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A.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



Contents vii

A.2 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.3 Estructura y contribuciones . . . . . . . . . . . . . . . . . . . . . . . 185

A.4 Publicaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.5 Proyectos de investigación . . . . . . . . . . . . . . . . . . . . . . . . 187

A.6 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
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(PSA), Spain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



xii List of Figures

2.11 Response of the Acurex system (solid line) to a step change in the

setpoint, with the event-based sampler placed at the controller output. 53

2.12 Limit cycles in the Acurex system (solid line) and in the simulated

model (dashed line) controlled by a PI with SOD sampling placed

after the controller output. (a) With two levels, and (b) with three

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.13 Response of the Acurex system (solid line) to a step change in the

setpoint, with the event-based sampler placed at the process output. 54

2.14 Limit cycles in the Acurex system (solid line) and in the simulated

model (dashed line) controlled by a PI with SOD sampling placed

after the process output. (a) with two levels, and (b) with eight levels. 55

3.1 Graphical user interface of EJS. . . . . . . . . . . . . . . . . . . . . . 59

3.2 Subpanels of EJS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Simulation of a simple mass and spring system. . . . . . . . . . . . . 63

3.4 Interfaces of the Process Control Library . . . . . . . . . . . . . . . . 67

3.5 Structure of the PID controller with antiwindup mechanism. . . . . 71

3.6 The class diagram illustrates the Process Control Library extension

mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Simplified representation of an algebraic loop. . . . . . . . . . . . . . 81

3.8 Basic output feedback control loop with a discrete controller C(z)

and a continuous SISO process P (s). . . . . . . . . . . . . . . . . . . 84

3.9 Two control loops with different location of the send-on-delta sampler. 87

3.10 Elements page of the EJS Model. . . . . . . . . . . . . . . . . . . . . 88

3.11 Definition of the model in EJS. . . . . . . . . . . . . . . . . . . . . . 90

3.12 User interface of the PID control of a Tank example. . . . . . . . . . 91

3.13 User interface of the simulation example. . . . . . . . . . . . . . . . . 92

4.1 Architecture of a remote lab built with EJS, JIL Server, and LabVIEW. 99



List of Figures xiii

4.2 Use of the VI SOD sampler to sample a variable, and detail of the

implementation of the send-on-delta sampler in LabVIEW. . . . . . 102

4.3 Structure of the LabVIEW Connector library for Java and EJS. . . . 104

4.4 State diagram representing the possible states of the connection with

the JIL Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Sequence diagrams for (a) low-level protocol, and (b) high-level protocol.107

4.6 The configuration window of the LabVIEW Connector Element. . . . 111

4.7 User interface of the JIL Server test example. . . . . . . . . . . . . . 115

4.8 Architecture of the Audio Player Element . . . . . . . . . . . . . . . 116

5.1 Diagram of the quadruple-tank system. . . . . . . . . . . . . . . . . 122

5.2 Quadruple Tank System from Quanser. . . . . . . . . . . . . . . . . 123

5.3 The Quanser Q8 board, and the Universal Power Module UPM-2405. 124

5.4 The three-tier architecture of the Remote Lab. . . . . . . . . . . . . 129

5.5 Model Elements Page with the Process Control Library. . . . . . . . 131

5.6 The configuration window of the LabVIEW Connector Element. . . . 132

5.7 Synchronizing EJS and LabVIEW with the labview.step() method. . 133

5.8 User interface of the quadruple tank remote lab. . . . . . . . . . . . 135

5.9 Step response of the process controlled by a PI with kp = 20 and

ki = 0.1, and with the sampler at the process variable with δ = 0.5

and α = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.10 Step response of the process controlled by a PI with the event-based

sampler at the process variable and at the controller variable. . . . . 140

5.11 Flexible Link plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.12 Following the division in subsystems discussed in Chapter 4. . . . . . 147

5.13 Model Element page (a) of the virtual lab, and (b) of the remote lab. 149

5.14 Configuration dialog of the StateSpaceModel Element. . . . . . . . . 149



xiv List of Figures

5.15 ODE page of the model in the virtual lab, with an entry for the

process, a StateSpaceModel, and another for the controller, a PID-

Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.16 Graphical user interface in EJS of the Flexible Link virtual lab and

of the remote lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.17 Step response of the process controlled by a PI with the event-based

sampler at the process variable. . . . . . . . . . . . . . . . . . . . . . 155

5.18 Different limit cycles in the process controlled by a PI, with the event-

based sampler at the process variable. . . . . . . . . . . . . . . . . . 156



1
Introduction

Event-based control is a control paradigm which arises naturally as is similar to how

people act. The fundamental idea is the concept of event, that is, something that

happens in the system and that somehow involves the need for action. This is a

significant change compared to other approaches such as analog control, which is

updated continuously, or digital control, which is updated periodically with a fixed

time base. However, this form of control system is more intuitive because we humans

act somewhat like this: we respond to external events that make us to take decis-

sions about how to act. Moreover, while in other control areas as classical control

there is a well-known mathematical theory that provides a systematic approach to

problem solving, event-based control has traditionally been used based on heuristics

or empirical knowledge, to solve particular problems. However, given the interest

and contributions of many researchers in the field, with different formalisms and

theoretical frameworks, this situation has changed and, although it is still far from

reaching the maturity level of other branches of control, there are many important

results. For this reason, it is important not only to research in analysis and synthesis

techniques for event-based controllers, but there is an increasing need to incorporate
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these issues into the curriculum of students, maybe not in initial control courses,

but for sure in more advanced courses.

Moreover, today Internet is a ubiquitous tool in our lives, through broadband

connections available in the workplace and in most households, and even, increas-

ingly, being continuously connected to the network with mobile devices like smart-

phones or tablets. In the field of education, students use Internet continuously as

a source of knowledge, to the detriment of other more traditional media like books.

This new way of dealing with the teaching has led educators to exploit the benefits

of interactive tools for learning, allowing leverage technology for students with ways

to reach things unthinkable in the past.

The use of hands-on laboratories is essential for experimental sciences where stu-

dents, in addition to have an understanding of the theory related to the experiment,

must learn to deal with practical issues, such as saturations in the actuators, lim-

ited precission of the sensor, etc. However, the creation and maintenance of labs is

expensive, and in many cases it is not affordable by many universities. Besides the

cost, the operation of laboratories depends of the availability of the teacher to su-

pervise and be present during the experiments, leading to a restricted schedule and

under-utilization of resources. It is therefore becoming more common, especially in

open universities, where usually the number of students is greater, to incorporate

remote labs that allow students to carry out experiments through a connection from

home or from another place, not necessarily located near the lab. Thus, a remote

laboratory allows on the one hand, to eliminate the need for the student to move

physically to where practices are performed, and on the other hand, to have a greater

utilization of resources.

Within the interactive tools, we can also consider the virtual labs that allow

students to experiment on a simulated system, which mimics the behavior of a real

system. Although the simulation can not capture all the richness of the behavior

of the real system, it has other advantages such as to allow to carry out any type
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of experience without the possibility to provoke physical damage on the hardware.

For this reason, they are very suitable for being presented to the student as a first

contact with the plant, to acquire knowledge about it. After having passed succes-

fully the first step, with the virtual lab, they can be allowed to experiment with

the real system. This, in turn, also lead to a more rational use of resources and a

higher degree of concurrency, because even if the access to the remote laboratory is

limited, the virtual system is not. Still, the development of virtual and remote lab-

oratories requires an effort. Moreover, it is often the same educator, not necessarily

an expert developer, who must sacrifice time devoted to designing experiences and

educational material, to cope with problems related to the practical implementation.

So, in general, it is desirable to have patterns and development tools to design these

laboratories that facilitate the process and reduce the design time. Particularized

to the case of event-driven systems, it is possible to abstract features common to

these systems and encapsulate them in software componenents. Furthermore, this

method stimulates the construction of more robust solutions and benefits from the

experience obtained previously by other developers.

In summary, it is important to study event-based control systems both in its the-

oretical aspects, to obtain results that help in the analysis and design of controllers

that solve practical problems in areas where they have proven to have advantages

over traditional techniques, as in the case of networked control systems, multi-agent

systems, etc. It is also necessary to contribute to the development of tools to build

frameworks to experiment on event-based control systems for research on new control

algorithms and to use them in education.

1.1 Objectives

The general objective of this Thesis is to investigate, design, and implement event-

based PID control systems. The theoretical study of two general event-based struc-
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tures and the limit cycles associated to these structures is adressed, and also the

simplification of the methods to develop experimentation platforms aimed to teach

event-based control.

The following specific objectives are considered in this Thesis:

� Study of two general event-based control structures, focusing on the properties

(amplitude and period) of the limit cycles presented in these structures.

� Confirmation of the existence of these limit cycles in simulation and real plants.

� Development of software components to allow a rapid development of vir-

tual and remote laboratories, encapsulating the event-based communication

between the client and the server applications.

� Implementation of virtual and remote laboratories making use of the developed

components, to assess their performance and facility of use.

1.2 Outline and contributions

The organization of this Thesis is as follows:

Chapter 2. In the first part of the chapter, the two control structures explored in

this Thesis are described. These schemes correspond to two cases frequently

used in control systems which are based on wireless transmission. The rest of

the chapter presents the problem of the limit cycles that may appear in this

kind of systems and the mathematical framework that is used in the analysis.

The main contribution of this chapter is an algorithm that allow to compute

the properties of possible limit cycles in a given process when it is controlled

by the considered event-based structures.
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Chapter 3. A new library of Java classes and EJS elements is presented, to rapidly

develop virtual laboratories for teaching control of industrial processes and, in

particular, event-based control systems.

Chapter 4. The creation of remote laboratories is discussed focusing on event-

based transmissions related issues. A new architecture is presented, based on

the use of EJS elements in the client side, which allows a rapid development

and guarantees robustness of the applications.

Chapter 5. The first part of the chapter presents a virtual and remote laboratory

to control a quadruple tank plant. The second part discusses the development

of a Virtual and Remote laboratory that allows to control a Flexible Link

plant.

Chapter 6. Conclusions and future lines of works are given.
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PART I: Analysis





2
Analysis of the Event-based

Control Schemes

2.1 Introduction

Traditionally, the control systems used in different engineering areas have been based

on periodic sampling, for which there is a wide range of mathematical tools and well

established theoretical results (for example, [AW96]). On the contrary, event-based

sampling schemes appear in a natural way in wireless sensor networks (WSN) where

the controller or the sensors send their outputs according to the violation of some

condition. Also, event-based strategies have been used for long time in areas such as

control of industrial processes [KKLP99], robot path planning [TXB96], and engine

control [HJCV94]. However, event-based control has been used mainly in an ad-

hoc way, due to the lack of theoretical results, which have begun to be available

only in the last years (for example [Å08, AB02, HNX07]). Recently, event-based

control is also being used in multi-agent [DL12, GDJ+13] and distributed systems

[WAJ12, Gui13, GFF+13].

Event-based systems are frequently classified into two types,

event-triggered systems [YA11], which usually do not have a model of the plant,
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where the changes measured in the state provoke sporadic updates of the controller,

and self-triggered systems [Tab07, ASP10], where the controller calculates the time

when the next event is triggered, based on an estimation of the state of the plant

obtained from a model.

Some works related to event-triggered systems are [WAJ12], where authors de-

velop a distributed event-triggered estimation algorithm for networked systems, or

[HD12, HD13], where it is used a periodic event-triggered strategy, which is a vari-

ant of event-triggered where the event condition is verified at a constant sampling

period. In [MJC12], authors implement a distributed event-triggered control system

based on local event generators and prove practical stability. Finally, in [LLJ12], au-

thors analyze the relationship between sampled-data control and two event-triggered

strategies, namely, deadband control, in which the controller acts when the process

output is outside of a predefined band, and model-based event-triggered control.

With respect to self-triggered systems, a simple self-triggered sampler for non-

linear systems is presented in [TJ12]. Another self-triggered sampler for nonlinear

systems is developed in [AT09, AT10], under the assumption that the closed-loop

system with continuous-time control is input-to-state stable (ISS) with respect to

measurement errors. In [WL09], authors present a scheme that ensures finite-gain

L2 stability of the resulting self-triggered feedback systems.

It is very well-known that Proportional-Integral-Derivative (PID) controllers are

widespread in industry, mainly because of their satisfactory performance for many

processes and because they are relatively easy to design and tune. Thus, in recent

times many authors have addressed the design and implementation of event-based

PID controllers [Å99, VK06]. A comprehensive survey of the different methods

proposed in the literature for event based PID control can be found in [SVD12].

This work described in this Thesis is focused on event-triggered sampling, and

in particular on the level crossing or send-on-delta sampling [Å99], which consists in

taking a new sample when a change greater than a predefined threshold δ is detected



2.1. Introduction 13

+ P (s)C(s)

NL

d

udu yunl

(a) Sampler at the process.

+ P (s) C(s)

NL

d

uud yunl

(b) Sampler at the controller.

Figure 2.1: Event-based control schemes. The block diagrams correspond to the two
proposed configurations, (a) the event-based sampler at the process output and (b)
at the controller output.

in the signal. In practice, this scheme is equivalent to introduce a non-linearity that

can be characterized as a quantization of n levels with hysteresis.

The behaviour of a control scheme based on level crossing sampling is studied

considering two possible structures, the first one is when the sampler is located after

the process output (Figure 2.1a), and the second one after the controller output

(Figure 2.1b). Each case represents a configuration of a control scheme based on

wireless transmissions, and has different properties. The first case corresponds to a

plant with a wireless sensor which takes measures of the process variable and sends

them to the controller, physically separated from the sensor but connected to the

actuator. The second case is the opposite, where the controller is directly connected

to the sensor and the actuator is in other place.

The interest is to characterize with a systematic approach the behaviour of the

two event-based control structures with a set of processes such as integrator processes

plus time delay process (IPTD), first order processes plus time delay (FOPTD), and

second-order processes plus time delay (SOPTD). The analysis is focused on the

conditions for the existence of limit cycles, their period and amplitude, the effect

of external disturbances, and the wind-up phenomena in the process due to the

saturation of the actuators.

There are other works in the literature concerned to the study of limit cycles in



14 2. Analysis of the Event-based Control Schemes

event-based systems. In [Å95], authors analyze the existence, properties and stability

of limit cycles in relay systems. Related results can also be found in [CA07], where

an event-based control scheme with a simple threshold detector is investigated, first

in a double integrator and afterwards in the general case. Another approach can

be found in [LJ12], where the proposed structure is a model-based event-triggered

PI in which the events are generated by the difference between the plant and the

model implemented in the controller/sensor. The effect of actuator saturation is

also investigated. In [Gon00], a new method to perform the global stability analysis

in Piecewise Linear Systems (PLS) is proposed. The method is based on the use

of quadratics Lyapunov functions in the switching surfaces. Finally, in [BDSV12a,

BDSV12b], authors analize symmetric limit cycles in send-on-delta PI controllers,

focusing on the stability of FOPTD processes and proposing tuning rules for this

kind of controllers.

The main contributions of this chapter are the proposition of two general event-

based schemes, and a new method for the analysis of the limit cycles that appear

in the two presented schemes when they are applied to Linear Time Invariant (LTI)

systems with time delay. The method has been applied to study a set of the most

common industrial processes, obtaining results that have been confirmed in practice.

In particular, a set of experiments carried out in the Distributed Collector Solar Field

at the Solar Platform of Almeŕıa (PSA) showed the expected behaviour.

2.2 The LTI and SOD sampler blocks

In the event-based control structure used in this work, three elements are present:

the multilevel non-linearity with hysteresis represented by the SOD sampler, the

process (IPTD, FOPTD or SOPTD), and the PI controller. In order to redefine

the event-based system as a PLS, first it is necessary to group the dynamics of the

two linear elements in one block, that is, process and controller. Once this is done,
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Figure 2.2: Two cases of send-on-delta sampling with different offset.

the redefinition of the system as a PLS is simple since feedbacking the new linear

block with the non-linearity is equivalent to introduce a rule to switch between the

n systems obtained by the combination of the dynamics of the linear block and the

n output levels of the sampler.

Figure 2.2a shows the non-linearity corresponding to the non-centered level cross-

ing with saturation, and Figure 2.2b represents a centered sampling with saturation.

The dotted lines in both plots mean that the sampler has a saturation, but in general

the levels can be extended in both directions.

2.2.1 The non-linear block: the SOD sampler

The event-triggered control systems analysed in this work use a level crossing sam-

pling strategy, where, depending on the sampler location, the sensor sends informa-

tion to the controller only when the sampled signal crosses certain predefined levels,

or the controller sends the new values of the control action to the actuator when

there is a significative change with respect to the previous value. The level crossing

is considered the event that triggers the capture and the sending of a new sample.

Formally, a SOD sampler can be thought of as a block which has a continuous

signal u(t) as input and generates a sampled signal unl(t) as output, which is a
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piecewise constant signal with unl(t) = u(tk), ∀t ∈ [tk, tk+1). Each tk is denoted

as event time, and it holds tk+1 = inf{t| t > tk ∧ |u(t)− u(tk)| ≥ δ}, where δ is

the sampling threshold, i.e. the minimum change that triggers the taking of a new

sample. The previous condition holds for all tk, except for t0, which is assumed to

be the time instant when the block is initialized as unl(t0) = u(t0).

In addition, this signal can be saturated due to the limitations in the sensors or

in the actuators. As said before, the pattern resulting from sampling a signal with a

SOD sampler can be described as a non-linearity of n levels with hysteresis. It can

be characterized as

unl(t) =


(i+ α+ 1)δ if u(t) ≥ (i+ 1)δ ∧ unl(t−) = (i+ α)δ

(i+ α)δ if u(t) ∈ ((i+ α− 1)δ, (i+ α+ 1)δ) ∧ unl(t−) = (i+ α)δ

(i+ α− 1)δ if u(t) ≤ (i− 1)δ ∧ unl(t−) = (i+ α)δ

(2.1)

where α ∈ [0, 1) is the offset with respect to the origin, i ∈ Z if the sampler is

without saturation, and i ∈ [imin, imax] when the sampler is with saturation.

Depending on the initial value, the non-linearity introduced could have an offset

with respect to the origin, α = u(t0) − iδ, where i = bu(t0)/δc. The level crossing

sampling with offset is formally defined in the following paragraphs.

Definition 1. Let T = {t0, ..., tn}, with tk ∈ R and tk−1 < tk, be a set of sampling

times, and U = {u(t0), ..., u(tn)} a set of samples. Thus, U is a level crossing

sampling of u(t) if, and only if, |u(tk)− u(tk−1)| = δ, k = 0, 1, ..., n.

Note that every sample can be expressed as ys(tk) = (ik + α)δ, where ik ∈ Z is

the crossed level by the input signal y(t), and α ∈ [0, 1) ⊂ R is the sampling offset

which depends on the initial sample, y(t0).

Definition 2. The order of a non-linearity with hysteresis is defined by subtracting

1 to the number of crossing levels.
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Figure 2.3: Event-based control schemes. The block diagrams on the left correspond
to the two proposed configurations, (a) the event-based sampler at the process output
and (b) at the controller output. On the right, the continuous dynamics have been
grouped in one block to simplify the analysis. Solid lines represent a continuous
data flow, while dotted lines mean a discontinuous data flow.

For example, a two-level non-linearity with hysteresis and zero offset owns three

crossing levels, that is, −δ, 0, and δ. It must be noticed that if the non-linearity had

zero offset the number of levels would be always even, and odd in the opposite case.

2.2.2 The linear blocks: the process and the controller

As Figure 2.3 shows, the linear dynamics of the process and the PI controller can be

joined in two different ways by placing the non-linear block at the process output

(Figure 2.3a) or at the controller output (Figure 2.3b). Depending on the combi-

nation, two different linear blocks Gps and Gcs are obtained and, once the loop is

closed with the sampler, two PLS are produced with different limit cycles features.

The dynamics of the Gps and Gcs blocks will be represented by the augmented state
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Figure 2.4: Block diagram of the PID controller in the parallel form.

matrices obtained by combining process and controller.

2.2.2.1 State-space representation of the controller

Though there are different implementations of the PID algorithm in literature, all of

them are esentially equivalent. In this work, the parallel form of the PID algorithm

(see Figure 2.4) is considered. It can be represented by the transfer function,

u(s) =

(
kp +

kd
s

+ kds

)
e(s). (2.2)

The PID transfer function has a high gain for high frequencies, due to the deriva-

tive term. To avoid problems with noisy signals, in practical implementations it is

common to filter the derivative with a first-order filter. With this consideration, the

resulting transfer function is,

u(s) =

(
kp +

kd
s

+
kds

1 + kd
kN s

)
e(s). (2.3)

Let us start obtaining the matrices corresponding to the continuous case, that

is, without considering the SOD sampler. No delays are considered now. Assume

that the process P (s) and the controller C(s) are described by the time-invariant
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state-space systems

P (s) ∼

 ẋp(t) = Apxp(t) +Bp(u(t) + d(t))

y(t) = Cpxp(t)

C(s) ∼

 ẋc(t) = Acxc(t) +Bce(t)

u(t) = Ccxc(t) +Dce(t),

(2.4)

where xp ∈ Rm is the state of the process, xc ∈ Rn is the state of the controller, Ap

is non-singular, and e(t) = r(t)− y(t) is the control error.

Combining the two parts of (2.4), the whole system is,

ẋp(t)
ẋc(t)

 =

Ap −BpDcCp BpCc

−BcCp Ac

xp(t)
xc(t)

+

BpDc Bp

Bc 0

r
d


y(t)

u(t)

 =

 Cp 0

−DcCp Cc

xp(t)
xc(t)

+

 0 0

Dc 0

r
d

 .
(2.5)

2.2.2.2 Sampling the process variable: the Gps block

The introduction of the SOD sampler in the PID control loop modifies the expres-

sions presented in the previous section. Depending on where the sampler is placed,

either the controller or the process input only changes at certain times.

To include the effect of the SOD sampler in (2.4), a new variable is introduced:

unl, the non-linear output of the sampler. At the sampling instants tk, unl := y(tk)

if the sampler is at the process variable, and unl := u(tk) in the opposite case. The

expressions corresponding to the control loop with the SOD sampler are obtained

introducing unl in (2.4), which yields,

ẋp
ẋc

 =

Ap BpCc

0 Ac

xp
xc

+

−BpDc BpDc Bp

−Bc Bc 0



unl

r

d


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y
u

 =

Cp 0

0 Cc

xp
xc

+

 0 0 0

−Dc Dc 0



unl

r

d

 . (2.6)

2.2.2.3 Sampling the control variable: the Gcs block

The procedure to obtain the augmented state matrices of the Gcs block is similar

to the previous case but taking into account that now the input to the controller

u(t) is the process output y(t), and the input to the process is the signal resulting of

adding the disturbance d(t) to an input named us(t) . The resulting system Gcs(s)

is

ẋp
ẋc

 =

 Ap 0

−BcCp Ac

xp
xc

+

Bp 0 Bp

0 Bc 0



unl

r

d


y
u

 =

 Cp 0

−DcCp Cc

xp
xc

+

0 0 0

0 Dc 0



unl

r

d

 .
(2.7)

To simplify the analysis of the previous expressions, from now on the setpoint is

assumed to be null, i.e. r = 0. This is done without loss of generality, as shown in

the following Proposition.

Proposition 1. Consider the systems,

Gps(s) ∼


ẋps = Apsxps +Bpsups

yps = Cpsxps +Dpsups,
(2.8)

where

Aps =

Ap BpCc

0 Ac

 Bps =

−BpDc Bp

−Bc 0


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Cps =

Cp 0

0 Cc

 Dps =

 0 0

−Dc 0

 , (2.9)

and

Gcs(s) ∼


ẋcs = Acsxcs +Bcsucs

ycs = Ccsxcs,
(2.10)

where

Acs =

 Ap 0

−BcCp Ac

 Bcs =

Bp Bp

0 0


Ccs =

 Cp 0

−DcCp Cc

 .
These systems are equivalent to (2.6) and (2.7). Therefore, the setpoint can be

assumed to be null without loss of generality.

Proof. Consider that the sampler is placed at the process output. Note that defining

(x̄p, x̄c, ū, ȳ, ūnl, d̄) := (xp, xc, u, y, unl− r, d), the system can be equivalently written

as (2.6). Now, consider that the sampler is placed at the controller output. Defining

(x̃p, x̃c, ũ, ỹ, ũnl, d̃) := (xp −
CTp
‖Cp‖2 r, xc, u, y − r, unl −

BTp ApC
T
p

‖Bp‖2‖Cp‖2 r, d), the system can

be written equivalently as (2.7). In both cases, the introduced variables only differ

from the original by a constant value. Therefore, it can be assumed without loss of

generality that r = 0. To make the notation more clear, from now on the variables

are written without the symbols ˜ and ¯.

2.2.3 The P, I, PI, PD, and PID controllers

In this section, the expressions (2.6) and (2.7) are particularized to the most fre-

quently forms of the PID controller, to serve as a reference for the analysis done in

the rest of the thesis. Though the PI is considered in most of the examples, because
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it is the most extended controller, the propositions and algorithms presented in this

chapter are in general form, so they can be applied to any of the enumerated cases

by choosing the approppriate matrices.

2.2.3.1 Proportional controller (P)

The proportional or P controller is a controller with a feedback based only in the

current error of the process. Its associated state space matrices are Ac = Bc = Cc =

0, and Dc = kp. Thus,

Aps =

Ap 0

0 0

 Bps =

−kpBp Bp

0 0


Cps =

Cp 0

0 0

 Dps =

 0 0

−kp 0

 ,
(2.11)

and,

Acs =

Ap 0

0 0

 Bcs =

Bp Bp

0 0


Ccs =

 Cp 0

−kpCp 0

 .
(2.12)

2.2.3.2 Integral controller (I)

The transfer function of the integrator or I controller is C(s) = kie(s), therefore one

of its possible representations in the state space is given by Ac = 0, Bc = 1, Cc = ki,

and Dc = 0. Thus,

Aps =

Ap kiBp

0 0

 Bps =

 0 Bp

−1 0


Cps =

Cp 0

0 ki

 ,
(2.13)
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and,

Acs =

 Ap 0

−Cp 0

 Bcs =

Bp Bp

0 0


Ccs =

Cp 0

0 ki

 .
(2.14)

2.2.3.3 Proportional-Integral controller (PI)

The PI controller state-space matrices are Ac = 0, Bc = 1, Cc = ki, and Dc = kp.

Thus,

Aps =

Ap kiBp

0 0

 Bps =

−kpBp Bp

−1 0


Cps =

Cp 0

0 ki

 Dps =

 0 0

−kp 0

 ,
(2.15)

and, when the sampler is at the control variable,

Acs =

 Ap 0

−Cp 0

 Bcs =

Bp Bp

0 0


Ccs =

 Cp 0

−kpCp ki

 .
(2.16)

2.2.3.4 Proportional-Derivative controller (PD)

The PD controller is Ac = −nkpkd , Bc = n
kp
kd

, Cc = kd, and Dc = kp(1 + n). Thus,

Aps =

Ap kdBp

0 −nkpkd

 Bps =

−(1 + n)kpBp Bp

−nkpkd 0


Cps =

Cp 0

0 kd

 Dps =

 0 0

−(1 + n)kp 0

 ,
(2.17)
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and, when the sampler is at the control variable, the expressions are,

Acs =

 Ap 0

−nkpkdCp Ac

 Bcs =

Bp Bp

0 0


Ccs =

 Cp 0

−(1 + n)kpCp kd

 .
(2.18)

2.2.3.5 PID with derivative filter

The PID controller with derivative filter has Ac =

0 0

0 −nkpkd

, Bc =

 1

n
kp
kd

, Cc =[
ki kd

]
, and Dc = (1 + n)kp. Thus,

Aps =


Ap Bpki Bpkd

0 0 0

0 0 −nkpkd

 Bps =


−Bp(1 + n)kp Bp

−1 0

−nkpkd 0


Cps =

Cp 0 0

0 ki kd

 Dps =

 0 0

−(1 + n)kp 0

 ,
(2.19)

where Ap ∈ Rn×n, and, with m = n + 2, Aps ∈ Rm×m, Bps ∈ Rm×2, Cps ∈ R2×m,

and Bps ∈ R2×2.

When the sampler is at the control variable, the expressions are,

Acs =


Ap 0 0

−Cp 0 0

−nkpkdCp 0 −nkpkd

 Bcs =

Bp Bp

0 0



Ccs =

 Cp 0 0

−(1 + n)kpCp ki kd

 .
(2.20)

where Acs ∈ Rm×m, Bcs ∈ Rm×2, and Ccs ∈ R2×m.
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2.3 Defining an event-based system as a PLS

The results obtained in this section do not depend on where the sampler is placed.

