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Abstract 
In a world whose population is becoming older and older the field of elderly care, already 

very relevant, is expected to become extraordinary important. The resources and personnel 
devoted to tasks in this field will exponentially grow during the next three decades, as the 
number of people aged 65 and above will double during this period.  

The sector has, so far, automated a very low number of tasks. However, a higher number 
of them will need to be automated if universal elderly care at reasonable costs is desired. One 
of the tasks candidate to this automation will be elderly surveillance and, within that field, fall 
detection. This area has attracted a considerable amount of research interest over the last few 
years. However, the disconnection between the communities of system researchers and users 
has hampered the widespread use of this kind of systems.  

This thesis encompasses the identification of real user’s needs and the design and 
development of an innovative system adapted to them and their real needs. To do it a thorough 
revision of all the research work in the field published from 2015 is carried out. This revision 
identifies two major shortfalls; a deep disconnection between researchers and users and an 
almost complete absence of real data to develop systems. 

To address the first problem, a major study among users is carried out. This work, the 
largest of its kind, identifies what are the real needs and perceptions of the different 
communities integrated in the elderly care field. It sheds some light on this area and although 
clearly suggests that human supervision is always preferred due to the added value it provides, 
it also identifies the circumtances under which the users would accept the use of fall detection 
systems. 

Some of these situations are not covered by any of the already developed systems, as they 
imply surveillance under no light conditions and the use of sensors carried by the monitored 
person would not be a reasonable option. However, vision-based technology using far infrared 
imagery (FIR) is ideal to address these particular circumstances. 

This way, and in order to evaluate the most significant human pose estimation models 
developed to process visual spectrum (RGB) imagery, a major dataset composed by far 
infrared video clips of a number of volunteers executing different activities is compiled. This 
dataset, called FIR-Human, also contains the annotations of joints positions, so model training 
an evaluation becomes possible. 

 To address the second problem, the absence of real data and the generalization problem 
associated to it, an alternative approach to automatic fall detection is proposed in this work. 
Present vision-based fall detection systems are developed using datasets recorded by young 
actors. Given the differences in the way young and old people move, the kinematic descriptors 
used by these systems in order to assess fall, which are a generalization from descritpors used 
for young people to old patients, could be inappropriate to determine whether a real fall has 
taken place. Our system, which uses dynamic descriptors instead of kinematic ones, 
approaches the human body in terms of balance and stability, thus, differences between real 
and simulated falls become irrelevant, as all falls are a direct result of a failure in the 
continuous effort of the body to keep balance, regardless of other considerations. 

Then, the performances of a system, which integrates human pose estimation, based on far 
infrared imagery and dynamic descriptors are evaluated using the FIR-Human dataset fall 
section. 
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Finally, a number of general conclusions are reached and some suggestions for further 
research are suggested. 

Resumen 
En un mundo cuya población está envejeciendo cada vez más, el campo del cuidado de las 

personas mayores, que ya es muy relevante, se espera que se vuelva extraordinariamente 
importante. Los recursos y el personal dedicado a tareas en este campo crecerán de forma 
exponencial durante las próximas tres décadas, ya que el número de personas mayores de 65 
años o más se duplicará durante este período. 

Hasta ahora, el sector ha automatizado muy pocas tareas. Sin embargo, un mayor número 
de ellas necesitarán ser automatizadas si se desea un cuidado universal de personas mayores 
a costos razonables. Una de las tareas candidatas para esta automatización será la vigilancia 
de personas mayores y, dentro de ese campo, la detección de caídas. Esta área ha atraído un 
considerable interés de investigación en los últimos años. Sin embargo, la desconexión entre 
las comunidades de investigadores y usuarios ha dificultado el uso generalizado de este tipo 
de sistemas. 

Esta tesis abarca la identificación de las necesidades reales de los usuarios y el diseño y 
desarrollo de un sistema innovador adaptado a ellos y sus necesidades reales. Para hacerlo, se 
lleva a cabo una revisión exhaustiva de todos los trabajos de investigación en el campo 
publicados desde 2015. Esta revisión identifica dos deficiencias principales: una profunda 
desconexión entre los investigadores y los usuarios, y una casi completa ausencia de datos 
reales para desarrollar sistemas. 

Para abordar el primer problema, se lleva a cabo un importante estudio entre los usuarios. 
Este trabajo, el más grande de su tipo, identifica cuáles son las necesidades y percepciones 
reales de las diferentes comunidades integradas en el campo del cuidado de personas mayores. 
El estudio sugiere claramente que, aunque la supervisión humana siempre es preferida debido 
al valor añadido que proporciona el contacto humano, existen circunstancias en las que los 
usuarios aceptarían el uso de sistemas de detección de caídas. 

Algunas de estas situaciones no están cubiertas por ninguno de los sistemas ya 
desarrollados, ya que están asociados a entornos nocturnos no iluminados en los que el uso de 
sensores adheridos al cuerpo no sería una opción razonable. Sin embargo, la tecnología basada 
en imágenes de infrarrojo lejano (FIR) es ideal para abordar estos escenarios. 

De esta manera, y con el fin de evaluar las prestaciones de los modelos más significativos 
de estimación de la postura humana desarrollados para procesar imágenes del espectro visible 
(RGB) cuando trabajan con imágenes FIR, se compila una base de datos compuesta por clips 
de video de infrarrojo lejano de varios voluntarios realizando diferentes actividades. Esta base 
de datos, llamada FIR-Human, también contiene las anotaciones de las posiciones de las 
articulaciones, lo que permite el entrenamiento y evaluación de los modelos. 

Para abordar la segunda cuestión, la falta de datos reales, y el problema de la generalización 
asociado a ella, se propone en este trabajo un enfoque alternativo para la detección automática 
de caídas. Los sistemas actuales de detección de caídas basados en visión se desarrollan 
utilizando bases de datos grabados por actores o voluntarios jóvenes. Dadas las diferencias en 
la forma en que se mueven las personas jóvenes y mayores, los descriptores cinemáticos 
utilizados por estos sistemas para evaluar las caídas, que son una generalización de los 
descriptores determinados para personas jóvenes, podrían ser inapropiados para establecer si 
ha ocurrido una caída real. Nuestro sistema, que utiliza descriptores dinámicos en lugar de 
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cinemáticos, aborda el cuerpo humano en términos de equilibrio y estabilidad, por lo que las 
diferencias entre caídas reales y simuladas se vuelven irrelevantes, ya que todas las caídas son 
el resultado directo de un fallo en el esfuerzo continuo del cuerpo por mantener el equilibrio, 
independientemente de otras consideraciones. 

A continuación, se evalúan las prestaciones de un sistema que integra la estimación de la 
postura humana sobre imagen ifrarroja lejana y los descriptores dinámicos, utilizando para 
ello el bloque de caídas de la base de datos FIR-Human. 

Por último, se llega a una serie de conclusiones generales y se hacen algunas sugerencias 
para futuras investigaciones. 
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1 Introduction 
The UN report on world population [1] estimates that the number of people over 60 doubled 

its number in 2017 compared to 1980 and that number is expected to double again by 2050, 
when it will hit the 2 billion mark. By that time, it will exceed the combined number of 
teenagers and young adults with ages between 10 and 24.  

Although the aging phenomenon is more intense in the developed world, it is actually a 
global one, affecting the entire humankind. Under this perspective, the amount of resources 
devoted to elderly care is expected to rise significantly in the years to come and, in a near 
future, it will likely become a very relevant sector. For that reason, all the areas related to 
elderly care have attracted a growing amount of interest over the last few years. 

The sector of elderly care includes a number of areas that could accept automation, 
contributing, this way, to cost reductions and better service provision. Two areas able to be 
automated are stability assessment and fall detection. Those two areas are extraordinary 
relevant for the aforementioned community because they contribute to fall prevention and 
immediate reaction after fall, key areas for survival, as for this group, over 30% of falls have 
important consequences, ranging from hip fractures to concussions and, a good number of 
them, end up by causing death [2]. 

Both fall detection and fall prevention systems use an array of different technologies and, 
in broad terms, they can be classified in four categories; inertial, radio-frequency, fusion and 
context-based [3]. 

Inertial based systems include those ones whose sensors are carried by the monitored 
person. They assess fall probability based on the information provided by accelerometer and 
gyroscopic sensors. Leiros-Rodriguez et al. [4] thoroughly review the use of accelerometers 
as a method of early diagnoses of balance alterations and, therefore, of fall prevention, 
concluding that methods exploiting accelerometer signal analysis positively influence 
interventions based on physical exercise, improving balance and preventing falls. On the other 
hand, Ramachandran et al. [5] review recent advances in the use of accelerometer and 
gyroscopic sensors and its applications in the field of fall detection. 

Radio frequency-based systems include those ones using WiFi or radar signal analysis and 
most of them are used for fall detection. Different authors [6]-[8], present systems able to 
process radar signals, both continuous and pulsed, in order to detect human movement and 
human fall. Other systems [9], [10], use WiFi frequency displacement as a result of human 
movement to assess fall detection probability. 

The fusion block groups all systems that use signals coming from different types of sensors 
in order to improve performances. These systems are reviewed by Wang et al. [11], 
concluding that sensor fusion is key to reach optimal performances, as alternative technologies 
can cover the weak points of a specific one, getting, this way, more robust systems. 

Finally, context-based systems include those ones whose sensors use pressure, acoustic, 
infrared and vision information coming from sensors placed around the monitored person. All 
systems included in this group have attracted research attention over the course of the last few 
years as a consequence of the development of artificial neural networks (ANN), as they have 
been used for signal processing in very different ways. Among all context-based systems, the 
vision-based ones have a special relevance because of the introduction of artificial vision 
techniques, which have experienced a major boost during the last decade. In [12], vison-
basedfall detection systems are extensively reviewed, concluding that, although their 
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performances are highly satisfactory, the significant differences between simulated and real 
falls, and between falls of elderly and young people, documented in [13], [14], as well as the 
difficulty to access real-world data as a consequence of privacy protection, yield reasonable 
doubts on the performance of these systems operating in the wild. 

Inertial systems, together with context-based ones based on artificial vision techniques are 
the two blocks of systems that have attracted higher research interest over the last few years. 
Most of recent research papers of this area belong to one of those two sets of systems as the 
state-of-the-art chapter will clearly show. In the same chapter, an extensive study regarding 
all the other technologies is conducted, concluding that the low amount of research effort 
devoted to their development place them in a position of lower maturity than inertial or 
artificial vision-based systems. This reality, together with the fact that all commercial fall 
detection systems are based either on inertial or vision-based technologies, seem to 
recommend that, until further research proves that those alternative technologies are valid for 
fall detection in the real world, new system developments should be based on inertial or 
artificial vision techniques.  

The state-of-the-artchapter also shows that, although inertial-based systems present a 
number of advantages over vison-basedones, they require constantly carrying a sensor that 
needs to have a functional battery at all times. Under certain circumstances, as the ones 
identified in the user’s needs chapter, these requirements cannot be met and, in those cases, 
vision-based systems should be considered the best option. 

However, all reviewed vison-basedsystems in the state-of-the-artchapter show suboptimal 
performances under poor illumination conditions as the ones associated to the user’s needs 
presented in the systems requirements chapter. Additionally, today’s vison-basedfall detection 
systems present two important problems, insufficient amount of human falls real world data 
and privacy protection [12]. 

The hypothesis of this doctoral thesis is that an artificial vison-basedfall detection system 
able to overcome these three problems can be implemented. This way, the user’s requirements 
presented in the user’s needs chapter will be met. 

The main contributions made to the state-of-the-artof vison-basedfall detection systems 
during the development of the system are the following ones: 

 An evaluation of performances of the most significant state-of-the-art two-
dimensional (2D) pose estimation architectures able to regress human pose from 
imagery when the input images are not conventional but Far infrared (FIR). This 
evaluation is presented in chapter 6. 

 A neural network able to determine the projection on the horizontal plane of heels, 
forefeet and body center of mass (COM) allowing a quick determination of stability 
indexes and base of support. The theory behind the stability indexes and the design of 
the network itself is fully described in chapter 7. 

 A FIR video dataset made to train the two-dimensional neural network. This data set, 
the only existing one labeling all human joints both in the 2D and three-dimensional 
(3D) spaces, includes FIR videoclips and can be used to train human 2D and 3D pose 
estimation neural networks. It will be released to the research community at the end 
of the project under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 
license. The potential audiences interested in this product include not only the 
community of researchers of the field of human fall detection, but also other 
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communities like the human activity recognition, the security and surveillance and the 
autonomous driving ones. 

 A FIR video fall dataset designed to validate the fall detection system. As in the 
previous case, it is labeled in the 2D and 3D spaces. There is no other fall detection 
dataset of its kind and will be released to the research community at the end of the 
project under the same conditions. The potential audiences interested in this product 
could include not only the community of researchers of the field of human fall 
detection but also the human activity recognition one. 

In addition, an extensive research to determine real user’s needs has been carried out. With 
the exception of the articles by Thilo et al. [15] and Demiris et al. [16], where 
recommendations to system developers are given, this is the first time such a research is made.  

1.1 Motivation 
The growing economic significance of the elderly care field invites us to think that certain 

tasks could be automated reducing this way the burden on caregivers and therefore the cost-
of-service provision. Fall detection is one of the tasks suitable for this automation, as proper 
technology to do it already exists. 

Part of this thesis focuses on identifying what is the perception of the different communities 
integrated in the elderly care field about automatic fall detection, identifying under what 
circumstances the automation of this task is acceptable and what should be the requirements 
a system devoted to this purpose must meet. 

The study clearly determines when the use of automatic fall detection systems could be 
accepted and under what circumstances they would be used. After a thorough revision of the 
state-of-the-artof the field, the main shortfalls of the current systems are identified and it is 
concluded that no already developed system is able to properly work in the low light 
enviroments users point out as the most likely ones associated to situations when the use of 
these systems becomes acceptable. 

Therefore, in this thesis, we develop a system fully adapted to the needs specified by the 
communities of the elderly care field and solve some of the identified shortfalls of the field. 
In doing so, we intend to contribute to improving the quality of life for both the elderly 
community and their caregivers by providing a tool well adapted to the necessities they 
express.  

1.2 Structure of this document 
This thesis is organized as follows: 

Chapter 3 reviews the state-of-the-artof the field of automatic fall detection systems, 
considering wearable, ambient, and vision-based ones. The chapter concludes with some 
observations, pointing out advantages, disadvantages, and limitations. 

Chapter 4 is devoted to presenting the most extensive research made in this area, which 
main goal is to provide developers with awareness of the perception that the different 
communities of the elderly care field have regarding automatic fall detection systems and the 
requirements that they should meet. 

Chapter 5 presents the FIR-Human dataset, the only one of its kind. It includes far infrared 
video clips recorded by volunteers in different activities, along with the 2D and 3D annotations 
associated with their joint positions. This chapter also includes a comparative performance 
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evaluation of the most significant 2D human pose estimation architectures after they have 
been trained using the FIR-Human dataset. 

Chapter 6 presents an alternative approach to the classical use of kinematic descriptors in 
automatic fall detection systems. For the first time, to the best of our knowledge, we propose 
the introduction of human dynamic stability descriptors used in other fields to determine 
whether a fall has occurred. These descriptors approach the human body in terms of balance 
and stability. This way, differences between real and simulated falls become irrelevant, as all 
falls are a direct result of a failure in the continuous effort of the body to maintain balance, 
regardless of other considerations. The descriptors are determined using the information 
provided by a neural network capable of estimating the body's center of mass and the feet 
projections onto the ground plane, as well as the feet contact status. 

Chapter 7 is centered on the validation of a fall detection system that, using far infrared 
images, is able to assess whether a fall has occurred based on the use of dynamic descriptors. 
This system responds to the user's needs identified in Chapter 4 and addresses some of the 
limitations and shortcomings of present systems. 

Chapter 8 is devoted to exposing the main conclusions reached during the development of 
the system and potential future lines of research.  
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2 State-of-the-art 

2.1 Methods 
In this chapter, we focus on establishing the state-of-the-art in the field of automatic human 

fall detection systems. To fulfill this final goal, a deep review of all published papers present 
in public databases of research documentation (ScienceDirect, IEEE Explorer, and Sensors 
databases) has been made. This documentary search was based on different text string 
searches and was executed from February to December 2020. The period of publication was 
established between 2015 and 2020, so the latest developments in the field can be identified, 
and the study serves its purpose of being a guideline for the identification of shortfalls and 
deficiencies in present systems that should be addressed in new ones. 

The terms used in the bibliographical Boolean exploration were "fall detection," and 
depending on the specific technological block, an additional term was added. This way, for 
the wearable systems, "wearable" was considered, "ambient" for the case of the ambient block, 
and "vision" in the last case, so artificial vision technologies were considered. A secondary 
search was carried out to complete the first one by using other search engines of scholarly 
literature focused on health (PubMed, MedLine). All searches have been limited to articles 
and publications in English, the language used by most researchers in this area. 

After an initial analysis of papers fulfilling these searching criteria, 77 articles were 
considered in the area of wearable systems, 40 for the case of ambient technologies, and 81 
papers were selected to identify the fall detection state-of-the-art based on artificial vision. 
This way, 198 articles were considered in the attempt to illustrate how fall detection systems 
have evolved over the course of the studied period. 

The entire process is summarized in the flow diagram shown in figure 1. 

 

Figure 1.  Flow diagram of adopted search and selection strategy for paper selection. 
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The selection process included an initial screening made through reference management 
software to guarantee no duplication, and a manual screening, whose objective was making 
sure the article covered the field, did not fall within the fields of fall prevention or human 
activity recognition (HAR), and did not mix vision technologies with others. 

All selected systems were studied one-by-one to determine their characterization and 
classification techniques, describing them in-depth in the Discussion Section, so a full 
taxonomy can be made based on their characteristics. In addition, performance comparisons 
are also included, so conclusions on which ones are the most suitable systems can be reached. 

Additionally, given the crucial importance of power consumption for the specific case of 
wearable systems, this point is covered in the study of this specific technology. For the case 
of vision-based technologies, the object tracking algorithms, essential to deliver proper system 
performances, are also studied. 

2.2 Results 
The article search and selection process started with an initial identification of 2173 

potential articles. Duplicated ones and those whose title clearly did not match the required 
content were discarded, leaving 852 articles that were assessed for eligibility. These articles 
were then reviewed and those related to HAR, mixed technologies, and the ones that did not 
cover the area of automatic human fall detection or gait analysis were discarded. This way, 
198 articles are considered in the review: 77 covering wearable systems, 40 covering ambient 
ones, and 81 covering vision-based technologies. 

Tables 1 and 2 group both wearable fall detection and gait analysis systems classified by 
the type of signal used, with an indication of their performances, while table 3 includes a 
comparative study of their classification algorithm performances. 

 

Table 1. Fall detection systems classified by type of signal. 

SIGNAL TYPE AUTHOR AND YEAR SENSOR PERFORMANCE 

ACCELEROMETER 

L. Kau et al. (2015) [17] phone 
Specificity - 99.75% 

Sensibility - 92% 

P. Pierleoni et al. (2015)  [18] accelerometer 
Specificity  - 100% 

Sensibility - 80.74% 

P. Kostopoulos et al. (2015) [19] smartwatch 
Specificity - 87.29% 

Sensibility - 92.18% 

Luca Palmerini et al. (2015) [20] accelerometer 
Specificity - 89.7% 

Sensibility - 90% 

A. Kurniawan et al. (2016) [21] accelerometer 

Sensibility: 

- Frontal fall 95% 

- Backwards fall 75% 

Changhong Wang  et al. (2016) [22] accelerometer 
Specificity - 93.2% 

Sensibility - 97.5% 
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T. N. Gia et al. (2016) [23] accelerometer Not published 

A. K. Bourke et al. (2016) [24] accelerometer 
Specificity - 87% 

Sensibility - 88% 

S. Abdelhedi et al. (2016) [25] accelerometer 
Specificity - 99.6% 

Sensibility - 98.33% 

N. Otanasap et al. (2016) [26] accelerometer 
Specificity - 95.31% 

Sensibility - 99.48% 

Jian He et al. (2016) [27] accelerometer 
Specificity - 99.1% 

Sensibility - 93.8% 

A. Sucerquia et al. (2016) [28] accelerometer 
Specificity - 98.75% 

Sensibility - 95.52% 

M. A. Alvarez de la Concepción et 

al. (2017)  [29] 
phone Specificity – 95% 

P. Jatesiktat et al. (2017) [30] accelerometer Specificity - 98.2% 

N. Pannurat et al. (2017) [31] accelerometer Specificity - 86.54% 

Putra IPES et al. (2017) [32] accelerometer F-score - 98% y 92% 

C. Medrano et al. (2017) [33] accelerometer Not published 

R. Shen et al. (2017) [34] phone Precision - 79.69% 

D. Yacchirema et al. (2018) [35] accelerometer 
Precision - 93.75% 

Accuracy - 91.67% 

B. Kaudki et al. (2018) [36] accelerometer 
Specificity - 65% 

Sensibility - 40% 

A. Sucerquia et al. (2018) [37] accelerometer Accuracy -99.4% 

W. Saadeh et al. (2019) [38] accelerometer 
Specificity - 99.1% 

Sensibility - 97.8% 

Lin Chen et al. (2019) [39] smartwatch 
Specificity –96.36% 

Sensibility – 99.3% 

A. Shahzad et al. (2019) [40] phone 
Specifity - 88.01% 

Sensibility - 95.83% 

ACCELEROMETER 

AND GYROSCOPE 

H. W. Guo et al. (2015) [41] 
Accelerometer & 

gyroscope 
Not published 

H. Jian et al. (2015) [42] 
Accelerometer & 

gyroscope 

Specificity - 96.67% 

Sensibility - 95% 
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M. I. Nari et al. (2016) [43] 
Accelerometer & 

gyroscope 

Specificity - 86.7% 

Sensibility - 90% 

T. Sivaranjani et al. (2017) [44] 
Accelerometer & 

gyroscope 
Not published 

A. Jefiza et al. (2017) [45] 
Accelerometer & 

gyroscope 

Specificity - 99.367% 

Sensibility - 95.161% 

GYROSCOPE Y. Su et al. (2016) [46] Gyroscope 
Specificity - 98.8% 

Sensibility - 98.1% 

ACCELEROMETER 

AND PRESSURE 

SENSOR 

A. M. Sabatini et al. (2016) [47] 
Accelerometer & 

pressure sensor 

Specificity - 100% 

Sensibility - 80% 

W. Lu et al. (2020) [48] 
Accelerometer & 

pressure sensor 

Specificity - 96.5% 

Sensibility - 97.5% 

PRESSURE SENSOR 

J. Light et al. (2015) [49] Pressure sensor Precision - 0.889 

W. Lu et al. (2016) [50] Pressure sensor 
Specificity - 90% 

Sensibility - 94% 

INCLINATION 

SENSOR 

J. Sun et al. (2015) [51] Inclination sensor Detection rate - 92% 

J. Sun et al. (2016) [52] Inclination sensor Detection rate - 85.4% 

SOUND SENSOR M. Cheffena et al. (2016) [53] Phone 
Specificity - 98.46 % 

Sensibility - 98.97% 

EMG SENSOR 

A. Leone et al. (2015) [54]  EMG sensor 
Specificity - 77.9 % 

Sensibility - 82.8% 

A. Leone et al. (2015) [55]  EMG sensor 
Specificity - 81.5 % 

Sensibility - 87.3 % 

G. Rescio et al. (2015) [56] EMG sensor 
Specificity - 70.3 % 

Sensibility - 73.4 % 

V. F. Annese et al. (2016) [57] 
EMG and EEG 

sensors 
Not published 

Xugang xi et al. (2017) [58] EMG sensor 
Specificity - 98.59 % 

Sensibility - 98.7 % 
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A. Leone et al. (2017) [59] EMG sensor 
Specificity - 87.1 % 

Sensibility - 89.1 % 

J. Xiao et al. (2018) [60] EMG sensor 
Specificity - 92.67 % 

Sensibility - 93.71 % 

Gabriele Rescio et al. (2018) [61] EMG sensor 
Specificity - 89.5% 

Sensibility - 91.3 % 

G. Mezzina et al. (2019) [62] 
 EMG and EEG 

sensors 

Specificity - 99.82 % 

Sensibility - 93.33 % 

ECG Adnan Nadeem et al. (2019) [63] 
ECG sensor and 

accelerometer 
Data base generation 

Table 2. Gait analysis systems classified by type of signal. 

WORKING SIGNAL AUTHOR AND YEAR SENSOR PERFORMANCE 

ACCELEROMETER A. Shahzad et al. (2017) [64] Accelerometer Not published 

ACCELEROMETER & 

GYROSCOPE 

M. Hemmatpour et al. (2017) [65] 
Accelerometer 

and gyroscope 
Accuracy 99.2% 

Mirko Di Rosa et al. (2017) [66] 
Accelerometer 

and gyroscope 
Gait analysis 

PRESSURE SENSOR K. Chaccour et al. (2016) [67] Pressure sensor Gait analysis 

ACCELEROMETER & 

PRESSURE SENSOR 
M. A. Brodie et al. (2015) [68] 

Accelerometer 

and pressure 

sensor 

Gait analysis 

Table 3. Machine learning classification algorithms comparative studies. 

AUTHOR AND YEAR ALGORITHM 
OPTIMAL 

ALGORITHM 

R. Igual et al. (2015) 

[69] 

Support Vector Machine (SVM) and K-Nearest 

Neighbor (K-NN) 
SVM 

M. Manikandan et al. 

(2015) [70] 

Naïve-Bayes (NB), SVM, Multilayer Perceptron – 

Artificial Neural Network (MLP - ANN) and Decision 

Tree (DT) 

SVM 

A. Lisowska et al. 

(2015) [71] 

SVM, K-NN, Random Forest (RF) and Convolutional 

Neural Network - Artificial Neural Network (CNN – 

ANN) 

CNN - ANN 
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M. Vidigal et al. (2015) 

[72] 

MLP - ANN, Radial Basis Function - Artificial Neural 

Network  (RBF - ANN) and Self Organizing Maps - 

Artificial Neural Network (SOM- ANN) 

MLP - ANN 

Ryan M. Gibson et al. 

(2016) [73] 

Levenberg–Marquardt back-propagation - Artificial 

Neural Network (LMB – ANN), K-NN, RBF - ANN, 

Probabilistic Principal Component (PPC) and Linear 

Discriminant Analysis (LDA) 

K-NN 

C. Medrano et al. 

(2016) [74] 

K-NN, Local Outlier Factor (LOF), One-Class 

SupportVector Machine (O-SVM) and SVM 
K-NN 

A. T Özdemir (2016) 

[75] 

K-NN, Bayesian decision making (BDM), SVM, least 

squares method (LSM), dynamic time warping (DTW) 

and artificial neural networks (ANNs) 

K-NN 

P. Vallabh et al. (2016) 

[76] 
NB, K-NN, LSM, SVM and ANN K-NN 

M. Ahmed et al. (2017) 

[77] 
SVM, K-NN and ANN K-NN 

B. Ando et al. (2017) 

[78] 

Neuro-Fuzzy Neural Network - Artificial Neural 

Network (NFNN – ANN) and threshold algorithms 
NFNN-ANN 

O Aziz et al. (2017) [79] Logistic Regression (LR), NB, DT, K-NN and SVM SVM 

A. Hakim et al. (2017) 

[80] 
SVM, DT, K-NN and Discriminant Analysis (DA) SVM 

A. Jahanjoo et al. 

(2017) [81] 

Multi-layer Neuro-Fuzzy Neural Network - Artificial 

Neural Network (MLNFNN – ANN), MLP, K-NN and 

SVM 

MLNFNN – ANN 

V. Carletti et al. (2017) 

[82] 

SOM- ANN, O-SVM and One-Class Nearest Neighbor 

(OCNN) 
SOM - ANN 

Xugang et al. (2017) 

[58] 

Fisher Linear Discriminant Analysis (FDA), Fuzzy Min-

Max Neural Network (FMM-ANN), Gaussian Kernel 

Fisher Linear Discriminant Analysis (GK-FDA), 

Gaussian Kernel Support Vector Machine (GK-SVM) 

and Fuzzy C-means algorithms (FCM) 

FMM-ANN 

T. Xie et al. (2017) [83] 
Extreme Learning Machine – Artificial Neural Network 

(ELM – ANN), SVM and NB  
ELM - ANN 

S. B. Khojasteh et al. 

(2018) [84] 

Feed-forward Neural Network (F-ANN) , SVM, DT, 

Rule-Based Systems (RBS) 
SVM 
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A. Lisowska et al. 

(2018) [85] 

Incremental Support Vector Machine (ISVM), SVM, 

Increased Nearest Neighbour (INN), K-NN, RF, 

Recurrent Neural Network – Artificial Neural Network 

(ReNN-ANN) and CNN – ANN 

INN and ReNN-

ANN 

T. R. Mauldin et al. 

(2018) [86] 
SVM, NB and ReNN -ANN ReNN - ANN 

M. Musci et al. (2018) 

[87] 
ReNN - ANN and threshold algorithms ReNN - ANN 

L. Nguyen et al. (2018) 

[88] 
MLP – ANN, SVM, K-NN and threshold algorithms 

MLP-ANN and 

SVM 

J. Ramón et al. (2018) 

[89] 
SVM, K-NN, NB and DT SVM 

A. Chelli et al. (2019) 

[90] 

MLP-ANN, K-NN, quadratic support vector machine 

(QSVM) y ensemble bagged tree (EBT) 
EBT y QSVM 

L. Chen et al. (2019) 

[39] 

One-class SVM (OCSVM), SVM, K-NN and ensemble 

stacked autoencoders - one-class classification based 

on the convex hull – Artificial Neural Network (ESAEs-

OCCCH-ANN) 

ESAE-OCCCH-

ANN 

D. Yacchirema et al. 

(2019) [91] 

LR, Deepnet – Artificial Neural Network (DN-AAN), DT 

and RF 
RF 

Table 4 includes all reviewed ambient fall detection systems, as no gait analysis system of this kind 

has been identified. Table 5 is a compared study of their classification algorithms performances. 

Table 4. Ambient fall detection systems by type of signal. 

WORKING SIGNAL AUTHOR AND YEAR SENSOR PERFORMANCE 

ACOUSTIC 

M. Salman et al. (2015) [92] 
Group of 

microphones 

AUC – 0.9928 (No 

interferences) 

A. Díaz-Ramírez et al. (2015) [93] Microphone 
Sensibility=90% (No 

interferences) 

E. Principi et al. (2016) [94] 
Ground acoustic 

sensor 
F1=98.06% 

D. Droghini et al. (2017) [95] 
Ground acoustic 

sensor 
F1=94.03% 

A. Irtaza et al. (2017) [96] Microphone F1=97.41% 
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Syed M. Adnan et al. (2018) [97] Microphone F1=97.41% 

D. Droghini et al. (2019) [98] 
Ground acoustic 

sensor 
F1=93.58% 

CONTACT 

(PRESSURE, 

DEFORMATION OR 

CAPACITANCE) 

K. Chaccour et al. (2015) [99] Intelligent carpet 
Specificity: 94.9% 

Sensibility: 88.8% 

Seung-Bae Jeon et al. (2017) [100] Smart ground 
Specificity: 96% 

Sensibility: 95.5% 

M. Daher et al. (2017) [101] Smart ground Sensibility: 94.1% 

Julien Haffner et al. (2018) [102] 

Intelligent 

capacitative 

ground 

Sensibility: 89% 

PASSIVE IR (PIR) 

W. Chen et al. (2015) [103] IR sensor 
Specificity: 90.75% 

Sensibility: 95.25% 

Q. Guan et al. (2017) [104] 
 Pyroelectric IR 

(PIR) sensor 

Specificity: 93% 

Sensibility: 98% 

X. Fan et al. (2017) [105] IR sensor F1= 99% 

A. Hayashida et al. (2017) [106] 
Group of IR 

sensors 
Precision = 94% 

J. Adolf et al. (2018) [107] IR sensor 
Specificity: 93% 

Sensibility: 85% 

Y. Ogawa et al. (2020) [108] 
Group of IR 

sensors 
Precision: 95.75% 

Z. Liu et al. (2020) [109] 
Group of IR 

sensors 
F1= 96% 

RADAR 

B. Y. Su et al. (2015) [110] Doppler radar 
Specificity: 92.2% 

Sensibility: 97.1% 

C. Garripoli et al. (2015) [111] Doppler radar Sensibility = 100% 

B. Erol et al. (2017) [112] 
Range-doppler 

radar 
Precision = 95.95% 
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H. Sadreazami et al. (2018) [113] 
Ultra wide band 

radar 

Precision: 95.04% 

Sensibility: 88.46% 

S. Chen et al. (2019) [114] 

Low frequency 

and PRF pulsed 

radar 

Precision = 99.346% 

Y. Sun et al. (2019) [115] FMCW radar F1= 98.9% 

H. Sadreazami et al. (2019) [116] 
Ultra wide band 

radar 
Precision = 96.12% 

Y. Shankar et al. (2019) [117] FMCW radar Precision = 99.5% 

A. Chelli et al. (2019) [118] RF simulator 
Specificity: 100% 

Sensibility: 100% 

H. Sadreazami et al. (2019) [119] 
Ultra wide band 

radar 
Precision = 96.15% 

C. Ding et al. (2019) [120] FMCW radar Precision = 95.5% 

H. Sadreazami et al. (2019) [121] 
Ultra wide band 

radar 

Specificity: 91.78% 

Sensibility: 90.38% 

H. Sadreazami et al. (2020) [122] 
Ultra wide band 

radar 

Precision: 95.28% 

Specificity: 92.91% 

A. Bhattacharya et al. (2020) [123] FMCW radar Precision: 95% 

H. Sadreazami et al. (2020) [124] Doppler radar 
Specificity: 91.67% 

Sensibility: 93.44% 

WIFI 

H. Wang et al. (2017) [125] Wifi system 
Specificity: 92% 

Sensibility: 89% 

H. Cheng et al. (2019) [126] Wifi system F1=96% 

M. Huang et al. (2019) [127] Wifi system 
Precision: 95% 

FNR: 2.44% 

Y. Hu et al. (2020) [128] Wifi system  Sensibility: 96% 
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M. Keaton et al. (2020) [129] Wifi system Precision: 81.8% 

T. H. Nguyen et al. (2020) [130] Wifi system Precision: 66.03% 

J. Ding et al. (2020) [131] Wifi system Precision: 93% 

Table 5. Classification algorithms of ambient fall detection systems. 

