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Abstract

This work focuses on the numerical investigation of the drop impact on a solid sur-

face, with especial emphasis on the influence of the contact angle on the dynamics

of the contact line and the impact outcome. To this end, different numerical models

and computational tools are developed and implemented to accurately and efficiently

simulate the complex phenomena associated to this type of two-phase flow.

Interface tracking is one of the main difficulties encountered in the simulation of

immiscible two-phase flows, and therefore special attention is given to the task of select-

ing, assessing and implementing a volume of fluid (VOF) method capable of accurately

simulating this type of three-dimensional and highly unsteady flows. On the one hand,

an algebraic VOF method has been used to simulate axisymmetric drop impacts lead-

ing to deposition. On the other hand, a geometric advection method already available

in OpenFOAM has been used in combination with a reconstruction method that has

been implemented in OpenFOAM for this purpose. The accuracy and efficiency of the

methods used have been assessed through a systematic and comprehensive comparison

with other VOF methods, which has revealed their advantages. This has been car-

ried out by means of several kinematic tests and numerical simulations in which the

interface tracking methods have been solved along with the Navier-Stokes equations.

The influence of the scheme chosen for the discretization of the convective term

of the momentum equation is also studied, an issue that is crucial in the instants

immediately after the drop impacts the solid surface and that determines the ability

of the numerical model to reproduce the complexity of the flow that can occur in

impacts with fingering and splashing phenomena.

Another major issue in the numerical simulation of unsteady interfacial flows in

the vicinity of a solid surface is the simulation of the dynamics of the contact line.

This is due to the singularity that arises when using the continuum hypothesis in the

description of the contact line motion combined with a no-slip boundary condition on

the solid surface. To simply but effectively reproduce the contact line dynamics on solid

surfaces, a contact line force model is proposed. The contact line force is introduced

as a force per unit volume in the Navier-Stokes equations, in combination with the

simultaneous imposition of the interface angle at the contact line. The suitability of the

proposed model is studied by simulating several impacts over a wide range of Reynolds

and Weber numbers. The results are compared with experimental data obtained by

other authors and with numerical results obtained with different contact angle models.

The proposed contact line model has been used, along with the implemented ge-

ometric VOF method, in the numerical simulation of the impact of a drop on a hy-

drophobic surface, under fingering and splashing conditions. The results are compared

with our own experimental results, obtaining a good degree of agreement despite the

complex phenomena involved.
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Resumen

El presente trabajo está centrado en el estudio numérico del impacto de gotas so-

bre superficies sólidas, con especial énfasis en la influencia del ángulo de contacto

sobre la dinámica de la ĺınea de contacto y el patrón de flujo obtenido. Con este

propósito, se han desarrollado e implementado diferentes modelos numéricos y he-

rramientas computacionales que permiten simular de manera precisa y eficiente los

complejos fenómenos asociados a este tipo de flujo interfacial.

El seguimiento de la interfaz es una de las principales dificultades que surgen al

simular numéricamente flujos de dos fases no miscibles, y, por tanto, se ha prestado

especial atención a la tarea de seleccionar, mejorar e implementar un método de tipo

“volume of fluid” (VOF) capaz de simular este tipo de flujos tridimensionales y alta-

mente no estacionarios. Por un lado, se ha usado un método tipo VOF algebraico en

la simulación de impactos axisimétricos de gotas que dan lugar a una deposición. Por

otro lado, se ha empleado un método geométrico de advección de la interfaz disponible

en OpenFOAM en combinación con un método de reconstrucción de la interfaz que

ha sido implementado en OpenFOAM con este propósito. La precisión y eficiencia

de los métodos empleados se han validado mediante una comparación sistemática y

exhaustiva con otros métodos VOF, lo que ha puesto de manifiesto sus ventajas. Esto

ha sido llevado a cabo empleando varios tests cinemáticos y simulaciones numéricas

en las que las ecuaciones de Navier-Stokes son resueltas.

También se ha estudiado la influencia del esquema elegido en la discretización del

término convectivo en la ecuación de conservación de cantidad de movimiento, lo

que es crucial en instantes inmediatamente posteriores al impacto de la gota sobre la

superficie sólida y que determina la capacidad del modelo numérico para reproducir la

complejidad del flujo que puede tener lugar en impactos con fenómenos de salpicadura

y “fingering”.

Otro de los aspectos esenciales en la simulación numérica de flujos interfaciales no

estacionarios cerca de una superficie sólida es la adecuada reproducción de la dinámica

de la ĺınea de contacto. Esto es debido a la singularidad que surge al emplear la

hipótesis de medio continuo en la descripción del movimiento de dicha ĺınea junto

con la aplicación de la condición de no deslizamiento en la superficie sólida. Para

reproducir de manera simple pero efectiva la dinámica de la ĺınea de contacto en

superficies sólidas, se ha propuesto un modelo de fuerza de la ĺınea de contacto. La

fuerza es introducida como una fuerza de volumen en las ecuaciones de Navier-Stokes al

tiempo que se impone el ángulo de la interfaz en la ĺınea de contacto. Se ha estudiado

la adecuación del modelo mediante la simulación de varios impactos en un amplio

rango de números de Reynolds y Weber. Los resultados son comparados con datos

experimentales obtenidos por otros autores y con resultados numéricos obtenidos con

diferentes modelos de ángulo de contacto.
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El modelo de ĺınea de contacto propuesto se ha empleado, junto con el método

VOF geométrico implementado, en la simulación numérica del impacto de una gota

sobre una superficie hidrofóbica, bajo condiciones en las que se forman salpicaduras

y “fingers”. Los resultados son comparados con resultados experimentales propios,

obteniendo un buen grado de concordancia a pesar de los complejos fenómenos que

intervienen.
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Chapter 1

Introduction

1.1 Problem description and motivation

The impact of a drop on a solid surface is a phenomenon of great interest that it

is present in a wide range of applications such as soil erosion, surface painting and

spray coating, structured materials and circuit micro-manufacturing, 3D printing based

on micro-droplet deposition, among others [183]. The drop impact problem can be

pictured as a liquid drop of initial diameter D0 that impacts with a velocity U on a dry

solid surface. After the impact, the liquid spreads over the surface following different

flow patterns. Rioboo et al. [135] classified the different outcomes as shown in Fig. 1.1.

The deposition (Fig. 1.1(a)) is characterized by the formation of a liquid lamella which

spreads over the solid surface without any breakup or liquid ejection. The splash is

considered to occur when the drop impact results on the breakup of the drop and at

least a secondary droplet is formed. Two different splash patterns are distinguished:

(1) prompt splash (Fig. 1.1(b)), in which the secondary droplets are ejected from the

contact line immediately after the impact; and (2) corona splash (Fig. 1.1(c)), in which

the lamella detaches from the surface and several secondary droplets are ejected from

its rim. Another possible outcome is the receding breakup (Fig. 1.1(d)), which occurs

when the lamella retracts from its maximum spreading diameter and some drops are

left behind by the receding lamella. The total and partial rebounds (Figs. 1.1(e) and

(f)), which are only observed if a receding stage takes place, occur when the entire

drop rebounds on the surface and when only a part of the drop rebounds while the

rest remains attached to the surface, respectively.

The resulting outcome depends on a great variety of factors. These include fluids

properties, surface characteristics and impact parameters [166]. Some authors have

studied the influence of the ambient temperature and pressure or the physical prop-

erties of the impact surface [21, 181], although, for example, air density is usually

considered to be constant and therefore the thermal and compressibility effects are

neglected. The liquid properties involved are the density, ρl, the dynamic viscosity, µl,

and the surface tension, σ. The following two dimensionless numbers can be formed:

1
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(a) Deposition [118] (b) Prompt splash [72]

(c) Corona splash [72] (d) Receding breakup [9]

(e) Total rebound [129] (f) Partial rebound [129]

Figure 1.1: Possible outcomes when a drop impacts on a solid surface as classified by Rioboo et al.
[135].

Reynolds number,

Re =
ρl U D0

µl
, (1.1)

and Weber number,

We =
ρl U

2D0

σ
, (1.2)

which represent the ratio of the inertia and viscous and capillary forces, respectively.

Combinations of these two numbers are also often used, which include the Ohnesorge

number,

Oh =

√
We

Re
=

µl√
ρσD0

, (1.3)

and the capillary number,

Ca =
We

Re
=
µl U

σ
. (1.4)

(Note that in this work reference will be made to a capillary number based on the

contact line velocity, ucl, rather than on the impact velocity.)

When the drop comes into contact with the solid surface after impact, a moving

contact line is formed between the solid and the two immiscible fluids, giving rise to

a triple phase zone. There are great differences in the length scales involved in the
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phenomena that appear near this zone, ranging from the macroscopic to the molecular

scales, which sometimes make it difficult to clearly identify their influence on the flow.

The angle at which the interface between the two fluids intersects the solid surface,

known as contact angle, characterizes the wettability of the solid surface, determined by

the liquid-gas-solid interaction. However, the definition of this parameter is somehow

controversial due to its dependence on the length scale and to the fact that it can be

influenced by parameters such as the surface roughness [52].

In situations where the drop impact outcome is not a splash, the time evolution

of the spread factor, D/D0, where D is the diameter of the spreading lamella, can

be divided into four successive stages [134, 139]: (1) inertial, in which the shape of

most of the drop is still nearly spherical; (2) spreading, in which the liquid spreads

over the solid surface and a lamella bounded by a rim can be clearly identified; (3)

receding, which takes place after the maximum spreading factor has been reached and

is characterized by the growth of the width of the lamella rim and the decrease of the

spreading diameter; and (4) equilibrium or rebound, in which the receding velocity

and the properties of the liquid and impact surface determine the last stage of the

outcome.

The drop impact problem has received special attention from many researchers since

the early work of Worthington [178] in 1876, not only due to its practical interest, but

also to its complexity derived from the factors mentioned above: the dependence on

the physical properties of the liquid and impact surface and on the impact conditions;

the several length scales involved; the difficulty in clearly identifying the mechanisms

that take place during drop spreading and splashing; and the problem of the moving

contact line, which poses significant mathematical modeling difficulties. These issues

have given rise to different theories in the literature, sometimes contradictory to each

other, which try to explain the complex phenomena that occur when a drop impacts

on a solid surface [72]. The mathematical modeling of the contact line dynamics

poses an especial difficulty since its motion is incompatible with the no-slip boundary

condition imposed at the solid surface in the Navier-Stokes equations, which arises from

a continuum description of the problem. Different strategies have been developed to

handle this singularity and capture the dynamics of the contact line, which will be

described below.

The impact of a drop on a solid surface is a case of interfacial flow where two

immiscible fluids coexist separated by a possibly high complex interface through which

a discontinuity in the physical properties of the fluids is produced. A variable for

tracking the interface is generally used, therefore one more equation that describes its

evolution must be added to the mathematical model. There are many approaches for

the interface evolution tracking in numerical simulation of interfacial flows, and can be

classified into three main categories [142]: Lagrangian, where the governing equations

are solved on a mesh that moves along with the interface; mixed Eulerian-Lagrangian



CHAPTER 1. INTRODUCTION 4

(e.g., front-tracking method [167]), in which the governing equations are solved on a

fixed mesh and the interface is tracked by marker points; and Eulerian, in which the

governing equations are also solved on a fixed mesh and the interface is represented

through a function defined on each computational cell of the mesh, advected along

with the fluid velocity. Examples of methods belonging to this last category are the

phase-field, level-set and volume of fluid (VOF). The latter method has received special

attention by the scientific community due, among others advantages, its good mass

conservation properties compared to other methods.

The impact of a drop on a solid surface is a case of interfacial flow in which two

immiscible fluids coexist separated by a possibly highly complex interface across which

there is a discontinuity in the physical properties of the fluids. To solve such a flow

numerically, it is common to use an indicator variable or marker particles to track the

interface, therefore an equation describing its evolution is added to the mathematical

model. There are many approaches for interface tracking in the numerical simulation of

interfacial flows, which can be classified into three main categories [142]: Lagrangian,

where the governing equations are solved on a mesh that moves along with the in-

terface; mixed Eulerian-Lagrangian (e.g., front-tracking method [167]), in which the

governing equations are solved on a fixed mesh and the interface is tracked by marker

points; and Eulerian, in which the governing equations are also solved on a fixed mesh

and the interface is represented through a function defined in each computational cell

of the mesh, advected with the fluid velocity. Examples of methods belonging to the

last category are phase-field, level-set and volume of fluid (VOF). The latter has re-

ceived special attention by the scientific community due, among others advantages, to

its good mass conservation properties compared to other methods.