Therefore, the subindexes representing the position of the sampler, ps and cs, have

been dropped to simplify the notation. For example, A is equivalent to Aps, if the

process variable is being sample, or to Acs in the other case.

Let us consider that the input to G(s) is delayed in time by τ and the loop is

closed by adding the non-linearity represented by the SOD sampler. Then,

G(s) ∼


Ẋ(t) = AX(t) +BU(t− τ)

Y (t) = CX(t) +DU(t− τ).
(2.21)

Now, the resulting system is an infinite dimensional system because of the time

delay. However, it can be simplified because closing the loop with the non-linearity

makes the input signal piecewise constant. So, in the matrix U the input unl(t) is

redefined as

unlk = (jk + α)δ,

where jk ∈ Z is the crossed level by the input signal unl(t), and α ∈ [0, 1) ∈ R is

the sampling offset which depends on the initial sample, unl(t0). Let us define the

switching times,

Definition 3. Consider a limit cycle composed of n switchings, and assume T =

{t0, ..., tn} are the sampling times, as in Definition 1. Then the switching times are

defined as t∗i = ti − ti−i (see Figure 2.5).

And the order of the limit cycle,

Definition 4. Consider a limit cycle in a symmetric non-linearity of order n (n+1

crossing levels, as in Definition 2). Then, the number of switchings of the limit cycle

is 2n.
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Figure 2.5: Trajectory of a solution of a PLS system corresponding to a limit cycle.
The solid line represent the process output, and the dashed line the control input.

Then, if limit cycles of period T with switching times, t∗i > τ where T = t∗1+ t∗2+

. . . + t∗2n are only considered, the input {unl(t), t∗i − τ < t ≤ t∗i } is constant and its

value is given by the feedback. In this case, the state of the system at the sampling

times t1, t2..., t2n is uniquely given by X(ti). Taking into account this consideration,

the system can be considered as a PLS defined by

Ẋ(t) = AX(t) +Bi

Y (t) = CX(t) +Di,
(2.22)

where Bi = B
[
unli d

]T
, Di = D

[
unli d

]T
, and unli = (ji + α)δ, for i =

{0,±1, . . . ,±n}.

In this PLS the rule to switch between the linear systems is included in the

definitions of the non-linearities. It must be noted that the switching rules have
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Figure 2.6: Trajectory of a solution of a PLS system. In each region, the dynamics
of the system is determined by a different LTI system defined by (2.22). The lines
represents the switching surfaces.

memory and the decision of which LTI to use may not depend only on the actual

values of the state, but also on their past values. In the state-space, the points

in which a rule provokes the switching from the system i to the system j define a

surface which is known as switching surface (see Figure 2.6). This surfaces consist

of hyperplanes of dimension m− 1, being m the order of the system, i.e. X ∈ Rm,

Si = {X |CX − unli = 0} for i = {0,±1, . . . ,±n} .

It is interesting to characterize the limit cycles that can appear in the system due

to the effect of the non-linearities introduced with the event-based sampling scheme.

The study of these limit cycles can be interesting for several reasons. There is a wide

range of processes that will almost surely present limit cycles with the studied control

schemes, while for other processes they can be prevented by carefully choosing the

controller parameters. In any case, limit cycles mean oscillations, which, depending

on the process, may be more or less problematic. For example, a high frequency of
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oscillation may wear out the actuators. Also, the study of limit cycles can been used

for identification purposes. For example, the relay auto tuning method [AH84] is

based on the properties of the limit cycle that appears in a process subject to relay

feedback (which can be considered as a particular case of the studied event-based

scheme). In addition, for the cases when the limit cycles cannot be prevented, it

may be important to know about the stability of these limit cycles.

In order to calculate the period and amplitude, first it is assumed that the limit

cycle contains n + 1 levels, and thus it is composed of 2n switchings, where the

first n correspond to the positive level crossings, and the rest n are the negative

ones. Next, it is presented the set of equations that allows us to find the switching

times and the values of the states at these switching times. The result stated in

the following proposition is a generalization to n levels of the approaches in [CA07],

[Å95], and [Gon00].

Proposition 2. Consider the PLS in (2.22), with a non-linearity defined by the

switching surfaces Si = {X | CX − (ji + α)δ = 0}, where α ∈ [0, 1), ji ∈ Z,

i ∈ {0,±1,±n}, and 0 < δ ∈ R. Assume that there exists a symmetric periodic

solution γ with 2n switching surfaces per period T = t∗1 + t∗2 + . . . + t∗2n , where t∗1

, t∗2 , ... t∗2n are the switching times when the switching surfaces S1 ,..., Sn ,S−1..

S−n are crossed, respectively (Figure 2.6). Define

fk(t
∗
1, . . . , t

∗
2n) = C(I + eAT )−1

[
2n−1∑
i=1

Φ2n−1 · · ·Φi+1 (Φi − I) Λi

]
− Ek, (2.23)

where Φi = Φ(ti) = eAti, and Λi = A−1Bi. Then the following conditions hold



f1(t
∗
1, t
∗
2, . . . , t

∗
2n) = 0

f2(t
∗
1, t
∗
2, . . . , t

∗
2n) = 0

...

f2n(t∗1, t
∗
2, . . . , t

∗
2n) = 0,

(2.24)
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and 
Ei ≤ y(t) = CXi(t) < Ei+1 for 0 ≤ t < t∗i i = 1 . . . n− 1

y(t) = CXn(t) ≥ En+1 for 0 ≤ t < t∗n

Ei ≥ y(t) = CXi(t) > Ei+1 for 0 ≤ t < t∗i i = n+ 1 . . . 2n,

(2.25)

where

Ei = (ji + α)δ, and Xi(t) = eAtX∗i−1 −A−1(eAt − I)Bi.

Furthermore, the limit cycle can be obtained with the initial condition

X∗0 = (I + eAT )−1
[
2n−1∑
i=1

Φ2n−1 · · ·Φi+1 (Φi − I) Λi

]
. (2.26)

Proof. Assuming that ti > τ , where ti is the time elapsed between the crossing of

two consecutive switching surfaces, for example i and i+1, then the state is obtained

by integrating (2.22) from t = 0 to t = ti. It gives

Xi+1 = Φ(ti)Xi + Γ1(ti)Ui−1 + Γ0(ti)Ui, (2.27)

where Φ(t) = eAt is the state transition matrix, Γ0 =
∫ t−τ
0 Φ(s)ds accounts for the

effect of the input, and Γ1 =
∫ t
t−τ Φ(s)ds is a term which represents the effect of the

input because of the time delay of the system.

Then, for a limit cycle involving n switching times, we have a system of equations

described by

Φ(t1)X1 + Γ1(t1)Un + Γ0(t1)U1 −X2 = 0

. . .

Φ(tn−1)Xn−1 + Γ1(tn−1)Un−2 + Γ0(tn−1)Un−1 −Xn = 0

Φ(tn)Xn + Γ1(tn)Un−1 + Γ0(tn)Un −X1 = 0.

(2.28)

Substituting recursively, we get the following expression,
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[I − Φ(tn)...Φ(t1)]Xn = Φ(tn)...Φ(t2)(Γ1(t1)Un + Γ0(t1)U1)

+ Φ(tn)...Φ(t3)(Γ1(t2)U1 + Γ0(t2)U2) + ...

+ Φ(tn)(Γ1(tn−1)Un−2 + Γ0(tn−1)Un−1)

+ Γ1(tn)Un−1 + Γ0(tn)Un.

(2.29)

The previous expression can be written in compact form as,

[I − Φn...Φ1]Xn =

2n−1∑
i=1

Φ2n−1...Φi+1[Γ1(ti)Ui−1 + Γ0(ti)Ui], (2.30)

and,

Xn = [I + Φn...Φ1]
−1

2n−1∑
i=1

2n−1−j∏
j=1

Φ2n−j

 [Γ1(ti)Ui−1 + Γ0(ti)Ui]. (2.31)

If we assume that the system matrix A is nonsingular, then the integrals Γ1

and Γ0 can be explicitly computed and the state Xn can be solved, yielding the

expression of the initial state (2.26). Since we know that at the switching times the

state must be at the switching surface, we can combine the previous expression with

the switching conditions to get the set of equations given by (2.24). Finally, the

conditions (2.25) hold because the state does not cross the switching surface in the

interval between two switchings.

However, if the system matrix is assumed to be singular, neither the state nor the

integrals Γ0 and Γ1 can be computed explicitly. In this case the system of equations

is obtained in the same way, but the computations are more involved. First the

functions in (2.24) are redefined as,

fi(X
∗
i , t

∗
1, ..., t

∗
2n) = [I − Φ2n...Φ1]X∗

i −
2n−1∑
i=1

Φ2n−1...Φi+1[Γ1(t∗i )Ui−1 + Γ0(t∗i )Ui]. (2.32)
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where, in contrast to the previous case, Xi appear as unknowns.

Note that the system of equations given by the functions fi is composed of n2

scalar equations and n2 + n unknowns. Thus, in order to solve it, the system must

be completed with n additional equations. These equations are obtained from the

switching conditions in the sampler, which fix the values of either the process output

or the control input at the event times, depending on where the sampling is placed.

Then, the complete set of equations that must be solved to obtain the features of

the limit cycle is,



f1(X
∗
1 , t
∗
1, ..., t

∗
2n) = 0

...

f2n(X∗2n, t
∗
1, ..., t

∗
2n) = 0

CX∗1 − d1 = 0

...

CX∗2n − d2n = 0.

(2.33)

How to use this result to analyze the limit cycles is demonstrated with examples

in Sections 2.4 and 2.5.

2.3.1 Local stability

The local stability of the limit cycles described in the previous paragraphs can be

analized by observing the system at the switching times. The following result, which

is a generalization of the approaches in [CA07], [Å95], and [Gon00], can be applied

to study the behaviour of the trajectories of the system in the proximities of the

limit cycles.

Proposition 3. Assume that there exists a limit cycle γ with k states in the system

(2.22). The limit cycle is locally stable if and only if W = WkWk−1...W1 has all its
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eigenvalues inside the unit disk, where Wi = (I − ViCi
CiVi

)eAt
∗
i , Vi = AX∗i + Bi, t

∗
i are

the switching times, and X∗i the state at the switching times.

Proof. Consider a trajectory with initial condition x(0) = x∗0. In the time interval

before the first switching, this trajectory is defined as x(t) = Φ(t)x∗0 + Γ1(t)unln−1 +

Γ0(t)unln . When x reaches the switching surface at time t∗1 + δ1t
∗
1, we have,

x(t∗1 + δ1t
∗
1) = Φ(t∗1 + δ1t

∗
1)(x

∗
0 + δ1x

∗
0) + Γ1(t

∗
1 + δ1t

∗
1)unln−1 + Γ0(t

∗
1 + δ1t

∗
1)unln .

The series expansion in δ1t
∗
1 and δ1x

∗
0 is,

x(t∗1 + δ1t
∗
1) = x∗1 + v1δ1t

∗
1 + Φ(t∗1)δ1x

∗
0 +O(δ21),

where v1 = Ax∗1 +B1 = A[Φ(t∗1)x
∗
0 + Γ1(t

∗
1)unln−1 + Γ0(t

∗
1)unln ] +Bunln .

Since the solution is on the switching surface at t∗1 + δ1t
∗
1, we have

C1x(t∗1 + δ1t
∗
1) + d1 = C1x

∗
1 + C1v1δ1t

∗
1 + C1Φ(t∗1)δ1x

∗
0 + d1 = 0,

and, therefore, the following equality holds,

δ1t
∗
1 = −C1Φ(t∗1)

C1v1
δ1x
∗
0.

The rest of the proof follows as in [Gon00]. The state after the first switch is

x(t∗1 + δ1t
∗
1) = x∗1 + (I − v1C1

C1v1
)Φ(t∗1)δ1X0 +O(δ21) = x∗1 +W1δ1x

∗
0 +O(δ21). (2.34)

Taking as initial condition x∗1 + δ2x
∗
1 and neglecting the O(δ2) term we have

x(t∗2+δ2t
∗
2) = x∗2+W2δ2x

∗
1. Combining with (2.34) yields δ2x

∗
1 = W1δ1x

∗
0. Replacing

in the previous expression and applying succesively for k eventually leads to

x(t∗k + δkt
∗
k) = x∗0 +WkWk−1...W1δ1x

∗
0 +O(δ21). (2.35)
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Neglecting the O(δ21) term, the dynamics of equation 2.35 is stable if and only if

the eigenvalues of W = WkWk−1...W1 are inside the unit disk. This proves the

proposition.

2.4 Analysis of the limit cycles

In the following sections the expressions which take into account the effects of the

event-based sampling at the output of the process and controller are presented. The

method used is based on the grouping of all the continuous dynamics into one block

to obtain the state-space matrix (as shown in Figure 2.3), and then to study the

effect of the non-linear feedback introduced by the sampling block.

To easily distinguish between the different types of controller and sampling, the

following naming convention is used: controller -SODn-process, when the sampler

is after the controller output, and controller -process-SODn if the sampler is placed

after the process output, where process corresponds to the type of process considered

(IPTD, SOPDT,...) and controller refers to the type of controller (PI, PD, PID,...)

The index n refers to the number of hysteresis bands presented in the sampler.

For example, PI-SOD1-IPTD denotes the system composed by an IPTD process

controlled by a PI controller with the sampler placed after the controller output,

and a limit cycle with one hysteris band (i.e. a system with relay feedback).

There are two directions in which the complexity of the analysis can be increased.

The first one is to consider that the order of the process is increasing, i.e. a simple

integrator, a double integrator, etc., and the second one is to consider an increase

in the number of hysteresis bands of the sampler.

To simplify the analysis, it is worth noting that the solutions of (2.33) are linear

on δ, thus the state and control signal can be normalized dividing by δ (note that

δ > 0).
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2.4.1 Equilibrium points

Consider the system (2.22). The set of equilibrium points if defined as X = {x∗|ẋ =

0}. An equilibrium point is one in which the derivatives of the states are null, i.e.

x∗|ẋ∗ = 0. Since the derivatives are null, all the trajectories which enter into it at t0

will stay for t > t0. An inmediate necessary condition to have an equilibrium point

is that the linear system Ax + Bi = 0 has at least one solution. Note that, except

for the P and PD controller, it is easy to see that det(A) = 0, due to the integrator

added by the controller, thus being possible to have a system of equations which is

either indetermined or incompatible. The system not have any solution if rg(A) <

rg(A|Bi), so an equilibrium point can exist only if ∃i ∈ R | rg(A) = rg(A|Bi).

Now assume that the output is within the k band of hysteresis, i.e. x ∈ Ωk =

{x|δk ≤ y(t) = Cx(t) < δk+1} for some time interval tk ≤ t < tk+1.

Proposition 4. A necessary condition for the system to be ultimately bounded to

Ωk is that either C[Ax+Bk] = 0 or C[Ax+Bk+1] = 0.

Proof. Assume that Cx(t) enters into Ωk at t0. After a time t > τ , the derivative of

the system is Cẋ(t) = C[Ax(t) +Bi], for i ∈ {k, k + 1}. Thus, if C[Ax(t) +Bi] 6= 0

for both i = k and i = k+1, the process output will eventually cross the boundaries

of Ωk for some t.

Computing the equilibrium points of the PI control with SOD sampling at the

process output (the setpoint is assumed to be null) yields:

ẋp
ẋc

 =

Ap kiBp

0 0

xp
xc

+

−kpBp Bp

−1 0

δi
d

 = 0. (2.36)

Thus, a necessary condition for the existence of an equilibrium point, from (2.37),

is: ∃i ∈ Z|δi = 0, because otherwise the integrator derivative is a non-null constant.

Note that, if the setpoint is not assumed to be null, the condition still holds with a
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slight modification: ∃i ∈ Z|δi = ysp, i.e. the setpoint must be an exact multiple of δ.

Furthermore, since Ap is a non-singular matrix, the computation of the equilibrium

point is straightforward: xc = −d
ki

, xp = 0 ∈ Rn.

If the sampler affects to the controller output, then the equilibrium equation is:

ẋp
ẋc

 =

 Ap 0

−Cp 0

xp
xc

+

Bp Bp

−1 0

δi
d

 = 0, (2.37)

and the necessary condition to have an equilibrium point is, ∃i ∈ Z|δi = (1 −

CpA
−1
p Bp)

−1d. If this expression holds, then the equilibrium point can be computed

as xp =
CTp
‖Cp‖δi, xc = (1 + kp)δi.

The rest of this section presents an algorithm to compute the period and ampli-

tude of a limit cycle in a generic process, and then shows examples of application to

several common processes.

2.4.2 Algorithm

In this section an algorithm to obtain computationally the period of a limit cy-

cle and the intermediate switching times is outlined. Assume that α = 0.5 and

that the system presents a limit cycle in which the condition y(t) = Cx(t) ∈

((α− n)δ, (α+ n− 1)δ) holds. The limit cycle is assumed to have only two changes

in the sign of the derivative one at the begining of the first semiperiod and the

other at the begining of the second semiperiod. Thus, the limit cycle must have

4n − 2 switchings. Because of the symmetry, the behaviour of the limit cycle can

be inferred by studying only the first semiperiod, thus reducing the complexity to

2n− 1 levels. The algorithm, that can be implemented either in a symbolic or in a

numerical computation tool, is

1. Set n as the number of levels crossed within the limit cycle.

2. Fix the values of kp, ki, α, δ, d, τ , and the matrices A and B.
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3. Calculate Φ(t) = eAt, Γ0(t) =
∫ t−τ
0 eAsds and Γ1(t) =

∫ t
t−τ e

Asds.

� To calculate the period:

1. For i from 1 to 2n repeat steps 2-3.

2. If i ∈ (1, n), set ji = i− bn2 c, else ji = bn2 c+ n− i.

3. Set unli := (ji + α)δ, and,

– xci = −unli+kpxpi
ki

, if sampling the controller output, or,

– xpi = unli , if sampling the process output.

4. Set eqi := −Xi+1 + Φ(ti)Xi + Γ1(ti)Uj + Γ0(ti)Ui = 0.

5. Solve the system of equations given by eqi, with the unknowns ti, and xpi

or xci .

6. T =
∑2n

i=1 ti.

� To calculate the amplitude:

1. Set jmax = j|(Xj > Xi,∀i 6= j) and jmin = j|(Xj < Xi,∀i 6= j).

2. Find tmin = min(τ, t|Cẋjmin(t) = 0), and tmax = min(τ, t|Cẋjmax(t) = 0),

corresponding to the minimum and maximum values of the output.

3. Compute the amplitude of the process output, ∆p = Cp[X(tmax) −

X(tmin)], and the control input, ∆c = Cc[X(tmax)−X(tmin)].

2.4.3 Examples of analysis

To illustrate the application of Proposition 2 and the use of the algorithm of Sec-

tion 2.4.2, the analysis of several systems (IPTD, SOPTD, FOPTD and SOPTD) is

detailed in the following lines. The results are summarized in Table 2.1, at the end

of the section.
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2.4.3.1 IPTD process

Let us consider an IPTD process P (s) = k
s e−τs, which can be described by its

state-space model in the canonical observable form as,

ẋ(t) = −ku(t− τ) + kd(t)

y(t) = x(t) = xp(t),
(2.38)

where k is the process gain, x is the state, u the process input, and y is the process

output. First it is presented the approach for the PI-IPTD-SODn structure, and

then for the PI-SODn-IPTD.

Process variable sampling (PI-IPTD-SOD1) According to (2.6), the state

feedback matrix corresponding to the system controlled by a PI with SOD sampling

at the process output is,

ẋp(t)
ẋc(t)

 =

0 kki

0 0

xp(t)
xc(t)

+

kkp k

1 0

unlk
d


y(t) =

[
1 0

]xp(t)
xc(t)

 .
(2.39)

Assuming there exists a stable limit cycle with two states, then the equations that

allow us to obtain the amplitude and period of the oscillations are,

Φ(t1)X1 + Γ1(t1)U2 + Γ0(t1)U1 −X2 = 0

Φ(t2)X2 + Γ1(t2)U1 + Γ0(t2)U2 −X1 = 0

xp1 = −unl1 = αδ

xp2 = −unl2 = (α− 1)δ,

(2.40)

where Xi = [xpi xci ]
T , and Ui = [unli d]T , are the state and input, respectively.
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The matrices Φ, Γ0, and Γ1 can be calculated as,

Φ(t) =

1 kkit

0 1


Γ0(t) =

kkpt− kkpτ + 1
2kkit

2 − kkitτ + 1
2kkiτ

2 k(t− τ)

t− τ 0


Γ1(t) =

kkpτ + kkitτ − 1
2kkiτ

2 kτ

τ 0

 .
(2.41)

Introducing (2.41) in (2.40), and solving the resulting equations, the period of the

limit cycle can be obtained (see Table 2.1). Looking at the expression of the period,

it can be seen that the symmetry of the limit cycle, i.e. the difference between the

two semiperiods t1 and t2 depends on the offset of the sampler α. In particular, for

α = 0.5 the two semiperiods have the same value. When α = 0, t2 vanishes, which

can be interpreted as this limit cycle cannot exist. In this case, either the system

will reach a steady-state or enter into a limit cycle with higher number of levels.

With respect to the disturbance rejection, it can be seen that d does not affect the

period. This is because it is rejected by the integrator, which changes its mean value

to absorb the disturbance.

With the switching times t1 and t2, the amplitudes of the oscillations can be

computed. It is necessary to find the maximum and minimum of the output, which

correspond to the times when its first derivative is null, i.e. ẋp(t) = kkixc(t) +

kkpunlk + kd = 0. By solving the previous expression, the value of xc and the times

when the peaks are reached can be obtained, and so for this case it can be found an

analytic expression for the amplitude of the process output, Apo, and of the control

input, Aci (See Table 2.1).

Controller variable sampling (PI-SOD1-IPTD) When the sampler is placed

at the controller output, the description of the system in the state-space is given by
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expressions (2.7). Thus, for this process, it is obtained

ẋp(t)
ẋc(t)

 =

0 1

0 0

xp(t)
xc(t)

+

0 0

k k

unlk
d


y(t) =

[
kp ki

]xp(t)
xc(t)

 .
(2.42)

Assuming there exists a stable limit cycle with two states, then the equations

that allow to obtain the amplitude and period of the oscillations are

Φ(t1)X1 + Γ1(t1)U2 + Γ0(t1)U1 −X2 = 0

Φ(t2)X2 + Γ1(t2)U1 + Γ0(t2)U2 −X1 = 0

kpxp1 + kixc1 = unl1 = αδ

kpxp2 + kixc2 = unl2 = (α− 1)δ.

(2.43)

Here, the amplitude of the limit cycle can be computed directly, since the control

input is piecewise constant and the switching times and values are known. The

period of the limit cycle can be obtained by solving the system of equations (2.43)

(see Table 2.1).

As opposed to the process sampling, here the disturbance appears in the ex-

pression of the semiperiods, thus affecting to the simmetry of the limit cycle. It is

possible to have oscillations where the process is changing slowly nearly all the time

and then to have an abrupt change. Since in one semiperiod the control action is

more agressive, this decreases the margin of delay that can be added to the system

without reaching the next sampling level.

To obtain the expression corresponding to the amplitude, and since the maximum

and minimum values of the process output are reached at times t1 + τ and t2 + τ ,

integrating (2.42) yields the desired result (see Table 2.1).
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2.4.3.2 DIPTD process

It is well known in classic control theory that the double integrator process can-

not be stabilized with a continuous PI controller, due to the 90º phase lag of each

integrator. It becomes then necessary to introduce the derivative action (PD con-

troller) to compensate this lag. In the same way, either with the PI-SODn-DIPTD

and PI-SODn-DIPTD the system will oscillate with unbounded growing amplitudes.

Though it is not in the scope of this work, it should be possible to stabilize this kind

of process by a SOD-PD controller. In practice, the implementation of the derivative

action must be carefully studied, because it can be problematic specially when the

sampler is placed after the process output, since the estimation of the derivative

may be poor.

2.4.3.3 FOPTD process

The process considered in this section is a FOPTD process P (s) = k
Ts+1e−τs, which

is described in the state-space by the following expressions,

ẋ(t) = − 1

T
x(t) +

k

T
u(t− τ) + d(t)

y(t) = x(t) = xp(t),

(2.44)

where k is the process gain, x is the state, u the process input, y is the process

output, and d is an external disturbance.

Process variable sampling (PI-FOPTD-SOD1) The expressions correspond-

ing to the PI-FOPTD-SOD1 are as follows,

ẋp(t)
ẋc(t)

 =

 1
T

kki
T

0 0

xp(t)
xc(t)

+

kkpT k
T

1 0

unlk
d


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y(t) =
[
kp ki

]xp(t)
xc(t)

 . (2.45)

From (2.45) the matrices Φ, Γ0, and Γ1 can be obtained as,

Φ(t) =

e
t
T kki(e

t
T − 1)

0 1


Γ0(t) =

−k(kp + kiT )(e
t−τ
T − 1) + kki(t− τ) T (e

t−τ
T − 1)

t− τ 0


Γ1(t) =

k(kp + kiT )(e
t−τ
T − e

t
T )− kkiτ −T (e

t−τ
T − e

t
T )

τ 0

 .
(2.46)

As it can be seen in the previous expressions, since the system of equations

obtained for the FOPTD contains terms involving exponentials it is not possible to

find analytical solutions, as opposed to the case of IPTD processes. Instead of that,

the solutions have to be found numerically. However, the algorithm proposed in

Section 2.4.2 can be applied.

Controller variable sampling (PI-SOD1-FOPTD) The expressions corre-

sponding to the PI-SOD1-FOPTD are the following ones,

ẋp(t)
ẋc(t)

 =

− 1
T 0

1 0

xp(t)
xc(t)

+

 k
T

k
T

1 0

unlk
d


y(t) =

[
kp ki

]xp(t)
xc(t)


yp(t) =

[
1 0

]xp(t)
xc(t)

 .
(2.47)

As in the previous case, the solutions of the equations must be found by means

of numerical tools.



42 2. Analysis of the Event-based Control Schemes

2.4.3.4 SOPTD process

The process considered in this section is a SOPTD P (s) = k
(τ1s+1)(τ2s+1)e

−τs, which

is described in the state-space by the following expressions,

ẍ(t) = − 1

τ1τ2
x− τ1 + τ2

τ1τ2
ẋ+

k

τ1τ2
u(t− τ) + d(t)

y(t) = x(t) = xp(t),

(2.48)

where k is the process gain, τ1 and τ2 the time constants, x is the state, u the process

input, y is the process output, and d is an external disturbance.

Process variable sampling (PI-SOPTD-SODn) The expressions correspond-

ing to the PI-SOPTD-SODn are the following ones,


ẋp(t)

ẍp(t)

ẋc(t)

 =


0 1 0

− 1
τ1τ2

− τ1+τ2
τ1τ2

kki
τ1τ2

0 0 0



xp(t)

ẋp(t)

xc(t)

+


0 0

kkp
τ1τ2

k
τ1τ2

1 0


unlk
d



y(t) =

 1 0 0

kp 0 ki



xp(t)

ẋp(t)

xc(t)

 .
(2.49)

As in the FOPTD case, for this system it is not possible to find analytical solutions

due to the exponentials that appear in the equations. Therefore, numerical methods

must be used to find the solutions.

Controller variable sampling (PI-SODn-SOPTD) The expressions corre-

sponding to the PI-SODn-SOPTD are the following ones,


ẋp(t)

ẍp(t)

ẋc(t)

 =


0 1 0

− 1
τ1τ2

− τ1+τ2
τ1τ2

0

1 0 0



xp(t)

ẋp(t)

xc(t)

+


0 0

k
τ1τ2

k
τ1τ2

1 0


unlk
d





2.4. Analysis of the limit cycles 43

P (s) PI-process-SOD1 PI-SOD1-process

k
s e−τs

T =
1

2

kkiτ
2 − 2kkpτ − 2

k(kp − kiτ)(α− 1)α

t1 = (1− α)T, t2 = αT

∆po =
δ

2

kkiτ
2 − 2kkpτ − 2

kp − kiτ

∆co =
k2p + ki

k
∆po

T =
1

2

kkiτ
2 − 2kkpτ − 2

k(kp − kiτ)(α− 1 + d
δ )(α+ d

δ )

t1 = (1− α− d

δ
)T, t2 = (α+

d

δ
)T

∆po =
δ

2

kkiτ
2 − 2kkpτ − 2

kp − kiτ
∆co = δ

k
s2

e−τs Limit cycle does not exist
e−τs

τ1s+1 T , ∆po, and ∆co can be obtained using numerical methods
e−τs

(τ1s+1)(τ2s+1)

Table 2.1: Summary table with the limit cycle periods and amplitudes. ∆po denotes
the amplitude of the process output, and ∆co the amplitude of the controller output.

y(t) =

 1 0 0

kp 0 ki



xp(t)

ẋp(t)

xc(t)

. (2.50)

As in the previous case, the solutions of the equations must be found by means

of numerical tools.