WORKING SIGNAL AUTHOR AND YEAR ALGORITHMS  
OPTIMAL 

ALGORITHM 

ACOUSTIC 

M. Salman et al. (2015) ) [92] OCSVM  

A. Díaz-Ramírez et al. (2015) [93] 
Dynamic Time 

Warping (DTW) 
 

E. Principi et al. (2016) [94] 

Gaussian Mean 

Supervectors 

(GMS) + SVM 

 

D. Droghini et al. (2017) [95] 

Gaussian Mean 

Supervectors 

(GMSs) + OCSVM  

 

A. Irtaza et al. (2017) [96] SVM  

Syed M. Adnan et al. (2018) [97] SVM  

D. Droghini et al. (2019) [98] 

Siamese 

Autoencoder 

Neural Network + 

K-NN, SVM, 

OCSVM y Siamese 

Neural Network + 

K-NN 

Siamese Autoencoder 

Neural Network + K-

NN 

 

A. Collado et al. (2017) [132] 

DT, K-NN, LG, NB, 

rule based 

classifier PART, RF 

and SVM 

RF 

CONTACT 

(PRESSURE, 
K. Chaccour et al. (2015) [99] Rule based (RB)  
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DEFORMATION OR 

CAPACITANCE) 
Seung-Bae Jeon et al. (2017) [100] 

Bayesian decision 

making (BDM) 
 

M. Daher et al. (2017) [101] For tiles : RB  

Julien Haffner et al. (2018) [102] K-NN, SVM and LS SVM 

PASSIVE IR 

W. Chen et al. (2015) [103] K-NN  

Q. Guan et al. (2017) [104] 

K-NN, Gaussian 

Mixture- Hidden 

Markov Model 

(GM-HMM), NB, 

SVM 

SVM 

X. Fan et al. (2017) [105] 

long short term 

memory artificial 

neural network 

(LSTM-ANN),  

gated recurrent 

unit artificial 

neural network 

(GRU-ANN) and 

Multilayer 

Perceptron – 

Artificial Neural 

Network (MLP - 

ANN) 

LST-ANN 

A. Hayashida et al. (2017) [106] DT  

J. Adolf et al. (2018) [107] 

Inception-v3 

Artificial Neural 

Network (Iv3 – 

ANN) 

 

Y. Ogawa et al. (2020) [108] 

LDA, K-NN, SVM, 

NB, AdaBoost, RF, 

Voting and 

Bagging 

Voting 

Z. Liu et al. (2020) [109] RF  

RADAR B. Y. Su et al. (2015) [110] K-NN and SVM K-NN 
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C. Garripoli et al. (2015) [111] 
Least Square- SVM 

(LS-SVM) 
 

B. Erol et al. (2017) [112] SVM  

H. Sadreazami et al. (2018) [113] 
LSTM – ANN, SVM, 

K-NN and DTW 
LSTM-ANN 

S. Chen et al. (2019) [114] 

Convolutional 

Neural network 

(CNN) 

 

Y. Sun et al. (2019) [115] 
LSTM-ANN and 3-

D CNN 
LSTM-ANN 

H. Sadreazami et al. (2019) [116] 

Capsule Nework – 

Artificial Neural 

Network (CN-

ANN), SVM, 

decision tree (DT), 

Gaussian naive 

Bayes (GNB), 

multi-layer 

perceptron (MLP) 

and CNN-ANN 

CN-ANN 

Y. Shankar et al. (2019) [117] 

Deep convolution 

neural networks –

Artificial Neural 

Network (DCNN-

ANN) 

 

A. Chelli et al. (2019) [118] 

K-nearest 

neighbors (KNN), 

decision tree (DT), 

artificial neural 

network (ANN) 

and support 

vector machine 

(SVM) 

SVM 

H. Sadreazami et al. (2019) [119] 

Gaussian support 

vector machine 

(GSVM), K-nearest 

neighbors (KNN), 

multi-layer 

perception (MLP) 

DRN-ANN 
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and dynamic time 

warping (DTW) 

and Deep Residual 

Network (DRN-

ANN) 

C. Ding et al. (2019) [120] K-NN  

H. Sadreazami et al. (2019) [121] CNN, SVM, K-NN CNN 

H. Sadreazami et al. (2020) [122] 

SVM, K-NN, DT y 

Linear 

Discriminant 

Analysis (LDA) 

K-NN 

A. Bhattacharya et al. (2020) [123] CNN  

H. Sadreazami et al. (2020) [124] 

multi-layer 

perceptron (MLP), 

k-nearest 

neighbors (KNN), 

dynamic time 

warping (DTW), 

KNN-DTW, long-

short-term-

memory artificial 

neural networks 

(LSTM-ANN) and 

deep 

convolutional 

neural network 

(DCNN) 

DCNN 

WIFI 

H. Wang et al. (2017) [125] SVM  

H. Cheng et al. (2019) [126] 

LSTM-ANN, Gated 

Recurrent Unit 

artificial neural 

network (GRU-

ANN) and CNN 

GRU-ANN 

M. Huang et al. (2019) [127] 
Dynamic template 

matching (DTM) 
 

Y. Hu et al. (2020) [128] DTW  
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M. Keaton et al. (2020) [129] 

fully-connected 

neural networks 

FCNN and CNN 

FCNN 

T. H. Nguyen et al. (2020) [130] 
CNN and LSTM-

ANN 
LSTM-ANN 

J. Ding et al. (2020) [131] 

Hidden Markov 

Model (HMM), 

Long Short-Term 

Memory (LSTM) , 

Random Forest 

(RF), Support 

Vector Machine 

(SVM) and 

Recurrent Neural 

Network – 

Artificial Neural 

Network (ReNN-

ANN) 

ReNN-ANN 

 

Finally, all reviewed vision-based fall detection systems are included in table 6, together with their 

performances. Table 7 compares their performances and table 8 reflects all system performance 

evaluation datasets. 
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Table 6. . Reviewed vision-based fall detection systems. 

Reference Year 
Characterization 

(Global/Local/Depth) 
Classification 

Input 

Signal 
Used Datasets Performance 

A. Yajai et 

al. [133] 
2015 

Skeleton joint tracking model 

provided by MS Kinect® is used to 

track joints and build a 2D and 3D 

bounding box around the 

body/depth characterization 

Feature-threshold-based. 

 Height/width ratio of the bounding 

box 

 center of gravity (COG) position in 

relation to support polygon (defined 

by ankle joints) 

Depth 
This system-specific video dataset—no 

public access at revision time 

Accuracy 

98.43% 

Specificity 

98.75% 

Recall 98.12% 

C. -J. Chong 

et al. [134] 
2015 

Pixel clustering and background 

(Horprasert)/global characterization 

Feature-threshold-based. 

Method 1: 

 Bounding box (BB) aspect ratio 

 CG position 

Method 2: 

 Ellipse orientation and aspect ratio 

 Motion history image (MHI) 

Red-

green-

blue 

(RGB) 

Specific video dataset—no public access 

at revision time 

Method 1 

Sensitivity 

66.7% 

Specificity 80% 

Method 2 

Sensitivity 

72.2% 

Specificity 90% 

H. Rajabi et 

al. [135] 
2015 

Foreground extraction through 

background subtraction (Gaussian 

mixed models—GMM) and Sobel 

filter application/ global 

characterization 

Feature-threshold-based. 

 BB orientation angle 

 Change of COG width 

 Height/width relation of contour 

 Hu moment invariants 

RGB 
This system-specific video dataset—no 

public access at revision time 

Fall detection 

success rate 

81% 
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L. H. Juang 

et al. [136] 
2015 

Foreground extraction through 

background subtraction (optical 

flow-based) and human joints 

identified/global characterization 

Support vector machine (SVM) RGB 
This system-specific video dataset—no 

public access at revision time 

Accuracy up to 

100% 

M. A. 

Mousse  al. 

[137] 

2015 

Foreground extraction through pixel 

color and brightness distortion 

determination and integration of 

foreground maps through 

homography/global characterization 

Feature-threshold-based. 

Ratio observed silhouette area/silhouette area 

projected on the ground plane 

RGB—2 

ORTHO

GONAL 

VIEWS 

Multicam Fall Dataset [138] 

Sensitivity 

95.8% 

Specificity 

100% 

Muzaffer 

Aslan et al. 

[139] 

2015 

Human silhouette is segmented 

using depth information, and 

curvature scale space (CSS) is 

calculated and encoded in a Fisher 

vector/depth characterization 

SVM Depth SDUFall [140] 

Average 

accuracy 

88.01% 

Z. Bian et 

al. [141] 
2015 

Silhouette extraction by using depth 

information. Human body joints 

identified and tracked with torso 

rotation/depth characterization 

SVM Depth 
This system-specific video dataset—no 

public access at revision time 

Sensitivity 

95.8% 

Specificity 

100% 

C. Lin et al. 

[142] 
2016 

Foreground extraction through 

background subtraction 

(GMM)/global characterization 

Feature-threshold-based. 

 Ellipse orientation 

 Linear and angular acceleration 

 MHI 

RGB 
This system-specific video dataset—no 

public access at revision time 
Not published 

F. 

Merrouche 

et al. [143] 

2016 

Foreground extraction by using the 

difference between depth frames 

and head tracking through particle 

filter/depth characterization 

Feature-threshold-based. 

 Ratio head vertical position/person 

height 

Depth SDUFall [140] 

Sensitivity 

90.76% 

Specificity 

93.52% 
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 COG velocity Accuracy 

92.98% 

K. G. 

Gunale et 

al. [144] 

2016 

Foreground extraction through 

background subtraction (direct 

comparison)/global characterization 

K-nearest neighbor (KNN) RGB 
Chute dataset—no public access at 

revision time 

Accuracy 

Fall 90% 

No fall 100% 

K. R. Bhavya 

et al. [145] 
2016 

Foreground extraction through 

background subtraction (direct 

comparison)/global characterization 

+ optical flow (OF)/global 

characterization 

KNN on MHI and OF features RGB 
This system-specific video dataset—no 

public access at revision time 
Not published 

Kun Wang 

et al. [146] 
2016 

Segmentation through vibe  [147] 

and histogram of oriented gradients 

(HOG) and local binary pattern 

(LBP)/global characterization + 

feature maps obtained through 

convolutional neural network 

(CNN)/ local characterization 

SVM-linear kernel RGB 

Multicam Fall Dataset [138] and SIMPLE 

Fall Detection Dataset  [148] and This 

system-specific video dataset—no public 

access at revision time 

Sensitivity 

93.7% 

Specificity 92% 

U. Pratap et 

al. [149] 
2016 

Foreground extraction through 

background subtraction 

(GMM)/global characterization 

Feature-threshold-based. 

 Silhouette COG stationary over a 

threshold time limit 

RGB 
Specific video datasets—no public access 

at revision time 

Fall detection 

rate 92% 

False alarm 

rate 6.25% 

X. Wang et 

al. [150] 
2016 

Segmentation through vibe  [147]  

and upper body database populated 

and sparse OF determined/global 

characterization 

Feature-threshold-based. 

 Body ratio width/height 

 Vertical velocity derived from OF 

 Upper body position history 

RGB LE2I  [151] 

Average 

precision 

81.55% 
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A. Y. Alaoui 

et al. [152] 
2017 

Foreground extraction through 

background subtraction (direct 

comparison)/global characterization 

+ OF/global characterization 

No classification algorithm reported RGB CHARFI2012 Dataset  [153] 

Precision 91% 

Sensitivity 

86.66% 

Apichet 

Yajai et al. 

[154] 

2017 

Skeleton joint tracking model 

provided by MS Kinect®/depth 

characterization 

Feature-threshold-based. 

Aspect ratios: 

 Bounding box 

 COG 

 Bounding box diagonal vs. max. height 

 Bounding box height vs. max. height 

Depth 
This system-specific video dataset—no 

public access at revision time 

Accuracy 

98.15% 

Sensitivity 

97.75% 

Specificity 

98.25% 

B. 

Lewandows

ki et al. 

[155] 

2017 

Voxels around the point cloud are 

calculated. The ones classified as 

human are clustered, and IRON 

features are calculated/local 

characterization 

Feature-threshold-based. 

 Mahalanobis distance between 

cluster IRON features and the 

distribution of IRON features from 

fallen bodies 

Depth 
This system-specific video dataset—no 

public access at revision time 

Sensitivity in 

operational 

environments 

99% 

F. Harrou et 

al. [156] 
2017 

Foreground extraction through 

background subtraction (direct 

comparison)/depth characterization 

Multivariate exponentially weighted moving 

average (MEWMA)-SVM 

KNN 

Artificial neural network (ANN) 

Naïve Bayes (NB) 

RGB 
UR Fall Detection [157] & 

Fall Detection Dataset  [158] 

Accuracy 

KNN 91.94% 

ANN 95.15% 

NB 93.55% 

NEWMA-SVM 

96.66% 
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G. M. 

Basavaraj et 

al. [159] 

2017 

Foreground extraction through 

background subtraction 

(median)/global characterization 

Feature-threshold-based. 

 Ellipse eccentricity and orientation 

 MHI 

RGB 
This system-specific video dataset—no 

public access at revision time 

Accuracy 

Fall 86.66% 

Non-fall 90% 

K. Adhikari 

et al. [158] 
2017 

Foreground extraction through 

background subtraction (direct 

comparison) using both RGB 

techniques and depth ones and 

Feature maps obtained through 

CNN/local and depth 

characterization 

Softmax based on features vector from CNN Depth 
This system-specific video dataset—no 

public access at revision time 

Overall, 

accuracy 74% 

System 

sensitivity to 

lying pose 99% 

Koldo De 

Miguel et 

al. [160] 

2017 

Foreground extraction through 

background subtraction (GMM) + 

Sparse OF determined/global 

characterization 

KNN on silhouette and OF features RGB 
This system-specific video dataset—no 

public access at revision time 

Accuracy 96.9% 

Sensitivity 96% 

Specificity 

97.6% 

Leiyue Yao 

et al. [161] 
2017 

Skeleton joint tracking model 

provided by MS Kinect®/depth 

characterization 

Feature-threshold-based 

 Torso angle 

 Centroid height 

Depth 
This system-specific video dataset—no 

public access at revision time 

Accuracy 97.5% 

True positive 

rate 98% 

True negative 

rate 97% 

M. 

Antonello 

et al. [162] 

2017 

Voxels around the point cloud are 

calculated. Then they are 

segmented in homogeneous 

patches and the ones classified as 

human are gathered and classified 

or not as a human lying body/depth 

characterization 

SVM—radial-based kernel Depth IASLAB-RGBD fallen person Dataset [163] 

Set A 

Accuracy: 

single view (SV) 

0.87/SV+map 

verification 

(MV) 0.92 
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Precision: SV 

0.73/SV+MV 

0.85 

Recall: SV 

0.85/SV+MV 

0.85 

Set B 

Accuracy: SV 

0.88/SV+MV 

0.9 

Precision: SV 

0.8/SV+MV 

0.87 

Recall: SV 

0.86/SV+MV 

0.81 

M. N. H. 

Mohd et al. 

[164] 

2017 

Skeleton joint tracking model 

provided by MS Kinect® is used to 

determine joint positions and 

speeds/depth characterization 

SVM based on joints speeds and rule-based 

decision-based on joints position in relation to 

knees 

Depth 

TST Fall Detection [165] , UR Fall 

Detection [157] and Falling Detection 

[166] 

Accuracy 

97.39% 

Specificity 

96.61% 

Sensitivity 

100% 

N. B. Joshi 

et al. [167] 
2017 

Foreground extraction through 

background subtraction 

(GMM)/global characterization 

Feature-threshold-based. 

 BB width/height ratio 

 COG position 

RGB LE2I  [151] 

Specificity 

92.98% 

Accuracy 

91.89% 
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 Orientation 

 Hu moments 

N. 

Otanasap et 

al. [168] 

2017 

Skeleton joint tracking model 

provided by MS Kinect®/depth 

characterization 

Feature-threshold-based. 

 Head velocity 

 CG position in relation to ankle joints 

Depth 
This system-specific video dataset—no 

public access at revision time 

Sensitivity 97% 

Accuracy 100% 

Q. Feng et 

al. [169] 
2017 

CNN is used to detect and track 

people, and Sub-MHI are correlated 

to each person BB/local 

characterization 

SVM RGB UR Fall Detection [157] 

Precision 

96.8% 

Recall 98.1% 

F1 97.4% 

S. 

Hernandez-

Mendez et 

al. [170] 

2017 

Foreground extraction through 

background subtraction (direct 

comparison) and silhouette 

tracking. Then centroid and features 

are determined/depth 

characterization 

Feature-threshold-based. 

 Angles and ratio height/width of the 

BB 

Depth 

Depth And Accelerometric Dataset [171]  

and this system-specific video dataset—

no public access at revision time 

The fallen pose 

is detected 

correctly on 

100% of 

occasions. 

S. Kasturi et 

al. [172] 
2017 

Foreground extraction through 

background subtraction (direct 

comparison)/depth characterization 

SVM 

Depth 

UR Fall Detection  [157] 

Sensitivity 

100% 

Specificity 

88.33% 

S. Kasturi et 

al. [173] 
2017 

Foreground extraction through 

background subtraction (direct 

comparison)/depth characterization 

SVM 

Depth 

UR Fall Detection [157] 

Accuracy 

Total testing 

accuracy 

96.34% 
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S. 

Pattamaset 

et al. [174] 

2017 

Body vector construction and CG 

identification taking as starting 

point 16 parts of the human 

body/depth characterization 

Feature-threshold-based. 

 COG acceleration 

 Body vector/vertical angle 

Depth 

This system-specific video dataset—no 

public access at revision time 
Accuracy 100% 

Sajjad 

Taghvaei et 

al. [175] 

2017 

Foreground extraction through 

background subtraction/depth 

characterization 

Hidden Markov model (HMM) 

Depth 
This system-specific video dataset—no 

public access at revision time 

Accuracy 

84.72% 

Y. M. 

Galvão et 

al. [176] 

2017 
Median square error (MSE) every 3 

frames/global characterization 

Multilayer perceptron (MLP) 

KNN 

SVM—polynomial kernel 

RGB UR Fall Detection [157] 

F1 score: 

MLP 0.991 

KNN 0.988 

SVM—

polynomial 

kernel 0.988 

Thanh-Hai 

Tran et al. 

[177] 

2017 

Skeleton joint tracking model 

provided by MS Kinect®/depth 

characterization or 

Motion map extraction from RGB 

images and gradient kernel 

descriptor calculated/global 

characterization 

Feature-threshold-based. 

 Height of hip joint 

 Vertical body velocity 

Or 

 SVM classification 

Depth 

or RGB 

UR Fall Detection  [157] and LE2I  [151] 

and Multimodal Multiview Dataset of 

Human Activities [178] 

UR Dataset 

Sensitivity 

100% 

Specificity 

99.23% 

LE2I Dataset 

Sensitivity 

97.95% 

Specificity 

97.87% 
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MULTIMODAL 

Dataset 

(Average) 

Sensitivity 

92.62% 

Specificity 

100% 

X. Li et al. 

[179] 
2017 

Foreground extraction through 

background subtraction (direct 

comparison) and feature maps 

obtained through CNN/ local 

characterization 

Softmax based on features vector from CNN RGB UR Fall Detection  [157] 

Sensitivity 

100% 

Specificity 

99.98% 

Accuracy 

99.98% 

Yaxiang Fan 

et al. [180] 
2017 

Feature maps obtained through 

CNN from dynamic images/local 

characterization 

Classification made by fully connected last 

layers of CNNs 
RGB 

Multicam Fall Dataset  [138] & LE2I [151], 

High-Quality Dataset  [181] and This 

system-specific video dataset—no public 

access at revision time 

Sensitivity 

LE2I 98.43% 

Multicam 

97.1% 

HIGH-QUALITY 

FALL SIM 

74.2% 

SYSTEM 

Dataset 63.7% 

A. Abobakr 

et al. [182] 
2018 

Silhouette extraction by using depth 

information. A feature vector of 

different body pixels based on 

depth difference between pairs of 

Random decision forest for pose recognition 

and SVM for movement identification 
Depth 

UR Fall Detection [157] and CMU 

Graphics Lab—motion capture library 

[183] 

Accuracy 96% 

Precision 91% 
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points is created/depth 

characterization 

Sensitivity 

100% 

Specificity 93% 

B. Dai et al. 

[184] 
2018 

Foreground extraction through 

background subtraction (direct 

comparison)/global characterization 

Feature-threshold-based. 

 BB segmented areas occupancy. 

 COG/height ratio 

 COG vertical speed 

RGB 

UR Fall Detection [157]  and This system-

specific video dataset—no public access 

at revision time 

Sensitivity 95% 

Specificity 

96.7% 

Georgios 

Mastorakis 

et al. [185] 

2018 

Depth images are used to determine 

head velocity profile/depth 

characterization 

Feature-threshold-based. 

 Hausdorff distance between real head 

velocity profile and database ones 

Depth 

Specific video dataset developed for 

[171] (A) and  [140] (B)– no public access 

at revision time 

A Dataset 

Sensitivity 

100% 

Specificity 

100% 

B Dataset 

Sensitivity 

90.88% 

Specificity 

98.48% 

K. Sehairi et 

al. [186] 
2018 

Foreground extraction through 

background subtraction (self-

organizing maps) and feature 

extraction associated with each 

silhouette/global characterization 

 SVM-radial basis function (SVM-RBF) 

 KNN 

 Fully connected ANN trained through 

background propagation ANN 

RGB LE2I  [151] 

Accuracy 

SVM-RBF 

99.27% 

KNN 98.91% 

ANN 99.61% 
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Kun-Lin Lu 

et al. [187] 
2018 

Person detection through CNN 

YoLOv3 and feature extraction of 

the generated bounding box/local 

characterization 

Feature-threshold-based 

 Bounding box height evolution in 1.5 

s periods 

RGB 
This system-specific video dataset—no 

public access at revision time 

Recall 100% 

Precision 

93.94% 

Accuracy 

95.96% 

Leila Panahi 

et al. [188] 
2018 

Foreground extraction through 

background subtraction (depth 

information) and silhouette 

tracking. Then ellipse is established 

around the silhouette, and features 

are determined/depth 

characterization 

SVM 

& 

Threshold-based decision 

 Centroid elevation 

 Centroid speed 

 Ellipse aspect ratio 

Depth 

Depth and Accelerometric Dataset [171] 

Average results 

SVM 

Sensitivity 

98.52% 

Specificity 

97.35% 

Threshold-

based decision 

Sensitivity 

98.52% 

Specificity 

97.35% 

M. 

Rahnemoon

far et al. 

[189] 

2018 
Feature maps obtained through 

CNN/depth characterization 
Softmax based on features vector from CNN 

Depth 

SDUFall  [140] 
Accuracy 

97.58% 

Manola 

Ricciuti et 

al. [190] 

2018 

Foreground extraction through 

background subtraction (direct 

comparison)/depth characterization 

SVM 

Depth 
This system-specific video dataset—no 

public access at revision time 
Accuracy 98.6% 
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Myeongseo

b Ko et al. 

[191] 

2018 

Depth map from monocular images 

and silhouette detection through 

particle swarm optimization/global 

characterization 

Feature-threshold-based 

 Vertical velocity 

 BB aspect ratio 

 BB height 

 Top depth/bottom depth ratio 

RGB 
This system-specific video dataset—no 

public access at revision time 

Accuracy 97.7% 

Sensitivity 

95.7% 

Specificity 

98.7% 

Syed F. Ali 

et al. [192] 
2018 

Foreground extraction through 

background subtraction 

(GMM)/global characterization 

Boosted J48 RGB 
UR Fall  Detection [157]  Mand Multicam 

Fall Dataset [138] 

Accuracies 

Multicam (2 

classes) 99.2% 

Multicam (2 

classes) 99.25% 

UR FALL 99% 

W. Min et 

al. [193] 
2018 

Skeleton joint tracking model 

provided by MS Kinect® is used to 

estimate vertical/torso angle/depth 

characterization 

SVM Depth TST Fall Detection [165] 
Accuracy 

92.05% 

W. Min et 

al. [194] 
2018 

Object recognition through CNN and 

features of human shape sorted out 

as well as their spatial relations with 

furniture in the image/local 

characterization 

Automatic engine classifier based on 

similarities (minimum quadratic error) 

between real-time actions and activity class 

features 

RGB 

This system-specific video dataset—no 

public access at revision time and UR Fall 

Detection [157] 

Precision 

94.44% 

Recall 94.95% 

Accuracy 95.5% 

X. 

ShanShan 

et al. [195] 

2018 

Foreground extraction through 

background subtraction 

(GMM)/global characterization 

SVM-radial kernel RGB 
Center For Digital Home Dataset– MMU  

[196] 

Sensitivity 

96.87% 

Accuracy 

86.79% 
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Amal El 

Kaid et al. 

[197] 

2019 

Feature maps obtained through 

convolutional layers of a CNN/local 

characterization 

Softmax based on features vector from CNN RGB 
This system-specific video dataset—no 

public access at revision time 

Reduces false 

positives of 

angel 

assistance 

system by 17% 

by discarding 

positives 

assigned to 

people in a 

wheelchair 

Chao Ma et 

al. [198] 
2019 

Face masking to preserve privacy 

and feature maps obtained through 

CNN/local characterization 

Autoencoder 

SVM 
RGB + IR 

UR Fall Detection  [157] and Multicam 

Fall Dataset [138] and Fall Detection 

Dataset  [158] and This system-specific 

video Dataset—no public access at 

revision time 

Autoencoder 

Sensitivity 

93.3% 

Specificity 

92.8% 

SVM 

Sensitivity 

90.8% 

Specificity 

89.6% 

D. Kumar et 

al. [199] 
2019 

Silhouette segmentation by edge 

detection through HOG/global 

characterization + silhouette center 

angular velocity determined by long 

short-term memory (LSTM) 

model/local characterization 

feature-threshold-based. 

 Silhouette center point angular 

velocity 

RGB 
MOT Dataset [200] and UR Fall Detection 

[157] and COCO Dataset [201] 
Accuracy 98.1% 
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F. Harrou et 

al. [202] 
2019 

Foreground extraction through 

background subtraction (direct 

comparison)/global characterization 

SVM 

 Linear kernel 

 Polynomial kernel 

 Radial kernel 

RGB 
UR Fall Detection  [157] & 

Fall Detection Dataset [158] 

Accuracy: 

Linear kernel 

93.93% 

Polynomial 

kernel 94.35% 

Radial kernel 

96.66% 

J. Brieva et 

al. [203] 
2019 

Feature maps obtained through 

CNN from OF/ local characterization 
Softmax based on features vector from CNN RGB 

This system-specific video dataset—no 

public access at revision time 

Precision 

95.27% 

Recall 95.42% 

F1 95.34% 

M. Hua et 

al. [204] 
2019 

Human keypoints identified by 

OpenPose (convolutional pose 

machines and human body vector 

construction) and recurrent neural 

network (RNN)-LSTM ANN used for 

pose prediction/local 

characterization 

Fully connected layer RGB LE2I [151] 

Precision 

90.8% 

Recall 98.3% 

F1 0.944 

M. M. 

Hasan et al. 

[205] 

2019 

Human keypoints identified by 

OpenPose (convolutional pose 

machines and human body vector 

construction) and RNN-LSTM 

ANN/local characterization 

Softmax based on features vector from RNN-

LSTM 
RGB 

UR Fall Detection  [157] & 

Fall Detection Dataset  [158] & Multicam 

Fall Dataset [138] 

URFD 

Sensitivity 99% 

Specificity 96% 

FDD 

Sensitivity 99% 

Specificity 97% 
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Multicam 

Sensitivity 98% 

Specificity 96% 

P. K. Soni et 

al. [206] 
2019 

Foreground extraction through 

background subtraction 

(GMM)/global characterization 

SVM RGB UR Fall Detection [157] 

Specificity 

97.1% 

Sensitivity 

98.15% 

Ricardo 

Espinosa et 

al. [207] 

2019 

OF extracted from 1-s 

windows/global characterization + 

Feature maps obtained through 

CNN/local characterization 

 Softmax based on features vector 

from CNN 

 SVM 

 Random forest (RF) 

 MLP 

 KNN 

RGB UPFALL [208] 

Sensitivity 

Softmax 

97.95% 

SVM 14.1% 

RF 14.3% 

MLP 11.03% 

KNN 14.35% 

S. Kalita et 

al. [209] 
2019 

BBs established in hands, head and 

legs through extended core9 

framework/local characterization 

SVM RGB UR Fall Detection [157] 

Sensitivity 

93.33% 

Specificity 95% 

Accuracy 

94.28% 

Saturnino 

Maldonado

-Bascón et 

al. [210] 

2019 

Person detection through CNN 

YoLOv3 and feature extraction of 

the generated BB /local 

characterization 

SVM RGB 

IASLAB-RGBD fallen person dataset [163] 

and This system-specific video dataset—

no public access at revision time 

Average results 

Precision 

88.75% 
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Recall 77.7% 

X. Cai et al. 

[211] 
2019 

OF/global characterization + Wide 

residual network/local 

characterization 

Softmax classifier implemented in the last 

layer of the ANN 
RGB UR Fall Detection [157] accuracy 92.6% 

Xiangbo 

Kong et al. 

[212] 

2019 

Segmentation by model provided by 

MS Kinect® + depth map and CNN 

used for feature maps 

creation/depth characterization 

Softmax based on features vector from CNN 

implemented in its last layer 
Depth 

This system-specific video dataset—no 

public access at revision time 

Depending on 

the camera 

height 

accuracy, 

results 

between 80.1% 

and 100% are 

obtained 

Xiangbo 

Kong et al. 

[213] 

2019 

Foreground extraction through 

background subtraction (Depth 

information) and HOG is calculated 

as a classifying feature 

SVM-linear kernel Depth 
This system-specific video Dataset—no 

public access at revision time 

Sensitivity 

97.6% 

Specificity 

100% 

A. CARLIER 

et al. [214] 
2020 

Dense OF/global characterization + 

feature maps obtained through 

CNN/ local characterization 

Fully connected layer RGB 
UR Fall Detection [157] and Multicam Fall 

Dataset [138]  and LE2I [151] 

Sensitivity 

86.2% 

False discovery 

rate 11.6% 

B. Wang et 

al. [215] 
2020 

Human keypoints identified by 

OpenPose (convolutional pose 

machines and human body vector 

construction) and followed by 

DeepSORT (CNN able to track 

numerous objects 

simultaneously)/local 

characterization 

Classifiers are used to sort out falling state and 

fallen state 

 Gradient boosted tree (GDBT) 

 Decision tree (DT) 

 RF 

RGB 
UR Fall Detection [157] & 

Fall Detection Dataset [158] & LE2I [151] 

F1-score 

Falling state 

GDBT 95.69% 

DT 84.85% 

RF 95.92% 
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 SVM 

 KNN 

 MLP 

SVM 96.1% 

KNN 93.78% 

MLP 97.41% 

Fallen state 

GDBT 95.27% 

DT 95.45% 

RF 96.8% 

SVM 95.22% 

KNN 94.22% 

MLP 94.46% 

C. Menacho 

et al. [216] 
2020 

Dense OF/global characterization 

and feature maps obtained through 

CNN/ local characterization 

Fully connected layer RGB UR Fall Detection [157] 
Accuracy 

88.55% 

C. Zhong et 

al. [217] 
2020 

Binarization based on IR threshold + 

edge identification/global 

characterization + feature maps 

obtained through convolutional 

layers of an ANN/local 

characterization 

Based on features maps from CNN: 

 Radial basis function neural network 

(RBFNN) 

 SVM 

 Softmax 

 DT 

IR 
This system-specific video dataset—no 

public access at revision time 

Multi-

occupancy 

scenarios F1 

score: 

RBFNN 89.57 

(+/−0.62) 

SVM 88.74% 

(+/−1.75) 

Softmax 

87.37% 

(+/−1.4) 
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DT 88.9% 

(+/−0.68) 

G. Sun et al. 

[218] 
2020 

pose estimation through OpenPose 

(convolutional pose machines and 

human body vector construction) 

and single-shot multibox detector-

MobileNet (SSD-MobileNet)/local 

characterization 

 Support vector data description 

(SVDD) 

 SVM 

 KNN 

RGB 

COCO Dataset [201] and a specific video 

dataset—no public access at revision 

time 

Sensitivity 

SVM 92.5% 

KNN 93.8% 

SVDD 94.6% 

J. Liu et al. 

[219] 
2020 

Local binary pattern histograms 

from three orthogonal planes (LBP-

TOP) applied over optical Flow after 

robust principal component analysis 

(RPCA) techniques have been 

applied over incoming video signals. 

Sparse representations classification (SRC) RGB 
UR Fall Detection [157] & 

Fall Detection Dataset [158] 

Accuracy: 

FDD dataset 

98% 

URF dataset 

99.2% 

J. 

Thummala 

et al. [220] 

2020 

Foreground extraction through 

background subtraction 

(GMM)/global characterization 

Feature-threshold-based. 

Object height/width ratio, ratio change speed 

and MHI. 

RGB LE2I [151] 
Accuracy 

95.16% 

Jin Zhang et 

al. [221] 
2020 

Human keypoints identified by CNN 

(convolutional pose machines and 

human body vector 

construction)/local characterization 

Logistic regression classifier based on : 

 Rotation energy sequence 

 Generalized force sequence 

RGB 
This system-specific video dataset—no 

public access at revision time 

Fall detection 

rate 98.7% 

False alarm 

rate 1.05% 

K. N. Kottari 

et al. [222] 
2020 

Segmentation through vibe  [147]   

and illumination change-resistant 

algorithm (ICA) [223]  then main 

silhouette axis determination 

Feature-threshold-based. 

 Silhouette main axis angle with 

vertical axis 

RGB 

This system-specific video dataset—no 

public access at revision time and PIROPO 

[224] 

Specific 

database 

accuracy 

ICA—87%–

96.34% 
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VIBE—78.05%–

86.5% 

PIROPO—ICA 

Walk accuracy 

95% 

Seat accuracy 

98.65% 

Qi Feng et 

al. [225] 
2020 

Feature maps obtained through 

convolutional layers of a CNN and 

LSTM/local characterization 

Softmax based on features vector from ANN 

implemented in its last layer 
RGB 

Multicam Fall Dataset  [138], UR Fall 

Detection [157] and this system-specific 

video dataset—no public access at 

revision time 

Multicam 

Dataset 

Sensitivity 

91.6% 

Specificity 

93.5% 

UR Dataset 

Precision 

94.8% 

Recall 91.4% 

THIS SYSTEM 

Dataset 

Precision 

89.8% 

Recall 83.5% 
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Qingzhen 

Xu et al. 

[226] 

2020 

Human keypoints identified by 

OpenPose (convolutional pose 

machines and human body vector 

construction) and CNN used for 

feature maps creation/local 

characterization 

Softmax based on features vector from CNN 

implemented in its last layer 
RGB 

UR Fall Detection [157]  and Multicam 

Fall Dataset [138] and NTU RGB+D 

Dataset  [227] 

Accuracy rate 

91.7% 

Swe N. 

Htun et al. 

[228] 

2020 

Foreground extraction through 

background subtraction 

(GMM)/global characterization 

Hidden Markov model (HMM) based on 

Observable data : 

 Silhouette surface 

 Centroid height 

 Bounding box aspect ratio 

RGB LE2I  [151] 

Precision 

99.05% 

Recall 98.37% 

Accuracy 99.8% 

T. Kalinga et 

al. [229] 
2020 

Skeleton joint tracking model 

provided by MS Kinect® is used to 

determine joint speeds and angles 

of different body parts/depth 

characterization 

Feature-threshold-based. 

 Joint speeds and angles of body parts 
Depth 

This system-specific video dataset—no 

public access at revision time 

Accuracy 92.5% 

Sensitivity 

95.45% 

Specificity 88% 

Weiming 

Chen et al. 

[230] 

2020 

Human keypoints identified by 

OpenPose (convolutional pose 

machines and human body vector 

construction)/local characterization 

Feature-threshold-based 

 Hip vertical velocity 

 Spine/ground plane angle 

 BB aspect ratio 

RGB 
This system-specific video dataset—no 

public access at revision time 

Accuracy 97% 

Sensitivity 

98.3% 

Specificity 95% 

X. Cai et al. 

[231] 
2020 

Feature maps obtained through 

hourglass convolutional auto-

encoder (HCAE) ANN/local 

characterization 

Softmax based on features vector from HCAE RGB UR Fall Detection [157] 

Sensitivity 

100% 

Specificity 93% 

Accuracy 96.2% 
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Y. Chen et 

al. [232] 
2020 

Foreground extraction through CNN 

and Bi-LSTM ANN/local 

characterization 

Softmax based on features vector from RNN-

Bi-LSTM 
RGB 

UR Fall Detection [157] and This system-

specific video dataset—no public access 

at revision time 

URFD 

Precision 0.897 

Recall 0.813 

F1 0.852 

Specific dataset 

Precision 0.981 

Recall 0.923 

F1 0.948 

Yuxi Chen 

et al. [233] 
2020 

Feature maps obtained through 3 

different CNNs (LeNet, AlexNet y 

GoogLeNet)/depth characterization 

Classification made by fully connected last 

layers of CNNs 
Depth 

Video dataset developed for the system 

in [212] 

Average values 

Lenet 

Sensitivity 

82.78% 

Specificity 

98.07% 

AlexNet 

Sensitivity 

86.84% 

Specificity 

98.41% 

GoogLeNet 

Sensitivity 

92.87% 
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Specificity 99% 

X. Wang et 

al. [234] 
2020 

Feature maps obtained through 

convolutional layers of an ANN/local 

characterization 

Logistic function to identify frame-by-frame 

two classes in the prediction layer (person and 

fallen) 

RGB 
UR Fall Detection [157] & 

Fall Detection Dataset [158] 

Average 

precision (AP) 

for fallen 0.97 

mean average 

precision 

(mAP) for both 

classes 0.83 

Table 7. Vision-based system performance comparison. 

Reference Year Input Signal ANN/Classifiers and Performance 

C. -J. Chong et al. 

[134]  
2015 RGB 

Method 1 BB aspect ratio and CG position 

Sensitivity 66.7% 

Specificity 80% 

Method 2 Ellipse orientation and aspect ratio + MHI 

Sensitivity 72.2% 

Specificity 90% 

F. Harrou et al. 

[156]  
2017 RGB 

 Accuracy Sensitivity Specificity 

KNN 91.94% 100% 86.00% 

ANN 95.15% 100% 91.00% 

NB 93.55% 100% 88.60% 

MEWMA-SVM 96.66% 100% 94.93% 
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Y. M. Galvão et al. 