In the VOF method, the indicator function representing the interface is approxi-

mated by the fraction of a computational mesh cell occupied by the liquid (volume

fraction), which can be obtained by geometric operations (geometric VOF methods)

or by using numerical approximations (algebraic VOF methods). The accuracy of the

latter type of methods is usually substantially lower than that of the former, mainly

due to numerical diffusion, although they are less computationally expensive [109]. In

geometric VOF methods, an additional step is required, prior to the computation of

the liquid volume advected across the cell boundaries, in which the interface is recon-

structed from the volume fraction. The interface in a computational cell is generally

represented by a plane. The interface reconstruction method is of the piecewise linear

interface calculation (PLIC) type if no restrictions on the plane orientation are consid-

ered and of the simple line interface calculation (SLIC) type if the plane orientation

is restricted to be aligned with a coordinate axis. The plane is positioned in the cell

so that, for a given orientation, the volume enclosed by the intersection between the

plane and the cell corresponds to the volume of liquid in that cell. The orientation

of the plane in a cell is obtained from the volume fraction distribution, using meth-
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Figure 1.2: Estimation of the number of publications in which the OpenFOAM code was used, showing
the fraction of which were related to multiphase flow simulation. Data obtained from [146, 157].

ods such as those based on its gradient, a reconstructed distance function (RDF) or

an isosurface (a generally non-planar polygon in which all its vertices have the same

volume fraction value), among others. An accurate computation of the interface posi-

tion and orientation is of utmost importance because, on the one hand, it determines

where the change in fluid properties occurs, where the surface tension is applied, and

the intensity of the surface tension, which depends on the local shape of the interface,

and, on the other hand, it is used to estimate the fluxes needed to solve the advection

equation that describes the evolution of the indicator function. Interface advection

in geometric VOF methods is generally based on the construction of donating flux

regions used to determine the liquid volume flux across cell boundaries, which involve

complex truncation operations.

The VOF method and other interface tracking methods can be implemented in

a great variety of computational frameworks to be used along with algorithms for

solving the Navier-Stokes equations. In recent years, the open-source CFD software

OpenFOAM [115] has been increasingly and widely used by the research community as

a general-purpose code to simulate fluid-mechanics problems, including those related

to multiphase-flow (see Fig. 1.2). Interest has been focused both on using the code

to carry out simulations and on contributing to increase its simulation capabilities by

developing, implementing and releasing new numerical methods and improving those

already included in the code. In this context, the present work uses OpenFOAM

as the computational framework in which the proposed contact line force model is

implemented and assessed [47], and the task of selecting, assessing and implementing

a VOF method capable of accurately simulating three-dimensional and highly unsteady

two-phase flows is carried out [46].
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1.2 Mechanisms involved in the drop impact

As discussed in the previous section, one of the major issues when studying the im-

pact of a drop on a solid surface arises from the influence of the large number of

factors involved. Numerous works have studied the influence of different parameters

on the flow pattern obtained after drop impact, such as liquid properties (especially

viscosity), surface tension, impact velocity, size and shape of the drop, impact surface

characteristics, air properties and ambient conditions, among others. However, there

is no general agreement on which physical mechanisms are behind the cause of drop

splashing, although several authors have investigated the splashing/deposition thresh-

old [103, 118, 131, 166]. On the other hand, there is much more consensus on the

processes that take place in impacts that result in deposition outcomes [72].

The effects of the liquid viscosity and surface tension have been widely studied.

When surface tension is decreased, the splash outcome is promoted [151]. When liquid

viscosity is increased, the momentum dissipation at the surface is higher and, therefore,

the maximum spread factor is smaller. The retraction stage is also slower, and starts

earlier for less viscous liquids [151, 176]. However, the viscosity effect involving the

splash outcome is more complex. For Re > 1000, an increase in the viscosity leads

to the formation of splash as, in this regime, the expanding liquid film is stabilized

mainly by surface tension while viscosity only affects the film thickness. A greater

viscosity causes a thicker film, which is easier to be destabilized, promoting the splash.

For Re < 1000, viscous drag is more relevant and helps to stabilize the lamella, so the

increase of the liquid viscosity tends to suppress splash.

The effects of the liquid viscosity and surface tension have been widely studied.

When surface tension is decreased, the splashing outcome is promoted [151]. When

viscosity is increased, the momentum dissipation at the surface is higher and, therefore,

the maximum spread factor is smaller. The viscosity effect in splashing drop impacts

has been under discussion [118]. For Re & 1000, an increase in viscosity promotes

splashing since, in this regime, the expanding liquid film is stabilized mainly by surface

tension, while viscosity affects the film thickness. A higher viscosity causes a thicker

film, which is easier to be destabilized, promoting splashing. For Re . 1000, viscous

drag is more relevant and helps to stabilize the lamella, so an increase in liquid viscosity

tends to suppress splashing.

For sufficiently low values of the impact velocity, a deposition takes place. If the

impact velocity increases, the spreading lamella diameter also increases [151]. For

Re & 1000, if the impact velocity is increased, instabilities appear that promote the

apparition of the splash. For Re . 1000, the splash outcome is preceded by the lift

of a thin liquid film moving parallel to the solid surface without the formation of any

secondary droplets. In this regime, if the impact velocity is sufficiently high, secondary

droplets detach from the rim of the lifted thin liquid film [118].
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The drop size also affects the resulting outcome. For a given We, if the drop size

is diminished, the maximum spread factor reached during the impact is smaller since

the viscous effects on a smaller drop are more important. If the Re number is kept

constant, the maximum spreading diameter becomes larger for smaller drops because

the capillary effects are less important.

The effect of the air trapped beneath the impacting drop was investigated by Kolin-

ski et al. [76]. This trapped air forms a very thin film over which the liquid spreads up

to a certain distance where the liquid-solid contact is produced. Their results indicated

that the thickness of the air film and the length over which the drop skates decrease

with impact velocity, up to reach a minimum value in both parameters. Mandre and

Brenner [103] indicated that there is a critical impact velocity over which a thin liq-

uid sheet is ejected before the liquid-solid contact, and when this sheet contacts the

surface the splash is produced. Jian et al. [69] studied the effects of the density and

viscosity of the gas in the formation of splash. The volume of the trapped bubble

increases with gas density. They distinguished two types of splashing mechanisms: jet

and detachment splashing, corresponding to a jet ejection from the lamella before and

after, respectively, the liquid-solid contact. The first case corresponds to higher values

of gas viscosity. If the gas viscosity is reduced sufficiently the splash does not appear.

Liu et al. [86] carried out experiments in the low viscous regime, in which the lamella

skates over a thin air film and then the liquid is ejected from the rim of the lamella

before it touches the surface of impact. The authors found that the entrapped air un-

der the lamella is responsible for triggering the splash since, when the drop impacts on

a porous surface where the air can escape through the pores, splashing is completely

suppressed.

The previous comments highlight the relevance of the entrapped air in the splash

formation. A mechanism that takes this into account is based on the Kelvin-Helmholtz

instability, which is supposed to destabilize the lamella [74, 86] and is originated by the

high velocity gradient between the liquid and the thin gas film, in which the continuum

hypothesis is not valid anymore, since its size is of the order of the molecular mean free

path [35]. This instability generates waves on the lamella that might cause the liquid

to touch the surface, resulting in contact points as observed by Kolinski et al. [76],

although this is not valid when the lift force deviates the liquid upwards [103]. Riboux

and Gordillo [131] proposed a decomposition of this force into two contributions, one

due to the gas dynamics, which takes into account the non-continuum effects near the

contact line, and the other due to the suction force acting on the upper part of the

lamella.

The air surrounding the drop and its interaction with the expanding circular liquid

jet after impact gives rise, for certain impact conditions in which the Reynolds number

is sufficiently high, to azimuthal undulations in the lamella with a fingering pattern

which were first observed by Worthington [178]. The mechanism that triggers the
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growth of fingers in the periphery of the lamella has been proposed to be related to

the Rayleigh-Taylor instability (two immiscible fluids of different densities accelerated

towards each other), although there is no consensus on the nature by which this insta-

bility first appears through the impact process. Allen [6] stated that this instability

is due to the deceleration of the lamella and, following a model for the wave ampli-

tude at the edge of the lamella proposed by Chandrasekhar [22], made an estimation

of the deceleration. However, Thoroddsen and Sakakibara [164] explained that it is

due to the rapidly decelerating annular ring of the fluid that first touches the surface

but before hitting it. With the aim to predict the number of fingers, Marmanis and

Thoroddsen [106] proposed a correlation based on the Weber and a modified Reynolds

numbers while Aziz and Chandra [9] presented a distinct formula for molten droplets.

A different effect of the air surrounding the drop was found by Xu et al. [182]:

reduction of ambient pressure leads to suppression of splash. There are some discrep-

ancies between this behavior, which has been confirmed by the experiments, and the

mechanism proposed by Mandre and Brenner [103] for splashing. The role of the air is

not only related to the formation of the splash but also to the formation of a dimple in

the drop, in the zone around the impact point, when it is close to impact the surface.

The increased pressure in the thin air film causes the drop to deform and trap an air

disc [72]. This disc tends to minimize its surface energy, contracting and eventually

resulting in a bubble. The rapid receding of the contact line in the disc might cause

the formation of a bubble ring concentric with the central bubble. As the contraction

occurs much faster than typical wetting processes, surface wettability is supposed not

to affect the formation of the bubble ring [163]. On the other hand, Lee et al. [80]

found that surface wettability is a critical parameter in the bubble detachment from

the surface, since increasing the contact angle increases the adhesion force that tends

to attach the bubble.

The air disc radius decreases exponentially with time and, in certain circumstances

for Oh numbers sufficiently low, a complex process may take place in which, due to

the capillary waves caused by the rapid contraction of the disc that propagate towards

the bubble center, the upper surface of the bubble touches the solid surface adopting

a toroidal shape. Then, the self-coalescence of the toroidal bubble results in a liquid

droplet adhered to the surface inside the bubble [80, 83, 163].

Air bubble entrapment seems to be related to impacts in the high viscosity regime

[41], and the physical mechanisms that cause the splash in this regime, which still

remain obscure. Palacios et al. [117] found the formation of a second microbubble

ring. They pointed out the relation between this bubble ring and the formation of

a lifted thin liquid film, and also observed that, when the impact velocity exceeds a

critical value, an abrupt change in size of this second ring is produced, which influences

the splash flow pattern.
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It seems obvious that the characteristics of the impact surface, including roughness,

porosity and wettability, should also affect the outcome obtained. Roisman et al. [138]

investigated the effect of the roughness and porosity on the splash. Since these are not

uniform properties, some statistical values should be used. The authors argued that

the ratio between the average surface roughness, Ra, and the initial drop diameter

cannot be used as a relevant scale for characterizing the influence of roughness on the

splash threshold since Ra does not give detailed information about the surface [127].

Therefore, the authors used the ratio between the average height of the protruding

peaks above the roughness core profile and the mean width of a profile element, which

represents a characteristic slope of the surface topography. They found that increasing

this ratio, and therefore the roughness of the surface, for a given We, promotes splash-

ing. On the other hand, porosity tends to suppress splashing, probably due to a partial

penetration of the drop into the pores during the first instants of the impact. These

results are in partial agreement with those obtained by Kim et al. [74]: an increase

in surface roughness promotes splashing until a certain roughness size is reached, for

which the effect becomes similar to that of porosity.

The wettability of the solid surface, characterized by the contact angle, also influ-

ences the onset of splashing, since, under certain conditions, the liquid detaches directly

from the surface. Yokoi [184] found that splashing can be triggered by increasing the

hydrophobicity of the surface, and thus increasing the contact angle. This was also

reported by Quetzeri-Santiago et al. [125], although they stated that the influence of

this parameter is only relevant in hydrophobic surfaces, whereas in hydrophilic surfaces

splashing remains independent of the contact angle. However, Latka et al. [78] and Ro-

isman et al. [138] pointed out that the splash is independent of the surface wettability,

since the splash occurs before the liquid of the lifted film touches the surface. These

findings are in agreement with the numerical simulations carried out by Jian et al. [69],

in which they showed that both prompt and corona splashing are independent of the

substrate. Quintero et al. [126] and Riboux and Gordillo [131] took into account in

their theoretical models the contact angle through an empirical parameter related to

the contact angle for hydrophobic surfaces and through the angle established between

the advancing front of the lamella above a lubricating air layer and the solid surface for

hydrophilic substrates. For the latter type of surface, de Goede et al. [36] found that

the angle just mentioned remains nearly constant for different surface wettabilities,

hence splashing would be independent of surface wettability.

Despite this controversy on the effect of the contact angle in the splash, when the

outcome results in a deposition, the agreement is much clear. For the same impact

conditions and fluids but varying the surface wettability Šikalo et al. [151] carried out

several experiments. At the first instants, when the inertial effects dominate over the

viscous and capillary forces, the contact angle does not affect the spreading dynamics.

However, in the following stages, especially close to the maximum spread factor, its
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effect is very important. When the surface wettability is reduced, i.e., when the contact

angle is increased, the maximum spread factor is smaller and the retraction of the

lamella starts earlier. This result coincides with that showed in [81, 166, 170, 173, 176]

and might be caused by the fact that as the contact line velocity is reduced, due to

the viscous dissipation at the surface at the lasts stages of the spreading stage, the

capillary force equals the inertial force. As the former is opposed to the latter when

the contact angle is increased above 90◦ due to the interface curvature, the contact

line velocity is also reduced, even changing its direction and making the spread factor

to decrease. This phenomenon can be observed when the time evolution of the contact

angle is measured in a drop impact on a solid surface, like in Šikalo et al. [152, 153].