2.4.4 Implementation in MATLAB

The algorithm has been implemented in MATLAB to obtain the periods and ampli-

tudes of the simulation examples and the models identified from experimental data.

The code is shown in Listing 2.1. First, the system matrices are defined, corre-

sponding to the PI controller with sampling at the process output (lines 7-11), and

with the sampling at the controller output (lines 12-16). Then, the type, order, and

parameters of the sampler are stored in the variables sampling, delta, and alpha

(lines 17-22). Finally, the set of equations if defined and solved in lines 33-38.



44 2. Analysis of the Event-based Control Schemes

1%% Implementa t ion o f t h e Limit Cyc le Finder Algor i thm
2 clear a l l ; clc ;
3 numberOfProcessStates = s ize (Ap, 1) ;
4 numberOfProcessInputs = s ize (Bp , 1) ;
5 numberOfProcessOutputs = s ize (Cp, 1) ;
6 I = eye ( numberOfProcessStates+1) ;
7% Process Sampling
8 Aps = [Ap k i *Bp ; zeros (1 , numberOfProcessStates+1) ] ;
9 Bps = [ kp*Bp Bp ; 1 0 ] ;

10 Cps = [Cp zeros ( numberOfProcessOutputs , 1) ; ] ;
11 Dps = [ zeros ( numberOfProcessOutputs , numberOfProcessInputs+1) ; −kp zeros (1 ,

numberOfProcessInputs ) ] ;
12% Con t r o l l e r Sampling
13 Acs = [Ap k i *Bp ; zeros (1 , numberOfProcessStates+1) ] ;
14 Bcs = [ kp*Bp Bp ; 1 0 ] ;
15 Ccs = [Cp zeros ( numberOfProcessOutputs , 1) ; ] ;
16 Dcs = [ zeros ( numberOfProcessOutputs , numberOfProcessInputs+1) ; −kp zeros (1 ,

numberOfProcessInputs ) ] ;
17% Type o f samp l ing ( ’ proces s ’ , ’ c o n t r o l l e r ’ )
18 sampling = ’ p r o c e s s ’ ;
19 de l t a = 1 . 0 ;
20 alpha = 0 . 5 ;
21% Hy s t e r e s i s bands
22 n = 1 ;
23% Swi t c h i n g s
24 i f ( alpha == 0 . 0 )
25 m = 2*n−2;
26 u = [ ( alpha−n+1) : ( alpha+n−2) ; ones (1 ,m) * d i s turbance ] ;
27 e l s e i f ( alpha == 0 . 5 )
28 m = 2*n−1;
29 u = [ ( alpha−n+1) : ( alpha+n−1) ; ones (1 ,m) * d i s turbance ] ;
30 end
31
32 tic ,
33 for tau = 0 : 0 . 1 : 1
34 f = @( t ) s l c ( t , u , Aps , Bps , Cps , tau ) ;
35 Tguess = 5 ;
36 k = Tguess*rand (1 , m) ;
37 [ so l , va l ] = f s o l v e ( f , k ) ;
38 end
39 elapsedTime = toc ;

Listing 2.1: Limit Cycle Finder algorithm.

2.5 Simulation results

This section shows simulations which illustrate the behaviour of the different com-

binations of control schemes and processes commented in the previous sections.

2.5.1 PI-IPTD-SODn and PI-SODn-IPTD

Let us consider an IPTD process controlled by a PI controller with event-based

sampling, and let the values of the plant parameters be k = 1.0, τ = 0.2. The

controller gains kp = 1.2, ki = 1.0 have been chosen to produce a limit cycle with

two states, and the sampler α = 0.5, δ = 0.1. The system is described by the
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following expressions,

ẋp(tk)
ẋc(tk)

 =

 0 0

1.0 0

xp(tk)
xc(tk)

+

 1 0

1.2 1

unlk
d

 . (2.51)

There exists a symmetric limit cycle with two states (see Figure 2.7.a), with

period T = 5.6093 and amplitude ∆po = 0.2095, which have been computed with the

algorithm presented in Section 2.4.2. With the chosen gains, the system converges

to the limit cycle after introducing a step change in the set-point.

When the sampler is placed at the controller output, the limit cycle that appears

(see Figure 2.7.c) has the same period T = 5.6093 but different amplitude ∆po =

0.1402. While in the first case an external disturbance does not vary the properties

of the limit cycle, for the second case it does as it is shown in Figure 2.8.

Varying the parameters of the controller it is possible to obtain limit cycles with

higher number of levels. For example, increasing the integral gain of the controller

to ki = 2.0, and also the order of the sampler to n = 2, the system with the sampler

at the process output presents the response shown in Figure 2.7.b and with the

sampler at the controller output it has the response of Figure 2.7.d. The period

and amplitude of the oscillation computed are T = 4.9745 and ∆po = 0.3584, which

correspond to the results obtained in the simulation.

The simulations show that the system, with the chosen parameters, converges

to a limit cycle even in presence of constant disturbances. The local stability of the

limit cycles can also be proven by applying Proposition 3. As an example, for the

two-level limit cycle, looking at the eigenvalues of the matrix W = W2W1, where

Wi =

 1− unli 0

−xpi + 1.2(unli + d) + t∗i 1

 .
After straightforward computations, it can be shown that the eigenvalues of W
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Figure 2.7: Limit cycles in an IPTD process controlled by a PI with event-based
sampling at the process output with one hysteresis band (a) and two (b), and with
sampling at the controller output with one hysteresis band (c) and two (d). The
dotted lines show the sampling levels of the process variable in (a), (c) and of the
control variable in (b), (d), and the value at the switching times of the control
variable in (a), (c) and of the process variable in (b), (d).
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Figure 2.8: Limit cycles in an IPTD process controlled by a PI with event-based
sampling at the controller output (a) with an external disturbance d = 0.0 (solid
line), d = 0.015 (dotted line), and d = .03 (dashed-dotted line). (b) Detail of the
limit cycles.

are λ1 = 1, λ2 = (1 − α)α < 1, and therefore the limit cycle is locally stable.

If limit cycles with 2n switchings are considered, then the eigenvalues of W are

λ1 = 1, λ2 =
∏2n−1
i=0 (1−α−n+ i). It is easy to verify that |λ2| ≤ 1 for every α when

n = 1, 2, i.e. the corresponding limit cycles are locally stable. However, for n > 2

the local stability of the limit cycles depends on the particular value of α.

2.5.2 PI-SOPTD-SODn

Now, consider a SOPTD with parameters k = 1.0 (gain), τ1 = 1.0, τ2 = 0.5 (time

constants), and τ = 0.2 (time delay), which is controlled by a PI with event-based

sampling placed at the process output, with α = 0.5 and δ = 0.1. Setting the con-

troller gains to kp = 1.2 and ki = 1.0, the matrices A and B of the system are,
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Figure 2.9: Limit cycles in an SOPTD process controlled by a PI with event-based
sampling at the controller output, involving (a) one, and (b) two hysteresis bands.

A =


0 0 0

0 0 1

2 −2 −3

 , B =


1 0

0 0

2.4 2

 . (2.52)

Solving the system of equations corresponding to the limit cycle with one band of

hysteresis, the values of the switching times and levels are,

t1 ≈ 3.0772, t2 ≈ 3.0772,

ẋp1 ≈ −0.0517, ẋp2 ≈ 0.0517,

ẋc1 ≈ −0.0669, ẋc2 ≈ 0.0669.

Finally, the period is T = t1 + t2 ≈ 6.1545 and the amplitude of the process

output is A ≈ 0.1338. This limit cycle, and another composed of two hysteresis

bands, are plotted in Figure 2.9.

It is interesting to note that, when the sampler is placed at the process output,

the limit cycle does not vary when a constant disturbance affects the system, because
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it is rejected by the controller.

The local stability of the limit cycle can be studied by looking at the eigenvalues

of the matrix W ,

W = W2W1 =


0 0 0

−0.0787− 2.5953d 0.0042 0.0021

0.0699 + 2.4253d −0.0042 −0.0021

 . (2.53)

Since the eigenvalues of W are inside the unit disk (λ1 ≈ .0021, λ2 ≈ 0.0000,λ3 ≈

0.0000), the limit cycle is locally stable.

2.6 Experimental results

This section shows experimental results which clearly evidence the existence of the

results derived in the previous sections in a real system. Therefore the experiences

carried out were focused on finding limit cycles in the Acurex system to compare

them with that predicted by the theory and simulations. As shown in the following

paragraphs, it is worth noting that even when the model used is a simplification

of the process which ignores many of the complex dynamics existent in the system,

the results are very close to those predicted in theory. Below, the Acurex system

and the model identified from experimental data are presented, commenting some

implementation issues of the controller and, finally, the obtained results are shown

and interpreted.

2.6.1 The Acurex system

The experiments have been done with an equipment, known as Acurex, built in 1981

at the Almeŕıa Solar Platform (PSA, Spain [SD83]). In this plant (Figure 2.10), two

types of collecting systems were considered, a central receiver system (CRS) and
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Figure 2.10: Acurex distributed collector system at the Solar Platform of Almeŕıa
(PSA), Spain.

a distributed collector system (DCS) using parabolic troughs. Parabolic trough

systems concentrate sunlight onto a receiver pipe which contains a heat transfer

fluid (HTF) that is heated as it flows along the receiver pipe. Then, the HTF is

used to produce steam that may be used for example to feed an industrial process.

A survey of basic and advanced control approaches for distributed solar collector

fields can be found in [CRBV07a, CRBV07b]. For more information on control of

solar plants see [CBR97].

2.6.2 The model

The plant was identified as a FOTPD, where the process input is the oil flow (l/s) in

the pipes and the process output is the temperature of the oil at the collector field

outlet (◦C). There are unmodeled dynamics that are considered as external distur-
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bances, such as the oil temperature at the input, or the solar irradiance. However,

because of the time scale of the tests performed, which is smaller than the rate of

variation of these variables (under clear day conditions without clouds), the model

obtained seems to be a valid representation of the process for our purposes.

The transfer function was identified from experimental data obtained from the

plant in a set of step tests. The procedure followed in each test is to drive the

temperature manually to the working point, and when the process has reached it

to introduce a step change in the input, registering the data measured from the

sensors until the process stabilizes again. The FOPTD model, obtained by applying

a least-squares procedure, is,

P (s) = − 6.0715

103.2723s+ 1
e−67.5021s, (2.54)

where the time constant τ1 and time delay τ are given in seconds, and the gain k in

◦Cs/l. The tests were carried out with an input around 8.5 l/s, being the range of

the pump from 2 to 12 l/s. Also, the time constants and delays obtained make sense

from the previous published works in this field. Notice the minus sign in (2.54),

which represents the inverse response of the plant, i.e. a positive change in the flow

produces a negative change in the temperature.

2.6.3 Implementation

The Acurex system has a SCADA software developed in LabVIEW. This software

provides the user with an interface to execute its own controller implementation in

MATLAB code. Thus, one must write a MATLAB callback function which is invoked

with a configurable sampling period (it was fixed to Ts = 15s). This function receives

the measures from the sensors, updates the controller state and, finally, sends the

new control action to the actuators.

The controller implementation can be configured to work in three modes, namely,
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-manual, the control input is set manually,

-SOD-PI, the sampler is at the process output, and

-PI-SOD, the sampler is at the controller output.

An excerpt of the code of the controller is shown in Listings 2.2 and 2.3.

2.6.3.1 Controller sampling

The first set of tests presented were carried out with the controller in PI-SOD mode,

with the purpose of reproducing the two-level limit cycles obtained in simulation

(with α = 0.5) and the three-level (with α = 0.0). The procedure followed is the

same for each test, first the system temperature is moved to an operating point, and

next when the process reaches a steady state a set-point step change is introduced

into the controller.

1% Sampling a t t h e p r o c e s s ou tpu t
2 e = se tpo in t − output ;
3 i f ( ˜ ( ( u prev >= umax && e > 0) | | ( u prev <= umin && e < 0) ) )
4 I = I + e prev *Ts ;
5 end
6
7 % even t d e t e c t i o n
8 i f (abs ( e − e prev ) > de l t a )
9 l e v e l s = f loor (abs ( e − e prev ) / de l t a ) ;

10 e prev = e prev + sign ( e − e prev ) * de l t a * l e v e l s ;
11 u prev = sat (Kp* e prev + Ki* I , umin , umax) ;
12 I = ( u prev − Kp * e prev ) / Ki ;
13 end

Listing 2.2: Code of the controller with the sampler at the process output.

1% Sampling a t t h e c o n t r o l l e r ou tpu t
2 e = se tpo in t − output ;
3
4 % ant i−windup
5 i f ( ˜ ( ( u prev >= umax && e > 0) | | ( u prev <= umin && e < 0) ) )
6 I = I + e*Ts ;
7 u = Kp*e + Ki* I ;
8 else
9 u = u prev ;

10 end
11
12 % even t d e t e c t i o n
13 i f (abs (u − u prev ) > de l t a )
14 l e v e l s = f loor (abs (u − u prev ) / de l t a ) ;
15 u prev = sat ( u prev + sign (u − u prev ) * delta , umin , umax) ;
16 end

Listing 2.3: Code of the controller with the sampler at the controller output.
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Figure 2.11: Response of the Acurex system (solid line) to a step change in the
setpoint, with the event-based sampler placed at the controller output.
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Figure 2.12: Limit cycles in the Acurex system (solid line) and in the simulated
model (dashed line) controlled by a PI with SOD sampling placed after the controller
output. (a) With two levels, and (b) with three levels.
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Figure 2.13: Response of the Acurex system (solid line) to a step change in the
setpoint, with the event-based sampler placed at the process output.

The response is shown in Figure 2.11, where the oil temperature, the flow, and

the solar irradiance during the test are plotted. It can be seen that the system goes

into a limit cycle composed of two levels, which is similar to the results obtained in

simulation with the FOPTD model.

Figure 2.12a and 2.12b show the comparison of the limit cycles obtained in simu-

lation with the model and the results obtained with the Acurex system. The results

are similar both qualitatively (limit cycles with two states), and quantitatively (the

period and amplitude are approximately equal).

2.6.3.2 Process sampling

The second set of tests were carried out with the sampler placed at the process

output. After verifying that, as in the previous section, the system enters into a

limit cycle of two levels (Figure 2.13), the existence of more complex limit cycles
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Figure 2.14: Limit cycles in the Acurex system (solid line) and in the simulated
model (dashed line) controlled by a PI with SOD sampling placed after the process
output. (a) with two levels, and (b) with eight levels.

was investigated. Increasing the proportional gain, a limit cycle with eight different

levels was found, which is shown in Figure 2.14. It is remarkable that even in this

case, the comparison between the experimental data and the simulated process shows

that there are no significative differences in the behaviour.

2.7 Conclusions

The behaviour of a control system based on the use of a level crossing sampling

either in the process output or in the control output has been studied. Limit cycles

are of particular interest since they are associated to oscillations in processes, and

therefore it is worth to have knowledge about them in order to avoid them when

possible or to assure that they are not problematic.

When trying to find properties about the limit cycles, it is common to have sys-

tem of equations which involve transcendent functions and thus it is not possible, in

general, to find closed-form solutions. Moreover, due to the combinatorial explosion,
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it can be computationally expensive to find these solutions, and it becomes harder

when higher order process model are considered.

Therefore, an algorithm to analyze the properties of the limit cycles has been

proposed; it allows us to introduce some knowledge in the problem statement, so

that the complexity can be reduced.

A set of simulation results illustrates the behaviour of the controllers with a set of

processes models used very frequently in industrial context, which are the IPTD, the

FOPTD, and the SOPTD. Also, this behaviour has been tested and verified in the

Acurex Field of the Solar Platform of Almeŕıa, Spain. The experiments performed

confirm that the simulation results can be extrapolated to real cases, obviously with

the divergences due to unmodeled dynamics of the process, disturbances, etc.



3
Building Event-based

Virtual Labs with EJS Elements

3.1 Introduction

Since control engineering is an applied science, it becomes important to have exper-

imentation environments to help students assimilating the concepts studied. Ide-

ally, this need is fulfilled by the use of laboratories. However, it is not always

possible to have the necessary infrastructures [CTG+04], mainly because they are

expensive and not affordable by many universities. As remarked in the literature

[Dor04, DDCD+05], in this context interactive learning software tools provide an

invaluable help to complement the learning process. This approach, as opposed

to physical laboratories, in general does not require a high investment, thus being

adequate not only for large universities but also for other with less resources.

Many examples of interactive tools can be found in literature. For example,

a complete set of interactive tools for learning automatic control is presented in

[GCBD12]. A tool for teaching system identification is presented in [GRDB12]. In

[JGA98], authors implement a control learning environment as a collection of small

modules, where each module shows a specific concept. In [KK12], an interactive tool
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for state space control design is developed, and [RMV09] presents a tool for teaching

basic control concepts with first order time delay models and PI controllers.

Though there are many different development environments and programming

languages that can be used to build virtual laboratories with varying difficulty and

efficiency, one of them is Easy Java Simulations (EJS), a modeling and author-

ing tool designed to simplify the development of interactive dynamical simulations

[CE07, EJS12]. The use of EJS to develop software tools to teach control engineer-

ing concepts has proven to be unvaluable, and it also has been successfully applied

in the context of remote labs and hardware-in-the-loop systems. With the features

provided by this tool, a simulation can be created without being an expert pro-

grammer. For example, EJS implements several solvers (the code which integrates

the differential equations) and an editor where the model equations can be directly

introduced as ordinary differential equations (ODEs). Recently, a mechanism to

simplify the development of simulations has been introduced in EJS: the subpanel

elements. An element is a ready-to-use component that implements a functionality.

For example, a file chooser which shows a dialog to choose a file to be loaded in the

simulation, or a PID controller that can be used to build a control loop.

Using this mechanism, a library of Java classes and EJS elements have been

developed to increase the productivity when simulating interactive dynamic control

systems with EJS. With this framework, a wide range of dynamic process control

simulations can be easily built.

The design of the library is inspired by the block diagram editor provided by

other well-known simulation tools as SIMULINK. With these tools, the user creates

a model interconnecting different blocks. This approach has several advantages as,

for instance, intuitiveness, and robust and modular design.

The library provides the user with the implementation of the most frequently

used systems, such as systems described by state-space expressions, PID controllers,

or non-linear systems. A mechanism to extend the functionality of the built-in
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Figure 3.1: Graphical user interface of EJS.

library blocks is provided for advanced users. This can be useful if there is a need

to use a specific component that is not implemented in the library.

The use of the library is illustrated with an application example built by com-

bining several of the available elements at the library: the simulation of a control

loop composed of a SISO process and a PID controller with send-on-delta sampling.

3.2 A brief on Easy Java Simulations (EJS)

EJS is an open source software tool designed to create simulations in Java with

high-level graphical capabilities and with an increased degree of interactivity. The

tool provides its own mechanism for describing models of scientific and control en-

gineering phenomena, and, as such, can be used to create virtual laboratories on its

own.

EJS is different from other authoring tools in that it is not designed to make life
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easier to professional programmers, but it has been conceived for science students

and teachers. That is, for people who are more interested in the content of the

simulation, the simulated phenomenon itself, and much less in the technical aspects

needed to build the simulation.

The tool structures a simulation into two main panels, the Model and the

View. Apart from the Model and the View, there is also an introductory part,

named Description, to describe the system to be simulated using HTML files (see

Figure 3.1).

The Model describes the simulated system by means of variables (both state

variables and parameters), that completely characterize the system, and of com-

puter algorithms that state how the system evolves in time and how it responds to

user interaction. Authors need to declare the variables using a simple table, and

write the Java code needed to specify the algorithms. EJS offers specialized help to

solve models based on ODEs by providing an editor to write these equations and

automatically generating the code required using the most popular solvers.

The Model is divided into six subpanels: Variables, Initialization, Evolution,

Fixed relations, Custom, and Elements. In the Variables subpanel the global vari-

ables of the simulation are declared. The Initialization subpanel allows authors to

execute initialization code before stepping the simulation. In the Evolution subpanel

authors can input two type of descriptions: pure Java code or ODEs by using the

editor. Both types of descriptions are evaluated continuously while the simulation

is performed. The Fixed relations subpanel provides an additional way to execute

Java code when the user interacts with the view while the simulation is paused. The

Custom subpanel can be used by authors to implement their own Java methods.

The Elements panel shows the model elements, a mechanism created to facilitate

the creation and use in EJS of objects of existing Java classes. Figure 3.2a and

Figure 3.2b show the Variables and Evolution subpanels, respectively.

The View provides the visualization of the simulated system, either in a realistic
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(a) Subpanel Variables of EJS.

(b) Subpanel Evolution of EJS.

Figure 3.2: Subpanels of EJS.

form or using one or several data graphs, and the user interface elements required

for the user interaction. These view elements can be chosen from a set of prede-

fined, ready-to-use components, to build a tree-like structure. There are elements

of different types. Each type specializes in a given visualization or interaction task,
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but can also be customized using the so-called properties, a set of internal values

that modify the aspect and behaviour of the element on the screen. This way, the

job of the author when building the view consists in choosing the right elements

from those offered and in customizing them to define the level of interaction of the

user with the simulation.

Both, model, and view need to be interconnected. Any change in the model

state must be immediately reflected by the view in order to keep a dynamic on-the-

fly visualization of the system. In turn, any interaction of the user with the view

must immediately affect the model so that the desired interactivity is achieved. This

communication is based on connecting model variables and view elements proper-

ties. This connection is very easily established by typing, in the table of properties

of the view elements, the names of the model variables to be connected to the prop-

erties. Once the model and the view have been created and the required connections

established, EJS creates the ready-to run simulation at a single mouse click, taking

care of a good number of technical issues that thus becomes completely transparent

to the author. The result is an independent, high performance, interactive simula-

tion which can either be run as a stand-alone Java program, or be embedded as an

applet in an HTML page. More description about using Easy Java Simulation, some

examples, and the software can be obtained from http://www.um.es/fem/Ejs/.

A simple example is the simulation of the motion of a mass m situated at the

end of a spring of length l and negligible mass. The reaction of the spring to a

displacement dx from the equilibrium point is modeled using Hooke’s law, F (x) =

−kdx, where k is a constant which depends on the physical charasteristics of the

spring. Thus, applying Newton’s Second Law, the resulting second-order differential

equation is d2x
dt2

= − k
m(x−l) . This equation (the model) can be introduced in an ODE

Editor Page (see Figure 3.3a), and the simulation is computed with the numerical

solver of EJS. The view is created with graphical elements provided by EJS, and

linked to the model variables. On the one hand, a visual animation of the mass and
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(a)

(b)

(c)

Figure 3.3: Simulation of a simple mass and spring system. (a) The model, and the
view : (b) a graphical animation and (c) two plots.
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spring (see Figure 3.3b) allows students to have an intuitive knowledge by beholding

the motion of the system. On the other hand, two plots show the evolution of the

variables (see Figure 3.3c).

3.3 The Process Control Elements

3.3.1 The Process Control Library

In control engineering, as it occurs in other areas, it is common to construct complex

systems models by using an approach based on hierarchical blocks. A well-known

example in the scientific and academic community is MATLAB and its graphical

block editor SIMULINK, which can be used to construct complex systems. For

instance, in SIMULINK there is a set of tools which are widely used such as a sum

block, a system defined by a transfer function or by space state matrices, and so on.

EJS is designed to hide low-level programming details to the user, and therefore

it simplifies greatly the development of simulations. However, when one tries to

implement a control engineering application in EJS, there are common tasks that

must be coped with. For example, to implement a basic feedback loop, composed of

a PID controller and a process defined by their transfer functions, a first approach

can be to obtain an ODE representation of the system and to introduce them in an

ODE page. Though this approach is valid, it has several drawbacks. Not only it

requires some previous work to convert the differential equations, but it could be

difficult to adapt or modify the simulation later.

Therefore, it would be useful to have a library of control elements which imple-

ment the more common blocks that allow to construct a generic control system, and

at least a set of tools to perform basic analysis of the system. In this context is where

our library fits. In the following paragraphs we present the design, implementation,

and examples of use in real case studies.
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In the most popular control engineering software tools, such as the LabVIEW

control and simulation toolkit or SIMULINK, it is common to have a division between

blocks with continuous dynamics and blocks with discrete dynamics. Thus, we have

followed the same paradigm in the design of our library: The Process Control Library.

The Process Control Library is composed of two conceptually differentiated parts.

On the one hand, the core of the library is a framework that contains the Java classes

and interfaces with the actual implementation of the components needed to define

a control loop. This is done by interconnecting different kinds of blocks, which

implement the most frequently used components, such as a state-space model or a

PID controller, together with a mechanism to define user-specific blocks.

On the other hand, the second part of the library is the implementation of the

EJS elements, which provide an easy way to incorporate the library into EJS and

assist the developer with the configuration and usage of the blocks. The architecture

of the core of the library, i.e. the classes that provide the functionality, is described,

and the elements that allow their use from EJS are presented in the following para-

graphs.

3.3.2 Core architecture

The aim is to keep the architecture as simple as possible in order that users do not

have to spend more effort than necessary. Though the systems considered in the

library can be classified following different criteria (dynamics, number of input and

outputs, function, etc.), the most relevant aspect concerning the design of the library

is the system dynamics. The evolution of dynamical systems can be described using

different frameworks. The two main paradigms are the continuous time versus the

discrete time models. In the former, the dynamics are represented by means of

differential equations that allow to compute the rate of change of the state variables

(the minimum set of variables to describe the behaviour of a system) as a function
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Discontinuities in the states
No Yes

Continuous Flow
Yes Continuous Hybrid
No Discrete Event-Based

Table 3.1: System classification according to the dynamics.

of theirselves, the time and other external signals. In discrete time, the evolution

of the system is described by difference equations which define how to compute

the new state as a function of the previous state and/or inputs. But there are

also systems which are better described by combining continuous and discrete time

representations, as for example hybrid systems, which present continuous dynamics

but the states (or even the dynamics) may have an abrupt change at certain times.

According to the dynamics of the system, the blocks of the library have been

classified into four types (summarized in Table 3.1), namely,

� Continuous systems, with dynamics described by differential equations, which

are integrated numerically by the solver to obtain the evolution.

� Discrete systems, which do not have a continuous flow, but they change their

state with a constant sampling period.

� Event-based systems, which do not have a continuous flow, but they change

their state only when some condition changes.

� Hybrid systems, which do have a continuous flow as continuous systems, but

which can also change their state and/or their dynamics when some condition

changes.

The framework provides the Java interfaces (see Figure 3.4) that define the con-

tract that a class must fulfill to be considered one of the above mentioned kinds

of blocks. The main component is the interface Block, shown in Listing 3.1, which

provides methods needed to properly interact with the solver and/or interconnect
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Figure 3.4: The diagram shows the different interfaces of the Process Control Library
and their relationships.

with other blocks: to obtain and modify the number of states (getNumberOfStates,

setNumberOfStates), inputs (getNumberOfInputs, setNumberOfInputs) and outputs

(getNumberOfOutputs, setNumberOfOutputs), and to get the value of the outputs

(getOutputs). This interface is the root of the hierarchy, providing a common inter-

face between the four kinds of blocks mentioned above, and other types which may

be defined by user code.

Though all the classes in the library implement this interface through one of its

subinterfaces, there are only three classes that implement it directly,

� AbstractBlock This class is not directly instantiable, but it can be extended to

define new blocks.

1 /**
2 * Block I n t e r f a c e f o r an o b j e c t r e p r e s e n t i n g a s imu l a t i o n b l o c k .
3 */
4 public interface Block {
5 public int getNumberOfStates ( ) ;
6 public int getNumberOfInputs ( ) ;
7 public int getNumberOfOutputs ( ) ;
8 public int setNumberOfStates ( int s t a t e s ) ;
9 public int setNumberOfInputs ( int inputs ) ;

10 public int setNumberOfOutputs ( int outputs ) ;
11 public double [ ] getOutput (double [ ] x , double [ ] u ) ;
12 public double getOutput ( int i ) ;
13 }

Listing 3.1: Interface Block.
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1 /**
2 * Clas s to implement a sum b l o c k .
3 */
4 public class Sum extends AbstractBlock {
5 /** The s i g n s o f t h e i n pu t s */
6 private double [ ] s i gn s = new double [ ] { +1, +1 } ;
7 /**
8 * Create a new Sum Objec t .
9 * @param s i g n S t r i n g The s i g n o f t h e i n pu t s .