[176]  
2017 RGB 

F1 score 

Multilayer perceptron (MLP) 0.991 

K-nearest neighbors (KNN) 0.988 

SVM—polynomial kernel 0.988 

Leila Panahi et al. 

[188]  
2018 Depth 

Average results 

SVM 

Sensitivity 98.52% 

Specificity 97.35% 

Threshold-based decision 

Sensitivity 98.52% 

Specificity 97.35% 

K. Sehairi et al. [186]  2018 RGB 

Accuracy 

SVM-RBF 99.27% 

KNN 98.91% 

ANN 99.61% 

Chao Ma et al. [198] 2019 RGB+IR 

Autoencoder 

Sensitivity 93.3% 

Specificity 92.8% 

SVM 
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Sensitivity 90.8% 

Specificity 89.6% 

F. Harrou et al. 

[202]  
2019 RGB 

Accuracy : 

K-NN 91.94% 

ANN 95.16% 

Naïve Bayes 93.55% 

Decision tree 90.48% 

SVM 96.66% 

Ricardo Espinosa et 

al. [207] 
2019 RGB 

 Sensitivity Specificity 

Softmax 97.95% 83.08% 

SVM 14.10% 90.03% 

RF 14.30% 91.26% 

MLP 11.03% 93.65% 

KNN 14.35% 90.96% 

Xiangbo Kong et al. 

[212]  
2019 Depth 

 HOG+SVM LeNet AlexNet GoogLeNet ETDA-Net 

Average accuracy 89.48% 88.28% 93.53% 96.59% 95.66% 

Average specificity 95.43% 97.18% 97.56% 98.76% 99.35% 

Average sensitivity 83.75% 74.54% 87.10% 88.74% 91.87% 

B. Wang et al. [215]   2020 RGB F1 score 
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Falling state 

GDBT 95.69% 

DT 84.85% 

RF 95.92% 

SVM 96.1% 

KNN 93.78% 

MLP 97.41% 

Fallen state 

GDBT 95.27% 

DT 95.45% 

RF 96.8% 

SVM 95.22% 

KNN 94.22% 

MLP 94.46% 

C. Zhong et al. [217] 2020 IR 

F1 score 

RBFNN 89.57 (+/−0.62) 

SVM 88.74% (+/−1.75) 

Softmax 87.37% (+/−1.4) 

DT 88.9% (+/−0.68) 
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C. Menacho et al. 

[216] 
2020 RGB 

Accuracy 

VGG-16 87.81% 

VGG-19 88.66% 

Inception V3 92.57% 

ResNet50 92.57% 

Xception 92.57% 

ANN proposed in this system 88.55% 

G. Sun et al. [218] 2020 RGB 

 Sensitivity Specificity 

SVM 92.50% 93.70% 

KNN 93.80% 92.30% 

SVDD 94.60% 93.80% 

Yuxi Chen et al. 

[233]  
2020 Depth 

Average values 

Lenet 

Sensitivity 82.78% 

Specificity 98.07% 

AlexNet 

Sensitivity 86.84% 

Specificity 98.41% 

GoogLeNet 
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Sensitivity 92.87% 

Specificity 99% 

Table 8. Vision-based system performance evaluation datasets. 

Signal Type Dataset Name Characteristics 

Accelerometric and 

electroencephalogram (EEG) 

and RGB and passive infrared 

(IR) 

Upfall [208] 
17 volunteers execute falls and activities of daily life (ADL) of different 

types recorded by an accelerometer, EEG, RGB and passive IR systems 

Depth and Accelerometric 

Depth and accelerometric dataset [171] 
Volunteers execute several activities, and falls are recorded by a depth 

system and accelerometers. 

TST fall detection  [165] 
11 volunteers execute 4 fall types and 4 ADLs recorded by RGB-depth 

(RGB-D) and accelerometer systems 

UR fall detection  [157] 30 falls and 40 ADLs recorded by RGB-D and accelerometer systems 

RGB 

Center for digital home data set—MMU 

[196] 
20 videos, including 31 falls and several ADLs 

LE2I [151] 191 different activities, including ADLs and 143 falls 

Charfi2012 dataset  [153] 

250 video sequences in four different locations, 192 containing falls, and 

57 containing ADLs. Actors, under different light conditions, move in 

environments where occlusion exits and cluttered and textured 

background is common 

High-quality dataset  [181] It is a fall detection dataset that attempts to approach the quality of a 

real-life fall dataset. It has realistic settings and fall scenarios. In detail, 55 



Jesús Gutiérrez – Fall detection system based on infrared images 

46 

 

fall scenarios and 17 normal activity scenarios were filmed by five web-

cameras in a room similar to one in a nursing home 

Multicam fall dataset  [138] 

The video data set is composed of several simulated normal daily 

activities and falls viewed from 8 different cameras and performed by one 

subject in 24 scenarios 

Simple fall detection dataset [148] 

The dataset contains 30 daily activities such as walking, sitting down, 

squatting down, and 21 fall activities such as forward falls, backward falls 

and sideway falls 

MOT dataset  [200] 

MOT dataset intends to be a framework for the fair evaluation of multiple 

people tracking algorithms. In this framework, the designers provide : 

 Detections for all the sequences; 

 A common evaluation tool providing several measures, from 

recall to precision to running time; 

 An easy way to compare the performance of state-of-the-art 

tracking methods; 

 Several challenges with subsets of data for specific tasks such as 

3D tracking and surveillance. 

COCO dataset  [201] 
COCO is a large-scale object detection, segmentation, and captioning 

dataset designed to show common objects in context 

Piropo [224] 
Multiple activities recorded in two different scenarios with both 

conventional and fish eye cameras 

Depth IASLAB-RGB fallen person dataset [163] 
It consists of several static and dynamic sequences with 15 different 

people and 2 different environments 
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Multimodal multiview dataset of human 

activities [178] 

It consists of 2 datasets recorded simultaneously by 2 Kinect systems 

including ADLs and falls in a living room equipped with a bed, a cupboard, 

a chair and surrounding office objects illuminated by neon lamps on the 

ceiling or by sunlight 

Sdufall [140] 10 volunteers develop 6 activities recorded by RGB-D systems 

Falling detection  [166] 
6 volunteers perform 26 falls and similar activities recorded by RGB-D 

systems. 

Fall detection dataset [158] 5 volunteers execute 5 different types of fall 

NTU RGB+ dataset [227] 

It is a large-scale dataset for human action recognition. 

It contains 56,880 action samples and includes 4 different modalities of 

data for each sample: RGB videos, depth map sequences, 3D skeletal data 

and IR videos 

Synthetic Movement Databases 
CMU Graphics Lab—motion capture library 

[183]  

Library that captures synthetic movements through movement capture 

(MoCap) technology 
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2.3 Discussion 

2.3.1 Wearable systems 
The monitored person, either directly attached to the body itself or integrated into clothes 

or accessories, carries wearable systems used for human fall detection. These systems monitor 
acceleration, linear or angular speed, angles, orientation, pressure, or distances to determine 
what events of the person's daily life could be assessed as a fall. Once an event has been 
identified as a potential fall, it can be used in the contexts of fall detection or fall prevention. 

Wearable technologies present, in comparison with the rest of the technologies used in the 
field of automatic fall detection, an array of specific characteristics that will be presented in 
depth and that are mainly related to the effects of the system's power supply through batteries. 
This reality implies the need for reducing power consumption as much as practicable, which, 
in turn, requires algorithms optimized to switch from idle monitoring in low fall probability 
states to intense monitoring in those situations when a fall is likely. 

This way, wearable fall detection systems could be grouped into two essential categories, 
the ones whose main objective is fall detection and the ones whose main goal is fall 
prevention. This differentiation can be observed in different articles of the state-of-the-art of 
this technology such as [235] and [236]. In accordance with this classification all systems able 
to detect a fall once it has taken place can be included in the group of fall detection systems 
while all other systems able to identify a fall in its very early states or able to identify gaits 
with high fall probabilities should be part of the second group. 

An alternative taxonomy to the one described in the previous paragraph would be the one 
grouping systems as a function of its capabilities to detect a fall in any of its states or its ability 
to discriminate human gaits with higher fall probabilities.  

According to this alternative classification, the first group of systems aims to detect a fall 
at any given state, prior either to impact or after it. The vast majority of collected papers 
describing systems belonging to this group, although start an intense monitoring process prior 
to ground impact, only declare the fall after this event has taken place, as the objective of these 
systems is requesting emergency help. However, a few of the considered systems declare the 
fall in previous stages, during the initial phases of the fall, so the fall can be prevented, as in 
[62], or its effects mitigated, as in [44].  

The second block of systems includes all systems that are able to classify gait styles and 
determine whether the fall probability for a particular way of walking is high. If that is the 
case, the system informs the user or their care providers, so measures can be taken to avoid a 
potential future fall. 

2.3.1.1 Technologies 
The technologies used to prevent and detect falls in wearable devices are based on the 

analysis of signals provided by sensors carried by the monitored person, either directly 
attached to the body itself or integrated in clothes or accessories. 

These sensors can provide a wide range of different kinds of signals including: 

 Acceleration 

 Pressure 

 Inclination 

 Sound 
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 Electromyography 

 Electrocardiography 

Additionally, a number of systems use a combination of signals as a method to improve 
their performances compared to the ones obtained when a single signal type is used. 

Tables 2 and 3 include the systems considered in this study grouped by technology clusters 
with indication of their measured performance. 

2.3.1.2 Position and number of sensors 
Sensor position highly determines system’s performances. 

For the case of systems using accelerometer or gyroscope signals this impact is 
documented. This way, Nor Surayahani [237] places inertial sensors on three different 
positions; hip, thigh and foot, concluding that the optimal sensor placement is the hip. In 
addition, sensors placed on feet offer the lowest system’s performances while sensors on thigh 
deliver performances in between both. 

J. Jacob [238] studies system’s performances placing inertial sensors at different points on 
the backbone. This study concludes that, in overall terms, higher positions offer better 
performances, with optimal results when sensors are placed on T-4 and diminishing ones as 
their position lowers.  

N. Pannurat  [31] proposes a specific algorithm for signal analysis and evaluates its results 
when sensors are placed at different body positions. This way, optimal sensor placement is, 
according to this study and in a diminishing order of performance, hip, head, wrist, thigh, 
chest, ankle and arm.   

Finally, C. Krupitzer [239] develops a system able to optimize signal analysis as a function 
of sensor position (thigh, hip or chest). System’s test results are optimal when the sensor is 
placed on chest while hip and thigh are, in this order, less desirable sensor placements. 

In general terms it is accepted that the higher the number of sensors is, the better the 
performances of the system are. However, this concept has its limits, as an excessive number 
of them leads to diminishing performances because of overfitting phenomena. This effect is 
documented by E. Casirali [240]  in a work where, in addition, the importance of placing at 
least one sensor on the wrist is demonstrated in order to optimize system performances. 

2.3.1.3 Signal analysis and classification algorithms 
Once sensors have generated a proper signal, its analysis will determine whether a fall has 

taken place or whether a specific gait meets the criteria to assign it a high fall probability. The 
steps associated to this analysis are the following ones: 

 Signal pre-processing. The objective of this phase is to prepare the signal for the 
analysis itself. This way, noise is diminished by using Kalman or passband filtering, 
outliers are disregarded by applying statistical analysis, and the signal domain is 
switched from time to frequency by employing Fast Fourier Transform techniques. 

 Signal characterization. Speed and acceleration, both linear and angular, will be 
inferred from sensor signal after pre-processing and these elements will be used to 
feed the classification algorithm which will determine whether a fall has taken place 
or whether a gait has a high fall probability. 
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 Classification. All classification algorithms identified in this work are part of one 
of the following blocks: 

 Threshold based: 

o Fixed threshold.  

o Adaptative threshold. The threshold is adapted to a specific 
environment, situation or person by using statistical or machine-
learning techniques. 

 Non-threshold based: 

o Based on statistical methods. 

o Based on machine-learning methods. 

o Mixed algorithms: 

 Homogeneus. Algorithms belonging to a single block are fused. 

 Heterogeneus. Algorithms belonging to different blocks are 
fused. 

2.3.1.3.1 Signal pre-processing 
During this phase, a number of processes aiming to improve signal characteristics take 

place before the analysis itself is executed. 

The main objective of this phase is often noise reduction or elimination, especially when 
accelerometers, gyroscopes or inclination sensors generate the signal. 

Mechanisms used for this purpose are diverse and include Kalman filtering, as proposed 
by J. He [241], [242], where signals coming from accelerometers and gyroscopes are filtered 
using Kalman techniques. 

Pass band filtering is often used to eliminate, at the same time, the gravity vector, placed 
in the lower band area, and noise, placed in the higher band sector. This technique is used by 
A. Sucerquia [37], [243]. 

Some other procedures are also used to reduce noise. Among them, the use of some 
frequency domain techniques, such as the Fast Fourier Transformer (FFT), is very relevant. 
This way, D. Bersch uses FFT’s in [244] to filter out high-frequency harmonics, mitigating 
this way the amount of noise present in the signal. 

The validity of these techniques is a function of the specific characteristics of every signal 
and is subject to different processing costs. Pass Band filters are simple and require reduced 
amounts of power, while more sophisticated techniques, such as FFT's, are much more 
powerful and resource consuming. Costs and performances must be carefully evaluated at 
design time to reach a satisfactory trade-off point. Although high computing costs could be 
bypassed by using online processing, constant network linking has power costs not in line 
with the low power consumption philosophy guiding the design of wearable systems. 

2.3.1.3.2 Signal analysis and characterization 
Once signal has been pre-processed, it needs to be characterized. 

The following variables can be inferred from sensor signal: 

 Accelerometer: Linear acceleration and velocity [17] - [40]. 
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 Gyroscope: Angular acceleration and velocity [41]  - [46]. 

 Pressure sensor: Pressure difference registered at inertial event times [49] - [50]. 

 Inclination sensor: Velocity variation [51] - [52]. 

 Sound sensor: Frequencies obtained from signal samples through the use of FFT 
techniques [53]. 

 Electromiography (EMG): Nervous signal intensity commanding muscles  [54] - 
[61] 

 Electrocardiography (ECG): Nervous signal intensity commanding heart [63]. 

Some classification algorithms, based on Artificial Neural Networks (ANN), as the one 
used by E. Casilari-Pérez [245] , do not require signal characterization because the pre-
processed signal can directly feed the network. 

2.3.1.3.3 Classification algorithms 

A. Threshold based 

Threshold based algorithms try to determine whether a fall has taken place or a specific 
gait meets the criteria to assign it a high fall probability by determining whether signal values 
over-exceed certain thresholds. This way, if that is the case, it is assumed that the event has 
taken place. 

Threshold value selection is critical, as too low values increase sensibility, raising false 
positives at the same time and too high values increment specificity while simultaneously 
reduce sensibility. Threshold determination has therefore a critical impact on system 
performance.  

In overall terms, classification algorithms based on thresholds have low processing 
requirements and, consequently, hardware and power consumption requirements are low, vital 
characteristics for wearable systems. 

Thresholds can be established for all system users, and in this case, they are called fixed 
thresholds, or they can be modified in order to adapt them to specific users, being called in 
this case adaptive thresholds. Systems based on fixed thresholds have lower power 
consumption and processing requirements than adaptive ones, as the former ones are much 
simpler. 

a. Fixed threshold 

These algorithms are the simplest and, therefore, they are the most suitable ones to be used 
by devices with important processing or power limitations. However, they are not user 
adaptive, which implies lower performances than more capable algorithms. 

Fudickar [246] identifies several fall phases establishing an initial free fall followed by 
ground impact. He also describes an ulterior stabilization phase associated to fall shock during 
which the person lies still on the ground and a final phase, called critical, which starts when 
the fallen person starts moving to stand up again. 

Fudickar [247] establishes the duration of each window, as well as, for inertial devices, the 
thresholds of the impact and critical phases. 
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Using the fixed threshold philosophy Abdelhedi [25] develops a system able to evaluate 
axis acceleration and, based on this information, it determines angular variation. 

Razum [248] proposes a methodology to determine optimal fixed thresholds, establishing 
all the system’s thresholds at the same time instead of doing it sequentally, as traditionally 
had been the case. This way, both sensibility and specificity are improved. 

Pham [249] determines an optimal procedure to establish fixed thresholds, so false 
positives are diminished as much as possible. 

Thella [250] studies how difficult it is to determine thresholds for the free fall phase, 
moment when any system aiming to mitigate fall damages must trigger actions, which, in this 
system specific case, would be airbag initiation. Sivaranjani [44] also proposes an airbag 
damage mitigation system triggered by a combination of a substantial diminish of the vertical 
acceleration and a significant increase of the angular velocity measured at the ankle. 

In the area of gait analysis Hemmatpour [251] presents a gait non-linear model able to 
establish detection thresholds of abnormal gaits with high fall likelihood.  

b. Adaptive threshold 

These algorithms, more complex than the previous ones, require higher processing power 
and are more power consuming. However, they are more capable and are able to fit 
individual’s peculiarities improving, this way, system’s performances. 

Yinfeng [252] proposes an algorithm based on multivariable statistical analysis to adjust 
standard threshold values to specific individuals.  

Lingmei [253] classifies system’s users as a function of age, sex, height and weight. This 
way, thresholds can be modified and performances are improved, both in the area of fall 
detection and fall prevention. 

Otanasap [168] presents an algorithm, which, starting from standard thresholds is able to 
adjust them to individuals using user’s history. 

As expected, adaptive threshold performances over-exceed fixed ones in all the studied 
systems and, therefore, thresholds should be adapted to users whenever that is possible. 

B. Non-threshold based 

This kind of methods use more complex algorithms than the previous ones to determine 
whether a fall event has taken place. 

As Aziz [254] documents, these algorithms offer better performances but require higher 
processing power, and therefore, more powerful hardware is required if services are provided 
as edge applications, or constant network connection is required. In both cases, power 
consumption is higher than in the case of threshold-based algorithm. 

 Thus, a number of studies have been carried out to evaluate whether algorithms based on 
statistical models and machine-learning techniques have practical applications in the fields of 
fall detection and gait analysis. These algorithms, due to their improved performances, have 
gained momentum in the last five years, as evidenced by Xu [255]. He evaluates systems 
designed over this period and finds out that non-threshold algorithms have been used 30% 
more frequently than threshold-based ones. 
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a. Statistical models 

A number of statistical models have been used to recognize falls using signals provided by 
wearable sensors. Although this kind of technique has not been extensively used in the studied 
systems, it is a quick method to classify activities and determine whether an event meets the 
criteria to consider it a fall or whether a certain gait has the characteristics to assign it a high 
fall probability. 

This way, the system proposed by Xinyao [256] uses an auto-regression and moving 
average model (ARIMA) to evaluate if the combined signals provided by sensors placed on 
the monitored person’s head, trunk and arms are within the limits established for non-falls 
events or if they are exceeded, assuming in the latter case that a fall has taken place. 

Finally, Su [46] presents a system, which uses a linear Fisher discriminant to determine, in 
a time as reduced as possible, whether the signals produced by inertial sensors placed on the 
trunk and the leg are within parameters of normality. 

b. Machine learning 

Machine learning techniques have been extensively used in this area and a number of 
comparative studies try to determine which ones offer better performances. 

Table 3 offers an insightful view of the performances of different machine learning 
classification algorithms used by fall detection or fall prevention wearable systems. 

S. Ray [257] classifies machine-learning algoritms as follows: 

 Descend gradient algorithms. 

 Linear regression algorithms. 

 Multivariable regression algorithms. 

 Logistic regression algorithms. 

 Decision tree algorithms. 

 SVM algorithms. 

 Naïve-Bayes algorithms. 

 K-NN algorithms. 

 K means clustering algorithms. 

 Neural network training algorithms. 

The first block of algorithms tries to minimize a defined cost function. Their coefficients 
are updated at every iteration until convergence of the cost function is obtained, and further 
iterations cannot reduce its value any more. This type of algorithms could be directly used for 
classification purposes, but in the reviewed systems, they are used to train neural networks. 
For that reason, this first block could be considered as part of the last one. 

Due to its simplicity, linear regression is not useful in this area, but multivariable regression 
has been used in the form of both linear discriminant and Fisher algorithms. In multivariable 
regression analysis, relations are established between dependent variables (system outputs) 
and independent variables (system inputs). Linear discriminant and Fisher algorithms are part 
of the same block, as both classify objects by establishing linear combinations of features that 
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characterize the class they belong to. Although algorithms of this block are used in some of 
the reviewed papers, the systems using them have not demonstrated good performance. 

Logistic regression algorithms are also used to determine fall probability. To do this, a 
logistic function is used to model the fall probability variable. Its parameters are estimated 
using fall data, and once they have been established, the function is used to determine fall 
probability. As in the previous case, logistic regression algorithms have proven to deliver poor 
performance. 

Bayesian algorithms are also used in the reviewed systems. This technique uses Bayes' 
theorem to determine event probability using previous information (a priori). For the specific 
case of the Naïve-Bayes algorithm, a number of simplifications are made in order to establish 
a fall probability, as D. Berrar details [258]. As in previous cases, the performances of this 
technique are quite low. 

Decision tree algorithms and aggregations of this method, known as random forests, can 
be found in the reviewed papers to determine whether a fall event has taken place. Because of 
the simultaneous consideration of different elements in a single tree, they tend to over fit. To 
avoid this problem, multiple trees can be used, implementing, this way, a concept known as 
random forest. Decision trees performances, although better than the ones obtained by 
previous algorithms, continue being low compared to the ones of other reviewed algorithms. 

SVM algorithms are extensively used in the reviewed papers and their performances are 
excellent. They establish a separation surface limiting classes in order to classify objects. 
When this separation cannot be linear, surfaces are created by using complex functions. 

The block of KNN algorithms is often used by the reviewed systems with good results. 
During their training phase, these algorithms cluster object classes in order to classify events 
in their operational phase. This way, in this second phase items are assigned to the closer class 
after mean distance to all of them is calculated. 

Neural network training algorithms are used to obtain network optimal coefficients. Neural 
networks are an aggregation of items, called neurons, connected to each other through links. 
Each neuron outputs values that are multiplied by a factor called weight. The result is fed into 
the connected neuron and, in turn, it outputs values, which, after being multiplied by new 
weights, are pumped into ulterior neurons. Additionally, value or intensity conditions are set 
to activate inter-neural links. These conditions are established through functions called 
activation functions. This way, proper weights are key to obtain good network performances 
and, to determine them, training algorithms are used during network training. 

The following table summarizes the results of the three best performing algorithms.  

Table 9. Machine learning classification algorithms performance comparison. 

 

  STUDIES IT APPEARS IN BETTER PERFORMANCES 

SVM 20 8 (40%) 

KNN 15 5 (33%) 

ANN 20 12 (60%) 

 

However, these results should be cautiously analyzed, as no common reference benchmark 
was used for comparison. Additionally, real world fall data is scarce and the vast majority of 
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it is, in reality, data associated to simulated falls performed by young volunteers. Both aspects 
are well documented by L. Ren [259] in his article. 

2.3.1.4 System performance indicators 
The two essential variables determining fall detection system performances are system 

sensibility and system specificity. They are defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

Some studies reviewed reference system performance to its accuracy, defining it as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

The set of system’s performance variables is completed by defining Prevalence as: 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

In other words, Prevalence is the relation between the total number of falls and the total 
number of events. 

This way an alternative way to define Accuracy is: 

 

Accuracy=Sensibility * Prevalence * Specificity * (1 – Prevalence) 

 

In simple terms, sensibility is a measure of the system capability to determine what events 
are a fall while Accuracy determines the system capability to establish what events are not a 
fall. 

Accuracy reduces granularity, as it just measures how accurate the system is at 
classification tasks. This way, as the number of falls is low compared to the rest of daily 
events, the most relevant parameter for Accuracy is Specificity. This way, a fall detection 
system could have high Accuracies as long as its Specificity is high, even if its Sensibility is 
low. 

Additionally, a last parameter, F1, is defined as: 

 

𝐹1 =
2 𝑥 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 𝑥 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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In any case, independently of the used parameter to measure system performance, it 
depends on the type of signal, the number of sensors and the signal processing (pre-processing, 
signal characterization and classification algorithm) 

However, system comparison is difficult, as no common benchmark has ever been 
established and the used fall data has been extracted from simulated falls whose characteristics 
are not necessarily identical to elderly’s ones. 

The differences between young volunteers falls, who usually simulate the falls, and 
elderly’s ones is studied by M. Kangas [260], concluding that there are significant differences 
between both. Additionally, Klenk [261] finds substantial differences between simulated and 
real falls contradicting the results of the studies made by Timo Jämsä [262] and E Casilari 
[263], which report statistical similarities. Anyhow, all these studies conclusions are extracted 
from a very reduced number of experiments and, therefore, they cannot be considered 
decisive. 

Finally, the absence of common test benchmarks is highlighted in a number of papers 
[259], [245]. 

2.3.1.5 Low power consumption 
Low power consumption is key for wearable fall detection systems as, for the time being, 

they operate on batteries. 

Power consumption depends, essentially, on system architecture and on fall detection 
algorithm implementation. 

Distributed system architectures, which process signal nearby sensors, are optimal when 
sampling rates are reduced and detection algorithms are simple as, this way, power 
consumption, processing capabilities and hardware requirements will be low. Power 
consumption will be even lower if the used detection algorithm implements power saving 
modes (sleep mode) whenever that is possible. These systems, as expected, have lower 
performances than other ones whose requirements are higher. 

Systems implementing algorithms that are more complex have improved performances, 
requiring higher processing power and hardware requirements, which, in turn, means that 
power consumption will be higher. Additionally, cloud computing, which could diminish 
processing needs, requires constant network linking that implies higher power consumption. 
This way, systems like the one presented by E Casilari [263], which requires constant 
Bluetooth link between a smarwatch and a telephone, reduces watch battery time between 
charges from a week down to around 10 hours. 

Important efforts are being made to recharge batteries or feed systems through alternative 
methods. This way, energy collecting systems based on the use of the piezoelectric effect have 
been proposed, as Q. Cheng did in [264], where he uses this effect to feed a LCD screen and 
a LED. 

T. Wu [265] presents a system able to energize inertial and photoplethismographic (PPG) 
sensors for 12 hours using the solar energy collected during a period of 3 hours and K. Li 
[266] introduces one able to harvest energy from limbs movements. 

Y. Cai [267] designs a power device which collects solar, thermal and mechanic energy to 
feed wearable systems while S. M. Noghabaei’s one [268] harvests electromagnetic energy 
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and S. Roundy [269] studies mechanic energy harvesting comparing outputs of piezoelectric, 
electromagnetic and electrostatic systems. 

Finally, M. Mohammadifar [270] proposes a power device based on microbial power cells 
which explodes bacteria’s ability living on the human skin to transform the chemical energy 
of the human sweat into electrical one in order to power wearable systems. 

All these power generation alternative technologies are still in a very immature stage and, 
for the time being, they are not an option to power any real-world system. This way, for the 
time being, the only credible option to extend system operational period between charges is 
diminishing power consumption as much as possible. 

2.3.1.6 Fall detection wearable systems acceptance 
In overall terms, wearable fall detection systems have not been well accepted by the 

potential main beneficiary community, the elderly. 

Thilo [15] studies this phenomenon and interviews a number of nursing home residents 
concluding that introducing this kind of systems in that community can only be done if the 
final user is included in the system design and development phases, making them feel part of 
the team. It also requires commitment of the caregivers community, as they should be the 
bridge connecting the system development group and the final user. This way, care givers, 
who are the final user’s most trusted group, could transmit elderly’s needs and system 
requirements to the development teams while, at the same time, help the elderly to understand 
the advantages of this kind of systems.  

Surprisingly, in the reviewed papers there are only two references to actions of this nature 
taken by the system development community in order to favor system introduction. These 
references are the above-mentioned paper by Thilo and a study by Demiris [16], where a 
number of recommendations made by nursing home residents to the system development 
community are gathered. 

2.3.1.7 Conclusions 
Wearable fall detection systems' maturity has experienced significant advances over the 

last few years. The research community's effort to achieve a level of maturity high enough to 
make them commercially viable is evident from the number of papers published on wearable 
systems, which is the second highest after the one associated with vision-based systems. 

Wearable systems use sensors carried by the monitored person to evaluate their 
movements. The vast majority of system sensors are either accelerometers or gyroscopes, 
although some other kinds, such as microphones, pressure sensors, ECG, and EMG, are also 
used. 

After an initial pre-processing phase, whose main goal is noise reduction, the systems 
analyze the signal to determine its characteristics. These characteristics are then used for 
classification purposes to evaluate whether a fall event has taken place. 

There are several classification algorithms, with threshold-based ones being commonly 
used due to their simplicity and low processing power requirements. However, their 
performances are limited when compared to other more capable algorithms. Classification 
based on machine learning has demonstrated optimal outcomes, closely followed by SVM 
algorithms. However, unlike the threshold-based algorithms, their power consumption and 
processing requirements are high. 
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Some of the reviewed systems use multiple sensors, and, in general, the higher the number 
of sensors, the better the system's performance. However, this general rule has limitations, and 
an excessive number of sensors could reduce performances due to overfitting phenomena. 
Additionally, sensor position is relevant, especially in the case of inertial ones. They offer 
better results when placed in positions where movement during a fall is maximum. 

Despite efforts to power wearable devices through alternative means, such as mechanical, 
biochemist, or sunlight energy harvesting systems, batteries continue to be the only credible 
devices to energize this kind of systems. This fact favors edge-computing techniques and 
simple processing algorithms, as these characteristics reduce power consumption. 
Additionally, further consumption reductions imply diminished sampling rates and keeping 
systems in dormant states for periods as long as practical. While these features are very 
positive in terms of power consumption reduction, they may diminish system performances. 
Therefore, a reasonable design trade-off point must be reached. 

The vast majority of reviewed systems use validation databases to evaluate performances. 
Some of those databases have been developed to check specific systems and have never been 
released to the research community, while some others are public ones. The only one among 
them containing real fall data is FARSEEING [271]. The rest has been made by volunteers 
and actors a lot younger than the elderly community, theoretical main beneficiary of these 
systems. This fact, together with the conclusions of the studies made by Kangas [260] and 
Klenk [261], which document significant differences between real and simulated falls, and 
between the ones of young and elderly people, highlight how reduced is the amount of valid 
data that can be used to design and validate fall detection systems and rises doubts about the 
reliability of these systems in the real world. 

In addition, there are no standard evaluation benchmarks globally accepted by the 
community of developers. This fact makes system comparison very difficult, which, in turn, 
substantially complicates reaching conclusions about system performances. 

Finally, and although most commercial fall detection systems are based on wearable 
technologies, mainly inertial ones, its acceptance rate among the elderly continues low, as 
shown in the system requirement chapter. Surprisingly, there is an almost absolute lack of 
studies aiming to assist system development, as only the paper by Thilo et al. [15] and the one 
by Demiris et al. [16] describe the needs of the elderly community and make recommendations 
to guide developers. Given that none of the reviewed papers devotes any effort to collect user's 
or system requirements, it becomes reasonable to assume that low acceptance rates are, at least 
partially, a consequence of the disregard for the real user's needs.  

In any case, and in spite of the problems associated to the disadvantages of carrying a 
sensor at all times and paying attention to keeping its battery operational, the maturity of 
wearable technologies is responsible for being, together with the artificial vision one, the 
technology used by commercial systems. 

2.3.2 Ambient systems 
Ambient fall detection systems, unlike wearable ones, place sensors around the monitored 

person. Although in strict terms, artificial vision techniques should be part of this group, most 
taxonomies establish a specific block for artificial vision systems, which includes both the 
ones able to process visual signals and the infrared-based ones. In this work, for practical 
reasons, the formal division between ambient and artificial systems will be maintained. 

Ambient systems present advantages compared to wearable ones, as they lack the power 
consumption, processing power, and network linking limitations associated with the latter 
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ones. However, they also have substantial limitations, as these systems are only present in a 
very limited number of environments, usually the ones where the life of the monitored people 
takes place most of the time. 

None of the reviewed ambient systems can conduct gait analysis, so all of them should be 
classified as fall detection systems. 

2.3.2.1 Technologies 
Different types of sensors could provide the signal to be fed into the system depending on 

the used technology. This way, signal could come from: 

 Acoustic sensors 

 Contact sensors: 

o Pressure 

o Deformation 

o Capacitance 

 Passive infrared sensors 

 Radiofrequency sensors: 

o Radar 

o WiFi 

Table 5 includes all reviewed systems classified in accordance with the previous ambient 
fall detection system taxonomy. 

2.3.2.2 Signal analysis and classification 
After sensors generate a signal, like in the case of the wearable systems, it must be 

processed, so whether a fall has taken place can be concluded. This analysis is divided into 
the following blocks: 

 Signal pre-processing. In overall terms, this phase goal is decluttering and, when 
the signal is an aggregation of components, the separation is done during this phase. 

 Signal characterization. This process phase aims to infer the main signal 
characteristics so the event can be classified. A number of systems using deep 
neural networks inject the pre-processed signal straight into them, so signal 
characterization and classification phases are fused in a single one. 

 Classification. Its objective is determining whether a fall has taken place. To do it 
the relevant characteristics of the signal, extracted in the previous phase, are used.  

2.3.2.2.1 Signal pre-processing 
Signal pre-processing varies depending on the type of signal. 

For the case of sound signals, sound direction can be determined if an array of microphones 
is used. This is the case of the system presented by Mungamuru [272], which uses signal phase 
displacement to determine sound direction. Additionally, a number of the reviewed systems 
use low-pass filters to reduce noise. In the case of [96] and [97] a Hidden Markov Model to 
suppress periods of silence and separate superposed sounds is employed. 

The reviewed systems using contact signals do not pre-process it. 
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PIR systems pre-process signal in order to reduce noise, usually by using moving average 
techniques or other statistical methods that try to extract human silhouette out of clutter by 
using the temperature difference between background and human body. These processes are 
detailed in [103]. Gaussian filters and high frequency component suppression after wavelet 
transform application over signal [105] are also useful methods for noise reduction. 

Radar based systems need signal comparison between broadcasted and received signals, so 
Doppler shifting can be established. This way, signal is decluttered before sampling it. 
Additionally, Kalman filter is used in some systems like [117] to track moving objects. 

Finally, WiFi systems evaluate wave propagation modifications because of human body 
interposition between emitting and receiving antennas. In  [125] amplitude and phase 
displacement of the carrier wave of a domestic WiFi is evaluated, as well as its Doppler 
shifting as a consequence of hunan activity. To do it, as different devices request router 
services and, therefore, broadcasted signal is not linearly distributed over time, an initial 
interpolation is executed to apply then a pass-band filter, so all non-relevant frequencies are 
discarded. This way, in [127] a Butterworth passband filter is used with this purpose and in 
[131] a wavelet transform is applied to filter out noise before signal is passed to the following 
block. 

2.3.2.2.2 Signal analysis 
As in the previous case, used analysis techniques are signal dependant. 

For the case of sound signals, Mel Frequencies Cepstral Coefficients (MFCCs) will be 
determined, following an analogous process to the human hearing one, which allows us to 
recognize sounds and voices. To do this, the following steps are followed: 

Signal is divided into time steps. 

 A FFT is applied and spectral power is determined in every time step. Then the 
spectral power distribution is calculated using frequency steps, which are referred 
to a Mel scale. 

 Power logarithms are taken in each frequency step. 

 A discrete cosine transform is applied to the logarithms obtained in the previous 
step. 

 MFCC’s will be the obtained power spectrum amplitudes. 

This technique, used in  [92]- [95] and in [98] ,replies the way human hearing works, as it 
groups sound signals by frequency steps in order to recognize them and its sensibility is not 
linear but logarithmic. 

An alternative characterization process is proposed in [96] and [97], where acoustic local 
ternary patterns are proposed for sound recognition, a technique imported from the artificial 
vision field and used by these systems with good results. 

Finally, in [98] a Siamese neural network, able to infer fall sound characteristics from a 
limited number of real fall data, is used with fall detection purposes. This network, as in the 
previous case, is imported from the world of artificial vision and most classification 
algorithms can easily handle its output. Furthermore, this is the only system among all the 
reviewed ones, which uses a neural network with fall sound recognition purposes. 

For the case of contact signals, all reviewed papers use voltage for signal characterization. 
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PIR systems establish human body detection angle. Once it has been determined both 
vertical and horizontal velocities, as well as trajectory deviations and their variances are 
calculated, as it happens in [103]. Alternative approaches, as the one in [106], use other data 
such as sensor distance, activity duration or trajectory. Some other approaches, such as [107], 
use deep neural networks to visually recognize signal characteristics. 

