifically, Chapter 2 has addressed the problem of remote controllers.

The proposed solution lies on the design of two middleware layers which interface

the conventional components with the network, being a model of the plant the

most important element of the layer at the controller side. The iteration of the

model and the basis controller allows us to generate finite-length signal predictions

to cope with delays and packet losses effectively. Moreover, the inclusion of event-

triggering policies let us reduce the frequency of the communication and gives a

robust response to disturbances.

The lack of synchronization between the controller and the rest of the elements

of the control loop does not allow to measure delays. This limitation has been

overcome measuring the RTT from the controller side. Moreover, a disturbance

estimator has been designed to get better predictions of the future states of the

214 7 Conclusions and Future Work

process. If the full state cannot be measured, a mixed solution between the use

of observers and LTI controllers has been proposed, and particularized to PI

controllers. The stability of the system has been studied via Lyapunov-based

analysis for the three situations aforementioned.

The implementation of the two middleware layers in LabVIEW has been

described in Chapter 3. These applications let us reuse conventional controllers

in networked control with little effort. Several experiments have been designed

to test the controller under treacherous network conditions. The experimental

results have illustrated the goodness of the proposed solution.

The second part of the thesis has focused on distributed control in NCS.

In particular, event-triggered control has been proposed to reduce the amount of

communication and actuation in interconnected linear systems. Chapter 4 tackles

this problem for both perfect and non-perfect decoupled systems, showing that

asymptotic convergence to the equilibrium for the overall system can be achieved

while guaranteeing a lower bound for the inter-event times if time-dependent

trigger functions are used.

Several extensions to the aforesaid design have been proposed in Chapter 5.

Specifically, the problem of delays and packet losses in distributed event-triggered

control has been addressed. Two network protocols have been designed, and one

of them deals with the problem of state inconsistency providing larger upper

bounds on the delay and packet losses. Moreover, the properties of asymptotic

stability and minimum inter-event time are preserved with these protocols.

Two improvements have been also described in Chapter 5 to provide a more

efficient usage of the the resources of embedded systems. If the frequency of

actuation in the system cannot exceed a certain value, a second set of trigger

functions can be designed to control the update of the control law in distributed

control systems. Moreover, if the critical issue is the frequency of transmission,

a distributed model-based design can be used to enlarge the inter-event times.

Finally, Chapter 6 has reported the development of a simulator to test dis-

tributed event-triggering in networked mobile robots. This tool provides a high

degree of interactivity, and therefore it is suitable for an education environment,

7.2 Future work 215

and it makes possible to test the control algorithms under a wide range of sce-

narios as well. Finally, the validation over a testbed of mobile robots has been

given.

7.2 Future work

This work can be extended in several directions. Some suggestions are listed

below.

• Centralized and decentralized model-based event-triggered control approa-

ches have been proposed in chapters 2 and 5 to enlarge the inter-event time

in single loop and multi-loop schemes, respectively. If a perfect model can-

not be assumed, the model uncertainty negatively affects the performance

of the system and the frequency of generation of events. Possible solutions

may be found on the study of adaptive control [rW95] or online parame-

ters estimation techniques [Lju99]. Our guess is that there is not a trivial

solution, because event-triggered systems can be seen as time-varying pa-

rameters systems, and there is not a priori knowledge of when the next

event will take place. Moreover, the problem is more complicated in dis-

tributed paradigms because the effect of the interconnection terms and the

model uncertainties cannot be distinguished a priori. There is a recent con-

tribution [GA11b] that deals with the adaptive stabilization of centralized

model-based control problem for discrete-time linear systems by variations

of the Kalman Filter. However, the requirement of zero-mean white noise

does not fit into the error profile introduced by event-based control.

• Even though the distributed event-based control approach addressed in this

thesis facilitates the scalability of the system since the feedback and the

decoupling gains are designed locally, the parameter α of the trigger func-

tions is constrained by global information of the system such as λmax(AK),

κ(V) or ‖∆‖. The use of distributed algorithms [YFG+08, YFL08] in an

event-based fashion to estimate global information of the system is another

216 7 Conclusions and Future Work

possible direction of future research.

• There are many fields in which event-triggered control can be useful such

as electrical grids, satellite swarms, traffic networks, irrigation channels,

and photobioreactors. In this kind of systems, an energy aware design for

distributed control is desirable, and event-triggering pursues this goal. In

this regard, there is already an ongoing research project for photobioreactors

[S1́3], and recent collaborations for electrical grids and traffic networks.

• The middleware layers have been implemented in LabVIEW. However, it

would be desirable that the application at the client side was built with

a license-free software. Thus, Ejs seems adequate for this purpose, and

this direction would also follow the scheme of remote laboratories proposed

in [Var10], that would be transformed into remote controlled laboratories.

Moreover, the modularity of the middleware layers, and in particular of the

CAL, makes it suitable for its implementation as an Ejs element, which

is quite similar to a Java library [FGElT+12] but provides an application

programming interface (API) for its customization. With respect to the

MaSS simulator, the library and the code concerning the network could

also be implemented as an Ejs element to improve its portability.

Bibliography

[AAJ+11] J. Araujo, A. Anta, M. Mazo Jr., J. Faria, A. Hernandez,

P. Tabuada, and K. H. Johansson. Self-triggered control over wire-

less sensor and actuator networks. In International Conference on

Distributed Computing in Sensor Systems and Workshops, pages

1–9, Barcelona, 2011.

[AKK04] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wire-

less sensor networks: a survey. IEEE Transactions on Wireless

Communications, 11(6):6–24, 2004.

[AMH09] A. Al-Mohi and N. J. Higham. Computing the Fréchet derivative

of the matrix exponential, with an application to condition number

estimate. SIAM Journal on Matrix Analysis and Applications,

30:1639–1657, 2009.

[Ara11] Jose Araujo. Design and implementation of resource-aware wire-

less networked control systems. Technical Report TRITA-EE

2011:065, Royal Institute of Technology (KTH), September 2011.

Licentiate Thesis.

[Arz99] K.E. Arzén. A simple event-based pid controller. In IFAC World

Congress, pages 423–428, Beijing, 1999.

218 7 Bibliography

[AT10a] A. Anta and P. Tabuada. On the minimum attention and anytime

attention problems for nonlinear systems. In 49th IEEE Confer-

ence on Decision and Control, pages 3234–3239, Atlanta, 2010.

[AT10b] A. Anta and P. Tabuada. To sample or not to sample: self-

triggered control for nonlinear systems. IEEE Transactions on

Automatic Control, 55(9):2030–2042, 2010.

[BA11] R. Blind and F. Allgöwer. On the optimal sending rate for net-

worked control systems with a shared communication medium. In

50th IEEE Conference on Decision and Control, pages 4704–4709,

Orlando, 2011.

[BCM+10] M. Baseggio, A. Cenedese, P. Merlo, M. Pozzi, and L. Schen-

ato. Distributed perimeter patrolling and tracking for camera net-

works. In 49th IEEE Conference on Decision and Control, pages

2093–2098, Atlanta, 2010.

[BDWL10] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung. Mac essen-

tials for wireless sensor networks. IEEE Communications Surveys

and Tutorials, 12(2):222–248, 2010.

[Bem98] A. Bemporad. Predictive control of teleoperated constrained sys-

tems with unbounded communication delays. In 37th Conference

of Decision and Control, pages 2133–2138, Tampa, 1998.

[BF60] F. L. Bauer and C. T. Fike. Norms and exclusion theorems. Nu-

mer. Math., 2:137–141, 1960.

[Blu07] P. A. Blume. The LabVIEWStyle Book. Prentice Hall, 2007.

[BZ11] S. Bolognani and S. Zampieri. A gossip-like distributed optimiza-

tion algorithm for reactive power flow control. In IFAC World

Congress, pages 5700–5705, Milano, 2011.

[CB08] A. Chaillet and A. Bicchi. Delay compensation in packet switch-

7 Bibliography 219

ing networked controlled systems. In 47th IEEE Conference on

Decision and Control, pages 3620–362, Cancun, 2008.

[CH08] A. Cervin and T. Henningsson. Scheduling of event-triggered con-

trollers on a shared network. In 47th IEEE Conference on Decision

and Control, pages 3601–3606, Cancun, 2008.

[Chu86] K.W.E. Chu. Generalization of the bauer-fike theorem. Nu-

merische Mathematik, 49:685–691, 1986.

[CM02] C.F. Chiasserini and E. Magli. Energy consumption and image

quality in wireless video-surveillance networks. In 13th IEEE

International Symposium on Personal, Indoor and Mobile Radio

Communications, volume 5, pages 2357–2361. IEEE, 2002.

[CMV+10] A. Camacho, P. Mart́ı, M. Velasco, C. Lozoya, R. Villa, J.M.

Fuertes, and E. Griful. Self-triggered networked control systems:

an experimental case study. In IEEE 2010 International Confer-

ence on Industrial Technology, pages 123–128, Valparaiso, 2010.

[com13] Creative commons. Website, 2013.

http://creativecommons.org/licenses/by/3.0/.

[CSdM+06] N. Correll, G. Sempo, Y. Lopez de Meneses, J. Halloy, and J.L.

Deneubourg. Swistrack: A tracking tool for multi-unit robotic

and biological systems. In International Conference on Intelligent

Robots and Systems, Beijing, 2006.

[DFJ12] D.V. Dimarogonas, E. Frazzoli, and K.H. Johansson. Distributed

event-triggered control for multi-agent systems. IEEE Transac-

tions on Automatic Control, 57(5):1291–1297, 2012.

[DFP62] R.C. Dorf, M.C. Farren, and C.A. Phillips. Adaptive sampling for

sampled-data control systems. IEEE Transaction on Automatic

Control, 7(1):34–47, 1962.

http://creativecommons.org/licenses/by/3.0/

220 7 Bibliography

[DGA08] A. Diaz-Guilera and A. Arenas. Bio-Inspired Computing and Com-

munication, chapter Phase Patterns of Coupled Oscillators with

Application to Wireless Communication. Springer-Verlag, Berlin,

2008.

[DH10] M. C. F. Donkers and W. P. M. H. Heemels. Output-based event-

triggered control with guaranteed L∞-gain and improved event-

triggering. In IEEE Conference on Decision and Control, pages

3246–3251, Atlanta, 2010.

[DH12] M.C.F. Donkers and W.P.M.H. Heemels. Output-based event-

triggered control with guaranteed L∞-gain and improved and de-

centralised event-triggering. Transactions on Automatic Control,

57(6):1362–1376, 2012.

[DHvdWH11] M.C.F. Donkers, W.P.M.H. Heemels, N. van de Wouw, and

L. Hetel. Stability analysis of networked control systems using

a switched linear systems approach. IEEE Transactions on Auto-

matic Control, 56(9):2101 –2115, 2011.

[DL12] O. Demir and J. Lunze. Cooperative control of multi-agent sys-

tems with event-based communication. In American Control Con-

ference, pages 4504–4509, Montreal, 2012.

[DPSW11] C. De Persis, R. Sailer, and F. Wirth. On a small-gain approach to

distributed event-triggered control. In 18th IFAC World Congress,

pages 2401–2406, Milano, 2011.

[DTH12] M.C.F. Donkers, P. Tabuada, and W.P.M.H. Heemels. Minimum

attention control for linear systems: A linear programming ap-

proach. Discrete Event Dynamic Systems Theory and Applica-

tions, 2012. DOI 10.1007/s10626-012-0155-x.

[EA09] T. Estrada and P. Antsaklis. Performance of model-based net-

worked control systems with discrete-time plants. In 17th Mediter-

7 Bibliography 221

ranean conference on control & automation, pages 628–633, Thes-

saloniki, 2009.

[Ell59] P. Ellis. Extension of phase plane analysis to quantized systems.

IRE Transactions on Automatic Control, 4(2):43–54, 1959.

[ESDCM07] M. Epstein, L. Shi, S. Di Cairano, and R. M. Murray. Control

over a network: Using actuation buffers to reduce transmission

frequency. In European Control Conference, Kos, 2007.

[Esq04] F. Esquembre. Easy java simulations: A software tool to create

scientific simulations in java. Computer Physics Communications,

156(2):199–204, 2004.

[Eva98] W.R Evans. UNIX Networked Programming. Prentice-Hall, 2nd

edition, 1998.

[Fab13] E. Fabregas. Plataformas de experimentación virtual y remota:

Aplicaciones de control y robótica. PhD thesis, UNED, 2013.

[FGElT+12] G. Farias, F. Gomez-Estern, L. De la Torre, D. Muñoz de la Peña,

C. Sánchez, and S. Dormido. Enhancing virtual and remote labs to

perform automatic evaluation. In 9th IFAC Symposium Advances

in Control Education, pages 276–281, Nizhny Novgorod, 2012.

[FM04] J. A. Fax and R. M. Murray. Information flow and cooperative

control of vehicle formations. IEEE Transactions on Automatic

Control, 49(9):1465–1476, 2004.

[FPW97] G.F. Franklin, J.D. Powell, and M. Workman. Digital control of

dynamic systems. Addison-Wesley. E.U.A, 1997.

[GA11a] E. Garcia and P. J. Antsaklis. Model-based event-triggered control

with time-varying network delays. In 50th IEEE Conference on

Decision and Control, pages 1650–1655, Orlando, 2011.

222 7 Bibliography

[GA11b] Eloy Garcia and Panos J. Antsaklis. Adaptive stabilization of

model-based networked control systems. In American Control

Conference, pages 1094–1099, San Francisco, 2011.

[GA12] E. Garcia and P.J. Antsaklis. Decentralized model-based event-

triggered control of networked systems. In American Control Con-

ference, pages 6485–6490, Montreal, 2012.

[GBK09] S. Graham, G. Balinga, and P.R. Kumar. Abstractions, architec-

ture, mechanisms and a middleware for networked control. IEEE

Transactions on Automatic Control, 54(7):1490–1503, 2009.

[GCB12] Luca Greco, Antoine Chaillet, and Antonio Bicchi. Exploiting

packet size in uncertain nonlinear networked control systems. Au-

tomatica, 48(11):2801–2811, 2012.

[GCHM06] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray. On a

stochastic sensor selection algorithm with applications in sensor

scheduling and sensor coverage. Automatica, 42(2):251–260, 2006.

[GDJ+11] M. Guinaldo, D. V. Dimaragonas, K. H. Johansson, J. Sánchez,

and S. Dormido. Distributed event-based control for intercon-

nected linear systems. In 50th Control and Decision Conference,

pages 2553–2558, Orlando, 2011.

[GDJ+13] M. Guinaldo, D.V. Dimarogonas, K.H. Johansson, J. Sánchez, and

S. Dormido. Distributed event-based control strategies for inter-

connected linear systems. IET Control Theory & Applications,

2013.

[GFB11] L. Greco, D. Fontanelli, and A. Bicchi. Design and stability anal-

ysis for anytime control via stochastic scheduling. IEEE Transac-

tions on Automatic Control, 56(3):571–585, 2011.

[GFF+12] M. Guinaldo, G. Farias, E. Fabregas, J. Sánchez, S. Dormido-

7 Bibliography 223

Canto, and S. Dormido. An interactive simulator for networked

mobile robots. IEEE Network Magazine, 26(3):14–20, 2012.

[GKKP06] Ben Grocholsky, James Keller, Vijay Kumar, and George Pappas.

Cooperative air and ground surveillance. Robotics & Automation

Magazine, IEEE, 13(3):16–25, 2006.

[GLS+12] M. Guinaldo, D Lehmann, J. Sánchez, S. Dormido, and K. H.

Johansson. Distributed event-triggered control with network de-

lays and packet-losses. In 51th IEEE Conference on Decision and

Control, pages 1–6, Maui, 2012.

[GQ10] V. Gupta and D. E. Quevedo. On anytime control of nonlinear

processes though calculation of control sequences. In IEEE Con-

ference on Decision and Control, pages 7564–7569, Atlanta, 2010.

[GSD10] M. Guinaldo, J. Sánchez, and S. Dormido. A packet-based network

control system architecture for teleoperation and remote laborato-

ries. In 49th IEEE Conference on Decision and Control, Atlanta,

2010.

[GSD11] M. Guinaldo, J. Sánchez, and S. Dormido. A co-design strategy

of NCS for treacherous network conditions. IET Control Theory

& Applications, 5(16):1906–1915, 2011.

[GSDD12] M. Guinaldo, J. Sánchez, S. Dormido, and M.A. Delgado. Control

en red basado en eventos de múltiples plantas remotas. In XXXIII

Jornadas de Automática, Vigo, 2012.

[GSS05] G.C. Goodwin, M.E. Salgado, and E.I. Silva. Time-domain per-

formance limitations arising from decentralized architectures and

their relationship to the RGA. International Journal of Control,

78(13):1045–1062, 2005.

[GT04] D Georgiev and DM Tilbury. Packet-based control. In American

Control Conference, volume 1, pages 329–336, 2004.

224 7 Bibliography

[Gup09] V. Gupta. On an anytime algorithm for control. In 47th IEEE

Conference on Decision and Control, pages 6218–6223, Cancun,

2009.

[HCB02] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An

application speciffic protocol architecture for wireless microsen-

sor networks. IEEE Transactions on Wireless Communications,

1(4):660–670, 2002.

[HD13] W.P.M.H. Heemels and M.C.F. Donkers. Model-based periodic

event-triggered control for linear systems. Automatica, 49(3):698–

711, 2013.

[HE04] Lingxuan Hu and David Evans. Localization for mobile sensor net-

works. In Proceedings of the 10th annual international conference

on Mobile computing and networking, pages 45–57. ACM, 2004.

[Hee10] N. Heemels, W.P.M.H. & van de Wouw. Networked Control Sys-

tems, volume 406, chapter Stability and stabilization of networked

control systems, pages 203–253. Springer-Verlag, 2010.

[HGvZ+99] W. P. M. H. Heemels, R. J. A. Gorter, A. van Zijl, P. P. J.

van den Bosch, S. Weiland, W. H. A. Hendrix, and M. R. Vonder.

Asynchronous measurement and control: a case study on motor

synchronization. Control Engineering Practice, 7(12):1467–1482,

1999.

[HH07] J. Hu and Y. Hong. Leader-following coordination of multi-agent

systems with coupling time delays. Physica A, 374:853–863, 2007.