10 */
11 public Sum( St r ing s i g n sS t r i n g ) {
12 s e tS i gn s ( s i g n sS t r i n g ) ;
13 setNumberOfInputs ( s i gn s . l ength ) ;
14 setNumberOfOutputs (1 ) ;
15 setNumberOfStates (0 ) ;
16 }
17
18 /**
19 * Set t h e s i g n o f t h e i n pu t s .
20 * @param s i g n S t r i n g The s i g n o f t h e i n pu t s .
21 */
22 public void s e tS i gn s ( St r ing s i g n sS t r i n g ) {
23 boolean i sVa l i d = Pattern . matches ( " (\\+| -) + " , s i g n sS t r i n g ) &&
24 s i gn sS t r i n g . l ength == ninputs ;
25 i f ( i sVa l i d ) {
26 int s i z e = s i gn sS t r i n g . l ength ( ) ;
27 s i gn s = new Sign [ s i z e ] ;
28 for ( int i =0; i<s i z e ; i++) s i gn s [ i ] = ( s i g n sS t r i n g . charAt ( i ) == ’ - ’ ) ? −1.0 : +1.0;
29 }
30 }
31
32 /**
33 * Compute t h e ou tpu t o f t h e b l o c k .
34 * @return The s i gn ed sum o f t h e i n pu t s .
35 */
36 @Override
37 public double [ ] getOutput (double [ ] x , double [ ] u ) {
38 double [ ] y = new double [ ] { 0 } ;
39 for ( int i =0; i<ninputs ; i++) y [ 0 ] += s i gn s [ i ]*u [ i ] ;
40 return y ;
41 }
42 }

Listing 3.2: Sum Block.

� Sum Represents a sum operation, i.e. the output is equal to the sum of its

inputs.

� Saturation A saturation block whose output is equal to its input if it is within

a valid range, or to the saturation values otherwise.

The blocks are described in detail in the following lines.

AbstractBlock The AbstractBlock is an abstract (non-instantiable) class which

implements the Block interface and some general utility methods. Its purpose is to

serve as starting point to define new components with a common behaviour and to

eliminate the need to repeat non-specific code.
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1 /**
2 * I n t e r f a c e o f a Continuous Block .
3 */
4 public interface Continuous extends Block {
5 public double [ ] getRates (double [ ] x , double [ ] u ) ;
6 public void l i n kS t a t e s (double [ ] x ) ;
7 }

Listing 3.3: Interface Continuous.

Sum The Sum is a utility block representing a signed sum operation. The block

has a configurable number of inputs, being also possible to associate a positive or

negative sign to each input, which can be done by means of the method setSigns,

which receive a String with the signs (’+’ or ’-’). The number of inputs is inferred

from the list of signs. Then, the output of the block is computed with the getOutput

method, as the sum of its inputs premultiplied by their associated signs. An excerpt

of the code of the Sum class is presented in Listing 3.2.

Saturation The Saturation represents a non-linear function which is linear within

the valid range, and saturated to a low/high level saturation when the value is

outside. The block is stateless, and has one input and one output. The method

getOutput return the saturated value of the input.

3.3.2.1 Continuous blocks

The Continuous Blocks, which represent systems with continuous dynamics, must

implement the interface Continuous, given in Listing 3.3.

The most important method of this interface is getRates which must compute

and return the derivatives of the states, needed to integrate the state by the solver.

The other method, linkStates, allows to store an internal reference to the state vector

of the block to be accessed within the block without the need of passing the reference

as parameter. However, this feature must be carefully used since because it can lead

to inaccuracies in the solution if it is not properly used. In general it is safer to use

only the former method.

Currently, in the library there are three blocks implementing the Continuous
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1 /* Returns t h e d e r i v a t i v e s o f t h e s t a t e s o f sys tem as dx ( t )=A*x ( t )+B*u ( t ) , f o r t h e
g i v en v a l u e s o f x and u . */

2 public double [ ] getRates (double [ ] x , double [ ] u ) {
3 double [ ] dx = new double [ n s t a t e s ] ;
4 int ninputs = (u != null ) ? u . l ength : 0 ;
5 i f ( ninputs > this . n inputs ) ninputs = this . n inputs ;
6
7 for ( int i =0; i<ns ta t e s ; i++) {
8 dx [ i ] = 0 ;
9 for ( int j =0; j<ns ta t e s ; j++) dx [ i ] += A[ i ] [ j ]* x [ j ] ;

10 for ( int j =0; j<ninputs ; j++) dx [ i ] += B[ i ] [ j ]*u [ j ] ;
11 }
12
13 return dx ;
14 }
15
16
17 /* Returns t h e ou tpu t o f t h e system as y ( t )=C*x ( t )+D*u ( t ) , f o r t h e g i v en v a l u e s o f x

and u . */
18 public double [ ] getOutput (double [ ] x , double [ ] u ) {
19 double [ ] y = new double [ noutputs ] ;
20 int ninputs = (u != null ) ? u . l ength : 0 ;
21 i f ( ninputs > this . n inputs ) ninputs = this . n inputs ;
22
23 for ( int i =0; i<noutputs ; i++) {
24 y [ i ] = 0 ;
25 for ( int j =0; j<ns ta t e s ; j++) y [ i ] += C[ i ] [ j ]* x [ j ] ;
26 for ( int j =0; j<ninputs ; j++) y [ i ] += D[ i ] [ j ]*u [ j ] ;
27 }
28
29 return y ;
30 }

Listing 3.4: Code of the getRates and getOutput methods corresponding to the
implementation of system (3.1).

interface. These are:

� StateSpaceModel, a linear state space model.

� SisoPlant, a specialization of the previous element, constraining it to the par-

ticular case of a SISO system.

� PidController, a complete implementation of a PID controller with anti-windup

mechanism and derivative filter.

StateSpaceModel The StateSpaceModel class implements a linear system model

represented in the space of states.

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).
(3.1)

Two important methods of this class are getRates(double[] x, double[] u) and
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Figure 3.5: Structure of the PID controller with antiwindup mechanism (image taken
from the book Advanced PID Control, [AH05]).

getOutput(double[] x, double[] u), required by the Continuous interface (the latter is

inherited from the Block interface). The code of these methods, which implement

the system described by (3.1), is shown in Listing 3.4.

PidController The PidController class implements a continuous PID controller

with anti-windup mechanism, derivative filter, and the ability to perform tracking

of an external input. The structure of the controller (see Figure 3.5) is similar to

the described in [AH05]. The controller has been implemented as a specialization of

the StateSpaceModel class, using the PID state space representation given in (3.2),

which is reproduced here by convenience:

A =

0 0

0 − n
kd

 B =

 1

nkd

 C =
[
ki kd

]
D =

[
kp + nkd

]
. (3.2)

The method getRates(double[] x, double[] u), inherited from the StateSpaceModel

class, has been overriden to add the antiwindup and bumpless transfer mechanism.

Listing 3.5 shows the code of this method. The methods setTracking and setAnti-

windup allow to enable or disable the antiwindup and bumpless transfer mechanisms,
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1 /**
2 * Enable or d i s a b l e t h e ant iw indup mechanism .
3 * @param enab l e d The new va l u e
4 */
5 public void getRates (boolean enabled ) {
6 aint iwindup = enabled ;
7 }
8
9 /**

10 * Enable or d i s a b l e t h e t r a c k i n g mechanism .
11 * @param enab l e d The new va l u e
12 */
13 public void setTrack ing (boolean enabled ) {
14 t rack ing = enabled ;
15 }
16
17 /**
18 * Compute t h e d e r i v a t i v e o f t h e s t a t e .
19 * @param x The s t a t e
20 * @param u The inpu t
21 */
22 @Override
23 public double [ ] getRates (double [ ] x , double [ ] u ) {
24 double [ ] dx = super . getRates (x , u) , y = super . getOutput (x , u) ;
25
26 i f ( antiwindup ) {
27 double v = (y [ 0 ] < uMin) ? uMin : ( y [ 0 ] > uMax) ? uMax : y [ 0 ] ;
28 dx [ 0 ] += ks *( v − y [ 0 ] ) ;
29 }
30
31 i f ( t rack ing ) {
32 dx [ 0 ] += ks *(u [ 2 ] − y [ 0 ] ) ;
33 }
34
35 return dx ;
36 }

Listing 3.5: Code of the getRates() for the PidController class.

respectively.

3.3.2.2 Discrete blocks

The Discrete Blocks, which represent systems with discrete dynamics, must imple-

ment the interface Discrete, described in Listing 3.6. This interface defines one

method, update which computes the new value of the discrete states of the block.

The Discrete blocks currently implemented in the library are the following:

� DiscreteStateSpaceModel, a linear discrete-time state space model.

� DiscretePidController, implements a discrete time PID controller.

� DiscreteFilteredPidController, implements a discrete time PID controller with

a first-order filter in cascade.
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1 /**
2 * I n t e r f a c e o f a D i s c r e t e Block .
3 */
4 public interface Dis c r e t e extends Block {
5 public void update (double [ ] x , double [ ] u ) ;
6 }

Listing 3.6: Interface Discrete.

DiscreteStateSpaceModel The DiscreteStateSpaceModel class implements a

discrete-time linear system usign the state space representation:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k).
(3.3)

The update(double[] x, double[] u) method implements the difference equation in

(3.3) to compute and store the new value of the state which is passed as a parameter

to the method, and the getOutput(double[] x, double[] u) method returns the output

of the system. Both methods are required by the Discrete interface (the latter is

inherited from the Block interface).

DiscretePidController The DiscretePidController class implements a discrete-

time PID controller with anti-windup mechanism, derivative filter, and the ability

to perform tracking of an external input. The controller has been implemented as

a specialization of the DiscreteStateSpaceModel class, using a discretization based

on backward differences of the continuous PID state space representation in (3.2),

which yields:

A =


k4 k2 k3

0 0 0

0 1 0

 B =


k1

1

0

 C =
[
1 0 0

]
D =

[
0
]
, (3.4)

where k1 = kp + kits + kd/ts, k2 = kp + 2kd
ts

, k3 = kd
ts

, and k4 = 1
ts

. The parameters

kn correspond to the coefficients of the terms in the discrete PID difference equa-

tion, and which are computed with the controller gains kp, ki, and kd, as defined
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1 t = t + dt ;
2 i f ( t >= nextTs ) {
3 pid . update ( xc , uc ) ; // xc i s t h e s t a t e , and uc i s t h e i npu t
4 nextTs = nextTs + pid . getTs ( ) ; // compute t h e nex t samp l ing t ime
5 }

Listing 3.7: Updating the DiscretePidController in an Step Page.

for the continuous PID, and the discretization time ts. The latter one affects the

convertion from the continuous representation to the discrete one, and can be used

to dynamically vary the sampling time of the controller during the simulation, while

maintaining the same controller gains.

The methods update(double[] x, double[] u) and getOutput(double[] x, double[]

u), inherited from the DiscreteStateSpaceModel class, have been overriden to add

the antiwindup mechanism and the external input tracking function.

To use the DiscretePidController in a simulation, the method update must be

called periodically with sampling period ts, for example into an Step Page (see

Listing 3.7).

DiscreteFilteredPidController The DiscreteFilteredPidController class im-

plements a discrete-time PID controller with a first-order filter connected in cascade.

Though it can be built by interconnecting a DiscreteStateSpaceModel for the filter

and a DiscretePidController, it have been also included in the library for practical

reasons.

The DiscreteFilteredPidController is very similar to the DiscretePidController,

but the state space representation is slightly different because of the incorporation

of the first-order filter:

A =


k4 k2 k3

0 0 0

0 1 0

 B =


k1

1

0

 C =
[
1 0 0

]
D =

[
0
]
, (3.5)

where α = 1 +
tf
ts

, k1 = 1
α(kp + kits + kd/ts), k2 = 1

α(kp + 2kd
ts

), k3 = 1
α
kd
ts

, and
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1 /**
2 * I n t e r f a c e o f an Event−Based Block .
3 */
4 public interface EventBased extends Block {
5 public double eva luate (double [ ] x , double [ ] u ) ;
6 public void update (double [ ] x ) ;
7 }

Listing 3.8: Interface EventBased.

k4 = 1
α

1
ts

. The parameters ki, kp, ki, kd, and ts have the same meaning as in the

DiscreteP idController. In addition, the parameter tf is the time constant of the

filter in cascade with the controller. The higher the value of tf is, the lower is the

cutoff frequency of the filter.

3.3.2.3 Event-based blocks

The Event-based Blocks must implement the interface EventBased, listed in Listing

3.8. The methods provided by this interface can be used in conjunction with the

EJS event detector, which is a mechanism provided by EJS for detecting the zero

crossing of a function. The value computed by the method evaluate (see Listing 3.8)

is expected to be negative if and only if the state of the block must be updated. With

the event solver, the very instant when that occurs can be detected, thus updating

correctly the state.

At the time of writing this document, there is just one block implementing this

interface:

� SODSampler, a SISO block, where its output is a send-on-delta sampling of

the input ([CSVD12]).

SodSampler The SODSampler class implements a send-on-delta sampling. The

behaviour of the sampler is determined by two parameters, δ and α, the sampling

threshold and the sampling offset, respectively, as described in Section 2.1.1.

Two important methods are evaluate(double[]x, double[]u), which returns the

value of the event function, i.e. f(x, u) = δ − |x− u|, and update(double[]x), which

updates the state (passed as parameter) with the correct value when a new event is
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detected. Another relevant method is init(double[] x, double[] u), which initializes

the state of the sampler to the correct value.

3.3.3 EJS Elements

The blocks discussed in the previous section implement all the functionality of the

library, thus they can be incorporated directly into EJS through Java code. However,

to simplify the use, each library block has been encapsulated inside an element. The

elements currently developed are:

� StateSpaceModelElement This element creates a linear state space model.

� SisoPlantElement This element is an specialization of the previous element,

constraining it to the particular case of a SISO system.

� PidControllerElement This element creates a block with a complete implemen-

tation of a PID controller with anti-windup mechanism and derivative filter.

� DiscretePidControllerElement This element creates a block with a complete

implementation of a discrete time PID controller with anti-windup mechanism

and derivative filter.

� SaturationElement This element creates a SISO block, where its output is

equal to the input if its value is within the valid range, and the saturation

value in the opposite case.

� SourceElement This element creates a block without inputs, and whose output

is the value of an EJS variable.

� SumElement This element creates a block whose output is the sum of its

inputs. The number of inputs and their associated signs are configurable.

� SodSamplerElement This element creates a SISO block, where its output is a

send-on-delta sampling of the input.
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Figure 3.6: The class diagram illustrates the Process Control Library extension
mechanism. The AbstractBlock is extended by the class StateSpaceModel, which is
also especialized by the PIDController and SisoPlant.

3.3.4 Extending capabilities of the built-in classes

Though the library contains the basic elements, depending on the user needs it

might be necessary to extend the capabilities of the built-in classes. To define a

new block, it must implement the Block interface (or one of its subinterfaces such

as Discrete or Continuous). This can be done in two ways, that are, by writing a

new class that implements the interface or by subclassing a previously existent class

(see Figure 3.6). The AbstractBlock class provided with the library implements the

interface Block and some additional utility methods. Thus, the subclassing should

be the first-option for defining a new block.

The two methods to extend the library are illustrated in the examples provided

in the following paragraphs.

Method 1: Subclassing The simplest way to create a new block is by special-

izing the AbstractBlock class. This is illustrated with the step-by-step creation of

a new block: a tank, which implements the model of a water tank. The physical

model of the tank is derived by means of the Bernoulli’s laws and mass balances

(Referencia). Consider a tank with constant section A, and an outlet hole with cross-

sectional area a. Let qin(t) and qout(t) be the inflow and the outflow to the tank,
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1 /**
2 * Clas s to implement a Tank b l o c k
3 */
4 public class Tank extends AbstractBlock implements Continuous {
5 private f ina l double g = 9 .81 , c = Math . sq r t (2* g ) ;
6 private double a , b ;
7 private double tankSect ion = 1 ;
8 private double out le tArea = 1 ;
9 private double pumpConstant = 1 ;

10
11 public Tank(double tankSect ion , double out letArea , double pumpConstant ) {
12 this . tankSect ion = tankSect ion ;
13 this . out l e tArea = out le tArea ;
14 this . pumpConstant = pumpConstant ;
15 this . a = c* out le tArea / tankSect ion ;
16 this . b = pumpConstant/ tankSect ion ;
17 }
18
19 @Override
20 public double [ ] getRates (double [ ] x , double [ ] u ) {
21 i f ( x [ 0 ] >= 0) return new double []{−a*Math . sq r t (x [ 0 ] ) + b*u} ;
22 return new double [ ] { k*u} ;
23 }
24
25 @Override
26 public double [ ] getOutput (double [ ] x , double [ ] u ) {
27 return new double [ ] { x [ 0 ] } ;
28 }
29
30 public void s e tVa lvePos i t i on (double alpha ) {
31 i f ( alpha < 0 | | alpha > 1) return ;
32 this . alpha = alpha ;
33 }
34
35 public double getSteadyStateInput (double hsp ) {
36 i f ( hsp < 0) return 0 . 0 ;
37 return K * Math . sq r t ( hsp ) ;
38 }
39
40 public void setTankSect ion (double tankSect ion ) {
41 i f ( tankSect ion <= 0) return ;
42 this . tankSect ion = tankSect ion ;
43 }
44
45 public double getTankSection ( ) {
46 return tankSect ion ;
47 }
48 }

Listing 3.9: Code of the Tank class.

respectively. The dynamics of the tank is described by the mass balance equations:

Aḣ = qin(t)− qout(t) = −a
√

2gh(t) + ku(t), (3.6)

where h is the height of the water in the tank. Thus the tank block can be seen

as a block with two inputs (the inflow and the outflow), and one output (the water

level) block.

The Tank class is defined as a specialization of the AbstractBlock class. The code

with the basic functionality is listed in Listing 3.9. The class constructor allows to

pass the parameters of the tank model: the tankSection, the outletArea, and the
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Discrete interface.

1 /**
2 * Clas s to implement a Zero Order Hold
3 */
4 public c lass ZeroOrderHold implements Dis c r e t e {
5
6 public int getNumberOfStates ( ) {
7 return 1 ;
8 }
9

10 public int getNumberOfInputs ( ) {
11 return 1 ;
12 }
13
14 public int getNumberOfOutputs ( ) {
15 return 1 ;
16 }
17
18 public void setNumberOfStates ( ) {}
19
20 public void setNumberOfInputs ( ) {}
21
22 public void setNumberOfOutputs ( ) {}
23
24 public double [ ] getOutput (double [ ] x , double [ ] u ) {
25 return new double [ ] { x [ 0 ] } ;
26 }
27
28 public void update (double [ ] x , double [ ] u ) {
29 x [ 0 ] = u [ 0 ] ;
30 }
31
32 }

Listing 3.10: Code of the ZeroOrderHold class

pumpConstant, for the initialization of the new instance being created. The method

getRates computes the value of the derivative of liquid level as defined in (3.6),

and the getOutput method returns the value of the output, which in this case is

simply the value of the first state. The class also provides with the getter and setter

methods to obtain or modify the values of the parameters.

Method 2: Implementing the interface Block. To illustrate the second

method, let us define the class ZeroOrderHold : a block that samples the value of

its input and holds it until the next update. The class implements the Discrete

interface, an specialization of the Block interface. The method update(double[] x,

double[] u) (Listing 3.10, lines 28-30) stores the value of the input in the state

vector x passed as first parameter. The method getOutput(double[] x, double[] u)

(Listing 3.10, lines 24-26) method returns the value of the zero-order hold. The

other methods (Listing 3.10, lines 6-22) allow to get and set the dimension of the

state, outputs, and inputs of the blocks.
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3.4 Use of the library

The library is thought to be used in two different ways: by means of the Elements,

which allows to easily incorporate the blocks into an EJS simulation, or directly by

Java code, using the OpenSource Physics (OSP) framework. The former method

draw upon the EJS capabilities to make it easier for the user. The latter one may be

the preferred way when the complexity of the model is higher or when the simulation

does not require interactivity.

3.4.1 Interconnecting the blocks

A model can be built by interconnecting the blocks of the library. All the blocks

are assumed to have multiple inputs and multiple outputs of type double, which in

practice implies that the interface methods work with double[].

The state of the Continuous blocks is computed by the ODE solver by numer-

ically integrating the state derivatives, which are coded in the corresponding block

getState(double[] x, double[] u) method. Therefore, for the simplest case, where the

output of a block is the input to another block, they can be interconnected simply

by passing the output of the first block as the second param to the getState method

of the second block. An example is shown in Listing 3.11. Of course, not always the

interconnections are so simple. Frequently, a block can have different inputs from

multiple blocks. For instance, consider a system with three blocks: block1, block2,

and block3, where the first output of block1 is connected to the first input of block3,

and the second output of block2 is connected to the second input of block3. The

code to implement this example is shown in Listing 3.12.

1 double [ ] y1 = block1 . getOutput ( x1 , u1 ) ;
2 double [ ] y2 = block2 . getOutput ( x2 , y1 ) ;
3 double [ ] dx1 = block1 . getRates ( x1 , u1 ) ;
4 double [ ] dx2 = block2 . getRates ( x2 , y1 ) ;

Listing 3.11: Interconnecting two blocks.
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1 double [ ] y1 = block1 . getOutput ( x1 , u1 ) ;
2 double [ ] y2 = block2 . getOutput ( x2 , u2 ) ;
3 double [ ] u3 = new double [ ] { u1 [ 0 ] , u2 [ 0 ] } ;
4 double [ ] y3 = block3 . getOutput ( x3 , u3 ) ;
5 double [ ] dx1 = block1 . getRates ( x1 , u1 ) ;
6 double [ ] dx2 = block2 . getRates ( x2 , u2 ) ;
7 double [ ] dx2 = block2 . getRates ( x3 , u3 ) ;

Listing 3.12: Interconnecting three blocks.

In such a way, the model can be built for a number of subsystems and inter-

connections of arbitrary complexity. Nevertheless, it must be remembered that the

extension mechanism provides the possibility to define new blocks, which may be a

better option if the complexity of the system grows.

3.4.1.1 Algebraic Loops

There might appear a problematic situation which is known as algebraic loop. That

occurs when there is a feedback path through blocks that have direct feedthrough

(the input has instantaneous effect on the output). For example, consider a state

feedback control loop with an state-space block. Assume that D 6= 0 so that the

block has direct feedthrough. The problem here is that to compute the output of

the process, the output itself must be known (see Figure 3.7).

Frequently, the algebraic loops can be solved either by redefining the model

or by adding dynamics such as unit step memories. Using the first method, the

dynamics system of the example can be expressed as ẋ = (A + BK)x, with an

output y = (C + DK)x, and implemented within a single state-space block. Using

the second approach, another possible solution may be to store the last step value,

Figure 3.7: Simplified representation of an algebraic loop.
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1 // up con t a i n s t h e ou tpu t o f t h e c o n t r o l l e r a t t h e p r e v i o u s s t e p
2 double [ ] yp = proce s s . getOutput (xp , up) ;
3 double [ ] yc = c o n t r o l l e r . getOutput ( xc , yp ) ;
4 double [ ] dxp = proce s s . getRates (xp , uc ) ;
5 double [ ] dxc = c o n t r o l l e r . getRates ( xc , yc ) ;

Listing 3.13: Avoiding an algebraic loop by storing the last step value.

as shown in Listing 3.13.

A discussion about algebraic loops including a precise mathematical definition

can be found in [hds13].

3.4.2 The elements

The use of the library elements is similar to any other element of EJS: a block can

be added to the simulation by dragging and dropping from the palette to the list of

elements of the current simulation. Assuming that the control loop has been defined,

and it can be constructed with the library built-in blocks, the steps needed to create

a simulation with the library are the following ones:

1. Go to the Process Control Library located into the Elements page of the EJS

model.

2. Add the needed blocks to the current simulation by dragging and dropping,

and assign a name to each element. The name allows programmers to access

the elements from the code.

3. Configure the blocks either with the configuration page of the element or by

writing the approppriate code.

4. Define the interconnections between blocks.

5. Add the code to the ODE, Evolution, and/or Event pages to integrate with

the solver.

6. Show the desired outputs in the user interface.
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This steps are esentially the same in all cases, with independence of the com-

plexity of the model.

3.4.3 The OSP numerics package

Previous sections discussed the use of the Process Control Library through the EJS

elements that can be incorporated into EJS simulations. The EJS solver relies on

the OSP numerics package library and makes it easier to use for the developer. But

there are situations in which an advanced developer might find limitations in this

method. Two common reasons are:

� Simplicity. EJS acts as an interface to the OSP framework that make it easier

to use, so the developer delegates some actions to the tool. While this is good

in many cases, if the model has many blocks or complex interactions, it could

be simpler to take control of the solver and let EJS deal only with the view

and the user interactions.

� Performance. The EJS solver has to compute the derivatives and the outputs

of each block many times during the execution of the simulation at the same

time that the view is updated at a fixed frame rate. If no interactivity is

required, it is more efficient to simulate the model for the whole time interval.

For example, one can compute the response to an input step change for a

family of process, and then show all the results in a plot.

The OSP numerics package contains numerical analysis tools, such as different

ODE solvers or a framework to deal with matrices, obtain eigenvalues, the inverse

matrix, etc. The details of the OSP numerics package can be found in [Chr07].

The next paragraphs discuss the use of the OSP framework to integrate a model

and present an example to illustrate the simulation of a continuous feedback control

loop.

The actions needed to simulate the model are esentially the following ones:
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Figure 3.8: Basic output feedback control loop with a discrete controller C(z) and
a continuous SISO process P (s).

� Define the ODE.

� Choose the ODE solver.

� Integrate the ODE.

� Store and/or present the results.

The definition of the ODE is done implementing the ODE interface. The in-

tegration of the PCL blocks with the OSP is similar to the EJS case, commented

above.

The control loop is depicted in Figure 3.8. It is a general feedback loop, where

the process is a SISO process with continuous dynamics and the controller is a

discrete controller. The FeedbackLoopODE class contains the definition of the ODE

corresponding to the control loop. It is built by combining two different blocks of the

PCL: a Continuous block and a Discrete block. The particular implementation of

the block is passed to the class constructor, thus allowing to instanciate the control

loop to represent different kinds of systems. The getRate method is responsible for

the computation of the derivatives, combining the different blocks (Listing 3.14) in

the adequate order.

The next step is to choose the solver and integrate the ODE. In this example,

the FeedbackLoopODETest class has been created to solve the particular case of a

first-order process with a PID controller (see Listing 3.15).
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1 /**
2 * Clas s to d e f i n e t h e ODE cor r e spond ing to a g en e r i c f e e d b a c k c o n t r o l l oop
3 * composed o f a con t inuous p ro c e s s and c o n t r o l l e r .
4 **/
5 public c lass FeedbackLoopODE implements ODE {
6 private Continuous process , c o n t r o l l e r ;
7 private double [ ] s t a t e ;
8 private double se tpo int , d i s turbance ;
9

10 public FeedbackLoopODE ( Continuous process , Continuous c o n t r o l l e r ) {
11 this . p roce s s = proce s s ;
12 this . c o n t r o l l e r = c o n t r o l l e r ;
13 s t a t e = new double [1+ proce s s . getNumberOfStates ( )+c o n t r o l l e r . getNumberOfStates ( ) ] ;
14 s e tpo i n t = 0 . 0 ;
15 d i s turbance = 0 . 0 ;
16 }
17
18 public void getRate (double [ ] s tate , double [ ] r a t e ) {
19 double [ ] xp = new double [ p roce s s . getNumberOfStates ( ) ] ,
20 up = new double [ p roce s s . getNumberOfInputs ( ) ] ,
21 xc = new double [ c o n t r o l l e r . getNumberOfStates ( ) ] ,
22 uc = new double [ c o n t r o l l e r . getNumberOfInputs ( ) ] ;
23
24 System . arraycopy ( s tate , 1 , xp , 0 , p roce s s . getNumberOfStates ( ) ) ;
25 System . arraycopy ( s tate , 1+proce s s . getNumberOfStates ( ) , xc , 0 , c o n t r o l l e r .

getNumberOfStates ( ) ) ;
26
27 // Ca l c u l a t e ou t pu t s
28 uc [ 0 ] = s e tpo in t − proce s s . getOutput (xp , up) [ 0 ] ;
29 up [ 0 ] = c o n t r o l l e r . getOutput ( xc , uc ) [ 0 ] + di s turbance ;
30
31 // Ca l c u l a t e d e r i v a t i v e s
32 ra t e [ 0 ] = 1 ; // t ime
33 double [ ] dxp = proce s s . getRates (xp , up) ; // p ro c e s s
34 double [ ] dxc = c o n t r o l l e r . getRates (xp , up) ; // c o n t r o l l e r
35 System . arraycopy (dxp , 0 , rate , 1 , p roce s s . getNumberOfStates ( ) ) ;
36 System . arraycopy ( dxc , 0 , rate , 1+proce s s . getNumberOfStates ( ) , c o n t r o l l e r .

getNumberOfStates ( ) ) ;
37 }
38
39 public double [ ] g e tSta te ( ) {
40 return s t a t e ;
41 }
42 }

Listing 3.14: Control loop definition by code.