In these works, the authors showed that at the first instants of the impact, the contact

angle takes values above 90◦, independently of the surface wettability and, as the

impact evolves, the contact angle decreases with very different results depending on

the impact conditions and the surface characteristics.

Despite this controversy on the effect of contact angle on splashing, when the impact

outcome is deposition, the agreement is clearer. Šikalo et al. [151] carried out several

experiments for the same impact conditions and fluids, but varying the surface wet-

tability. In the first instants, when the inertial effects dominate over the viscous and

capillary forces, the contact angle does not affect the spreading dynamics. However, in

the subsequent stages, especially close to the instant of maximum spreading factor, its

effect is very important. When the surface wettability is reduced, i.e., when the con-

tact angle is increased, the maximum spread factor is smaller and the retraction of the

lamella starts earlier. This result coincides with that shown in [81, 166, 170, 173, 176]

and might be caused by the fact that, as the contact line velocity is reduced, the cap-

illary force becomes of the same order as the inertial force. As the former is opposed

to the latter, the contact line velocity is further reduced, eventually changing its di-

rection and making the spreading factor to decrease. This effect is larger the larger

is the contact angle and can be observed when measuring the time evolution of the

contact angle during the impact of a drop on a solid surface, as in [152, 153]. In these

works, the authors showed that in the first instants of the impact the contact angle

takes values above 90◦ independently of the surface wettability and, as the impact

evolves, the contact angle decreases with very different behavior depending on the

impact conditions and the surface characteristics.

1.3 Contact angle and contact line

The main difficulty in achieving a more complete understanding of the mechanism by

which a liquid front advances over a solid surface is due to the multiple length scales

involved in the dynamics of the wetting process, which range from the macroscopic

to the molecular scales, and the very wide range of possible wetting conditions (see,
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e.g., [12, 16, 34]). A possible approach, although computationally expensive, is based

on molecular dynamics simulations [77], which addresses the liquid/solid interaction

in a natural way, coupled or not to models that solve the scales within the contin-

uum limit [122]. Another approach is based on the hydrodynamic theory, from whose

point of view this type of two-phase flow introduces a shear-stress singularity in the

Navier-Stokes equations at the contact line when a no-slip boundary condition is im-

posed, since continuum mechanics is no longer valid at molecular distances from the

contact line [158] (below ∼10 nm for fluids such as water under normal pressure and

temperature conditions [13, 73, 156]). From a numerical perspective, the molecular

interactions between the fluids and solid would have to be modelled somehow to elimi-

nate the stress singularity. With this aim, a number of approaches have been proposed,

such as those of the precursor film, the diffuse interface, and the slip models [2].

Slip models are based on allowing the contact line to move, and their implementa-

tions depend on the method used to track the interface evolution. The most common

slip model used in the literature is based on the Navier slip boundary condition, which

introduces a slip length proportional to the shear stress [82, 104]. Also often used

is the generalized Navier boundary condition (GNBC) [51, 124, 128], in which slip-

ping depends on the tangential viscous stress and the unbalanced Young’s stress that

arises from the deviation between the angle at which the interface intersects the solid

boundary (contact angle) and its static value.

The definition of contact angle has been already introduced in Section 1.1, although

not in a precise way, since the aim was only to illustrate the dependence on this quantity

of the drop impact on a solid surface. It is important to note that there is not a unique

definition, since it mainly depends on the length scale considered, although the concept

is always the same as that described in Section 1.1. The equilibrium contact angle, θe,

on a perfectly flat and chemically homogeneous surface in thermodynamic equilibrium,

given by the minimization of the Gibbs free energy, satisfies Young’s equation, which

provides a good approximation of the contact angle at the macroscopic scale [34],

σ cos θe = σsg − σsl, (1.5)

where σ, σsg and σsl are the liquid/gas surface tension and surface free energy densities

of the solid/gas and solid/liquid interfaces, respectively (Fig. 1.3(a)). Heterogeneities

and roughness of the solid surface lead to the hysteresis of the static contact angle

[43], θs, whose value may vary in the range θr < θs < θa, where θr and θa are called

receding and advancing contact angles (see Fig. 1.3(b) for ucl = 0). How the contact

line motion and the flow in its proximity influence the contact angle is a complex

question, which is the subject of intense research activity.

In the mathematical model based on the hydrodynamic theory, on which numerical

simulations of interfacial flows involving contact lines are usually based, three length

scales are considered: (1) the microscopic scale (the smallest length within the contin-
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Figure 1.3: (a) Schematic representation of the contact line and θe. (b) θd as a function of ucl and
hysteresis of θs (ucl=0).

uum limit) where the contact angle (which could be assumed either to be equal to the

static angle or to be dependent on the contact line velocity [172]) is governed by the

intermolecular forces; (2) an intermediate length scale where viscous bending of the

interface becomes relevant; and (3) the macroscopic scale which is of the order of the

capillary length, where the contact angle corresponds to that measured experimen-

tally. This last contact angle is usually referred to as the apparent contact angle and

is often used as a boundary condition in the numerical resolution of the hydrodynamic

equations [1, 42, 158]. The dynamic contact angles obtained experimentally are obvi-

ously apparent contact angles, and in most cases the length scale on which they have

been measured depends on the spatial resolution of the measurement system and is

not accurately known. This is an unavoidable drawback when imposing an apparent

contact angle as a boundary condition as if it was the dynamic angle corresponding to

the microscopic or intermediate scales.

The contact angle that is measured when the contact line moves, θd, differs from the

static values, evidencing that the wetting process must be dissipative. It is generally

observed that the measured advancing and receding dynamic contact angles are at

any instant higher and lower, respectively, than the corresponding static values (θd ≥
θa, θd ≤ θr), and that the relationship between θd and the contact line velocity is

monotonic (Fig. 1.3(b)). The deviation of the dynamic contact angle from its value θs

at static conditions induces an unbalanced stress in Young’s equilibrium since θd 6= θs.

Taking into account this behavior, Eq. (1.5) can be rewritten as

σsg − σsl − σ cos θd = σ(cos θs − cos θd), (1.6)

where the right hand side corresponds to the unbalanced Young’s force or contact line

force [34]. As this force tends to restore the Young’s equilibrium, it causes the contact
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line to advance when cos θd < cos θs and to recede when cos θd > cos θs, and is zero

when Young’s equilibrium is reached (θd = θs).

With the aim to predict the contact angle using different flow parameters, several

dynamic contact angle models have been proposed in the literature. These usually

assume that the contact angle depends on the contact line velocity, as well as on other

fluid parameters. This dependence is mathematically introduced through the capillary

number Ca = µ ucl/σ, which represents the ratio of the viscous forces to the surface

tension forces in the vicinity of the contact line at the interface.

The model proposed by Kistler [75] is based on a correlation of data obtained from

the experiments carried out by Hoffman [62] in a study on the dynamic contact angle

in capillary tubes for a wide range of capillary numbers, 4 × 10−5 < Ca < 36. The

dynamic contact angle is assumed to be a function of Ca and θe,

θd = fH(Ca + f−1
H (θe)), (1.7)

where fH(x) is the Hoffman function, defined as

fH(x) = arccos



1− 2 tanh

[
5.16

(
x

1 + 1.13 x0.99

)0.706
]
 . (1.8)

The model proposed by Jiang et al. [70] is also based on an empirical correlation

to the data provided by Hoffman [62]. The dynamic contact angle is now obtained

through
cos θe − cos θd
cos θe + 1

= tanh
(
4.96Ca0.702

)
, (1.9)

where θe can again be replaced by the static advancing and receding values.

In the Cox model [30, 44], the dynamic contact angle is calculated as

θd = g−1

(
g(θm) + Ca log

L

lm

)
, (1.10)

where θm is the microscopic contact angle, L an intermediate region length scale, and

lm the slip length. The function g(θ) can be obtained through

g(θ) =

∫ θ

0

x− sin x cos x

2 sin x
dx (1.11)

when µg/µl ≪ 1. Furthermore, g(θ) and g−1(θ) can be approximated using polynomial

expressions, as stated in [42], as, respectively,

g(θ) ≈ θ3

9
− 0.00183985 θ4.5 + 1.845823× 10−6 θ12.258487, (1.12)

and

g−1(θ) ≈ (9 θ)−3 + 0.0727387 θ− 0.0515388 θ2 + 0.00341336 θ3. (1.13)



CHAPTER 1. INTRODUCTION 14

The mathematical model developed by Shikhmurzaev [148] relies on an interface

formation-destruction process, considering the fluid motion as rolling. Under certain

conditions, there are asymptotic limits at which this model can be simplified [149].

Blake and Shikhmurzaev [11] showed that one of such limits is the steady motion at

low Ca and Re numbers when other nearby boundaries do not affect the flow near

the contact line, for which the dynamic contact angle and a dimensionless contact line

velocity, V = ScCa, are related through

cos θe − cos θd =
2V
[
ρs∗2e + ρs∗1e u0(θd, 0)

]
[
1− ρs∗1e u0(θd, 0)

] [
(ρs∗2e + V 2)1/2 + V

] , (1.14)

where

u0(θd, 0) =
sin θd − θd cos θd
sin θd cos θd − θd

, (1.15)

Sc is a scaling factor that depends on the material properties, and the parameter ρs∗2e
is defined as

ρs∗2e = 1 +
[
1− ρs∗1e u0(θd, 0)

]
(cos θe − σ∗

SG) , (1.16)

being σ∗
SG and ρs∗1e experimental parameters. Thus, this model provides a theoret-

ical curve in the plane (θd,Ca) that depends on the three dimensionless viscosity-

independent parameters indicated above.

It is important to note that Jiang’s and Shikhmurzaev’s models are only valid for

advancing contact lines, i.e., they do not consider negative capillary numbers. To

overcome such problem, the following correlation presented by Tanner [162] can be

used instead,

θd = (θe + 72Ca)1/3. (1.17)

Figure 1.4 shows the dynamic contact angle curves in the plane (θd,Ca) obtained

using the previous described models for an equilibrium contact angle θe = 60◦. For

Shikhmurzaev’s model, the empirical values Sc = 4.3, ρs∗1e = 0.63 and σ∗
SG = −0.08

estimated by Blake and Shikhmurzaev [11] for a low-viscosity water-glycerol mixture

have been used, and for Cox’s model, the values lm = 10−9m and L = 9 × 10−6m

have been applied. As Ca increases from 0, the models predict a rising contact angle

until they reach a limit, which in all cases, except in the Shikmurzaev’s model, is

180◦. When the contact line recedes (Ca< 0) the models by Kistler, Cox and Tanner

yield very similar curves with a huge slope. It can be observed that the change in the

dynamic contact angle for negative capillary numbers is very fast compared to positive

capillary numbers. In the former, the limit value θd = 0◦ is reached at Ca ≈ −0.015

while in the latter, the limit is reached for much higher Ca values (considering its

magnitude). This rapid change in the receding contact angle might be a result of the

mathematical models instead of a physical phenomenon, and more deep studies in this

subject are needed. Note that these models can be used to account for the hysteresis
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Figure 1.4: Dynamic contact angle as a function of Ca for different models and θe = 60◦. The inset
shows a detailed view of the receding part of the curves (Ca < 0).

of the contact angle by substituting θe by θr or θa, depending on the relative direction

of the contact line movement.

1.4 Volume of fluid method

As stated in Section 1.1, in this work, the interface evolution tracking is carried out

using the VOF methodology, in which two types of methods are distinguished depend-

ing on the approach used to solve advection equation that describes the evolution of

the indicator function. The algebraic VOF methods do not need to reconstruct the

interface as it is represented using a numerical approximation (such as a polynomial

or trigonometric function) and the interface advection is carried out using an algebraic

procedure, generally based on finite-difference techniques, to compute the fluxes. They

can be divided into two main groups: compressive schemes [112, 169], which introduce

a compressive term into the advection equation in order to maintain the interface as

sharp as possible; and THINC (tangent of hyperbola for interface capturing) schemes

[180], in which a hyperbolic-tangent profile is assumed for the indicator function for a

cell containing the interface.

Geometric VOF methods solve the advection equation performing both interface

reconstruction and advection steps. Due to the complexity and the variety of geomet-

ric VOF methods available in the literature, these steps are briefly described in the

following. Detailed reviews of this type of methods and recent developments can be

found in [49, 105, 109, 168].
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Interface reconstruction

The early reconstruction methods of type SLIC [61, 114] were improved by Youngs

[187], who avoided the orientation limitation by extending the method to allow the

interface to have an arbitrary orientation based on the volume fraction gradient using

finite-difference formulas or a least-square technique. This type of interface recon-

struction is usually referred to as PLIC, where the interface is represented by a plane

defined as

x · n+ C = 0, (1.18)

where C is a constant (minimum distance from the interface to the origin of the

coordinate system), n is the unit vector normal to the interface pointing to the liquid,

and x is the location of a generic point on the interface. In order to improve the normal

calculation, several approaches have been used, among which can be mentioned the

following: Chorin [26] introduced an iterative formulation based on calculating the

interface orientation from a curve defined by a 3 × 3 array of volume fractions and

then improved by Swartz [160] for performing well in unstructured meshes, described

in algorithmic form by Mosso et al. [110]; Pilliod and Puckett [121] presented the

efficient least-squares volume of fluid interface reconstruction algorithm (ELVIRA),

which is second-order accurate but at a high computational cost, especially for 3D;

Liovic et al. [85] proposed the 3D second-order convergence CVTNA method, based

on the 2D method proposed by Swartz [160]; Scardovelli and Zaleski [144] proposed a

least squares fit (LSF) algorithm for the normal calculation which was extended to 3D

by Aulisa et al. [8], achieving second-order convergence when applied iteratively at a

small computational cost; López et al. [97] developed the CLCIR (conservative level-

contour interface reconstruction) method, which involves a non-iterative method based

on isosurface extraction and was extended to arbitrary meshes by López et al. [87];

Roenby et al. [136] proposed an advanced VOF method, referred to as isoAdvector,

based on the extraction of isosurfaces and in which, therefore, the interface normal is

estimated using the extracted isosurface; Scheufler and Roenby [145] used the RDF

from Cummins et al. [31] in order to improve iteratively the interface normal estimation

for unstructured meshes in a PLIC method coupled to isoAdvector.