[HI01] A. Horch and A. J. Isaksson. Assessment of the sampling rate in

control systems. Control Engineering Practice, 9:533–544, 2001.

[Hig08] N. J. Higham. Functions of Matrices: Theory and Computation.

Society for Industrial and Applied Mathematics, Philadelphia,

2008.

7 Bibliography 225

[HJT12] W.P.M.H. Heemels, K.H. Johansson, and P. Tabuada. An intro-

duction to event-triggered and self-triggered control. In 51st IEEE

Conference on Decision and Control, pages 3270–3285, Maui,

2012.

[HNY07] J. P. Hespanha, P. Naghshtabrizi, and Xu Y. A survey of recent

results in networked control systems. Proceedings of the IEEE,

95(1):138–162, 2007.

[HSvdB08] W. P. M. H. Heemels, J. Sandee, , and P. van den Bosch. Anal-

ysis of event-driven controllers for linear systems. International

Journal of Control, 81(4):571–590, 2008.

[HTVdWN10] W. P M H Heemels, A.R. Teel, N. Van de Wouw, and

D. Nešić. Networked control systems with communication con-

straints: Tradeoffs between transmission intervals, delays and per-

formance. IEEE Transactions on Automatic Control, 55(8):1781

–1796, aug. 2010.

[ICMS11] G. Irwin, J. Chen, A. McKernan, and W. Scanlon. Co-design of

predictive controllers for wireless network control. IET Control

Theory and Applications, 4(2):186–196, 2011.

[JER+10] J. Jiménez, R. Estepa, F.R. Rubio, N.F. Gómez-Estern, and A. Es-

tepa. Wireless networked control system: 802.11 performance

analysis. In 9th Portuguese Conference on Automatic Control,

Coimbra, 2010.

[JHC07] Erik Johannesson, Toivo Henningsson, and Anton Cervin. Spo-

radic control of first-order linear stochastic systems. In Hybrid Sys-

tems: Computation and Control, pages 301–314. Springer, 2007.

[JM96] D. B. Johnson and D.A. Maltz. Dynamic source routing in ad hoc

wireless networks. In Mobile Computing, pages 153–181. Kluwer

Academic Publishers, 1996.

226 7 Bibliography

[Kat66] T. Kato. Perturbation Theory for Linear Operators. Springer-

Verlag, 1966.

[KB06] E. Kofman and J.H. Braslavsky. Level crossing sampling in feed-

back stabilization under data-rate constraints. In 45th IEEE Con-

ference on Decision and Control, San Diego, 2006.

[KCC04] C. Ko, B. Chen, and J. Chen. Creating web-based Laboratories.

Springer, 2004.

[KDHH+11] J. Ko, S. Dawson-Haggerty, J. Hui, D. Culler, P. Levis, and

A. Terzis. Connecting low power and lossy networks to the inter-

net. IEEE Communications Magazine: Recent Advances in IETF

Standards, 49(4):96–101, 2011.

[KJA06] W.-J. Kim, K. Ji, and A. Ambike. Real-time operating environ-

ment for networked control systems. IEEE Transactions on Au-

tomation Science and Engineering, 3(3):287–296, 2006.

[Lab13] LabVIEW. Website, 2013. http://www.ni.com/labview.

[Las10] LaserMotive. Website, 2010.

http://lasermotive.com/products/uav-power-links/.

[LBY03] J.R.T. Lawton, R.W. Beard, and B.J. Young. A decentralized ap-

proach to formation maneuvers. Robotics and Automation, IEEE

Transactions on, 19(6):933 – 941, dec. 2003.

[LDH09] Zhongkui Li, Zhisheng Duan, and Lin Huang. Leader-follower con-

sensus of multi-agent systems. In American Control Conference,

pages 3256–3261, 2009.

[Leh11] D. Lehmann. Event-based state-feedback control. PhD thesis, Uni-

versity of Bochum, 2011.

[Lju99] L. Ljung. System Identification- Theory for the User. Prentice-

Hall, 2nd edition, 1999.

http://www.ni.com/labview
http://lasermotive.com/products/uav-power-links/

7 Bibliography 227

[LL10] J. Lunze and D. Lehmann. A state-feedback approach to event-

based control. Automatica, 46(1):211–215, 2010.

[LL11a] D. Lehmann and J. Lunze. Event-based output-feedback control.

In 19th Mediterranean Conference on Control and Automaticon,

pages 982–987, Corfu, 2011.

[LL11b] D. Lehmann and J. Lunze. Extension and experimental evaluation

of an event-based state-feedback approach. Control Engineering

Practice, 19(2):101–112, 2011.

[LL11c] L. Li and M.D. Lemmon. Weakly coupled event triggered out-

put feedback control in wireless networked control systems. In

Allerton Conference on Communication, Control and Computing,

University of Illinois - Urbana-Champaign, 2011.

[LL12] D. Lehmann and J. Lunze. Event-based control with communi-

cation delays and packet losses. International Journal of Control,

85(5):566–577, 2012.

[LRCC08] T. Lochmatter, P. Roduit, C. Cianci, and N. Correll. Swistrack - a

flexible open source tracking software for multi-agent systems. In

International Conference on Intelligent Robots and Systems, Nice,

2008.

[LWCV05] G. Lafferriere, A. Williams, J. Caughman, and J.J.P. Veerman.

Decentralized control of vehicle formations. Systems & Control

Letters, 54(9):899–910, 2005.

[MA02] L. A. Montestruque and P. Antsaklis. State and output feedback

in model-based networked control systems. In IEEE Conference

on Decision and Control, Las Vegas, 2002.

[MA03a] L. A. Montestruque and P. Antsaklis. On the model-based control

of networked systems. Automatica, 39:1837–1843, 2003.

228 7 Bibliography

[MA03b] L.A. Montestruque and P.J. Antsaklis. On the model-based con-

trol of networked systems. Automatica, 39:1837–1843, 2003.

[MA04] L. A. Montestruque and P. Antsaklis. Stability of model-based

networked control systems with time-varying transmission times.

IEEE Transactions on Automatic Control, 49(9):1562–1572, 2004.

[Mar10] P. Di Marco. Modeling and design of multi-hop energy efficient

wireless networks for control applications. Licentiate thesis, Royal

Institute of Technology (KTH), 2010.

[Mas11] I. Mas. Cluster Space Framework for Multi-Robot Formation Con-

trol. Phd dissertation, Santa Clara University, School of Engineer-

ing, 2011.

[MAT09] M. Mazo, A. Anta, and P. Tabuada. On self-triggered control for

linear systems: guarantees and complexity. In European Control

Conference, pages 3767–3772, Budapest, 2009.

[MAT10] M. Mazo, A. Anta, and P. Tabuada. An iss self-triggered im-

plementation for linear controllers. Automatica, 46(8):1310–1314,

2010.

[MAW05] S Massoud Amin and Bruce F Wollenberg. Toward a smart grid:

power delivery for the 21st century. Power and Energy Magazine,

IEEE, 3(5):34–41, 2005.

[Maz10] Manuel Mazo. Contributions to the Control of Networked Cyber-

Physical Systems. PhD thesis, University of California, 2010.

[MC11] M. Mazo and M. Cao. Decentralized event-triggered control with

asynchronous updates. In 50th IEEE Conference on Decision and

Control, pages 2547–2552, Orlando, 2011.

[MJVR08] Pablo Millán, Isabel Jurado, Carlos Vivas, and Francisco R Rubio.

Networked predictive control of systems with data dropouts. In

7 Bibliography 229

47th IEEE Conference on Decision and Control, pages 2704–2709,

2008.

[MOB+12] P. Millán, L. Orihuela, G. Bejarano, C. Vivas, T. Áamo, and F.R.

Rubio. Design and application of suboptimal mixed H2/H∞ con-

trollers for networked control systems. IEEE Transactions on Con-

trol Systems Technology, 20(4):1057–1065, 2012.

[Mob13] Adept MobileRobots. Website, 2013.

http://www.mobilerobots.com/.

[Mol11] A. Molin. On the optimal design of decentralized event-triggered

controllers for large-scale systems with contention-based commu-

nication. In 50th IEEE Conference on Decision and Control, pages

4710–4716, Orlando, 2011.

[mOw10] mOway. moway user manual v2.1.0. Website, June 2010.

http://www.adrirobot.it/moway/pdf/mOway%20User%

20Manua%202.1.0.pdf.

[mOw13] mOway. Website, 2013. http://moway-robot.com/en/.

[MS06] J.A. Misener and S.E. Shladover. Path investigations in vehicle-

roadside cooperation and safety: A foundation for safety and

vehicle-infrastructure integration research. In Intelligent Trans-

portation Systems Conference, 2006. ITSC’06. IEEE, pages 9–16.

IEEE, 2006.

[MT08] M. Mazo and P. Tabuada. On event-triggered and self-triggered

control over sensor/actuator networks. In 47th IEEE Conference

on Decision and Control, pages 435–440, Cancun, 2008.

[MT11] M. Mazo and P. Tabuada. Decentralized event-triggered control

over wireless sensor/actuator networks. IEEE Transactions on

Automatic Control, 56(10):2456–2461, 2011.

http://www.mobilerobots.com/
http://www.adrirobot.it/moway/pdf/mOway%20User%20Manua%202.1.0.pdf
http://www.adrirobot.it/moway/pdf/mOway%20User%20Manua%202.1.0.pdf
http://moway-robot.com/en/

230 7 Bibliography

[MWC+04] C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang, and Z. Tian.

Remote surgery case: robot-assisted teleneurosurgery. In IEEE

International Conference on Robotics and Automation, volume 1,

pages 819–823, Barcelona, 2004.

[NC10] W. Ni and D. Cheng. Leader-following consensus of multi-agent

systems under fixed and switching topologies. Systems & Control

Letters, 59(3):209–217, 2010.

[NH06] P. Naghshtabrizi and J.P. Hespanha. Anticipative and non-

anticipative controller design for network control systems. Net-

worked Embedded Sensing and Control, 331:203–218, 2006.

[NHT08] P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel. Exponential sta-

bility of impulsive systems with application to uncertain sampled-

data systems. Systems & Control Letters, pages 378–385, 2008.

[NPEJ07] S. Nethi, M. Pohjola, L. Eriksson, and R. Jäntt. Platform for

emulating networked control systems in laboratory environments.

In International Symposium on a World of Wireless, Mobile and

Multimedia Networks, Helsinki, June 2007.

[NRC07] J. Normey-Rico and E. Camacho. Control of dead-time processes.

Springer Verlag, 2007.

[ntNS12] ns-2 the Network Simulator. Website, 2012.

http://nsnam.isi.edu/nsnam/index.php.

[OFL04] P. Ogren, E. Fiorelli, and N. E. Leonard. Cooperative control

of mobile sensor networks: Adaptive gradient climbing in a dis-

tributed environment. IEEE Transactions on Automatic Control,

49(8):1292–1302, 2004.

[OSFM07] R. Olfati-Saber, J. Fax, and R. Murray. Consensus and coopera-

tion in networked multi-agent systems. Proceedings of the IEEE,

95(1):215–233, 2007.

http://nsnam.isi.edu/nsnam/index.php

7 Bibliography 231

[OSM04] R. Olfati-Saber and R.M. Murray. Consensus problems in net-

works of agents with switching topology and time-delays. Auto-

matic Control, IEEE Transactions on, 49(9):1520 – 1533, 2004.

[PF12] C. De Persis and P. Frasca. Self-triggered coordination with

ternary controllers. In 3rd IFAC Workshop on Distributed Esti-

mation and Control in Networked Systems, Santa Barbara, 2012.

[PR97] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector

routing. In 2nd IEEE workshop on mobile computing systems and

applications, pages 90–100, 1997.

[PTNA11] R. Postoyan, T. Tabuada, D. Nešic̀, and A. Anta. Event-triggered

and self-triggered stabilization of distributed networked control

systems. In 50th IEEE Conference on Decision and Control, pages

2565–2570, Orlando, 2011.

[QSG07] D. Quevedo, E.I. Silva, and G. Goddwin. Packetized predictive

control over erasure channels. In Americal Control Coference,

pages 1003–1008, Portland, 2007.

[QSG08] D. E. Quevedo, E. I. Silva, and G. C Goodwin. Control over unre-

liable networks affected by packet erasures and variable transmis-

sion delays. IEEE Journal on Selected Areas in Communications,

26(4):672–685, 2008.

[RA07] W. Ren and E. Atkins. Distributed multi-vehicle coordinated con-

trol via local information exchange. International Journal of Ro-

bust and Nonlinear Control, 17(10):1002–033, 2007.

[rB03] K. Åström and B. Bernhardsson. Systems with lebesgue sampling.

In Anders Rantzer and Christopher Byrnes, editors, Directions in

Mathematical Systems Theory and Optimization, volume 286 of

Lecture Notes in Control and Information Sciences, pages 1–13.

Springer Berlin / Heidelberg, 2003.

232 7 Bibliography

[RBA07] W. Ren, R. Beard, and E. Atkins. Information consensus in mul-

tivehicle cooperative control. IEEE Control Systems Magazine,

27(2):71–82, 2007.

[rH06] K.J. Åström and T. Hägglund. Advanced PID Control. ISA, 2006.

[RJ09] M. Rabi and K. H. Johansson. Scheduling packets for event-

triggered control. In European Control Conference, Budapest,

2009.

[RJJ08] M. Rabi, K.H. Johansson, and M. Johansson. Optimal stopping for

event-triggered sensing and actuation. In 47th IEEE Conference

on Decision and Control, pages 3607–3612, Cancun, 2008.

[RMC06] W. Ren, K. Moore, and Y. Chen. High-order consensus algorithms

in cooperative vehicle systems. In International conference on

networking, sensing and control, pages 457–462, 2006.

[rW95] K.J. Åström and B. Wittenmark. Adaptive Control. Addison-

Wesley, 2nd edition, 1995.

[S1́3] J. Sánchez. Macrobrio: Modelado, simulación, control y opti-

mización de fotobiorreactores. In IX Simposio CEA en Ingenieŕıa

de Control, Valencia, 2013.

[San06] J. Sandee. Event-driven control in theory and practice. PhD thesis,

Technische Universiteit Eindhoven, 2006.

[SDJ11] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson. Control

of multi-agent systems via event-based communication. In IFAC

World Congress, pages 10086–10091, Milano, 2011.

[SDJ13] G.S. Seyboth, D.V. Dimarogonas, and K.H. Johansson. Event-

based broadcasting for multi-agent average consensus. Automat-

ica, 49(1):245–252, 2013.

7 Bibliography 233

[Sey10] G. Seyboth. Event-based control for multi-agent systems. Diploma

thesis, Automatic Control Lab, Royal Institute of Technology

(KTH), Sweden, 2010.

[SGQ08] E.I. Silva, G.C. Goodwin, and D.E. Quevedo. On networked con-

trol architectures for mimo plants. In 17th IFAC World Congress,

pages 8044–8049, Seoul, 2008.

[SS05] Pete Seiler and Raja Sengupta. An H∞ approach to networked

control. IEEE Transactions on Automatic Control, 50(3):356–364,

2005.

[SSB09] J. H. Seo, H. Shim, and J. Back. Consensus of high-order linear

systems using dynamic output feedback compensator: Low gain

approach. Automatica, 45(11):2659 – 2664, 2009.

[Ste07] A. Stefanovska. Coupled oscillators: Complex but not complicated

cardiovascular and brain interactions. IEEE Eng Med Biol Mag.,

26(6):25–29, 2007.

[Tab07] P. Tabuada. Event-triggered real-time scheduling of stabiliz-

ing control tasks. IEEE Transactions on Automatic Control,

52(9):1680–1685, 2007.

[TFJB10] U. Tiberi, C. Fischione, K. H. Johansson, and M. D. Di Benedetto.

Adaptive selftriggered control over ieee 802.15.4 networks. In 49th

IEEE Conference on Decision and Control, pages 2099–2104, At-

lanta, 2010.

[Tra00] J. Travis. Internet Applications in LabVIEW. Prentice Hall, 2000.

[Uch03] Akinobu Uchikubo. Remote surgery support system, August 2003.

[VAP08] F. Vanni, A. P. Aguiar, and A. M. Pascoal. Netmarsys- networked

marine systems simulator. Technical Report WP6-0108, Instituto

Superior Tecnico (Lisbon), May 2008.

234 7 Bibliography

[Var10] H. Vargas. An Integral Web-based Environment for Control Engi-

neering Education. PhD thesis, UNED, 2010.

[VF09] P. Varutti and R. Findeisen. Compensating network delays and in-

formation loss by predictive control methods. In European Control

Conference, Budapest, 2009.

[VH08] Richard Vaughan and Andrew Howard. The player project, 2008.

http://robots.mobilerobots.com/wiki/MobileSim.

[VL77] C.F. Van Loan. The sensitivity of the matrix exponential. SIAM

Journal on Numerical Analysis, 14(6):971–981, 1977.

[VMF03] Manel Velasco, Pau Mart́ı, and Josep M. Fuertes. The self trig-

gered task model for real-time control systems. In 24th IEEE

Real-Time Systems Symposium (RTSS03), Cancun, 2003.

[VSD09] H. Vargas, J. Sánchez, and S. Dormido. The spanish university

network of web-based laboratories for control engineering educa-

tion: The automatl@bs project. In 10th European Control Con-

ference, pages 4623–4628, Budapest, 2009.

[WD73] S.H. Wang and E.J. Davidson. On the stabilization of decentral-

ized control systems. IEEE Transaction on Automatic Control,

18(5):473–478, 1973.

[WL08] X. Wang and M. D. Lemmon. Event-triggered broadcasting across

distributed networked control systems. In American Control Con-

ference, pages 3139–3144, Seattle, 2008.

[WL09] X. Wang and M. D. Lemmon. Self-triggered feedback control sys-

tems with finite-gain L2 stability. IEEE Transactions on Auto-

matic Control,, 53(3):452–467, 2009.

[WL10] X. Wang and M. D. Lemmon. Self-triggering under state-

independent disturbances. IEEE Transactions on Automatic Con-

trol, 55(6):1494–1500, 2010.

http://robots.mobilerobots.com/wiki/MobileSim

7 Bibliography 235

[WL11] X. Wang and M.D. Lemmon. Event-triggering in distributed net-

worked control systems. IEEE Transactions on Automatic Con-

trol, 56(3):586–601, 2011.