In radar systems, sampled Doppler shifting is treated to obtain signal characteristics. In 
[118] mean, maxima, increasing and decreasing rates and variance are used with classificatory 
objectives. In [110] a wavelet transform is applied to the pre-processed signal to calculate 
spectral power distribution over time, which is used with classification purposes. In [111]  
power spectrum is also determined after sequencing signal in two-second blocks and applying 
an FFT to each one of them. A similar process is used in [116], where a Short-time Fourier 
Transform (STFT) is used. In [112] the integrated map of Doppler shift vs distance is the 
parameter used to classify events. In [115] a similar map is used but, in this case, both vertical 
and horizontal axis are considered. A similar process is followed in [120], where those maps 
are used to evaluate energy at the points where a fall event could have taken place in order to 
corroborate it. In [113] and [116] time domain Doppler Shift is used with classification 
purposes. 

WiFi systems use a number of techniques to evaluate fall probability. This way, in [125] 
start and end points of potential fall events are determined using phase displacement. Once 
the time slot assigned to the fall has been destermined, phase displacement variation, mean, 
total deviation, maximum value, event duration, phase changing rate and signal energy 
diminution during the event are used to determine whether it has been a fall. In some other 
systems like [126] signal is directly fed into a neural network. 

2.3.2.2.3 Classification algorithms 
Table 5 offers a good perspective of the classification methods used in this field, as it 

contains all the classification algorithms used by the reviewed ambient fall detection systems. 
It must be noted that, although in general terms, they are similar to the ones used in wearable 
systems, some of them slightly differ. 

HMM is part of the semi-supervised algorithms block, Adaboost is part of the numeric 
supervised algorithms one, and K-NN and Voting and bagging belong to the algorithm 
regression group. DTW is a temporal series algorithm, which identifies similarities between 
series. 

In table 10, which has been elaborated using data from table 5, the best-performing 
algorithms can be identified. 

Table 10. Best classification machine learning techniques for ambient fall detection systems. 

 CLASSIFICATOR BEST OPTION 

ANN 66,7% 

RF 5,6% 

SVM 16,7% 

KNN 11,1% 

 

This way, although this data must be cautiously approached because there is not a widely 
accepted comparison benchmark, the results could suggest that neural networks, followed by 
SVM and KNN classifiers, are the best performing options. 
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2.3.2.3 System performance indicators 
In addition to the metrics used to evaluate wearable system performances, two extra ones, 

FNR and AUC, are utilized to assess ambient ones. 

FNR (False Negative Rate) measures the ratio of non-detected real falls or false negatives. 

Additionally, and prior to explain what AUC is, ROC needs to be defined. ROC (Receiver 
Operating Characteristic Curve) is a curve that reflects performances of a binary classification 
system for its different settings. The False Positive Ratio (FPR) and the True Positive Ratio 
(TPR) are the used axis to represent the curve. 

 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

AUC (Area Under the Curve) is defined as the integral of the curve along its entire domain. 
This way, AUC, which will be a number between 0 and 1, will indicate improved system 
performances as it approaches 1. 

2.3.2.4 Acceptance 
The number of published papers devoted to ambient fall detection systems is lower than 

the ones describing wearable ones. However, they present a number of advantages that have 
allowed them to be better accepted by the elderly community. The main one is that the 
monitored person does not need to pay constant attention to wearable systems, which require 
ensuring at all times that their batteries are able to power them. However, the deployment of 
ambient systems around the monitored person is not instantaneous, as it is often limited to the 
facilities where the elderly live. 

As in the previous case, the lack of interest from the developing community to understand 
the real problems of potential users of this kind of systems is clearly reflected by the number 
of papers alluding to this area. In the particular case of ambient fall detection systems, no 
paper has been found during the review process trying to assess these problems or having the 
intention to provide any feedback or guidance from the community of users and their 
caregivers. 

Improvements in acceptance rates, as in the case of wearable systems, require better 
connections between the communities of users and developers.  

2.3.2.5 Conclusions 
Ambient fall detection systems' main difference, compared to wearable ones, is sensor 

position. While the monitored person carries wearable system sensors, ambient ones are 
placed around them. However, the development of ambient systems over the last few years 
has not been as intense as that experienced by wearable technologies. A good indicator of this 
weaker research interest is the number of published papers associated with these technologies, 
which is around half the number of articles associated with wearable or vision-based devices. 
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Ambient systems are based on contact, passive infrared, acoustic, radar, or Wi-Fi 
technologies. Although artificial vision technologies could be included in this block, as their 
sensors are deployed around the monitored person, most taxonomies put them in a different 
group. 

In these systems, the signal passes through a first block where noise is reduced. 
Additionally, in acoustic systems, sound direction is determined, and often, silent periods are 
eliminated. For Wi-Fi systems, all irrelevant frequencies are blanked. 

Signal characterization is different depending on the type of technology employed. For 
example, acoustic signal characterization is based on Cepstral Coefficients determination, a 
technique that, based on spectral distribution power comparison, tries to determine whether a 
fall has taken place. Passive infrared techniques extract human silhouette from the background 
using temperature differences between the human body and its surrounding environment. 
Contact systems evaluate whether a specific pressure distribution could be associated with a 
fallen body, while devices based on radar or Wi-Fi use Doppler shifting to evaluate fall 
probability. 

Classification techniques are diverse. The most performant ones include K-NN algorithms, 
which use distance from the element to be classified to known samples, and SVM algorithms, 
whose performances are slightly better than K-NN ones. These algorithms are able to establish 
limits separating classes in multidimensional spaces. Finally, systems using neural networks 
have proved to be the most performant ones at successfully evaluating a potential fall event. 

Ambient systems do not present problems associated with power consumption. This way, 
the limitations associated with processing power limits or continuous data transmission to 
cloud systems are suppressed. This clear advantage over wearable systems is countered by the 
limitations associated with sensor deployment, which, very often, is limited to facilities used 
by the elderly community. 

The number of public databases associated with ambient technologies is very limited, and 
most reviewed systems have been validated using databases specifically developed for them. 
This fact, together with the lack of accepted common benchmarks, makes system comparison 
extremely complex. 

Ambient systems' acceptance rate is even lower than that of wearable devices. However, 
they present a clear advantage from the user’s perspective as; unlike in the case of wearable 
ones, there is no need to pay continuous attention to battery status. In spite of that, ambient 
systems' acceptance rate remains almost nonexistent with no commercial use, probably 
because of the immaturity of these technologies. 

2.3.3 Vision-based systems 
Visual-based fall detection systems have been evolving in a manner similar to other human 

activity recognition systems that rely on artificial vision. There has been a notable increase in 
the use of ANN’s in these systems. Additionally, there is a clear trend towards adopting cloud 
computing systems, except for those integrated into robots. 

All the analyzed systems share a common three-step approach to fall detection using 
artificial vision, with some variations depending on the specific system. 

The first step, which is not always necessary, involves preprocessing the video signal to 
optimize it as much as possible. 
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The second step is characterization, where image features are abstracted to express what is 
happening in the images through descriptors. These descriptors will be used in the last step of 
the process. 

The third step is the classification phase, where the observed actions, characterized by 
abstract descriptors, are labeled as either a fall event or a non-fall event. This allows measures 
to be taken promptly to assist the fallen person. 

Some systems adopt a frame-by-frame approach, where the main goal is to classify the 
human pose as fallen or not, focusing less on the fall motion itself. For systems, trying to 
determine if a specific movement may be a fall, silhouette tracking is a fundamental operation 
performed through various processes. The tracking techniques used by the systems are 
explained in the following section. 

Finally, a comparison of classification algorithm performance and validation datasets is 
presented in the last two sections. 

2.3.3.1 Signal preprocessing 
The final objective of this phase is either distortion and noise reduction or format 

adaptation, so downstream system blocks can extract characteristic features with classification 
purposes. Image complexity reduction could also be an objective during the preprocessing 
phase in some systems, so the computational cost can be reduced, or video streaming 
bandwidth use can be diminished. 

The techniques grouped in this Section for decreasing noise are numerous and range from 
Gaussian smoothing used in  [159] to the morphological operations executed in [145], [159], 
[202] or [152]. They are introduced in subsequent Section as a part of the foreground 
segmentation process. 

Format adaptation processes are present in several of the studied systems, as is the case in  
[176], where images are converted to grayscale and have their histograms equalized before 
being transferred to the characterization process. 

Image binarization, as in [217], is also introduced as a part of the systematic effort to reduce 
noise during the segmentation process. While some other systems, like the one presented in 
[184], pursue image complexity decreasing by transforming video signals from red, green and 
blue (RGB) to black and white and then applying a median filter, an algorithm which assigns 
new values to image pixels based on the median of the surrounding ones. 

Image complexity reduction is a goal pursued by some systems, as the one proposed in 
[219], which introduces compressed sensing (CS), an algorithm first proposed by Donoho et 
al. [273] used in signal processing to acquire and reconstruct a signal. Through this technique, 
signals, sparse in some domain, are sampled at rates much lower than required by the Nyquist–
Shannon sampling theorem. The system uses a three-layered approach to CS by applying it to 
video signals, which allows privacy preservation and bandwidth use reduction. This 
technique, however, introduces noise and over-smooths edges, especially those in low contrast 
regions, leading to information loss and image low-resolution. Therefore, image complexity 
reduction feature characterization often becomes a challenge. 

Signal characterization 

The second process step intends to express human pose and/or human motion as abstract 
features in a qualitative approach, to quantify their intensity in an ulterior quantity approach. 
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These quantified features are then used with classifying purposes in the last step of the fall 
detection system. 

These abstract pose/action descriptors can globally be classified into three main groups: 
global, local and depth. 

Global descriptors analyze images as a block, segmenting foreground from background, 
extracting descriptors that define it and encoding them as a whole. 

Local descriptors approach the abstraction problem from a different perspective and, 
instead of segmenting the block of interest, process the images as a collection of local 
descriptors. 

Depth characterization is an alternative way to define descriptors from images containing 
depth information by either using depth maps or skeleton data extracted from a joint tracking 
process. 

2.3.3.1.1 Global descriptor 
Global descriptors try to extract abstract information from the foreground once it has been 

segmented from the background and encode it as a whole. 

This kind of activity descriptors was very commonly used in artificial vision approaches to 
human activity recognition in general and to fall detection in particular. However, over time, 
they have been displaced by local descriptors or used in combination with them, as these ones 
are less sensitive to noise, occlusions and viewpoint changes. 

Foreground segmentation is executed in a number of different ways. Some approaches to 
this concept establish a specific background and subtract it from the original image; some 
others locate regions of interest by identifying the silhouette edges or use the optical flow, 
generated because of body movements, as a descriptor. Some global characterization methods 
segment the human silhouette over time to form a space–time volume, which characterizes 
the movement. Some other methods extract features from images in a direct way, as in the 
case of the system described in [176], where every three frames, the mean square error (MSE) 
is determined and used as an indicator of image similarity. 

Silhouette Segmentation 

Human shape segmentation can be executed through a number of techniques, but all of 
them require background identification and subtraction. This process, known as background 
extraction, is probably the most visually intuitive one, as its product is a human silhouette. 

Background estimation is the most important step of the process, and it is addressed in 
different ways. 

In [145], [152], [184], [202], as the background is supposed constant, an image of it is 
taken during system initialization, and a direct comparison allows segmentation of any new 
object present in the video. This technique is easy and powerful; however, it is extremely 
sensitive to light changes. To mitigate this flaw, the system described in [159], where the 
background is also supposed stable, a median throughout time is calculated for every pixel 
position in every color channel. Then, it is directly subtracted from the observed image frame-
by-frame. 

Despite everything, the obtained product still contains a substantial amount of noise 
associated with shadows and illumination. To reduce it, morphological operators can be used 
as in [145], [152], [159], [202]. Dilation and/or erosion operations are performed by probing 
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the image at all possible places with a structuring element. In the dilation operation, this 
element works as a local maximum filter and, therefore, adds a layer of pixels to both inner 
and outer boundary areas. In erosion operations, the element works as a local minimum filter 
and, therefore, strips away a layer of pixels from both regions. Noise reduction after 
segmentation can also be performed through Kalman filtering, as in [220], where this filtering 
method is successfully used with this purpose. 

An alternative option for background estimation and subtraction is the application of 
Gaussian mixture models (GMM), a technique used in [135], [139], [142], [206], [220], 
among others, that models the values associated with specific pixels as a mix of Gaussian 
distributions. 

A different approach is used in [134], where the Horprasert method [274] is applied for 
background subtraction. It uses a computational color model that separates the brightness from 
the chromaticity component. By doing it, it is possible to segment the foreground much more 
efficiently when light disturbances are present than with previous methods, diminishing this 
way light change sensitiveness. In this particular system, pixels are also clustered by 
similarity, so computational complexity can be reduced. 

Some systems, as the one presented in [135], apply a filter to determine silhouette contours. 
In this particular case, a Sobel filter is used, which determines a two-dimensional gradient of 
every image pixel. 

Other segmentation methods, like vibe [147], used in [150] and [222], store, associated 
with specific pixels, previous values of the pixel itself and its vicinity to determine whether 
its current value should be categorized as foreground or background. Then, the background 
model is adapted by randomly choosing which values should be substituted and which not, a 
clearly different perspective from other techniques, which give preference to new values. On 
top of that, pixel values declared as background are propagated into neighboring pixels part 
of the background model. 

The system in [136] segments the foreground using the technique proposed in [275], where 
the optical flow (OF), which are presented in later Sections, is calculated to determine what 
objects are in motion in the image, feature used for foreground segmentation. In a subsequent 
step, to reduce noise, images are binarized and morphological operators are applied. Finally, 
the points marking the center of the head and the feet are linked by lines composing a triangle 
whose area/height ratio will be used as the characteristic classification feature. 

Some algorithms, like the illumination change-resistant independent component analysis 
(ICA), proposed in [223], combine features of different segmentation techniques, like GMM 
and self-organizing maps, a well-known group of ANN able to classify into low dimensional 
classes very high dimensional vectors, to overcome the problems of silhouette segmentation 
associated with illumination phenomena. This algorithm is able to tackle segmentation errors 
associated with sudden illumination changes due to any kind of light source, both in images 
taken with omnidirectional dioptric cameras and in plain ones. 

ICA and vibe are compared in [222] by using a dataset specifically developed for that 
system with better results for the ICA algorithm. 

In [137], foreground extraction is executed in accordance with the procedure described in 
[276]. This method integrates the region-based information on color and brightness in a 
codeword and the collection of all codewords are grouped in an entity called codebook. Pixels 
are then checked in every single new frame and, when its color or brightness does not match 
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the region codeword, which encodes area brightness and color bands, it is declared as 
foreground. Otherwise, the codeword is updated, and the pixel is declared as area background. 
Once pixels are tagged as foreground, they are clustered together, and codebooks are updated 
for each one of them. Finally, these regions are approximated by polygons. 

Some systems, like the one in [137], use orthogonal cameras and fuse foreground maps by 
using homography. This way, noise associated with illumination variations and occlusion is 
greatly reduced. The system also calculates the observed polygon area/ground projected 
polygon area rate as the main feature to determine whether a fall event has taken place. 

Self-organizing maps is a technique, well described in [277], used with segmentation 
purposes in [186]. When applied, initial background estimation is made based on the first 
frame at system startup. Every pixel of this initial image is associated with a neuron in an 
ANN through a weight. Those weights are constantly updated as new frames flow into the 
system and, therefore, the background model changes. Self-organizing maps have been 
successfully used to subtract foreground from background, and they have proven to be 
resilient to light variation noise. 

Binarization is a technique used for background subtraction, especially in infrared (IR) 
systems, as the one presented in [217], where the inputs IR signals pixels are assigned two 
potential values, zero and one. All pixels above a certain threshold value are assigned a value 
1 (human body temperature dependent), and all others are given a value of 0. This way, images 
are expressed in binary format. However, the resulting image usually has a great amount of 
noise. To reduce it, the algorithm is able to detect contours through gradient determination. 
Pixels within closed contours whose dimensions are close to the ones of a person continue 
being assigned a value 1, while the rest are given a value 0. 

Once the foreground has been segmented, it is time to characterize it through abstract 
descriptors that can be classified at a later step. 

This way, after background subtraction, features used for characterization in [159] and 
[142] are silhouettes eccentricity, orientation and acceleration of the ellipse surrounding the 
human shape. 

Characteristic dimensions of the bounding box surrounding the silhouette are also a 
common distinctive feature, as is the case in [206]. In [195], a silhouette's horizontal width is 
estimated at 10 vertically equally spaced points, and, in [202], five regions are defined in the 
bounding box, being its degree of occupancy by the silhouette is used as the classifying 
element. 

Other features also used for characterization used in  [135] and [167] include Hu moments, 
a group of six image moments in variables to translation, scale, rotation, and reflection, plus 
a seventh one, which changes sign for image reflection. These moments, assigned to a 
silhouette, do not change because of the point of view alterations associated with body 
displacements. However, they dramatically vary as a result of human body pose changes as 
the ones associated with a fall. This way, a certain resistance to noise due to the point of view 
change is obtained. 

The Feret diameter, the distance from the two most distant points of a closed line when 
taking a specific reference orientation, is another used distinctive feature. The system 
described in [186] uses this distance, with a reference orientation of 90°, to characterize the 
segmented foreground. 
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Procrustes analysis is a statistical method that uses minimum square methods to determine 
the needed similarity transformations required to adjust two models. This way, they can be 
compared, and a Procrustes distance, which quantifies how similar the models are, can be 
inferred. This distance, employed in some of the studied systems as a characterization feature, 
is used to determine similarities between silhouettes in consecutive frames and, therefore, as 
a measure of its deformation because of pose variation. 

The system introduced in [150], after identifying in each frame the torso section in the 
segmented silhouette, stores its position in the last 100 frames in a database and uses this 
trajectory as a feature for fall recognition. 

To decrease sensitiveness to noise because of illumination noise and viewpoint changes, 
some systems combine RGB global descriptors and depth information. 

This is the case of [177], where the system primarily uses depth information, but when it 
is not available, RGB information is used instead. In that case, images are converted to 
grayscale and pictures are formed by adding up the difference between consecutive frames. 
Then, features are extracted at three levels. At the pixel level, where gradients are calculated, 
at the patch level, where adaptive patches are determined, and at the global level, where a 
pyramid structure is used to combine patch features from the previous level. The technique is 
fully described in [278]. 

A different approach to the same idea is tried in [191], where depth information is derived 
from monocular images as presented in [140]. This algorithm uses monocular visual cues, 
such as texture variations, texture gradients, defocus and color/haze. It mixes all these features 
with range information derived from a laser range finder to generate, through a Markov 
random field (MRF) model, a depth map. This map is assembled by splitting the image into 
patches of similar visual cues and assigning them depth information that is related to the one 
associated with other image patches. Then, and to segment foreground from background, as 
the human silhouette has an almost constant depth, a particle swarm optimization (PSO) 
method is used to discover the optical window in which the variance of the image depth is 
minimum. This way, patches whose depth information is within the band previously defined 
are segmented as foreground. 

This method, first introduced in [279], was designed to simulate collective behaviors like 
the ones observed in flocks of birds or swarms of insects. It is an iterative method where 
particles progressively seek optimal values. This way, in every iteration, depth values with the 
minimum variance associated with connected patches are approximated, increasing until an 
optimal value is reached. 

Space–Time Methods 

All previously presented descriptors abstract information linked to specific frames and, 
therefore, they should be considered as static data, which clustered along time, acquire a 
dynamic dimension. 

Some methods, however, present visual information where the time component is already 
inserted and, therefore, dynamic descriptors could be inferred from them. 

That is the case of the motion history image (MHI) process. Through this method, after 
silhouette segmentation, a 2-D representation of its movement, which can be used to estimate 
if the movement has been fast or slow, is built up. It was first introduced by Bobick et al. [280] 
and reflects motion information as a function of pixel brightness. This way, all pixels represent 
moving objects bright with an intensity function of how recent movement is. This technique 
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is used in [144], [145] and [220] to complement other static descriptors and introduce the time 
component. 

Some systems, as the one introduced in [169], split the global MHI feature in sub-MHIs 
that are linked to the bounding boxes created to track people. This way, a global feature like 
MHI is actually divided into parts, and the information contained in each one of them is 
associated with the specific silhouette responsible for the movement. Through this procedure, 
the system is able to locally capture movement information and, therefore, able to handle 
several persons at the same time. 

Optical Flow 

Optical flow can be defined as the perceived motion of elements between two consecutive 
frames of a video clip resulting from the relative changes in angle and distance between the 
objects and the recording camera. 

OF, as MHI, is a characterization feature that integrates the time dimension in the 
information abstraction process and, therefore, a dynamic descriptor. 

A number of methods to obtain OF have been developed, being the Lucas–Kanade–Tomasi 
(LKT) feature tracker, presented in [281] and [282], the most used one. This is the OF 
obtaining procedure used in all the studied systems which use this feature as a dynamic 
descriptor. 

Two main approaches are considered to obtain OF, sparse, where only relevant points are 
followed, and dense, where all image pixels are taken into consideration to collect their flow 
vectors. 

In  [145], [152], [160], [203], [211], [214] and [216], a dense OF is created that will be 
used as one of the image characteristic features from which descriptors can be extracted. 

Some of these systems obtain OF from segmented objects, as is the case in [145], where, 
after silhouette segmentation, an OF is derived, and its motion co-occurrence feature (MCF), 
which is the modulus/direction histogram of the OF, is used for classification. 

The system in [152] also extracts a dense OF from segmented objects. In this case, after 
OF determination, it distributes flow vectors on a circle in accordance with their direction. 
The resulting product is a Von Mises distribution of the OF flow vectors, which is used as the 
characterization feature for classification. 

In some of the studied systems, as the one presented in [211], the dense optical flow is used 
as the input of a neural network to generate movement descriptors. 

In [150], a sparse OF of relevant points on the silhouette edge is derived, and their vertical 
velocity will be used as a relevant descriptor for fall identification. 

OF has proven to be a very robust and effective procedure to segment the foreground, 
especially in situations where backgrounds are dynamic, as is the case in fall detection systems 
mounted on robots that patrol an area searching for fallen people. 

Feature Descriptors 

Local binary patterns (LBP), as used in [146], is an algorithm for feature description. In 
this technique, an operator iterates over all image pixels and thresholds its neighborhood with 
the pixel's own value. This way, a binary pattern is composed. Occurrence histograms based 
on resulted binary patterns of the entire image, or a part of it, are used as feature descriptors. 
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Local binary pattern histograms from three orthogonal planes (LBP-TOP) are a further 
development of the LBP concept. They incorporate time and, therefore, movement in the 
descriptor, transforming it into a dynamic one. This technique computes each pixel LBP over 
time, building, this way, a three-dimensional characterization of the video signal by 
integrating space and temporal properties. 

The system described in [219] takes, as input for characterization, a video signal which has 
gone through multilayered compressed sensing (CS) algorithm and that, therefore, has lost 
information, especially in low contrast areas. To overcome this difficulty, the system obtains 
the optical flow of the video signal after the CS process has taken place, and the LBP-TOP is 
applied over that OF, highly improving the characterization this way. As the video quality is 
so poor, the OF extraction based on pixel motion is ineffective. To obtain it, low rank and 
sparse decomposition theory, also known as robust principal component analysis (RPCA) 
[283], is used to reduce noise. This technique is a modification of the statistical method of 
principal component analysis whose main objective is to separate, in a corrupted signal, a 
video one, in this case, the real underlying information contained in the original image from 
the sparse errors introduced by the CS process. 

The histogram of oriented gradients (HOG), as used in [146], is another feature descriptor 
technique introduced by N. Dalal et al. [284] in the field of human detection with success. The 
algorithm works over grayscale images using edge detection to determine object positions. 
This approach uses gradient as the main identification feature to establish where body edges 
are. It takes advantage of the fact that gradients will sharply rise at body edges in comparison 
with the mean gradient variation of the area they are placed in. To identify those boundaries, 
a mask is applied on each pixel and gradients are determined through element-wise 
multiplication. Histograms of gradient orientation are then created for each block, and, in the 
final stages of the process, they are normalized both locally and globally. These histograms 
are used as image feature descriptors. 

The system proposed in [199] incorporates HOGs as the image descriptor, which, in later 
stages of the identification algorithm, is used by an ANN to determine whether a fall has 
occurred. 

2.3.3.1.2  Local descriptors 
Local descriptors approach the problem of pose and movement abstraction in a different 

way. Instead of segmenting the foreground and extracting characteristic features from it, 
encoding them as a block, they focus on area patches from which relevant local features, 
characteristic of human movement or human pose, can be derived. 

Over time, local descriptors have substituted or complemented global ones, as they have 
proofed to be much more resistant to noise or partial occlusion. 

Characterization feature techniques focused on fall detection, pay attention to head motion, 
body shape changes and absence of motion [285]. The system introduced in [209] uses the 
two first groups of features. It models body shape changes and head motion by using the 
extended CORE9 framework [286]. This framework uses minimum bounding rectangles to 
abstract body movements. The system slaves bounding boxes to legs, hands and head, which 
is taken as the reference element. Then, directional, topological, and distance relations are 
established between the reference element and the other ones. All this information is finally 
used for classification purposes. 

The vast majority of studied systems that implement local descriptors do it using ANNs. 
ANNs are a major research area at the moment, and their application to the artificial vision 
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and human activity recognition is a hot topic. These networks, which simulate biological 
neural networks, were first introduced by Rosenblatt [287] through the definition of the 
perceptron in 1958. 

There are two main families of ANNs with application in artificial vision, human pose 
estimation and human fall detection, which have been identified in this research. These two 
families are convolutional neural networks (CNN) and recurrent neural networks (RNN). 

ANNs are able to extract feature maps out of input images. These maps are local descriptors 
able to characterize the different local patches that integrate an image. 

RNNs are connectionist architectures able to grasp the dynamics of a sequence due to 
cycles in its structure. Introduced by Hopfield [288], they retain information from previous 
states and, therefore, they are especially suitable to work with sequential data when its flow is 
relevant. This effect of information retention through time is obtained by implementing 
recurrent connections that transfer information from previous time steps either to other nodes 
or to the originating node itself. 

Among RNNs architectures, long short-term memory (LSTM) ones are especially useful 
in the field of fall detection. Introduced by Hochreiter [289], LSTMs most characteristic 
feature is the implementation of a hidden layer composed of an aggregation of nodes, called 
memory cells. These items contain nodes with a self-linked recurrent connection, which 
guarantees information will be passed along time with no vanishing. Unlike other RNNs, 
whose long-term memory materializes through weights given to inputs, which change slowly 
during training, and whose short-term memory is implemented through ephemeral activations, 
passed from a node to the successive one, LSTMs introduce an intermediate memory step in 
the memory cells. These elements internally retain information through their self-linked 
recurrent connections, which include a forget gate. Forget gates allow the ANN to learn how 
to forget the contents of previous time steps. 

LSTM topologies, like the one implemented in [205], allow the system to recall distinctive 
features from previous frames, incorporating, this way, the time component to the image 
descriptors. In this particular case, an RNN is built by placing two LSTM layers between batch 
normalization layers, whose purpose is to make the ANN faster. Finally, a last layer of the 
network, responsible for classification, implements a Softmax algorithm. 

Some LSTMs architectures, as the one described in [199], are used to determine 
characteristic foreground features. This ANN is able to establish a silhouette center and 
establish angular speed, which will be used as a reference to determine whether a fall event 
has taken place. 

The system proposed in [204] includes several LSTM layers. This encoding-decoding 
architecture integrates an encoding block, which encodes the input data, coming from a CNN 
block used to identify joints and estimate body pose, to a vector of fixed dimensionality, and 
a decoding block, composed of a layer able to output predictions on future body poses. This 
architecture is based on the seq2seq model proposed in [290] and has been successfully used 
in this system with prediction purposes, substantially reducing fall detection time, as it is 
assessment is made on a prediction, not on observation. 

A specific LSTM design is the bidirectional one (Bi-LSTM). This architecture integrates 
two layers of hidden nodes connected to inputs and outputs. Both layers implement the idea 
of information retention through time in a different way. While the first layer has recurrent 
connections, in the second one, connections are flipped and passed backward through the 
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activation function signal. This topology is incorporated in [232], where Bi-LSTM layers are 
stacked over CNN layers used to segment incoming images. 

CNNs were inspired by the neural structure of the mammal visual system, very especially 
by the patterns proposed by Hubel et al. [291]. The first neural network model with visual 
pattern recognition capability was proposed by Fukushima [292], and, based on it, LeCun and 
some collaborators developed CNNs with excellent results in pattern recognition, as shown in 
[293] and [294]. 

This family of ANNs is assembled by integrating three main types of layers; convolutional, 
pooling and fully connected, each one of them playing a different role. Every layer of the 
CNN receives an input, transforms it and delivers an output. This way, the initial layers, which 
are convolutional ones, deliver feature maps out of the input images, whose complexity is 
reduced by the pooling layers. Eventually, these maps are led to the fully connected layers, 
where the feature maps are converted into vectors used for classification. 

A typical CNN architecture is shown in figure 2. 

 

Figure 2. Typical convolutional neural network (CNN) architecture. 

Some systems, like the one in [234], where a YoLOv3 CNN is used, take the input image 
and modify its scale to get several feature maps out of the same image. In this case, the CNN 
is used to generate three different sets of feature maps, based on three image scales, which 
eventually, after going through the fully connected layers, will be used for classification. 

A similar approach is used in [225], where a YoLOv3 CNN identifies people. Identified 
people are tracked, and a CNN ANN extracts characteristic features from each person in the 
image. The feature vectors are passed to an LSTM ANN whose main task is to retain features 
over time so the temporal dimension can be added to the spatial features obtained by the CNN. 
The final feature vectors, coming out of the LSTM layers, are sent to a fully connected layer, 
which implements a Softmax algorithm used for event classification. 

In [215], the object detection task, performed by a YoLO CNN, is combined with object 
tracking, a task developed by DeepSORT [295], a CNN architecture able to track multiple 
objects after they have been detected. 

The approach made in [210]  to detect a fallen person uses a YoLOv3 CNN to detect fallen 
bodies on the ground plane. It maximizes the sensitivity by turning 90 and 270 degrees all 
images and compare the bounding boxes found in the same image. Then, features are extracted 
from the bounding box, which will be used as classification features. 

In [206] and [214], a wide residual network, which is a type of CNN, takes as input an OF 
and derives feature maps out of it. These maps are delivered to the fully connected layers, 
which, in turn, will pass vectors for movement classification to the last layers of the ANN. 
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A similar procedure is followed by the system in [217], whose ANN mixes layers of CNN, 
which deliver features maps from the incoming binarized video signal, with layers of radial 
basis function neural networks (RBFNN), which will be used as a classifier. 

Another interesting type of CNN is the hourglass convolutional auto-encoder (HCAE), 
introduced in [231]. This kind of architecture piles convolutional and pooling layers over fully 
connected ones to get a feature vector, and then it follows the inverse process to reconstruct 
the input images. The HCAE compares the error value between the encoded-decoded frames 
and the original frames, applying back-propagation for self-tuning. Ten consecutive frames 
are inputted into the system to guarantee it captures both image and action features. 

An alternate approach is the one presented in [194], where a CNN identifies objects 
(including people) and associate vectors to them. These vectors, which measure features, 
characterize both the human shape itself and its spatial relations with surrounding objects. 
This way, events are classified not only as a function of geometrical features of the silhouette 
but also as a function of its spatial relations with other objects present in the image. This 
approach has proven very useful to detect incomplete falls where pieces of furniture are 
involved. 

A good number of approaches, as in [198], use 3D CNNs to extract spatiotemporal features 
out of 2D images, like the ones used in this system. This way, ANNs are used not only to 
extract spatial features associated with pose recognition but also to capture the temporal 
relation established among successive poses leading to a fall. The system in [180] uses this 
approach, creating a dynamic image by fusing in a single image all the frames belonging to a 
time window and passing this image to the ANN as the input from where extracting features. 

Certain convolutional architectures, like the ones integrated into OpenPose and used in 
[215] and [218], can identify human body key points through convolutional pose machines 
(CPM), a CNN able to identify those features. These key points are used to build a vector 
model of the human body in a bottom-up approach as shown in figure 3. 

 

Figure 3. Convolutional pose machine presentation. 
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To correct possible mistakes, this approximation is complemented in [218] by a top-down 
approach through single shot multibox detector-MobileNet (SSD-MobileNet), another 
convolutional architecture able to identify multiple objects, human bodies in this case. SSD-
MobileNet, lighter and requires less computational power than typical SSDs, is used to 
remove all key points identified by OpenPose not being part of a human body, correcting this 
way, inappropriate body vector constructions. 

A similar approach is used in [221], where a CNN is used to generate an inverted pendulum 
based on five human key points, knees, center of the hip line, neck and head. The motion 
history of these joints is recorded, and a subsequent module calculates the pendulum rotation 
energy and its generalized force sequences. These features are then codified in a vector and 
used for classification purposes. 

The system in [233] uses several ANNs and selects the most suitable one as a function of 
the environment and the characteristics of the tracked people. In addition, it uploads wrongly 
categorized images, which are used to retrain the used models. 

2.3.3.1.3 Depth descriptors 
Descriptors based on depth information have gained ground thanks to the development of 

low-cost depth sensors, such as Microsoft Kinect®. This affordable system counts with a 
software development kit (SDK) and applications able to detect and track joints and construct 
human body vector models. These elements, together with the depth information from 
stereoscopic scene observation, have raised great interest among the artificial vision research 
community in general and the human fall detection system developers in particular. 

A good number of the studied systems use depth information, solely or together with RGB 
one, as the data source in the abstraction process leading to image descriptor construction. 
These systems have proven to be able to segment foreground, greatly diminishing interference 
due to illumination interferences up to the distance where stereoscopic vision procedures are 
able to infer depth data. Fall detection systems use this information either as depth maps or 
skeleton vector models. 

Depth Map Representation 

Depth maps, unlike RGB video signals, contain direct three-dimensional information on 
objects in the image. Therefore, depth map video signals integrate raw 3D information, so 
three-dimensional characterization features can be directly extracted from them. 

This way, the system described in [174] identifies 16 regions of the human body marked 
with red tape and position them in space through stereoscopic techniques. Taking that 
information as a base, the system builds the body vector (aligned with spine orientation) and 
identifies its center of gravity (COG). Acceleration of COG and body vector angle on a 
vertical axis will be used as features for classification. 

Foreground segmentation of human silhouette is made by these systems through depth 
information, by comparing depth data from images and a reference established at system 
startup. This way, pixels appearing in an image at a distance different from the one stored for 
that particular pixel in the reference are declared as foreground. This is the process followed 
by [172] to segment the human silhouette. In an ulterior step, descriptors based on bounding 
box, centroid, area and orientation of the silhouette are extracted. 

Other systems, like the one in [229], extract background by using the same process and the 
silhouette is determined as the major connected body in the resulting image. Then, an ellipse 
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is established around it, and classification will be made as a function of its aspect ratio and 
centroid position. A similar process is followed in [188], where, after background subtraction, 
an ellipse is established around the silhouette, and its centroid elevation and velocity, as well 
as its aspect ratio, are used as classification features. 

The system in [185] uses depth maps to segment silhouettes as well and creates a bounding 
box around them. Box top coordinates are used to determine the head velocity profile during 
a fall event, and its Hausdorff distance to head trajectories recorded during real fall events is 
used to determine whether a fall has taken place. The Hausdorff distance quantifies how far 
two subsets of a metric space are from each other. The novelty of this system, leaving aside 
the introduction of the Hausdorff distance as described in [296], is the use of a moving capture 
(MoCap) technique to drive a human model using software to simulate its motion (OpenSim), 
so profiles of head vertical velocities can be captured in ADLs, and a database can be built. 
This database is used, by the introduction of the Hausdorff distance, to assess falls. 

The system in [213], after foreground extraction by using depth information as in the 
previous systems, transforms the image to a black and white format and, after de-noising it 
through filtering, calculates the HOG. To do it, the system determines the gradient vector and 
its direction for each image pixel. Then, a histogram is constructed, which integrates all pixels’ 
information. This is the feature used for classification purposes. 

In [170], silhouettes are tracked by using a proportional-integral-differential (PID) 
controller. A bounding box is created around the silhouette, and features are extracted in 
accordance with [297]. A fall will be called if thresholds established for features are exceeded. 
Faces are searched, and when identified, the tracking will be biased towards them. 