Other interface reconstruction methods based on the extraction of isosurface were

developed by López et al. [97], in which the interface orientation is obtained by a

weighted-average procedure. This procedure is based on triangulated surfaces con-

structed from the extraction of generally non-planar isosurfaces corresponding to a

0.5 value of the fluid volume fraction distribution. In particular, the LLCIR (local

level-contour interface reconstruction) method constructs the triangulated surface by

joining the vertices and centroid of the extracted isosurface in the cell, the ELCIR

(extended level-contour interface reconstruction) method which constructs the trian-

gulated surface by joining the centroid of the isosurface extracted in the cell with
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ϕ > ϕ̃

ϕ < ϕ̃

Figure 1.5: 2D example of an ambiguous situation produced in the isosurface extraction from discrete
data.

those of the isosurfaces extracted in adjacent cells, the already mentioned CLCIR

method translates the above mentioned centroids to the corresponding PLIC geomet-

ric centers, and the CLC-CBIR (conservative level-contour cubic-Bézier-based inter-

face reconstruction) improves the orientation obtained from the CLCIR method by

constructing a cubic-Bézier patch over each triangle of the triangulated surface.

To compute the interface normal, these and some other methods mentioned above

need to solve the isosurface extraction problem, which is not a trivial task. Thus, the

following describes how this problem is posed. Given a scalar field ϕ : R3 → R and a

value ϕ̃ ∈ R, the goal is to extract the set {(x, y, z) : ϕ(x, y, z) = ϕ̃}, which is usually

called an isosurface. In this work, it will be assumed that ϕ is defined by discrete

data available only at the cell vertices of a mesh (the cell volume fraction distribution

interpolated to the mesh nodes). Therefore, the location of the extracted isosurface

points must be approximated by interpolation, and the reconstructed isosurface can be

represented, for example, with linear edges constructed by sequentially connecting the

obtained isosurface points ordered by some tracing procedure. It should be mentioned

that the use of discrete data may introduce ambiguities like that shown in the example

of Fig. 1.5. These situations can produce inconsistencies in isosurface extraction and

can be solved by increasing the number of sample points.

There are several methods that use polygons to reconstruct isosurfaces from discrete

data; among them, the “marching cubes” algorithm, originally introduced by Lorensen

and Cline [98] for 3D medical data disposed in a cubic mesh, is one of the best known.

This algorithm creates a triangular surface of a given ϕ̃ level. In an individual cube

there are 28 different configurations based on the relative values of the ϕ-sampled data

assigned to its 8 vertices with respect to ϕ̃. The original algorithm proposed in [98]

uses two different symmetries to reduce the number of distinctive configurations to

only 14 (see Fig. 3 in [98]), which are stored in a lookup table to speed up execution of

the algorithm. However, this reduction introduces a topological inconsistency in the

vertex data when at least one face of the cube contains two opposite vertices, one on

one side of the isosurface, and the other on the other side (similar to the ambiguous
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situation shown in Fig. 1.5). This inconsistency produces isosurfaces that may have

holes and may not be a 2-manifold (see the example of Fig. 1.6).

Several efforts have been made to avoid this inconsistency and to extend the use of

the original marching cubes algorithm to other mesh types (see, e.g., [10, 24, 40, 107,

113, 174, 189, 190]). Recently, López et al. [87] presented a new isosurface extraction

method, which can be considered as an extension of the marching cubes technique,

that produces consistent results even for ambiguous situations in polyhedra of arbitrary

shape. This last aspect makes the method very powerful, since it can be used with

codes capable of simulating different physical phenomena using complex unstructured

meshes with cells without any predetermined geometric configuration.

(a) (b)

(c)

Hole problem

Figure 1.6: Inconsistency of the original marching cubes algorithm. A combination of cells with (a)
configuration 3 of Fig. 3 in [98] and (b) the complementary symmetric case produces (c) the hole
observed on the bottom picture.

Once that the interface normal n has been computed, the next step is to position

the PLIC by computing the constant C so that the interface splits the cell Ω into two

sub-polyhedral cells of volumes VT = FVc,Ω and (1− F )Vc,Ω. This problem is usually

referred to as the volume conservation enforcement (VCE) problem, which involves

the resolution of

V (C)− VT = 0, (1.19)
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where V (C) is the volume of the sub-polyhedral cell to which n points. Both analytical

and iterative approaches have been proposed to solve this problem, since inverting

V (C), i.e., obtaining C = C(VT ), is not a trivial task. This problem is usually divided

into two steps [93]: firstly, the solution bracketing step, where two bounds for the

solution of Eq. (1.19) are found usually truncating the polyhedral cell using cutting

planes parallel to n·x = 0 and passing through different cell vertices; secondly, the final

calculation step, where the value of C is computed iteratively or analytically. Rider

and Kothe [132] solved this problem iteratively by using Brent’s method [19]. Gueyffier

et al. [54] and Scardovelli and Zaleski [143] extended the analytical approach proposed

by Li [84] for square cells to orthogonal rectangular and hexahedral cells. Harvie and

Fletcher [58] introduced an analytic method, valid for orthogonal rectangular cells,

in which a series of logical steps to bracket the solution and an analytical method

in the final calculation step are employed. The first analytical approach valid for

general convex meshes in both two and three dimensions was proposed by López and

Hernández [88], improved by López et al. [93, 96] using more efficient formulae to

compute areas and volumes and extended to arbitrary meshes, with either convex or

non-convex cells, by López et al. [95]. Other recent iterative methods are the proposed

by Ahn and Shashkov [3], Skarysz et al. [154] and Chen and Zhang [23].

Geometric advection

Geometric multi-dimension advection methods can be classified into two categories:

split and unsplit. The former are limited only to regular structured meshes, and

are based on solving the problem in two (2D) or three (3D) steps every time step,

one for each spatial direction [8, 144]. The lack of accuracy in the calculation of

donating regions (Fig. 1.7(a)), yields to geometric errors that distort the interface,

which also causes the global and local volume conservation to be not satisfied, making

necessary the use of ad-hoc fluid redistribution algorithms. Thus, in this type of

methods. Besides, this type of methods require an interface reconstruction step after

every advection step, which substantially increases the computation time.

On the contrary, unsplit methods are harder to implement but they can be ap-

plied to unstructured meshes. In the scheme proposed by Rider and Kothe [132], the

donating flux regions have a trapezoidal shape and are constructed from the veloc-

ity components normal to the cell faces (Fig. 1.7(b)). Note that these regions might

be overlapped without ensuring strict volume conservation and introducing numer-

ical diffusion. The methods proposed by Harvie and Fletcher [59] and Pilliod and

Puckett [121] avoid the ovelarpping of the donating regions, although its calculation

is limited to the normal components of the velocity (Figs. 1.7(c) and 1.7(d)). Other

method proposed by Harvie and Fletcher [58] calculates the donating regions on a

more precise way by joining several sub-regions constructed along the cell face, al-

though it is not strictly conservative (Fig. 1.7(e)). The edge-matched flux polygons
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(a) Split methods (b) Rider and Kothe [132] (c) Harvie and Fletcher [59]

(d) Pilliod and Puckett [121] (e) Harvie and Fletcher [58] (f) López et al. [91]

Figure 1.7: Donating flux regions for the main geometric advection methods in two dimensions.

advection (EMFPA) method proposed by López et al. [91, 92] constructs the donating

flux regions using the information of the cell-vertex velocities and the cell-face normal

velocities in order to correct the volume of the donating region (Fig. 1.7(f)). Since

the extension to 3D of this method requires complex geometric operations over the

donating regions, Hernández et al. [60] presented a modification of the method, the

face-matched flux polyhedra advection (FMFPA), which simplifies its implementation

but does not avoid the overlapping of the donating flux regions when two cells share

only a vertex. However, they also extended their EMFPA method to three dimensions

[96], as well as Owkes and Desjardins [116], Jofre et al. [71] or Ivey and Moin [67].

A different approach for the interface advection was developed by Roenby et al. [136]

in their isoAdvector method. It is based on the estimation of the interface movement

within a time interval to obtain the flux on each cell face.
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VOF methods in OpenFOAM

Initially, OpenFOAM only had an algebraic VOF method implemented, usually re-

ferred to as MULES, which is described in a next chapter. However, in the recent

years, several authors have contributed to the extension of the capabilities of the soft-

ware in this field of investigation by developing and implementing both algebraic and

geometric VOF methods, some of which have been publicly released. Albadawi et al.

[5] implemented a coupled level-set volume of fluid (CLSVOF) method making use

of the MULES advection scheme for the volume fraction advection. Cifani et al. [27]

implemented a PLIC-based VOF method using the advection algorithm proposed by

Puckett et al. [123]. They employed the volume fraction gradient for the interface ori-

entation calculation along with the analytical method of Scardovelli and Zaleski [143]

to solve the VCE problem for the PLIC positioning, thus limiting the application of

the VOF method only to cubic meshes.

Roenby et al. [136] implemented the isoAdvector method in OpenFOAM. They car-

ried out several advection tests, obtaining good results in terms of volume conservation,

boundedness and efficiency. They released the code as an extension of OpenFOAM.

Dai and Tong [32] modified the reconstruction step of the isoAdvector algorithm in

order to implement several PLIC-based analytical interface reconstruction methods

for 2D polygonal unstructured meshes, and then extended this procedure to arbitrary

convex polyhedral cells [33]. They conducted interface reconstruction tests into single

cells and simulated both 2D and 3D incompressible multiphase flow cases. They also

released their implementation as open-source code.

Dianat et al. [39] implemented a CLSVOF in OpenFOAM. They used the methods

presented by Ahn and Shashkov [4] for the PLIC positioning, the gradient of the level-

set function for the interface normal calculation and the MULES algorithm for the

interface advection. This methodology was validated for hexahedral and tetrahedral

meshes using several advection tests and coupling it with the Navier-Stokes equations

OpenFOAM’s solver, for the simulation of the impact of a drop onto a solid surface.

Following this work, Skarysz et al. [155] introduced an iterative interface reconstruc-

tion method valid for convex cells, which is based on tetrahedral cell decomposition

for the volume calculation of the truncated polyhedron. Haghshenas et al. [57] also

implemented a CLSVOF method in OpenFOAM.

1.5 Drop impact modeling

As shown in the previous sections, one of the major challenges when simulating a drop

impact on a solid surface is to account for the influence of the surface characteristics

and its relationship with the fluids, mainly due to the contact line problem. One of

the most commonly used approaches to deal with the interaction between the fluids

and the solid surface involves the use of the static or dynamic contact angles when
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imposing boundary conditions at the contact line [177]. The dynamic contact angle

is obtained using different models, such as that by Kistler [75] or Cox [30], described

in the section above. The way to implement the boundary conditions at the contact

line depends on the method used to track the interface evolution [177]. With the VOF

method, the most common way is to force the orientation of the interface at the wall,

along with the no-slip boundary condition. However, with this approach results are

very sensitive to the contact angle model used, and most of the models do not describe

well the dynamics of the contact line receding phase [147] (as shown in Section 1.3).

Other approach is based on considering the force acting on the contact line, given

by Eq. (1.6), and try to reproduce it numerically to move the contact line, introducing

it into the Navier-Stokes equations as a force per unit volume. Several studies have

used a contact line force model to simulate droplet deposition and rebound. Šikalo

et al. [153] considered a distributed force at the contact line, proportional to the

surface tension and the cosine of the dynamic contact angle, which is applied within

the framework of the continuum surface force (CSF) method [18]. Thus, they did not

explicitly introduced a contact line force into the Navier-Stokes equations derived from

Eq. (1.6), but imposed a surface tension force at the contact line that takes into account

the interface orientation given by the dynamic contact angle of Kistler’s model [75]. In

their numerical simulations, carried out using a VOF method, the authors used a 2D

axisymmetric domain and calculated the contact line velocity as the time derivative

of the position of the interface at the wall. With such approach, they obtained good

results for the spreading and receding stages. Deganello et al. [37] used a similar force

model in combination with a 3D level set method. They used a diffuse interface that

avoids local stress singularities and allows for contact line movement without the need

for a slip condition.