[WLZ05] Z. Wang, L. Liu, and M. Zhou. Protocols and applications of

ad-hoc robot wireless communication networks: An overview. In-

ternational Journal of Intelligent Control and Systems, 10(4):296–

303, 2005.

[WTB+12] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,

K. Pister, R. Struik, and J. Vasseur. RPL: IPv6 routing protocol

for low power and lossy networks, March 2012.

[YFG+08] F.P. Yang, R.A. Freeman, G.J. Gordon, K.M. Lynch, S. Srinivasa,

and R. Sukthankar. Decentralized estimation and control of graph

connectivity in mobile sensor networks. In American Control Con-

ference, pages 2678–2683, Seattle, 2008.

[YFL08] P. Yang, R.A. Freeman, and K.M. Lynch. Multi-agent coordina-

tion by decentralized estimation and control. IEEE Transaction

on Automatic Control, 53(11):2480–2496, 2008.

[YHL05] D. Yue, Q. L. Han, and J. Lam. Network-based robust H∞ control

of systems with uncertainty. Automatica, 41(6):999–1007, 2005.

[ZLR09] Y. Zhao, G. Liu, and D. Rees. Design of a packed-based control

framework for networked control systems. IEEE Transactions on

Control Systems Technology, 17(5):859–865, 2009.

APPENDICES

A
Prototypes models

This appendix describes the model of the prototypes used in Chapter 3. These

mathematical models can also be found in the Student Handout by Quanser.

A.1 The QUANSER SRV-02 setup

The electrical part of the motor is examined first. The electrical scheme of the

circuit is shown in Figure A.1. Using Kirchhoff’s voltage law, it follows

Vm(t)−RmIm(t)− Lm
dIm(t)
dt

− Eemf (t) = 0.

Since Lm � Rm, the motor inductance can be disregarded, and it yields

Im = Vm − Eemf
Rm

.

𝑉𝑚 𝑡

𝐼𝑚 𝑡

𝑅𝑚 𝐿𝑚

𝜃𝑚 𝑡

𝑇𝑚 𝑡

𝐸𝑒𝑚𝑓 𝑡

+

-

+

-

Figure A.1: Electrical circuit of the SRV-02 gear.

240 A Prototypes models

The back electromotive force (emf) created by the motor is proportional to the

motor sharp velocity ωm such that

Im = Vm −Kmθ̇m
Rm

.

The dynamics of the motor shaft according to Newton’s second law is

Jmθ̈m = Tm −
Tl

ηgKg
, (A.1)

where Tl
ηgKg

is the load torque seen through the gears, and ηg is the efficiency of

the gearbox.

If the Newton’s second law is applied to the load of the motor:

Jlθ̈l = Tl −Beq θ̇l, (A.2)

where Beq is the viscous damping coefficient at the output.

From (A.1) and (A.2), it yields

Jiθ̈l = ηgKgTm − ηgKgJmθ̈m −Beq θ̇l. (A.3)

Since θm = Kgθl and Tm = ηmKtIm, where ηm is the efficiency of the motor,

(A.2) can be rewritten as

Jlθ̈l + ηgK
2
gJmθ̈l +Beq θ̇l = ηgηmKgKtIm.

Finally, if the electrical and dynamical model are combined, it yields the following

transfer function

θl(s)
Vm(s) = ηgηmKtKg

JeqRms2 + (BeqRm + ηgηmKmKtK2
g)s,

where Jeq = Jl + ηgJmK
2
g .

The parameters are listed in Table A.1 at the end of this appendix.

A.2 The flexible link: QUANSER SRV-02 series 241

A.2 The flexible link: QUANSER SRV-02 series

The equations of motion involving a rotary flexible link, involves modeling the

rotational base and the flexible link as rigid bodies. As a simplification to the

partial differential equation describing the motion of a flexible link, a lumped

single degree of freedom approximation is used. We first start the derivation of

the dynamic model by computing various rotational moment of inertia terms.

The rotational inertia for a flexible link is given by

Jlink = mL2

3 ,

where m is the mass of the flexible link, and L is the length.

For a single degree of freedom system, the natural frequency is related with

torsional stiffness and rotational inertia in the following manner

ωc =
√
Kstiff

Jlink
,

where ωc is found experimentally and Kstiff is an equivalent torsion spring con-

stant as depicted in Figure 3.4.

In addition, any frictional damping effects between the rotary base and the

flexible link are assumed negligible. Next, we derive the generalized dynamic

equation for the tip and base dynamics using Lagrange energy equations in terms

of a set of generalized variables α and θ, where α is the angle of tip deflection

and θ is the base rotation.

The potential energy of the system is provided by the torsional spring, and it

is given by

V = 1
2Kstiffα

2.

The total kinetic energy of the mechanical system is computed as the sum of the

base and the flexible link:

T = 1
2Jeq θ̇

2 + 1
2Jlink(θ̇ + α̇)2.

242 A Prototypes models

Thus, the Lagrangian is

L = T − V = 1
2Jeq θ̇

2 + 1
2Jlink(θ̇ + α̇)2 − 1

2Kstiffα
2. (A.4)

The existence of two degrees of freedom (θ and α) provides two Lagrange equa-

tions for the system:

∂

∂t

(∂L
∂θ̇

)
− ∂L

∂θ
= Toutput −Beq θ̇ (A.5)

∂

∂t

(∂L
∂α̇

)
− ∂L

∂α
= 0. (A.6)

Applying (A.4) into (A.5) and (A.6), it yields

Jeq θ̈ + Jlink(θ̈ + α̈) = Toutput −Beq θ̇ (A.7)

Jlink(θ̈ + α̈) +Kstiffα = 0. (A.8)

From the model detailed in the previous section, the output torque on the load

from the motor is

Toutput = ηmηgKtKg(Vm −KgKmθ̇)
Rm

. (A.9)

Finally, combining (A.7), (A.8) and (A.9), it results in the following state space

model:

θ̇

α̇

θ̈

α̈

=

0 0 1 0

0 0 0 1

0 Kstiff
Jeq

−ηmηgKtK2
gKm+BeqRm
JeqRm

0

0 −Jstiff (Jeq+Jlink)
JeqJlink

ηmηgKtK2
gKm+BeqRm
JeqRm

0

θ

α

θ̇

α̇

.

The parameters of the flexible link are listed in Table A.2, and the parameters

concerning the SRV-02 gear are listed in A.1.

Table A.1: SRV-02 model parameters.

Symbol Description Value (SI units)
Vm Circuit imput voltage
Im Circuit current
Rm Resistance 2.6
Lm Inductance
Eemf Motor back-emf voltage
θm Motor shaft position
ωm Motor shaft angular velocity
θl Load shaft position
ωl Load shaft angular velocity
Tm Torque generated by the motor
Tl Torque applied at the load
Km Back-emf constant 0.00767
Kt Motor torque constant 0.00767
Jm Motor moment of inertia 3.87× 10−7

Jeq Equivalent moment of inertia at the load 2.0× 10−3

Beq Equivalent viscous damping coefficient 4.0× 10−3

Kg SRV02 system gear ratio (motor→load) 70
ηg Gearbox efficiency 0.9
ηm Motor efficiency 0.69

Table A.2: Flexible link model parameters.

Symbol Description Value (SI units)
L Length of flexible link 0.42
m Mass of flexible link 0.065
θ Servo load gear angle
α Arm deflection
D Link end point deflection
ωc Link’s damped natural frequency 18.85
Jlink Modeled link moment of inertia 0.0038

B
Proofs

B.1 Proof of Theorem 2.2

The forward difference of the Lyapunov function (2.14) for (2.29) is

∆V (k) = xT (k + 1)Px(k + 1)− xT (k)Px(k)

=
(
AdKx(k) +BdKe(k) + w(k)

)T
P
(
AdKx(k) +BKe(k) + w(k)

)
− xT (k)Px(k)

= −xT (k)Qx(k) + 2eT (k)(BdK)TPAdKx(k) + eT (k)(BdK)TPBdKe(k)

+ 2wT (k)PAdKx(k) + 2wT (k)PBdKe(k) + wT (k)Pw(k)

≤ −λmin(Q)‖x(k)‖2 + 2‖(BK)TPAdK‖‖e(k)‖‖x(k)‖+ ‖(BK)TPBK‖‖e(k)‖2

+ 2‖PBdK‖‖w(k)‖‖e(k)‖+ 2‖PAdK‖‖w(k)‖‖x(k)‖+ λmax(P)‖w(k)‖2.

(B.1)

The error and the disturbance are bounded by ‖e(k)‖ ≤ 2c and ‖w(k)‖ ≤ wmax.

Thus, the Lyapunov function decreases if (B.1) is negative. This holds whenever

‖x(k)‖ ≥
δb +

√
δ2
b + 4δaδc

2δa
= δwx ,

where δa, δb, δc and δwx are defined in (2.31)-(2.34).

The state decreases until it reaches this bound. Let us denote k∗ the time

instant at which the state enters this region. According to (2.29), the norm of

246 B Proofs

the state at the next step is, in the worst case:

‖x(k∗ + 1)‖ ≤ ‖AdK‖δwx + ‖BdK‖2c+ wmax.

So if the state leaves the region, the Lyapunov function decreases again. Using

the property of the Lyapunov function λmin(P)‖x‖2 ≤ xTPx ≤ λmax(P)‖x‖2,

the state x(k) remains bounded by (2.30) ∀k ≥ k∗, and this concludes the proof.

B.2 Proof of Theorem 2.3

The forward difference of the Lyapunov function (2.46) for (2.45) is

∆V (k) = ξT (k + 1)Pξ(k + 1)− ξT (k)Pξ(k)

=
(
ACLξ(k) + F (ey(k) + v(k))

)T
P
(
ACLξ(k) + F (ey(k) + v(k))

)
− ξT (k)Pξ(k)

= −ξT (k)Qξ(k) + 2(eTy (k) + vT (k))F TPACLξ(k)

+ (eTy (k) + vT (k))F TF (ey(k) + v(k))

≤ −λmin(Q)‖ξ(k)‖2 + 2‖F TPACL‖‖ey(k) + v(k)‖‖ξ(k)‖

+ ‖F TPF‖‖ey(k) + v(k)‖2. (B.2)

The right hand side of (B.2) is an algebraic second order equation in ‖ξ(k)‖ such

that the Lyapunov function decreases whenever

‖ξ(k)‖ ≥ σξ‖ey(k) + v(k)‖,

where σξ is given in (2.48).

Because the error ey is bounded by 2cy and the noise by vmax, ∆V < 0 in the

region ‖ξ(k)‖ > σξ(2cy + vmax). Thus, the state decreases until it reaches this

region. If we denote by k∗ the time instant at which the state enters this region

B.3 Proof of Theorem 4.2 247

and according to (2.45), it follows that

‖ξ(k∗ + 1)‖ ≤ (σξ‖ACL‖+ ‖F‖)(2cy + vmax).

Then the state can leave the region so the Lyapunov function decreases again.

If the inequalities λmin(P)‖ξ‖2 ≤ ξTPξ ≤ λmax(P)‖ξ‖2 are used, it is straight-

forward to see that the state ξ(k) remains bounded by (2.47) ∀k ≥ k∗, and this

concludes the proof.

B.3 Proof of Theorem 4.2

The analytical solution of (4.24) is

x(t) = e(AK+∆)tx(0) +
t∫

0

e(AK+∆)(t−s)BKe(s)ds. (B.3)

From Assumption 4.1, the matrix AK is diagonalizable and

‖eAKt‖ ≤ κ(V)e−|λmax(AK)|t.

Thus, (4.12) can be used to bound e(AK+∆)t as

‖e(AK+∆)t‖ ≤ κ(V)e−(|λmax(AK)|−κ(V)‖∆‖)t.

Note that the exponent is negative since |λmax(AK)| − κ(V)‖∆‖ > 0 from As-

sumption 4.2. Let us denote λ∆ = |λmax(AK)| − κ(V)‖∆‖.

Consequently, the state can be bounded by

‖x(t)‖ ≤ κ(V)(e−λ∆t‖x(0)‖+
t∫

0

e−λ∆(t−s)‖BK‖‖e(s)‖ds).

The overall system error is bounded by

‖e(t)‖ ≤
√
N(c0 + c1e

−αt).

248 B Proofs

This yields

‖x(t)‖ ≤ κ(V)
(
e−λ∆t‖x(0)‖+

t∫
0

√
Ne−λ∆(t−s)‖BK‖(c0 + c1e

−αs)
)

= κ(V)
(
e−λ∆t‖x(0)‖+ ‖BK‖

√
Nc0

λ∆
(1− e−λ∆t)

+ ‖BK‖
√
Nc1

λ∆ − α
(e−αt − e−λ∆t)

)
,

which by reordering terms and restoring λ∆ = |λmax(AK)|−κ(V)‖∆‖ yield (4.39),

proving the first part of the theorem. Note that the previous expression can be

upper bounded by

‖x(t)‖ ≤ κ(V)
(
‖x(0)‖e−λ∆t + ‖BK‖

√
Nc0

λ∆
+ ‖BK‖

√
Nc1

λ∆−α e−αt
)
, (B.4)

by omitting the negative terms.

We next show that broadcasting period is lower bounded. If t∗ refers to the

last event time occurrence, ‖ei(t∗)‖ = 0, and fi(t∗) = −c0 − c1e
−αt∗ < 0.

Because ėi(t) = −ẋi(t) and ‖ei(t)‖ ≤
∫ t
t∗ ‖ẋi(t)‖ ≤

∫ t
t∗ ‖ẋ(t)‖ hold, and from

(4.24) we derive

‖ẋ(t)‖ ≤ ‖AK + ∆‖‖x(t)‖+ ‖BK‖
√
N(c0 + c1e

−αt∗).

If the last event occurred at time t∗ > 0

‖ei(t)‖ ≤
t∫

t∗

‖ẋ(t)‖ ≤
t∫

t∗

(
‖AK + ∆‖‖x(s)‖+ ‖BK‖e(s)

)
ds,

and ‖x(t)‖ ≤ ‖x(t∗)‖ holds in (4.31). Thus, defining the following constants

k∆,1 = κ(V)‖AK + ∆‖‖x(0)‖

k∆,2 = ‖BK‖
√
Nc1

(κ(V)‖AK + ∆‖
λ∆ − α

+ 1
)

k∆,3 = ‖BK‖
√
Nc0

(κ(V)‖AK + ∆‖
λ∆

+ 1
)
,

B.4 Derivation of (4.45) 249

the error can be bounded as

‖ei(t)‖ ≤
t∫

t∗

(k∆,1 + k∆,2 + k∆,3)ds = (k∆,1 + k∆,2 + k∆,3)(t− t∗).

The next event will not be triggered before ‖ei(t)‖ = c0 + c1e
−αt ≥ c0. Thus a

lower bound on the inter-events time is given by

T∆,min = c0
k∆,1 + k∆,2 + k∆,3

, (B.5)

which is a positive quantity.

B.4 Derivation of (4.45)

The bound (4.44) can be upper bounded by

‖x(t)‖ ≤κ(V)
(
‖BK‖

√
Nc0β0

|λmax(AK)| + (1 + κ(V)‖∆‖t)‖x(0)‖e−|λmax(AK)|t

+ ‖BK‖
√
Nc1β1e−αt

|λmax(AK)|−α

)
.

As in the analysis of the theorem 4.1 and 4.2 the error between two consecutive

events can be upper bounded as

‖ei(t)‖ ≤
∫ t

t∗
(‖AK + ∆‖)x(s) + ‖BK‖e(s))ds.

With the definition of (4.41)-(4.43), and if k∆,2 and k∆,2 are approximated to

k∆,2 ≈ ‖BK‖
√
Nc1

(κ(V)‖AK+∆‖β1
|λmax(AK)|−α + 1

)
, k∆,3 ≈ ‖BK‖

√
Nc0

(κ(V)‖AK+∆‖β0
|λmax(AK)| + 1

)
,

it follows that

‖ei(t)‖ ≤
∫ t

t∗
(k∆,1(1 + κ(V)‖∆‖s)e−|λmax(AK)|t∗ + k∆,2e

−αt∗ + k∆,3)ds

= κ(V)‖∆‖k∆,1e
−|λmax(AK)|t∗

2 (t2 − t∗2) + (k∆,1e
−|λmax(AK)|t∗ + k∆,2e

−αt∗ + k∆,3)T

≤ κ(V)‖∆‖k∆,1
2 T 2 + (k∆,1 + k∆,2 + k∆,3)T.

250 B Proofs

where T = t− t∗ is the inter-event time. Note that it holds that e−|λmax(AK)|t∗(1

+ κ(V)‖∆‖t∗) < 1, ∀t∗ > 0.

The next event will not be triggered before ‖ei(t)‖ = c0 + c1e
−αt ≥ c0. Thus

a lower bound on the inter-events time is the solution of

a∆T
2 + b∆T = c0 (B.6)

where

a∆ =
k∆,1κ(V)‖∆‖

2

b∆ = k∆,1 + k∆,2 + k∆,3. (B.7)

Since a∆ and b∆ are positive constants, only one of the solutions of (B.6) is

strictly positive and hence feasible, and is given by (4.45).

B.5 Proof of Theorem 4.3

Let us denote Fd = AdK + ∆d. The analytical solution of (4.47) is

x(`) = F `dx(0) +
`−1∑
j=0

F `−1−j
d BdKde(j). (B.8)

This can be bounded as

‖x(`)‖ ≤ ‖F `d‖‖x(0)‖+
`−1∑
j=0
‖F `−1−j

d ‖‖BdKd‖‖e(j)‖. (B.9)

Let us assume that ∆j
d ≈ 0,∀j ≥ 2. According to (4.13), ‖F `d‖ can be bounded

as:

‖F `d‖ = ‖(AdK + ∆d)`‖ ≤ ‖A`dK‖+ ‖
`−1∑
j=0

A`−1−j
dK ∆dA

j
dK‖+O(‖∆d‖2)

≈ ‖A`dK‖+ ‖
`−1∑
j=0

A`−1−j
dK ∆dA

j
dK‖,

B.5 Proof of Theorem 4.3 251

since ‖∆d‖2 ≈ 0.