Some other systems, like the one in [143], subtracts background by direct use of depth 
information contained in sequential images, so the difference between consecutive depth 
frames is used for segmentation. Then, the head is tracked, so the head vertical position/person 
height ratio can be determined, which, together with COG velocity, is used as a classification 
feature. 

In [182], all background is set to a fixed depth distance. Then, a group of 2000 body pixels 
is randomly chosen, and for each of them, a vector of 2000 values, calculated as a function of 
the depth difference between pairs of points, is created. These pairs are determined by 
establishing 2000 pixel offset sets. The obtained 2000-value vector is used as a characteristic 
feature for pose classification. 

The system introduced in [139], after the human silhouette is segmented by using depth 
information through a GMM process, calculates its curvature scale space (CSS) features by 
using the procedures described in [140]. CSS calculation method convolutes a parametric 
representation of a planar curve, silhouette edge in this case, with a Gaussian function. This 
way, a representation of the arc length vs. curvature is obtained. Then, silhouettes features are 
encoded, together with the Gaussian mixture model used in the aforementioned CSS process, 
in a single Fisher vector, which will be used, after being normalized, for classification 
purposes. 

Finally, a block of systems creates volumes based on normal distributions constructed 
around point clouds. These distributions, called voxels, are grouped together, and descriptors 
are extracted out of voxel clusters to determine, first, whether they represent a human body 
and then to assess if it is in a fallen state. 
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This way, the system presented in [155] first estimates the ground plane by assuming that 
most of the pixels belonging to every horizontal line are part of the ground plane. The ground 
can then be estimated, line per line, attending to the pixel depth values as explained in the 
procedure described in [298]. To clean up the pictures, all pixels below the ground plane are 
discarded. Then, normal distributions transform (NDT) maps are created as a cloud of points 
surrounded by normal distributions with the physical appearance of an ellipsoid. These 
distributions, created around a minimum number of points, are called voxels and, in this 
system, are given fixed dimensions. Then, features that describe the local curvature and shape 
of the local neighborhood are extracted from the distributions. These features, known as IRON 
[299], allow voxel classification as being part of a human body or not and, this way, voxels 
tagged as human are clustered together. IRON features are then calculated for the cluster 
representing a human body, and the Mahalanobis distance between that vector and the 
distribution associated with fallen bodies is calculated. If the distance is below a threshold, 
the fall state is declared. 

A similar process is used in [162], where, after the point cloud is truncated by removing all 
points not contained in the area in between the ground plane and a parallel one 0.7 m over it 
by applying the RANSAC procedure [300], NDTs are created and then segmented in patches 
of equal dimensions. A support vector machine (SVM) classifier determines which ones of 
those patches belong to a human body as a function of their geometric characteristics. Close 
patches tagged as humans are clustered, and a bounding box is created around. A second SVM 
determines whether clusters should be declared as a fallen person. This classification is 
refined, taking data from a database of obstacles of the area, so if the cluster is declared as a 
fallen person, but it is contained in the obstacle database, the declaration is skipped. 

Skeleton Representation 

Systems implementing this representation are able to detect and track joints and, based on 
that information, they can build a human body vector model. This block of techniques, as the 
previous one, strongly diminishes the noise associated with illumination but have problems to 
build a correct model when occlusion appears, both the one generated by obstacles and the 
one product of perspective auto-occlusions. 

A good number of these systems are built over the Microsoft Kinect® system and take 
advantage of both de SDK and the applications developed for it. This is the case of the system 
introduced in [168], where three Kinect® systems cover the same area from different 
perspectives, and joints are, therefore, followed from different angles, reducing this way the 
tracking problems associated with occlusion. In this system, human movement is 
characterized through two main features, head speed and CG situation referenced to ankles 
position. 

The Kinect® system is also used in [193] to follow joints and estimate the vertical distance 
to the ground plane. Then, the angle between the vertical and the torso vector, which links the 
neck and spine base, is determined and used to identify a start keyframe (SKF), where a fall 
starts, and an end keyframe (EKF), where it ends. During this period, vertical distance to the 
ground plane and vertical velocity of followed upper joints will be the input for classification. 
A very similar approach is followed in [161], where torso/vertical angle and centroid height 
are the key features used for classification. 

This system is used as well in [133] to build, around identified joints, both 2D and 3D 
bounding boxes aligned with the spine direction. Then, the ratio width/height is determined, 
and the relation HCG/PCG, being the former de elevation of the COG over the ground plane 
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and the latter de distance between the COG projection on the ground and the support polygon 
defined by ankles position, is calculated. Those features will be the base for event 
classification. 

In [301], human body key points are identified by a CNN whose input is a 2D RGB video 
signal complemented by depth information. Based on those key points, the system builds a 
human body vector model. A filter was developed to generate digital terrain models from data 
captured by airborne systems [302], and the depth data were then used to estimate the ground 
plane. The system uses all that information to calculate the distance from the body CG and 
the body region over the shoulders to the ground. These distances will serve to characterize 
the human pose. 

A CNN is also used in [189] to generate feature maps out of the depth images. This network 
stacks convolution layers to extract features and pooling layers to reduce map complexity, 
with a philosophy identical to the one used in the RGB local characterization. The output map 
goes through two layers of fully connected layers to classify the recorded activity, and a 
Softmax function is implemented in the last layer of the ANN, which determines whether a 
fall has taken place. 

In [212], prior to input images in a CNN to generate feature maps, which will be used for 
classification, the background is subtracted through an algorithm that combines depth maps 
and 2D images to enhance segmentation performance. This way, if the pixels of the segmented 
2D silhouette experiment sharp changes, but pixels in the depth map do not, pixels subject to 
those changes are regarded as noise. The system mixes information from both sources, 
allowing a better track on segmented silhouettes and a quick track regain in case it is lost. 

The system in [141]—after identifying human body joints as the key features whose 
trajectory will be used to determine whether a falling event has taken place—proposes rotating 
the torso so it is always vertical. This way, joint extraction becomes pose invariant, a technique 
used in the system with positive results in order to deal with the noise associated with joint 
identification as a result of rapid movement and occlusion, characteristic of falls. 

2.3.3.2 Classification 
Once pose/movement abstract descriptors have been extracted from video images, the next 

step of the fall detection process is classification. In broad terms, during this phase, the system 
classifies movement and or pose as a fall or a fallen state through an algorithm that is part of 
one of these two categories; generative or discriminative models. 

Discriminative models are able to determine boundaries between classes; either by 
explicitly being given those boundaries or by setting them themselves using sets of pre-
classified descriptors. 

Generative models approach the classification problem in a totally different way, as they 
explicitly model the distribution of each class and then use the Bayes theorem to link 
descriptors to the most likely class, which, in this case, can only be a fall or a not fall state. 

2.3.3.2.1 Discriminative Models 
The final goal of any classifier is assigning a class to a given set of descriptors. The 

discriminative models are able to establish the boundaries separating classes, so the 
probability of a descriptor belonging to a specific class can be given. In other terms, given α 
as a class, and [A] as the matrix of descriptor values associated with a pose or movement, this 
family of classifiers is able to determine the probability P (α|[A]). 
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Feature-Threshold-Based 

Feature-threshold-based classification models are broadly used in the studied systems. This 
approach is easy and intuitive, as the researcher establishes threshold values for the 
descriptors, so their associated events can be assigned to a specific class in case those 
thresholds are exceeded. 

This is the case of the system proposed in [159]. It classifies the action as a fall or a non-
fall in accordance with a double rationale. On one hand, it establishes thresholds of ellipse 
features to estimate whether the pose fits a fallen state; on the other, an MHI feature exceeding 
a certain value indicates a fast movement and, therefore, a potential fall. The system proposed 
in [142] adds acceleration to the former features and, in [168], head speed over a certain 
threshold and COG position out of the segment defined by ankles are indicatives of a fall. 

Similar approaches, where threshold values are determined by system developers based on 
previous experimentation, are implemented in a good number of the studied systems, as they 
are simple, intuitive and computationally inexpensive. 

Multivariate Exponentially Weighted Moving Average 

Multivariate exponentially weighted moving average (MEWMA) is a statistical process 
control to monitor variables that use the entire history of values of a set of variables. This 
technique allows designers to give a weighting value to all recorded variable outputs, so the 
most recent ones are given higher weight values, and the older ones are weighted lighter. This 
way, the last value is weighted λ (being λ a number between 0 and 1) and previous β values 

are weighted λβ. Limits to the value of that weighted output are established, taking as a basis 
the expected mean and standard deviation of the process. Certain systems, like [156], use this 
technique for classification purposes. However, as it is unable to distinguish between falling 
events and other similar ones, events tagged as fall by the MEWMA classifier need to go 
through an ulterior support vector machine classifier. 

Support Vector Machines 

Support vector machines (SVM) are a set of supervised learning algorithms first introduced 
by Vapnik et al. [303]. 

SVMs are used for regression and classification problems. They create hyperplanes in high 
dimension spaces that separate classes nonlinearly. To fulfill this task, SVMs, similar to 
artificial neural networks, use kernel functions of different types. 

A standard SVM boundary definition is shown in figure 4. 
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Figure 4. Support vector machine boundary definition. 

In [202], linear, polynomial, and radial kernels are used to obtain the hyperplanes; in [195], 
radial ones are implemented, and in [176], polynomial kernels are used to achieve nonlinear 
classifications. 

The support vector data description (SVDD), introduced by Tax et al. [304], is a classifying 
algorithm inspired by the support vector machine classifier, able to obtain a spherically shaped 
boundary around a dataset and, analogously to SVMs, it can use different kernel functions. 
The method is made robust against outliers in the training set and is capable of tightening 
classification by using negative examples. SVDDs classifying algorithms are used in [218]. 

SVMs have been very used in the studied systems as they have proofed to be very effective; 
however, they require high computational loads, something inappropriate for edge computing 
systems. 

K-Nearest Neighbor 

K-nearest neighbor (KNN) is an algorithm able to model the conditional probability of a 
sample belonging to a specific class. It is used for classification purposes in [144], [145], [176] 
and [202] among others. 

KNNs assume that classification can be successfully made based on the class of the nearest 
neighbors. This way, if for a specific feature, all µ closest sample neighbors are part of a 
determined class, the probability of the sample being part of that class will be assessed as very 
high. This study is repeated for every feature contained in the descriptor, so a final assessment 
based on all features can be made. The algorithm usually gives different weights to the 
neighbors, and heavier weights are assigned to the closest ones. On top of that, it also assigns 
different weights to every feature. This way, the ones assessed as most relevant get heavier 
weights. 
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Decision Tree 

Decision trees (DT) are algorithms used both in regression and classification. It is an 
intuitive tool to make decisions and explicitly represents decision-making. Classification DTs 
use categorical variables associated with classes. Trees are built by using leaves, which 
represent class labels, and branches, which represent characteristic features of those classes. 
DTs built process is iterative, with a selection of features correctly ordered to determine the 
split points that minimize a cost function that measures the computational requirements of the 
algorithm. These algorithms are prone to overfitting, as setting the correct number of branches 
per leaf is usually very challenging. To reduce the complexity of the trees, and therefore, their 
computational cost, branches are pruned when the relation cost-saving/accuracy loss is 
satisfactory. This type of classifier is used in [215] and [217]. 

Random forest (RF), like the one used in [182] and [215], is an aggregation technique of 
DT, introduced by Braiman [305], which main objective is avoiding overfitting. To 
accomplish this task, the training dataset is divided into subgroups, and therefore, a final 
number of DTs, equal to the number of dataset subgroups, is obtained. All of them are used 
in the process, so the final classification decision is actually a combination of the classification 
of all DTs. 

Gradient boosting decision trees (GBDT) is another DT aggregation technique whose 
algorithm was first introduced by Friedman [306] where simple DTs are built and, for each 
one of them, a classification error in training time is determined. An error function based on 
calculated individual errors is determined, and its gradient is minimized by combining 
individual DT classifications in a proper way. This aggregation technique, specifically 
developed for DTs, is actually part of a broader family that will be more extensively presented 
in the next section. 

Both techniques, RF and GBDT, are used in [215]. 

Boost Classifier 

Boost classifier algorithms are a family of classifier building techniques that create strong 
classifiers by grouping weak ones. It is done by adding up models created from the training 
data until the system is perfectly predicted or a maximum number of models is reached. 

This is done by building a model from the training data. Then, a second model is created 
to correct the errors from the first one. Models are added until the training set is well predicted 
or a maximum number of them is added. During the boosting process, the first model is trained 
on the entire database while the rest are fitted to the residuals of the previous ones. 

Adaboost, used in [151], can be utilized to increase performances with any classification 
technique, but it is most commonly used with one-level decision trees. 

In [192], boosting techniques are used on a J48 algorithm, a tree-based technique, similar 
to random forest, which is used to create univariate decision trees. 

Sparse Representation Classifier 

Sparse representations classification (SRC) is a technique used for image classification 
with a very good degree of performance. 

Natural images are usually rich in texture and other structures that tend to be recurrent. For 
this reason, sparse representation can be successfully applied to image processing. This 
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phenomenon is known as patch recurrence and, because of it, real-world digital images can 
be recognized by properly trained dictionaries. 

SRCs are able to recognize those patches, as they can be expressed as a linear combination 
of a limited number of elements that are contained in the classifier dictionaries. 

This is the case of the SRC presented in [152]. 

Logistic Regression 

Logistic regression is a statistical model used for classification. It is able to implement a 
binary classifier, as the one needed to decide whether a fall event has taken place. For such a 
purpose, a logistic function is used. It can be adjusted by using classifying features associated 
with events tagged as fall or not fall. 

This method is used in systems like [221], where a logistic classifying algorithm is 
employed to classify events as fall or not a fall, based on a vector that encodes the temporal 
series of rotation energy and generalized force. 

Some artificial neural networks implement a logistic regression function for classification, 
as the one described in [234], where a CNN uses this function to determine the detection 
probability of each defined class. 

Deep Learning Models 

In [211], the last layers of the ANN implement a Softmax function, a generalization of the 
logistic function used for multinomial logistic regression. This function is used as the 
activation function of the nodes of the last layer of a neural network, so its output is normalized 
to a probability distribution over the different output classes. Softmax is also implemented in 
the last layers of the artificial neural networks used in [203] and [231], among other studied 
systems. 

Multilayer perceptron (MLP) is a type of multilayered ANN with hidden layers between 
the entrance and the exit ones able to sort out classes non-linearly separable. Each node of this 
network is a neuron that uses a nonlinear activation function, and it is used for classification 
purposes in [176] and [215]. 

Radial basis function neural networks (RBFNN) are used in the last layer of [217] to 
classify the feature vectors coming from previous CNN layers. This ANN is characterized by 
using radial basis functions as activation functions and yields better generalization capabilities 
than other architectures, such as Softmax, as it is trained via minimizing the generalized error 
estimated by a localized-generalization error model (L-GEM). 

Often, the last layers of ANN architectures are fully connected ones, as in [186], [204] and 
[214], where all nodes of a layer are connected to all nodes in the next one. In these structures, 
the input layer is used to flatten outputs from previous layers and transform them into a single 
vector, while subsequent layers apply weights to determine a proper tagging and, therefore, 
successfully classify events. 

Finally, another ANN structure useful for classification is the autoencoder one, used in 
[198]. Autoencoders are ANNs trained to generate outputs equal to inputs. Its internal 
structure includes a hidden layer where all neurons are connected to every input and output 
node. This way, autoencoders get high dimensional vectors and encode their features. Then, 
these features are decoded back. As the number of dimensions of the output vector may be 
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reduced, this kind of ANNs can be used for classification purposes by reducing the number of 
output dimensions to the number of final expected classes. 

2.3.3.2.2 Generative Models 
The approach of generative models to the classification problem is completely different 

from the one followed by the discriminative ones. 

Generative models explicitly model the distribution of each class. This way, given α as a 
class, and [A] as the matrix of descriptor values associated with a pose or movement, if both 
P ([A]|α) and P (α) can be determined, it will be possible, by direct application of the Bayes 
theorem, to obtain P (α|[A]), which will solve the classification problem. 

Hidden Markov Model 

Classification using the hidden Markov model (HMM) algorithm is one of the three typical 
problems that can be solved through this procedure. It was first proposed with this purpose by 
Rabiner et al. [307] to solve the speech recognition problem, and it is used in [228] to classify 
the feature vectors associated with a silhouette. 

HMMs are stochastic models used to represent systems whose state variables change 
randomly over time. Unlike other statistical procedures, like Markov chains, which deal with 
fully observable systems, HMMs tackle partially observable systems. This way, the final 
objective of the HMM classifying problem resolution will be decided, based on the observable 
data (feature vector), whether a fall has occurred (hidden system state). 

The system proposed in [228] determines, using an HMM as a classifier, on the basis of 
silhouette surface, centroid position and bounding box aspect ratio, whether a fall takes place 
or not. To do it, and to take as a reference recorded falls, a probability is assigned to the two 
possible system states (fall/not fall) based on value and variation along the event timeframe 
period of the feature vector. This classifying technique is used with success in this system, 
though in [308], a brief summary of the numerous limitations of this basic HMM approach is 
presented, and several more efficient extensions of the algorithm, such as variable transition 
HMM or the hidden semi-Markov model, are introduced. These algorithm variations are 
developed as the basic HMM process is considered ill suited for modeling systems where 
interacting elements are represented through a vector of single state variables. 

A similar classification approach using an HMM classifier is used in [175], where future 
states predicted by an autoregressive-moving-average (ARMA) algorithm are classified as fall 
or not-fall events. ARMA models are able to predict future states of a system based on a 
previous time-series. The model integrates two modules, an autoregressive one, which uses a 
linear combination of weighted previous system state values, and a moving average one, 
which linearly combines weighted previous errors between system state real values and 
predicted ones. In the model, errors are assumed to be random values that fit a Gaussian 
distribution of mean 0 and variance σ2. 

2.3.3.3 Tracking 
A good number of the reviewed systems identify objects through ANN or extract 

silhouettes from the background. Then, relevant features are associated with the already 
segmented objects. This assignment requires a constant update, and, therefore, object 
correlation needs to be established from frame-to-frame. This correlation is made through 
object tracking, and a good number of different techniques are used for such a purpose. 
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2.3.3.3.1 Moving Average Filter 
The double moving average filter used in [193] smooths vertical distance from joints to the 

ground plane. This filter determines twice the mean value of the last n samples, acting this 
way as a low pass filter, eliminating high-frequency signal components associated with noise. 

2.3.3.3.2 PID Filter 
The system proposed in [170] uses a proportional-integral-differential (PID) filter to 

maintain tracking on silhouettes segmented from the background. Constants of the filter to 
guarantee smooth tracking, reducing overshoots and steady-state errors, are calculated through 
a genetic algorithm. This algorithm, inspired by the theory of natural evolution, is a heuristic 
search where sets of values are selected or discarded based on its ability to reduce to a 
minimum the absolute error function and, therefore, minimize overshoots and steady errors. 

2.3.3.3.3 Kalman Filter 
Kalman filter, first introduced by R. E. Kalman in [309], is a recursive algorithm that allows 

improvements in the determination of system variable values by combining several sets of 
indirect system variable observations containing inaccuracies. The resulting estimation is 
more precise than any of the ones, which could be inferred from a single indirect observation 
set. 

This way, in [168], the tracking of joints, followed by three independent Kinect® systems, 
is fused by a Kalman filter. The resulting joint position is estimated by integrating information 
from the three systems and is more accurate than one of any of the individual systems. 

A particular variation in the use of Kalman filtering is the one in [225], where a procedure 
call deep-sort, presented in [295], is used. In this process, a Kalman algorithm is used to 
estimate the next location of the tracked person, and then the Mahalanobis distance is 
calculated between the detected person in the following frame and its estimated position. By 
measuring this distance, uncertainty in the track correlation can be quantified. This filter 
performance is deeply affected by occlusion. To mitigate this problem, the uncertainty value 
is associated with the track descriptor and, to keep tracks after long occlusion periods, the 
process saves those descriptors for 100 frames. 

Although this filtering algorithm works very well to maintain tracks in linear systems, 
human bodies involved in a fall tend to behave nonlinearly, substantially degrading its ability 
to maintain tracking. 

2.3.3.3.4 Particle Filter 
This method, used in [143], is a Monte Carlo algorithm used for object tracking in video 

signals. Introduced in 1993 by Gordon [310] as a Bayesian recursive filter, it is able to 
determine future system states, in this case, future positions of the tracked object. 

The filter algorithm follows an iterative approach. This way, after a cloud of particles, 
image pixels, in this case, have been selected, weights are assigned to them. Those weigh 
values are a function of the probability of being part of the tracked object. Then, the initial 
particle cloud is updated by using the weight values. Based on object cinematic, its movement 
is propagated to the particle cloud, predicting, this way, the future object situation. The process 
continues with a new update phase to guarantee the predicted cloud matches the tracked 
object. 

This algorithm, although affected by occlusion, has proven to be highly capable of 
maintaining tracks on objects moving nonlinearly and, therefore, the result is adequate to track 
human bodies during fall events. 
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Rao–Blackwellized particle filter (RBPF), as the one used in [191], is a type of particle 
filter tracking algorithm used in linear/nonlinear scenarios where a purely Gaussian approach 
is inadequate. 

This algorithm divides particles into two sets. Those that can be analytically evaluated and 
those that cannot. This way, the filtering equations are separated into two sets, so two different 
approaches can be used to calculate them. The first set, which includes linear moving particles, 
is solved by using a Kalman filter approach, while the second one, whose particles move 
nonlinearly, is solved by employing a Monte Carlo sampling method. 

2.3.3.3.5 Fused Images 
In [137], a fusing center fuses images taken from orthogonal views, and the obtained object 

is tagged with a number. Objects identified in the next frame are correlated to previous ones 
if they meet the minimum distance established threshold. This way, the tracking is maintained. 

2.3.3.3.6 Camshift 
This algorithm, integrated into OpenCV and used in [187], first converts images RGB to 

hue-saturation-value (HSV) and, starting with frames where a CNN has created a bounding 
box (BB) around a detected person, it determines the hue histogram in each BB. Then, 
morphological operations are applied to reduce noise associated with illumination. In the 
consecutive frame, the area that better fits the recorded Hue histogram is established and 
compared with detected BBs. That way, a correlation can be established and, therefore, a track 
on a person. 

2.3.3.3.7 Deep Learning Architectures 
DeepSORT is a CNN used to track multiple objects at the same time, as shown in [215]. 

The system presented in [199] tracks images using an algorithm as follows: First, in every 
new frame, a YoLO convolutional architecture is used to identify people. Once all people in 
the frame have been identified, a Siamese CNN is used to first determine the characteristic 
features of every person identified in the frame and then compare them with the ones 
associated with people identified in previous frames, looking for similarities. At the same 
time, an LSTM ANN is used to predict people's motion, so associations to maintain track of 
people from frame-to-frame can be made. Based on feature similarity and movement 
association, a track can be established on people present in consecutive video frames or can 
be started when a new person appears for the first time in a video sequence. An almost equal 
process is used in [225] to keep track of people with two CNNs working in parallel, a first one 
to identify people and a second one to extract characteristic features out of them. That way, 
tracks can be established. 

In [169], a CNN is used to detect people in every frame. A BB is established around, and 
distances from central point BBs of consecutive frames are determined. Boxes meeting 
minimum distance criteria in consecutive frames are correlated and, this way, tracking is 
established. 

2.3.3.4 Classifying Algorithms Performances 
A number of the reviewed systems establish comparisons with other ones. Many of them 

base that comparison on performance figures obtained on different datasets, while some others 
establish a system-to-system comparison based on the same database. However, systems are, 
in broad terms, an aggregation of two main blocks, the first one whose mission is inferring 
descriptors from images and a second one that classifies those features. This way, system 
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comparison, even on the same dataset, compares two aggregated blocks so, comparisons on 
performances of a specific block is difficult to assess, as it is influenced by the other one. 

To avoid these problems, these comparisons have been ignored. The only ones taken into 
consideration have been those that compare one of the blocks and are based on the same 
dataset. The results are shown in Table 2. In global terms, SVMs and deep learning classifiers 
are the ones with better performances. The best working classifying deep learning 
architectures are MLP, autoencoders and those implementing Softmax algorithms like 
GoogLeNet. It is also relevant that in accordance with C.J. Chong et al. [134], systems whose 
descriptors are dynamic and, therefore, include references to the time variable, have better 
performances than those other ones whose descriptors do not incorporate that variable. 

2.3.3.5 Validation datasets 
The systems included in this research have been tested by using datasets. On many 

occasions, those datasets have been specifically developed by the researchers to test and 
validate their systems, so their performances can be determined. These datasets, although 
briefly discussed in the articles presenting the systems, are not usually publicly accessible. 

However, there is also a group of datasets used in the system validation and performance 
determination phases that are public. Most of them are also accessible through the Internet, so 
developers can download and use them for research purposes. All the datasets belonging to 
this category used in the development of the systems contained in this review are collected in 
Table 3. 

Datasets associated with the reviewed systems, both the publicly accessible ones and the 
ones that are not, are recorded by either volunteers or actors young and fit enough to guarantee 
that a simulated fall will not harm them. In some of them, therapists advise actors, so they can 
imitate how an elderly person moves or falls. Finally, none of the databases includes elderly 
real falls or daily life activities performed by elderly people. 

The datasets are grouped by collected signal type, so five big groups are identified. 

 The first group is integrated by a single dataset. It collects falls and activities of 
daily life (ADL) executed by volunteers whose results are recorded using different 
sensors, included RGB and IR cameras. It is used by a single system for validation 
purposes; 

 The second group, which includes three datasets, incorporates depth and 
accelerometric data. By its relevance and number of reviewed systems using it in 
their performance evaluation, one dataset is especially important, UR fall detection 
[157]. This dataset, employed by over a third of all studied systems, includes 30 
falls and 40 ADLs recorded by two depth systems, one providing frontal images 
and one recording vertical ones. This information is accompanied by 
accelerometric data and was released in 2015. 

 The third group is composed of nine datasets. They all mix ADLs and falls recorded 
in different scenarios by RGB cameras, either conventional or fish eye ones, from 
different perspectives and at different heights. Two of them exceed the mark of 
10% users, LE2I [151] and the Multicam Fall Dataset [138]. 

LE2I, published in 2013, is a dataset that includes 143 different types of falls 
performed by actors and 48 ADLs. These events were recorded in environments 
simulating the ones that could be found in an elderly home.  
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Multicam includes 24 scenarios recorded with 8 IP cameras, so events can be 
analyzed from multiple perspectives. Twenty-two of the scenarios contains falls, 
while the other two only include confounding actions. Volunteers simulate events, 
and this dataset was released in 2010; 

 The fourth group includes six datasets. Different activities, falls included, are 
recorded by depth systems. The two most used ones are the Fall Detection Dataset 
[158] and SDUFall [140], though both of them fall below the 10% users mark.  

Fall Detection Dataset, used by almost 10% of the systems, was published in 2017. 
The images in this dataset are recorded in five different rooms from eight different 
view angles, and five different volunteers take part in it. 

SDUFall, published in 2014, is another dataset that gathers depth information 
associated with six types of actions, being a fall one of them. Actions are repeated 
30 times by 10 volunteers and are recorded by a depth system; 

 The fifth group, composed of a single dataset, collects synthetic information. CMU 
Graphics Lab—motion capture library [183] is a dataset that contains 
biomechanical information related to human body movement captured using 
motion capture (MoCap) technology. To generate that information, groups of 
volunteers, wearing sensors in different parts of their bodies, execute diverse 
activities. The information collected by the sensors is integrated through a human 
body model and stored in the dataset, so it can be used for development purposes. 
This approach to system development and validation has numerous advantages 
over conventional methods, as it gives developers the possibility of training their 
systems under any possible image perspective or occlusion situation. However, 
clutter and noise, the other important problems for optimal system performance, 
are not included in the information recorded in this database. 

2.3.3.6 Conclusions 
The systems based on artificial vision have deeply evolved over the course of the last five 

years. The amount of effort devoted to the development of this technology applied to this field 
has been huge and fully in line with the one seen in artificial vision in general. This important 
research effort, proofed by the number of reviewed published papers, the highest among all 
considered technologies, has allowed vison-basedfall detection systems to reach a degree of 
maturity high enough to start being implemented in commercial applications.  

These systems examine human pose, human movement or a mix of both and categorize 
them as fall in case the established criteria are met. All of them have a common structure of 
two blocks, a first one that assigns abstract descriptors to input video signals, and a second 
one that classifies them. In some of the reviewed systems, these two blocks are preceded by 
another one. Its objective is improving the quality of the incoming signal by reducing noise 
or adapting its format to the needs of the blocks downstream it. 

Almost all reviewed systems work with RGB, near infrared or depth video inputs. Systems 
working with RGB video signals have evolved from the use of global descriptors to the use 
of local ones. Global descriptors extract information from the foreground, once it has 
segmented, and encode it as a whole, while local ones focus on area patches from where 
relevant features, characteristic of human movement or pose, can be derived. This evolution 
has made systems more resilient to perspective changes and noise due to illumination and 
occlusion. 
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Depth information is also used either solely or complementing RGB images. The systems 
using it have proofed to be very reliable in high noise conditions due to illumination. However, 
higher prices and an effectiveness limitation up to distances where depth data can be inferred 
from stereoscopic vision remain relevant limitations to this technology. 

The second block of these systems approaches the classifying problem from two possible 
perspectives, discriminative or generative. Discriminative models establish boundaries 
between classes, while generative ones model each class probability distribution. 

Although an extensive array of techniques has been used to implement both blocks, the use 
of ANNs is becoming increasingly popular, as their ability to learn to give them a matchless 
advantage. This is the case of [233] , a system that uses images that have raised false alarms 
for retraining. Among all possible ANN architectures, two families have proven to offer good 
performances in the field of artificial vision, convolutional (CNN) and recurrent ones (RNN). 
Convolutional networks are able to create feature maps out of images that express what can 
be seen in them. Recurrent architectures, and specially LSTMs, are able to grasp the dynamics 
associated with video clips, as the cycles in their structure allow them to remember passed 
features and link them along time. New architectures fusing layers of both networks, CNNs 
and LSTMs, being able to identify objects and abstract their movement, show promising 
results in the area. 

After object identification, movement capture is needed, so its dynamics can be abstracted. 
To do it, object tracking is required. This activity can be done through a number of techniques 
that can be grouped into two blocks, linear and nonlinear. Due to the nonlinear nature of the 
movement of the human body during falls, the last block of techniques has proven to be more 
suitable for this purpose. 

A number of datasets are used for system validation and performance determination 
purposes. However, their fragmentation and the total absence of a common reference 
framework for system performance evaluation make comparison very difficult. In addition, 
all datasets are recorded by actors or volunteers clearly younger than the elderly community. 
The significant differences between simulated and real falls and between falls of elderly and 
young people are documented by Kangas [311], and Klenk [261], so reasonable doubts on the 
performances of all reviewed systems in the real world are raised. In any case, the clash 
between privacy protection and real-world datasets makes it difficult to get good quality data 
for system training and validation. 

No articles mentioning the orientation of system design towards their potential users have 
been found during this research. The only articles found in the area of fall detection systems 
regarding this aspect are the ones of Thilo et al. [15], and Demiris et al. [16], where the elderly 
community needs are described, and recommendations to developers are given. This way, 
there is evidence of a disconnection between developers and users, which, eventually, leads 
to low acceptance rates. However, and although acceptance is low, the only technologies 
commercially used for automatic fall detection are the wearable and video based ones. 

The implementation of vision-based fall detection systems has traditionally fallen in the 
field of ambient systems. However, robots are offering the possibility of making them mobile, 
and the potential future incorporation of smart glasses or contacts gives the chance to make 
this system wearable. In these cases, cloud computing may not be an option, so the 
computational cost will need to be taken into consideration, and low-power consumption will 
be a key factor. 
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Finally, in accordance with L. Ren et al. [259], optimal detection performance comes from 
fusion-based systems that complement vision-based technologies with alternative ones. 

2.4 Conclusions 
Most taxonomies of fall detection systems classify them into three blocks: wearables, 

ambient, and vision-based systems. All systems share a common approach to fall 
determination or gait analysis. They all process signals related to the person's movement and, 
in one way or another, define that movement. The signal is usually pre-processed to reduce its 
noise as much as possible, and then it is analyzed to infer movement descriptors. Finally, those 
descriptors defining movement are classified using a number of techniques to determine 
whether a fall has taken place or if a specific gait meets the requirements associated with a 
high fall probability. 

Wearable systems use sensors carried by the monitored person to evaluate their 
movements. The vast majority of system sensors are either accelerometers or gyroscopes, 
although some other kinds, such as microphones, pressure sensors, ECG, and EMG, are also 
used. Despite the disadvantages associated with reduced connectivity capabilities and limited 
edge processing power, these devices have reached a high degree of maturity. The high 
number of papers related to wearable systems collected during this review proves the interest 
of the researching community in these technologies, especially in the inertial one. 

Fall detection ambient systems are based on contact, passive infrared, acoustic, radar, or 
Wi-Fi technologies. Their main difference, compared to wearable devices, is sensor position, 
as while in wearable systems they are carried by the monitored person, in the case of the 
ambient ones, sensors are placed around him. 

Although these systems present an important advantage over wearable ones, as they are 
not battery-dependent, their development over the last few years has not been as impressive 
as that experienced by the wearable ones. A good indicator of this weaker research interest is 
the number of published papers associated with these technologies, which is around half the 
number of articles associated with wearable or vision-based devices. This lower researching 
interest makes ambient systems stay in a position of low maturity, and a lot of effort remains 
to be done to change this situation. 

Vision-based systems work with RGB, near-infrared, or depth video inputs. In line with 
the development of artificial vision technologies, mainly using ANN's, a huge amount of effort 
has been made over the last few years to develop this kind of devices. This important research 
effort, proven by the number of published papers, which is the highest one of all considered 
technologies, has allowed vision-based fall detection systems to reach an important degree of 
maturity. 

In spite of the overall reduced acceptance of these systems, most commercial automatic 
fall detection systems are based on wearable technologies, especially the inertial one, while a 
good number of the most recent ones are based on vision-based technologies. This is probably 
an effect of the degree of technology maturity and researching interest, which, in turn, may be 
an indication of how suitable a certain technology is to solve the problem of fall determination. 

However, as it will be shown in the next chapter, the use of these systems may be perceived 
as acceptable by the elderly community and their caregivers in certain situations, provided 
they are really adapted to the user's needs. These situations are mostly associated with times 
when human supervision is low or nonexistent. One of the most common scenarios of this 
situation is the sleep time during the night. In this period, elderly people tend to wake up 
feeling the need to go to the toilet. Disorientation and low illumination are common in this 
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situation, and therefore, the chances of fall are higher than under other circumstances. 
Additionally, supervision absence could substantially delay any needed medical response. 

The above-mentioned circumstances are very clearly identified in the next chapter as a 
likely fall scenario where an automatic fall detection system would be well accepted. 
However, commercial systems based on wearable technologies would not be an answer to this 
problem, as the elderly community tends to remove body sensors when they go to bed to create 
comfortable sleep environments. Ambient technologies have proven to be immature, and 
visual-based systems' performances would be severely degraded by low light conditions, as 
they work in the visual or near-infrared spectrum. 

In this situation, developing a visual-based fall detection system working in the far-infrared 
spectrum might be a good solution. Additionally, and to get the best possible acceptance, the 
other two main problems associated with today's vision-based fall detection systems would be 
solved: insufficient amount of human falls real-world data and privacy protection. 
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3 User’s needs 
Prior to system definition an extensive research to identify user’s needs was conducted in 

an attempt to establish a proper connection with the different groups related to the world of 
elderly care.  User’s needs were obtained following the recommendations established by 
29148-2018 - ISO/IEC/IEEE [312] and 830-1998 – IEEE [313].  

During the problem analysis and solution characterization phase six main groups, directly 
or indirectly involved in the elderly care tasks, were identified: 

 Elderly. 

 Friends and family. 

 Home-care givers. 

 Nursing home managers. 

 Nursing home care givers. 

 Paramedics and emergency medical personnel. 

The following process aims to determine user’s needs and requirements. 

3.1 Methods 
Between January and May 2021, 36 qualitative, open-ended, semi-structured interviews 

were conducted. Additionally, as a secondary source of information, 146 forms containing 
qualitative open and close-ended questions were distributed and answered by individuals 
belonging to all identified stakeholder groups. 

Before starting the sampling process, initial contacts were established with five nursing 
homes, and the research project was presented to their managers. Through these institutions, 
further contacts with individuals belonging to all stakeholder groups could be established. The 
sampling process was purposive to obtain a diverse selection of individuals representing a 
range of age, dependency, and gender for the elderly community. It also covered a range of 
closeness in relation, age, and gender for the family and friends group, and a range of 
professional experience, hierarchical position, and age for the rest of the groups. 