Malgarinos et al. [102] implemented in a commercial CFD software a wetting force

model based on the adhesion force model of Antonini et al. [7]. A contact line force,

dependent on the static and dynamic angles and the lamella radius, was applied on

various cells in the vicinity of the interface at the wall. The authors used a VOF method

and a 2D axisymmetric domain to simulate several drop impacts for a wide range of

Reynolds numbers and relatively low Weber numbers. They compared their numerical

results with experiments made by other authors and with numerical results obtained

using several dynamic contact angle models to impose the boundary condition at the

contact line. Boelens and de Pablo [15] used the generalized Navier boundary condition

with a VOF method in OpenFOAM. However, instead of relating the unbalanced

Young’s force to the contact line velocity, they introduced a distributed contact line

force into the Navier-Stokes equations as a body force proportional to the surface

tension, the cosine of the surface contact angle, the gradient of the volume fraction,

and cell size. They implemented the Navier slip condition required by the GNBC

framework despite the VOF method already introduces an “implicit” slip length at
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no-slip boundaries [2]. However, as the authors argue, the introduction of the Navier

slip condition in a VOF approach allows the contact line velocity to be calculated in

a more precise way. They tested static and quasi-dynamic cases on a 2D domain,

in which submillimetric droplets were released on smooth walls under zero gravity

conditions.

Several experimental studies on the splash of a drop impacting onto a solid surface

have been carried out to analyze the influence of the impact conditions on the flow

pattern, as shown in Section 1.2. However, the number of numerical studies on this

subject is considerably smaller, possibly due to the difficulty of reproducing the ex-

periments with sufficient accuracy, sometimes even qualitatively. Bussmann et al. [20]

used a 3D VOF method assuming a constant contact angle to impose the boundary

condition at the contact line and, using an approach slightly different to that proposed

by Gueyffier and Zaleski [55] and Rieber and Frohn [133] for the drop impact on a

liquid film, applied a numeric perturbation on the radial velocity of the drop near

the solid surface in order to trigger finger growth and subsequent detachment of sec-

ondary droplets. Yokoi [184, 185, 186] simulated a drop impact onto a solid surface

for a high static contact angle (163◦) using a 3D coupled level-set VOF (CLSVOF)

method, imposing a constant contact angle at the contact line and obtaining a good

qualitative agreement with experiments. Numerical errors triggered finger growth, so

there was no need to perturb the velocity field. However, the results were very sen-

sitive to the parameters of the continuum surface force model used. Guo et al. [56]

used the Moment of Fluid method to simulate low- and high-speed drop impacts onto

solid surfaces and liquid films in 3D and 2D axisymmetric computational domains,

making use of several dynamic contact angle models at the solid walls. Jian et al. [69]

simulated the impact of a drop onto a solid surface for fluids of different density and

viscosity ratios using a 2D axisymmetric VOF method. They found that the dynamics

of the contact line did not affect the impact outcome due to the rapid spreading of the

liquid; therefore, they used a static contact angle equal to 90◦ in all simulations. They

also found that the splashing outcome was only well predicted for relatively high gas

to liquid viscosity ratios. Boelens and de Pablo [14] used the same approach as in [15]

to simulate the splashing of high and low viscosity droplets using a 2D axisymmetric

domain. Sun et al. [159] employed a 3D CLSVOF method for the simulation of a low

speed drop impact onto a solid surface with a high static contact angle, although no

information was provided on how the contact angle was imposed. Xavier et al. [179]

used an algorithm based on the CLSVOF method for the 3D simulation, in a quarter

of the physical domain, of a drop impacting onto a solid surface. The results showed a

prompt splash, but the subsequent unstable corona that appeared in their experiments

was not reproduced in the numerical simulations at ambient pressure. However, when

the gas density was increased in the numerical simulations, the unstable corona was

well predicted and the numerical results were in good agreement with the experiments.
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On the other side, the amount of numerical studies involving drop impacts with

deposition, receding breakup and rebound outcomes is much bigger (see, e.g., [53, 56,

72, 79, 82, 104]). This is due to the less complexity of the problem, which, in principle,

makes it more feasible to simulate and less computational-resource demanding.

1.6 Objectives of the thesis

The focus of this thesis is on the numerical modeling of the drop impact on a solid

surface by using efficient and accurate computational methods. The objectives of this

work are:

• Development of an efficient model that improves the numerical simulation of

the contact line dynamics and that is able to accurately capture the phenomena

involved in the spreading and splashing of a drop on a solid surface.

• Analysis and implementation in OpenFOAM of advection and reconstruction

VOF schemes to be used to track the interface evolution.

• Validation of the proposed contact line model on a wide range of impact condi-

tions in deposition simulations, comparing the results obtained with experimental

results and with numerical results obtained with other models.

• Validation of the advection and reconstruction VOF schemes by means of a con-

sistent comparison of its efficiency and accuracy with those of other methods.

• Application of the proposed contact line model and the implemented advection

and reconstruction schemes to a complex two-phase flow problem in which a

drop impacts on a solid surface resulting in fingering and splashing outcomes and

comparison of the numerical results with experimental results.

The remainder of the thesis is organized as follows. Chapter 2 presents the math-

ematical model used to describe the impact of a drop on a solid surface. Chapter 3

describes the discretization of the mass and momentum conservation equations, the

numerical methods used for interface tracking, the proposed model for the contact

line, the implementation of the interface tracking methods and other computational

details. Chapter 4 focuses on the validation of the interface tracking methods. Chapter

5 presents the results for the drop impact problem and the comparison of the numerical

results with experimental results. Finally, conclusions and future work are presented

in Chapter 6.



Chapter 2

Mathematical model

The equations that describe the drop impact on a solid surface are presented along

with the initial and boundary conditions required to solve the problem.

2.1 Governing equations

The impact of a drop on a solid surface is considered as an unsteady incompressible

viscous flow of two immiscible fluids with constant and uniform properties separated

by an interface, which can be described by the Navier-Stokes equations. Thus, the

governing equations read

∇ · u = 0, (2.1)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p +∇ · {µ[∇u+ (∇u)T ]}+ fv, (2.2)

where u is the velocity, ρ the density, µ the dynamic viscosity, p the pressure, and fv

any body force per unit volume. The properties ρ and µ are calculated as

ρ = χρl + (1− χ)ρg, µ = χµl + (1− χ)µg, (2.3)

where the l and g subscripts denote liquid and gas, respectively, and χ = χ(x, t) is an

indicator function used to identify if one of the fluids (in this case, the liquid) is present

at a particular location x at instant t, considering the Eulerian frame of reference in

which Eqs. (2.1) and (2.2) are written. χ is defined as a Heaviside function, continuous

everywhere except at the interface, where it jumps from 0 to 1,

χ(x, t) =




1 if x is in the liquid,

0 otherwise.
(2.4)

If a fluid particle is followed on its movement, the function χ, assuming that there

is no phase change, will not vary because the fluid particle will always belong to the

same fluid. Thus, the substantial derivative of χ is zero, i.e., χ satisfies the advection

25
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equation
∂χ

∂t
+ u · ∇χ = 0. (2.5)

In the impacts of drops with diameters of the order of millimeters, surface tension

effects must be taken into account since the typical length associated to the free surface

is usually of the same order as the capillary length. In order to do that, surface tension

is included in Eq. (2.2) as a body force defined as

fσ = σκnδs, (2.6)

where σ is the surface tension, κ is the interface curvature, n is the unit vector normal

to the interface pointing to the liquid, and δs = δ(x− xs) is the Dirac delta function,

where subscript s denotes interface location.

Gravity is also taken into account as a body force

fg = ρg, (2.7)

where g is the gravity vector.

In this formulation of the problem, instead of using the governing equations sepa-

rately for each fluid and then relate the solutions through jump conditions [168], only

one set of governing equations for the entire flow domain is considered (Eqs. (2.1)

and (2.2)), where the fluid properties change abruptly at the interface that separates

the two phases (Eqs. (2.3) and (2.5)).

2.2 Initial and boundary conditions

The mathematical description of the flow requires to impose appropriate initial and

boundary conditions at the first instant and at the domain boundaries, respectively.

The initial χ distribution is given by the shape of the drop, characterized by the

drop diameter D0, which is initially placed at a particular location above the solid

surface and close to it. The initial velocity of the drop is the impact velocity, U , and

the initial velocity of the gas is set to zero. The initial pressure at the gas phase is pg,0

and the initial pressure within the drop, pl,0, is given by the Laplace equation

pl,0 − pg,0 = σκ =
4σ

D0

. (2.8)

At the solid surface, the fluids must have the same velocity as that of the surface,

and, since there is no flux across the solid surface, the normal component of the

pressure gradient at the solid surface must be zero. The rest of the boundaries are

considered to be located far away from the impact zone, thus the pressure is pg,0 and

the velocity is zero.



Chapter 3

Numerical methods

In this chapter, the numerical methods used in the present thesis for the numerical

simulation of the impact of a drop on solid surfaces are described. The open-source

library OpenFOAM is used as computational framework. The finite volume method

(FVM) is used for the discretization of the governing equations, the pressure-implicit

with splitting operators (PISO) algorithm to treat the pressure-velocity coupling, and

the VOF method to track the interface evolution. Also, a contact line force model used

to improve the simulation of the contact line dynamics is presented and the solution

procedure is described.

3.1 Finite volume discretization

The solution domain is divided into a finite number of contiguous cells (finite volumes)

to which the conservation equations are applied, integrating them over each cell. De-

pendent variables such as velocity and pressure are stored at the centers of the cells.

This storage arrangement is known as collocated mesh arrangement, although, in order

to avoid the checkerboard problem, the volumetric fluxes are stored at the control vol-

ume faces centers using the Rhie-Chow momentum interpolation [130]. More detailed

descriptions of the FVM can be consulted in References [48, 68, 111, 171].

In order to simplify the imposition of the pressure boundary condition in the nu-

merical model [140], a modified pressure is defined as

pd = p− ρg · x, (3.1)

which is used instead of the pressure p. Therefore, pd is introduced in the momentum

equation by calculating the gradient of Eq. (3.1) as

∇pd = ∇p− ρg − g · x∇ρ, (3.2)

where the term g · x∇ρ is included into the Rhie-Chow interpolation.

27
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Integration of Eqs. (2.1) and (2.2) over a cell Ω of volume VΩ taking into account

Eq. (3.2) yields, respectively, ∫

VΩ

∇ · u dV = 0, (3.3)

∫

VΩ

∂(ρu)

∂t
dV +

∫

VΩ

∇ · (ρuu) dV

= −
∫

VΩ

∇pd dV +

∫

VΩ

∇ · (µ∇u) dV −
∫

VΩ

g · x∇ρ dV +

∫

VΩ

σκnδs dV. (3.4)

Taking a look at Eqs. (2.2) and (3.4), it can be observed that the diffusion term

includes the second derivative of u in space, making the equation second order. There-

fore, to achieve good accuracy, the order of the discretization must be, when possible,

equal or higher than the order of the equation (to preserve the boundedness of the

solution or take into account irregularities in the computational mesh structure, this

accuracy requirement might be relaxed in some parts of the discretization [68]). Usu-

ally, the discretized variables are considered to vary linearly in space around the center

of the cell, yielding a second-order accurate discretization in space. The midpoint rule

is used to approximate the volume/surface integrals in Eqs. (3.3) and (3.4) as the prod-

uct of the integrand at the cell/face center (which is an approximation to the mean

value over the volume/surface) and the cell/face volume/area (note that some of the

volume integrals in Eq. (3.4) are rewritten as surface integrals, as shown below). This

approximation is second-order accurate and also the simplest. Other approximations

could be used, such as the trapezoid rule or Simpson’s rule, although at the cost of a

more difficult implementation, since more values than that at the cell/face center are

needed.

The fluid properties ρ and µ that appear in Eq. (3.4) are calculated with the help

of Eq. (2.3). However, when the discretization of Eq. (3.4) is carried out, the scalar

function χ is approximated by its discretized version, the volume fraction F , which,

for a cell Ω, is defined as the fraction of the cell occupied by the liquid at time t and

is calculated as

F =
1

VΩ

∫

VΩ

χ(x, t) dV. (3.5)

Therefore, the fluid properties at cell Ω are obtained as

ρ = Fρl + (1− F )ρg, µ = Fµl + (1− F )µg. (3.6)

It should be noted that the volume fraction is also used in the discretization of the

surface tension term in Eq. (3.4), as shown below.



CHAPTER 3. NUMERICAL METHODS 29

3.1.1 Convection

If this term is discretized without any further approximation than that given by the

FVM, the resulting system of discretized equations would be non-linear, which can

only be solved using complex methods and at a high computation cost. To overcome

this situation, the convective term is linearized using the divergence theorem as:

∫

VΩ

∇ · (ρuu) dV ≈
∑

f

ρfSf · ufuf ≈
∑

f

ρfφfuf , (3.7)

where the summation is performed over all cell faces, φf = Sf · uf is the volumetric

flux through face f , uf is the velocity at the center of face f , Sf is the area vector,

and ρf is the density interpolated to face f .