Moreover, as in the continuous time case, we assume that AdK is diagonal-

izable, and hence, AdK = VdDdV
−1
d . It also holds that ‖Dd‖ = |λM (Dd)| =

|λM (AdK)|, where λM (AdK) is the eigenvalue with the closer magnitude to 1.

Thus,

‖A`dK‖ ≤ ‖VdD`
dV
−1
d ‖ ≤ κ(Vd)|λM (AdK)|`,

where κ(Vd) = ‖Vd‖‖V −1
d ‖.

Similarly, the following bound can be computed the sum:

‖
`−1∑
j=0

A`−1−j
dK ∆dA

j
dK‖ ≤ κ

2(Vd)
`−1∑
j=0
|λM (AdK)|`−1−j‖∆d‖|λM (AdK)|j

= κ2(Vd)|λM (AdK)|`−1‖∆d‖`.

Thus, ‖F `d‖ is bounded by

‖F `d‖ ≤ κ(Vd)|λM (AdK)|`
(
1 + `

κ(Vd)‖∆d‖
|λM (AdK)|

)
. (B.10)

If we consider the bound (B.10) in (B.9), it holds that

‖x(`)‖ ≤ κ(Vd)|λM (AdK)|`
(
1 + `

κ(Vd)‖∆d‖
|λM (AdK)|

)
‖x(0)‖ (B.11)

+
`−1∑
j=0

(
κ(Vd)|λM (AdK)|`−1−j(1 + (`− 1− j)κ(Vd)‖∆d‖

|λM (AdK)|
)
‖BdKd‖‖e(j)‖

)
.

Moreover, from (4.58), the error can be bounded as ‖e(j)‖ ≤
√
N(c0 + c1α

j
d).

The sum in (B.11) can be computed taking into account that

`−1∑
j=0

r`−1−j = 1− r`

1− r
`−1∑
j=0

(`− 1− j)r`−1−j = r ·
(1− r`

(1− r)2 −
`r`−1

1− r
)
,

where r can be |λM (AdK)| or αd
|λM (AdK)| .

252 B Proofs

Thus, it yields that

‖x(`)‖ ≤ κ(Vd)
(
‖BdKd‖

√
Nc0

1−|λM (AdK)|
(
1 + κ(Vd)‖∆d‖

1−|λM (AdK)|
)

+ |λM (AdK)|`
(
‖x(0)‖

− ‖BdKd‖
√
Nc0

1−|λM (AdK)|
(
1 + κ(Vd)‖∆d‖

1−|λM (AdK)|
)
− ‖BdKd‖

√
Nc1

αd−|λM (AdK)|
(
1 + κ(Vd)‖∆d‖

α−|λM (AdK)|
)

+ κ(Vd)‖∆d‖
|λM (AdK)|`

(
‖x(0)‖ − ‖BdKd‖

√
Nc0

1−|λM (AdK)| −
‖BdKd‖

√
Nc1

αd−|λM (AdK)|
))

+ α`d
‖BdKd‖

√
Nc1

αd−|λM (AdK)|
(
1 + κ(Vd)‖∆d‖

α−|λM (AdK)|
))
. (B.12)

Defining βd,0, βd,1 as in (4.60)-(4.61), it yields to (4.59), which concludes the

proof.

B.6 Proof of Proposition 5.2

Assume that the last event occurred at time tik and that the maximum transmis-

sion delay to its neighbors is τ̄ ik. From Assumption 5.1, it follows that

‖
∫ tik+τ̄ ik

ti
k

ėi(s)ds‖ = ‖ei(tik + τ̄ ik)− ei(tik)‖ < c1e
−α(tik+τ̄ ik), (B.13)

has to be satisfied (see (5.16)) because no event is generated in the time interval

[tik, tik+1). Since an event has occurred at time tik, ‖ei(tik)‖ = c1e
−αtik holds and,

thus

‖ei(tik + τ̄ ik)‖ < c1e
−αtik + c1e

−α(tik+τ̄ ik) = c1(1 + eατ̄
i
k)e−α(tik+τ̄ ik),

must hold. Because this result is valid for any time t and eατ̄
i
k < eατ

? , ∀τ̄ ik < τ?,

it follows

‖ei(t)‖ < c1(1 + eατ
∗)e−αt.

B.7 Proof of Theorem 5.3 253

B.7 Proof of Theorem 5.3

The state at any time is given by

xi(t) = eAK,itxi(0) +
∫ t

0
eAK,i(t−s)

(
BiKiei(s) +Bi

∑
j∈Ni

Lijej(s)
)
ds.

According to 5.2, the error is bounded by ‖ei(t)‖ < c1(1 + eατ
∗)e−αt. Thus, a

bound on xi(t) can be calculated following the methodology of Chapter 4 as

‖xi(t)‖ ≤ κ(Vi)
(µic1(1+eατ?)e−αt

|λmax(AK,i)|−α
+ e−|λmax(AK,i)|t(‖xi(0)‖ − µic1(1+eατ?)e−αt

|λmax(AK,i)|−α

))
,

which proves the second part of the theorem.

Note that (5.21) can be upper bounded as

‖xi(t)‖ ≤ κ(Vi)
(µic1(1+eατ?)e−αt

|λmax(AK,i)|−α
+ e−|λmax(AK,i)|t‖xi(0)‖

)
. (B.14)

Moreover, in the interval t ∈ [tik−1 + τ̄ ik−1, t
i
k + τ̄ ik) it holds that

ėi(t) = −AK,ixi(t)−BiKiei(t)−
∑
j∈Ni

BiLijej(t),

and this is particularly true in the subinterval [tik, tik + τ̄ ik). Thus

‖ėi(t)‖ = ‖AK,ixi(t) +BiKiei(t) +
∑
j∈Ni

BiLijej(t)‖

≤ ‖AK,i‖‖xi(t)‖+ ‖BiKi‖‖ei(t)‖+
∑
j∈Ni
‖BiLij‖‖ej(t)‖.

Therefore, integrating the error in the interval [tik, tik + τ̄ ik) and noting that

‖xi(t)‖ ≤ ‖xi(tik)‖ in (B.14) in this interval

‖ei(tik + τ̄ ik)− ei(tik)‖ ≤
(
‖AK,i‖κ(Vi)

(µic1(1+eατ?)e−αt
i
k

|λmax(AK,i)|−α
+ e−|λmax(AK,i)|tik‖xi(0)‖

)
+ µic1(1 + eατ

?)e−αtik
)
τ̄ ik.

254 B Proofs

Denote k1,i = ‖AK,i‖κ(Vi)‖xi(0)‖ and k2,i = (‖AK,i‖κ(Vi) 1
|λmax(AK,i)|−α + 1)µic1.

From (B.13) in Preposition 5.2, it follows that the upper bound on the delay

satisfies

(
k1,ie

−|λmax(AK,i)|tik + k2,i(1 + eατ
?)e−αtik

)
τ̄ ik = c1e

−α(tik+τ̄ ik).

It yields (
k1,i
c1
e−(|λmax(AK,i)|−α)tik + k2,i

c1
(1 + eατ

?)
)
τ̄ ik = e−ατ̄

i
k .

The right hand side is always positive and takes values in the interval [0, 1).

The left hand side is also positive and its image is [0,+∞). Hence, there is a

positive solution for the upper bound on the delay. Moreover, the left hand side

is upper bounded by (k2,i
c1

+ k2,i
c1

(1 + eατ
?))τ̄ ik for α < |λmax(AK,i)|. Hence, the

most conservative bound on the delay τ? is given by

τ? = min{(τ?)i, i = 1, . . . , N},

where (τ?)i are the solutions of

(k1,i
c1

+ k2,i
c1

(1 + eα(τ?)i)
)
(τ?)i = e−α(τ?)i .

B.8 Proof of Theorem 5.4

The state at any time is given by

xi(t) = eAK,itxi(0) +
∫ t

0
eAK,i(t−s)

(
BiKiei(s) +Bi

∑
j∈Ni

Lijej→i(s)
)
ds.

Under the UwR protocol, it holds that ‖ei(t)‖ ≤ c1e
−αt, and ‖ej→i(t)‖ < c1(1 +

eατ
?)e−αt. hence, following the same steps than in the proof of Theorem 5.3, it

yields

‖xi(t)‖ ≤ κ(Vi)
(µ̄i(τ?)c1e−αt

|λmax(AK,i)|−α
+ e−|λmax(AK,i)|t(‖xi(0)‖ − µ̄i(τ?)c1e−αt

|λmax(AK,i)|−α

))
,

B.9 Proof of Theorem 5.5 255

where µ̄i(τ?) = ‖BiKi‖+
∑
j∈Ni ‖BiLij‖(1 + eατ

?).

In the interval [tik, t
i→j
k), ėi→j(t) = −ẋi(t) holds. Thus, it can be derived easily

that

‖ei→j(ti→jk)− ei→j(tik)‖ ≤
(
k1,ie

−|λmax(AK,i)|tik +
(
k2,i + k3,i(1 + eατ

?)
)
e−αt

i
k

)
τ i→jk ,

k1,i, k2,i and k3,i defined in (5.24)-(5.26).

According to Proposition 5.2, ‖ei→j(ti→jk)−ei→j(tik)‖ < c1e
−αti→j

k . And the upper

bound on the delay is the minimum value of (τ?)i which solves

(
k1,i
c1

+ k2,i
c1

+ k3,i
c1

(
1 + eα(τ?)i))(τ?)i = e−α(τ?)i .

B.9 Proof of Theorem 5.5

From 5.34, the state at any time is given by

x(t) = e(AK+∆)tx(0) +
∫ t

0
e(AK+∆)(t−s)M−→e (s)ds.

According to Lemma 5.1, the error −→e (s) is bounded by c̄0. Moreover, since AK

is diagonalizable, e(AK+∆)t can be bounded using (4.12). Thus, it follows

‖x(t)‖ ≤κ(V)
(
‖x(0)‖e−(|λmax(AK)|−κ(V)‖∆‖)t

+ ‖M‖c̄0
|λmax(AK)|−κ(V)‖∆‖

(
1− e−(|λmax(AK)|−κ(V)‖∆‖)t)).

Reordering terms and noting that ‖M‖ is bounded by µmax because is a block

diagonal matrix, it falls out (5.37).

The upper bound on the delay can be derived easily noting that if the last

event occurred at t = tik, it holds that

‖ei→j(ti→jk)−ei→j(tik)‖ ≤
∫ ti→j

k

ti
k

‖ėi→j(s)‖ds ≤
∫ ti→j

k

ti
k

‖ẋi(s)‖ds ≤
∫ ti→j

k

ti
k

‖ẋ(s)‖ds,

since xb,i→j remain constant in the interval and ‖ẋi(s)‖ ≤ ‖ẋ(s)‖.

256 B Proofs

Because ‖ẋ(s)‖ ≤ ‖AK + ∆‖‖x(s)‖+ ‖M‖‖−→e (s)‖, following equivalent steps

as in Theorem 4.2, it yields

‖ei→j(ti→jk)−ei→j(tik)‖ ≤
(
‖AK + ∆‖κ(V)

(
‖x(0)‖+

‖M‖c̄0
|λmax(AK)|−κ(V)‖∆‖

)
+ ‖M‖c̄0

)
(ti→jk − tik).

According to Assumption 5.1, no event occurs before the broadcasted state is suc-

cessfully received and, therefore the increase of the error in the interval [tik, t
i→j
k)

is bounded by c0, giving the upper bound on the delay (5.36).

B.10 Proof of Theorem 5.6

The state of the system at any time is given by

x(t) =e(AK+∆)tx(0) +
∫ t

0
e(AK+∆)(t−s)(BKex(s) +Beu(s))ds.

The error ex is bounded by
√
N(cx,0 + cx,1e

−αt) and the bound on eu is derived

in Lemma 5.3. Moreover, as already proved, it holds that

‖e(AK+∆)t‖ ≤ κ(V)e−(|λmax(AK)|−κ(V)‖∆‖)t

With these considerations, the bound on x(t) can be calculated following the

used methodology in the previous proofs to derive (5.50), showing that the system

is globally ultimately bounded. Furthermore, (5.50) is upper bounded by

‖x(t)‖ ≤ σ1 + κ(V)‖x(0)‖e−(|λmax(AK)|−κ(V)‖∆‖)t + σ2e
−αt, (B.15)

if the negative terms are omitted.

The Zeno behavior exclusion in the broadcasting and, as a consequence, in

the control update, can also be proved similar to the previous results. Note that

in the inter-event times ‖ėi(t)‖ ≤ ‖ẋi(t)‖ ≤ ‖ẋ(t)‖, and ‖ẋ(t)‖ can be bounded

B.10 Proof of Theorem 5.6 257

according to (5.45). Thus,

‖ei(t)‖ ≤
∫ t

t∗
(‖AK + ∆‖‖x(s)‖+ ‖BK‖‖ex(s)‖+ ‖B‖‖eu(s)‖)ds.

If x(t) is bounded according to (B.15), and the the corresponding bounds on ex

and eu are considered, it leads to the following lower bound for the inter-event

time

Tx,min = cx,0

γ1 +
√
N(γ2 + γ3 + γ4)

,

where

γ1 = κ(V)‖x(0)‖‖AK + ∆‖

γ2 = (‖BK‖+ ‖B‖‖µ(K)‖max)cx,0
(
1 + κ(V)‖AK+∆‖

|λmax(AK)|−κ(V)‖∆‖

)
γ3 = (‖BK‖+ ‖B‖‖µ(K)‖max)cx,1

(
1 + κ(V)‖AK+∆‖

|λmax(AK)|−κ(V)‖∆‖−α

)
γ4 = ‖B‖cu

(
1 + κ(V)‖AK+∆‖

|λmax(AK)|−κ(V)‖∆‖

)
.

C
Software

This appendix provides additional information about the applications developed

in this thesis and described in this manuscript in chapters 3 and 6.

First, screenshots of the LabVIEW applications are enclosed. The GUI as well

as the block diagrams of the CAL and the PAL, in which the main blocks are

highlighted, are depicted.

Secondly, complementary information of the MaSS tool is given in the developed

user manual, which is also available at http://lab.dia.uned.es/mass. A more

detailed description of the features of the simulator, and additional examples of

usage are provided.

http://lab.dia.uned.es/mass

260 C Software

C.1 Implementation of the CAL and the PAL in

LabVIEW

Initialization

(not shown)

Resources

release

Measure RTT

Receive measurements

Control and send commands

Disturb.

Estim.

𝑥 (𝑘𝑖 + 𝜏𝑚𝑖𝑛)

Seq.

Comput.

Send

Control

Process

Measur.

Look-up

Table

Figure C.1: Screenshot of the implementation of the CAL in LabVIEW.

Encaps.

Packet

Event

Detector

Seq.

Managm.

Receive commands

Send measurements

Hardware access

Initialization

(partially shown)

Resources

release

Figure C.2: Screenshot of the implementation of the PAL in LabVIEW.

Figure C.3: Screenshot of the GUI at the Client in LabVIEW.

Figure C.4: Screenshot of the GUI at the Server in LabVIEW.

C.2 User Manual of MaSS 263

C.2 User Manual of MaSS

The MaSS simulator is available online at http://lab.dia.uned.es/mass, wh-

ere users can download a version of the simulator, view a video in which the

usability of the tool is shown, and have access to a user manual. This user

manual is reproduced next, and the cover is depicted in Figure C.5.

C.2.1 Background

What is a multi-agent system?

In a multi-agent system (MAS), a number of entities (agents) work together to

cooperatively solve problems.

The application fields of MAS are quite heterogeneous. A group of au-

tonomous vehicles which coordinately move to fulfill an objective or individual

particles that interact with each other and model a thermodynamical system are

examples of MAS. In this case, we are interested in the first example of systems.

The behavior of the system depends on the agents dynamics and the inter-

connections between the agents.

What is the Consensus Problem in a multi-agent system?

The agents of a MAS reach a common state (the average, the maximum, the

minimum, etc.) from a reduced knowledge of the overall system. For instance, if

the final state is the average of all initial states we call it average consensus.

The Consensus Problem has many applications and one of them is the au-

tonomous vehicle formation, since reaching the formation is analogous to reaching

Consensus.

What is the system topology?

The system topology describes how the agents interact with each other. In this

case, interaction means communication.

http://lab.dia.uned.es/mass

[ESCRIBIR EL TÍTULO DEL DOCUMENTO]
[Seleccionar

fecha]

 1

3/2/2012

Departamento de Informática y Automática, UNED | María Guinaldo

MaSS: A Java simulator for Multi-agent Systems

User Manual v1.3

Figure C.5: Cover of the user manual of MaSS available at
http://lab.dia.uned.es/mass.

http://lab.dia.uned.es/mass

C.2 User Manual of MaSS 265

Each agent can communicate with a reduced number of agents that we denote

as neighbors. Each agent only has access to its own state and its neighbors’.

The topology is described by a graph whose vertices are the agents and the

edges are the communication links.

What is the communication law of the system?

The agents communicate with each other through a network to give information

about its state. The instants of time at which the communication occurs are

discrete-time events, and so the communication law determines when these events

take place.

Traditionally, the information is sent periodically, for example every 100 ms.

One alternative is to use a communication law based on events in which the

condition to send information does not depend on the instants of time but on the

state of the agent. It seems logical that if the state of one agent has not varied

there is no need of sending the same value periodically.

Some network concepts

A protocol is a set of rules that sets out how the information flows between two

systems. A protocol gives specifications about the message formats, how to detect

and correct errors, etc.

The network delay gives how much time it takes for a bit to go from one node

to another in the network. The delay is influenced by several factors as queues,

propagation delays, transmission rate, etc.

A packet (a message) is lost when the data sent through the network do not

reach the final destination. The number of packet losses is influenced by the

channel congestion, the degradation of the signal, etc.

C.2.2 The Graphical User Interface

The graphical user interface of the simulator has six panels and menu, which

are labeled by number in Figure C.6 from 2 to 7 and 1, respectively. The most

important panels are 3 and 4. In the first one, an interactive view of the simulation

266 C Software

[Mass: a Java simulator for multi-agent systems- User Manual v1.3] [UNED]

 4

A packet (a message) is lost when the data sent through the network do not reach the final destination.

The number of packet losses is influenced by the channel congestion, the degradation of the signal, etc.