1 /**
2 * Clas s to s o l v e t h e ODE de f i n e d by FeedbackLoopODE .
3 **/
4 public c lass FeedbackLoopODETest {
5 public stat ic void main ( St r ing [ ] args ) {
6 StateSpaceModel p lant = new StateSpaceModel (new double [ ] [ ]{{ −1}} , new double

[ ] [ ] { { 1 } } ,
7 new double [ ] [ ] { { 1 } } , new double

[ ] [ ] { { 0 } } ) ;
8 D i s c r e t e pid = new Di s c r e t eF i l t e r edP idCon t r o l l e r (1 , 0 . 1 , 0 , 1) ;
9 double dt = 0 . 1 ;

10 FeedbackLoopODE loop = new FeedbackLoopODE( process , c o n t r o l l e r ) ;
11 ODEBisectionEventSolver odeSo lver = new ODEBisectionEventSolver ( ode , RK45 . class ) ;
12 odeSolver . i n i t i a l i z e ( dt ) ;
13
14 loop . s e tpo i n t (1 ) ;
15 double time = 10 ;
16 while ( time > 0) {
17 double [ ] s t a t e s = loop . ge tSta te ( ) ;
18 System . out . p r i n t l n ( " t i m e = "+sta t e [0 ]+ " , o u t p u t = "+sta t e [1 ]+ " , i n p u t = "+sta t e [ 2 ] ) ;
19 time −= odeSolver ( ) . s tep ( ) ;
20 }
21 }
22 }

Listing 3.15: Code to solve the ODE.
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3.5 Application example: PID control of a tank

The first application example is the simulation of a single tank plant controlled by

a PID controller which admits several configurations.

The process is composed of a tank with a constant section and an outlet hole

with a valve through which the fluid goes out of the tank. The tank is filled through

a pump which is assumed to be linear with respect to the control signal. In addition,

there is a second pump which can extract water from the tank. Depending on the

configuration of the system, i.e., whether the valve is opened or closed and where

the control actuates (the first or the second pump), the resulting process can be

modeled as an integrator or as a first-order model.

3.5.1 The control loops

The example application provides two control loops, shown in Figure 3.9, which

are event-based schemes similar to that described in [CSVD12]. These schemes

are composed of the process, which is the above described tank, a continuous PID

controller, and a send-on-delta sampler. The send-on-delta sampler is a block that

takes a new sample of the input when the sampled signal crosses certain levels,

which have a width defined by a threshold δ, with an offset α with respect to the

origin. This block can be placed in two positions: sampling the control variable, or

sampling the process variable.

3.5.2 Building the simulation

The features expected from the simulation can be summarized in the following

points:

1. Possibility of simulating the two described control loops, showing graphically

the variables involved in the loop.
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(a)

(b)

Figure 3.9: Two control loops with different location of the send-on-delta sampler,
(a) the error signal at the input of the controller is sampled, and (b) the controller
output is sampled.

2. Interactivity, i.e. providing the user with the possibility of control the execu-

tion of the simulation but also to change the configuration and/or parameters

of the systems and reflect immediately those changes.

In the next paragraphs, the building process is described step by step.

3.5.2.1 Step 1: Adding the elements

Once the control loops have been designed, the first step towards the final imple-

mentation is to add the elements to the simulation (Figure 3.10). This must be done

in order to have them available for the model. Each element can be instantiated

one or more times, but each instance must have a unique identificator (a Java valid

identificator), since it corresponds to a Java object. The elements with configuration

options can be customized in this step by using the dialog provided by the element

(usually this is the preferred way), or in the initialization code.

The names that have been associated to each instance are: sum, controller,

sampler, process (in the same order as in Figure 3.9a).
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Figure 3.10: Elements page of the EJS Model. On the right, the elements of the
Process Control Library. On the left, the instances of the elements added to the
current simulation.

3.5.2.2 Step 2: Interconnecting the blocks

In the second step, after adding all the needed blocks, it is necessary to interconnect

them in order to make each block able to obtain its inputs. From a high-level point

of view, each block is a black box with inputs indexed from 0 to ni, and outputs,

from 0 to no. Since all lines are assumed to be of the same type (double), any output

can be connected to any input.

The interconnection of the blocks depends on the loop configuration, i.e. whether

the controller operates at the input pump or at the output pump. The current

configuration is stored in the boolean variable inputPumpControl, which is defined

inside the Variables page of the simulation. The corresponding code is listed in

Listing 3.16.

This code is executed every integration step in the Preliminary Code page of the

ODE solver in the EJS simulation, because the outputs must be updated prior to
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1 // Compute t h e ou tpu t o f t h e tank and i t s sampler
2 yp = tank . getOutput (xp , null ) ;
3 yps = processSampler . getOutput ( xps , yp ) ;
4 po = processSampl ing ? yps : yp ;
5 uc = sum . getOutput (null , new double [ ] { se tpo int , po [ 0 ] } ) ;
6 // Compute t h e ou tpu t o f t h e c o n t r o l l e r and i t s sampler
7 yc = c o n t r o l l e r . getOutput ( xc , uc ) ;
8 ycs = cont ro l l e rSamp l e r . getOutput ( xcs , yc ) ;
9 co = cont ro l l e rSampl ing ? ycs : yc ;

10 // S e l e c t t h e adequa te i npu t
11 i f ( pumpInputControl ) {
12 up [ 0 ] = o f f s e t + co [ 0 ] ;
13 } else {
14 up [ 0 ] = o f f s e t − co [ 0 ] ;
15 }

Listing 3.16: Excerpt of code that computes the output of the tank and of the
sampler.

computing the state derivatives. If not, the blocks do not know how to obtain their

correct inputs and thus the state cannot be properly updated.

At this step, the two control loops have been entirely defined, and thus the last

step to complete the simulation is to add the code needed to integrate the model.

This can be done in several ways, depending on the kind of block. For each block

with continuous flow, the dynamics can be added to an ODE page (see Figure 3.11).

If the block is discrete or event-based, then the updates can be introduced into a

Evolution page or an Event page.

There are two blocks in the loop that have continuous dynamics: the controller

and the process. To integrate the state of this elements with the EJS solver, the

derivatives must be added to an ODE page, which can be done with dx/dt = pro-

cess.getRates() and with dxc/dt = controller.getRates() (see Figure 3.11).

Note that the blocks with continuous state must link their state vector to an EJS

variable, so that the solver can access them properly. This is done with the method

linkStates(double[] x), defined in the interface Continuous.

3.5.2.3 Step 3: Creation of the GUI

This step is identical to the building of other EJS simulations, and does not depend

on the library, so it will not be discussed here. However, the interface has been

designed trying to keep it simple and easy to use.
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Figure 3.11: Definition of the model in EJS. The blocks with continuous dynamics
need to have an associated state. The derivatives of the state are obtained by calling
the method getRates() of the block in an ODE page.

The user interface is shown in Figure 3.12. The state of plant is shown with a

visual animation of the tank which varies its water level according to the value of

the state. The diagram follows the PID symbol convention, which is a standard

in the process industry. At the right, the variables of interest (including the plant

state) are shown in two plots. The panel under the view contains the controls that

allow to modify the parameters of the experiment.

3.6 Application example: Event-based PID con-

trol loop

Following the same scheme as the previous example, another interactive simulation

has been built with the Process Control Library. In this case, the control loop is the

same, but instead of the tank the example allows to choose one from four predefined
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Figure 3.12: User interface of the PID control of a Tank example. On the left, the
graphical representation of the plant with a P&ID based diagram and the controls
to modify the parameters of the experiment. On the right the plots show the process
and the controller output.

processes: an integrator, a double integrator, a first-order model, and a second-order

model.

3.6.1 Building the simulation

Since the building process of this example has simmilarities with the previous one,

only the differences are remarked.

3.6.1.1 Step 1: Adding the elements

Despite of the substitution of the Tank element by the process, this step is esentially

the same as in the previous example.
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Figure 3.13: User interface of the simulation example. The interface is composed of
several windows: On the left, the main window shows the plots corresponding to the
event-based sampling of the process and controller. On the right, the other windows
allow users the configuration of the different blocks of the two control loops: the
process, the controller, and the sampler.

3.6.1.2 Step 2: Interconnecting the blocks

This step is the same as in the previous example.

3.6.1.3 Step 3: Creation of the GUI

This step is identical to the building of other EJS simulations, and does not depend

on the library, so it will not be discussed here. However, several aspects to be taken

into account for designing the interface are the following ones,

1. Simplicity. The interface must be designed trying to keep it simple and easy

to use.

2. Multi-window. The interface follows the multiwindow paradigm, that means
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that conceptually different actions are done in separated windows. Thus, there

is a window showing the plots, another window to configure the process, and

so on.

The user interface is shown in Figure 3.13. The main window contains two plots

which show the process and the controller outputs. Depending on the configura-

tion, the sampler output is plotted either with the process output (when sampling

the process variable) or with the controller output (if the control variable is sam-

pled). From this window it is possible to control the execution of the simulation.

In addition, there are three additional windows, one with the configuration of the

PID controller, another with the configuration of the sampler, and the third one to

configure the process.

3.7 Conclusions

A library of Java classes and EJS elements is now available to build simulations

related with process control. The PCL aims to facilitate the development of this kind

of simulations, inspired by widely used tools such as SIMULINK, and capturing the

behaviour of the most common types of systems. In order to build a new simulation,

it is not needed to start from the scratch, but by only choosing and interconnecting

blocks the application development effort is greatly reduced.

Two examples of interactive simulation tools developed by using the library have

also been presented, illustrating the use of the main components and the simplicity

of the development. However, it must be remarked that these examples of simulation

are actually fully functional interactive tools which allow to experiment with a family

of event-based systems.

Though the use of library has been presented in a simulation context, it is also

possible to include it in a hardware-in-the-loop application, either by using the
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LabVIEW Connector Element for EJS or combining with the real-time support of

EJS and the elements already available to access open hardware platforms, such as

Arduino or Phidget. This application is discussed in the next Chapter.



4
Adding Event-based

Capabilities to Remote Labs

4.1 Introduction

Designing and developing web-enabled remote laboratories for pedagogical purposes

is not an easy task. Often, developers (generally, educators who know the sub-

jects they teach but lack of the technical and programming skills required to build

Internet-based educational applications) end up discarding the idea of exploring

these new teaching and learning possibilities mainly due to the amount of technical

issues that must be mastered. To tackle this problem, in this Thesis we present a

novel technique to allow developers to create remote labs in a quick, didactical and

straightforward way. This framework is based on the use of two well-known soft-

ware tools in the scope of engineering education: Easy Java Simulations (EJS) and

LabVIEW. This new technique exploits one of the new features of EJS, known as

EJS Model Elements, that enables Java developers to create and integrate their own

authoring libraries (elements) into EJS, thus increasing its application possibilities.

Particularly, the EJS elemen presented in this chapter allows to control LabVIEW

programs from EJS applications through a communication network. This chapter
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presents the element creation details and how this can be used to create web-enabled

experimentation environments for educational purposes. A step by step example is

described to illustrate the basic functionality, i.e. execution control of a VI and

synchronization of data with the VI.

The integration of new pedagogical methodologies in engineering education is,

nowadays, practically mandatory in most universities around the world. This state-

ment is grounded by the number of papers published about these subjects and

where the current technological advances have shown the way to follow in this field

[GNR05, CPV03]. For instance, in the European case, this has been addressed by

introducing the educative community to the European Space for Higher Education

(Bologna process), in which Internet plays a key role in university studies [LMA10].

Regarding the aforementioned, hands-on laboratories were one of the first places

where the integration of such technological advances was visible. Many engineering

faculties expanded the use of these laboratories by offering students opportunities

of experimentation with real systems (processes) not only by live classroom training

but also remotely through the Internet. These Internet-based educational tools are

currently known as Web-based laboratories. Web-based laboratories are divided into

two categories, according to the system’s nature to manipulate: virtual and remote.

A virtual laboratory simulates a mathematical model of a physical process, whereas

a remote laboratory provides access to a real physical process located in a remote

site on the Internet [DDV+08].

Although simulation is an appropriate way of complementing engineering edu-

cation, it generally cannot replace experimentation with real processes. For this

reason, a full web-based laboratory should offer both training modalities. However,

creating the remote version of a web-based lab is still attainable only for educators

and research teams who are expert in these matters, mainly due to the amount of

technical and programming issues that must be mastered [GB09].

In the literature, many different approaches oriented to the development of re-
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mote laboratories can be found, so the examples reviewed are mainly focused on

architectures using MATLAB and/or LabVIEW. For instance, a SCADA developed

in LabVIEW to control a remote PLC is presented in [PDF+13]. In [SCMS11],

authors present a remote laboratory exclusively created by using the LabVIEW

platform [Lab13]. Although LabVIEW VIs 1 can be easily made ready for Internet

delivery, a LabVIEW Runtime Engine must be installed at the client side. This last

step is not recommended when creating remote labs since installing software plugins

sometimes can become hard for final users. For this reason, LabVIEW platform is

commonly used only for creating the server side of a remote lab. Other software op-

tions for the server side can be MATLAB [FDKDE10], Simulink [FFDC+11], C++

[CVJ+], Scicos [MZ12], etc. For example, in [CGGV11, CPV13] authors present a

MATLAB-based platform to experiment with mobile robots: the Automatic Control

Telelab.

On the other hand, Java applets and Flash applications have been the most

popular web technologies for developing the client interface for remote labs. In

[HMCC08], a virtual laboratory for the analysis and study of the human respira-

tory system was created. In this example, an applet was developed by using EJS

[EJS12]. Two other examples of remote labs for pedagogical purposes were pre-

sented in [SMD+02, SDPM04]. In these articles authors present a set of web-based

laboratories for teaching automatic control concepts where Java applets to access

remotely the training services were used as well. Similarly, Flash applications have

found some applications in virtual and remote laboratories design [RJP+03, Gof07].

Unlike Java, Flash has been less used by developers for designing web-based labs

mainly for license payment issues.

Despite all these efforts, simple approaches to assist beginner’s developers in

creating remote labs are not easy to find. In this context, next lines describe the

1”LabVIEW programs are called virtual instruments, or VIs, because their appearance and op-
eration imitate physical instruments, such as oscilloscopes and multimeters”, National Instruments
[Lab]
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authors proposal in order to contribute in this scope.

At the Spanish National Distance Education University UNED (the authors’

institution), distance education courses on automatic control for as many as 300

students each year are offered. Until few years ago, these students had to travel to

Madrid from all over the country to attend two-week long laboratories to complete

the prescribed hands-on experiments in system identification and control courses.

Fortunately, the development of Internet technologies highlighted the importance

of Web-based teaching and learning in many research fields, including automatic

control. Since more than 10 years, we therefore decided to use Web-based labs

in our instruction so that students could minimize their need to physically attend

laboratories. The acquired experience for our research team during all this time

can be summarized in the following selection of papers [VSJ+11, VSS+09, VSGD09,

DVD+08, VSD+08].

Based on the experiences above described, we present a new approach to create

remote labs. This framework, which is an update of the work presented in [VSS+09],

uses the software tools EJS and LabVIEW. The development framework exploits the

new feature of Easy Java Simulations known as EJS-elements that enables Java de-

velopers to create and integrate their own authoring libraries (elements) into EJS,

thus increasing its application possibilities. Particularly, the EJS element here pre-

sented allows to LabVIEW programs be controlled from EJS applications through

a communication network simply by linking LabVIEW and EJS variables by means

of a configuration wizard. The approach hides the low-level communication issues

always necessary when creating remote labs, thus simplifying its creation process.

4.2 The Remote Lab architecture

The basic layout of a remote lab is as follows: on the one hand, the plant, whose

sensors and actuators allow to interact with it, is connected to the host PC via an
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Figure 4.1: Architecture of a remote lab built with EJS, JIL Server, and LabVIEW.

acquisition card (DAQ). On the other hand, the graphical user interface (GUI) that

allows students the interaction with the plant, and which is an application that runs

in the student PC. This solution is usually known as client/server architecture.

An improvement to this approach, adopted in this work, is the use of a three-tier

architecture (see Figure 4.1). In this solution, a middle-tier is introduced between

the client and the server, acting as an intermediary that allows to eliminate or reduce

the dependency of the design and implementation of both sides. Thus, the client

can focus, for example, on the interface with the user, and the server on the control

of the plant, while the middle-tier copes with the data exchanging issues.

Though there are different alternatives to set up the server and client PCs, what

we are looking for is a solution that ideally could be applied to any case.
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The National Instrument LabVIEW platform has been chosen to setup the server

PC. As said before, it is a graphical programming tool, widely spread both in indus-

try and academics, which allows for the rapid development of applications. One of

the main advantages of LabVIEW is its great hardware support, providing drivers

and libraries to access DAQ systems, communication protocols, etc.

The middle-tier contains the JIL Server, which makes public the controls and

indicators of the real-time VI (see Figure 4.1) to be accessed from the client.

Finally, the client tier is the most visible part, because it provides the GUI. EJS

is a good option to create the GUI because it has been designed to simplify the

development of interactive simulations and graphical interfaces. Also, EJS provides

us with a mechanism to extend its capabilities, the elements of the model, that

let us to encapsulate Java libraries in a way that can be incorporated easily into a

simulation.

Here is where the LabVIEW Connector Element and the Audio Player Element

fit, hiding the low-level details of the communication with the LabVIEW VIs via

the JIL Server and allowing the feedback of audio from the plant. The framework

is explained in [Var10] and can be consulted for further details. In the rest of this

chapter, we focus on the implementation of the event-based transmission mechanism

from the point of view of the two sides: LabVIEW and EJS.

4.3 The LabVIEW VI

There are several implementation problems or decisions to take that frequently ap-

pear during the development phase, and must be implemented in the LabVIEW VI

at the server side. These problems can be sistematically tackled by dividing the

functionalities into several subsystems:

� Data Acquisition. It is in charge of the communication with the DAQ to read
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the level sensors and to send the control actions to the actuators.

� Local Controller. This subsystem are includes the implementation of the con-

troller and all the components needed for switching between the different

modes of the control system. Though the architecture allows the controller

to be implemented in the client side, it is recommended to have a local con-

troller to prevent unsafe operating conditions.

� Event-based Communication. As mentioned before, the JIL Server cope with

the VI execution control and data exchanging. However, the implementa-

tion of the event-based sampling schemes and, in particular, the send-on-delta

sampling must be done in the LabVIEW VI.

� Data Logging. This subsystem contains the blocks to log the data with the

experiment evolution.

The Local Controller, Data Acquisition, and Data Logging subsystems are not

discussed in detail. The first one because it depends on the plant to control, and the

other two because the techniques are not specifically related to event-based systems.

With respect to the Event-based communication subsystem, the implementation is

based on the SOD Sampler VI, described in the next paragraph.

4.3.1 The SOD sampler VI

The SOD sampler, as defined in Section 2.2.1, has been implemented in LabVIEW

as a reentrant VI that can be instanciated as many times as needed, depending on

the signals being sampled.

Figure 4.2 shows the code of the VI. The implementation is based on a pattern

described in [Blu07], which consists of the use of a while loop with an unitialized

shift register that stores the last sample. The loop stop condition is connected to

a boolean constant source with true value, thus every the subVI is called, there is
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(a)

(b)

Figure 4.2: (a) Use of the VI SOD sampler to sample a variable, and (b) detail of
the implementation of the send-on-delta sampler in LabVIEW.

exactly one execution of the loop. In this way, it can be embedded into a higher

level loop or VI. The SOD sampler block admits as input two parameters, alpha

and delta, the signal being sampled, u, and two control inputs, enabled and reset,

to enable or disable the sampling and to reset the state, respectively.

4.4 Java and LabVIEW communication

The JIL Server software encapsulates the connection with LabVIEW by handling

the client requests and providing them with a protocol that allows, on the one hand,

to control the execution of a LabVIEW VI and, on the other hand, to read the

indicators and update the controls of the VI.

This means that it does not enforce the use of a specific programming language

at the client side. Therefore, though this section presents the implementation in

Java, most of the ideas can be directly translated into other languages.
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The software framework presented hereafter allows the communication of a Java

applet or application with the JIL Server with two different levels of abstraction:

a low-level protocol and a high-level protocol. Therefore, the framework is divided

into:

� The LabVIEW Connector, that provides all the low-level functionalities, i.e.

to open a connection with the JIL Server, to open, run, and/or close a remote

LabVIEW VI, and to exchange Java variables with VI controls and indicators.

This approach allows the user to have an entire control over the communica-

tions between the EJS simulation and the JIL Server, though it has as draw-

back that it is required to have a certain understanding of the internals of the

JIL Server.

� The LabVIEW Connector Element, which provides a high level protocol to

communicate with the JIL Server hiding the details to the user. It is a wrapper

that allows the integration of a library into EJS.

The structure of the LabVIEW Connector library is represented in Figure 4.3.

Note that, though the element requires EJS to run, the LabVIEW Connector core

does not have these bindings, so it can be used by any Java application. In general,

the high-level protocol is the recommended method because it is easier for the user.

However it does not allow a direct control of the data exchange between the client

and the server. Instead of that, all the variables are synchronized in group. There-

fore, depending on the number of variables and the communication restrictions, the

performance might not be optimal. Both protocols (and components) are explained

in the next two sections.

4.4.1 Low-level communication protocol

In this context low-level communication protocol means that the primitives provided

are close to the actual commands that the JIL Server can understand and process,
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Figure 4.3: Class diagram representing the structure of the LabVIEW Connector
library for Java and EJS. The low-level primitives are encapsulated into the class
LabviewConnector. The class LabviewElement implements the interface to incorpo-
rate the library into EJS simulations.

and there is no user-specific code related to the particular configuration of a remote

laboratory. The communications can be done through TCP connections and the

JIL Server protocol described in [Var10] or as web services via the HTTP and

XML-RPC [httb]. This latter protocol has been implemented in the last version of

the JIL Server to ease the interface with all kind of platforms (there are libraries

implementing the XML-RPC protocol in Java, C/C++, PHP, .NET, etc.)

All the functionality over which the communication is built is provided by generic

methods, defined by the LowLevelProtocol interface (Listing 4.1). Therefore, a par-

ticular implementation of a protocol must provide these methods. Nevertheless, a

direct use of the low-level protocol interface is in general not recommended because

it is necessary to have some knowledge about the logics of the communications with

the JIL Server and because it can be more error prone due to the necessity of writing
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1 /**
2 * I n t e r f a c e to implement t h e low− l e v e l communication p r o t o c o l
3 */
4 public interface LowLevelProtocol {
5 // C la s s Cons t ruc to r
6 public void LabviewConnector ( St r ing u r l ) ;
7 // Connect ion methods
8 public void se tServerAddres s ( S t r ing u r l ) ;
9 public boolean connect ( ) ;

10 public boolean d i s connect ( ) ;
11 // Execu t ion c o n t r o l methods
12 public boolean openVI ( St r ing pathToVI ) ;
13 public boolean runVI ( ) ;
14 public boolean stopVI ( ) ;
15 public boolean c lo seVI ( ) ;
16 // S e t t e r methods f o r t h e t y p e s boo lean , in t , f l o a t , doub l e and S t r i n g
17 public boolean setValue ( St r ing name , boolean value ) { . . . }
18 public boolean setValue ( St r ing name , int value ) { . . . }
19 public boolean setValue ( St r ing name , f loat value ) { . . . }
20 public boolean setValue ( St r ing name , double value ) { . . . }
21 public boolean setValue ( St r ing name , St r ing value ) { . . . }
22 // Ge t t e r methods f o r t h e t y p e s boo lean , in t , f l o a t , doub l e and S t r i n g
23 public boolean getBoolean ( St r ing name) { . . . }
24 public int ge t In t ( S t r ing name) { . . . }
25 public f loat getF loat ( S t r ing name) { . . . }
26 public double getDouble ( St r ing name) { . . . }
27 public St r ing ge tS t r i ng ( St r ing name) { . . . }
28 }

Listing 4.1: Interface LowLevelProtocol.

a higher number of lines of code.

The use of the low-level protocol is summarized in the following steps:

1. Configure the LabviewConnector class to know the url of the JIL Server :

method setServerAddress(url).

2. Connect to the server: method connect().

3. Open the remote VI specified by path: method openVI(path).

4. Run the remote VI : method runVI().

5. Repeat until stop:

(a) Update the values of the VI controls with the get{type}(name) methods.

(b) Read the values of the VI indicators with the setValue(name, value)

methods.

6. Stop the remote VI : method stopVI().
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Figure 4.4: State diagram representing the possible states of the connection with
the JIL Server.

7. Close the remote VI : method closeVI().

8. Disconnect from the server: method disconnect().

Despite of the actually implemented protocol, its details are hidden through the

described LowLevelProtocol interface. The other aspects of the connection with the

JIL Server are encapsulated inside the LabviewConnector class, which provides an

interface with the methods needed to set up the communication with the JIL Server.

Furthermore, it implements a state machine that controls the state of the connection.

The interaction with the server is summarized in Figure 4.4, which represents the

possible states of a connection, and the sequence diagram of Figure 4.5a.

First, the url of the JIL Server should be provided either in the constructor or in

the method setServerAddress(String url). After that, the connection is done with the

method connect(). The other methods to control the execution are openVI(String

pathToVI), used to open a LabVIEW VI that must be accessible in the server,

runVI() which is used to initiate the execution of the previously opened VI, stopVI()

to pause the execution of a running VI, and closeVI() to dismiss an opened VI. Fi-
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(a)

(b)

Figure 4.5: Sequence diagrams for (a) low-level protocol, and (b) high-level protocol.
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1 /**
2 * Connect to JIL Serve r .
3 */
4 public synchronized boolean connect ( ) {
5 i f ( ! connected ){
6 try {
7 // c r e a t e a TCP so c k e t
8 jilTCP = new java . net . Socket ( ) ;
9 jilTCP . setSoTimeout (4000) ;

10 jilTCP . setTcpNoDelay ( true ) ;
11 jilTCP . connect (new InetSocketAddress (SERVICE IP , SERVICE PORT) , 4000) ;
12
13 // c r e a t e an inpu t b u f f e r to r e c e i v e data
14 BufferedInputStream b i s = new BufferedInputStream ( jilTCP . getInputStream () ) ;
15 bufferInputTCP = new DataInputStream ( b i s ) ;
16
17 // c r e a t e an ou tpu t b u f f e r to send data
18 BufferedOutputStream bos = new BufferedInputStream ( jilTCP . getInputStream ( ) ) ;
19 bufferOutputTCP = new DataOutputStream ( bos ) ;
20
21 // c r e a t e a sender o b j e c t t o manage t he ou tpu t b u f f e r
22 cbbs = new Circu la rByteBuf f e r ( C i r cu la rByteBuf f e r . INFINITE SIZE ) ;
23 sender = new Sender ( cbbs , bufferOutputTCP ) ;
24 sender . s e tP r i o r i t y (Thread .MIN PRIORITY) ;
25 sender . s t a r t ( ) ;
26 connected = true ;
27 }catch ( IOException i o e ) {
28 System . e r r . p r i n t l n ( " c o n n e c t () m e t h o d m e s s a g e : I O E x c e p t i o n = "

29 + io e . getMessage ( ) ) ;
30 }catch ( Exception e ) {
31 System . e r r . p r i n t l n ( " c o n n e c t () m e t h o d m e s s a g e : E x c e p t i o n = "

32 + e . getMessage ( ) ) ;
33 }
34 }
35
36 return connected ;
37 }

Listing 4.2: Excerpt of code from the TcpProtocol class.

nally, the method disconnect() closes the connection with the server and frees the

resources. The methods that control the data communication between Java and the

JIL Server are: setValues(String name,...), which sends a new value to update a con-

trol in the VI, and getDouble(String name),...,getString(String name), that obtain

the value of an indicator of the VI. The method setValues(...) must be invoked with

two parameters: a String containing the name of the control that must be updated,

and the value itself. On the other hand, the methods get{type}(...) receive only one

parameter, a String with the name of the VI indicator to be read, and return its

value. The exact choice of the method will depend on the type of the indicator to

obtain. Since the JIL Server currently admits two different implementations of the

protocol, the first one over TCP and the second one over XML-RPC, there are also

two classes implementing this interface: the TcpProtocol and the XmlRpcProtocol

classes. Both classes are explored in the following paragraphs.
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1< !−− C l i e n t Reques t −−>
2 POST /RPC2 HTTP/1.0
3 User−Agent: Front i e r / 5 . 1 . 2 (WinNT)
4 Host : betty . user land . com
5 Content−Type: t ext /xml
6 Content−l e n g th : 181
7<?xml version=" 1.0 " encoding=" UTF -8 " ?>
8<methodCall><methodName> j i l . connect</methodName></methodCall>
9

10< !−− Serve r Response −−>
11<?xml version=" 1.0 " encoding=" UTF -8 " ?>
12<methodResponse>
13 <params>
14 <param><value><struct>
15 <member>
16 <name>ve r s i on</name>
17 <value><string>%JIL−XMLversion%</ string></value>
18 </member>
19 <member>
20 <name>s e s s i on ID</name>
21 <value><i4>%Sess ionID%</ i4></value>
22 </member>
23 </ struct></value></param>
24 </params>
25</methodResponse>

Listing 4.3: Example of a XML-RPC request.