The inclusion criterion for individuals belonging to the elderly group was presenting a 
dependency. For the family and friends group, it implied a relation with a dependent person, 
while for the rest of the groups, the criterion was having a professional experience of at least 
six months in contact with dependent individuals, except for the emergency medical 
personnel, whose inclusion requirement was just having a professional experience of at least 
six months. This is because there are no subgroups in this professional community specifically 
devoted to elderly attention. Besides, friends and family often play the role of home-care 
givers when dependents do not live in nursing homes. When that was the case, for the purpose 
of this research, these individuals were regarded as part of the home-care givers group, instead 
of the friends and family group. 

The semi-structured interviews started with an overall presentation of the automatic human 
fall detection systems and focused on four thematic aspects: 

(1) Degree of confidence in these systems. 

(2) User’s needs and requirements 

(3) Privacy protection 
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(4) Usage environment.  

A guideline based on the state-of-the-art revision was used to conduct the interviews. This 
guideline was revised after each interview, as interviewees were given the opportunity to add 
new questions. However, no new questions were proposed after the ninth interview. 

Given the pandemic situation due to COVID-19 at that time, all interviews were conducted 
through Video Tele Conference. The length of the interviews ranged from 12 to 43 minutes 
with an average of 21 minutes. Audios of the interviews were transcribed and anonymized. 
Prior to analysis, transcripts were read at least twice to guarantee familiarity with the data. 
Transcripts inspection followed the principles of qualitative content analysis [314] and [315], 
a research method for the subjective interpretation of text data through the systematic 
classification process of coding and identifying patterns. These patterns lead to the relevant 
concepts for the system user in each thematic area. 

The forms included a mix of close and open-ended questions based on the guideline 
developed for the interviews. The questions were preceded by an introductory video 
presenting the world of automatic human fall detection systems. The analysis process 
followed to code the information contained in the open-ended questions followed the same 
identical principles of qualitative content analysis used for the interviews. 

3.2 Results 
The identified relevant concepts behind each thematic aspect are the following ones. 

3.2.1 Degree of confidence 
The elderly community shows a moderate degree of confidence in these systems, accepting 

them when human supervision is not an option, as long as their caregivers find their use 
acceptable. The use of these systems is better perceived when human relations cannot be 
established (e.g., at nighttime during the sleeping period). 

For the groups of family and friends and home-caregivers, although human supervision is 
generally preferred, the use of these systems is accepted in some cases, especially in the case 
of home-caregivers, when it implies a reduction in care burden or, in the case of family and 
friends, who often pay, at least partially, for the care service, when it implies a cost reduction. 
The home-caregiver group believes that, overall, direct human supervision provides 
reassurance to the dependent, an added value element not supplied by the automatic systems. 

The nursing home managers prefer human supervision in general, though they accept the 
system when it can imply a cost reduction for the care service as long as its performance is 
reasonable. 

 

Finally, the group of paramedics and emergency medical personnel consider that the degree 
of confidence in these systems should be based on performance and reaction time, which they 
regard as a key factor, as often survival after a fall depends on immediate medical attention. 

All groups have low knowledge of these systems and their performances. 

3.2.2 User’s needs and requirements 
Reliability is the key requirement of a detection system for all groups. This feature is 

especially relevant for the friends and family group, which requires exceptionally good 
performance under all circumstances. 
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For the caregivers' groups, these systems should be easy to use and designed to complement 
human supervision. In the case of home-caregivers, they should also reduce the care burden. 
According to the opinion of nursing home caregivers, the systems should be fine-tuned to the 
needs of semi-supervised dependents. 

Nursing home managers require systems that are cheap, easy to install/reinstall, and easy 
to deploy. 

Paramedics and emergency medical personnel consider reduced system reaction time a 
critical requirement. While reliability is assessed as essential, false alarms should be reduced 
as much as possible.  

3.2.3 Privacy protection 
Privacy protection is paramount for the elderly group, and although they confess 

unfamiliarity with the technicalities of data breaches and cybersecurity, they also express 
concern regarding the unlawful use of images captured by the system. 

The friends and family group share this concern and express certain mistrust in the 
cybersecurity measures that could be taken to protect the system information. 

The groups of caregivers show concern regarding data breaches, especially in the case of 
images, although they think cybersecurity measures could mitigate this risk. They believe the 
threat could not only come from cyberattacks but also from people with physical access to the 
system, as they could unlawfully retrieve data. Finally, for image-based systems, they prefer 
the use of infrared or very low-resolution images. 

The group of managers is worried about the impact of cyberattacks and system hacking on 
the institution. They express their concern about legal liabilities and economic repercussions 
of data breaches. In addition, they perceive non-imaged based systems as less vulnerable. 

Finally, the emergency personnel consider privacy protection a relevant issue, especially 
in the case of image-based systems. 

3.2.4 Usage environment 
Both the elderly and the friends and family group believe fall detection systems should be 

adapted to all types of environments. 

Home-caregivers think the system should be optimized for environments where it could 
help diminish the care burden, while the nursing home caregivers believe it should be 
optimized for environments where humans do not monitor semi-supervised dependents. Both 
groups assume those contexts are linked to night environments, especially during bedtime. A 
common scenario for that context is the one associated with dependents getting up after 
waking up feeling the urgency to go to the toilet. 

 

Managers believe system environmental optimization should be limited to the most likely 
operational environments to reduce development costs. The emergency personnel express a 
similar approach. 

3.3 Discussion 
The degree of confidence in the automatic fall detection systems varies across groups, 

depending on their familiarity with the system. However, in broad terms, these systems and 
their performances are relatively unknown, which makes it very difficult to have high degrees 
of confidence in them. Nevertheless, the systems could be accepted when their use implies 
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cost or care burden reductions. However, direct human supervision remains the preferred 
option for all groups because human contact is always a reassuring factor. 

System reliability is the key requirement for all groups. In the case of the groups that could 
potentially operate the system, the caregivers, further requirements are issued to make the 
system friendly, easy to use, and adapted to the needs of semi-supervised dependents, who 
could be the main beneficiaries of the system. Furthermore, the system is also required to 
diminish the care burden as much as possible, and additional requests are made to make it 
low-cost, easy to install/reinstall, and easy to deploy. Additionally, emergency personnel 
request system reaction times as low as possible to minimize the time from the event 
happening to medical intervention, as this time is often related to the survival rate. 

Privacy protection is a very relevant issue, and all groups express concern for data breaches. 
This concern is especially acute in the case of image-based systems. Most groups consider 
cybersecurity measures a reasonable risk mitigation factor, although they should be 
accompanied by other measures, as data could also be unlawfully retrieved by personnel with 
physical access to the system. Managers show concern for legal liabilities and economic 
repercussions of data breaches. Finally, a preference for the use of infrared or very low-
resolution images is expressed, in the case of vision-based systems, as these types of data 
preserve privacy. 

The environments where these systems are more likely to be deployed, according to the 
opinions of the caregiver groups, and in line with the main ideas expressed in the first 
paragraph of the discussion section, are those where direct human supervision is not a clear 
option. These contexts are linked to patients who are not continuously supervised, as their 
degree of dependency is not extreme yet, and to periods when supervision is not scheduled. 
The common situation described by several interviewees is the one associated with semi-
supervised patients who get up at nighttime to go to the toilet. This is an especially delicate 
situation, as several hours can go by prior to the next scheduled human contact with the 
caregivers at wake-up time.  

3.4 Conclusions 
Automatic fall detection systems are relatively unknown among dependents and their 

caregivers. This, combined with the value provided by human contact, makes direct human 
supervision the preferred option. 

However, there are certain situations, usually related to patients whose degree of 
dependency is not extreme, where the use of these systems could be well-accepted by patients, 
their families, and caregivers. These situations are linked to times when either the patients do 
not have human supervision or it is infrequent. Under these circumstances, the use of fall 
detection systems could be a useful aid. 

A common scenario described by numerous interviewees is related to semi-supervised 
patients getting up at nighttime. In this situation, the person is often disoriented, increasing 
the likelihood of a fall. Additionally, in the event of a fall, it may go unnoticed until the next 
day, substantially delaying potentially needed medical intervention. 

Under these circumstances, a fall detection image-based system could satisfy this identified 
need better than other options. Patients in bed during nighttime dress light outfits and get rid 
of any accessories, disqualifying the use of wearable systems. Ambient systems might seem 
like the optimal choice under these circumstances, but the low maturity state of these 
technologies currently discourages the use of such systems. Vision-based systems combine 
good technological maturity and optimal operation conditions under the described 
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circumstances. However, the low illumination conditions associated with these scenarios 
disqualify the use of visual or near-infrared cameras. 

In contrast, FIR sensors and their images are perfectly suitable for this situation, as the 
images they provide are not dependent on light. Moreover, their use contributes to privacy 
protection, and several groups related to elderly care have expressed a preference for them. 
Finally, the introduction of low-cost, high-resolution FIR cameras allows the development of 
a system with these characteristics at a very low price. Consequently, automatic fall detection 
based on FIR imagery could be the optimal approach to address the safety problem posed by 
semi-supervised patients getting up at nighttime. 
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4 Human Pose Estimation from Far Infrared Images 

4.1 Dataset 
Our new dataset, called FIR-Human, is the only one of its kind to the best of our knowledge. 

It includes video clips recorded by five volunteers engaging in different activities. The dataset 
contains far infrared images (FIR) and 3-dimensional and 2-dimensional annotations 
associated with their joint positions. 

The potential uses of this dataset include training for systems in the fields of FIR human 
pose estimation in both 2 and 3 dimensions, human action recognition based on FIR imagery, 
surveillance, healthcare, and potentially, autonomous driving. 

FIR-Human is publicly available for download for academic and research use under the 
conditions established in the license agreement at https://ieee-dataport.org/documents/fir-
human. 

4.1.1 Related work 
Although there are not major, public datasets containing FIR video clips and their 

associated annotations some works, like [316], create small FIR imagery datasets of around 
700 images with manual 2-dimensional annotations in order to verify the performance of 
certain pose estimation networks. 

However, in the field of RGB datasets the situation is different, as four major datasets; 
FLIC [317], LSP [318], MPII Human Pose [319] and COCO [320] are systematically used to 
train and validate pose estimation architectures. Additionally, Human 3.6M [321], MPI-INF-
D-HP [322], NTU RGB+D [227] and Deepcap [323] have also been used with this purpose. 

LSP (Leeds Sports Pose) dataset contains 12000 images from sport activities. Individuals 
in the imagery are practicing sports, which make specially challenging their pose 
determination. The annotations associated to the images label 14 joints of the human body and 
this dataset has been used for single person pose estimation models. 

FLIC (Frames Labeled in Cinema) dataset contains 5000 images. It collects images from 
30 very popular Hollywood movies by taking the first frame of every block of 10. The 
annotations reflect the position of 10 body joints and this collection of images has been used 
to train and evaluate both single and multi-person systems. 

MPIII (Max Planck Institute of Informatics) Human Pose dataset collects the annotations 
of 40000 people in 25000 images. These annotations determine the position of 15 joints of 
these individuals and, as FLIC, it has been used to train and validate single and multi-person 
models. This dataset is one of the main benchmarks for evaluation of articulated human pose 
estimation models and it is widely accepted, together with COCO, as the main standard for 
system comparison. 

COCO (Common Objects in Context) is an image database issued by Microsoft. It is a 
large-scale object detection, segmentation, and captioning dataset. The annotations are 
contained in a JSON file, which collects information of images of 80 types of elements. One 
of the elements is people and, for the images containing persons, 17 joints are labeled. The 
dataset contains annotated images of 250000 people in 200000 images and since 2014, when 
it was first presented, it is yearly revised and improved. 

4.1.2 Data modalities 
A FIR camera is used to record our dataset, which is synchronized with a MoCap (Motion 

Capture) system. The MoCap system captures the 3-dimensional position of markers placed 
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on the main body joints. Through this process and after appropriate processing, a sequence of 
3-dimensional positions of each joint for each video clip is collected. 

The FIR video clips are recorded at 23.98 frames per second, and each frame has a 
resolution of 480 x 640 pixels. The joint information consists of 3-dimensional positions of 
19 major body joints, defined with an error of less than 5 millimeters for each of the recorded 
frames. Additionally, the 2-dimensional projection of those coordinates onto the recording 
plane is also provided.  

4.1.3 Action classes 
The dataset contains 27 action classes in total. 26 of them are daily life activities while the 

other one includes different types of falls. The different actions are repeated by the volunteers 
in four different positions so frontal, rear and side views of the same actions are recorded.  

The dataset is divided into three blocks. The first block, which includes the motions of four 
volunteers, is used for system training and, in this group, all volunteers are recorded executing 
13 daily life activities. These actions include: 

1. Giving directions. 

2. Discussing. 

3. Eating. 

4. Taking photos. 

5. Exercising on the ground. 

6. Running in place. 

7. Walking. 

8. Sitting and standing up. 

9. Coughing. 

10. Exercising. 

11. Playing basketball. 

12. Picking up objects. 

13. Limping. 

The second block includes a single person who executes a different set of actions with 
validation purposes. These activities include: 

1. Brushing teeth. 

2. Encouraging your team. 

3. Toasting. 

4. Taking a selfie. 

5. Crouching for meditation. 

6. Walking a dog. 

7. Throwing a stone. 

8. Talking on the phone. 
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9. Stretching yourself. 

10. Hopping. 

11. Kicking a ball. 

12. Tying shoelaces. 

13. Rotating your trunk. 

Finally, the third block includes four volunteers who are recorded from different 
perspectives falling forward, falling backwards and side falling. The falls start from static or 
dynamic situations and a number of them are slow falls, a common type of fall in the elderly 
community. 

A few examples of annotated images belonging to video clips of volunteers performing 
different activities and fallings can be seen in Figure 5. 
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Figure 5. Volunteer (a) running, (b) playing basketball, (c) picking up an object, (d) coughing, (e) sitting, (f) exercising, (g) falling 

forward, (h) falling backwards, (i) side falling. 
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4.2 2D human pose estimation networks 

4.2.1 State-of-the-art 
Human pose estimation has traditionally been one of the most challenging fields of study 

in computer vision, as determining body key-points position has proven to be an elusive task. 

This process involves image pose determination in either two or three dimensions and a 
number of different approaches have been proposed in the literature to solve it. All these 
approaches can be classified into two different groups [324], the generative and the 
discriminative ones. 

The discriminative approach requires an initial extraction of image characterization 
elements. These elements, called features, are then abstracted, often in a statistical way, in a 
subsequent process step called feature description. Then, abstracted features are assembled 
together using a human body model for such a purpose, and finally, this assembly is fed to a 
classification or regression model in order to estimate body pose. 

On the other hand, the alternative approach, the generative one, includes top-down and 
bottom-up methods. The former integrates image elements to compose descriptive features, 
which are sometimes directly used to estimate a human pose and other times are employed to 
localize body parts. These localized body parts are then used to compose a human structure, 
adopting a specific pose. The top-down methods follow an opposite flow, as they use high-
level semantic descriptors to guide low-level element recognition. 

4.2.1.1 Feature extraction and characterization 
Depending on its level of abstraction, image features can be classified as low, mid or high-

level abstraction features. 

The low-level ones are associated to shape or appearance of the human body as a whole or 
any of its parts. Low-level image features traditionally include silhouette, as in the systems 
described in [325]-[327], contours, as in [328], [329], and edges [330], [331]. This way, all 
items define limits but while silhouettes define human body limits, contours outline body parts 
and edges mark lines of sudden variation in an image. 

The specific processes followed to extract these lines vary from system to system but, in 
overall terms, contours are obtained by removing image background, so foreground silhouette 
lines defining body limits can be inferred. Contours can be extracted from silhouettes, once 
they have gone through a body segmentation process and edges are directly determined once 
a filtering process based on differential kernels has been applied. 

Mid-level image features try to capture the composition and distribution of image elements. 
These features include Fourier descriptors as in [332], Poisson features [333] and shape 
context [334]-[337]. The last features, which are the most common ones, capture every 
relevant body element position related to the position of the rest, usually by using polar 
representations.  

Additional local mid-level features include gradient edge encoding, as the histogram of 
oriented gradients (HOG) [338], [339], scale Invariant Feature Transform (SIFT) [340], [341], 
shapelet features encoding [342] and edgelet feature encoding [343]. Among them, the two 
first methods were widely applied to extract features in computer vision tasks before the use 
of artificial neural networks became the norm for automatic image feature extraction. 

Global mid-level features have also been used in a number of systems. This way, the system 
described in [344] uses foreground maps while systems like the ones described in [345], [346] 
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use grid features to encode HOG and SIFT features respectively, outperforming standard 
HOG and SIFT feature encoding. 

Finally, multilevel hierarchical encoding is used in a number of systems [347]-[350] 
proving to be more resilient to geometric transformation than previous methods. 

High-level features encode not only information related to body part identification but also 
data referred to location and orientation [351]-[353] or to spatiotemporal correlations [354]. 
Unlike mid-level features, which encode data following rigid predefined patterns, high-level 
ones adapt patterns to every situation, obtaining, this way, a better adaptation. 

Motion features are able to capture the spatial correlations of objects along time, as they 
move in relation to the camera. Optical flow and dense optical flow [355]-[357] encode the 
pattern established by an object, its silhouette, contours and edges, as it moves along time. 
Optical flow gradient contains relevant information regarding object movement and, 
therefore, it can be successfully used to track it, including human poses [358], [359]. 
Alternative techniques able to determine local motion similarities, such as motionlet [360] or 
motion and appearance patches [361], which can determine image difference, are also used 
for the same purpose. 

4.2.1.2 Human body models 
Once features at any level have been extracted from images, discriminative methods 

assemble them together using a human body model. These models can be kinematic, planar, 
or volumetric, depending on their characteristics. 

Kinematic models adopt a skeletal structure with segments linking joints. This way, the 
information associated with joint positions and the one that determines body part orientation 
configure a set that fully defines human pose. Kinematic models can be divided into two main 
groups. The first one, called predefined, associates features to a model whose body parts' 
dimensions are fixed. The second group includes all models associated with learned graph 
structures, and among these structures, the most popular ones are called pictorial structure 
models (PSM). These tree-structured models have been successfully applied to human pose 
estimation tasks, both in two and three dimensions, in systems like the ones described in [362]-
[365]. They model the human body as a collection of elements gathered in a deformable 
configuration. Each of the body parts is represented as a simple element that is linked by 
spring-like connections to the adjacent elements. This way, human body is treated as an 
assembly of parts connected at the height of the joints by deformable links. The approach, 
which requires low computational power, is very successful at estimating human pose as long 
as all body parts are clearly visible. However, when occlusion problems appear this approach 
fails to solve successfully the problem. 

Improvements of PSM models have been tried by including relations between non-
connected body parts [366], by adding multiple tree models [367], [368] or by using Bayesian 
networks [369], [370]. 

Planar models add to the information associated to joints and body part orientation its 
appearance. The two main types of planar models are Active Shape Models (ASM) and 
cardboard models. The former ones present a basic human silhouette deformed accordingly 
to the adopted pose. To do it systems like the ones describe in [371]-[373] use principal 
component analysis techniques. The cardboard models capture information associated to the 
color of body part image patches. This way, systems based on this model [374] code 
information associated to the color histogram and average color of every body part image 
patch. 
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Volumetric models represent the human body as a three-dimensional structure, either by 
using an array of simple geometric forms such as cylinders or cones, or by adapting a mesh to 
the human body surface. In the first case, the different body parts are represented by simple 
elements, while joints connecting those parts are given a number of degrees of freedom from 
1 to 3. This way, once joint positions are estimated on the two-dimensional image, the three-
dimensional pose can be inferred by solving the surface projection problem using least-square 
methods as in [375]. 

The alternative method to model a three-dimensional human body is adapting a mesh to its 
surface. Meshes are deformable triangular surfaces that define the limiting surface of a body. 
The most popular method to adapt a mesh to a human body is known as Shape Completion 
and Animation of People (SCAPE) and is extensively used in different systems [376]-[379]. 
Enhanced methods for mesh adaptation that take into account shadows in images with a single 
light source are tried in [380], [381]. 

All models are subject to constraints associated to joints limitations and behavioral patterns 
of motion. This way, the information contained in an image, once it has been adapted to a 
human body model subject to constraints, is enough for pose estimation tasks [382]. Two main 
techniques have been used to infer movement constraints from collected motion data. The first 
one, based on joints limits, is used in [383] while the second one, a physics-based model which 
accounts for dynamics effects in joints and on the ground, is the base to design the systems 
described in [384], [385]. 

4.2.1.3 Generative methods 
Generative human pose estimation methods imply a geometric projection of a volumetric 

human body model over the image plane so it matches the observed image. These methods 
focus on solving the intrinsic problem of pose estimation by assessing the probability of an 
observation given a pose of the model. This way, the process, which tries to find an absolute 
minimum, requires a complex search over the model state space in order to find it. A good 
number of systems have been developed following these methods [386]-[389] and, as 
expected, they are susceptible to local minima errors, requiring good initial pose estimations 
in order to avoid it. The most common methodologies to obtain the searched minimum are 
local optimization [390]-[392] and stochastic search [393], [394]. 

Generative methods deliver good results in optimal conditions. However, under poor 
lighting or occlusion conditions, their performance is greatly degraded. 

4.2.1.4 Discriminative methods 
Unlike generative methods, discriminative ones are capable of establishing a direct relation 

between the array of features collected from images and a set of different poses. As a result, 
multi-dimensional boundaries separating classes associated with poses can be determined for 
the array of features. 

The determination of boundaries requires system training based on real data, which takes 
time and demands processing power. However, once the boundaries have been established, 
the amount of processing power and time required for pose determination is much lower than 
that required by generative models. This is because generative models need to go through an 
optimization process in a high-order state space every time they estimate a pose. 

The most popular discriminative methods to estimate human pose are the following ones. 
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Support Vector Machines 

Support Vector Machines are discriminative algorithms used for classification or 
regression able to determine hyperplanes used for class discrimination. A good number of 
systems use these algorithms to estimate human pose [395]-[397]. 

Relevance Vector Machines 

Systems using Relevance Vector Machines [398], [399] provide probabilistic regression of 
human pose using Bayesian inference. Relevance Vector Machines have a functional form 
equivalent to a Gaussian model although it incorporates a covariance function.  

Mixture of Experts 

These algorithms mix together Bayesian Mixture of Experts algorithms and some others in 
order to enhance system performance. Systems based on them [400], [401] require higher 
amounts of data than previous ones but offer better results. 

Manifold learning methods 

These methods try to generalize linear frameworks like the Linear Discriminant Analysis 
or the Principal Component Analysis so they become sensitive to nonlinear data structures. 
This way, they try to reduce the number of dimensions of nonlinear high order data structures 
by projecting them onto lower order bases, usually following non-supervised methods. 
Several systems, as the ones described in [402]-[406], use these methods to determine human 
pose.   

Pose embedding methods 

Embedding methods are learning algorithms able to identify images of humans in poses 
similar to a given one following a direct method of image comparison. This way, pose 
determination systems using embedding methods [407], [408], like the ones based on 
manifold ones, are able to diminish the number of system dimensions and determine the most 
similar pose of a dataset to the one observed in a specific picture. 

Locality-constrained Linear Coding 

Locality-constrained Linear Coding applies constraints at local level to select descriptors 
of the image from a codebook and is able to determine the linear combination of those 
descriptors that best define the image. This way, systems like [409], [410] can estimate human 
pose. 

Bag-of-words based methods 

Bag-of-words was the most used computer vision algorithm before the deep learning neural 
networks became the dominant pipeline. As its name shows, systems based on these methods 
[411]  isolate the most relevant image features creating, this way, a vocabulary or a set of 
words. This way, a histogram reflecting word occurrence in the image is built and it is used 
as its final representation. Finally, this representation is fed to either a classifier, in order to 
compare the pose in the image with a set of pre-defined human poses, or to a regression model, 
in order to determine the pose in the image. 
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Random forest 

Random forest methods aggregate decision trees to execute regression or classification 
tasks. Decision trees are built using leaves, which represent class labels, and branches, which 
are associated to features of the classes. This way, by following an iterative process decision 
trees are able to perform its assigned task. The computational burden of trees is low, as the 
split points are selected, so the cost function that measures processing power is minimized. 
However, trees tend to overfit. To reduce this tendency the set of training data is split into a 
number of groups and one tree is trained using each group, then the resulting trees are grouped 
together obtaining this way a random forest [412]-[414] used with regression or classification 
purposes. 

Certain techniques [415] have been used to improve random forest performances by using 
two-layered random forests. This way, the first layer is used as the classifying part and the 
second one regresses joints positions. Alternative enhancing techniques have been used in 
[416], where the authors use a Hough Forest, which is a random forest adapted to execute a 
generalized Hough transform. Hough transform is a technique used to identify simple figures 
generalized to recognize more complex features present in an image. 

Deep learning methods 

In global terms, discriminative methods, although showing higher resistance than 
generative ones to performance degradation due to occlusion and poor lighting conditions, 
still present important restrictions under those circumstances. 

Deep learning methods, while computationally more expensive than other ones, have 
proven to be not only more accurate than the rest in optimal conditions but also more resilient 
to the adverse impact of occlusion and poor lighting. These characteristics have made them 
gain high relevance over the last few years. 

In broad terms, human pose estimation based on deep learning models consists of two basic 
steps. During the first step, the model focuses on joint recognition (e.g., shoulder, knee, ankle), 
while the second phase is centered on joint grouping so that the array of joints configures a 
valid human pose configuration. 

Two common approaches have been used for pose estimation of individuals in images. The 
first one, known as top-down, identifies the number of individuals in the image and isolate 
them, usually by creating a bounding box. Once individuals have been isolated, the system 
focuses on joint identification and pose determination. This first philosophy is followed by a 
number of different ANN architectures [417]-[419]. The second approach [420]-[422], 
bottom-up, follows a reverse logic and start by identifying joints to group them together 
afterwards in a coherent entity representing a person. 

The bottom-up philosophy presents a number of advantages over the top-down option, as 
it is able to better overcome the early commitment problems associated to a faulty detection 
of individuals in the image. Furthermore, although the computational cost of the top-down 
approaches is lower than the bottom-up one when the number of individuals is low, when it 
grows, the top-down philosophy cost becomes higher.  

4.2.2 Materials and methods 
The area of interest of this work is centered on fall detections systems used in real life. In 

the user’s need chapter, the communities of users manifest that they consider the use of these 
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systems only in situations where human supervision is not possible. This way, fall detection 
systems used in reality will process images of a single person and because of it, due to the 
advantages presented by the top-down approaches under these circumstances, the review of 
ANN architectures will be restricted to this group.  

Although the number of ANN architectures able to estimate human pose is large, all of 
them deliver one of the two following outcomes. They can either directly regress the 
coordinates of a person’s joints or they can generate a probability map, called heat-map, which 
represents the likelihood that an area of an image contains a specific joint.  

Traditionally, the backbone architectures used in human pose estimation are based on 
convolutional neural networks. DeepPose [423] is the first relevant network in this area 
presented in a research paper. It uses a classical convolutional network as a backbone, Alexnet. 
Since then, a number of alternative convolutional architectures capable of delivering heat-
maps or regressing joint positions have been proposed. 

The introduction of ViT [424] meant the introduction of an alternative option to the use of 
convolutions in the field of artificial vision. This alternative is based on the use of 
transformers, an architecture developed for the field of natural language processing which 
identifies how relevant an item of the input vector is for the rest of elements.  

Visual transformers have been very recently introduced in the world of human pose 
estimation and the number of proposed networks for this purpose based on them is still limited. 
This new architecture can rival state of art convolutional networks and, in certain occasions, 
where relative positions become relevant, it can outperform them. However, although the 
computational cost for equivalent results tends to be lower, the transformers architectures 
require far more training information than convolutional networks to reach equivalent 
performances [425]. 

4.2.2.1 Convolutional architectures 
The most representative convolutional architectures have been trained with images from 

the FIR-Human dataset in order to evaluate their performances when working with this kind 
of images. 

DeepPose 

DeepPose [423] is a convolutional architecture whose backbone is Alexnet [426]. The 
network uses a cascade of regresssor to refine joint position determination as shown in figure 
6. It crops the image around the joint coordinates estimated by the previous stage, so further 
stages can improve joint position determination, as these new-cropped images have higher 
resolution levels. 

DeepPose has three stages that operate in cascade. All stages make the input image go 
through 5 convolutional layers reducing horizontal complexity to gain depth information 
before injecting the extracted features in a block of two fully connected layers that regresses 
joints positions. Then, the image is cropped around that point and it is passed to the next stage 
of the cascade for a more precise joint regression. 
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Figure 6. DeepPose structure. [426] 

 

ConvNet POSE 

ConvNet POSE is a convolutional architecture presented in [427]. It represents the first 
approach to heat-map generation leaving the previous regression philosophy used by 
DeepPose.  

The architecture integrates three modules as shown in figure 7. The first one produces a 
coarse heat-map generated by convolutional and pooling layers. A second module crops the 
image around the predicted position of every joint. Finally, the third module is used for heat-
map fine-tuning. 

 

Figure 7. ConvNet structure. [427] 

Convolutional pose machines 

Convolutional pose machines [428] is an architecture able to produce an array of 2D heat-
maps that represent the space probability distribution for the location of each key-point. The 
architecture is multi-stage and end-to-end trainable as shown in figure 8. This way, at the first 
stage the input data is the original image that, after being processed by a standard Visual 
Geometry Group structure, produces heat-maps for every joint. Subsequent stages use a 
similar strategy although the input data is an aggregation of the heat-maps produced by the 
previous stage and the original image. 

This architecture uses large receptive fields in order to learn spatial relationships that, 
together with the combined input of the original image and the heat-maps generated by the 
previous stage, improve the accuracy of the network output.  
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Figure 8. Convolutional Pose Machines structure. [428] 

Stacked hourglass networks for human pose estimation 

The stacked hourglass architecture [429] takes its name from its look, which resembles an 
hourglass as shown in figure 9. It combines the bottom-up and top-down approaches, as the 
initial layers of each stage are convolutional and reduce horizontal complexity while gaining 
depth and the final layers are deconvolutional and execute the reverse operation. This structure 
captures local information contained in the image at different scales, which allows the network 
to learn different relationships, such as body position, limb movements, and the relationship 
between joints. 

The architecture stacks several hourglass stages in order to get optimal performances and 
the down-sampling effect is obtained using max pooling techniques while the up-sampling 
one uses nearest-neighbor interpolation. 

 

Figure 9. Stacked hourglass structure. [429] 

Human pose estimation with iterative error feedback 

Iterative error feedback [430] is an architecture capable of identifying what is wrong in the 
network's forecast and correcting it in an iterative way. This approach incorporates error 
predictions into the initial solution to iteratively correct and optimize joint position 
determination. Unlike the previous method, which directly identifies key-point positions, this 
approach progressively corrects an initial forecast to optimize it. 
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This multi-stage process uses the fusion of the original image and the heat-map produced 
by the previous stage as the initial stage data. With this information, the errors in the 
predictions from the previous stage are forecasted, and joint positions are updated accordingly. 
These updated joint positions are then used to generate updated heat-maps, which will serve 
as input, along with the initial image, for the next stage. This architecture is shown in figure 
10. 

 

Figure 10. Iterative error feedback structure. [430] 

Cascade feature aggregation for human pose estimation 

This architecture [419], shown in figure 11, is based on a cascade of hourglass stages that 
aggregate predictions from previous stages with the original output of the initial backbone, 
aiming to better capture the local information contained in an image. 

This approach enables feature aggregation through image inspection at different levels. 
Human joints are located through low-level inspection, while in complex environments with 
poor lighting or occlusion conditions, high-level inspection helps to refine their position. 

 

Figure 11. Cascade feature aggregation structure. [419] 
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4.2.2.2 Transformers architectures 

TFPose 

TFPose [431] is an architecture shown in figure 12 based on transformers that directly 
regresses key-point positions. Its backbone extracts multilevel feature maps by processing the 
input image through a series of convolutional layers with increasing strides. These maps are 
then flattened and concatenated together to feed a transformer-encoder block, following a 
Deformable DERT [432] design. This encoder block consists of six consecutive encoder 
layers, taking as input the output of the previous one. Finally, a decoder block is used to regress 
the coordinates of all joints from the encoder block output. 

The novelty of methods based on transformers is the attention mechanism they implement 
in the encoder block. This way, input images or their feature maps are divided into spatial 
segments, and the encoder block determines the level of importance of every segment in 
relation to the rest, allowing the network to learn spatial relations among joints in this case. 

 

Figure 12. TFPose structure. [431] 

ViTPose 

This architecture [433], shown in figure 13, is based on transformers and can produce key-
point heat-maps. Unlike the previous network, ViTPose is purely based on transformers and 
does not use convolutions to extract multilevel feature maps. In this case, the input image goes 
through an embedding block, which fragments it into tokens that are flattened and 
concatenated into a single tensor. This tensor then feeds the encoder block, which consists of 
a series of transformer sub-blocks, with each one feeding the following one. 

Similar to the previous network, the objective of the encoder block is to learn the relative 
spatial relationships among body key-elements to work effectively in cluttered environments 
with low illumination or occlusion conditions. 

Finally, a decoder block, fed by the encoder block's output, produces an array of heat-maps 
associated with each joint. 

Figure 13. ViTPose structure. [433] 
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4.2.2.3 Loss function 
The used loss function in all cases is an L2 function, also known as Mean Squared Error 

(MSE), which is calculated as the average of the sum of all squares of the differences between 
true and predicted values.  

L2= 
∑ (𝑦𝑖−𝑓(𝑥𝑖))2i=n

𝑖=1

𝑛
  

In spite of its sensitivity to outliers this function is usually preferred over L1, as it allows 
an easier gradient determination, favoring this way network training. 

4.2.2.4 Evaluation metrics 
A number of evaluation metrics allow network performance evaluation and comparison 

over a common dataset. 

The most important ones are: 

 PCP (Percentage of Correct Parts), which measures the correct detection rate of 
limbs, considering the detection as correct when the distance between the two 
predicted joint locations and the true ones is less than half the limb length [423]. 

 PDJ (Percentage of Detected Joints). This metric regards the detection of a joint as 
correct when the distance between the forecasted and real joint positions is below 
a percentage of the distance between right hip and left shoulder. 

 PCK (Percentage of Correct Key-points). A metric similar to PDJ, although in this 
metric, the reference distance is the maximum side length of the external rectangle 
of ground truth body joints [434]. PCKh is a variation of PCK, whose reference 
distance is defined as 50% of the ground-truth head segment length [319]. 
PCKh@0.5, by far the most used evaluation metric in the field of human pose 
estimation, considers the joint correctly detected when the error in forecasting is 
below 50% of the PCKh reference distance.  

Due to the generalized use of PCKh, a common metric used in all the papers that present 
and evaluate the architectures described in the previous paragraphs, PCKh will be used in this 
work as the common metric for comparison. 

4.2.3 Results and discussion 
All proposed networks are implemented using PyTorch with an Adam function used as 

optimizer. The chosen batch size was 32 images and all networks were trained for 220 epochs, 
a number high enough for all networks to show a stable behavior. The initial learning rate was 
10-3 and it was dropped to 10-4 and 10-5 at the 160 and 200 epochs respectively, following the 
same rationale explained in [435]. 

The block one of the FIR-Human dataset was used for network training while the block 
two was employed for validation and network comparison. To enrich both blocks as much as 
possible the data augmentation strategy proposed in [436] was adopted. It includes random 
rotations (45º, -45º), random scaling (0.65, 1.35), flipping and half body data augmentation. 
This way, the total number of images was multiplied by four.  

The results of the system performance comparison are summarized in Figure 14. 

 

mailto:PCKh@0.5
mailto:PCKh@0.5
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Figure 14. System performance comparison. 

Table 11 collects the performances of the different networks as a function of joint. 

Table 11. PCK@0.5 for the different human body joints. 