2. THE GRAPHICAL USER INTERFACE

Figure 1. Graphical interface

The graphical user interface of the simulator has six panels and menu, which are labeled by number in

Figure 1 from 2 to 7 and 1, respectively. The most important panels are 3 and 4. In the first one, an

interactive view of the simulation of the agents is shown, and in the second one, a set of graphs provides

information about the formation control and network status. The panel 5 allows users to change the

number of agents and to define a group leader. The trigger mechanism is defined through the panel 6. All

the configurable network parameters can be modified in the panel 7. Moreover, in the menu at the top of

the interface, users can select the dynamical model of the agents and also the experiment to perform.

Finally, the panel 2 contains the basic buttons to play, pause, reset and step the simulation, and an

additional button to save the data into a Matlab file in order to perform further analysis.

We next describe in more detail each of the elements of the interface aforementioned.

2.1. Main menú: Performing Experiments and Changing the Model Dynamics

 Model: The vehicles have been modeled as non-honolomic. If the control signals are the linear

and the angular velocity we have a first order model. On the other hand, the second order model

uses the force and the torque as the control signals.

 Experiment: There are three prefixed experiments, whose configurations are shown in Figure 2.

Moreover, the user can save the system configuration of a certain instant of time in a file, and

restore this configuration at any time loading the corresponding file.

 Help: It gives access to this document.

1

2

3 4

5 6

7

Figure C.6: Graphical User Interface.

of the agents is shown, and in the second one, a set of graphs provides information

about the formation control and network status. The panel 5 allows users to

change the number of agents and to define a group leader. The trigger mechanism

is defined through the panel 6. All the configurable network parameters can be

modified in the panel 7. Moreover, in the menu at the top of the interface, users

can select the dynamical model of the agents and also the experiment to perform.

Finally, the panel 2 contains the basic buttons to play, pause, reset and step the

simulation, and an additional button to save the data into a Matlab file in order

to perform further analysis.

We next describe in more detail each of the elements of the interface afore-

mentioned.

Main menu: Performing Experiments and Changing the Model Dy-

namics

• Model: The vehicles have been modeled as non-honolomic. If the control

signals are the linear and the angular velocity we have a first order model.

On the other hand, the second order model uses the force and the torque

as the control signals.

C.2 User Manual of MaSS 267

Figure C.7: Prefixed experiments.

• Experiment: There are three prefixed experiments, whose configurations are

shown in Figure C.7. Moreover, the user can save the system configuration

of a certain instant of time in a file, and restore this configuration at any

time loading the corresponding file.

• Help: It gives access to this document.

Panel 2: Controlling the simulation execution

On the left side of the panel, users can find the buttons to start, step, stop, and

restart the simulation.

On the right side, a button allows users to save some variables into a Matlab

file, which can be executed afterwards to generate the corresponding graphs. If

users push once the button, the icon changes and the data is stored in a buffer.

The variables that are saved are the time, the coordinates (x, y) of each agent,

the distance to the formation of each agent, the packets transmission rate and the

performance of the network. If users push again the button, a dialogue box allows

us to specify the name file to save the data. This file must have .m extension. If

the code is load and run in Matlab, three graphs similar to the ones shown panel

4 should appear.

Panel 3: Interactive view of the multi-agent system

The view of the interactive simulation is shown in the panel 3. The agents are

labeled from 0 to N − 1 and and traces show the path followed by the agents.

268 C Software

The arrows represent the communication links between the agents: an arrow from

agent i to agent j means that agent i sends information to agent j.

The agents can be dragged to a new position, and the overall system moves

to recover the formation, if the system is under control. The agents are dark blue

colored and, if there is a leader of the group it is in light blue. The outline of an

agent changes to orange when transmitting a packet and goes back to its normal

state when the data is received.

At the bottom, we have two additional options:

• Auto-zoom: To zoom-in or zoom-out the simulation view.

• Simulation vel.: It speeds up or slows down the simulation. This is useful

to adjust the movement of the agents to a real system.

Panel 4: Plots of system and network events

The panel 4 has two different tabs. The first one shows the distance to the

formation at the top and the angular velocity (first order model) or the torque

(second order model) at the bottom.

The second tab has two graphs as well. The first one shows the average delay

for all the existing links in the network. The second one shows the last sent packet

for a slot of time (see Figure C.8). Each arrow connects two lines that represent

two agents. For example, if there is an arrow that connects 3 to 2 means that the

vehicle 3 sent a packet to the vehicle 2. The x coordinate represents the time.

The origin of an arrow represents the instant of time at which a packet was sent,

and the end is the time at which it was received.

If we look at Figure C.8, we see that there are three types of arrows. The

orange ones indicate that the packet was successfully received. The red arrows

mean that the packet was dropped and did not reach the destination. Finally,

a green arrow means that the packet was discarded because a packet with more

recent information arrived before. This option can be activated in the Flow Con-

trol checkbox. Acknowledgments of packets are also drawn if the ACK checkbox

is marked.

C.2 User Manual of MaSS 269

Figure C.8: Example of chronogram. Delivered packets are in orange, red
arrows are lost packets, and green arrows correspond to discarded packets.

Below this chronogram, two indicators show the packets transmission rate

computed on-line and a performance index which is updated every 2 seconds.

This performance measures the packet delivery ratio of the network.

Panel 5: Modifying the number and type of agents

This panel allows users to add or withdraw agents and define a leader in the

group. The number of agents is changed through the corresponding indicator.

When a new agent is added, its position is generated randomly.

In order to define a leader, the user has to select the number of the agent

from the drop-down list and then mark the checkbox leader. The leader differs

from the rest of the agents because it sends its state to its neighbors but it does

not receive information from any other agent, and so the rest of the agents move

“around” the leader to reach the formation.

Panel 6: Defining Communication Strategy and Triggering Mecha-

nism

The parameters referring to the control and communication triggering mechanism

can be found in the panel 6. Three different choices can be made through the

drop-down list.

• Periodic: Each agent sends periodically its state to its neighbors. For a first

order model, the state are the coordinates and for a second order model the

270 C Software

state also includes the velocities in the x and y directions. The configurable

parameter is the sampling period, Ts.

• Events: c cte.: In this case the packets are not sent periodically but when

the error reaches a certain constant threshold. The error is defined as the

difference between the current state and the last broadcasted state. The

threshold is denoted by c and can be adjusted by the user.

• Events: c var.: In this case, the threshold to trigger the event is not constant

and changes with time as c = c0 + c1e
−αt. Thus, there is a constant term

and an exponential term decreasing with time. The user can configure the

parameters c0, c1, and α.

Panel 7: Configuring Network Topology and Parameters

Some aspects of the Network can be configured in this panel.

• Topology: If users press the button change..., a window shows up and gives

us instructions to add or withdraw links. A link is added or deleted by

clicking first on the agent i and then on the agent j.

• Flow Control: If this checkbox is marked, packets containing old informa-

tion are discarded.

• ACK: If this checkbox is marked, every agent does not sent new information

after getting confirmation of reception of the previous packet.

• Packet error: This option allows to add bit error transmission into packets.

• Delay: Using this option, users can configurate a constant or random net-

work delay.

• Packet loss: The probability of losing packets can be set up by using this

option. The user can set a constant probability or, if the option Model 1

is selected, the probability is calculated based on the transmission. If this

rate increases, the probability of collision increases and so do packet losses.

C.2 User Manual of MaSS 271

1

2

3 4

5 6

7

Figure C.9: Example of usage, snapshot 1.

C.2.3 Examples of Usage

Example 1: Interacting with the GUI

Let us now see an example of usage of the simulator. This example is the same

than the available video at http:/lab.dia.uned.es/MaSS. Let us assume that

the initial configuration is generated randomly by the code and that we want

to save all the experiments in a Matlab file. Thus, we press the corresponding

button to store some variables in a buffer (see Section C.2.2) and we let the

system evolve to reach the formation of the Experiment 2. As a result, we should

get something similar to Figure C.9.

Let us make few changes in the configuration. We first set the agents model

to second order systems, hen we modify the network topology by deleting the

link 1 → 2 and adding links 1 → 3 and 3 → 0. Furthermore, we we modify

the position of the agents to the given in the Experiment 1 by selecting it from

the Menu. If we restart the simulation, the system should evolve to something

similar to Figure C.10. Note that the changes in the topology have been correctly

performed. Moreover, since we have set the model to a second order system, the

http:/lab.dia.uned.es/MaSS

272 C Software

Figure C.10: Example of usage, snapshot 2.

system reaches the formation but it moves with a constant velocity (see panel 4,

Figure C.10). Observe that we have activated the Auto-zoom checkbox so that

we can keep following the trajectory of the system moving with constant velocity.

If two new agents are added (type 6 in the Number of Agents textbox) and

the agent 3 is marked as a leader, the formation will follow it. Note that the

topology is restored when the number of agents is changed.

Let us now change to a periodic communication strategy with Ts = 0.2 s, set

the delay to random with a maximum value of 0.3 s, the probability of packet

losses to 0.1 and mark the Flow Control checkbox. Note that every agent sends

to its neighbors packets every 0.2 s. These packets can have different lengths (the

delay is random). Since the maximum delay is larger than the sampling period,

some packets should be discarded because the Flow Control is active. Moreover,

some packets are dropped since the probability is set to 0.1.

Example 2: How to save the data into a Matlab file

As explained in Section C.2.2, the panel 2 has a button to save the workspace

into a Matlab file. An example of how to do this is given below.

C.2 User Manual of MaSS 273

Figure C.11: Initial view of Example 2.

Assume that the initial configuration is the one given in Figure C.11 and that

we save this configuration to load it again in order to to compare the performance

of the system under two different conditions:

1. Packets drops are modeled as a Bernoulli distribution of probability p = 0.1.

2. Packet drops are influenced by the transmission rate assuming that when

this rate increases so does the probability of packet collisions.

The number of agents is 4, the communication mechanism is based on events with

constant threshold c0 = 0.025, the ACK option is marked and there is a constant

delay of 100 ms. To save the experiment, click on Experiment, Save Experiment,

and name the file. Press the button to start recording the data and then play the

simulation. Once the system reach the formation, we press again the mentioned

button to stop recording the data and we type the name of the Matlab file to

store them.

Let us restore the initial configuration by clicking on Experiment and then on

Load Experiment to select the file where we saved it before. We next change the

model of packet losses by selecting Model 1 in the list and we repeat the same

steps to save the variables into a Matlab file.

274 C Software

Figure C.12: Matlab figure for the experiments of Example 2.

Afterwards, if both Matlab files are open and executed, something similar to

Figure C.12 will be obtained.

The first graph depicts the output, the second one the packets transmission

rate per second and the third one the performance of the network, which is

evaluated every 2 seconds as the packet delivery ratio. One can conclude that

the degradation of the performance of the network has a direct effect into the

performance of the system, since the formation is reached later in the second

case (red lines) and the trajectories are less optimal.

D
Resumen en Castellano

Resumen

El cierre de lazos de control a través de redes de comunicaciones se ha ido exten-

diendo y ha incrementado su popularidad a medida que los dispositivos de red

han abaratado sus costes. Muchas son las ventajas de usar redes de comunicación

digital para el control, y no sólo desde el punto de vista de sus aplicaciones. Sin

embargo, su uso también implica una serie de retos como las limitaciones que im-

pone en el ancho de banda, retardos en la transmisión de información, e incluso

pérdidas de datos.

A continuación se presenta un resumen en castellano de la tesis que incluye una

reflexión sobre la influencia del tipo de red, la arquitectura del sistema, y las

líneas de investigación más relevantes para hacer frente a las imperfecciones de

la comunicación que caracterizan a estos medios. También se hace una revisión

del control basado en eventos, ya que se ha demostrado su eficiencia en control a

través de redes.

Asimismo, se incluyen las contribuciones, un pequeño resumen de cada capítulo,

así como un listado de las publicaciones y de los proyectos de investigación en los

que se ha participado.

Por último, el resumen finaliza con las conclusiones que se extraen de la tesis.

276 D Resumen en Castellano

D.1 Control a través de redes

D.1.1 Cuestiones generales

El desarrollo técnico en las últimas décadas del mundo de las redes de comunica-

ciones ha posibilitado su aplicación a los sistemas de control. En la actualidad,

el control sobre redes es de hecho una rama de investigación de gran importan-

cia, como demuestra la existencia de al menos dos áreas técnicas específicas de

IFAC (International Federation of Automatic Control), y un creciente número de

conferencias y workshops especializados en este campo.

En los Sistemas de Control en Red (SCR) los diferentes elementos de un

lazo de control (sensores, actuadores y controladores) se conectan a través de un

medio de comunicación digital con ancho de banda limitado. El uso de redes com-

partidas de propósito múltiple para conectar elementos que están espacialmente

distribuidos tiene varias ventajas que, por otro lado, son el principal motivo de

su éxito:

• Ofrecen arquitecturas flexibles, haciendo más fácil reconfigurar partes del

sistema o añadir nuevos elementos.

• En general, se reducen los costes de instalación y mantenimiento, debido

a la reducción del cableado que se requiere en una arquitectura punto a

punto.

• Como consecuencia de ello, resulta más fácil diagnosticar y detectar fallos.

Los SCR han abierto también un nuevo espectro de posibles aplicaciones en el

mundo real, como redes de sensores móviles [HE04, OFL04], sistemas de energía

distribuidos o inteligentes o smart grids [MAW05, BZ11] (véase la Figura D.1),

sistemas de transporte inteligentes [MS06], formación de vehículos autónomos

[SS05, GKKP06], vigilancia [BCM+10, CM02] (véase la Figura D.2), operaciones

quirúrgicas teleasistidas [MWC+04] (véase la Figura D.3), entre otras.

Sin embargo, el uso de redes introduce nuevos retos y hace que el análisis

y diseño de los SCR resulte más complejo. Las teorías de control convencional

D.1 Control a través de redes 277

Figura D.1: Diseño genérico de redes de energía. Imagen por MBizon
[CC-BY-3.0 [com13]], a través de Wikimedia Commons.

plantean una serie de hipótesis como la sincronización en el control, la ausencia

de retardos en la medida y en la actuación y un ancho de banda ilimitado. Sin

embargo, estas hipótesis han de replantearse antes de poder ser aplicadas a los

SCR dadas sus características. Tratar de mejorar las redes de comunicaciones

y los protocolos de red son sólo una solución parcial al problema. Por tanto, es

necesario diseñar nuevos algoritmos de control con el fin de hacer frente a las

imperfecciones de la comunicación y sus restricciones [Hee10], las cuales pueden

resumirse en:

• Ancho de banda limitado: Cualquier red puede transmitir una cantidad de

información finita por unidad de tiempo, y esto puede tener graves conse-

cuencias en los sistemas de control. En la mayoría de las redes digitales,

la información es transmitida en forma de unidades atómicas o paquetes.

Dichos paquetes pueden dividirse en dos partes, el área de datos o pay-

load y la cabecera, que contiene la información de control requerida para

la transmisión. El máximo tamaño del área de datos es dependiente del

278 D Resumen en Castellano

Figura D.2: Vehículos aéreos no tripulados para vigilancia y comunicaciones.
Imagen tomada prestada de [Las10].

protocolo, y puede variar de los 1500 bytes en Ethernet a los 8 bytes de

algunos protocolos de comunicación por radio frecuencia [mOw10].

• Retardos variables en la comunicación: La trasferencia de un paquete de

un nodo a otro de la red no es instantáneo sino que puede suponer una

cantidad variable de tiempo, que depende de condiciones variables de la

red como la congestión, la calidad del canal o el protocolo. Esto puede

afectar al rendimiento del lazo de control de varias maneras. Por un lado, la

información transmitida es recibida con retraso. Los sistemas con retardos

son en sí mismos una línea de investigación. Este área ha sido ampliamente

investigada en el contexto de los SCR [NRC07], y se puede concluir que

la estabilidad de estos sistemas es más compleja que la de los sistemas

sin retardo. Por otro lado, los retardos pueden suponer que el sistema

sea muestreado a intervalos de tiempo variables. Un número significativo

de resultados (véase [HNY07] y referencias de ese artículo) han tratado

de caracterizar la cota superior del tiempo inter-muestreo para la cual la

estabilidad del sistema está garantizada.

• Pérdidas de paquetes: Un paquete puede perderse por errores en la trans-

misión a nivel físico entre enlaces de la red, lor la congestión del canal o

D.1 Control a través de redes 279

Figura D.3: Sistema de cirugía teleasistida. Imagen tomada prestada de
[Uch03].

por la corrupción de los paquetes en tránsito. En aplicaciones de control

un paquete puede ser descartado si contienen información desactualizada.

• Cuantización: Un cuantizador es una función que mapea una función real

en una función a tramos con un número finito de valores constantes. En

SCR, el tamaño finito de los paquetes puede introducir errores en las señales

transmitidas.

Otro aspecto importante que diferencia a los SCR de un sistema de control con-

vencional es su arquitectura. La Figura D.4 muestra la arquitectura genérica

de un SCR. Puede consistir en varios subsistemas, los cuales pueden estar inter-

conectados físicamente, al igual que sus respectivos sensores (S), actuadores (A)

y controladores (C). Todos estos nodos pueden estar dispersos dentro del sistema

y pueden conectarse de manera arbitraria a la red. En la Sección D.2 se detalla

este aspecto.

D.1.2 Trabajos en el área de control sobre redes

La mayor parte del trabajo desarrollado en el área de los SCR se ha inclinado por

modelarlos como sistemas de control en red convencionales con ciertas restric-

ciones en la comunicación, ya descritas anteriormente. Normalmente esto supone

280 D Resumen en Castellano

NETWORK

C

C C C
Σ3 A S

Σ1 A S

Σj A S
Σi A S

Σk A S

Σ2 A S

Figura D.4: Arquitectura genérica de un SCR.

el re-diseño de controladores convencionales que, además, pueden desembocar en

diseños conservadores [ZLR09].

En [Hee10] se puede encontrar un resumen de las principales líneas de in-

vestigación centradas en la síntesis de controladores en red. Todos los métodos

consideran límites bastante restrictivos en los retardos, intervalos de transmisión

y el número máximo de pérdidas de paquetes. Otra de las restricciones más

usuales es la síntesis de condiciones basadas en LMI, lo que limita el problema a

plantas lineales:

• Una de las estrategias es modelar el sistema en tiempo discreto. El retardo

y los intervalos inter-muestreo representan la incertidumbre del sistema, en

la que se basa para derivar las condiciones de estabilidad a través de un

LMI [DHvdWH11].