4.4.1.1 The TcpProtocol class

The implementation of the TCP JIL Server protocol is based on the Labview.jar

library, described in [Var10]. An excerpt of the code of the TcpProtocol class is

shown in Listing 4.2.

In particular, the code corresponds to the connect() method which creates a new

connection with the JIL Server. This code is slightly more complex than the Xml-

RpcProtocol implementation. First, the lines 6-10 try to create and configure a new

connection socket with the specified ip and port where the server is listening. After

the connection is established, the reception and sending buffers are initialized (lines

11-13) and, finally, the sender object is created, that is responsible to monitor the

output buffer and periodically send the data to the server.

4.4.1.2 The XmlRpcProtocol class

As the XML-RPC Specification [htt07] states, XML-RPC is a remote procedure

calling protocol that works over the Internet. An XML-RPC message is an HTTP-

POST request with the body of the request in XML (see Listing 4.3).
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A procedure executes at the server side and the value it returns is also formatted

in XML. The XML-RPC JIL Server protocol defines methods that can be remotely

invoked from the Java code, for instance jil.connect(), jil.openVI(), jil.closeVI(), or

jil.disconnect().

The implementation of the XML-RPC JIL Server protocol has been done by

means of the Apache XML-RPC library, which generates the adequate XML-RPC

request from the name of the methods and the parameters, and provides an inter-

preter to parse the server response. An example of the code to invoke the connect()

method is shown in Listing 4.4. It is significantly simpler than the previous case.

The remote method connect() is invoked by a call to the member method execute

of the object client (line 8), which generates the XML-RPC request with the name

and parameters (none in this case) of the remote method.

4.4.2 High-level communication protocol

Though the LabviewSession class and the Protocol interface are complete implemen-

tations that can be used to develop functional applications, it can require an effort to

configure the connection and other practical details. Following with the paradigm of

using the EJS elements to simplify the development, the idea is to have a high-level

communication protocol that allows the user to be unaware of the internals of the

1 /**
2 * Open a connec t i on wi th t h e s e r v e r
3 * @returns <i>t rue</i> i f t h e connec t i on wi th t h e s e r v e r i s done , <i>f a l s e </i>

o t h e rw i s e .
4 */
5 public synchronized boolean connect ( ) {
6 try {
7 Object [ ] params = new Object [ ] { } ;
8 HashMap r e s u l t = (HashMap) c l i e n t . execute (METHODNAMECONNECT, params ) ;
9 } catch ( XmlRpcException e ) {

10 System . e r r . p r i n t l n ( " c o n n e c t () m e t h o d m e s s a g e : X m l R p c E x c e p t i o n = " + e . getMessage ( ) )
;

11 return fa l se ;
12 }
13 return true ;
14 }

Listing 4.4: Excerpt of code from the XmlRpcLabviewConnector class
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Figure 4.6: The configuration window of the LabVIEW Connector Element helps the
user to configure the connection parameters, i.e. the server address, the path of the
VI file, and the linkages between the EJS variables and the controls and indicators
of the VI.

communication between the EJS simulation and the JIL Server.

This is done by means of the UserLabviewConnector class, which is automatically

generated with the user-supplied information, i.e. the address of the JIL Server, the

name of the remote VI and the links between the EJS variables and the LabVIEW

VI controls and indicators. The configuration is done within the GUI provided by

the element (see Figure 4.6). From a high level point of view, the functionalities

that must be provided to the user to allow the interaction with a LabVIEW VI are

summarized in the following points:

� Open and run a remote VI : connect().

� Synchronize the EJS variables with the LabVIEW VI controls and indicators:

step().

� Stop and/or close the remote VI : disconnect().

The UserLabviewConnector class contains the high-level methods that define a
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1 /**
2 * Clas s to d e f i n e t h e user−s p e c i f i c connec t i on to t h e JIL Serve r .
3 */
4 public class UserLabviewConnector extends LabviewConnector {
5 /**
6 * Connect to t h e s e r v e r
7 */
8 public void connect ( ) { }
9 /**

10 * Synchron i ze t h e v a r i a b l e s
11 */
12 public void s tep ( ) {
13 i f ( isConnected && isRunning ) {
14 getValues ( ) ;
15 setValues ( ) ;
16 }
17 }
18 /**
19 * Update t h e i n d i c a t o r s
20 */
21 public void getValues ( ) {
22 var1 = getValue ( " v a r 1 " ) ;
23 var2 = getValue ( " v a r 2 " ) ;
24 } ;
25 /**
26 * Update t h e c o n t r o l s
27 */
28 public void se tVa lues ( ) {
29 setValue ( " v a r 1 " ) ;
30 setValue ( " v a r 2 " ) ;
31 } ;
32 /**
33 * Disconnec t from the s e r v e r
34 */
35 public void d i s connect ( ) { }
36 }

Listing 4.5: Class UserLabviewConnector.

particular connection with a VI (Listing 4.5). Note that these functions are appli-

cation specific. For example, each VI has its own controls and indicators.

Finally, the LabviewConnectorElement class provides two functionalities: the

implementation of the ModelElement interface, which defines the contract required

by EJS (Listing 4.6) to incorporate the library in the software tool as an element,

and the code generator to automatize the definition of the UserLabviewConnector

class.

4.4.2.1 The LabviewConnectorElement class

The EJS element is implemented by the class LabviewConnectorElement. The func-

tionalities provided by this class are listed in the following points:

� Implement the interface ModelElement, allowing the class to be recognized as

an element and loaded by EJS.
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1 public interface ModelElement {
2 public javax . swing . ImageIcon getImageIcon ( ) ;
3 public St r ing getGenericName ( ) ;
4 public St r ing getConstructorName ( ) ;
5 public St r ing g e t I n i t i a l i z a t i o nCod e ( St r ing name ) ;
6 public St r ing getDestruct ionCode ( St r ing name ) ;
7 public St r ing getImportStatements ( ) ;
8 public St r ing getResourcesRequired ( ) ;
9 public St r ing getPackageList ( ) ;

10 public St r ing ge tD i sp l ay In fo ( ) ;
11 public St r ing savetoXML () ;
12 public void readfromXML( St r ing inputXML) ;
13 public St r ing getToo l t ip ( ) ;
14 public void c l e a r ( ) ;
15 public void setFont ( java . awt . Font font ) ;
16 public void showHelp ( java . awt . Component parentComponent ) ;
17 public void showEditor ( St r ing name , java . awt . Component parentComponent ,

ModelElementsCol lect ion l i s t ) ;
18 public void r e f r e s hEd i t o r ( St r ing name ) ;
19 public java . u t i l . L i st<ModelElementSearch> search ( St r ing in fo , S t r ing searchStr ing ,

int mode , St r ing elementName , ModelElementsCol lect ion c o l l e c t i o n ) ;
20 }

Listing 4.6: ModelElement Interface.

� With the configuration provided by the user, it generates an specialized sub-

class of LabviewConnector which implements the high level protocol to com-

municate with the JIL Server and LabVIEW.

The configuration of the element requires only three steps:

1. Add the LabVIEW Connector Element to the current simulation by dragging

and dropping to the Model Elements page.

2. Open the LabVIEW Connector Element properties dialog, and introduce the

url of the server and the path of the VI to be loaded.

3. Link the LabVIEW controls and indicators of the VI with the variables of the

EJS simulation.

Thus, the synchronization of the values of the linked EJS variables and Lab-

VIEW controls and indicators is simply done with a call to the method step() in the

Evolution page.

As mentioned before, it is encouraged to do the communication with the high-

level protocol unless there is a good reason to use the low-level method.

Regardless of the chosen approach, in most of the applications, the variables can

be grouped into two classes, namely,



114 4. Adding Event-based Capabilities to Remote Labs

� synchronous, which are the variables that correspond to controls and indicators

that must be updated with a constant period, because they have a value that

changes frequently. Examples of this kind of variables are the control inputs

to the actuators or the readings from the sensors.

� asynchronous, which are variables that have the same value the most of the

time, only changing sporadically, and they usually correspond to configuration

parameters or user commands to interact with the plant.

The configuration window of an element allows to mark every linked variable as

synchronous or asynchronous variable, which in practice means that if a variable is

marked as synchronous, it will be synchronized inside the step() method, and in the

opposite case the user will be responsible for the variable synchronization.

4.5 Example: JIL Server Test

A simple example is presented to show the use of an element. Though simple, the

example illustrates all the steps needed to construct an application which commu-

nicates with LabVIEW through the JIL Server. The LabVIEW VI of this example

contains five controls and indicators, one for each primitive type, i.e. boolean, int,

float, double, and String.

The name of each control and indicator is composed by a word denoting the data

type and the in suffix for controls or the out suffix for indicators. For example, the

boolean indicator is named booleanin, while the name of the control of type String

is stringout.

The client application interface is shown in Figure 4.7. There is a set of EJS

controls (sliders, text fields, and check buttons) that allow the user to modify the

values of the associated VI controls, and a set of EJS indicators showing the state

of the VI indicators.
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Figure 4.7: The user interface is divided into three different windows: one with the
controllers and indicators, another with the server configuration and the third one
with the status messages log.

4.6 Feedback from the plant

EJS incorporates a built-in capability to reproduce video from an IP cam, using

either the MPEG video format or the multipart jpeg format (every frame is trans-

mitted as a JPG image). This latter is usually the preferred method in the remote

laboratories developed with EJS, mainly because it is provided by most of the video-

capture devices, as IP cameras or webcams, and because it is simple to implement

since it uses a mature compression standard (JPG).

The audio transmission has not been addressed in other remote labs developed

with EJS. However, in certain plants the audio can contribute to create a feeling of

proximity to the laboratory. As a particular example, an interesting experience for

teaching electrical machinery concepts is to connect in series two rotating machines,

the first acting as a motor and the second as a generator. Though the shaft rotation

cannot be clearly perceived only with the video transmission, the sound can perfectly

transmit the response of the plant to users stimuli.

However, as part of the architecture proposed in this chapter, the Audio Player

Element that allows to reproduce sound from an IP cam has been developed.

The audio player is divided into two classes (see Figure 4.8), the MultipartAu-
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Figure 4.8: The class diagram shows the structure of the Audio Player Element. The
implementation is divided into two classes: AudioPlayer provides the functionality
and AudioPlayerElement allows for the integration with EJS.

dioPlayer class that actually implement the code needed to play audio, and the

AudioPlayerElement class that allows to add it to an EJS simulation.

The MultipartAudioPlayer class, whose code is shown in Listing 4.7, provides

two methods to control the reproduction of audio from the camera: start() and

stop(). The other relevant methods are setUrl(String url), to specify the URL of

the audio source, and setDoubleBufferLength(int len1, int len2), to control the size

of the buffers.

The sound is transmitted over HTTP with MIME type multipart/audio [htta].

An independent thread is responsible for reading the audio frames into a buffer,

which will be used to play a continuous audio stream. This thread is defined as an

inner class of the MultipartAudioPlayer, the PlayerThread class, shown in Listing 4.8.

The body of the thread (i.e. the code of the method run()), is esentially a

continuous loop that read a data stream opened on an specified URL. The audio

data is then double buffered to provide a smooth audio playing of the stream.

The size of the buffer can be adjusted to accomodate to the quality of the con-

nection, and to the format of the audio being transmitted, which currently can be

codified in A-law or µ-law (PCM encoding).
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1 /**
2 * Mul t i pa r tAud ioP laye r a l l ow s to p l a y mu l t i p a r t audio s t r eaming from an Axis IP cam .
3 * The audio formats suppor t ed are : u−law and a−law ( coming soon : and AAC) .
4 * @author Jesus Chacon Sombria <jchacon@bec . uned . es>
5 */
6 public c lass MultipartAudioPlayer {
7 /**
8 * Create a new Mu l t i pa r tAud ioP laye r o b j e c t
9 * @param u r l

10 */
11 public MultipartAudioPlayer ( St r ing u r l ) {
12 setDoubleBuf ferLength (FIRST BUFFER LEN, SECOND BUFFER LEN) ;
13 s e tUr l ( u r l ) ;
14 }
15
16 /**
17 * Set t h e s i z e o f t h e doub l e b u f f e r
18 * @param f i r s t
19 * @param second
20 */
21 public void setDoubleBuf ferLength ( int f i r s t , int second ) {
22 s r c = new byte [ f i r s t ] ; dst = new byte [ second ] ;
23 audiostream = new ContinuousAudioDataStream (new AudioData ( dst ) ) ;
24 }
25
26 /**
27 * Set t h e u r l source
28 * @param u r l
29 */
30 public void s e tUr l ( S t r ing u r l ) {
31 try {
32 s e tUr l (new URL( u r l ) ) ;
33 } catch (MalformedURLException e ) {
34 e . pr intStackTrace ( ) ;
35 }
36 }
37
38 /** S t a r t p l a y i n g audio */
39 public void s t a r t ( ) {
40 i f ( p layer == null ) p layer = new PlayerThread ( ) ;
41 i f ( ! p layer . i sA l i v e ( ) ) p layer . s t a r t ( ) ;
42 }
43
44 /** Stop p l a y i n g audio */
45 public void stop ( ) {
46 stop = true ;
47 }
48 }

Listing 4.7: MultipartAudioPlayer class.

1 /**
2 * PlayerThread
3 */
4 private class PlayerThread extends Thread {
5 public void run ( ) {
6 try {
7 // Open connec t i on
8 URLConnection con = ur l . openConnection ( ) ;
9 . . .

10 while ( ! stop ) {
11 // Read the audio stream
12 int bytesRead = in . read ( s r c ) ;
13 . . .
14 }
15 // Stop t h e p l a y e r
16 AudioPlayer . p layer . stop ( audiostream ) ;
17 } catch ( Exception e ) {
18 e . pr intStackTrace ( ) ;
19 }
20 }
21 }

Listing 4.8: Summary of the code of the PlayerThread class.
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The AudioPlayerElement class is simpler than the LabviewConnectorElement

class, because in this case there is no need to provide user configuration, only the

URL of the audio source. The configuration dialog provides only an input field for

the URL of the streaming source. As an example, for the Axis M1031-W camera,

the URL to have access to the audio is http:/camera-ip/axis-cgi/audio/receive.cgi.

4.7 Conclusions

The main contribution of this chapter is an architecture for rapid development of

remote labs. The architecture is based on the use of LabVIEW, the JIL Server,

and EJS, and allows educators who are not expert programmers to address the

development of a remote lab with a minimized learning curve, due to the intuitivity

of the graphical tools in the framework.

A significant effort has been dedicated to improve the ease of use, encapsulating

all the low-level issues presented at the client side into the EJS Model Element

mechanism. An Element is a wrapper that allows us to easily incorporate Java

libraries into EJS simulations, providing with a graphical user interface to help the

developer with the configuration and use of the library.

The LabVIEW Connector Element allows to configure a connection with a Lab-

VIEW VI, to link EJS variables with the controls and indicators of the VI, and to

control the execution of the VI. The Audio Player Element allows to play an audio

streaming to provide the user with audio feedback from the plant. An important

feature of the elements is that reduces the possibility of introducing errors in the

code, thus reducing the time and effort needed for the development phase.
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5
Examples of

Virtual and Remote Labs

To illustrate the use of the elements described before, in this chapter two examples of

virtual and remote laboratories are presented. The first one is based on a Quadruple

Tank plant, and the second one on a Flexible Link plant.

5.1 The Quadruple Tank Virtual and Remote Lab

5.1.1 The plant

The plant to be controlled is composed of two Coupled-Tank plants from Quanser,

which are used simultaneously and coupled to obtain a more complex Multi-Input-

Multi-Output (MIMO) experiment, the quadruple-tank process described in [Joh97,

Joh00], depicted in Figure 5.1. It can be shown that the four-interconnected-tank

system has an adjustable zero, which can be moved along the real axis in the left-

or right-hand-side of the s-plane. Therefore by changing the system parameters,

the multivariable zero dynamics can be configured to be either minimum phase or

non-minimum phase.
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Figure 5.1: Diagram of the quadruple-tank system.

The overall Coupled-Tank frame is made of Plexiglas (see Figure 5.2). The two

water tank system is made out of Plexiglas tubes of uniform cross section. The

Coupled-Tank pump is a gear pump composed of a 12-Volt DC motor with heat

radiating fins. The materials that come into contact with the fluid being pumped

are: two molded Delrin gears in a Delrin pump body, stainless steel shafting, a Teflon

diaphragm, and a Buna-N seal. It is also equipped with 3/16” ID hose fittings.

The liquid level of the tanks is measured through a pressure sensor. This sensor

is located at the bottom of each tank and provides linear level readings over the
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Figure 5.2: Quadruple Tank System from Quanser.

complete liquid vertical level. In other words, the sensor output voltage increases

proportionally to the applied pressure. Its output measurement is processed through

a signal conditioning board and made available as a 0 to 5V DC signal.

5.1.1.1 Data acquisition system

The data acquisition card is a Quanser Q8 control board (see Figure 5.3a). The Q8

is a HIL (Hardware-in-the-Loop) control board with an extensive range of input and

output support. A wide variety of devices with analog and digital sensors as well

as quadrature encoders are easily connected to the Q8. This single board solution

is ideal for use in control systems and complex measurement applications. The
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(a) (b)

Figure 5.3: The Quanser Q8 board (a), and the Universal Power Module UPM-2405
(b).

Quanser’s Q8 board is supported by the most important real-time environments, as,

for example,The MathWorks xPC Target, LabVIEW RTX and RT-LAB.

5.1.1.2 Power module

The physical connection between the DAQ and the plant (sensors and actuators)

is done by means of an Universal Power Module UPM-2405 from Quanser (see

Figure 5.3b), which is a power amplifier that provides the adequate voltages and

currents to manage the pumps and to adapt the sensor signals to the board ranges.

5.1.1.3 Server PC

There is a PC which acts as a host connected to the system via the Q8 board. This

computer runs the LabVIEW application that contains the control system imple-
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mentation, and the JIL Server to add connectivity with the client side. Optionally,

the user interface can be executed in this PC, but also in another PC with the Java

Virtual Machine and with a network connection to the host PC.

5.1.1.4 The model

From the point of view of control theory, the quadruple tank plant is a MIMO system

with two inputs (the pumps flow), and four outputs (the tanks water level). Though

there are four outputs, we are more interested in the control of the levels of the

two lower tanks. The reason is that if we choose as output the level of the upper

tanks and choose the correct input-output pairing, we have two independent SISO

system for which there are well-known techniques to control. On the other hand,

if we choose the lower tanks levels as outputs, the system owns a richer dynamic

behaviour.

A mathematical model for the plant can be derived from mass balances and

Bernouilli’s law.

Mass balance gives for each of the four tanks

V̇ = A · ḣ = qin − qout, (5.1)

where V is the volume of water in the tank, A is the cross-section area of the tank,

h is the water level, qin the inflow, and qout the outflow.

By evaluating Bernouilli’s law for incompressible liquids

ρ+
1

2
ρv2w + ρgh = const. (5.2)

at the water surface (vw = 0) and at the bottom of each tank (h = 0) and substract-

ing the resulting equations from each other, we obtain for the outflow

qout = a · vw = a
√

2g
√
h, (5.3)



126 5. Examples of Virtual and Remote Labs

where a is the cross-section area of an outlet, vw is the speed of water at the outflow,

and g is the acceleration due to the gravity.

The previous expressions applied to the system yield the following differential

equations
dh1
dt

= − a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1

dh2
dt

= − a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2

dh3
dt

= − a3
A3

√
2gh3 +

(1− γ2)k2
A3

v2

dh4
dt

= − a4
A4

√
2gh4 +

(1− γ1)k1
A4

v1,

(5.4)

where Ai is the cross-section of tank i, ai is the cross-section of the outlet, and hi

the water level. The voltage applied to the pump i is vi and the corresponding flow

kivi. The parameters γ1 and γ2 depend on the configuration of the valves. The flow

to tank 1 is γ1k1v1 and the flow to tank 4 is (1− γ1)k1v1, and similarly for tanks 2

and 3. The acceleration of gravity is denoted by g.

5.1.1.5 Linearization of the model

The mathematical model can be linearized around an operating point. Defining the

variables xi = hi − h0i and ui = vi − v0i , where h0i and v0i are, respectively, the

steady state tank level and input flow corresponding to the operating point, the

linear system can be represented in state space as

dx

dt
=


− 1
T1

0 A3
A1T3

0

0 − 1
T2

0 A4
A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4

x+


− 1
T1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

u

y =

kc 0 0 0

0 kc 0 0

x.

(5.5)
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The transfer functions matrix is

G(s) =

 γ1c1
1+sT1

(1−γ2)c1
(1+sT3)(1+sT1)

(1−γ1)c2
(1+sT4)(1+sT2)

γ2c2
1+sT2

 , (5.6)

where ci = TiKiKc
Ai

and Ti = Ai
ai

√
2h0i
g .

5.1.1.6 Minimum and Non-minimum phase

One interesting property of the four tank system, from the academic point of view, is

that the multivariable system can be of minimum or non-minimum phase depending

on the configuration of the distribution valves (γ1, γ2). Thus the system can be used

for a wide variety of experiments, for example to illustrate the student the difficulty

to control a non-mimimum phase system.

As explained in [Joh00], the zeros of the transfer matrix are the zeros of the

numerator polynomial of the rational function

detG(s) =
c1c2

γ1γ2
∏4

i=1(1 + sTi)
×
[
(1 + sT3)(1 + sT4)− (1− γ1)(1− γ2)

γ1γ2

]
. (5.7)

This means that the matrix G has two finite zeros for γ1, γ2 ∈ [0, 1]. One of

them is always in the left half plane, but the location of the second can be either in

the left or in the right half-plane. In particular, it can be showed that the system is

minimum phase for

1 < γ1 + γ2 ≤ 2, (5.8)

and non-minimum phase for

0 ≤ γ1 + γ2 ≤ 1. (5.9)

There exists a straightforward physical interpretation. If the system is minimum

phase (γ1 + γ2 > 1), then the flow to the lower tanks is greater than the sum of the

flows to the upper tanks, and the system is easier to be controlled. However, if the
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system is non-minimum phase (γ1 + γ2 ≤ 1), the flow to the lower tanks is smaller

than the sum of the flows to the upper tanks, and in this case the control is more

difficult.

5.1.1.7 Relative Gain Array

We can calculate the RGA (Relative Gain Array) from the linearized model (5.6),

obtaning the following expression

λ11 =
γ1c1γ2c2

γ1c1γ2c2 − (1− γ2)c1(1− γ1)c2
=

γ1γ2
γ1 + γ2 − 1

. (5.10)

The first term of the RGA matrix completely determines the others, since the sum of

all the elements of a row of the RGA is equal to one, and the same for the columns,

so λ11 = λ22, and λ12 = λ21 = 1− λ11. This means that for γ1 = γ2 = 1 we have a

completely decoupled process, or partially decoupled if only one of (γ1, γ2) is equal

to one. For the intermediate cases, the RGA can take positive values greater than

1 or negative values. This latter case is the worst in terms of interaction between

variables.

5.1.2 The Remote Lab

The platform has been developed with the software tools Easy Java Simulations

(EJS) [CE07, EJS12], JIL Server [Var10], and LabVIEW, that are combined to

allow the interaction with the plant over the network. The controller is entirely in

the client side, thus the event-based schemes are adequate because they allow the

reduction of the data transmission, thus using more efficiently the network resources.

The remote lab is based on the three-tier architecture presented in Section 4.2

(see Figure 5.4). In the server side, there is a PC connected to the plant through a

Data Acquisition Card (DAQ). This PC runs a LabVIEW Virtual Instrument (VI)

which implements monitoring funtions and acts as an interface with the plant, i.e.
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Figure 5.4: The three-tier architecture of the Remote Lab. The server is the Lab-
VIEW Virtual Instrument (VI) running in the PC connected to the plant, the client
is the student interface in Easy Java Simulations, and the middle-tier is the JIL
Server, which acts as an interface between the client and the server.

it allows to obtain the readings from the sensors and sends the control actions to the

pumps. Also, there is a webcam to transmit a real-time video and audio streaming

of the plant, to allow students to feel more like if they were in a real lab, even if they

are remotely connected. The middle-layer is the JIL Server, which publishes the

variables (controls and indicators) of the VI to make them available over a network

connection. Further, the third layer is the EJS application in the client side, which

is not only the graphical interface to configure the control system and/or monitor

the plant, but it also contains the controller implementation itself.

With regard to the communications, from an abstract point of view each node

is composed of two components: a signal-generator and an event-generator. For
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example, for a sensor node the signal generator can be a zero-order hold that builds

the signal from the periodic sensor readings, and the event-generator is the sampling

scheme that decides whether to send the data to another node. Note that since the

event generator can also be configured to emulate a periodic sampling, this approach

is also valid to represent a discrete control system.

From the point of view of the control system, the two control loops depicted in

Figure 3.9 are considered. In the first configuration, the sampler is placed at the

output of the controller, and in the second one it is situated after the process output.

The student interface has been implemented in EJS based on the use of Elements,

which allow to facilitate the building of the lab and to assure its reliability.

In addition to the LabVIEW Connector Element, which encapsulates the connec-

tion with the JIL Server, the Process Control Library has been used to implement

the control system.

To simplify the development of the EJS interface of the virtual and/or the remote

labs, it has be divided into five generic steps that can be applied to all the cases,

1. Adding the elements that will be used in the code.

2. Setting up the connection (only for the remote lab) with the server.

3. Initialization code to configure all the elements in a valid initial state.

4. Evolution code to integrate the model.

5. User interface design.

5.1.2.1 Step 1: Adding the Elements

Once the control loops have been designed, the first step towards the final imple-

mentation is to add the Elements to the simulation (Figure 5.5). This must be done

in order to have them available for the model. Each element can be instantiated

one or more times, if it is needed to connect with different servers, but usually only
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Figure 5.5: At the right of the Model Elements Page, the elements available in the
libraries appear as an icon with the name of the element. The list at the left of the
window shows the instance of the elements incorporated into the simulation, with
their instance names and description strings. New instances of the elements are
created by dragging and dropping the element icons.

one instance is necessary. The name assigned to the element in this step is used to

access the element in the code.

5.1.2.2 Step 2: Setting up the Connection

The LabVIEW Connector Element must be configured prior to use it in the code.

The basic configuration required is:

� The url where the JIL Server can be located.

� The path of the VI.

� The variables that will be exchanged with the server.
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Figure 5.6: The configuration window of the LabVIEW Connector Element helps the
user to configure the connection parameters, i.e. the server address, the path of the
VI file, and the linkages between the EJS variables and the controls and indicators
of the VI.

This can be done with the configuration dialog provided by the element (Figure 5.6).

The JIL Server address and the VI path are introduced as text strings in the text

field provided to this end. Then the user should click the button Get VI variables

to load the controls and indicators of the VIs. Once loaded, the VI controls and

indicators are listed in two tables, where the user can create the links to the EJS

model variables.

As mentioned before, with the configuration data provided by the user, the

LabVIEW Connector Element generates a class implementing the high level protocol.

5.1.2.3 Step 3: Initialization Code

The labview.connect() method must be invoked to open the connection with the

server. Usually this invocation is done either in an Initialization, to start the con-

nection automatically, or triggered by a button of the user interface.
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Figure 5.7: Synchronizing EJS and LabVIEW with the labview.step() method.

5.1.2.4 Step 4: Evolution Code

At this step, the communication with the server is usually done periodically to obtain

the new values from the sensors readings, and to send the updates in the control

actions or other parameters. These two things can be done with a call to the method

labview.step() (see Listing 5.1 and Figure 5.7) in an Evolution Page.

Note that this approach can be rather unefficient as the number of exchanged

variables increases. Frequently, the values of the VI controls correspond to config-

1 public c lass LabviewConnector {
2 . . .
3 public boolean s tep ( ) {
4 i f ( isConnected ( ) && isRunning ( ) ) {
5 setValues ( ) ;
6 getValues ( ) ;
7 return true ;
8 }
9 return fa l se ;

10 }
11 }

Listing 5.1: Code of the step method of the LabviewConnector class.
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uration parameters that only changes due to the user interaction. Thus, it can be

a better option to invoke only the method labview.getValues() periodically, and to

call asynchronously the method labview.setValues() when needed.