Many discretization schemes have been proposed to obtain uf . If a linear variation

is assumed between the center of the cell Ω, xΩ, and the center of the neighbor cell N ,

xN , the value at the shared face f can be calculated as

uf = uΩ +
|xf − xΩ|
|xN − xΩ|

(uN − uΩ), (3.8)

where xf is the position of the face center, uΩ is the velocity at the cell Ω center, and

uN is the velocity at the cell N center. This scheme is called central differencing, which

is second-order accurate but does not guarantee the boundedness of the solution since

it does not preserve the directional nature of the convective term. An alternative is

to determine uf according to the direction of the flow, which is known as the upwind

differencing (UD) scheme. If the flow point towards N or there is no flux across the

face, uf = uΩ, and uf = uN otherwise. However, this scheme may introduce numerical

diffusion, is only first-order accurate, but is very stable. An extension of this scheme is

the second-order upwind or linear upwind differencing (LUD) scheme, which assumes a

linear variation of u from the cell center to the considered face using (∇u)Ω or (∇u)N

to correct the corresponding upwind value of uf depending on the direction of the

flow, increasing the accuracy of the first-order upwind scheme.

Other relevant discretization schemes are, for example, the quadratic upstream in-

terpolation for convective kinematics (QUICK), which is based on a quadratic polyno-

mial interpolation, the FROMM scheme, which is similar to the second-order upwind

but also using a downwind node, and higher resolution schemes, which are based on

different techniques, such as the total variation diminishing (TVD), but all of them

relying on the combination of the previously cited convection schemes. TVD schemes

combine the upwind and central differencing schemes using a limiter function, ψ, which

depends on the ratio of the upwind-side gradient to the downwind-side gradient. Many

limiter functions have been developed, and some of the most used are: the van Leer

function ψ = (r + |r|)/(1 + r), the linear function ψ = max[min(2r/k, 1), 0], where

k is a constant parameter, and the Sweby function ψ = max[0,min(kr, 1),min(r, k)].
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Then, the face value in a TVD scheme is obtained as

uf = [1− ψ]uf,UD + ψ uf,CD, (3.9)

where uf,UD and uf,CD are the face values obtained using the upwind and central

differencing schemes, respectively. The assessment of the discretization schemes is

usually evaluated using the conservativeness, boundedness and transportiveness prop-

erties (see References [111, 171]).

3.1.2 Diffusion

The diffusion term is discretized as
∫

VΩ

∇ · (µ∇u) dV =
∑

f

∫

Sf

(µ∇u) · dS ≈
∑

f

µfSf · (∇u)f , (3.10)

where µf is de dynamic viscosity interpolated to the face center. The product Sf ·(∇u)f

can be obtained as

Sf · (∇u)f = |Sf |
uN − uΩ

|dΩN |
, (3.11)

if the computational mesh is orthogonal, where dΩN is the vector joining the cells

centers. If it is non-orthogonal, i.e., dΩN and Sf are not parallel, the contribution of

the non-orthogonality must be taken into account since the gradient has a component

normal to dΩN . To accomplish that, vector Sf is decomposed as the sum of a vector

parallel to dΩN , kf , and another vector, lf = dΩN − kf , being possible different

decomposition methods. Thus, Eq. (3.11) can be rewritten as

Sf · (∇u)f = kf · (∇u)f + lf · (∇u)f = |kf |
uN − uΩ

|dΩN |
+ lf · (∇u)f , (3.12)

where the first term of the right side is the orthogonal contribution, and the second

term the non-orthogonal correction. (∇u)f in the non-orthogonal correction is ob-

tained by linear interpolation of the velocity gradients at the centers of the cells sharing

the face. These gradients are calculated using the Green-Gauss theorem. Therefore,

for a cell Ω, (∇u)Ω is obtained following

(∇u)Ω ≈ 1

VΩ

∑

f

∫

Sf

uf dS ≈ 1

VΩ

∑

f

Sf uf . (3.13)

Depending on the decomposition method employed, vectors kf and lf will vary,

although the direction of the former will not. Usually, three of them are considered

[68]: (1) minimum correction, in which lf is set perpendicular to kf ; (2) orthogonal

correction, in which the contribution from uΩ and uN is kept the same as on the

orthogonal mesh, |kf | = |Sf |; and (3) over-relaxed, in which the importance of the

orthogonal contribution increases as the non-orthogonality increases.
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3.1.3 Transient term

Multitude of schemes have been proposed in order to obtain the full discretized mo-

mentum equation, i.e., to perform the time integration over a time interval [t1, t2], and

all of them differ on the known values inside the time interval. It is important to note

that all non-transient terms are evaluated at the same time t using the midpoint rule

[111].

The first-order implicit Euler scheme sets t1 = t − ∆t and t2 = t, where the time

interval ∆t is defined as a small increment of time. In this scheme, the information

is needed at time t, thus, in order to obtain the value of uΩ at instant t, a system of

algebraic equations needs to be solved. On the contrary, the first-order explicit Euler

scheme sets t1 = t and t2 = t + ∆t, making possible to evaluate the term uΩ at time

t +∆t explicitly. Second-order schemes use a linear interpolation profile. If a central

difference profile is used, it yields the Crank-Nicolson scheme, which, for a constant

time step, discretizes the transient term as

∂(ρu)Ω
∂t

∣∣∣∣
t

=
(ρu)t+∆t

Ω − (ρu)t−∆t
Ω

2∆t
. (3.14)

The implicit second-order upwind Euler scheme uses the second-order upwind in-

terpolation profile to discretize the transient term as

∂(ρu)Ω
∂t

∣∣∣∣
t

=
3(ρu)tΩ − 4(ρu)t−∆t

Ω + (ρu)t−2∆t
Ω

2∆t
. (3.15)

It is worth mentioning that in the previous temporal discretization schemes the

assumption of constant time step has been taken into account. If that is not the case,

second-order temporal schemes must be modified since they use a stencil involving two

different time step values. Expressions for the Crank-Nicholson and second-order Euler

upwind schemes can be found in [111]. In addition, since the first instant does not

have an upwind neighbor and, in order to avoid large initial errors that will affect the

solution at the following steps, a ghost initial instant is set at tinit−∆t/2. Consequently,

the initial time interval is [tinit +∆t/2, tinit + 3∆t/2].

In order to preserve boundedness of the spatial discretization schemes and to en-

sure stability of the temporal schemes, the time step is limited through the Courant-

Friedrichs-Lewy number (CFL), as

CFL =
∆t|u|
∆x

, (3.16)

where ∆x is a characteristic length related to the spatial discretization and |u| is
the magnitude of a representative velocity. This number arises from convergence and

stability studies of the different schemes used in the temporal discretization of the

partial differential equations associated to unsteady fluid flows [29]. In such studies,
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it can be shown that for convection problems the condition CFL ≤ 1 must be satisfied

by the explicit schemes used in this work [111]. This condition can also be interpreted

as that a fluid particle cannot move more than one mesh length in a single time step

[48].

In the numerical simulation of multiphase flows using the FVM is commonly ac-

cepted that, in order to keep stability in the calculations, the CFL number must be

lesser or equal to a predefined CFL number, CFLmax, which itself is, as much, equal to

1. However, there are two different definitions of the CFL number used in the literature

which can yield very different values for the same flow conditions. In OpenFOAM, the

maximum CFL number is calculated as

CFLmax = ∆tmax
i

(
1

2

∑
f |φf |
Vi

)
, (3.17)

where Vi is the volume of cell i. Due to the use of the average volumetric flux (note

that in a solenoidal velocity field the face fluxes summation should be zero), the factor

1/2 is applied. If a maximum CFLmax is predefined and an adaptive time step is used,

the latter is calculated accordingly to Eq. (3.17) and limiting its increase to a 20% of

the previous value to avoid unstable oscillations.

On the other hand, instead of calculating a CFL for every cell in the computational

domain and then selecting the maximum value among them, another approach com-

monly used in the literature is to define a CFL number for the whole computational

domain whose maximum value is calculated as

CFLmax = ∆tmax

[
maxf |u|
mini (∆x)

,
maxf |v|
mini (∆y)

,
maxf |w|
mini (∆z)

]
, (3.18)

where u, v, and w are the three components of the velocity vector at face f such

that uf = (u, v, w), and ∆x = xmax − xmin, ∆y = ymax − ymin, and ∆z = zmax − zmin

are the maximum cell sizes for the x, y, and z directions, respectively, in a Cartesian

coordinate system (note that the mesh is not required to be aligned with the reference

system). Since such definition looks for the maximum value of the face velocity along

each direction, as well as the minimum cell size along each direction, the face for which

|u| is maximum might not correspond to the cell for which ∆x is minimum and so on.

Both methods might give similar time steps under certain conditions, e.g., for

only one non-zero velocity component on a regular hexahedral mesh, but, in gen-

eral, Eq. (3.17) is more restrictive due to the flux average, yielding smaller time steps

than Eq. (3.18). Thus, it becomes crucial to use the same definition when several

methods are compared because in general the accuracy of the result depends on the

size of the time step used. However, in the literature, the CFL definition used in the

numerical simulations is not always provided, making difficult to compare the results

obtained by different authors. For example, in the comparison of different VOF algo-
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rithms using prescribed velocity tests, Owkes and Desjardins [116] do not provide any

information about the CFL number calculation nor mention which CFL definition is

used in the simulations. Therefore, when they compare their results with that obtained

by Hernández et al. [60], conclusions might be taken carefully. Another example of

this can be seen in [71], where the authors provide the CFL number for each test but

do not detail its calculation. In this work, the former definition is used for all the

simulations considered.

3.1.4 Surface tension

The discretization procedure of the surface tension term is carried out using the CSF.

In this approach, the surface tension integrand is approximated as

σκnδs ≈ σκ∇F, (3.19)

where the volume fraction gradient is calculated as

∇F ≈ 1

VΩ

∑

f

Ff Sf , (3.20)

and Ff is obtained through a linear interpolation.

The curvature is calculated through

κ = −∇ · n, (3.21)

where n is the unit normal vector to the interface and is calculated as

n =
∇F
|∇F | . (3.22)

Substituting Eq. (3.22) into (3.21) and applying the divergence theorem, Eq.(3.21) can

be approximated as

κ ≈ − 1

VΩ

∑

f

Sf ·
[
(∇F )f
|∇F |f

]
, (3.23)

where (∇F )f is the gradient at the face center interpolated from cell centers.

3.1.5 Pressure equation

As the pressure only appears in the momentum equation and under the form of a

gradient, the pressure field cannot be obtained explicitly, i.e., Eqs. (2.1) and (2.2)

form an implicitly coupled pressure-velocity system. In order to overcome this issue,

the discretized equations are solved in a segregated manner using the PISO algorithm

proposed by Issa et al. [66]. Detailed descriptions of this and other algorithms to

treat the pressure-velocity coupling can be found, among others, in [48, 111, 171]. In
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the PISO method, as in other algorithms of the same family, the pressure gradient

is treated explicitly and a Poisson equation is derived from the discretized continuity

and momentum equations, so that the pressure field obtained satisfies this resulting

equation. For a given computational cell Ω, the semi-discretized momentum equation

can be written grouping the terms corresponding to the values of the cell Ω, the rest

of terms corresponding to the neighbor cells and the source terms, H(u), and the

pressure gradient, as

aΩuΩ = H(u)−∇pd, (3.24)

where

H(u) = −
∑

N

aNuN + SuΩ
, (3.25)

and SuΩ
includes the surface tension and gravity terms from Eq. (3.4).

Then, this equation is used to predict uf at each cell face, which is needed in the

discretization of the mass conservation equation given by

∫

VΩ

∇ · u dV =
∑

f

∫

Sf

u · dS ≈
∑

f

Sf · uf = 0. (3.26)

Special care must be taken in this step when using a collocated mesh arrangement

to avoid the decoupling of velocity and pressure. For this purpose, the interpolation

proposed by Rhie and Chow [130] is used, where the gradient of the pressure at face

f is calculated explicitly from the pressure values at the shared cells. Thus, the face

velocity is calculated as

uf =

(
H(u)

aΩ

)

f

−
(

1

aΩ

)

f

(∇pd)f , (3.27)

where the face values, except for the pressure gradient, are calculated from linear

interpolations.

Substituting Eq. (3.27) into the discretized mass conservation equation (Eq.(3.26))

yields the pressure equation

∑

f

[(
1

aΩ

)

f

Sf · (∇pd)f
]
=
∑

f

[
Sf ·

(
H(u)

aΩ

)

f

]
. (3.28)

The steps performed by the PISO algorithm are:

1. Obtain the initial pressure, p∗d, and velocity fields, u∗, from the previous time step

or from the initial conditions.

2. Obtain, if the momentum predictor is carried out, a new velocity field, u∗,p, by

solving the momentum equation (Eq. (3.24)) using u∗ and p∗d along with the

source terms, and set u∗ = u∗,p. Note that this velocity field does not satisfy the

continuity equation.
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3. Construct the operator H(u∗) and obtain the new pressure field p∗∗d by solving

the pressure equation (Eq. (3.28)).

4. Update the volumetric fluxes using the velocities at the faces corrected in Eq. (3.27).

5. Obtain a new velocity field, u∗∗, consistent with the pressure field, by using H(u∗)

and p∗∗d in Eq. (3.24).