• La estrategia de datos muestreados hace uso de ecuaciones diferenciales

(impulsivas) con retardo. Se pueden obtener condiciones de estabilidad

basadas en LMI como resultado de la extensión de funcionales de Lyapunov-

Krasovskii a plantas y controladores lineales. Véase, por ejemplo, [NHT08].

• En la estrategia de emulación [HTVdWN10], la estabilidad del SCR se

obtiene combinando funciones de Lyapunov continuas del sistema de control

en ausencia de red y el protocolo de red.

D.1 Control a través de redes 281

Mención especial merecen algunas contribuciones en el campo del control robusto.

Se han propuesto controladores H∞ y H2/H∞ para lidiar con los problemas

ocasionados por la red en el lazo de control, como por ejemplo [YHL05, SS05,

MOB+12].

Las siguientes secciones analizan las particularidades de dos tipos de redes:

las redes tipo Internet y las redes inalámbricas, y cómo puede afectar este hecho

al sistema de control.

Redes tipo Internet

Los sistemas de control basados en Internet permiten la monitorización remota

y el ajuste de plantas a través de Internet, lo que hace factible la recuperación

datos y la reacción a posibles fluctuaciones de la planta desde cualquier parte y

en cualquier momento.

Las redes del tipo Internet se basan en paquetes que pueden transportar más

información que la requerida en un sistema de control convencional sin que esto

suponga un mayor consumo de los recursos de la red. Por tanto, en lugar de enviar

valores individuales, se pueden transmitir predicciones de tamaño limitado. Esta

es la motivación del llamado control basado en paquetes.

Una estrategia relativamente común es recurrir a controladores basados en

modelo para emular futuros estados de la planta, y así generar predicciones. La

idea de combinar el control basado en paquetes con Control Predictivo (MPC,

de Model Predictive Control) fue introducida por primera vez en el contexto

de la teleoperación en [Bem98]. Desde entonces, otros autores han explotado

los principios de MPC en SCR basados en paquetes [KJA06, QSG07, MJVR08,

VF09, ICMS11].

Otras alternativas han sido estudiadas para intentar reducir el esfuerzo com-

putacional que el MPC requiere. Unas de ellas es el llamado control anticipativo

que efectúa una estimación de los futuros estados del sistema en base a un modelo

que considera retardos [NH06], pero sin realizar un proceso de optimización. La

secuencia de control resultante puede que no sea óptima, pero el tiempo empleado

en su cálculo es insignificante comparado con el del MPC.

282 D Resumen en Castellano

En [ESDCM07, GSD11] se proponen controles anticipativos para diferentes

arquitecturas.

Redes inalámbricas

En los últimos tiempos, han aparecido algunos trabajos que han permitido aplicar

control sobre redes inalámbricas. El interés en las redes inalámbricas proviene

del bajo coste que supone su instalación y la flexibilidad que aporta prescindir

del cableado. Los primeros trabajos se han centrado en el diseño del controlador

en redes de sensores y actuadores bajo la hipótesis de redes ideales. Sin embargo,

las imperfecciones de la comunicación no pueden obviarse, sobre todo desde el

punto de vista de la implementación. Además, dichas imperfecciones son mucho

más severas que en redes cableadas.

En el mundo de las telecomunicaciones, los esfuerzos se están dirigiendo a

desarrollar redes inalámbricas más fiables para aplicaciones de control, de manera

que se puedan garantizar valores bajos de latencia y tener en consideración las

restricciones que demandan los sistemas de tiempo real [Maz10]. Asimismo, las

redes de sensores y actuadores inalámbricas presentan nuevos retos con respecto

a los SCR cableados. El más importante es el relativo a la eficiencia energética

en dispositivos alimentados por baterías, que imponen restricciones tanto en la

computación como en la comunicación de dichas redes. Hay varios factores que

influyen en el consumo energético. Uno de ellos es la tasa de trasnmisión de datos,

que también puede influir en el retardo y las pérdidas de paquetes. En general,

se puede decir que, reduciendo el número de paquetes transmitidos por unidad de

tiempo, se permite alargar la vida de las baterías de los dispositivos inalámbricos.

Otro de los factores que influyen en el consumo es el tamaño de los paquetes,

aunque la energía consumida por byte sea menor debido al coste que supone la

cabecera de los paquetes [JER+10]. La mayoría de las implementaciones hacen

uso de paquetes pequeños y de tamaño fijo, ya que la información requerida en

aplicaciones de control es de pequeño tamaño.

Entre las soluciones propuestas en la literatura, se encuentra el diseño de

nuevos protocolos que permiten alcanzar una alta fiabilidad y eficiencia energética

D.2 Arquitectura 283

en distintas aplicaciones de redes de sensores inalámbricas, no diseñadas específi-

camente para el control [AKK04, BDWL10]. Más recientemente, se ha propuesto

el diseño conjunto de parámetros del control y la comunicación [AAJ+11] con

el objetivo de optimizar el consumo de energía a la vez que se garantiza un

rendimiento en el control adecuado.

La mayoría de los trabajos existentes en la literatura considera que la trans-

misión se produce de manera periódica, aunque recientemente se han propuesto

técnicas de muestreo aperiódico que abordan mejor los problemas de los sistemas

de control inalámbricos. Una revisión de dichas técnicas se puede encontrar en

la Sección D.3.

D.2 Arquitectura

En la Figura D.4 se ilustraba la arquitectura más genérica de un SCR, en la

cual los nodos se encuentran repartidos por toda la red. A continuación, se

particulariza esta arquitectura para dos casos concretos.

D.2.1 Sistemas con un único lazo de control

Si se dispone de un único lazo de control, tenemos tres nodos: el controlador (C),

y los correspondientes sensor (S) y actuador (A). La localización de estos tres

nodos da lugar a tres arquitecturas diferentes para el SCR, tal y como se muestra

en la Figura D.5. Nótese que la información debe ser transmitida en tiempos

discretos sobre la red. Se asume que el elemento que transmite el dato sobre

la red es capaz de muestrear las señales continuas y transmitir la información

a tiempo discreto. De igual modo, el elemento que recibe la información de la

red debe tener la capacidad de transformar señales de tiempo discreto a señales

continuas. Las líneas discontinuas representan el flujo de información a instantes

de tiempo discretos que, en general, se denotan como tk, pudiendo ser estos

equidistantes o no.

Véase que se tiene en cuenta el caso en que se mide el estado completo x(t) o

sólo la salida del proceso y(t).

284 D Resumen en Castellano

a) b)

c)

Plant A S

NETWORK

C

)(

/)(

ty

tx

)(

/)(

k

k

ty

tx

)(tu

)(ktu

)(

/)(

k

k

ty

tx

)(ktu

NETWORK

C Plant A S)(

/)(

ty

tx)(tu)(tu

)(

/)(

k

k

ty

tx

)(

/)(

k

k

ty

tx

NETWORK

C Plant A S
)(

/)(

ty

tx)(tu

)(

/)(

ty

tx

)(ktu)(ktu

Figura D.5: Posibles esquemas de un SCR en un lazo de control.

La Figura D.5a muestra el caso en el que el controlador se encuentra junto al

sensor, y las señales de control son transmitidas a través de la red. Ejemplos de

trabajos en los cuales esta es la arquitectura preferida son [ESDCM07, QSG08].

En la Figura D.5b el controlador se sitúa junto al actuador y lo que se transmite

a través de la red son las medidas de la planta. Este es el esquema considerado

en, por ejemplo, [GCHM06, LL10, LL11b].

Un esquema más genérico se muestra en la Figura D.5c, en el que la red se

encuentra a ambos lados del controlador. Cuando el controlador recibe una nueva

medida, se calcula una nueva señal de control que es transmitida a la planta.

Supongamos que la información es transmitida con un cierto retardo causado

por la red. Mientras que en el caso de controladores colocados (D.5a y D.5b)

se puede medir la latencia porque el cierre del lazo de control a través de la red

ocurre sólo entre dos elementos, en el caso del controlador remoto los retardos del

sensor al controlador y del controlador al actuador no pueden medirse de manera

independiente sin asumir la sincronización de todos los elementos, y sólo se puede

conocer su suma.

En esta tesis, la arquitectura que se estudia para el caso de que haya un

único lazo de control se corresponde con la Figure D.5c, y se corresponde con los

capítulos 2 y 3.

D.2 Arquitectura 285

NETWORK

C

Σ1
A S Σ2

A S

Σ3
A S ΣN

A S

)(/)(i

ki

i

ki tytx)}({ i

kj tu

Figura D.6: Control centralizado de múltiples plantas.

D.2.2 Sistemas con múltiples lazos de control

Cuando se tienen varios lazos de control, las alternativas para ubicar los diferentes

nodos son múltiples. Nos centramos en dos arquitecturas, que por otro lado son

las más extendidas desde el punto de vista de la implementación.

La primera arquitectura tiene un único controlador que puede recibir infor-

mación de varios sensores y enviar acciones de control a varios actuadores (control

centralizado). En general, estos elementos pueden pertenecer al mismo sistema o

a diferentes plantas.

Posteriormente, se considera una estrategia de control distribuido. En con-

creto, se asume que cada nodo en la red dispone de su propio controlador y que la

necesidad de comunicación con otros nodos es por distintos objetivos del control.

Control centralizado

El control centralizado propuesto para una arquitectura multi-lazo se muestra en

la Figura D.6. El sensor transmite a través de la red al controlador las medidas

adquiridas. A pesar de que en la Figura D.6 se considera que cada planta tiene

un único sensor y un actuador, también se contempla el caso de tener una única

planta con varios sensores y actuadores.

Dependiendo de la complejidad del problema, el control tendrá que cambiar

entre diferentes sub-controladores si, de hecho, hay varias plantas cada una con

su controlador asociado. También se puede diseñar un único controlador multi-

286 D Resumen en Castellano

variable para el segundo tipo de problema mencionado.

Independientemente de la naturaleza del problema, el controlador tendrá que

procesar diferentes medidas recibidas de los sensores, denotadas como xi(tik) (me-

dida del estado) o yi(tik) (medida de la salida), y calcular la(s) correspondiente(s)

señal(es) de control uj(tik), donde tik hace referencia al tiempo de muestreo. Se

considera que una medida xi(tik)/yi(tik) puede suponer que varias señales de con-

trol uj(tik) sean calculadas, ya que puede existir acoplamiento.

El uso de controles centralizados en red suele requerir el uso de buffers que

inducen retardos adicionales a los ya causados por la red. Este retardo de proce-

samiento, que es el tiempo desde que se recibió una medida xi(tik)/yi(tik) hasta

que se comienza a calcular la correspondiente señal de control uj(tik), no resulta

despreciable cuando el número de lazos de control aumenta.

Aunque se pueden tomar algunas estrategias para tratar de mitigar este pro-

blema como, por ejemplo, el diseño de un planificador de red que decida qué nodo

debe transmitir en cada momento [AAJ+11], el control centralizado no resulta ni

conveniente ni eficiente en sistemas a gran-escala.

Por este motivo, el interés en el diseño de controles descentralizados ha ido

creciendo en los últimos años. Sin embargo, conviene indicar que esta tampoco es

una tarea fácil. Incluso las nociones más básicas como estabilidad se convierten

en no triviales en un marco descentralizado [WD73, GSS05]. En algunas imple-

mentaciones cuando el número de sensores y actuadores no es muy grande, se

demuestra que el control centralizado a través de red resulta más eficiente que el

descentralizado si se puede garantizar la fiabilidad de la red [SGQ08].

Control distribuido

Existen muchos sistemas de control que han sido contruidos siguiendo una es-

tructura descentralizada de un gran número de controladores SISO (single-input-

single-output), permitiendo así la operación estable de la mayoría de las unidades

de operación. No obstante, esta estrategia no es la solución de control más óptima

ya que en estas arquitecturas los subsistemas no pueden comunicarse aunque la

interacción entre ellos sea significativa. Por el contrario, el diseño de controladores

D.2 Arquitectura 287

NETWORK

C

C

C
C

)(i

ki tx
)}({ j

kj tx

Σi
A S

Σ1
A S

Σ2
A S

Σ3
A S

)(tui

Figura D.7: Sistema de control distribuido.

distribuidos se basa en asumir que los controladores pueden compartir informa-

ción. Dado que los controladores pueden necesitar comunicarse entre ellos, la red

de comunicación forma parte del diseño del problema.

En un sistema de control distribuido se distinguen dos tipos de interacciones.

En la primera, un subsistema puede estar físicamente interconectado con otros,

es decir, el estado de un subsistema i rige la dinámica de otro sistema j. Este

hecho podría ser tenido en cuenta a la hora de diseñar el controlador del sub-

sistema j con el objetivo de compensar este efecto si el estado de i estuviese

disponible en j. Esto incluye a sistemas MIMO de gran escala que pueden ser

divididos en pequeñas porciones que interaccionan unas con otras. El segundo

tipo de interacción proviene de la necesidad de comunicación entre los contro-

ladores para alcanzar un objetivo común. Esto lleva a lo que se conoce como

control cooperativo. La terminología más usual para referirse a este tipo de sis-

temas, en los cuales se agrupa información de partes individuales para controlar

el comportamiento global del sistema, es la de sistemas multi-agentes.

La Figura D.7 ilustra un esquema de control distribuido. Se puede encapsular

cada nodo i (linea punteada) para incluir el subsistema y el controlador local, que

recibe información en instantes de tiempo discreto tik el estado local del subsistema

xi(tik) pero también un conjunto de estados xj(tkj) de otros subsistemas (también

llamados agentes) medidos en instantes de tiempo diferentes tkj . Los agentes que

transmiten información i se conocen como los vecinos de i.

288 D Resumen en Castellano

D.3 Control basado en eventos

D.3.1 Preliminares

A pesar de que el mundo real es analógico, la mayoría de las aplicaciones de

control se implementan en plataformas digitales que necesitan que la informa-

ción en el lazo de control se intercambie de manera discreta entre los sensores,

los actuadores y los controladores. Tradicionalmente, los instantes en los que

este intercambio se produce son equidistantes, es decir, dados por el periodo de

muestreo. La frecuencia de muestreo tiene que garantizar la estabilidad del sis-

tema en todos los escenarios posibles, lo que a veces provoca una elección de

la frecuencia realmente conservativa. Además, todas las tareas se ejecutan de

manera periódica independientemente de las necesidades de la planta.

En los últimos años, ha habido un interés creciente en la idea de tener en

cuenta el estado de la planta a la hora de decidir cuándo se ejecuta el control o se

muestrea al sistema. En los sistemas de control basados en eventos, dichas tareas

tienen lugar cuando se viola una cierta condición sobre el estado de la planta.

Por tanto, hay una adaptación a las necesidades del proceso.

No hay una terminología uniforme a la hora de referirse a este concepto. Se

pueden encontrar en la literatura distintas acepciones como control basado en

eventos, control disparado por eventos, control send-on-delta, control por cruce

de nivel, control autodisparado o self-triggered, control con mínima atención,

control con atención en cualquier momento, entre otras.

A pesar de su reciente popularización, el muestreo basado en eventos no es

en realidad una idea nueva. Sus orígenes se remontan a finales de los años 50

cuando [Ell59] planteaba que el método de muestreo más apropiado consiste en

transmitir solamente datos cuando existe un cambio significativo en la señal que

justifique la adquisición de una nueva muestra. Más tarde, en las décadas de los

60 y los 70, se popularizó un método heurístico llamado muestreo adaptativo. El

objetivo que persigue es reducir el número de muestras, sin que se produzca una

degradación en la respuesta del sistema, evaluando en cada intervalo el periodo

D.3 Control basado en eventos 289

2x

1x

c

t

V

1kt1kt kt

a) b) c)

kt t

c

x

1kt 1kt

cte k)(

))((ktxV

))((ktxS

Figura D.8: Diferentes reglas de disparo por eventos.

de muestreo.

Más recientemente, en [Arz99] se implementa el control basado en eventos

(CBE) en controladores PID mostrando que el número de acciones de control

puede reducirse sin afectar al rendimiento del sistema. En [HGvZ+99] se utiliza

el control por cruce de nivel para controlar el giro de un motor con sensores de

baja resolución.

Los primeros resultados analíticos se obtuvieron para sistemas estocásticos de

primer orden en [rB03], mostrando que bajo ciertas condiciones el CBE tiene un

mejor rendimiento que el control periódico. Pero el gran impulso que ha recibido

el control basado en eventos en estos últimos años ha venido motivado por su

aplicación a sistemas de control en red.

A continuación se presenta una revisión de los trabajos más relevantes de la

aplicación del CBE a SCR.

D.3.2 Control basado en eventos y SCR

La última década ha sido realmente prolífica en el campo de CBE, y la falta de

resultados analíticos ha sido superada. También los resultados experimentales

han mostrado que el uso del ancho de banda resulta más eficiente que en el caso

del control periódico.

Una de las implementaciones más extendidas es considerar que se produce un

evento cuando una función de error cruza un cierto límite. El cómo se define el

error y este límite es lo que distingue las diferentes estrategias que existen en la

literatura.

290 D Resumen en Castellano

Si el error se define como la diferencia entre el estado en el instante de la

última muestra y el estado actual de la planta y el límite es constante

‖e(t)‖ = ‖x(t)− x(tk)‖ ≤ c,

la terminología más frecuente es la de control deadband o de zona muerta. tk

hace referencia al instante de tiempo del último evento y t es el tiempo presente.

El valor de la constante c determina el rendimiento del sistema y la región en

torno al equilibrio en la que el estado permanece confinado. Las figuras D.8a

y D.8b representan dos ejemplos de control deadband para el caso unidimen-

sional y bidimensional, respectivamente. Trabajos relevantes en esta categoría

son [HSvdB08, San06].

Sin embargo, este tipo de control, en general, no asegura la estabilidad asintó-

tica del sistema. Por este motivo, se han investigado otro tipo de reglas de disparo

que permitan alcanzar esta propiedad. Un ejemplo se presenta en [Tab07], en el

que el error es acotado por el estado del sistema:

‖e(t)‖ = ‖x(t)− x(tk)‖ ≤ σ‖x(t)‖.