5.1.2.5 Step 5: User Interface

The user interface has been designed considering the information about the state of

the plant:

� water levels,

� flow of the pumps,

� events in the controller,

and, also the configuration of the control system,

� connection control,

� automatic (controller) or manual (user) mode,

� PID parameters (gains and thresholds).

Figure 5.8 shows a screenshot of the interface. At the upper left part of the

window there is an interactive graphical representation of the four tank system,

with the double purpose of presenting to the user the state of the plant and to

change the setpoint of the water levels for the bottom tanks. The right half of the

window is entirely dedicated to show the evolution of the plant and the controllers,

by means of several plots. The plot on the top shows the water level of the four

tanks, together with the two set points. Below that, the plots are divided into the

left half, with information about the first controller, and the right half corresponding

to the second controller. For each controller there is one plot showing the control

action and the event times (when the control is updated). Finally, at the bottom
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Figure 5.8: The interface of the remote lab has been implemented in EJS. The state
of the plant is shown by means of the plots at the right, and the image obtained
from the webcam with augmented reality at the top-left part of the window. At the
bottom-left, the student can configure the control system.

left there are controls which allows the user to configure the controller (gains, event

thresholds, decoupling, etc.), and also to perform the conection with the server.

5.1.2.6 Main loop

The main loop of the EJS application, which is continuosly in execution, is defined

within an Evolution page, and it is divided into three tasks, namely,

� Receive the state of the plant and other data from the server.

� Send the configuration commands to the server.

� To write this data to disk.
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1 i f ( ( ( j i l . J i l ) v i ) . i sConnected ( ) ) {
2 PeventPID1 = fa l se ;
3 IeventPID1 = fa l se ;
4 PeventPID2 = fa l se ;
5 IeventPID2 = fa l se ;
6
7 // Get t h e s t a t e o f t h e p l a n t
8 bu f f e r = ( ( j i l . J i l ) v i ) . getDataAvai lab le ( ) ;
9 i f ( ( ( j i l . J i l ) v i ) . isRunning ( ) ) {

10 i f ( bu f f e r > 0) {
11 getValues ( ) ;
12 }
13 }
14
15 // Send the c o n t r o l a c t i on
16 setVa lues ( ) ;
17 decSt r ing = " " ;
18
19 // l o g t h e s t a t e
20 i f ( lastTime < time ) {
21 lastTime = time ;
22 exp l o g s t a t e ( ) ;
23 }
24 }

Listing 5.2: Synchronization code.

The code included in the Evolution page is listed in Listing 5.2,

5.1.2.7 Control modes

The system admits four control modes, namely,

� Pump 1 Manual - Pump 2 Manual. Both pumps are directly controlled from

the EJS side.

� Pump 1 Manual - Pump 2 Automatic. The control signal is directly sent to

the pump 1 from the EJS side, but the pump 2 is controlled by the PI.

� Pump 1 Automatic - Pump 2 Manual. The opposite to the previous case.

� Pump 1 Automatic - Pump 2 Automatic. The two PI controllers are active,

and the EJS side only acts as a monitor.

These modes allows the user to have more flexibility in the interaction with the

plant. For example, the most common case corresponds to the automatic mode for

the two tanks, where one can do several experiments with the built-in PI controllers.

But thinking in a more demanding user, the manual mode can be used to obtain

total control of the signal sent to the actuator. In this way the user can perform a
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wide range of experiments over the plant, such as identification of the tanks or even

the substitution of the controllers with another control law, which in addition can

be tested over the network.

5.1.2.8 Switching the pumps

In addition to the modes explained before, the application provides the possibility to

switch the pumps, i.e., to send the control signal of the first controller to the second

pump and viceversa. In the normal mode the Tank 1 is controlled by the Pump 1

and the Tank 2 by the Pump 2, and in the switched mode the pairing is Pump 1

- Tank 2 and Pump 2 - Tank 1. It must be noted at this point that the effect of

switching the pumps can be also obtained by using a decoupling matrix or, from

another point of view, when the decoupling matrix is being used the pumps-switch

configuration also affects to the system.

5.1.2.9 Decoupling

The system admits three modes of decoupling, namely,

� Not decoupled. The control signal is forwarded directly to the pumps. It also

can be viewed as if the decoupling matrix is set to the identity.

� Direct decoupling. The system is decoupled by using a direct scheme, defined

by the transfer functions of the elements Dij .

� Inverse decoupling. An inverse scheme defined by the transfer functions of the

elements Dij is used to decouple the system.

Due to the fact that the JIL Server can not work directly with complex types

such as clusters of arrays, it is needed to find another way of sending the decoupling

matrix. The method used in our application is to convert the decoupling matrix into

an XML string which follows the specification of the LabVIEW XML type definition.
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Figure 5.9: Step response of the process controlled by a PI with kp = 20 and ki = 0.1,
and with the sampler at the process variable with δ = 0.5 and α = 0.5. The top plot
shows the process output measured at the process (solid line) and the send-on-delta
sampled signal received by the controller. The bottom plot shows the output of the
controller.

Then the string is sent via JIL Server and unflattened in LabVIEW to rebuild the

data as a cluster.

5.1.3 Results

To identify the system as a first-order model, it has been assumed that that operating

point is of 15cm for the water level, which corresponds to an input of around 50%

of the maximum pump flow. A batch of step tests were introduced as input, thus

obtaining a set of experimental data which was divided into two subsets, one of

them used for identification and the other one for validation. Figure 5.9 shows the

response of the system to a step input and the response of the linearized model

obtained in the identification. The transfer function identified is,

P (s) =
0.63

26.6s+ 1
. (5.11)
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Tm(s) Tp(s) Am(cm) Ap(cm)

ki = 0.2, α = 0.5 10.2 9.96 0.6 0.5
ki = 0.4, α = 0.0 9.2 9.02 1.5 1.43
ki = 0.8, α = 0.5 8.9 8.34 1.6 1.51
ki = 0.2, α = 0.5 15.3 15.02 0.44 0.52
ki = 1.0, α = 0.5 8.8 9.4 0.6 0.58
ki = 2.0., α = 0.0 8.2 8.5 0.7 0.64

Table 5.1: Tm, Am are the measured periods and amplitudes, and Tp, Ap are the
computed with the algorithm.

The model was identified with a minimum squares method. The percentage of the

process output variation explained by the model is around 90%. An important

practical issue is how to choose δ. As mentioned before, in theory the value of δ

does not affect to the limit cycle properties. On the other hand, a value excessively

small of δ can provoke unwanted events due to the signal noise, while a high value of

the threshold can make the control system irresponsive. A rule of thumb is to choose

a value to have around 10 samples in a step change. Since the step considered in

the experiments ranges from 3 to 7 cm, choosing δ = 0.5 seems reasonable. When

the sampler is placed at the controller output, a value of δ = 5% has been selected.

The first case considered is the PI controller with SOD sampler at the process

output. The sampler parameters are α = 0 and δ = 0.5. The PI parameters have

been tuned as kp = 20, ki = 0.1. Since these values are inside the stability region,

the system does not present limit cycles. This can be seen in Figure 5.9, which

shows the response of the system to a step change in the set-point.

Increasing the integral gain progressively, it can be observed how the trajectories

of the system tend to a limit cycle with different number of levels. It is worth to note

that, depending on the value of α, the number of level varies. In particular, if α = 0

the number of levels that are crossed by the sampled variable in the limit cycle must

be odd, and if α = 0.5 it must be even. Figure 5.10 shows this behaviour. As an

example, for the particular case ki = 0.4, the system presents a limit cycle with two
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(a) kp = 20, ki = 0.2, δ = 0.5, α = 0.5
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(b) kp = 20, ki = 0.4, δ = 0.5, α = 0
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(c) kp = 20, ki = 0.8, δ = 0.5, α = 0.5
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(d) kp = 20, ki = 0.2, δ = 0.5, α = 0.5

0 10 20 30
14.5

15

15.5

time (s)

w
a
te

r 
le

v
e
l 
(m

m
)

0 10 20 30
30

40

50

60

time (s)

p
u
m

p
 f
lo

w
 (

%
)

(e) kp = 20, ki = 1.0, δ = 0.5, α = 0.5
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(f) kp = 20, ki = 2.0, δ = 0.5, α = 0

Figure 5.10: Step response of the process controlled by a PI with the event-based
sampler at the process variable (top plots) and at the controller variable (bottom
plots). The plots show the process and the controller output measured locally at
their corresponding node (dashed line) and the send-on-delta sampled signal (solid
line).
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levels. Solving the equations of a limit cycle with two levels, the solutions yields a

period of T ≈ 9.96, while the real limit cycle has a measured period of T ≈ 10.2s.

This means that the error in the prediction is around 3%. The comparison of the

measured periods and amplitudes with the values computed with the algorithm is

shown in Table 5.1, for all the different considered cases.

5.2 Flexible Link Virtual and Remote Lab

In industrial robotics, it is common to assume that the robot structure is built with

solid links, i.e. the links do not have deformation during the robot operation, so the

study of motion is simplified. However, this is an ideal assumption and may fail for

instance because of high payload-to-weight ratio, motion speed or control bandwith.

Also, there are applications that need the design of very long and slender arms or

require the use of lightweight materials. Flexible structures in motion are present in

different domains, such as space manipulators, underwater and underground waste

sites, and automated cranes. The structures use in aerospace and other mechan-

ical application fields require a weight reduction to improve system performance.

Because of the low damping and high flexibility, the fatigue and instability issues

are greater than in rigid bodies. From the control point of view, the neglected link

flexibility limits the achievable control performance, because of the vibrations, the

steady-state error, etc. In addition, there is the problem of non-colocation between

input commands and typical outputs to be controlled.

A survey of the experiments frequently carried out with flexible structures is

provided in [SJJ92]. Two major groups are vibration suppression [SPA03, MRR13,

SRR13], and slewing/vibration suppression control experiments [LO99, TY93, KS07],

but also important are experiments involving the testing of new actuation and sens-

ing concepts, improved sensors and actuators, etc.

This section presents a virtual and a remote laboratory with a Flexible Link
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Figure 5.11: Flexible Link plant.

plant, which can be used to illustrate some of the problems that arises in control of

flexible structures.

5.2.1 Description of the plant

The plant to be controlled consists of a flexible robotic arm manufactured by Quanser

(see Figure 5.11). It is composed by several components, namely, a flexible link

(FLEXGAGE) which is oriented in a horizontal position, and coupled to it a servo-

motor (SRV02-ET) to apply a rotational movement to the arm.

The rotor position of the servo can be obtained from an encoder coupled to the

motor. The encoder is able to distinguish between 4096 angular positions, i.e. it

owns a resolution of 0,0015 rad, approximately. The other sensor is a strain gauge

situated in the base of the link, which measures the angle of deflection of the arm.

The Flexible Link plant is connected to a PC host with a DAQ card to perform

the data acquisition and to run the control and monitoring software. Finally, a

power module (UPM 2405) acts as interface between the DAQ and the plant, with
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the double function of sending commands to the servo and adapting the sensor

signals to the range admitted by the card I/O ports. The DAQ system and the

power module are the same as in the previous example, so they are not described

again.

5.2.1.1 The model

Depending on the requirements, obtaining a simulation model of a Flexible Link

might be a non-trivial task. The main reason is because the actual system dynamics

is an infinite-dimensional system described by partial differential equations. Fre-

quently, the model is simplified approximating by a system with a finite number of

degrees of freedom.

With that approach, a simplified system model can be obtained from the Lagrange-

Euler formulation, if it is assumed that the deflection angle of the arm α is small

and the displacement of the extreme point of the arm D can be calculated by the

geometrical relationship α = D
L , where L is the length of the arm. The lagrangian

of the system, defined as the difference between kinetic and potential energy is,

L = T − V =
1

2
Jeq θ̇

2 +
1

2
Jlink(θ̇ + α̇)2 − 1

2
Jeqα

2, (5.12)

where L is the lagrangian, T is the kinetic energy, V the potential energy, and Jeq

and Jlink the rotational inertias of the base and of the link.

The system is determined by two generalized coordinates, θ and α, and therefore

two equations can be stated,

∂

∂t

(
∂L

∂θ̇

)
− ∂L

∂θ
= To −Beq θ̇ (5.13)

∂

∂t

(
∂L

∂α̇

)
− ∂L

∂α
= 0, (5.14)

where To is the output torque and Beq is the coefficient of viscous friction.
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The output torque of the load from the motor is,

To =
ηmηgKtKg(Vm −KgKmθ̇)

Rm
, (5.15)

where ηm, ηg, Kt, Kg, Km, Rm, and kw are electrical and mechanical parameters

which depend on the motor characteristics, and Vm is the voltage applied to the

motor. Solving the equations (5.13) and (5.14), and combining with (5.15), the

simplified state space model is described by the following matrices,


θ̇

α̇

θ̈

α̈

 =


0 0 1 0

0 0 0 1

0
Kstiff
Jeq

−ηmηgKtKmK2
g+BeqRm

JeqRm
0

0
−Kstiff (Jeq+Jarm)

JeqJarm

ηmηgKtKmK2
g+BeqRm

JeqRm
0




θ

α

θ̇

α̇

+


0

0

ηmηgKtKg
JeqRm

−ηmηgKtKg
JeqRm

Vm.
(5.16)

Substituting the parameters with the nominal values given by the vendor for each

component, the resulting model is,


θ̇

α̇

θ̈

α̈

 =


0 0 1 0

0 0 0 1

0 592 −32 0

0 −947.3 32 0




θ

α

θ̇

α̇

+


0

0

56.2

−56.2

Vm. (5.17)

However, it must be remarked that though the simplified model described in the

previous paragraph can be used as a rough approximation of the plant behaviour, it

does not reproduce some important characteristics of the system, such as the natural

oscillation frequencies of the arm, which can be problematic to perform the control.

5.2.2 The controllers

Three different controllers are implemented to carry out experiments with the plant,

namely, a PID controller, a state feedback controller, and a fuzzy logic controller.
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5.2.2.1 The PID controller

The implemented PID controller structure is similar to the described in the previous

example. It is implemented with the Process Control Library, and it can work as a

continuous PID controller or as an event-based one.

5.2.2.2 The state feedback controller

The state feedback controller has been implemented with the Process Control Li-

brary. The control law is defined as u(t) = Kx(t), where K is the state feedback

gain. The controller is initially tuned by calculating the gains to optimize the LQR

problem for the model. In the experiments, the gains can be adjusted within a range

of 0.5K to 1.25K around the optimal values.

5.2.2.3 The fuzzy controller

The other controller available is the fuzzy controller, which has been implemented

with the help of the jFuzzyLogic library [jFu13], a fuzzy logic package written in

Java providing an implementation of the Fuzzy Control Language (FCL) to define

fuzzy controllers.

The controller defines two input variables, Position Error and Deflection Error,

and one output variable, Control Input, and three linguistic variables, negative,

positive, and zero. The control law is determined by nine rules (see Listing 5.3).

Finally, the output variable is defuzzyfied with the CenterOfGravity method.

5.2.3 The Virtual and Remote Labs

5.2.3.1 The LabVIEW VI

The LabVIEW VI, Flexlink [Top Level].VI, provides the functionality discussed in

Chapter 4.
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1RULEBLOCK f i r s t
2AND : MIN;
3 ACT : MIN;
4ACCU : MAX;
5 RULE 0 : IF ( Po s i t i on Er ro r IS Negative ) AND ( De f l e c t i on Er r o r IS Negative ) THEN

Contro l Input IS Zero ;
6 RULE 1 : IF ( Po s i t i on Er ro r IS Negative ) AND ( De f l e c t i on Er r o r IS Zero ) THEN

Contro l Input IS Po s i t i v e ;
7 RULE 2 : IF ( Po s i t i on Er ro r IS Negative ) AND ( De f l e c t i on Er r o r IS Po s i t i v e ) THEN

Contro l Input IS Po s i t i v e ;
8 RULE 3 : IF ( Po s i t i on Er ro r IS Zero ) AND ( De f l e c t i on Er r o r IS Negative ) THEN

Contro l Input IS Negative ;
9 RULE 4 : IF ( Po s i t i on Er ro r IS Zero ) AND ( De f l e c t i on Er r o r IS Zero ) THEN

Contro l Input IS Zero ;
10 RULE 5 : IF ( Po s i t i on Er ro r IS Zero ) AND ( De f l e c t i on Er r o r IS Po s i t i v e ) THEN

Contro l Input IS Po s i t i v e ;
11 RULE 6 : IF ( Po s i t i on Er ro r IS Po s i t i v e ) AND ( De f l e c t i on Er r o r IS Negative ) THEN

Contro l Input IS Negative ;
12 RULE 7 : IF ( Po s i t i on Er ro r IS Po s i t i v e ) AND ( De f l e c t i on Er r o r IS Zero ) THEN

Contro l Input IS Negative ;
13 RULE 8 : IF ( Po s i t i on Er ro r IS Po s i t i v e ) AND ( De f l e c t i on Er r o r IS Po s i t i v e ) THEN

Contro l Input IS Zero ;
14 END RULEBLOCK

Listing 5.3: Specification of the controller rules in the FCL.

The data acquisition subsystem is composed of the VIs (see Figure 5.12) that

perform the initialization and release of the DAQ card, read the rotor position and

strain angle, and write the input voltage to the motor. The readings and writings

are done inside the main loop which is running with a period of 10 ms.

The local controller is a state feedback one, tuned to smoothly reposition the

Flexible Link to the origin when the plant is outside of the safety operation area.

The control logic is as follows: in normal mode, the control action received from

the client side is forwarded to the actuators. Whenever the position of the arm

is outside of the safety area (±45◦), the local automatic mode is switched on and

the local controller inmediately takes care of the plant to prevent unsafe operating

conditions which could lead to damage in the hardware. When the measured position

is again near to the origin, the controller switch to waiting mode and stays there for

at least 3 seconds. Eventually, the system will go back to normal operating mode

and the client can send again the control action.

The event-based communication consists of two send-on-delta sampler sub VI as

described in Chapter 4.

Finally, the data logging is constructed with the LabVIEW built-in IO capabili-

ties, to write the plant state and control actions to disk.
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Figure 5.12: Following the division in subsystems discussed in Chapter 4.
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1 public class StateFeedbackContro l l e r extends AbstractBlock implements Dis c r e t e {
2 protected double [ ] K;
3 private double Ts ;
4
5 /**
6 * Crea te s a new S t a t eF e e d b a c kCon t r o l l e r w i th t h e s p e c i f i e d ga in s K, and pe r i od Ts
7 * @param K
8 * @param t s
9 */

10 public StateFeedbackContro l l e r (double [ ] K, double t s ) {
11 setNumberOfOutputs (1 ) ;
12 this . sampl ingPeriod = ts ;
13 setGains (K) ;
14 }
15
16 /**
17 * Get t h e ou tpu t
18 * @param x The s t a t e v e c t o r
19 * @param u The inpu t v e c t o r
20 * @return
21 */
22 @Override
23 public double [ ] getOutput (double [ ] x , double [ ] u ) {
24 int n = u . l ength ;
25 double [ ] y = new double [ ] { 0 } ;
26 for ( int i =0; i<n ; i++) { y [ 0 ] += K[ i ]*u [ i ] ; }
27 return y ;
28 }
29 }

Listing 5.4: Code of the class StateFeedbackController.

5.2.3.2 The simulation

The model used in the simulation is the fourth order model derived in the previous

section. The implementation is based on the PCL, in particular the Plant, PIDCon-

troller, and StateFeedbackController elements. The steps to build the application

are commented in the following paragraphs, emphasizing the differences between

the virtual and the remote lab.

Step 1: Adding the Elements Since the StateFeedbackController Element was

not originally included in the PCE library, it has been implemented for this appli-

cation, using the extension mechanism of the library. The class StateFeedbackCon-

troller (see Listing 5.4) contains the implementation of the state feedback controller,

extending the class AbstractBlock, and implementing the interface Discrete. The

StateSpaceModel, SOD Sampler, and PIDController elements are added to the vir-

tual and the remote lab applications. However, the LabVIEW Connector, and the

Audio Player elements are only incorporated into the remote lab to add connectivity

with LabVIEW and to get the audio feedback from the camera (see Figure 5.13).
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(a) (b)

Figure 5.13: Model Element page (a) of the virtual lab, and (b) of the remote lab.

The model of Equation 5.17 is implemented with the StateSpaceModel element.

The matrices are introduced via the configuration dialog provided by the element

(see Figure 5.14).

Step 2: Setting up the Connection In this case, the remote lab has been

integrated into the SARLAB system [MMAS13], developed in the University of

Huelva, Spain (UHU), which introduces a middle layer that handles the connections,

communication encryption, and other network issues to make the access to the

laboratories secure and robust. The integration is achieved with the help of the

SARLAB element.

Figure 5.14: Configuration dialog of the StateSpaceModel Element. The system
matrices can be introduced either in Java format (the rows are surrounded by braces,
{}, and separated by commas), or in MATLAB format (the rows are separated by
semicolon (;), and the matrix is enclosed in square brackets, []).
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1 // Load from ’FCL ’ f i l e
2 St r ing f i leName = " F l e x i b l e L i n k / c o n t r o l l e r . fcl " ;
3 f i s = FIS . load ( fi leName , true ) ;
4 i f ( f i s == null ) {
5 System . e r r . p r i n t l n ( " Can ’ t l o a d f i l e : ’ " + fi leName + " ’ " ) ;
6 }

Listing 5.5: Initialization of the fuzzy controller

1 public void updateOutputs ( ) {
2 yp = plant . getOutput (xp , null ) ;
3 yps = processSampler . getOutput ( xps , yp ) ;
4 po = processSampl ing ? yps : yp ;
5 uc = sum . getOutput (null , new double [ ] { se tpo int , yps [ 0 ] } ) ;
6 yc = pid . getOutput ( xc , uc ) ;
7 ycs = cont ro l l e rSamp l e r . getOutput ( xcs , yc ) ;
8 co = cont ro l l e rSampl ing ? ycs : yc ;
9

10 switch ( view . cont ro lPane l . g e tSe l e c t ed Index ( ) ) {
11 case 0 : // S ta t eFeedback
12 uc = yp . c lone ( ) ;
13 uc [ 0 ] −= se tpo in t ;
14 up = s f . getOutput (null , uc ) ;
15 break ;
16 case 1 : // PID
17 ys = sampler . getOutput ( xs , yp ) ;
18 uc = sum . getOutput (null , new double [ ] { se tpo int , ys [ 0 ] } ) ;
19 up = yc ;
20 break ;
21 case 2 : // Fuzzy
22 up = uFuzzy ;
23 break ;
24 }
25 }

Listing 5.6: Code of the method updateOutputs().

Finally, the connection with LabVIEW is done with the LabVIEW Connector

Element. Because of the integration with SARLAB, the address of the server is set

to localhost:2055, because the port 2055 (used by the JIL Server) of the localhost is

tunneled through SARLAB to the host in the remote lab IP. For the same reason,

the Audio Player element is configured to access the url http:/localhost:8080/axis-

cgi/audio.

Step 3: Initialization Code The code included in the Initialization page that

is worth mentioning is that related to the fuzzy controller (see Listing 5.5). The

controller is loaded (line 3) from the file FlexibleLink/controller.fcl, which contains

the definition in FCL language, and the reference to the controller is stored in the

fis variable.
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Figure 5.15: ODE page of the model in the virtual lab, with an entry for the process,
a StateSpaceModel, and another for the controller, a PIDController.

Step 4: Evolution Code The Evolution code needed to integrate the simulation

model consists of two parts: the first one is an ODE Page with the derivatives of the

continuous systems (see Figure 5.15), and the second one is a Code page with the

updates of the discrete blocks. The output of the blocks must be updated before to

compute the derivatives. This is done with the code of Listing 5.6, in a Preliminary

Code Page defined inside the ODE page.

Step 5: User Interface The virtual and the remote lab share the same graphical

interface (see Figure 5.16), so it is easier for the student to move from one to another,

carry on the same experiences and compare the differences between the behaviour

of the simulation model and the real plant.

The interface has been designed following the guidelines of the other virtual and

remote labs presented in this work. The visual representation or video cam image is

shown at the top left part of the window (with a dimension of 640x480 pixels, which
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(a)

(b)

Figure 5.16: Graphical user interface in EJS (a) of the virtual lab and (b) of the
remote lab.
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is equivalent to the webcam resolution), the right area of the window is reserved for

the plots showing the variables of interest (the rotor position θ and the link deflection

α as outputs, and the voltage V of the DC motor as input), and the control panel

under the view contains all the parameters that can be adjusted and modified.

To make the simulation more attractive to the user, the Flexible Link has been

modeled and animated to emulate the aspect and movement of the real plant. The

visualization is built with the 3D capabilities provided by EJS (see Figure 5.16).

Initially, the use of the Java3D library was considered because of its more advanced

features, such as the use of textures that allows a higher degree of realism. However,

the first option was finally preferred due to compatibility issues that affected to the

portability of the simulations.

5.2.3.3 Integration with Moodle

Moodle is a free Learning Management System (LMS) that has became popular

among educators as a tool to create online learning sites for their students. There

are many reasons why the integration in a LMS like Moodel of a virtual or remote

laboratory has many advantages, both from the point of view of the student, because

she have more resources to help them with the study of the subject, and from the

point of view of the developer, because there are aspects such as the access control

or booking policies can be handle in a more generic and centralized way.

In particular, the Moodle platform is being used by the UNEDLabs portal to

hold different courses mainly from UNED, but also from other Spanish universities

such as the Universidad Complutense of Madrid or the Polytechnic University of

Valencia. Thanks to the EJSApp set of plugins for Moodle, the integration of an EJS

application with this LMS is straightforward, and does not require any modification

of the EJS simulation.
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5.3 Results

To protect the hardware, a Safe Operating Area (SOA) has been delimited within

the range of (±45◦). Outside of that area, the local controller takes care of the plant

and repositions it to the origin. Also for safety reasons, the input to the motor has

been limited to ±5V , to avoid an excessive speed of the Flexible Link.

Because in the Quadruple Tank the dynamics is slow, the DAQ works with a

sampling rate of 10Hz, i.e. a period of Ts = 100ms, which is a value high enough

as to not impose critical limitations to the communications. However, for the case

of the Flexible Link the situation is more delicate due to the faster dynamics. For

this plant, the DAQ is working with a period of Ts = 10ms (ten times smaller than

the previous case), which is fine for the local controller, but problematic to control

remotely because of the network induced delays. So, the value of delta must be

carefully chosen because an excessively small value provoke an excessive traffic, but

for greater values the system the error increase, being difficult to stabilize the plant

for δ > 5. So, unless it is explicitly stated otherwise, the value of δ = 2 has been

used in the experiments with the sampler at the process output.

The PI parameters were adjusted to kp = 1, ki = 0.2, with the help of the

MATLAB PI tuning tool, to obtain a phase margin of 60◦ which is a value frequently

used. As opposed to the Quadruple Tank, where a variety of limit cycles with

different orders were found, for the Flexible Link the behaviour is slightly different,

because an increase in the controller gains rapidly leads the plant to the unstability.

The response of the system with the PI controller and SOD sampler at the process

output is shown in Figure 5.17a for different values of δ. As it can be seen, the

response is very similar for the three cases. With these gains and α = 0, the system

does not present limit cycles.

However, changing the value of α to 0.5, i.e. the centered sampler, the behaviour
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(c) kp = 1, ki = 5, α = 0, δ = 5

Figure 5.17: Step response of the process controlled by a PI with the event-based
sampler at the process variable. The plots show the process and the controller
output.
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(c) kp = 1, ki = 5.6, δ = 2, α = 0.5

Figure 5.18: Different limit cycles in the process controlled by a PI, with the event-
based sampler at the process variable. The plots show the process and the controller
output.
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of the system is different: the system tends to a stable limit cycle, as shown in

Figure 5.18. Increasing the integral gain to ki = 5.5, there exists also a limit cycle

composed of four levels (see Figure 5.18b). However, the margin of stability in this

case is narrow, a little increment in the integral gain (ki = 5.6) leads to an oscillatory

unstability (see Figure 5.18c).

5.4 Conclusions

A new paradigm of remote labs for control education presented in the previous

chapter has been assessed by developing two platforms: one based on a Quadruple

Tank plant and the other one based on a Flexible Link plant. For the first laboratory,

one of its main features is to place the controller in the client side and the plant

in the server-side. This architecture allows exploring in an experimental way the

properties of event-based controllers. The platform has been used to demonstrate

that the limit cycles proposed can be generated in real systems. In particular, the

experiments carried out with the experimental plant have reproduced a wide range

of these limit cycles as predicted by the theory discussed in Chapter 2. Though the

algorithm has been used for a first-order model, it is more general. It can be applied

to a LTI system controlled by a general linear controller. The effect of the sampler

in the system can be analyzed by considering a modification in the matrices of the

state space representation.