6. Repeat steps 3 to 5 up to a predefined number of iterations (usually 3).

3.2 Volume of fluid methods used in this thesis

In this section, the VOF methods used in this work are briefly described. The alge-

braic VOF method MULES and the geometric VOF method isoAdvector available in

OpenFOAM are used. Also, several reconstruction and advection schemes available as

routines in the gVOF open-source package [89] have been implemented in OpenFOAM.

Detailed descriptions of all these methods considered in this work can be found in

[38, 60, 65, 87, 97, 136, 145].

In the VOF method, Eq. (2.5) is integrated over a given cell Ω and time interval ∆t

using its conservative form, taking into account the incompressible flow assumption

and the definition introduced in Eq. (3.5), resulting as

F t+∆t = F t − 1

VΩ

∫ t+∆t

t

∫

VΩ

∇ · (uχ) dV dt, (3.29)

where the second term in the right hand side represents the net volume of fluid advected

out of cell Ω. However, if the discrete velocity divergence in the cell Ω is not null, the

divergence term in the conservative form of Eq. (2.5) should be retained. Depending

on the VOF method used, Eq. (3.29) is solved either algebraically or geometrically.

3.2.1 Algebraic method

In this work, the algebraic VOF method MULES available in OpenFOAM is used.

This method is based on the flux corrected transport technique developed by Boris

and Book [17] and then improved by Zalesak [188]. It introduces a compression term

in the conservative form of the advection equation (Eq. (2.5)), which, taking into

account the incompressible flow simplification, results in

∂χ

∂t
+∇ · (uχ) +∇ · (urχ(1− χ)) = 0, (3.30)

where ur is the compression velocity used to avoid the interface smearing. In this last

equation, the non-transient terms are integrated and discretized in the FVM framework

as described in Section 3.1 at time t, whereas the transient term is discretized in a
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finite-difference manner using a first-orderexplicit Euler scheme, resulting in

F t+∆t − F t

∆t
+

1

VΩ

∑

f

[
F t
f u

t
f · Sf + F t

f (1− F t
f )u

t
r,f · Sf

]
= 0, (3.31)

where ut
f is the velocity at the cell face center obtained from the Rhie-Chow inter-

polation at time t and ut
r,f is the compression velocity at face f , whose computation

is discussed later. The first term inside the sum operator represents the flux of the

liquid through face f from time t to t + ∆t and the second term acts as a fictitious

flux. The summation of these two terms is denoted hereafter as Φt
f . Thus, Eq. (3.31)

can be written as

F t+∆t = F t − ∆t

VΩ

∑

f

Φt
f , (3.32)

where Φf is evaluated through

Φf = Φf,UD + ψMΦf,HR, (3.33)

where ψM is the MULES limiter whose value is 1 at the interface and 0 otherwise,

Φf,UD is the flux calculated with the upwind scheme, and Φf,HR is the flux calculated

with a high-resolution scheme. These fluxes are obtained as

Φf,UD = Ff,UD (uf · Sf ), (3.34)

Φf,HR = Ff,HR (uf · Sf)− Φf,UD + Fr,f(1− Fr,f)(ur,f · Sf), (3.35)

where Ff,HR is obtained using a high-resolution scheme and Fr,f is obtained using

a special scheme implemented in OpenFOAM. The term involving the compression

velocity, (ur,f · Sf ), is computed as

(ur,f · Sf) = CF

∣∣uf · Sf

∣∣ (∇F )f∣∣(∇F )f
∣∣ , (3.36)

where CF is a user-specified parameter. If CF = 1, the compression is conservative, if

CF = 0, no interface compression is applied, and if CF > 1, the interface is sharpened,

although the calculation becomes unstable.

Recovering the term Fr,f of Eq. (3.35), the ad-hoc scheme for its calculation is called

interface compression scheme. If the face f at which this value is calculated is defined

as the face shared between cell Ω and a downwind neighbor cell N , in the interface

compression scheme, Fr,f is defined using an expression similar to Eq. (3.8) as

Fr,f = FΩ +
|xf − xΩ|
|xN − xΩ|

(FN − FΩ)ψr, (3.37)
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with a limiter function ψr

ψr = min{max[1−max(αΩ, αN), 0], 1}, (3.38)

being

αΩ = {1− [4FΩ(1− FΩ)]}2, αN = {1− [4FN(1− FN)]}2. (3.39)

Since the compressive term in Eq. (3.30) is non-linear, the system of equations ob-

tained after the discretization procedure cannot be solved using the methods outlined

in Section 3.5.1. Thus, the MULES algorithm first solves the conservative advec-

tion equation without the compressive term to obtain an initial guess for the volume

fraction. Then, the compression term is evaluated explicitly and used to update the

obtained guess. This procedure is repeated iteratively up to a predefined number of

iterations.

3.2.2 Geometric methods

isoAdvector

This method, as previously mentioned in Section 1.4, was originally designed to recon-

struct the interface through an isosurface that cuts the polyhedral cell into a region

with a given volume such that volume conservation is maintained. The problem to

solve is somehow similar to the VCE problem described in Section 1.4: an isovalue for

the volume fraction, Fiso, must be found such that the liquid volume enclosed by the

isosurface V (Fiso), relative to the cell volume, VΩ, equals the cell volume fraction FΩ.

For each cell with Ftol < FΩ < 1 − Ftol, where Ftol is the prescribed volume fraction

tolerance, the problem to be solved can be written as

FΩ − V (Fiso)

VΩ
= 0. (3.40)

An analytic expression for V (Fiso)/VΩ can be obtained since it varies monotonically

like a piecewise cubic polynomial from 0 to 1 as Fiso varies from maxk(Fk) to mink(Fk),

being Fk the volume fraction at node k previously interpolated from the mesh cell cen-

ters of the cells surrounding cell vertex k. In the interval Fk,1 ≤ Fiso ≤ Fk,2, where Fk,1

and Fk,2 are the closest Fk values to Fiso, the four coefficients of this expression are

obtained by geometrically evaluating V (Fiso)/VΩ for four different Fiso values and then

solving the resulting Vandermonde matrix system of equations using a LU decompo-

sition. With the analytic expression at hand, Fiso is computed such that Eq. (3.40) is

satisfied up to a prescribed tolerance by using the Newton’s root finding method. An

example of this procedure can be observed in Fig. 3.1. The volume fraction in the cell

is FΩ = 0.9 with the volume fraction values at the nodes shown in Fig. 3.1(a). The

coefficients for obtaining the cubic expression plotted in Fig. 3.1(b) are obtained by
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Figure 3.1: Example of the procedure to obtain Fiso in isoAdvector. (a) Cell with FΩ = 0.9 the
volume fractions values at the cell nodes and the isosurface obtained after solving Eq. (3.40). (b)
Plot of the analytic cubic expression for Fiso.

geometrically evaluating V (Fiso)/VΩ for 0 ≤ Fiso ≤ 1 at four different points. Then,

the cubic equation is solved, yielding Fiso = 0.843.

Once the isovalue is calculated, the center of the interface, xint, and the unit vector

normal to the interface pointing to the liquid, n, can then be obtained. The center of

the isovertices is calculated through the average

xc,iv =
1

Niv

∑

k

xk, (3.41)

where Niv is the number of isovertices. The vector normal to the interface is computed

following

n∗ =
∑

t

nt,k, (3.42)

where

nt,k =
1

2
(xk+1 − xk)× (xc,iv − xk), (3.43)

assuming that the isovertices are ordered such that n∗ points into the liquid (note that

the isovertices ordering is not a trivial task, but further details can be consulted in

the open-source code available in [115]). The unit vector normal to the interface is

calculated as

n =
n∗

|n∗| , (3.44)

and the interface center as

xint =
∑

k

|nt,k|
|n∗|

xk + xk+1 + xc,iv

3
. (3.45)
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To improve the accuracy of the method, especially for unstructured meshes, Scheufler

and Roenby [145] recently implemented several interface reconstruction methods in the

isoAdvector framework making use of a reconstructed distance function. The most ac-

curate method in any mesh type is called as plicRDF. Instead of an isosurface, a PLIC

is reconstructed on each interfacial cell (a cell that contains the interface), similarly to

other geometric reconstruction methods. In this method, the VCE problem is solved

using the procedure described to solve Eq. (3.40), where instead of the isovalue Fiso,

the position of the PLIC (the interface center xint) is computed using the normal of the

previous time step linearly interpolated to the corresponding cells through a weighted

average as initial estimation, which improves the convergence of the method. Once

the PLIC is positioned, it is used to construct the reconstructed distance function by

computing the minimum distance from the centers of the cells surrounding the PLIC

to the plane containing it. In the next step, the gradient of this function is computed

using a least-squares method to obtain the unit vector normal to the interface n. This

whole procedure is repeated iteratively while the convergence criterion is not satisfied

up to a maximum number of iterations, which is set to 5 but, in general, does not

exceed of 3.

Once the interface has been reconstructed on each cell containing it at time t either

using an isosurface or a PLIC, it is advected from time t to time t + ∆t by solving

Eq. (3.29) through the following assumptions: the velocity in that time interval is

considered to be constant and the velocity at any cell face can be obtained through

the volumetric flux at the face. Thus, the volume of liquid advected through the

downwind face f , Vf , is calculated as

Vf ≈
φt
f

|Sf |

∫ t+∆t

t

Af dt, (3.46)

where φt
f is the volumetric flux through downwind face f at time t and Af is the area

described by the movement of the intersection between the interface and the cell face

within the time interval.

In order to estimate the interface motion during a time step and then calculate

the time integral of the submerged area, the velocity at the interface center, uint, is

obtained by linearly interpolating the velocity field to the interface center and the

interface normal velocity is then calculated as uint = uint · (−n). The evolution of the

intersection between the interface and face f (see Fig. 3.2) is estimated as a piecewise

linear function by computing the time at which the interface reaches each vertex as

tk ≈ tt + (xk − xint) ·
(−n)

uint
, (3.47)

where xk is the position vector of downwind face vertex k. The position of the line

segment at a given time within the sub-interval [tk, tk+1] can be obtained using a
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Downwind face f

Figure 3.2: Evolution of the intersection between the interface and a downwind face f in a polyhedral
cell. Green dotted lines represent the intersection line for each time it passes a face vertex. Figure
adapted from [136].

linear interpolation and a quadratic polynomial expression for the submerged face

area Af is constructed within that sub-interval. This expression is integrated over

the subinterval, obtaining a cubic polynomial function of time. Adding up all the

contributions from these sub-intervals within a time step, the volume of liquid advected

through a downwind face f in Eq. (3.46) can be obtained. For all the other faces, Vf

is calculated as the volume fraction in their upwind cell multiplied by the time step

and the volumetric flux at the face. The new volume fraction in Eq. (3.29), F t+∆t, is

finally computed.

This method does not ensure strict boundedness of the volume fraction values.

Therefore, a bounding procedure is used to redistribute the unboundedness fluid val-

ues using the face fluxes as weighting factors in the calculation of the amount of

redistributed fluid that crosses to the downwind neighbor cells.

gVOF package

In the gVOF open-source package, which uses as external libraries the VOFTools v5

[95, 100] and isoap [87, 90], several efficient and accurate routines for volume of fluid

initialization, interface reconstruction, fluid advection, interface visualization and re-

construction errors computation on arbitrary meshes are included. Among the in-

terface reconstruction and fluid advection routines, the llcir, elcir and clcir rou-

tines, which implement improved versions of, respectively, LLCIR, ELCIR and CLCIR

isosurface-based interface reconstruction methods proposed by López et al. [97], the

lsgir routine, which implements the least-squares gradient interface reconstruction

(LSGIR) method (see the work by Rider and Kothe [132] and the references therein),

and the faceflux and vofadv routines, which implement multidimensional unsplit

advection schemes based on different procedures to construct the flux polyhedra, are
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Algorithm 1 Extended CLCIR method [87]

1: Obtain ϕ at the mesh vertices from Eq. (3.48)
2: for every mesh cell do
3: Maximum (ϕmax) and minimum (ϕmin) values of ϕ at the cell vertices
4: if ϕmax > 0.5 and ϕmin < 0.5 then

5: Extract the isosurface corresponding to ϕ̃ = 0.5 by using the procedure in [87]
6: if there is only one extracted isopolygon then

7: Mark the mesh cell as valid isosurface cell
8: Construct the ‘local triangulated surface’
9: Compute n

l from Eq. (3.49)
10: end if

11: end if

12: end for

13: for every interfacial cell do
14: if it is a valid isosurface cell then
15: Construct the ‘extended triangulated surface’ T
16: Compute n

e from the equation equivalent to Eq. (3.49)
17: if arccos(ne · nl) < 1.2 rad then

18: n = n
e

19: else

20: n = n
l

21: end if

22: else

23: Compute n from the LSGIR method
24: end if

25: Compute C to locate the PLIC
26: end for

27: for every interfacial cell marked as valid isosurface cell do
28: Update the vertices of T with the corresponding PLIC centers
29: end for

30: for every interfacial cell marked as valid isosurface cell do
31: Compute n

c from the equation equivalent to Eq. (3.49) using the updated T
32: if arccos(nc · n) < 1.2 rad then

33: Update n with n
c

34: Compute C to relocate the PLIC
35: end if

36: end for

used in the OpenFOAM code to obtain some of the results presented in the next chap-

ters. In this thesis, only two of the flux polyhedra construction procedures included

in [89] are considered: an extension to 3D arbitrary meshes of the EMFPA method

proposed by López et al. [91], and a new version of the FMFPA method proposed by

Hernández et al. [60]. In the following, a description of the CLCIR method extended

to arbitrary meshes by López et al. [87], which has been coupled into the OpenFOAM

code with the isoAdvector advection step, is described. Also, a brief overview of the

advection methods EMFPA and FMFPA is provided.