MODEL 
 PCKh@0.5 

Head Shoul. Elb. Wrist Hip Knee Ank. Foot Total 

DeepPose (ResNet - 101) [423] 87.9 79.3 76.8 75.2 71.1 70.7 49.8 47.2 69.7 

ConvNet Pose  [427] 96.7 91.2 83.7 78.0 81.0 80.6 64.6 61.5 79.7 

CPM  [428] 98.6 91.3 86.8 87.2 89.1 88.7 78.1 74.0 86.7 

Stacked hourglass  (3 Stages) [429] 98.8 95.6 91.0 87.3 90.2 89.8 83.4 78.6 89.3 

HPE IF [430] 96.3 90.9 81.3 72.6 82.8 82.4 66.2 63.9 79.6 

Cascade (ResNet-101 Cascaded with 2 ResNet-50) [419]  96.5 94.7 90.8 87.1 89.9 89.5 83.7 82.9 89.4 

TFPose (Resnet -50;  Nd=6) [431] 98.6 95.2 90.8 86.2 89.9 89.5 82.4 80.4 89.1 

ViTPose (ViTAE-G) [433] 98.6 96.9 94.3 92.1 93.0 92.6 90.0 89.1 93.3 
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Table 12 presents the computational cost required by the different models. 

Table 12. Computational cost. 

MODEL Output Input image size Flops (GFLOPs) 

DeepPose (ResNet - 101) [423] Regression (3, 192, 256) 7.69 

ConvNet Pose  [427] Heat-map (3, 192, 256) 28.56 

CPM  [428] Heat-map (3, 288, 384) 143.57 

Stacked hourglass  (3 Stages) [429] Heat-map (3, 384, 384) 64.5 

HPE IF [430] Heat-map (3, 192, 256) 36.58 

Cascade (ResNet-101 Cascaded with 2 ResNet-50) [419] Heat-map (3, 288, 384) 61.3 

TFPose (Resnet -50;  Nd=6) [431] Regression (3, 288, 384) 20.4 

ViTPose (ViTAE-G) [433] Heat-map (3, 432, 576) 76.59 

 

Figure 15 illustrates the ground truth heat-maps of a FIR image and the predictions made 
by the different systems. 
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Figure 15. (a) Base image, (b) Ground truth heat-map, (c) ConvNet Pose prediction, (d) CPM prediction, (e) Stacked hourglass 

prediction, (f) HPE IF prediction, (g) Cascade prediction, (h) ViTPose prediction. 
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As expected, and in line with the results obtained in the different papers that present each 
considered system, there is a significant difference between the networks that directly regress 
joint coordinates and the ones which output heat-maps. 

Although the introduction of transformers in the field of artificial vision is very recent, and 
the number of models applied to human pose estimation is still limited, the models based on 
transformers used in this work offer better performance than the ones based on the classic use 
of CNNs. 

All models demonstrate exceptional performance at identifying the head, as can be easily 
inferred from Figure 12, where the obtained PCKh is quite similar for most of them. A similar 
result is observed in the case of the shoulders, the joint closest to the head. However, as the 
joints get farther from the head, the model's ability to determine joint positions degrades 
significantly, especially in the case of the ankle and the foot. Additionally, the performances 
of the different systems, which are similar for the least challenging key-points, vary widely 
for the most challenging ones. 

Finally, the computational cost of models based on transformers is lower than that of the 
systems based on neural networks for the same input resolution, and, with exceptions like 
CPM, better image input resolutions lead to better outcomes, especially for the most 
challenging joints, albeit at a higher computational cost.  

4.2.4 Conclusions 
 A wide set of models, representing most of the state-of-the-art human pose recognition 

networks, have been trained using the FIR-Pose dataset. 

The results obtained using the FIR-Pose dataset are very much in line with those obtained 
using RGB datasets. These results show that architectures based on transformers outperform 
convolutional-based ones, as the performances of the former exceed the results of the latter 
for the same input image resolution. 

In general terms, direct regression offers worse performances than heat-map generation 
techniques, and regardless of the approach, joints closer to the head are less challenging for 
all models compared to those that are further away. Moreover, while the system performances 
for the easier key-points are similar, they vary widely for the most difficult ones. 

Finally, it is observed that higher input resolutions allow models to yield better 
performances but come at the cost of higher computational requirements. 
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5 Dynamic Descriptors for Fall Characterization 
As already presented in [12], although vison-basedfall detection system’s performances are 

very satisfactory, the significant differences between simulated and real falls, and between 
falls of elderly and young people, documented in [13], [14], as well as the difficulty to access 
real-world data as a consequence of privacy protection, yield reasonable doubts about the 
performances of these systems operating in real circumstances. 

 These doubts are a direct consequence of the use of kinematic descriptors [12] to evaluate 
whether a fall has taken place. These descriptors are features inferred from the falls contained 
in the datasets used in system training. This way, if the video datasets do not contain real falls, 
the obtained descriptors could be inaccurate or incorrect and the system performances in the 
real-world could be poorer than expected. 

To solve this problem, two alternative approaches could be adopted. The first one is based 
on the correction of the modeling errors associated to a training not based on accurate 
information. This approach, considered in [437] for the field of data-driven fault diagnosis 
and in [438], [439] for the field of automatic control, implies access to real data after initial 
system training in order to correct the modeling errors caused by inexact training information. 
Unfortunately, the absence of any database containing real-world data makes this approach 
impossible in the field of automatic fall detection. 

The second alternative approach considers the use of dynamic descriptor instead of the 
classical kinematic ones. These descriptors approach the human body in terms of balance and 
stability, this way, differences between real and simulated falls become irrelevant, as all falls 
are a direct result of a failure in the continuous effort of the body to keep balance, regardless 
of other considerations. 

This work implements this alternative approach in the field of automatic fall detection 
systems for the very first time. To do it, an ANN able to regress, from a sequence of 2-
dymensional (2D) poses, the projected position onto the ground plane of both feet and body 
center of mass (COM) is proposed. This ANN also determines the feet contact status with the 
ground. This way, the body base of support (BoS) and ground COM projection can be 
established. Finally, with this information, a simple algorithm is able to assess, from a 
dynamic perspective, whether a fall has taken place. 

5.1 Material and methods 

5.1.1 Human balance 
Humans are biped beings whose COM is placed over the support area determined by their 

feet during the activities that they develop erected. These activities include standing, which 
involves both feet in contact with the ground, walking, which mostly implies one foot touching 
the ground, and running or jumping, activities associated to phases with no ground contact. 

It is widely assumed [440] that the model of the inverted pendulum is a reasonable 
approach to the study of human balance in a quiet standing posture. In this model two main 
forces are considered, the body weight, applied at the center of gravity (COG), which is the 
projection of the COM onto the ground, and the ground reaction, applied at the center of 
pressure (COP). This way, both forces are equal and their combined torque is in constant 
variation to guarantee balance as a result of continuous displacements in the COG and COP 
positions, either voluntary or not.  
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The same paper also presents that, regarding anteroposterior (A/P) directional balance in 
standing positions, the COM acceleration projection onto the horizontal plane is proportional 
to the distance that separates COG and COP. 

 

p-g = 
𝐼 �̈�

𝑊 𝑑
  = K �̈�           

Figure 16. A/P human balance in standing posture. 

Being p and g the positions of the COP and COG, I the body moment of inertia, W the 
weight, d the vertical distance from the ankle to the COM and �̈� the COM acceleration 
projection onto the horizontal plane.  

On the other hand, the stability in the mediolateral (M/L) direction in a standing posture 
adopts a different approach, as it is based on a load/unload strategy developed by the hips.  

During locomotion activities, as shown in figure 17, these two mechanisms control the 
trajectory of the COP to ensure desired COM acceleration/decelerations are obtained in a 
constant effort to obtain and regain balance as the body moves. 

 

 

Figure 17. COP and COG trajectories during locomotion. 
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5.1.2 Human fall problem definition 
When for whatever reason the human balance process fails and the continuous activities of 

the body to regain stability are not successful a fall happens. 

In the elderly community, as shown in [441], the 4 most common causes of fall are walking 
forward (24%), standing quietly (13%), sitting down or lowering (13%) and initiation of 
walking (11%). Therefore, assessing stability when walking or standing should be the primary 
target of any fall detection system whose goal is elderly fall detection.  

The human standing stability is fundamentally modeled by an inverted pendulum [442] 
and, under this assumption, the COG position referred to the BoS defined by feet position and 
status is widely adopted as the main human standing stability indicator. This way, a number 
of human static stability studies, as the ones in [443]-[446], are based on different derivations 
of this concept, establishing regions never to be left by the COG in order to keep standing 
balance. 

 

Figure 18. Standing stability diagram where BoS is defined by the Left Forefoot (LFF), Left Heel (LH), Right Forefoot (RFF) and Right 

Heel (RH). 

On the other hand, human locomotion is an inherently unstable activity. This way, during 
the single support phase, when walking, or during the jumping phase, when running, the COG 
moves forward, away from the support provided by the standing foot, towards the future 
position where the swinging foot will land, putting the body in an unstable situation. 

The main gait stability indexes are described in [447] by Bruijn. This way, a stable gait is 
defined as the one that does not lead to falls in spite of perturbations. These indexes assess the 
ability of individuals to handle perturbations during displacements. 

Due to their biomechanics significance, their sound mechanical basis and their capability 
to predict individual’s ability to handle perturbations, the extrapolated center of mass (XCoM) 
[448] and the foot placement estimator (FPE) [449] will be considered to assess gait stability 
in this work.  

The validity of XCoM to assess both A/P and M/L stability is evaluated in [447], [450] 
with good results. In addition, this index is also used in [451] to determine M/L stability of 
above-knee amputees with excellent outcomes. 

The foot placement estimator is introduced in [449] and [452] to assess A/P stability and it 
is then extended to M/L stability in [453].  

 

RFF 

RH 

LH 

LFF 
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Extrapolated center of mass 

Hof [448] defines three potential states during human locomotion regarding A/P stability. 
A first one with XCoM behind COP, being both of them behind the forward edge of the BoS 
(BoSxmax). A second state where both XCoM and COP continue behind BoSxmax but, in this 
case, COP is behind XCoM and a third case where XCoM is ahead of BoSxmax.  

The first case is clearly stable, while the second one, although temporarily stable, will lead 
to an unstable situation unless action is taken. The third state is unstable and it will be followed 
by a COG replacement through trunk or extremities movement, so COG is sent back behind 
BoSxmax, by a step, which will take the situation back to the first phase, or by a fall. 

This way, and once the third state is reached during forward movement, a step to place the 
swinging foot heel ahead of the XCoM must be taken before an unacceptable body sway angle, 
which widely vary from person to person [454], is reached. 

A reverse logic is used to assess A/P stability during backwards movements. 

In [448] XCoM is defined, for A/P stability, as  

 

XCoM = x + 
�̇�

𝑤0
           (1) 

 

with w0 = √
𝑙

𝑔
 

 

Being l the vertical distance between ankle and COM and x the COG position in the A/P 
axis. 

While M/L stability and its relationship with YCoM is extensively described in [450]. 

YCoM = y + 
�̇�

𝑤0
         (2) 

With y being the COG position in the M/L axis. 

Foot placement estimator 

This index, introduced by Wight [449], tries to determine forward foot placing assuming 
that the human body behaves as an inverted pendulum, that the angular moment is conserved 
at heel ground contact and that energy is conserved from that time on until the body maximum 
potential energy point is reached. Although the model is a simplification of what happens in 
reality, violations of these assumptions have little effect on the final outcome, as proved in 
[452] and [455].  

This way, when walking, the model, shown in figure 19, assumes a total standstill at body 
maximum potential energy point, so movement needs to be restarted then. However, this is 
not what happens when the person does not stop walking at that step and, therefore, foot 
should actually fall short of the calculated FPE position. This assumption is backed by the 
results obtained in [456]. 

In [452], the angular velocity after heel impact assuming an inverted pendulum model 𝜃2̇ 
is calculated as 
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𝜃2̇ = 
𝑚ℎ(𝑣𝑥𝑐𝑜𝑠Φ+𝑣𝑦𝑠𝑖𝑛Φ)𝑐𝑜𝑠Φ+𝐼𝜃1̇𝑐𝑜𝑠2Φ

𝑚ℎ2+𝐼𝑐𝑜𝑠2Φ
        (3) 

 

1

2
 (I + m  

ℎ2

𝑐𝑜𝑠2 ф
  ) 𝜃2

2̇ + mgh = mg 
ℎ

𝑐𝑜𝑠𝜙
      (4) 

 

Being vx and vy the components of the COM speed, I the moment of inertia, h the height 
of COM above ground level and ф the angle between the swinging leg and the vertical at heel 
contact. 

As φ is the angle of the rear leg with the vertical at heel contact, equation (3) can be 
rewritten as 

 

𝜃2̇ = 
𝑚ℎ𝑣𝑥(𝑐𝑜𝑠Φ+tan φ𝑠𝑖𝑛Φ)𝑐𝑜𝑠Φ+𝐼𝜃1̇𝑐𝑜𝑠2Φ

𝑚ℎ2+𝐼𝑐𝑜𝑠2Φ
        (5) 

Equations (4) and (5), combined, lead to ф determination that, in turn, can be used to 
calculate FPE, as leg length is known. 

Figure 19. Simplified biped walker before and after swinging leg ground contact. 

5.1.3 Dynamic approach 
The approach to human fall from a balance and stability perspective represents an 

alternative to the classical use of kinematic descriptors. To implement this approach, the COG 
and feet position, together with feet status; either in contact with the ground or not, need to be 
determined.  

To do it, in this work, an end-to-end solution by using an ANN is proposed. The network, 
illustrated in figure 20, takes as input a series of 2D joint key-points positions (e.g., determined 
by an off-the-shelf 2D joint detector) and returns the projection of COM and feet joints onto 
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the horizontal plane, as well as their contact status, allowing, this way, the stability indexes 
determination.  

 

 

 

Figure 20. The network is able to provide the projection of COM (blue dot) and feet joints position (Right Heel RH, Left Heel LH, Right 

Forefoot RFF and Left Forefoot LFF) onto the horizontal plane as well as their status (feet joints in contact with the ground) 

5.1.3.1 Data pre-processing 
As the only relevant information for our purpose is related to relative joint placement, the 

array containing the coordinates of the body joints is referred to the root (midpoint between 
hips). Then, and in order to get temporal coherence, the series of arrays is filtered using a 1-€ 
filter [457].  

Then, every array of the time series, representing the 2D joints position at a specific time, 
is flattened to a 1D vector to reduce input complexity as much as possible. Finally, the 1D 
vectors reflecting instantaneous joints position are stacked along a time window in a 2D 
tensor. This tensor will be the input feeding the ANN. 

5.1.3.2 CoGNet Network 
CoGNet is an end-to-end deep learning architecture aiming to regress COM projection onto 

the ground plane from 2D pose series. Furthermore, BoS is also determined, obtaining, this 
way, the crucial elements to determine human equilibrium and assess stability. 

Given the optimal results of the network developed by Pavllo et al. [458] estimating 3D 
poses from 2D key-points series and the good performance of the one implemented by Zou et 
al. [459], which is able to determine whether feet are in contact with the ground, we propose 
an architecture inspired by both networks with a common backbone and an output block which 

delivers a matrix of 2D positions over the ground plane, B ϵ ℝ𝟐𝒏, and ground contact labels 
for both heels and forefeet. The matrix collects the heels, forefeet and CoG position projected 
onto the horizontal plane.  
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The model is a temporal convolutional architecture, a structure first introduced by Lea 
[460]. In this type of structure, the gradient path, between output and input, has a fixed length 
that highly mitigates vanishing and exploiting gradients, a common problem in other 
architectures such as RNN’s. Convolutional structures also offer precise control over the 
temporal receptive field, a determinant characteristic to incorporate time evolution in the 
model, something of extreme importance in a network designed to provide the COG 
movement. To do it, dilated convolutions [461] are used, so dependencies from previous states 
are incorporated to the present COG determination. This type of architecture, which models 
time dependencies, has been successfully applied to different fields, such as semantic 
segmentation [462], sound classification [463] or image extraction [464]. 

The embedding block takes as input the 2D tensor. Replicate padding is then used to deal 
with boundaries and a 1D convolution, with kernel size 3, is applied to get the block output. 

The following residual blocks apply 1D dilated convolutions and use ReLU activation 
functions [465] to reduce added non-linearity as much as possible. In addition, residual 
connections are used to reduce network-training time [466]. Furthermore, batch normalization 
methods [467]  improve network performance in the environment associated to the noisy 
inputs coming from 2D pose estimation systems by reducing the internal covariate shift. 
Finally, Dropout [468] methods allow overfitting prevention during the network-training 
phase and greatly improve generalization. 

The output block applies a convolution covering the entire time window input and, this 
way, the block input tensor is flattened to a 1D vector. This vector feeds two branches, one 
providing forefeet, heels and COG projections on the horizontal plane and another one 
providing ground contact probability to forefeet and heels. Both branches use, for different 
purposes, a fully connected layer with a sigmoid activation function. 

The entire network architecture is shown in figure 21.  

 

Figure 21. Network structure where f is the number of accepted frames and J the number of joints. Blocks in green represent 

convolutional layers where the number of input channels, size and dilation of the kernel and number of output channels is indicated. 

Final processing of the output time series includes a 1-€ filtering step.  
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5.1.3.3 Network training 
The network is trained using, mainly, the Human 3.6M [321] database, but a number of 

samples coming from MPI-INF-D-HP [322], NTU RGB+D [227] and Deepcap [323] were 
added to make the final training set as rich as possible, favoring generalization this way. The 
ground truth forefeet and heels projection onto the ground plane are inferred from the 3D 
databases annotations, while the GOG determination is made by projecting onto the same 
plane the COM position which, in turn, is determined through segmental analysis. Finally, the 
ground contact status labels are established through the process described below, as there is 
no publicly available database providing that information. 

The final dataset includes 169444 samples that are split into two groups, one for training, 
containing 136665 samples, and one for testing, which groups the rest of them. 

Ground-truth COM determination 

COM position can be determined by using either forward or inverse dynamic techniques 
[469]. The first block of methods aims to measure the ground reaction forces by using multiple 
force plates, instrumented force treadmills or pressure insoles. This way, a first integration is 
able to determine COM velocity and, through a second integration, COM displacement can 
be obtained. The second group of techniques, the inverse dynamic ones, captures the three-
dimensional kinematics of the entire body and estimates body COM position by considering 
all body parts. This second array of methods is also known as segmental analysis and it is 
based on the study by de Leva et al. [470]. 

In this work COM position is determined through segmentation by defining body segments 
from anatomical landmarks, which, in turn, can be obtained from body joints. Different 
publications approximate standard values for the segments COM and moment of inertia [470], 
[471]. Based on them, body COM can be obtained as a weighted sum of the different 
segments’ contribution. 

Thus, three-dimensional COM position can be determined as: 

𝑿𝑪𝑶𝑴 = 
𝚺 𝒎𝒊 𝒙𝒊

𝚺 𝒙𝒊
 

𝒀𝑪𝑶𝑴 = 
𝚺 𝒎𝒊 𝒚𝒊

𝚺 𝒚𝒊
         (6) 

𝒁𝑪𝑶𝑴 = 
𝚺 𝒎𝒊 𝒛𝒊

𝚺 𝒛𝒊
 

 

Being xi, yi and zi the coordinates of the i-th body segment and mi its mass. 

In accordance with this procedure, the COG position is inferred from the three-dimensional 
joints position provided by the 3D database annotations. To do it, the estimation of body 
segment mass and its COM placement is obtained by using the data provided by De Leva 
[470]. 

Ground-truth ground contact status labeling 

Ground-truth labeling should be obtained from a public database. Regretfully, no database 
of this kind exists, therefore, labels had to be determined through the use of a proper algorithm 
specifically designed for this purpose. 

Following a process similar to the one used by Zou [459] contact labels are automatically 
created for each forefoot and heel. The joint is declared in contact with the ground when it 
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meets a double condition. On the one hand, its horizontal average speed during the last 0.1 
second needs to be under the 5 cm/sec mark. On the other hand, the joint mean position during 
the last 0.1 second must maintain a height of 5 cm or lower over the mean height of the joint 
in the first two seconds of the clip. 

Loss function 

The objective loss function used for network training is: 

 

𝜁𝑐 = 𝜁2𝐷(ô) + w 𝜁𝑏(l)        (7) 

 

The first component is a L2 loss function that compares ground-truth joints and COG 
projections, o, with network outputs, ô. 

 

𝜁2𝐷(ô) = ‖𝑜   − ô‖2
2        (8) 

 

The second component is a binary cross entropy function weighted by a factor w 

 

𝜁𝑏(𝑙) = −
1

𝑛
∑ 𝑙𝑖

𝑛
𝑖=1 ln(𝑙𝑖

′) + (1 − 𝑙𝑖) ln(1 −  𝑙𝑖
′)       (9) 

 

Where 𝑙𝑖
′ and 𝑙𝑖 are the predicted contact probability and the ground-truth label of the i-th 

joint. 

5.1.4 Fall detection algorithm 
In order to develop a fall detection algorithm based on the information provided by 

CoGNet, stability will be assessed in both the A/P and M/L directions. A/P axis will be defined 
as the mean feet direction during the last half second and M/L axis as the normal direction to 
A/P axis. 

5.1.4.1 Use of extrapolated center of mass indexes 
In the A/P axis, the system will be assessed as stable as long as XCoM is behind BoSmax 

and ahead of BoSmin, following a similar rationale to determine stability in the M/L axis using 
YCoM. 

Once the system has been declared unstable, an action is required to take it back to a stable 
condition. In the A/P axis, one foot must overtake XCoM. This way, when the foot of the 
swinging leg lands, a new BoS will be defined and the stable condition will be re-declared. 
M/L stability regain after YCoM has over exceeded the limits of the BoS will require similar 
actions. 

XCoM and YCoM will be determined in accordance with (4) and (5). The vertical 
component of the COM, l, will be approached by the sacral marker height over ground, as this 
assumption is accepted as a reasonable one even in activities with important limbs excursions  
[472], [473], [474]. This way, according to the anthropomorphic information contained in 
[475] and [476], the mean l for the European population over 70 years old is 97.4 cm for men 
and 93 cm for women.  
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Assuming an inverted pendulum model, actions trying to regain stability should be 
completed prior to complete fall time, which, according to [477], is as follows 

 

 

T(𝜗0, 𝑤0) = √
𝑙

2 𝑔
 ∫

𝑑𝜗

√
𝑤0

2 𝑙

2 𝑔
 + cos 𝜗0    − cos 𝜗

𝜋/2

𝜗0
     (10) 

 

 

For the moderate sway angles associated to human balance, as 𝜗0 ranges from 2.5º to 7º 
[446], a person falling time varies between 1 and 1.48 seconds. 

This way, the maximum time an unstable condition will be maintained before declaring a 
fall will be 1.48 seconds if stability is not regained before.  

5.1.4.2 Use of the foot position estimator index 
The FPE will be calculated at heel landing and compared with the real step length. For this 

estimation, the human body will be considered a rigid simplified biped walker (fig. 4) whose 
segment masses, lengths, COM positions and inertial moments are determined using the 
information provided by De Leva et al.  [470].  

As in the previous section, the sacral height over ground is assumed to be a good 
approximation to COM vertical position. The angle φ is calculated by using the information 
provided by CoGNet and the leg length. Then, through (5) and (6) ф can be determined and, 
once this last angle is known, FPE determination is immediate. Finally, this distance is 
compared with the real step length given by CoGNet. 

5.1.5 Performance evaluation 

5.1.5.1 Network evaluation 
Error determination most popular metric in the field of 3D human pose estimation is Mean 

Per Joint Position Error (MPJPE) [478]-[480]. It determines the mean of all Euclidean 
distances separating the predicted and ground-truth positions of each joint. In this case, a 
specific evaluation of the network performance to predict each output point is also desired, as 
the COG placement depends on the position of a good number of joints while the projection 
of the feet joints onto the ground plane depends on the position of a single joint. 

This way, as there are reasons to think that performances could vary depending on the 
specific output point, the Mean Absolute Deviation (MAD) of each one of them will be used 
with evaluation purposes. Additionally, the Mean Squared Error (MSE) and median error will 
be employed to evaluate network quality outputs. These indexes are defined as follows: 

 

MAD = ∑
|𝑒𝑖 −    �̅�|

𝑛

𝑛
1           

 

MSE = √
1

n
∑ (𝑒𝑖 −     �̅�)2𝑛

1          
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Where ei is the forecasted determination error of the i-th sample and �̅� is the mean error. 

On the other hand, Accuracy, the most used evaluation metric for binary classification 
[481], is used to evaluate the network performance labelling contact status with the ground of 
every foot joint.  

 

Accuracy - AC = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 x 100        

With TP, true positive; TN, true negative; FP, false positive and FN, false negative. 

5.1.5.2 Fall detection algorithm evaluation 
The indexes used to evaluate the fall detection algorithm, as they are the most common 

ones in this area [12], are the following ones: 

 

Sensitivity – SE = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 x 100         

 

Specificity – SP = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 x 100         

 

Accuracy – AC = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
   

       

5.2 Results and discussion 

5.2.1 Network implementation  
The network is implemented in PyTorch with an Adam function used as optimizer and a 

learning rate of 10-6. The chosen batch size is 256 and the network is trained for 80 epochs. 

The selection of 1024 channels as the number of working channels for this network 
responds to a documented [458] reasonable trade-off between network performances and 
required computational processing power for similar networks. 
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The definition of w, the weighting value of the loss function, is critical, as it will determine 
how balanced is output accuracy. Inadequate w selections will lead to output accuracy biases 
in favor of labeling or position determination. 

 

Figure 22.  (a) Ground Contact labeling improvement referred to a benchmark error of w=1 as a function of w value. (b) COG MAD. (c) 

Mean Per Joint Position Error (MPJPE) 

This way, as shown in figure 22, MPJPE and COG position determination improvements 
saturate very quickly with values of w over 500, while increasing values of that parameter 
decrease labeling performance at a very slow rate for all selected network configurations. 
Bearing those ideas in mind w is assigned a value of 2500, as that figure yields a reasonable 
trade-off between joint position placement and joint contact status accuracies. 

To determine properly the number of network residual blocks (N) an optimal trade-off 
between computational cost, performance and considered number of input frames (W) should 
be reached. 

A good approximation to the computational cost per predicted frame could be the required 
number of floating-point operations to be executed or FLOPs (Floating-point operations). This 
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way, the needed operations to complete the dot product of two vectors of size B would be B 
+ (B – 1), as B multiplications and B-1 additions are required to do it. 

Following that rationale, the processing power required by a fully connected layer, given 
all input neurons are connected to all the output ones, equals (2 I – 1) O FLOPs, where I 
represents the number of input neurons and O the number of output ones. For the particular 
case of this architecture, given the high number of input neurons, the cost can be approached 
by 2 I O. 

For the case of the 1D convolutions of the network the needed computational power in 
FLOPs is given by 

[Cin k +(Cin k -1)] Co (W + Pa – Re + 1)        

Which, given that 2 Cin k is substantially bigger than 1 in all cases, the previous equation 
can be approximated by 

2 Cin k Co (W + Pa – Re + 1)         

Where Cin and Co are the number of input and output channels, k is the kernel size, W is 
the width of the input matrix, Pa is the padding contribution and Re is the receptive field of 
the dilated convolution. 

Therefore, the total computational cost of the network is: 

Table 13. Computational cost due to convolution layers. 

Block Input channels Output channels Kernel width MFLOPS 

Embedding Joints x 2 ( J x 2) 1024 3 0.0123J W 

Residual 1024 1024 5 10.48576 W 

Output 1024 1024 W 1.04857 W 

      

Table 14. Computational cost due to fully connected layers. 

Block Input neurons Output neurons MFLOPS 

Output 
1024 10 0.02048 

1024 4 0.008192 

 

Which, in a single expression, yields: 

MFLOPs = 0.028672 + W (1.04857+0.0123 J + 10.48576 N)     

Where J is the number of considered joints and W can be obtained from time window 
duration and sample rate. 

Figure 23 shows the relaions between time window, number of residual blocks and network 
output accuracy. Additionally, the required processing power is also depicted. 
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Figure 23. (a) MPJPE, (b) COG position error (c) Probability of correct labeling (Accuracy) plus required processing power for all three 

cases as a function of the number of implemented residual blocks and the accepted time window. 



Jesús Gutiérrez – Fall detection system based on infrared images 

   

131 

 

As depicted in Figure 23, system MPJPE saturates when the number of residual blocks 
over exceeds 8 and it shows a minimum with time frames within the bracket from 0.4 to 0.8 
seconds. Additionally, COG determination error saturates with six or more residual blocks 
and reaches its lower values within the time frame from 0.5 to 1.0. Finally, the probability of 
correct labeling is over 0.9 when the number of residual blocks exceeds eight and the time 
frame is between 0.4 and 1.3 seconds. For those reasons and trying to keep the required 
computational complexity as low as possible, the final network architecture is set to accept 
time frames of 0.5 seconds and implements 8 residual blocks. 

 This architecture, for the conventional number of joints provided by 2D networks, 17, and 
a selected frame rate of 30 Hz requires, according to (11), a computational power of 1.22 
GFLOPS. After its training, the network was speed tested on two platforms, a first one with a 
NVIDIA RTX 3080 GPU, yielding a speed of 527 frames per second (FPS), and a second 
non-GPU one with an Intel Core i9-12900 processor, whose tested speed was 105 FPS. In 
both cases, speeds are well over the one required to guarantee real time network operation. 
Furthermore, and given the performances of some of the chipsets mounted on new mobile 
devices (Table 15), network operations in real time, even on this kind of platforms, should not 
be problematic. 

 

Table 15. Processing power of chipsets mounted on modern mobile devices. 

Chipset 
Processing power 

(GFLOPS) 

A13 Bionic 786 

Exynos 2100 1530 

Snapdragon 888 1720 

Google Tensor 2171 

 

5.2.2 Network evaluation 
With the above-described architecture, the error distribution per joint on the horizontal 

plane for a batch of 256 samples of the database has the following spatial distribution. 
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Figure 24. MAD, MSE and sample median in cm per forecasted joint plus sample distribution. (a) Left Forefoot (LFF). (b) Left Heel 

(LH). (c) Right Forefoot (RFF). (d) Right Heel (RH). 

          MAD           MAD 

Median 

          MAD           MAD 
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As shown in figure 24, the forecasted MAD remains in the bracket between 3.19 and 4.18 
cm with a MSE between 4.55 and 8.58 cm and a slight directional bias (mean forecasted joint 
bias 1.15 cm. Table 16). 

 

Figure 25. MAD, MSE and sample median in cm and sample distribution of the forecasted COG. 

The forecasted COG error, as shown in figure 25, is quite slim, with a MAD below 1 cm, 
a MSE of 6.5 mm and a reduced directional bias (3.8 mm. Table 16) 

Table 16. Mean ΔX, ΔY, MAD, MSE and median of all forecasted joints and COG. All values are in cm. 

Joint Mean ΔX Mean ΔY MAD MSE Median 

LFF 0.43 2.80 4.18 8.59 3.45 

LF -0.55 1.88 3.42 4.59 2.90 

RFF 0.29 1.17 3.77 6.55 3.15 

RF -0.44 0.50 3.19 4.55 2.76 

COG 0.05 0.43 0.97 0.65 0.77 

 

Additionally, for the implemented architecture, labeling Accuracy reaches 95.8%.  

The outcome of the network is shown in figure 26. 

               MAD 

Median 
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Figure 26. Different network presentations including joint position and indications of positive and negative ground contact, both ground-

truth (GT), and forecasted (FC); COG position, both ground-truth and forecasted (GTCOG & FCCOG) and base of support. 

5.2.2.1 Network sensitivity to detected number of joints 
Simplified determinations of the body COM are made in a number of studies, starting by 

Inman [482], who proposed the use of sacrum as an approximation to its position. This 
proposal was revised in different studies [473], [474], concluding that the sacral marker can 
indicate COM position reasonably well in the vertical axis. In a later study, Yang [483] affirms 
that sacral marker can characterize COM in all axis for walking and, to a lesser extent, upon 
slips. Other human activities, like running, tilt pelvis forward and induce greater excursions 
of the upper and lower limbs, changing, this way, body mass distribution and displacing COM 
from the sacrum, especially in the M/L axis. This conclusion is reached by Napier [472], 
whose study suggests that a single sacral marker could be valid to estimate COM in the vertical 
and anteroposterior directions during the stance phase of running. 

Other studies, like the one conducted by Gill [484], try to determine body COM during 
running by disregarding head and arms, concluding that, although its position can be 
reasonably well inferred in the A/P and vertical axis, in the M/L axis COM trajectory is poorly 
predicted. 

Therefore, human COM three-axial position determination can be inferred from sacral 
marker in activities not implying high upper or lower limb displacements. However, activities 
associated to important extremities movements require limb movement consideration if M/L 
COM position needs to be determined. 

On the other hand, both feet joints projections onto the horizontal plane and their contact 
labelling could be very sensitive to a correct detection of both feet and leg joints by the 2D 
network. 
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To check the network sensitivity to passed 2D joints an error determination is carried out 
for the four following cases (Table 17). 

Table 17. Network performances with decreasing number of joints. In 1 the head joints are disregarded and in the three following lines 

the omissions of the previous lines are maintained and extra ones are added. All distances are in cm. 

 
Forecasted feet joints projection COG  

Labelling Accuracy Considered joints MAD MSE MAD MSE 

All 3.64 6.29 0.97 0.65 95.8% 

1- Previous - head joints 3.95 7.18 1.13 0.92 94.2% 

2- Previous - arms joints 4.52 9.16 1.98 1.06 92.2% 

3- Previous - feet joints 7.63 11.55 2.15 1.26 76.8% 

4- Previous - legs joints 28.46 25.23 4.87 4.42 19.7% 

 

The network performances decrease as the number of joints descends. In the first case, the 
head joints are omitted, revealing their discreet contribution. When arms joints are 
disregarded, the contribution to performance degradation slightly increases and, when feet 
joints are also eliminated, although the COG determination remains quite stable, both 
forecasted feet joints projections and percentage of correct labelling substantially decrease. 
Finally, when leg joints are also omitted performances severely decrease. 

5.2.3 Fall detection algorithm evaluation 
The NTU RGB+D 120 [485] was the dataset used for fall detection algorithm evaluation.  

This comprehensive database includes the data of the NTU RGB+D one and adds some extra 
information.  The total set contains 114480 video clips and their associated skeleton data. This 
skeleton information is inferred from the raw data captured by three Kinect V2 cameras. All 
these actions are grouped in 120 classes, each one of them trying to illustrate normal human 
daily life activities. One of these classes is falling down, which includes 316 falls taken from 
3 different perspectives. 

The 26 actions whose video clips include more than one person were removed from the 
validation dataset, as CoGNet was trained in scenarios of a single individual. This way, the 
total number of initially considered video clips was cut down to 89652, grouped in 134 classes 
of actions. 

Finally, all falls were manually checked to assure that the selected ones were complete falls 
and none of them finished in stable positions such as crouching. Additionally, all non-fall 
selected actions were also manually checked to assure no unstable permanent situations (COG 
out of BoS determined by feet in standing situations) were maintained (e.g., being sat) or 
purposefully searched (e.g., sitting down). 

The validation dataset obtained this way includes 238 falls and 2128 daily live activities 
coming from the 133 activity classes. All the considered actions are recorded from three 
different perspectives and meet the criteria described in previous paragraphs. 

5.2.3.1 Validation based on the use of skeleton data 
The great advantage of the use of skeleton data over other methods is that, as three different 

cameras are used to record the action, no joint is occluded at any time and, therefore, all of 
them can be correctly projected on a 2D view. 
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All falls in the dataset start from a standing position and, therefore, no FPE index can be 
calculated, as this index calculation requires coming from a situation of movement that must 
include taking, at least, one step prior to the fall event. 

Table 18 includes the performance evaluation indexes of our algorithm, the extrapolated 
center of mass algorithm, applied to the described dataset. Additionally, table 19 compares 
accuracy indexes of different methods on NTU RGB+D dataset. Finally, the confusion matrix 
is presented in table 20 and figure 27 presents the outcome of the network. 

Table 18. X/YCoM algorithm performance indexes. 

SE SP AC 

99.16% 99.25% 99.24% 

 

Table 19. Accuracy comparison of different methods on NTU RGB+D dataset. 

Method Data AC 

Xu et al. [486] RGB 91.70% 

Anahita et al. [487] Depth 96.12% 

Han et al. [488] Depth 99.20% 

Ours (X/YCoM 
algorithm) 

Pose 99.24% 

Table 20. Confussion matrix. 

 

 

 

 

 

 

Forecasted 

Fall Not a fall 

 

Real 

Fall 708 6 

Not a fall 48 6336 
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Figure 27. Falls presentations from the dataset including joints position, CoG and BoS. 