Esta estrategia permite que el sistema sea asintóticamente estable pero presenta

el inconveniente de que el tiempo entre eventos disminuye a medida que el sistema

se acerca al equilibrio. No obstante, en [Tab07] se demuestra que un valor mínimo

para dicho intervalo está garantizado bajo ciertas condiciones. Este aspecto es

importante en el control basado por eventos ya que el efecto Zeno, es decir, la

ocurrencia de dos o más eventos de manera consecutiva en el mismo instante de

tiempo, debe ser evitado. Para ello, se diseña el parámetro σ de acuerdo con

ciertas propiedades de la función de Lyapunov.

Recientemente, se han propuesto otras reglas de disparo que dependen del

tiempo con el objetivo de alcanzar el punto deseado de manera asintótica. En

[SDJ13, GDJ+11], se definen reglas de disparo del tipo

‖e(t)‖ ≤ c1e
−αt,

D.3 Control basado en eventos 291

para sistemas multi-agentes y sistemas lineales interconectados, respectivamente,

que son capaces de preservar la propiedad mencionada, garantizando además que

el efecto Zeno no se produce.

Otros autores definen la regla de disparo teniendo en cuenta la función de

Lyapunov [MAT09]. En concreto, un evento es detectado cuando el valor de

la función de Lyapunov del sistema en lazo cerrado alcanza una cierto nivel de

referencia S(x, t) (véase la Figura D.8c):

V (x, t) ≤ S(x, t).

Las redes de sensores son un caso especial de SCR en los que el consumo de

energía tiene un papel fundamental. Por tanto, el muestreo basado en eventos

resulta conveniente para reducir el número de emisiones. Sin embargo, tal y como

se analiza en [AT10b, MT08, Ara11], la mayor parte de la energía consumida por

el sensor se debe a la monitorización de la señal y no tanto a la transmisión.

Las reglas de disparo analizadas hasta ahora requieren de la medida continua del

estado. Por este motivo, una nueva estrategia conocida como self-triggering, o

auto-disparo, ha emergido en los últimos años.

Las políticas basadas en self-triggering calculan el tiempo tk+1 en el cual ten-

drá lugar la siguiente ejecución de las tareas relacionadas con el control en función

de la medida del último estado xk. De esta manera, el sensor no monitoriza el

proceso hasta que es despertado en el instante temporal tk+1, adquiere la medida,

la transmite, y recalcula el tiempo de la próxima ejecución. El concepto de self-

triggering fue sugerido por primera vez en [VMF03]. El control por auto-disparo

puede interpretarse como una emulación basada en software del control basado

en eventos. Ha sido estudiado para sistemas lineales [WL09, MAT10], y apli-

cado a redes de sensores y actuadores [MT08, TFJB10, AAJ+11, CMV+10]. Un

problema inherente a este esquema es el efecto de, por ejemplo, la existencia de

incertidumbre en el modelo o la aparición de perturbaciones externas desconoci-

das. Para hacer frente a ello, se suelen derivar resultados bastante conservadores

del tiempo inter-muestreo de manera que la estabilidad del sistema no se vea com-

292 D Resumen en Castellano

prometida [WL10]. Una solución híbrida entre self-triggering y control basado

en eventos se propone en [Ara11]. No obstante, el rechazo de perturbaciones no

puede ser completamente garantizado y el control es centralizado, lo que la hace

difícilmente extensible a sistemas con un número grande de nodos.

El control por mínima atención (MAC, de Minimum Attention Control) ma-

ximiza el siguiente tiempo de ejecución, mientras que garantiza un cierto nivel

en el rendimiento del sistema [AT10a, DTH12]. La política es similar a la de

self-triggering en el sentido de que el objetivo es que las tareas de control sean

ejecutadas lo mínimo posible pero sin utilizar técnicas de emulación. A pesar de

que en [DTH12] se propone un diseño que permite aliviar el problema de carga

computacional que presentaba [AT10a], MAC es mucho menos robusto frente a

retardos y perturbaciones que el control basado en eventos. El mismo tipo de

problemas presenta el control con atención en cualquier momento (AAC, de Any-

time Attention Control) [GQ10, GFB11, Gup09]. El diseño que se propone en

[AT10a] asume que después de cada ejecución de la tarea de control, la señal de

control no puede ser recalculada durante un cierto intervalo de tiempo determi-

nado por otro elemento del sistema (el planificador), calculando así la señal de

control que maximiza el rendimiento del sistema en lazo cerrado.

Todos los trabajos anteriores se basan en que el estado del sistema es accesible,

aunque en la práctica esto no es posible en muchos casos. Si las mismas reglas

tratan de utilizarse para controladores por realimentación de la salida, el efecto

Zeno puede aparecer, tal y como se comenta en [DH12].

Los controladores basados en eventos con realimentación de la salida se di-

viden en dos categorías. A la primera pertenecen [LL11a, LL11c]. La medida

del estado es reemplazada en la función de disparo por la estimación del estado

proporcionada por un observador [LL11a] o un filtro [LL11c]. La segunda línea de

investigación considera una estructura diferente en el controlador. Un controlador

dinámico basado en la salida se propone en [DH10]. Haciendo uso de mecanismos

de disparo mixtos, se puede garantizar que el estado permanece confinado en torno

al equilibrio y que el efecto Zeno es excluido. Un diseño basado en muestreo por

cruce de nivel se presenta en [KB06], donde se propone emular un controlador

D.4 Control basado en modelo en SCR 293

LTI.

Todas las estrategias descritas hasta ahora consideran que el actuador man-

tiene constante la señal de control entre eventos (ZOH, Zero Order Hold). A

pesar de que bajo esta consideración de “no hacer nada” se simplifica el análisis,

se ha demostrado que si existe un modelo preciso de la planta, un generador

de la señal de control puede tratar de emular el comportamiento de un sistema

convencional de control en lazo cerrado para obtener un mejor rendimiento que

con ZOH [LL10].

La idea de sacar ventaja del conocimiento de un modelo de la planta en SCR

se introduce por primera vez en [MA02, MA03a], aunque las ejecuciones son pe-

riódicas y no basadas en eventos. No obstante, este tipo de estrategias como la

propuesta en [LL10] requieren sincronización de todos los elementos en el lazo de

control, lo que la hace difícilmente extensible a sistemas de control remoto y a

esquemas distribuidos.

Alguno de los trabajos citados y otros tantos consideran arquitecturas con

varios lazos de control y control descentralizado como [MT11, MC11, Mol11,

GA12, DH12] o control distribuido [WL08, WL11, GDJ+11, SDJ13].

Finalmente, pocas publicaciones han tenido en cuenta explícitamente el efecto

de otras restricciones en la comunicación como retardos y/o pérdidas de datos.

Un trabajo relevante es [LL12], que es una extensión del trabajo previo [LL10]. En

[GA11a] se presenta una implementación que compensa parcialmente los retardos,

y en [WL11, GLS+12] se analizan implementaciones distribuidas para redes reales.

D.4 Control basado en modelo en SCR

La mayoría de las estrategias de control presentes en la literatura consideran el

uso de ZOH de manera que la señal de control es constante a tramos.

Considérese un esquema de un controlador ubicado junto al sensor como en la

Figura D.5a. La última medida x(tk)/y(tk) se mantiene constante y el controlador

calcula la señal de control u(t) constante a tramos. Supóngase ahora que se

dispone de un modelo del proceso y que, en lugar de mantener la señal de control

294 D Resumen en Castellano

Model

C
)(ˆ tx

)(tu

)(tu

)(ktx

Figura D.9: Controlador basado en modelo.

constante, se estima el estado de la planta entre recepción y recepción. Para

ello, el controlador es reemplazado por el elemento mostrado en la Figura D.9,

de forma que se calcula la salida de control basándose en la predicción del estado

x̂(t) dada por el modelo, y se inicializa cada vez que una nueva medida x(tk) es

recibida.

Tal y como se comentó en la sección anterior, este concepto se introdujo

en SCR por [MA02, MA03a]. Desde entonces, Antsaklis y colaboradores han

publicado diferentes extensiones, como por ejemplo, sistemas de tiempo discreto

[EA09] o con tiempos de transmisión variables [MA04].

Otras estrategias de control que recurren a un modelo del proceso ya han sido

comentadas en la Sección D.1.2, en las que, normalmente, se itera un modelo de

tiempo discreto para generar acciones de control futuras.

En [LL10, Leh11] se presenta una infraestructura en la que se usa un modelo

tanto en el detector de eventos como en el controlador,con el objetivo de emular un

controlador continuo por realimentación de estados, como ya se ha mencionado.

Finalmente, otros controladores basados en modelo han sido propuestos en

[GA11a], donde se consideran retardos variables e incertidumbres en el mode-

lo. También, se han presentado implementaciones descentralizadas [GA12] y

distribuidas [GLS+12].

En general, se puede decir que los controladores basados en modelo permiten

aumentar el periodo de muestreo (control periódico) o incrementar el tiempo

entre eventos (control basado en eventos). En un supuesto ideal, si no hay in-

certidumbres en el modelo y el sistema no se ve afectado por perturbaciones,

el modelo es capaz de estimar perfectamente el estado del sistema simplemente

conociendo su estado inicial. Por tanto, el fin de combinar este tipo de control

D.5 Objetivos de la tesis 295

con diseños basados en eventos es reducir el número de eventos con respecto al

uso de ZOH.

D.5 Objetivos de la tesis

El objetivo principal de esta tesis es el de contribuir a resolver algunos de los

problemas que surgen en los sistemas de control en red, con especial atención en

el control basado en eventos. Las contribuciones siguen dos líneas: el diseño de

estas estrategias de control y su posterior implementación. Este objetivo principal

puede descomponerse en los siguientes puntos:

• El diseño de una nueva arquitectura para sistemas de control en red, in-

cluyendo nuevos elementos en el lazo de control que sirvan de interfaces en-

tre los componentes convencionales (controladores, sensores y actuadores) y

la red. El objetivo de esta nueva arquitectura es aprovecharse de la flexibili-

dad que ofrecen las actuales redes de comunicación a la vez que se garantice

la estabilidad del sistema y se haga frente a las imperfecciones de la comu-

nicación. En concreto, se pretende disminuir la frecuencia de comunicación

mediante técnicas basadas en eventos y hacer frente a los retardos de la red

y a las pérdidas de datos a través del envío de predicciones de señales de

tamaño finito.

• La implementación de prototipos de la solución propuesta de manera que

los controladores convencionales puedan ser reutilizados sin la necesidad de

gastar demasiado tiempo en su conversión a sistemas de control en red.

• El diseño de estrategias distribuidas de control basado en eventos para sis-

temas de control en red. El objetivo es diseñar políticas de transmisión y de

actuación que disminuyan el número de comunicaciones pero que garanticen

un cierto nivel de rendimiento, y la exclusión del comportamiento Zeno. El

diseño propuesto debe hacer frente a posibles incertidumbres en el mode-

lo de las interconexiones entre subsistemas que caracterizan a los sistemas

de larga escala. También, se investigarán protocolos de comunicación para

296 D Resumen en Castellano

mitigar los problemas inherentes a la red como los retardos y las pérdidas

de paquetes, mientras que se preserva la existencia de una cota inferior para

el tiempo entre eventos, ya que este es uno de los principales problemas de

las estrategias que existen en la literatura.

• Diseñar e implementar herramientas para la aplicación del control dis-

tribuido basado en eventos. La motivación que persigue este objetivo es

doble: La aplicación en un entorno educativo en el cual estamos inmersos,

así como un medio para probar los algoritmos de control en un número

elevado de situaciones antes de su implementación en plataformas reales.

También se presentarán algunos datos experimentales de la implementación

sobre un sistema real.

D.6 Guión y Contribuciones de la Tesis

La tesis se estructura de la siguiente manera:

• Capítulo 2. Diseño de Control Anticipativo en Redes tipo In-

ternet. El Capítulo 2 presenta el análisis y el diseño de controladores

remotos para SCR basados en paquetes, siguiendo los paradigmas del con-

trol anticipativo. El controlador remoto utiliza un modelo del proceso y un

controlador base para generar futuras acciones de control con el objetivo

de compensar el efecto de los retardos de la red y las pérdidas de paquetes.

Se propone el diseño de dos capas de middleware entre el proceso y la red

y el controlador y la red como medio para ocultar los elementos que no

pertenecen a un sistema de control convencional. Se demuestra que la es-

tabilidad del sistema es GUUB (Globally Ultimately Uniformly Boundeded)

cuando se imponen ciertas condiciones al retardo de la red. Se proponen

también diferentes extensiones como un estimador de perturbaciones, y se

analiza el diseño de controladores LTI para sistemas en los que sólo se puede

medir la salida, de tal modo que la propiedad de GUUB se preserve. Final-

mente, se propone un controlador anticipativo centralizado para un sistema

D.6 Guión y Contribuciones de la Tesis 297

con varios lazos de control. Este trabajo ha sido publicado en la revista

IET Control Theory and Applications (véase [GSD11]) y presentado en la

49 IEEE Conference on Decision and Control (véase [GSD10]).

• Capítulo 3. Implementación y Evaluación Experimental del Con-

trol Anticipativo. El marco experimental en el que el control anticipa-

tivo descrito en el Capítulo 2 ha sido evaluado se presenta en el Capítulo

3. También se encuentra en este capítulo la descripción de las plantas, la

implementación de las capas de middleware en LabVIEW y los resultados

experimentales que resaltan la bondad del diseño propuesto. Las publica-

ciones relacionadas son las mismas que para el Capítulo 2.

• Capítulo 4. Control Distribuido Basado en Eventos para Sis-

temas Lineales Interconectados. El Capítulo 4 presenta una estrate-

gia de control distribuido basado en eventos para un sistema dinámico en

red consistente en N sistemas interconectados LTI. Las reglas de disparo

propuestas, que únicamente dependen de información local, garantizan la

convergencia asintótica al equilibrio así como la existencia de una cota in-

ferior para el tiempo entre eventos. El problema es resuelto inicialmente

para sistemas perfectamente desacoplados, y estos resultados son generali-

zados para el caso en el que el desacoplo no sea perfecto. Los términos de

acoplamiento son tratados como una perturbación del sistema nominal, y

las herramientas clásicas para el análisis de la sensibilidad de la exponencial

y potencias de matrices se aplican para obtener restricciones en los térmi-

nos de acoplamiento de manera que la propiedad de estabilidad asintótica

sea preservada. Este trabajo ha sido presentado en la 50 IEEE Conference

on Decision and Control [GDJ+11] y también ha sido aceptado para su

publicación [GDJ+13].

• Capítulo 5. Extensiones y Mejoras del Control Distribuido Basado

en Eventos. El Capítulo 5 se centra en dos aspectos. El primero de ellos

es el estudio de los efectos que las comunicaciones reales pueden tener sobre

el esquema de control distribuido presentado en el Capítulo 4. A pesar de

298 D Resumen en Castellano

que el control basado en eventos se muestra efectivo a la hora de reducir la

frecuencia de las comunicaciones en el lazo de control, no puede evitar la

existencia de retardos y pérdidas. Por tanto, se analizan las consecuencias

que tienen las redes no ideales en el cierre del lazo, y se calculan cotas su-

periores para el retardo y el número consecutivo de pérdidas de paquetes

para varios escenarios posibles que garantizan la estabilidad el sistema y

un cierto nivel de rendimiento. Posteriormente, se proponen dos mejoras.

La primera está basada en el hecho de que si el número de nodos vecinos

de un subsistema es extenso, la frecuencia de actuación puede ser elevada

en esquemas de control distribuido, incluso si cada agente no transmite de

manera muy frecuente. Para ello, se define una nueva función de error para

la entrada de control y se propone un segundo conjunto de funciones de

disparo para solventar el citado problema, actualizando la ley de control

sólo cuando se viola una cierta condición. La segunda mejora se basa en

la existencia de actuadores inteligentes capaces de aplicar señales conti-

nuas en lugar de constantes a tramos. Un controlador basado en modelo

es propuesto de manera que cada agente tiene cierto conocimiento de la

dinámica de sus vecinos en la red. En base a ese modelo, estima su estado

y calcula la señal de control. Se asume una posible incertidumbre en el

modelo, y el rendimiento del diseño propuesto en el Capítulo 4 y el basado

en modelo es comparado en función de la incertidumbre existente. Partes

de este trabajo han sido presentadas en el CDC de 2011 y de 2012 (véase

[GDJ+11, GLS+12]), y el controlador basado en modelo está también in-

cluido en el artículo de revista citado en el Capítulo 4.

• Capítulo 6. Herramientas de Simulación y Ejemplo de Aplicación

del CDBE. El control de formaciones de robots móviles a través de redes es

un ejemplo de sistemas multi-agentes en los que un grupo de robots alcan-

zan un objetivo común, en este caso la formación, gracias a leyes de control

distribuidas basadas en eventos. Se ha desarrollado un simulador interac-

tivo para reproducir este tipo de sistemas. En concreto, el control de forma-

ciones desde el punto de vista del consenso para un gran número de posibles

D.7 Publicaciones y Proyectos 299

condiciones de la red y múltiples experimentos puede ser estudiado a través

de esta plataforma. La interactividad de la herramienta ha sido uno de los

principales objetivos del desarrollo. Además, se pueden cambiar múltiples

parámetros mientras la simulación está ejecutándose, simplemente pulsando

y arrastrando elementos. Los algoritmos de control distribuido basado en

eventos también han sido implementados en una plataforma real y se mues-

tran los resultados experimentales. Este trabajo ha sido publicado en la

revista IEEE Network Magazine [GFF+12] (herramienta de simulación) y

la aplicación experimental se ha enviado a Sensors.

• Capítulo 7. Conclusiones y trabajos futuros. Se enumeran las con-

clusiones y trabajos futuros.

D.7 Publicaciones y Proyectos

Art́ıculos de Revista

1. M. Guinaldo, J. Sánchez, S. Dormido. A co-design strategy of NCS for

treacherous network conditions. IET Control Theory & Applications, 5(16):

1906-1915, 2011.

2. M. Guinaldo, G. Farias, E. Fabregas, J. Sánchez, S. Dormido-Canto, S.

Dormido. An Interactive Simulator for Networked Mobile Robots. IEEE

Network Magazine, 26(3): 14-20, 2012.