With respect to the second lab, the virtual version implements a 3D reproduction

of the real plant, providing an atractive visual animation that adds realism to the

simulation. On the other hand, the remote lab uses augmented reality to enhance

the student experience by showing additional information overlayed to the video

feedback obtained from the plant.

The implementation of both labs is done by using an architecture that has been

proven to be adequate for remote laboratories. It is based on the use of EJS, JIL
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Server, and LabVIEW. This platform allows the controller to be physically separated

from the plant, and communicating with it through a network connection.



6
Conclusions and Future Works

6.1 Conclusions

The outcomes of the research done in this Thesis can be divided into analytic and

experimental results.

6.1.1 Analytic results

The analityc results are related to the study of the behaviour of a PID control

system based on the use of a level crossing sampling either in the process output

or in the control output. The two proposed control schemes represent two frequent

configurations for wireless systems, one with the controller and actuator in the same

node, but the sensor is physically separated, and the other one with the controller

and sensor in the same place but the actuator situated in another node.

Limit cycles are of particular interest since they are associated to oscillations in

processes, and therefore it is worth to have knowledge about them in order to avoid

their appearance when possible or to assure that they are not problematic, i.e. they

are stable.
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When trying to find properties about the limit cycles, it is common to have

system of equations which involve transcendent functions and thus it is not possible,

in general, to find closed-form solutions. Moreover, if they exist and due to the

combinatorial explosion, it can be computationally expensive to find these solutions,

and it becomes harder when higher order process models and SOD samplers are

considered.

Therefore, an algorithm has been proposed to analyze the properties of the limit

cycles, i.e. to obtain computationally the period of a limit cycle and the intermediate

switching times. It allows us to introduce some knowledge in the problem statement,

so that the complexity can be reduced, and it can be easily implemented either in a

symbolic or in a numerical computation tool.

A set of simulation results illustrates the behaviour of the controllers with a

set of processes models used very frequently in industrial context, which are the

IPTD, the FOPTD, and the SOPTD. Also, this behaviour has been experimentally

tested and verified in the Acurex Field of the Solar Platform of Almeŕıa, Spain. The

experiments carried out confirm that the simulation results can be extrapolated to

real cases, obviously with the divergences due to unmodeled dynamics of the process,

disturbances, etc.

6.1.2 Experimental results

It is always desirable to validate the analytic results with experiments on real world

systems. However, in general, the implementation of the experimentation platforms

requires a significant cost, not only economic (the hardware can be expensive), but

also in terms of development effort. Some implementation issues are plant specific,

but also there are many common problems that can be extrapolated from one system

to another, and thus the system design can be simplified. So, the main contribution

of this Thesis in the experimental area is an architecture for rapid development of
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remote labs. The architecture is based on the use of LabVIEW, the JIL Server,

and EJS, and allows educators who are not expert programmers to address the

development of a remote lab with a minimized learning curve, due to the intuitivity

of the graphical tools in the framework.

A significant effort has been dedicated to improve the ease of use, encapsulating

all the low-level issues presented at the client side into the EJS Model Element

mechanism, wrappers that allows us to easily incorporate Java libraries into EJS

simulations, providing with a graphical user interface to help the developer with the

configuration and use of the library.

The LabVIEW Connector Element allows to configure a connection with a Lab-

VIEW VI, to link EJS variables with the controls and indicators of the VI, and to

control the execution of the VI, and the Audio Player Element allows to play an

audio streaming to provide the user with audio feedback from the plant. An impor-

tant feature of the elements is that reduces the possibility of introducing errors in

the code, thus reducing the time and effort needed for the development phase.

The result of the research has materialized into the following software compo-

nents:

� A library of Java classes and EJS elements, the Process Control Library (PCL),

is now available to build simulations related with process control. The PCEL

aims to facilitate the development of this kind of simulations, inspired by

widely used tools such as SIMULINK, and capturing the behaviour of the

most common types of systems. In order to build a new simulation, it is not

needed to start from the scratch, but by only choosing and interconnecting

blocks the application development effort is greatly reduced.

� The Audio Player Element that adds to EJS the capability to reproduce the

sound transmitted by an IP camera through the network.

� The Labview Connector Element to connect, in only a few clicks, an EJS
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application with a LabVIEW VI.

� The MATLAB implementation of the algorithm presented in Chapter 2 to solve

the problem of finding the limit cycles properties in a LTI system controlled

by the proposed structures.

� The LabVIEW VI SOD Sampler that provides the send-on-delta sampling

discussed in the Thesis.

But also, the new paradigm of remote labs for control education presented in

this Thesis, and the mentioned software components have been used to develope the

following virtual and/or remote laboratories for the study of limit cycles:

� A remote laboratory based on a Quadruple Tank plant (UNED, UNIBS). One

of its main features is to place the controller in the client side and the plant in

the server-side. This architecture allows exploring in an experimental way the

properties of event-based controllers. The platform has been used to demon-

strate that the limit cycles proposed can be generated in real systems. In

particular, the experiments carried out with the experimental plant have re-

produced a wide range of these limit cycles as predicted by the theory discussed

in Chapter 2. Though the algorithm has been used for a first-order model, it

is more general. It can be applied to a LTI system controlled by a general

linear controller. The effect of the sampler in the system can be analyzed by

considering a modification in the matrices of the state space representation.

� A platform based on a Flexible Link (UNED). The virtual version implements

a 3D reproduction of the real plant, providing an atractive visual animation

that adds realism to the simulation. On the other hand, the remote lab uses

augmented reality to enhance the student experience by showing additional

information overlayed to the video feedback obtained from the plant. The

motivation to use this plant is because it is more complex than the Quadruple
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Tank. So, for example, a problem in the communication channel will probably

lead the plant to an instability, while in the previous case in general only

provokes a decrease in the control performance.

The implementation of both labs is done by using an architecture that has been

proven to be adequate for remote laboratories. It is based on the use of EJS, The

JIL Server, and LabVIEW. This platform allows the controller to be physically

separated from the plant, and communicating with it through a network connection.

In addition, the developed software components has been used in the develop-

ment or enhancement of other remote platforms:

� A platform to teach concepts on electrical machines (UHU). In particular,

the Audio Player element adds the capability to have audio feedback from

the remote lab, which is important to help students have a closer experience

with the plant, since the motor and the generator movement cannot be clearly

perceived visually.

� A virtual laboratory to teach system identification theory and PI control on a

gasoil furnace (ASU). In this case, the PCE library provides the implementa-

tion of the discrete PI controller with a cascade filter.

� A platform to teach Autonomous Robots subject (UNED), based on LEGO

Mindstorm robots.

6.2 Future works

Lines of further work can be divided into analytic and experimental. Related to the

analytic ones:

� The algorithm to find limit cycles is based on a time approach, but it is also

possible to use frequency based approaches, such as the descriptive function, or



164 6. Conclusions and Future Works

a combination of both paradigms, to try and find a closed and general solution

for n order systems and n order SOD sampler.

� In addition to the previous point, the parallelization of the algorithm could be

explored to increase the efficiency to find solutions. In fact, some preliminary

tests have been carried out in a five-node cluster with MATLAB, that show a

significant reduction in the computational time.

and, on the other hand, in the experimental lines we propose:

� Though the architecture of the library and the most common blocks have been

defined, there are more complex systems that could be added to it, to cover

a wider range of systems. In addition, though the design of a new model

has been simplified by providing built-in blocks that can be combined and

interconnected, it is still needed to do the hard-work by code. It will be great

to have a graphical tool to design the block diagrams.

� The use of library has been presented in a simulation context, and also in

hardware-in-the-loop applications, by using the LabVIEW connector element

for EJS, but it is also possible to combine with the real-time support of EJS and

open hardware platforms, such as Arduino, Phidget, Gnublin, etc. Currently,

the possibility of developing a remote laboratory based on a BeagleBone Black

board is being considered. This board is a low-cost development platform with

a Linux operating system and advanced I/O capabilities such as analog and

digital inputs, built-in PWM outputs, SPI ad I2C buses, and other features

that makes it adequate to build experimental platforms.

� The same ideas used in the LabVIEW Connector can be used to simplify

the interconnection with other engineering tools, for example with MATLAB,

Octave, etc. Though it is already possible to do that for most of the commonly

used tools, a short term objective is to reach the same level of interconnectivity



6.2. Future works 165

and platform portability (Linux, Mac OS, and Windows) that is currently

available with LabVIEW.
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APPENDICES





A
Resumen en español

A.1 Introducción

El control basado en eventos es un paradigma de control que surge de manera natural

ya que es similar a la forma de actuar de las personas. Su idea fundamental es el

concepto de evento, que es algo que ocurre en el sistema y que, de alguna forma,

conlleva la necesidad de actuar. Esto supone un cambio significativo comparado

con otros enfoques como el control analógico, donde se actúa de forma continua,

o el control digital, donde se actúa de forma periódica con una base de tiempos

fija. Sin embargo, esta forma de controlar sistemas resulta más intuitiva, ya que el

ser humano, en cierto modo, actúa aśı: respondemos a eventos que nos llegan del

exterior, y que nos hacen elegir una u otra acción. Por otra parte, mientras en otros

campos del control existe una amplia teoŕıa matemática bien conocida y consolidada,

que nos facilita el enfoque sistemático y la resolución de los problemas de control

clásico, el control por eventos ha sido usado tradicionalmente en la práctica, basado

en conocimiento emṕırico y heuŕısticas o en la resolución de problemas particulares.

Sin embargo, dado el interés de muchos investigadores en el campo, y la aportación
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de diferentes formalismos y marcos de trabajo, esta situación ha cambiado, y, aunque

todav́ıa se encuentra lejos de alcanzar el grado de madurez de otras ramas del control,

ya hay resultados importantes. Por esta razón, es importante no solo la investigación

en técnicas de análisis y śıntesis de controladores basados en eventos, sino que cada

vez es mayor la necesidad de incorporar estos temas en el curŕıculum del estudiante,

si bien no en cursos de iniciación al control, śı en otros más avanzados.

Por otra parte, hoy d́ıa Internet es una herramienta omnipresente en nuestras

vidas, a través de las conexiones de banda ancha disponibles en los lugares de trabajo

y en la mayoŕıa de los hogares, e incluso, cada vez más, estando continuamente

conectados a la red con dispositivos móviles como smartphones o tabletas. En el

terreno de la educación, el estudiante utiliza Internet continuamente como fuente de

conocimientos, en detrimento de otros soportes más tradicionales como los libros.

Esta nueva forma de afrontar la enseñanza ha llevado a los educadores a explotar

los beneficios de herramientas interactivas para la enseñanza, que permiten sacar

partido de la tecnoloǵıa para conseguir llegar al alumno de formas impensables en

otras épocas.

En el caso de las materias experimentales, es conocida la importancia del uso

de los laboratorios para aprender a enfrentarse a problemas prácticos que en una

clase teórica es muy dif́ıcil de transmitir. Sin embargo, la creacion y el manteni-

miento de laboratorios es costoso y, en muchos casos, no es afrontable por muchas

universidades. Incluso si es posible afrontar el coste económico, la explotación de

los laboratorios está en ocasiones limitada por la disponibilidad del profesor para

supervisar las experiencias, lo que conlleva una infrautilización de los recursos. Por

este motivo, es cada vez más frecuente, sobre todo en universidades a distancia como

la UNED, que además posee un número tan elevado de alumnos que agrava aun más

el problema con el uso de laboratorios presenciales, la incorporación de laboratorios

remotos que permiten al estudiante, a través de una conexión desde su casa o desde

otro centro no necesariamente situado cerca del laboratorio. Un laboratorio remoto
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permite, por un lado, el eliminar la necesidad por parte del alumno de trasladarse

f́ısicamente al lugar donde se realizan las prácticas y, por otro lado, permite una

mayor utilización de los recursos gracias a la automatización de experiencias, el uso

de sistemas de reservas, etc.

Dentro de las herramientas interactivas, también podemos considerar los labo-

ratorios virtuales, que permiten al estudiante realizar experiencias sobre un sistema

simulado, que imita el comportamiento de otro sistema real. Aunque la simulación

no puede captar toda la riqueza del comportamiento del sistema real, śı que posee

otras ventajas como la capacidad de realizar cualquier tipo de experiencia sin temor

a provocar daños f́ısicos en la planta. Por este motivo, son muy adecuados para

presentar al alumno como primera toma de contacto para adquirir conocimiento so-

bre un sistema, para una vez que ha superado unos mı́nimos permitirle acceder a la

experimentación con el sistema real, lo que a su vez también permite un uso más

racional de los recursos y un mayor grado de concurrencia, ya que aunque el acceso

al sistema real está limitado, no ocurre aśı con el sistema virtual.

Aun aśı, el desarrollo de laboratorios virtuales y remotos supone también un

coste en esfuerzo. Es más, muchas veces es el mismo educador, que no tiene por

que ser un experto desarrollador, el que debe sacrificar tiempo dedicado al diseño

de las experiencias y el material educativo, para enfrentarse a resolver problemas de

implementación prácticos. En general, es deseable contar con patrones de solución

y con herramientas de desarrollo dentro de estos laboratorios que faciliten el pro-

ceso y disminuyan el tiempo de diseño y, particularizando en el caso de los sistemas

por eventos, es interesante la posibilidad de abstraer caracteŕısticas comunes a es-

tos sistemas y encapsularlas en componentes de software que permitan lo anterior.

Además, de esta forma se favorece la adopción de soluciones más robustas y que se

beneficien de la experiencia obtenida anteriormente por otros desarrolladores.

En resumen, es importante el estudio de los sistemas de control basados en even-

tos tanto en su aspecto teórico, para aportar resultados que ayuden en el análisis
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y diseño de controladores que resuelvan problemas prácticos en los que han de-

mostrado poseer ventajas con respecto a las técnicas tradicionales, como es el caso

de los sistemas de control en red, sistemas multiagente, etc. y, por otra parte, es

necesario contribuir con herramientas que faciliten el desarrollo de plataformas de

experimentación con sistemas de control basados en eventos tanto para la inves-

tigación sobre nuevos algoritmos de control como para su uso en el terreno de la

educación.

A.2 Objetivos

El objetivo general de la tesis es investigar, diseñar e implementar sistemas de control

PID basados en eventos. Se aborda el estudio de dos estructuras genéricas de control

por eventos y sus ciclos ĺımites asociados, aśı como la simplificación de los métodos

existentes para desarrollar plataformas de experimentacion y enseñanza del control

basado en eventos.

Los objetivos espećıficos considerados en esta tesis son:

� El estudio de dos estructuras genéricas de control basado en eventos, centrado

en las propiedades de los ciclos ĺımite (amplitud y periodo) que presentan los

sistemas controlados por estas estructuras.

� La confirmación de la existencia de estos ciclos ĺımites en simulación y en

plantas reales.

� El desarrollo de componentes software que permitan un rápido desarrollo de

laboratorios virtuales y remotos, encapsulando la comunicación basada en

eventos entre las aplicaciones cliente y servidor.

� La implementación de laboratorios virtuales y remotos con los componentes

desarrollados, para garantizar el rendimiento y la facilidad de uso.
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A.3 Estructura y contribuciones

En el resto de este caṕıtulo y en la primera parte del siguiente, se describen las

dos estructuras de control analizadas en esta tesis. Estos esquemas se corresponden

con dos casos frecuentemente usados en el control de sistemas con transmisiones

inalámbricas.

Caṕıtulo 2. Presenta el problema de los ciclos ĺımite que pueden aparecer en la

clase de sistemas de control estudiados, aśı como el marco teórico usado en el

análisis. La principal contribución de este caṕıtulo es la proposición de un algo-

ritmo que permite obtener computacionalmente las propiedades de los posibles

ciclos ĺımite de un proceso controlado por una de las estructuras basadas en

eventos consideradas.

Caṕıtulo 3. Presenta una nueva libreŕıa de clases Java y elementos EJS para desa-

rrollar simulaciones y laboratorios virtuales dedicados a la enseñanza de control

de procesos, y, en particular, de sistemas de control basados en eventos.

Caṕıtulo 4. Discute la creación de laboratorios remotos, centrándose en los aspec-

tos relacionados con las transmisiones basadas en eventos. Se propone una

nueva arquitectura basada en el uso de elementos de EJS, que permite un

rápido desarrollo de laboratorios remotos.

Caṕıtulo 5. La primera parte del caṕıtulo presenta un laboratorio virtual y remoto

para controlar una planta de cuatro tanques acoplados. En la segunda parte se

discute el desarrollo de un laboratorio virtual y remoto con un brazo flexible.

Caṕıtulo 6. Se dan las conclusiones y ĺıneas de trabajo futuras.
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A.5 Proyectos de investigación

Los resultados obtenidos durante el desarrollo de esta tesis han sido soportados por

diferentes proyectos de investigación:

� Event-based modeling, simulation, and control (2007-2012). Spanish Ministry

of Science and Technology, CICYT (Ref. DPI2007-61068). Participantes:

UNED (Spain), University of Murcia (Spain). Dirigido por Prof. Sebastián

Dormido Bencomo.
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� MACROBIO: Modeling, simulation, control and optimization of photobiorre-

actors (2012-2014). Spanish Ministry of Economy and Competitiveness, CI-

CYT (Ref. DPI2011-27818-C02-2). Participantes: UNED (Spain). Dirigido

por Prof. José Sánchez Moreno.

A.6 Conclusiones

Los resultados de la investigación realizada en esta tesis puede dividirse en dos

partes, teóricos y experimentales.

A.6.1 Resultados teóricos

Los resultados anaĺıticos están relacionados con el estudio del comportamiento de

un sistema de control PID basado en el uso de un muestreo por cruce de nivel,

ya sea en la salida del proceso o en la salida del controlador. Los dos esquemas

de control propuestos representan dos configuraciones frecuentes para los sistemas

inalámbricos, una con el controlador y el actuador en el mismo nodo, pero el sensor

f́ısicamente separado, y la otra con el controlador y el sensor en el mismo lugar, pero

el actuador situado en otro nodo.

Los ciclos ĺımite son de particular interés ya que están asociados a oscilaciones

en los procesos y, por lo tanto, vale la pena tener conocimiento sobre ellos con el

fin de evitar su aparición cuando sea posible o, en caso contrario, al menos para

asegurar que no son problemáticos, es decir, que son estables.

Al tratar de estudiar anaĺıticamente propiedades sobre los ciclos ĺımite, es fre-

cuente encontrarse con sistemas de ecuaciones que involucran funciones trascen-

dentes y, por lo tanto, no es posible en general encontrar soluciones cerradas. Por

otra parte, si es que existen, y debido a la explosión combinatoria, puede ser costoso

encontrar estas soluciones computacionalmente, lo que se hace más dif́ıcil aun cuando
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se consideran modelos de proceso y muestreadores SOD de órdenes superiores.

Por lo tanto, se ha propuesto un algoritmo para analizar las propiedades de los

ciclos ĺımite, es decir, para obtener computacionalmente el peŕıodo de un ciclo ĺımite

y los tiempos de conmutación intermedios. Esto nos permite introducir conocimiento

sobre los sistemas estudiados en el planteamiento del problema, de manera que la

complejidad puede ser reducida, lo que a su vez hace que se puede implementar

fácilmente, ya sea en una herramienta software de cálculo simbólico o en una de

cálculo numérico .

El comportamiento de los controladores estudiados se ilustra con resultados de

simulación sobre un conjunto de modelos de procesos que se utilizan con frecuen-

cia en el ámbito industrial, como son el IPTD, el FOPTD, y el SOPTD. Además,

este comportamiento ha sido probado y verificado experimentalmente en el sistema

Acurex de la Plataforma Solar de Almeŕıa, España. Los experimentos llevados a

cabo confirman que los resultados de la simulación se pueden extrapolar a los ca-

sos reales, obviamente con las divergencias debidas a la dinámica no modelada del

proceso, perturbaciones externas, etc.

A.6.2 Resultados experimentales

Siempre es deseable validar los resultados análiticos con experimentos en sistemas

del mundo real. Sin embargo, en general, la implementación de plataformas de ex-

perimentación conlleva un coste significativo, no sólo en el aspecto económico (el

hardware puede ser caro), sino también en términos de esfuerzo de desarrollo. Al-

gunas de las dificultades de implementación son espećıficas del sistema con el que se

trata, pero también existen una serie de problemas comunes que pueden ser extrap-

olados de un sistema a otro y, por tanto, el diseño puede ser sistematizado hasta

cierto punto. Para ayudar en este aspecto, la principal contribución de esta tesis

en el terreno experimental es la proposición de una arquitectura que permite un
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desarrollo rápido de laboratorios remotos. Ésta se basa en el uso de LabVIEW, JIL

Server y EJS, y permite a los educadores, que no tienen por qué ser expertos pro-

gramadores, acometer el desarrollo de laboratorios remotos con una curva reducida

de aprendizaje, gracias al uso intuitivo de las herramientas gráficas en el marco de

trabajo propuesto.

Un esfuerzo importante se ha dedicado mejorar la facilidad de uso, encapsulando

todos los detalles de bajo nivel que se presentan en el lado del cliente dentro del

mecanismo de los Elementos del Modelo de EJS, que nos permiten incorporar li-

breŕıas Java en simulaciones de EJS de un modo sencillo, proporcionando aśı una

interfaz gráfica que ayuda al desarrollador con la configuración y el uso de la libreŕıa.

El elemento LabVIEW Connector permite configurar una conexión con un VI

de LabVIEW, para poder enlazar variables de EJS con los controles e indicadores

del VI, aśı como para controlar la ejecución del VI. Por otra parte, el elemento

Audio Player permite reproducir un streaming de audio para mejorar la sensación

de realismo del laboratorio. Una caracteŕıstica importante de los elementos es que

reducen la posibilidad de introducir errores en el código, reduciendo el tiempo y

esfuerzo necesario en la fase de desarrollo.

Los resultados de la investigación se han plasmado en los siguientes componentes

software:

� Una libreŕıa de clases Java y elementos de EJS, la Process Control Library

(PCL), para construir simulaciones relacionadas con el control de procesos.

La PCL tiene como objetivo el facilitar el desarrollo de este tipo de simula-

ciones, inspirada en herramientas ampliamente extendidas como SIMULINK,

y captura el comportamiento de los tipos de sistemas más comunes. Aśı, para

construir una nueva simulación no es necesario empezar de cero, sino que es

posible seleccionar e interconectar diferentes bloques, con lo que el esfuerzo de

desarrollo se ve drásticamente reducido.
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� El elemento de EJS Audio Player, que añade a EJS la capacidad de reproducir

el sonido transmitido por una webcam o cámara IP a través de la conexión de

red.

� El elemento de EJS LabVIEW Connector, que permite conectar, con sólo al-

gunos clicks, una aplicación de EJS con un VI de LabVIEW.

� La implementación en MATLAB del algoritmo presentado en el Caṕıtulo 2,

para encontrar las propiedades de los ciclos ĺımite en un sistema LTI controlado

por una de las estructuras propuestas.

� El VI de LabVIEW SOD Sampler, que implementa el muestreo send-on-delta

discutido en esta tesis.

Además, el nuevo paradigma de laboratorios remotos para la enseñanza del con-

trol de sistemas y los componentes de software presentados en esta tesis se han

utilizado para desarrollar los siguientes laboratorios virtuales y/o remotos que per-

miten el estudio de los ciclos ĺımite:

� Un laboratorio remoto basado en una planta de cuatro tanques (UNED, UNIBS).

Una de sus principales caracteŕısticas es situar el controlador en el lado del

cliente, y la planta en el lado del servidor. Esta arquitectura permite explorar

experimentalmente las propiedades de los controladores basados en eventos.

La plataforma se ha usado para demostrar que los ciclos ĺımite estudiados

pueden aparecer en sistemas reales. En particular, los experimentos han per-

mitido reproducir una amplia gama de estos ciclos ĺımite, tal y como predice

la teoŕıa discutida en el Caṕıtulo 2. Aunque el algoritmo se ha usado para un

modelo de primer orden, éste es más general. Puede ser aplicado a un sistema

LTI controlado por un controlador lineal genérico. El efecto del muestreo en el

sistema puede ser analizado considerando una leve modificación en las matrices

correspondientes a la representación del sistema en el espacio de estados.
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� Una plataforma basada en un brazo flexible (UNED). La version virtual im-

plementa una reproducción en 3D de la planta real, que proporciona una ani-

mación visualmente atractiva y que añade realismo a la simulación. Por otro

lado, el laboratorio remoto usa realidad aumentada para mejorar la experiencia

del estudiante con el laboratorio, mostrando información adicional superpuesta

al v́ıdeo obtenido de la planta. La motivación para el uso de esta planta es su

mayor grado de complejidad con respecto a la de cuatro tanques. Por ejemplo,

un problema en el canal de comunicaciones probablemente lleva a la planta a

una desestabilización, mientras que en el caso anterior, en general provocaŕıa

solamente un peor rendimiento del control.

La implementación de ambos laboratorios se ha realizado utilizando una arquitectura

que ha demostrado ser adecuada para laboratorios remotos. Se basa en el uso de

EJS, JIL server, y LabVIEW. Esta plataforma permite que la implementación del

controlador se encuentre f́ısicamente separada de la planta, comunicándose a través

de una conexión de red.

Además, los componenentes software desarrollados se han usado en la imple-

mentación o mejora de otras plataformas remotas:

� Una plataforma para enseñar conceptos de máquinas eléctricas (Universidad

de Huelva, UHU). En particular, el elemento Audio Player añade la capacidad

de obtener audio del laboratorio remoto, lo que es importante para ayudar

a los alumnos a tener una experiencia más cercana a la planta, ya que, por

razones de construcción, el movimiento del motor y el generador no se perciben

visualmente de forma clara.

� Un laboratorio virtual para enseñar teoŕıa de identificación de sistemas y con-

trol PI con un horno de gasoil (Arizona State University, ASU). En este caso,

la libreŕıa PCE proporciona la implementación del controlador PI con un filtro

de primer orden en cascada.
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� Una plataforma para realizar prácticas de la asignatura Robots Autónomos

(UNED), basada en LEGO Mindstorm.

A.7 Ĺıneas de trabajo

Hay dos ĺıneas de trabajo futuro. Por un lado, en lo que respecta a los resultados

anaĺıticos:

� El algoritmo para encontrar ciclos ĺımite utiliza un enfoque basado en el do-

minio del tiempo, pero también es posible recurrir a un enfoque en el dominio

de la frecuencia, como la función descriptiva, o una combinación de los dos

paradigmas para intentar encontrar una solución cerrada y general para sis-

temas y muestreadores SOD de orden n.

� Además del punto anterior, es interesante explorar la posibilidad de paralelizar

el algoritmo para incrementar la eficiencia en la búsqueda de soluciones. De

hecho, se han llevado a cabo algunas pruebas preliminares, en un cluster de

computación de cinco nodos con MATLAB, que muestra una reducción signi-

ficativa en el tiempo de cómputo.

y, por otro lado, en lo que respecta a los resultados experimentales:

� Aunque se ha definido e implementado la arquitectura de la libreŕıa, aśı como

los bloques más comúnmente usados, existen sistemas más complejos que

pueden añadirse aún, para cubrir un rango mayor de sistemas. Por otro lado,

aunque la implementación de los modelos de simulación se ha simplificado,

proporcionando componentes que pueden ser combinados e interconectados,

todav́ıa es necesarios escribir el código de interconexión a mano. Seŕıa deseable

contar con una herramienta gráfica que permita la definición de diagramas de

bloques.
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� El uso de la libreŕıa se ha presentado en un contexto de simulación, y también

en sistemas hardware-in-the-loop haciendo uso del elemento LabVIEW con-

nector para EJS, pero también es posible combinarla con el soporte de tiempo

real de EJS y plataformas open hardware, como Arduino, Phidget, Gnublin,

etc. Actualmente, se está considerando la posibilidad de desarrollar un labora-

torio remoto basado en una tarjeta BeagleBone Black. Ésta es una plataforma

de desarrollo de bajo coste con un sistema operativo Linux y caracteŕısticas

E/S avanzadas, con entradas y salidas analógicas y digitales, salidas PWM,

buses SPI y I2C, y otras capacidades que la hacen adecuada para construir

plataformas experimentales.

� Las mismas ideas usadas en el elemento LabVIEW Connector pueden extra-

polarse a otras herramientas de ingenieŕıa, para simplificar la interconexión

con MATLAB, Octave, etc. Aunque actualmente es posible realizar la in-

terconexión para muchas de las herramientas de uso común, el objetivo a

corto plazo es alcanzar el mismo nivel de interconectividad y portabilidad de

plataforma (Linux, Mac OS, y Windows) del que actualmente se dispone con

LabVIEW.
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