5.2.3.2 Validation based on monocular images 
This second validation block intends to evaluate our algorithm performance when 

monocular images, the cheapest and most common source of information in real-world 
situations, are used and no skeleton information is available. In this case, the joints positions 
will be provided by a 2D pose network that estimates them from the images. There is a number 
of neural networks able to do it and, in this case, Google’s MediaPipe, a very light network 
based on BlazePose [489], will be used due to its accuracy and simplicity. 

The used dataset is the same one than in the previous section but 30 extra falls have been 
added. Half of them come from Multiple Cameras Fall [490] dataset, a database that includes 
several falls in different environments taken from 8 different perspectives. The other half can 
be found in UR fall [491] dataset and, in this case, all of them are taken from a single 
perspective.  

All the added falls, unlike the original ones contained in NTU RGB+D, start in a walking 
situation and, therefore, are very relevant, as, for the elderly community, the majority of falls 
start in a walk situation [441]. However, they come from databases with no skeleton data 
associated, as no publicly accessible dataset including this type of falls and their associated 
skeleton annotations has been identified [12]. For that reason, these falls were not included in 
the previous validation block. 

These new falls, which include previous steps to the fall event initiation, allow FPE 
determination. However, as previously explained, the real foot position falls short of the 
calculated FPE most of the times. This documented tendency is experimentally verified by 
using the dataset, finding substantial differences between step length deficiencies in falls and 
in any other activity. Figure 28 presents the obtained data showing maximum step length 
reductions as a function of the movement angle referred to the A/P axis in falls and in the rest 
of activities. 
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Figure 28. Maximum step reduction referred to calculated FPE. 

These findings are in line with Millard’s work [452], whose results place this difference, 
for natural walking speeds, around 10 cm. This way, an alternative algorithm for walk forward 
situations can be established based on step distance reduction referred to the calculated FPE. 
In these situations, either a positive fall declared by the extrapolated center of mass algorithm, 
or one determined by the FPE criterion, whose threshold is set at 12 cm, will be considered a 
valid fall declaration. 

Table 21 presents the performance evaluation indexes for both the X/YCoM algorithm and 
the one including the FPE criterion support. Additionally, table 22 includes the confusion 
matrixes for both cases. 

Table 21. System performance indexes. 

 
SE SP AC 

No FPE criterion implemented 90.46% 98.34% 97.41% 

FPE criterion implemented 97.64% 98.09% 98.04% 
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Table 22. Confussion matrixes. 

  
Forecasted 

  
No FPE FPE 

  
Fall Not a fall Fall Not a fall 

 

Real 

Fall 768 81 829 20 

Not a fall 106 6278 122 6262 

 

As expected, the performance indexes have degraded because of the diminished precision 
in the joint position determination, mainly as a consequence of occlusion and illumination 
phenomena. MediaPipe default visibility parameter to consider a joint well positioned enough 
to be presented to the user is 0.5. This variable reflects the probability the network gives to 
correct joint identification and its precise positioning, being 0.5 a reasonable threshold for the 
joint to be considered. In the used dataset, the mean number of joints with a visibility value 
over 0.5 is 84.9%. That is the reason behind performance degradation. 

The implementation of the FPE criterion has had a substantial positive impact on system 
sensitivity, with an improvement of over 7%, as the number of false negatives has been 
drastically reduced. The number of false positives has very slightly increased with a tiny 
impact on specificity and the system accuracy has increased to over 98%. These figures leave 
few doubts about the positive impact of FPE criterion inclusion to categorize fall events 
starting in a walking situation. 

Figure 29 illustrates the network’s outcome. 

Figure 29. Falls presentations from the UR fall and Multiple cameras fall datasets. Joints position, CoG and BoS are presented. 

Finally, table 23 compares our algorithm accuracy with the ones offered by other state-of-
the-art methods using RGB monocular images on UR fall dataset, the most popular dataset in 
the area of monocular fall detection system development [492]. The results prove that it 
slightly outperforms other state-of-the-art fall detection methods in laboratory conditions and 
given the independence of this approach from the conditions of the fall, real or simulated, it 
may behave much better than the rest of the systems in a real situation. 
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Table 23. Accuracy comparison of different methods on UR fall dataset. 

Method Data AC 

Qingzhen Xu et al. [226] 

RGB 
monocular 

images 

91.7% 

X. Cai et al. [231] 96.2% 

X. Wang et al. [234] 97% 

S. Kalita et al. [209] 94.28% 

C. Menacho et al. [493] 88.55% 

D. Kumar et al. [199] 98.1% 

S. Kasturi et al. [176] 96.34% 

Ours (X/YCoM 
algorithm) 

98.57% 

5.3 Conclusions 
This work successfully implements a new approach to automatic fall detection. Previous 

systems extract and classify kinematic features from video clips of public fall datasets, which 
record movements and simulated falls of young actors and volunteers. However, the 
differences in the way young and elderly people move and fall are well documented. 
Therefore, these systems' performances in the real world may be poorer than documented. 

Our method approaches fall detection from the perspective of human balance and extracts 
features from images to assess whether a person maintains equilibrium. By extracting dynamic 
features from images, the problem caused by the differences in the way young and elderly 
move becomes irrelevant. This is because all falls are always a consequence of a failure in the 
continuous effort of the body to keep balance, regardless of any other consideration. 

The dynamic descriptors employed in this work are used to calculate stability indexes, 
which assess whether a fall has taken place. These descriptors are provided by CoGNet, a 
temporal convolutional architecture able to regress the COG and feet joint positions projected 
onto the ground plane. Additionally, the network determines the ground contact status of the 
projected feet joints, providing all the information needed to assess human stability from a 
dynamic perspective. CoGNet takes a sequence of 2D joint positions over time as input and 
is light enough to be run in real-time. 

Using the information provided by CoGNet, a simple algorithm like the one proposed in 
this work can determine whether a fall has taken place. This algorithm is extremely precise 
when the joint coordinates passed to CoGNet are accurate and complete, as is the case when 
working with skeleton data. Under these circumstances, the algorithm's results match or even 
exceed other state-of-the-art systems based on kinematic descriptors in laboratory conditions, 
as shown in Table 19. These performances slightly decrease when accuracy diminishes due to 
occlusion or illumination phenomena, common problems when using monocular images. 
However, even under these conditions, Table 23 shows that our algorithm's outcomes still 
exceed those given by other state-of-the-art automatic fall detection methods. 

Finally, a number of stability indexes based on COG movement are used to evaluate gaits 
with a higher probability of falling, allowing interventions to improve walking and prevent 
falls. The information provided by CoGNet could be used to easily calculate those indexes 
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using monocular images of the patient instead of the traditional, more complex, and expensive 
systems based on force plates used in the Computerized Dynamic Posturography systems. 
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6 System validation 
This chapter is focused on assessing the performances of an automatic fall detection system 

based on FIR imagery as a solution to the problem described in chapter five. 

6.1 Methods and materials 
The system integrates a 2D human pose estimation network, CoGNet, and the fall detection 

algorithm described in the previous chapter to address the problem of fall detection in poorly 
illuminated environments. 

For 2D human pose estimation, the networks considered in chapter six are utilized as they 
represent most of the state-of-the-art human pose recognition networks ever developed. These 
networks have been trained using the FIR-Human dataset following the procedures detailed 
in chapter six. The output of these networks is a matrix containing the 2D positions of the 
main body joints, which is then passed to CoGNet. CoGNet is responsible for assessing, by 
using the algorithm proposed in chapter 7, whether a fall has taken place. 

The dataset used for validation consists of the 72 falls from the FIR-Human dataset. 
Additionally, the video clips of block 2 from that dataset are split into 8-second clips, resulting 
in 195 videos that show a person executing 13 different daily life activities. 

The performance evaluation indexes used to assess the system are SP, SE, and AC, which 
are the same as those employed in chapter 7 to evaluate the fall detection algorithm, as 
explained there. 

Finally, the FPE criterion is active at all times in the fall detection algorithm, although its 
effects will only be noticeable when steps prior to the fall have been taken. 

Figure 30 illustrates the network’s outcome. 

Figure 30. Presentations of (a) volunteer playing basketball (b) volunteer falling backwards from the FIR-Human dataset. Joints position, 

COG and BoS are presented. 
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6.2 Results and discussion 
Table 24 presents the performance evaluation indexes of the system described in the 

previous section, and its results vary widely depending on the performances of the used 2D 
network. Additionally, Table 25 includes the confusion matrices for all the considered cases. 

 

Table 24. System accuracy comparison on FIR-Human dataset by type of 2D network employed. 

Model SE SP AC 
DeepPose (ResNet - 101) 62.50% 61.54% 61.80% 

ConvNet Pose  72.22% 70.77% 71.16% 

CPM  77.78% 78.97% 78.65% 

Stacked hourglass  (3 Stages) 84.72% 81.03% 82.02% 

HPE IF 75.00% 72.31% 73.03% 

Cascade (ResNet-101 Cascaded with 2 ResNet-50) 83.33% 87.69% 86.52% 

TFPose (Resnet -50;  Nd=6)  80.56% 84.10% 83.15% 

ViTPose (ViTAE-G)  95.83% 96.92% 96.63% 

 

Table 25. Confussion matrixes. 

Model Real 
Forecasted 

Fall Not a fall 

DeepPose (ResNet - 101) 
Fall 45 27 

Not a fall 75 120 

ConvNet Pose 
Fall 52 20 

Not a fall 57 138 

CPM 
Fall 56 16 

Not a fall 41 154 

Stacked hourglass  (3 Stages) 
Fall 61 11 

Not a fall 37 158 

HPE IF 
Fall 54 18 

Not a fall 54 141 

Cascade (ResNet-101 Cascaded with 2 ResNet-50) 
Fall 60 12 

Not a fall 24 171 

TFPose (Resnet -50;  Nd=6) 
Fall 58 14 

Not a fall 31 164 

ViTPose (ViTAE-G) 
Fall 69 3 

Not a fall 6 189 

 

These results align well with the findings shown in Table 17, where CoGNet's sensitivity 
to lower joints fading becomes evident. The fading of the lower joints is a direct consequence 
of their distance from the head, which is particularly noticeable in the first networks of Table 
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11. As the networks become more performant, they yield better results in the lower rows of 
the table. 

Moreover, the less performant networks show higher sensitivities to occlusion. The 
combined effect of both phenomena leads to inaccurate joint coordinates being passed to 
CoGNet, especially for the joints that are farthest from the head, such as knees, ankles, and 
feet. These inaccuracies result in incorrect Base of Support (BoS) definitions, causing the 
system to misjudge situations where the Center of Gravity (COG) approaches the real limits 
of the BoS. However, these effects tend to diminish as the network's outcomes affecting lower 
joints become more precise. 

Therefore, all false negatives are related to incomplete falls or falls recorded from angles 
that induce occlusion effects in the lower joints during the last phases of the fall. In such cases, 
the COG is extremely close to the limits of the BoS, which is observed in all false negatives 
associated with the most performant networks. On the other hand, situations with common 
occlusion phenomena are responsible for the majority of false negatives in the case of less 
capable networks. 

Finally, all false positives are linked to situations where the movements place the COG 
very close to the limits of the BoS but still within it, or to occlusion phenomena. Once again, 
misjudgments by CoGNet regarding the COG's position in relation to the BoS are 
responsible for the false positives in the most performant networks. The less accurate 
networks, in addition to this, also suffer from the effects of occlusion phenomena, further 
contributing to their mistakes in this area. 

6.3 Conclusions 
This work implements, for the very first time, an automatic fall detection system based on 

FIR imagery as a solution to the problem described in chapter five, particularly focusing on 
poorly illuminated environments. The system integrates a 2D human pose estimation network, 
CoGNet, and the fall detection algorithm described in the previous chapter. 

The selected 2D pose estimation networks represent the majority of state-of-the-art 
networks ever developed for this purpose. They were trained using the FIR-Human dataset 
following the methods explained in chapter six. 

The process involves passing the output of the 2D pose estimation networks, which 
contains the positions of the main body joints, to CoGNet. CoGNet then delivers the position 
of the body's COG and BoS. Finally, the fall detection algorithm described in chapter seven 
utilizes the information provided by CoGNet to determine whether a fall has taken place. 

The accuracy of fall determination varies depending on the precision of the joint 
coordinates delivered by the pose estimation network. Inaccuracies in this determination result 
from two main phenomena: failures in detecting joints that are distant from the head, leading 
to inappropriate BoS limits establishment, and joint occlusion due to the angle of record. The 
most performant pose estimation networks' failures are primarily a result of the first 
phenomenon, while less capable networks also encounter occlusion issues, contributing to 
output inaccuracies. 

The accuracy indexes presented in Table 24 for the most performant network, ViTPose, 
show values very close to the ones obtained by CoGNet and its associated fall detection 
algorithm when they work with visible light spectrum images. This demonstrates that the 
proposed automatic fall detection system, which operates on FIR imagery, is a valid solution 
for working in poorly or non-illuminated environments. Additionally, the use of FIR images 
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contributes to privacy protection, addressing concerns raised by different communities 
related to the sector of elderly care.  
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7 Conclusions 
This thesis addresses the ecosystem of automatic fall detection systems, an area with a high 

number of published papers, aiming to solve some of the real problems faced by the 
community of dependants and those contributing to their quality-of-life improvements. 

The work begins with a thorough review of the state-of-the-art in the area to establish a 
common understanding that all systems developed for fall detection purposes fall into one of 
three categories: wearables, ambient, and vision-based systems. 

Wearable systems use sensors carried by the monitored person to evaluate their movements 
and offer good performance due to the proximity of sensors to the person. However, this also 
leads to their main weakness - dependency on batteries and discomfort for the user. 

On the other hand, ambient and vision-based systems distribute sensors in the environment 
surrounding the monitored person, offering more comfort for users but at the expense of lower 
system accuracies and movement restrictions. 

Both types of systems face low user acceptance, and the majority of datasets used for 
system training and validation do not contain real fall data but instead rely on falls performed 
by actors or volunteers, which poses a challenge for generalization to the dependent 
community. 

The next step after reviewing the state-of-the-art was to identify real problems that could 
be solved by such systems. Extensive interviews and online polls were conducted to identify 
scenarios where users would accept a fall detection system. One such scenario is associated 
with semi-supervised patients getting up at night when they may be disoriented, increasing 
the likelihood of a fall going unnoticed until the next day. 

In this situation, ambient systems are preferable, as wearing sensors in bed is 
uncomfortable. Among ambient systems, a vision-based system is a desirable option due to 
its accuracy and maturity. However, there is a limitation - no existing vision-based system can 
properly work in the low illumination conditions associated with this scenario. 

A vision-based system working on FIR imagery would be a suitable solution to this 
problem, as it functions well in low illumination conditions and preserves privacy, 
addressing concerns expressed by various groups related to elderly care. 

7.1 Research questions 
After the previous introductory section, the three main research questions that arise are as 

follows. 

7.1.1 Research question 1: What are the real problems of the dependant community that 

could be solved by an automatic fall detection system?  
This question, extensively reviewed in chapter five, is answered by conducting the most 

comprehensive set of interviews and online polls ever conducted on the subject of automatic 
fall detection systems. A total of 36 open-ended interviews and 146 polls were conducted to 
extract conclusions regarding these systems. The interviews and polls were answered by 
individuals belonging to all identified stakeholder groups, including the elderly, their friends 
and family, their home-care givers, nursing home managers, nursing home care givers, and 
paramedics and emergency medical personnel who are in contact with the elderly community. 
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The polls and interviews focused on four thematic aspects: the degree of confidence in 
automatic fall detection systems, user needs and requirements, privacy protection, and usage 
environment. 

Confidence in these systems varied significantly across the considered groups, but it 
became clear that they are relatively unknown, leading to relatively low levels of confidence. 
Nevertheless, when the use of these systems can reduce costs or care burden, they could be 
accepted, despite human supervision always being the preferred choice. 

The main user requirement across all groups is reliability. Operators also require user-
friendly and easy-to-use systems, while other groups express concerns regarding cost and low 
reaction times to give a prompt response to a fall event, maximizing survival rates. 

Privacy protection is a concern for all groups, with worries about cyber attacks and 
unlawful information retrieval by personnel with physical access to the systems, especially in 
the case of vision-based systems. For this particular category of fall detection systems, vision-
based ones, a preference for the use of infrared or very low-resolution images is expressed, as 
these types of data preserve privacy. 

The environments where these systems are most likely to be deployed are those where 
human supervision is not a viable option, and patients are not continuously supervised due to 
their moderate level of dependence. One common scenario, mentioned by many interviewees, 
is associated with semi-supervised patients getting up at night to go to the toilet. 

This scenario is suitable for fall detection ambient systems, as wearing a sensor in bed is 
uncomfortable, making wearable sensors less desirable. Among ambient systems, vision-
based ones, given their higher degree of maturity, seem to be the optimal choice. However, 
existing visual-based fall detection systems do not function properly in low or non-illuminated 
situations, as they typically work with visual or near-infrared spectrum imagery. 

7.1.2 Research question 2: How can visual-based fall detection systems work properly in 

low or non-illuminated environments? 
All visual-based fall detection systems presented in papers or commercially distributed 

work with visual or near infrared spectrum images and, therefore, they cannot work in non-
illuminated environments.  

According to the state-of-the-art presented in chapter 4, the most performant systems are 
based on neural networks. However, as it is detailed in chapter 7, all these systems present a 
generalization problem that will be touched in the next research question. In chapter 7 a 
solution to this generalization problem, based on the use of 2D human pose estimation 
neural networks, is also presented. 

On the other hand, the use of FIR imagery represents an optimal approach to the problem 
posed at the end of research question 1, as they are independent of illumination conditions 
and, additionaly, preserve privacy, an issue several groups related to elderly care have 
expressed concern for. 

This way, the visual-based fall detection system proposed in this thesis to work in non-
illuminated environments is based on the use of 2D networks. These networks must be first 
identified and then properly trained to identify joints positions on FIR images. 

Chapter six presents an extensive state-of-the-art study of these networks, identifying the 
most performant ones. This chapter also details the elaboration of FIR-Human, an extensive 
FIR dataset containing a large number of images of several volunteers, together with the 
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position of their joints, both in 2 and 3 dymensions. Additionally, the chapter covers the 
training of the networks using the FIR imagery provided by FIR-Human. 

The results of the validation phase of all these networks are presented also in chapter six 
showing results very in line with the ones obtained using visual spectrum datasets. In overall 
terms, transformer-based architectures over-perform convolutional ones and regression 
philosophies yield poorer results than heat-maps ones. 

Additionally, higher input resolutions allow models to yield more accurate results at the 
cost of highter computational requirements and, in all cases, the head is the easiest key-point 
to spot while accuracy to place joints grows with the distance to the head making ankles and 
feet the most difficult key-points to identify and place. 

7.1.3 Research question 3: How can the problem of generalization be overcome in the 

case of visual-based fall detection systems? 
Chapter Seven tries to explain this question. All systems reviewed in this thesis extract 

features that characterize falls. This feature extraction is made during the training phase of the 
system, and to do it, a dataset properly labeled must be used. However, all publicly available 
datasets have been recorded by young actors or volunteers—people who move in a different 
way than the elderly. Thus, the kinematic descriptors extracted, which define falls of young 
people, may not properly describe falls of elderly persons, posing a generalization problem 
difficult to solve, given the total absence of real data. 

The method proposed in Chapter Seven approaches fall detection from the perspective of 
human balance, extracting features from images to assess whether a person maintains 
equilibrium. This way, the problem explained becomes irrelevant, as all falls are a 
consequence of a failure in the continuous effort of the body to keep balance, regardless of 
any other consideration. 

The dynamic descriptors proposed in this thesis are used to determine stability indexes, 
which, in turn, will be used for fall detection. A temporal-convolutional neural network called 
CoGNet, which takes as input the temporal series of body joint positions and can regress the 
COG (center of gravity) and feet position projected onto the ground plane, provides the 
descriptors. This output is used to determine the mentioned stability indexes, making it 
possible to assess whether a fall has taken place by using a simple algorithm. 

This method is able to accept temporal series coming from any 2D human pose estimation 
network, including the ones coming from the networks trained with FIR imagery proposed in 
Chapter 6. The accuracy of this method is very high when the joint coordinates are accurate 
and complete, and it diminishes as the precision of those coordinates decreases as a 
consequence of occlusion phenomena. 

7.2 Main contributions 
The main contribution of this thesis is the development and validation of an automatic 

vision-based fall detection system able to operate properly under no-light conditions. 
Additional contributions are a deep review of the state-of-the-art of the field of automatic fall 
detection systems, the biggest block of interviews and polls regarding this area, the first FIR 
labelled imagery dataset showing people engaged in different activities, the training of all 
major human pose estimation neural network architectures using FIR imagery and the 
implementation and validation of an alternative vision-based fall detection method able to 
solve the problem of data generalization of this field.  
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7.2.1 State-of-the-art 
This thesis starts with a major revision of the field of automatic fall detection systems. To 

do so, all papers published from 2015 to 2020 in the main public databases of research 
documentation regarding this field were reviewed. After the proper screening process, 198 
articles were selected, and the systems and methods described in them were studied. 

All systems presented by the selected articles fell within one of the three categories 
considered by the vast majority of taxonomies in this field: wearable, ambient, and vision-
based. Additionally, all of them approach the problem of fall detection following a common 
path. They process signals related to the monitored person’s movements and infer descriptors 
that characterize those movements. Then, these descriptors are classified to determine whether 
a fall has taken place. 

Wearable systems use sensors carried by the monitored person to evaluate their 
movements. This technology is mature and very accurate, but attaching a sensor to the body 
is uncomfortable and makes the system battery-dependent. 

Ambient systems use immature technologies and restrict the patient’s movements to the 
area where sensors are deployed. However, they present clear advantages, such as unlimited 
processing power, no battery dependency, and a more comfortable situation for the patient, as 
no sensor is attached to their body. 

Vision-based systems are quite mature and present the same set of advantages and 
disadvantages than ambient sensors. At the time this part of the thesis was developed no state-
of-the-art specifically devoted to the area of vision-based fall detection systems had ever been 
published, so the results of the study were presented in the article “Comprehensive review of 
vision-based fall detection systems” [12]. 

This study of the state-of-the-art is extensively presented in the chapter three of this thesis. 

7.2.2 User’s needs determination 
At the time of developing this part of the thesis, no major study covering users' needs had 

ever been published. To fill this gap, the most comprehensive set of interviews and polls was 
conducted in 2021. The final objective of this study was to identify users' needs not covered 
by the present technology. 

Four thematic areas were covered by the interviews and polls: the degree of confidence in 
the systems, privacy protection, system reliability, and scenarios where these systems are 
likely to be deployed. Individuals belonging to the elderly community and all groups 
responsible for taking care of them were interviewed to gain a vision as holistic as possible of 
the different perceptions these communities have towards automatic fall detection systems. 

The conclusions of this study are clear. These systems are quite unknown, and therefore, 
the degree of confidence in them is low in all communities. However, although direct human 
supervision is always the preferred option, there are certain circumstances under which the 
use of these systems is accepted. 

These situations are often related to patients who retain a certain degree of independence. 
One of the common scenarios frequently described in the interviews is the one associated with 
semi-supervised patients getting up at night. In this situation, the person is often disoriented, 
and therefore, the likelihood of a fall is higher than in other circumstances. Additionally, in 
the event of a fall, it would probably go unnoticed until the next day, substantially delaying a 
potentially needed medical intervention. 
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This scenario, where the use of automatic fall detection systems is perceived as acceptable, 
is unsuitable for wearable systems, given the discomfort associated with attaching a sensor to 
the body during bedtime. Therefore, the use of ambient systems should be the proper choice 
in this case. However, the low degree of maturity of these systems makes them unfit for this 
purpose as well. 

Under these circumstances, visual-based systems could be the optimal choice. However, 
all visual-based systems work either with visual or near-infrared spectrum imagery, and 
therefore, they are also unsuitable to properly work in the non-illuminated environments 
associated with the described scenario. The development of a system working with FIR 
images could be the perfect answer to the problem, as it not only works properly in low-light 
environments but also preserves privacy, a major concern expressed in the interviews and 
polls. 

Chapter five of this work covers this study. The results of the investigation were presented 
in the XV technologies applied to electronics teaching conference and were published in the 
article “Fall detection system based on far infrared images” [494] 

7.2.3 FIR-Human 
Developing any visual-based fall detection system working on FIR imagery requires proper 

datasets for training. Regrettably, the only public datasets used to train person detection 
systems in the fields of autonomous driving or security and surveillance do not contain images 
of people falling or include joint annotations. 

Therefore, creating a FIR dataset specifically tailored to the training requirements of a 
visual-based fall detection system becomes necessary if achieving an operational system 
working on FIR imagery is the final goal. 

The recorded dataset, FIR-Human, is the first of its kind and contains video clips recorded 
by five volunteers. It has a size similar to the main datasets used for training human pose 
estimation systems working on conventional imagery. The FIR-Human clips are recorded at 
23.98 frames per second, and each frame has a resolution of 480 x 640 pixels. The joint 
information consists of 3-dimensional positions of 19 major body joints, defined with an error 
of less than 5 millimeters for each recorded frame. Additionally, the 2-dimensional projection 
of those coordinates onto the recording plane is also provided. 

The dataset comprises 27 activity classes, 26 of which are daily life activities, while the 
other one includes different types of falls. The volunteers perform different actions from 
various perspectives to ensure a rich and diverse dataset. 

For a more extensive description of this dataset, please refer to chapter six. 

7.2.4 Training of human pose estimation neural networks on FIR imagery 
The development of an automatic fall detection system based on the use of CoGNet 

requires a consistent input of a time series of matrices containing the positions of the most 
significant joints of the individual present in the image. 

This series of position matrices in the two-dimensional space of the image is generated 
through human pose estimation neural networks. This work identifies the essential 
architectures capable of providing those joint coordinates. 

As stated in chapter six of this thesis, there are two essential architecture blocks capable of 
approaching this problem; convolutional architectures and transformers. The first ones can 
identify elements in an image and establish relationships between these elements and those in 
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their vecinity. Transformers, on the other hand, are architectures capable of focusing the 
network's attention on specific elements of the image without fully decomposing all the 
elements present, as in the previous case. 

This attention-oriented feature of transformers allows for the identification of specific 
elements in the image at a much lower processing cost than convolutional networks. However, 
convolutional architectures require a much smaller volume of data during their training phase 
compared to transformers. The accuracy in identifying joints is similar for both architectures, 
although the reduced computational cost for transformers compared to convolutional 
structures allows input images to have higher resolution for the same processing cost. 

In practice, this means that transformer-based architectures offer slightly better precision 
for equal processing requirements. 

On the other hand, there are two essential philosophies to approach the problem of two-
dimensional joints position determination. The first philosophy is known as direct regression, 
aiming to directly extract the coordinates of the studied joints from the image. The second 
philosophy, more complex, generates a heat map for each joint from the input image. This 
heat map is a probabilistic representation of the position of each joint. 

Direct regression has shown lower accuracies in determining joints compared to the heat 
map technique. However, as in the previous case, generating heat maps requires substantially 
higher computational costs than direct regression. 

The training conducted with all the identified architectures using both approaches (direct 
regression and heat maps) on the FIR-Human dataset yields results very similar to those 
obtained with visible spectrum images, which can be found in the numerous papers presenting 
each of the architectures. 

Just like in the case of networks trained on visible spectrum images, training on labeled 
FIR images demonstrates, for the same computational costs, the superiority of architectures 
based on Transformers. It also proves that the accuracy of the heat map techniques is 
substantially better than that of direct regression. Additionally, it becomes clear that the 
precision in positioning the head is nearly identical for all architectures, while it significantly 
degrades as the joint moves away from the head. This way, only the more capable architectures 
can provide accurate coordinates for feet, ankles, or knees. 

7.2.5 Dynamic descriptors 
All systems able to detect automatically falls infer descriptors that characterize human 

movement. For the particular case of visual-based, systems these descriptors are extracted 
from images or video clips and are used to determine whether a fall has taken place.  

The boundaries used to classify descriptors associated to actions are determined during 
system training. There are no publicly available datasets containing video clips of real falls of 
elderly people, as all datasets identified for this purpose in chapter four are recorded by young 
actors or volunteers. However, given the differences in the way elderly and young people 
move and fall, there is evidence to affirm that the generalization of the boundaries established 
to detect falls of young people may be inadequate for fall determination of elderly individuals. 

This way, solving this generalization problem requires an alternative approach as the one 
we propose in this thesis. We approach fall detection from the perspective of human balance 
and extract features from images in order to assess whether a person maintains equilibrium. 
This way, by extracting dynamic features from images, the problem caused by the differences 
in the way young and elderly move becomes irrelevant, as all falls are always a consequence 
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of a fail in the continuous effort of the body to keep balance, regardless of any other 
consideration. 

We implement this alternative approach by using CoGNet, a temporal convolutional 
architecture able to regress the COG and feet joints positions projected onto the ground plane. 
Additionally, the network also determines the ground contact status of the projected feet joints 
giving, thus, all the information needed to assess human stability from a dynamic perspective. 
It uses a sequence of 2D joint positions along time as input and is light enough to be run in 
real time. 

This way, using the information provided by CoGNet, simple algorithms could determine 
whether a fall has taken place. Additionally, the output of the net can also be used to determine 
different estability indexes in order to evaluate gaits and tell which ones have a higher 
probability of falling, allowing this way interventions to improve walking and prevent falls. 

An extensive description of this generalization problem and our alternative approach to it 
is presented in chapter seven and was published in the article “human stability assessment and 
fall detection based on dynamic descriptors” [495] 

7.3 Future work 
During the development of this thesis, four main areas that could be the subject of future 

research have been identified. 

The first area is related to more in depth research works, which allow a better understanding 
of the real needs of the community of dependents and all the other ones around it. 

This would enable developers to direct their efforts towards solutions that are better suited 
to those needs, ultimately increasing user confidence in the developed systems. Furthermore, 
a higher adoption and usage of these systems would help gather more real-world data, 
improving the training and effectiveness of such systems. 

The research conducted in this field by this thesis is focused on nursing homes, where a 
very specific need has been identified that could not be addressed with the current technology 
of these systems. However, it is highly likely that research centered on semi-dependent 
communities, who still live in their homes with support from family and caregivers, could 
reveal another set of needs. Lastly, studying other types of communities with even lower levels 
of dependence, yet maintaining nearly full independence, could uncover additional needs that 
are not currently addressed by existing technology. 

The second area of potential future research is related to the use of FIR-Human for training 
conventional fall detection systems. These systems, as we have extensively described, extract 
kinematic descriptors associated with people's movements to classify and determine if a fall 
has occurred. The establishment of the characteristics that allow differentiation between falls 
and other events is achieved during the system's training phase. 

The most reasonable strategy to approach this training, in the case of neural networks, 
would be transfer learning, where the initial training is conventionally performed using visible 
spectrum images. Then, the training of the network continues using FIR-Human data, both for 
this final stage of training and for the system validation phase. 

The third axis of future research identified is the use of CoGNet in the areas of human 
balance and gait analysis. These two fields, which are currently studied using computerized 
dynamic posturography, could greatly benefit from the utilization of networks like CoGNet. 
This is because CoGNet is capable of providing the same data as posturographs but using 
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extremely inexpensive equipment, such as monocular cameras, as opposed to the exorbitant 
cost of acquiring a posturograph. 

The area of balance and gait analysis is essential in preventive medicine for the elderly, as 
it allows the identification of gait patterns that have a higher probability of falling. This, in 
turn, enables the implementation of physiotherapy programs capable of improving gait style 
and thus reducing the likelihood of falling. This is crucial for the elderly community, as falls 
often have severe consequences ranging from loss of mobility and independence to fatalities, 
as already seen. 

Finally, the last identified area of future research is the development of ambient systems 
and in particular, mixed systems, systems that combine different technologies in order to 
determine, with the highest possible accuracy, the occurrence of a fall. 

Ambient systems, unlike wearable ones, rely on less mature technologies, as evidenced by 
the lower number of published articles addressing this type of systems compared to the more 
mature technologies associated to wearable or vision-based systems. The development of 
these promising technologies could enable the creation of systems that are currently not 
feasible, improving the accuracy and cost-effectiveness of the existing ones. 

Furthermore, the combination of ambient technologies alongside the more mature ones in 
the form of mixed systems allows better performances, as the weaknesses of a specific 
technology are addressed by others. This leads to significantly more accurate systems that 
deserve further investigation. 
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 Annex A – Electronic folder description 
This annex describes the contain and structure of the electronic folder which includes 

both this PhD thesis manuscript itself and the most relevant software needed to develop it: 

 CoGNet folder contains both the trained network itself and the datasets used to 
train it. 

o CoGNet_dataset_generation_SW contains the software needed to develop 
and label the datasets used to train and validate the CoGNet neural 
network. 

o CoGNet_Datasets contains the datasets used to train and validate the 
datasets used to train and validate CoGNet. 

o CoGNet_implementation_trx contains the CoGNet network and the 
training and validation codes needed to develop it as well as the weights 
obtained in the training process. 

 Fall_detection_network_implementation_trx contains the considered pose 
estimation neural networks, the training and validation codes needed to develop it 
and the weights obtained in the training process. 

o 1_DeepPose contains the DeepPose network. 

o 2_ConvNet contains the ConvNet Pose network. 

o 3_CPM contains the Convolutional Pose Machines network. 

o 4_Hourglass contains the HourGlass network. 

o 5_HPE contains the Human Pose Estimation with iterative error feedback 
network. 

o 6_CFA contains the Cascade feature aggregation for human pose 
estimation network. 

o 7_TFP contains the TFPose network. 

o 8_ViTP contains the ViTPose network. 

 FIR-Human contains the FIR-Human dataset. 

o BLOCK_1_TRX contains the module developed with training purposes. 

o BLOCK_2_VAL contains the module developed with validation 
purposes. 

o BLOCK_3_FALL contains the module of falls. 
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Annex B – FIR-Human 
This dataset contains video-clips of five volunteers developing daily life activities. Each 

video-clip is recorded with a FIR camera and includes an associated file which contains the 
three-dimensional and two-dimensional coordinates of the main body joints in each frame of 
the clip. This way, it is possible to train human pose estimation networks using FIR imagery. 

Diversity and Size  

 Over 250.000 2D and 3D human poses and their corresponding FIR images. 

 5 volunteers (4 males, 1 female). 

 27 action classes including falls of different kinds. 

Accurate Capture and Synchronization  

 FIR video clips recorded at 23.98 frames per second with a resolution of 480 x 
640 pixels. 

 Accurate 3D positions of the 19 main body joints from high-speed motion capture 
system. 

 Precise 2D projections of the body joints onto the image plane. 

Subjects 
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The motions were performed by five volunteers: four males and one female, whose body 
mass indexes (BMI) ranged from 16 to 24. This guarantees body type and movement 
variability. Additionally, the volunteers wore a range of diverse clothes, and the thermal 
conditions of the laboratory where the recording was made have changed to provide a 
dataset as rich and diverse as possible. 

Action classes and dataset structure 

The dataset contains 27 action classes in total. 26 of them are daily life activities while 
the other one includes different types of falls. The different actions are repeated by the 
volunteers in four different positions so frontal, rear and side views of the same actions are 
recorded.  

The dataset is divided into three blocks. The first block, which includes the motions of 
four volunteers, is used for system training and, in this group, all volunteers are recorded 
executing 13 daily life activities. These actions include: 

1. Giving directions. 

2. Discussing. 

3. Eating. 

4. Taking photos. 

5. Exercising on the ground. 

6. Running in place. 

7. Walking. 

8. Sitting and standing up. 

9. Coughing. 

10. Exercising. 

11. Playing basketball. 
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12. Picking up objects. 

13. Limping. 

The second block includes a single person who executes a different set of actions with 
validation purposes. These activities include: 

1. Brushing teeth. 

2. Encouraging your team. 

3. Toasting. 

4. Taking a selfie. 

5. Crouching for meditation. 

6. Walking a dog. 

7. Throwing a stone. 

8. Talking on the phone. 

9. Stretching yourself. 

10. Hopping. 

11. Kicking a ball. 

12. Tying shoelaces. 

13. Rotating your trunk. 

Finally, the third block includes four volunteers who are recorded from different 
perspectives falling forward, falling backwards and side falling. The falls start from static or 
dynamic situations and a number of them are slow falls, a common type of fall in the elderly 
community. 

First block  
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Second block 
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Third block 

 

Labeling 

All video-clips include a joint file in .mat format (label.mat) which contains two data 
structures. The first one, called data_2D, includes the two-dimensional position of the 19 
main body joints in each frame of the video-clip it is associated to. The second data 
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structure, data_3D, includes the same information but, this time, the information is three-
dimensional. 

 

 