3. M. Guinaldo, D.V. Dimarogonas, K.H. Johansson, J. Sánchez, S. Dormido.

Distributed Event-Based Control Strategies for Interconnected Linear Sys-

tems. IET Control Theory & Applications, 2013, Aceptado el 1 de febrero

de 2013, doi: 10.1049/iet-cta.2012.0525.

4. M. Guinaldo, E. Fabregas, G. Farias, S. Dormido-Canto, D. Chaos, J.

Sánchez, S. Dormido. Mobile robots experimental environment with event-

based wireless communications. Enviada a Sensors (estado: major revi-

sion).

300 D Resumen en Castellano

5. E. Fabregas, G. Farias, S. Dormido-Canto, M. Guinaldo, J. Sánchez, S.

Dormido. Virtual and real laboratory for teaching mobile robotic. Enviada

a IEEE Transactions on Industrial Electronics.

Art́ıculos en Congresos y Conferencias

1. M. Guinaldo, J. Sánchez, S. Dormido. Diseño de un Sistema de Control

Anticipativo Basado en Paquetes para Control en Red. 9a Conferencia

Iberoamericana en Sistemas, Cibernética e Informática (CISCI 2010), julio

2010, Orlando.

2. M. Guinaldo, J. Sánchez, S. Dormido. A Packet-based Network Control

System Architecture for Teleoperation and Remote Laboratories. 49th

IEEE Conference on Decision and Control (CDC), diciembre 2010, At-

lanta.

3. M. Guinaldo, D.V. Dimarogonas, K.H. Johansson, J. Sánchez, S. Dormido.

Distributed Event-Based Control for Interconnected Linear Systems. 50th

IEEE Conference on Decision and Control and European Control Confer-

ence (CDC-ECC), diciembre 2011, Orlando.

4. M. Guinaldo, J. Sánchez, S. Dormido, M.A. Delgado. Control en red basado

en eventos de múltiples plantas remotas. XXXIII Jornadas de Automática,

septiembre 2012, Vigo.

5. M. Guinaldo, D. Lehmann, J. Sánchez, S. Dormido, K.H. Johansson. Dis-

tributed Event-Triggered Control with Network Delays and Packet-losses

51th IEEE Conference on Decision and Control (CDC), diciembre 2012,

Maui.

6. M. Guinaldo, J. Sánchez, S. Dormido. Contribuciones al control en red

basado en eventos para sistemas lineales. XI Simposio CEA de Ingeniería

de Control, abril 2013, Valencia.

7. M. Guinaldo, D. Lehmann, J. Sánchez, S. Dormido, K.H. Johansson. Re-

ducing communication and actuation in distributed control systems. En-

D.7 Publicaciones y Proyectos 301

viado a 51th IEEE Conference on Decision and Control, 2013.

Otras publicaciones

1. M. Guinaldo, B. Pérez-Lancho, E. Sanz. Laboratorio virtual para el apren-

dizaje del control térmico en edificios. V Jornadas de Enseñanza a Través

de Internet/Web de la Ingenieŕıa de Sistemas y Automática, septiembre

2007, Zaragoza.

2. M. Guinaldo, E. Sanz, S. Dormido. Laboratorio Virtual Basado en Web

para Aprendizaje de Física usando Ejs. XXIX Jornadas de Automática,

septiembre 2008, Tarragona.

3. M. Guinaldo, J. Sánchez, H. Vargas, S. Dormido. Laboratorio basado en

Web del sistema bola y viga para el entrenamiento de estrategias de control

avanzado. XXX Jornadas de Automática, septiembre 2009, Valladolid.

4. M. Guinaldo, H.Vargas, J. Sánchez, S. Dormido. Web-Based Control Lab-

oratory: The Ball and Beam System. 8th IFAC Symposium on Advances

in Control Education (ACE09), octubre 2009, Kumamoto.

5. M. Guinaldo, J. Sánchez, H. Vargas, S. Dormido. An Advanced Web-

based Control Laboratory for the Ball and Beam System. 9th Portuguese

Conference on Automatic Control (CONTROLO’2010), septiembre 2010,

Coimbra.

6. M. Guinaldo, L. de la Torre, R. Heradio, S. Dormido. A Virtual and Remote

Control Laboratory in Moodle: The Ball and Beam System. Enviado a 10th

IFAC Symposium Advances in Control Education, 2013.

Proyectos de Investigación

Los resultados obtenidos en el marco de esta Tesis han sido financiados por dife-

rentes proyectos de investigación:

• Modelado, simulación y control basado en eventos (2007-2012). Ministerio

de España de Ciencia y Tecnología, CICYT (Ref. DPI2007-61068). Parti-

302 D Resumen en Castellano

cipantes: UNED (España), Universidad de Murcia (España). Dirigido por

el Prof. Sebastián Dormido Bencomo.

• MACROBIO: Modelling, simulation, control and optimization of photobior-

reactors (2012-2014). Ministerio de España de Economía y Competitivdad,

CICYT (Ref. DPI2011-27818-C02-2). Participantes: UNED (Spain). Di-

rigido por el Prof. José Sánchez Moreno.

• Control basado en eventos de sistemas distribuidos y colaborativos (2012-

2014). Ministerio de España de Economía y Competitivdad, CICYT (Ref.

DPI2012-31303). Participantes: UNED (España). Dirigido por el Prof.

Sebastián Dormido Bencomo.

D.8 Conclusiones y ĺıneas futuras de investigación

D.8.1 Conclusiones

En esta tesis se han abordado varios problemas de los SCR, con especial aten-

ción en la reducción de la comunicación entre los distintos elementos del lazo de

control, pero también retardos y pérdidas de paquetes. Se ha demostrado que

las políticas de transmisión basadas en eventos son efectivas para hacer frente

a estos problemas en los escenarios estudiados, y se han implementado varias

aplicaciones que respaldan los resultados teóricos.

En concreto, en el Capítulo 2 se ha afrontado el problema del diseño de

controladores remotos. La solución propuesta radica en el diseño de dos capas de

middleware que actúan de interfaces entre los componentes convencionales de un

lazo de control y la red, siendo el modelo de la planta el elemento más importante

en el lado del controlador. La iteración de dicho modelo con un controlador base

permite generar predicciones de señales de tamaño finito para hacer frente a

retardos y pérdidas de paquetes de manera efectiva. Además, las políticas de

envío por eventos permiten reducir la frecuencia de comunicación y obtener una

respuesta robusta a posibles perturbaciones.

D.8 Conclusiones y ĺıneas futuras de investigación 303

La falta de sincronización entre el controlador y el resto de elementos impide

que los retardos en la red puedan medirse de manera absoluta. Se ha superado

esta limitación midiendo el RTT desde el controlador. Además, se ha diseñado

un estimador de perturbaciones que proporciona una mejor predicción de los

estados futuros del proceso. Si no se puede medir el vector de estado completo,

se ha propuesto una solución mixta que utiliza observadores y controladores LTI,

particularizando el diseño para controladores PI. Se ha estudiado la estabilidad

del sistema en las tres situaciones mencionadas a través funciones de Lyapunov.

La implementación de las dos capas de middleware en LabVIEW se ha des-

crito en el Capítulo 3. Estas aplicaciones permiten reutilizar con poco esfuerzo

controladores convencionales en control a través de redes. Se han diseñado varios

experimentos que permiten estudiar el sistema bajo condiciones de la red relati-

vamente extremas para el sistema. La bondad de la solución propuesta se ilustra

en los resultados experimentales.

La segunda parte de la tesis se ha centrado en control distribuido a través

de redes. En concreto, se ha propuesto el uso de control disparado por eventos

para reducir tanto la frecuencia de comunicación como la de actuación en sis-

temas lineales interconectados. El capítulo 4 aborda este problema tanto para

sistemas perfectamente desacoplados como para el caso en el que esta condición

no es asumible, mostrando que, si se usan funciones de disparo que dependen

del tiempo, se puede alcanzar la convergencia asintótica del sistema al equilibrio,

mientras que se garantiza una cota inferior para el tiempo entre eventos.

Varias extensiones a este esquema se proponen en el Capítulo 5. Especifica-

mente, se ha abordado el problema de existencia de retardos y pérdida de datos

en control distribuido basado en eventos. Se han diseñado dos protocolos de red,

uno de los cuales hace frente al problema de consistencia del estado permitiendo

cotas máximas para el retardo y el número de pérdidas de datos consecutivas

mayores que el otro protocolo. Ambos protocolos permiten también preservar las

propiedades de estabilidad asintótica, así como la existencia de una cota inferior

para el tiempo entre eventos.

En el Capítulo 5 también se han descrito dos posibles mejoras que permiten

304 D Resumen en Castellano

un uso más eficiente de los recursos de sistemas embebidos. Si la frecuencia de

actuación no debe exceder un cierto valor, se puede diseñar un segundo conjunto

de funciones de disparo para controlar la actualización de la ley de control en

sistemas de control distribuidos. Por otro lado, si el recurso más crítico es la

frecuencia de transmisión, un diseño de control distribuido basado en modelo

permite alargar el tiempo entre eventos.

Finalmente, en el Capítulo 6 se ha presentado el desarrollo de un simulador

que permite probar el control distribuido disparado por eventos en un grupo de

robots móbiles en red. La herramienta presenta un alto grado de interactividad y,

por tanto, resulta adecuada para un entorno educativo. También permite probar

el modelo del sistema bajo un amplio espectro de posibles situaciones. Por último,

se han presentado resultados experimentales sobre una plataforma real de robots

móbiles.

D.8.2 Trabajos futuros

Este trabajo puede extenderse en varias direcciones. A continuación se enumeran

algunas ideas.

• En los capítulos 2 y 5, se han propuesto controladores basados en modelo

tanto centralizados como descentralizados para disminuir la frecuencia en

la ocurrencia de eventos. Si el modelo tiene incertidumbre, ésta afecta

negativamente tanto al comportamiento del sistema como al número de

eventos generados. Pensamos que posibles soluciones a este problema pasan

por estudiar el control adaptativo [rW95] o técnicas de estimación de pará-

metros en línea [Lju99]. Nuestra intuición es que la solución no es trivial, ya

que los sistemas basados en eventos pueden interpretarse como sistemas con

parámetros variables en el tiempo, y tampoco hay un conocimiento previo

de cuándo sucederá el próximo evento. Además, el problema es aún más

complicado para el caso distribuido, ya que, a priori, el efecto de los términos

de acoplamiento no puede distinguirse del producido por la incertidumbre

del modelo. Hay un trabajo reciente [GA11b] que afronta el problema de la

D.8 Conclusiones y ĺıneas futuras de investigación 305

estabilización adaptativa de controladores centralizados basados en modelo

para sistemas de tiempo discreto usando distintas variaciones del filtro de

Kalman. Sin embargo, el perfil del error que introduce el control basado

en eventos no encaja con el requisito de ruido blanco de media nula que

require Kalman.

• A pesar de que el esquema de control distribuido en eventos presentado

en esta tesis facilita la escalabilidad del sistema, ya que las ganancias de

realimentación y de desacoplamiento son diseñadas de manera local, los

parámetros de las funciones de disparo están restringidos por información

global del sistema como λmax(AK), κ(V) o ‖∆‖. La utilización de algorit-

mos distribuidos [YFG+08, YFL08] para estimar información del sistema

a instancias de tiempo dadas por eventos es otra de las futuras líneas de

investigación.

• Hay muchas campos en los que el control disparado por eventos puede ser

útil como en redes eléctricas, conjunto de satélites, redes de tráfico, canales

de irrigación o fotobiorreactores. En este tipo de sistemas, resulta conve-

niente un diseño energético eficiente para control distribuido, que es uno de

los objetivos perseguidos por el control basado en eventos. En este sentido,

ya está en marcha un proyecto de investigación para fotobiorreactores [S1́3],

así como colaboraciones recientes en redes de energía y de tráfico.

• Las capas de middleware se han implementado en LabVIEW. Sin embargo,

sería más adecuado que la aplicación del lado del cliente hubiese sido de-

sarrollada con software libre de licencia. Por tanto, Ejs parece adecuado

para este objetivo. Además, esta línea encajaría en el esquema de labora-

torios remotos propuesto en [Var10], que serían transformados en labora-

torios controlados remotamente. Más aún, la modularidad de las capas de

middleware, y en particular de CAL, hace que su implementación encaje

perfectamente como un elemento de Ejs. Un elemento de Ejs es muy similar

a una librería Java [FGElT+12] pero proporciona una interfaz de progra-

mación de la aplicación (API, de Application Programming Interface) para

306 D Resumen en Castellano

su personalización. Con respecto al simulador MaSS, los aspectos relativos

a la red pueden también ser migradosa un elemento de Ejs con el objetivo

de aumentar su portabilidad.

	1 Introduction
	1.1 Control over networks
	1.1.1 General issues
	1.1.2 Work in the area of control over network

	1.2 System architecture
	1.2.1 Single loop schemes
	1.2.2 Multi-loop schemes

	1.3 Event-based control
	1.3.1 Preliminaries
	1.3.2 Event-based control and NCS

	1.4 Model-based control in NCS
	1.5 Objectives of the Thesis
	1.6 Outlines and Contributions
	1.7 Publications and projects

	2 Anticipative Control Design in Internet-like Networks
	2.1 Introduction
	2.2 Contributions of this chapter
	2.3 Assumptions
	2.4 The Controller Adaptation Layer (CAL)
	2.4.1 Packets processing
	2.4.2 Control sequence computation

	2.5 The Process Adaptation Layer (PAL)
	2.6 Event-based anticipative control
	2.6.1 CAL design for event-based control
	2.6.2 PAL design for event-based control

	2.7 Stability analysis
	2.7.1 Analysis of the maximum RTT and the model uncertainties
	2.7.2 Analysis of the error bounds

	2.8 Disturbance estimator
	2.8.1 Stability analysis

	2.9 Output-based event-triggered control
	2.9.1 PAL design for output measurement
	2.9.2 CAL design for output measurement
	2.9.3 Stability analysis
	2.9.4 PI anticipative control

	2.10 Centralized anticipative control for N subsystems
	2.10.1 The scheduler

	2.11 Conclusions

	3 Implementation and Experimental Evaluation of the Anticipative Control
	3.1 Contributions of this chapter
	3.2 Experimental framework
	3.2.1 Prototypes overview

	3.3 Implementing the CAL and the PAL in LAbVIEW
	3.3.1 Implementation of the PAL
	3.3.2 Implementation of the CAL

	3.4 Experimental results
	3.4.1 Performance of event-based control
	3.4.2 Response to disturbances
	3.4.3 PI anticipative controller
	3.4.4 Network: delays and packet losses

	3.5 Conclusions

	4 Distributed event-based control for interconnected linear systems
	4.1 Introduction
	4.2 Contributions of this chapter
	4.3 Background and problem statement
	4.3.1 Matrix and perturbations analysis
	4.3.2 Problem statement

	4.4 Event-based control strategy
	4.5 Results for perfect decoupling
	4.5.1 Static trigger functions
	4.5.2 Pure exponential trigger functions
	4.5.3 Simulation results

	4.6 The non-perfect decoupling case
	4.6.1 Simulation results

	4.7 Extension to discrete-time systems
	4.7.1 System description
	4.7.2 Discrete-time trigger functions
	4.7.3 Stability analysis

	4.8 Conclusions

	5 Extensions and improvements of the distributed event-based control
	5.1 Introduction
	5.2 Contributions of this chapter
	5.3 Extension to non-reliable network
	5.3.1 Transmission protocols
	5.3.2 Performance analysis for perfect decoupling
	5.3.3 Performance analysis for non perfect decoupling
	5.3.4 Simulation results

	5.4 Reducing actuation in distributed control systems
	5.4.1 Trigger functions
	5.4.2 Performance analysis
	5.4.3 Simulation results

	5.5 Model-based design
	5.5.1 Main result
	5.5.2 Simulation results

	5.6 Conclusions

	6 Simulation Tools and Application Example of the DEBC: Networked Mobile Robots
	6.1 Introduction
	6.2 Contributions of this chapter
	6.3 Formation Control for Networked Mobile Robots
	6.3.1 Multi-Agent Systems and the Consensus Problem
	6.3.2 Formation Control
	6.3.3 Model of non-holonomic mobile robots
	6.3.4 Time-Schedule Control
	6.3.5 Robot Wireless Communication Protocols

	6.4 MaSS: Multi-agent Systems Simulator
	6.4.1 Existing tools
	6.4.2 Description of the GUI
	6.4.3 Modeling a multi-agent system in Ejs
	6.4.4 Using MaSS

	6.5 Application example to a real testbed
	6.5.1 Experimental framework
	6.5.2 Experimental results

	6.6 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future work

	Bibliography
	APPENDICES
	A Prototypes models
	A.1 The QUANSER SRV-02 setup
	A.2 The flexible link: QUANSER SRV-02 series

	B Proofs
	B.1 Proof of Theorem 2.2
	B.2 Proof of Theorem 2.3
	B.3 Proof of Theorem 4.2
	B.4 Derivation of (4.45)
	B.5 Proof of Theorem 4.3
	B.6 Proof of Proposition 5.2
	B.7 Proof of Theorem 5.3
	B.8 Proof of Theorem 5.4
	B.9 Proof of Theorem 5.5
	B.10 Proof of Theorem 5.6

	C Software
	C.1 Implementation of the CAL and the PAL in LabVIEW
	C.2 User Manual of MaSS
	C.2.1 Background
	C.2.2 The Graphical User Interface
	C.2.3 Examples of Usage

	D Resumen en Castellano
	D.1 Control a través de redes
	D.1.1 Cuestiones generales
	D.1.2 Trabajos en el área de control sobre redes

	D.2 Arquitectura
	D.2.1 Sistemas con un único lazo de control
	D.2.2 Sistemas con múltiples lazos de control

	D.3 Control basado en eventos
	D.3.1 Preliminares
	D.3.2 Control basado en eventos y SCR

	D.4 Control basado en modelo en SCR
	D.5 Objetivos de la tesis
	D.6 Guión y Contribuciones de la Tesis
	D.7 Publicaciones y Proyectos
	D.8 Conclusiones y líneas futuras de investigación
	D.8.1 Conclusiones
	D.8.2 Trabajos futuros