As stated in Section 1.4, the interface is represented by a plane given by Eq. (1.18),

where the unit-length vector n, normal to the interface and pointing to the fluid,

is determined from the PLIC reconstruction method presented in the Algorithm 1

(see Reference [87]) described below. The PLIC position is defined by the constant

C, which is computed solving the VCE problem so that the interface splits cell Ω, of
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volume VΩ, into two sub-cells of volumes FVΩ and (1−F )VΩ. The CIBRAVE (coupled

interpolation-bracketed analytical volume enforcement) method of López et al. [93] is

used to compute C, except when using meshes with cubic cells, for which the efficient

analytical method of Scardovelli and Zaleski [143] is used. The implementation of these

two volume conservation enforcement methods is included in the VOFTools package

[94, 99, 100].

The scalar field ϕ at each instant t and cell vertex k of the computational domain

is obtained from

ϕk =

∑
l

Flwl

∑
l

wl

, (3.48)

where the summations extend to all cells l containing the vertex k and wl = 1/|xk−xl|,
where xk and xl are the position vectors of the k vertex and geometric center of cell

l, respectively (line 1 in Algorithm 1). For mesh cells whose maximum and minimum

interpolated ϕ values satisfy the condition (line 4) ϕmin < 0.5 < ϕmax, the isosurface

corresponding to ϕ̃ = 0.5 is extracted by using the procedure presented in [87] (line 5).

When the extracted isosurface consists of a single isopolygon (line 6), the grid cell

is marked as a valid isosurface cell (line 7). A ‘local triangulated surface’ is then

constructed around the geometric center of the extracted isosurface in such a way

that each triangle is formed by this geometric center and two consecutive isovertices

(line 8). The unit vector normal to the PLIC interface is obtained as

nl =

∑
t

wtnt/
∑
t

wt

∣∣∣∣
∑
t

wtnt/
∑
t

wt

∣∣∣∣
, (3.49)

where the summation extends over the Nt facets of the triangulated surface, nt is the

unit-length vector normal to the triangular facet t and wt is a weighting factor (line

9). For cubic meshes, wt is defined as the ratio of the sine of the angle between the

two inner edges of each triangular facet t and the product of their lengths [108] (an

inner edge joins a isovertex with the geometric center of the extracted isosurface), and

for the rest of meshes, wt is defined as the modified angle between triangle edges [165].

To increase the accuracy of the PLIC reconstruction, the initial triangulated surface is

substituted by an ‘extended triangulated surface’ (see the sketch in Fig. 3.3) obtained

by connecting its geometric center to those of the isosurfaces extracted at adjacent cells

(line 15) and the corresponding vector ne is obtained from the equation equivalent to

Eq. (3.49) (line 16). If arccos(ne · nl) < 1.2 rad, n = ne and otherwise n = nl (line

17-21). For interfacial cells that are not valid isosurface cells, situations that frequently

occur in regions of low grid resolution, n is computed using the LSGIR method. Once

n is obtained, the constant C is computed to locate the PLIC (line 25). Finally, the

vertices of the extended triangulated surfaces are moved to the corresponding PLIC
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(a) Local triangulated surface

(b) Extended triangulated surface

isosurfaces

isovertices

Figure 3.3: Local and extended triangulated surfaces obtained from the extracted isosurfaces.

centers (lines 27-29). For every interfacial cell which is considered as a valid isosurface

cell, nc is computed from the equation equivalent to Eq. (3.49) using the updated

extended triangulated surface (line 31). If arccos(nc · n) < 1.2 rad, n is updated with

nc and the constant C is again computed to relocate the PLIC (lines 32 to 35).

Regarding the advection step, the EMFPA and FMFPA methods are based on the

construction of a flux polyhedron on each cell face f to determine the volume of liquid

that crosses that face during the time interval from time t to t + ∆t, Vf . Thus, the

volume fraction at time t+∆t is calculated from Eq. (3.29) as

F t+∆t = F t −

∑
f

Vf

VΩ
. (3.50)

The flux polyhedron constructed at a face f is determined from the volume that

crosses that face from t to t+∆t given by the volumetric flux φf and the time step ∆t,

and, in the EMFPA method, the velocity vectors at the face cell vertices, or, in the

FMFPA method, the velocity vectors interpolated at the cell face edges centers. In the

latter approach, the over/underlapping between flux polyhedra may still occur when

two faces only share a vertex. Once that the flux polyhedra are constructed, they are

truncated with the reconstructed interface to obtain the volume of liquid advected Vf

through each cell face.
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3.2.3 Implementation of the gVOF package in OpenFOAM

As mentioned in the previous section, in this work, some of the reconstruction and

advection methods available in the gVOF package have been implemented into Open-

FOAM, which use as external libraries the VOFTools v5 and isoap. Since these li-

braries along with the advection and reconstruction methods are written in FORTRAN

language, they are compiled together as a single shared library in order to use it with

OpenFOAM, which is written in C++. In addition, the OpenMP application program-

ming interface is used to parallelize this library and improve the computational effi-

ciency in shared-memory architectures. The communication between the gVOF shared

library and OpenFOAM solvers is carried out using wrapper functions and several

loops inside the original OpenFOAM code to update variables such as the volume

fraction, among others.

The interFoam solver in OpenFOAM, suitable for unsteady two-phase flow calcu-

lations, has been modified in order to substitute the original MULES scheme by the

advection and reconstruction routines available in the gVOF package. Firstly, the infor-

mation of the OpenFOAM mesh is transferred to the gVOF library using several arrays

(details of the mesh format are given in Section 3.5.2). Then, the execution of the VOF

method is carried out in several steps: the mesh is tagged using the volume fraction

distribution of the previous time step in order to identify the cells and faces where

the reconstruction and advection operations will be performed; then, the interface is

reconstructed using the PLIC method selected; the velocity is interpolated to the faces

and nodes of the mesh; the interface is advected through the calculation of the volume

of liquid that crosses each face using one of the advection methods; and, finally, the

new volume fraction distribution is calculated.

In addition, with the new volume fraction distribution, the mass flux on each face,

ṁf , must be updated as

ṁf =
Vf
∆t

(ρl,f − ρg,f) + φf ρg,f , (3.51)

where ρl,f and ρg,f are the liquid and gas densities linearly interpolated to the face

center, respectively. This expression arises from the fact that the mass flux for a given

face f is equal to the volumetric flux multiplied by the density ρ. If the definition

given by Eq. (3.6) is introduced, the mass flux can be written as

ṁf = ρ φf =
[
ρl,f Ff + ρg,f (1− Ff )

]
φf = Ff φf (ρl,f − ρg,f ) + φf ρg,f , (3.52)

where the identification of the liquid volumetric flux is straightforward taking a look

at Eqs. (3.51) and (3.52), Ff φf = Vf/∆t.
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Alternative implementation in C++

In the implementation of the gVOF pakage into the OpenFOAM code described above,

the subroutines available in the FORTRAN libraries are used within the C++ code through

wrapper functions. Thus, the arrays containing the mesh information, as well as the

normals and constant of the PLICs, among other quantities, must be initialized in

the C++ code. The allocation in memory of these arrays is carried out at the moment

of compilation, providing a macro with the estimated number of faces, points and

neighbors per cell for a given mesh. This implies that the FORTRAN libraries must be

recompiled every time the macro values are changed, although, from the user perspec-

tive, this can be easily done if, before the execution of the solver, a program which

obtains the maximum number of faces, points and neighbors per cell and writes them

as macros, is executed and then the FORTRAN libraries are compiled. This procedure

would save memory compared to the use of a roughly estimation of these quantities.

However, this approach still poses a processor’s memory size issue since the mesh in-

formation is being duplicated, and, therefore, it requires more computational resources

than if the gVOF arrays were not used. This can be illustrated with a simple example:

for a 3D polyhedral mesh of size n = 160 (see Section 4.1 for mesh details), assuming

that data types int and double occupy 4 and 8 bytes in the memory, respectively, the

amount of allocated memory required to store only the mesh data to work with gVOF

is 63.3 GB. Besides, as this information is being duplicated, the real memory required

is closer to the double of this quantity, 126.6 GB, since OpenFOAM already allocates

this information. Therefore, is clear that using gVOF inside OpenFOAM demands more

computational resources, which are not always available.

To overcome this issue, in the present work, an alternative solution is proposed. It

consists on the translation from FORTRAN to C++ of those subroutines that operate over

the entire mesh to avoid the duplication of the mesh information, keeping the other

subroutines that perform operations over faces or polyhedra in FORTRAN language,

which is the case of the VOFTools and isoap libraries, as well as the routines that

construct the flux polyhedra at the mesh faces. Then, a shared library is built to

be used into OpenFOAM, as an extension of the VOF libraries already available. A

main class gvof is created, in which the operations over the entire mesh such as the

mesh tagging, the interface reconstruction or the interface advection are considered as

member functions. Also, a class named geoTools is used for the geometric operations

in arbitrary polyhedra using the corresponding FORTRAN libraries. It is in this class

where the communication between different languages takes place and only a few arrays

containing the polyhedra information, i.e., vertex arrangement, face normals, etc., are

copied using for loops. These arrays must be also allocated at the time of compilation

but its size is chosen to be sufficiently big to store any arbitrary polyhedron, e.g., a
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value of 200 for the number of faces and of 240 for the number of nodes, thus not

requiring any further recompilation of the code.

An object of class geoTools is instantiated in the gvof class to perform the geo-

metric operations over a mesh cell: isosurface extraction, cell truncation by a plane,

solution of the VCE problem and volume fraction initialization. Another class named

fluxPolyhedron is created to construct a flux polyhedron for a given face using either

the EMFPA or the FMFPA algorithms and perform the required geometric operations

using the geoTools class, i.e., polyhedron truncation and volume calculation.

The main advantages of the proposed solution are that it is user-friendly since do not

require more code compilation than that provided in the libraries, it avoids the mesh

information duplicity, it permits to update the isoap and VOFTools libraries easily

(note that, at the moment, these libraries are maintained in FORTRAN language), and

it allows the extension of the code to work in parallel mode using the MPI interface,

although this requires some modifications of the original code. This last aspect is very

important when computing simulations that solve the Navier-Stokes equations, since,

the time spent per time-step on solving these equations typically corresponds to an 80-

90 % of the total time step calculation time, i.e., the solution of the advection equation

for the volume fraction is much less time consuming. Therefore, as OpenFOAM is

mainly MPI parallelized, it becomes crucial to use this feature when using medium

to high mesh resolutions when a static over mesh is used, so that the calculation

time is reduced several orders of magnitude, making the simulations more feasible.

As the original FORTRAN code is parallelized with the OpenMP application, changes

in the translated code need to be done in order to make the code able to work with

MPI. At the moment of writing this thesis, only the reconstruction methods have

been parallelized with MPI. The main issue is that, in the reconstruction methods,

for a given interfacial cell, the extension of the isosurface as well as the least squares

gradient technique for the normal computation need information from the isosurface

neighbors and cell-node neighbors, respectively, and these neighbors may not lie in

the same memory portion assigned to the processor as the considered cell. Then,

the communication between neighboring processors must be established so that the

information available in those cell neighbors can be transferred to the current processor.

In order to do that, several operations need to be carry out over the faces that lie in the

processors and whose owner cells contain the interface. However, it should be noted

that if both the extension of the isosurface and the cell-node neighbor stencil are

not carried out at the processors boundary cells, the previous implementation of the

reconstruction methods could, in principle, work in MPI but with a possible reduction

in accuracy, especially due to avoiding the extension of the isosurface to calculate the

interface normal at processor boundary cells.

The accuracy of this alternative implementation has been found to be the same as

in the original code, only with minor discrepancies beyond the 16th significant figure,
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probably due to round-off errors, which can be obviously neglected. Therefore, the

differences between implementations arise in the efficiency of the code, as shown in a

section below.

3.3 Contact line force model

A contact line force model (CLFM) used to reproduce more accurately the dynamics of

the contact line on solid walls is presented. The force defined by the CLFM acts on the

whole contact line, tending to make the contact angle equal to that given by a DCA as

a function of the contact line speed. Computationally, a force parallel to the wall and

normal to the contact line is applied at cells in the vicinity of the contact line cells,

i.e., cells that satisfy the following conditions: at least one of their faces is contained

in the wall plane; their nodes satisfy maxk(Fk) > 0.5 and mink(Fk) < 0.5, where k is

the node index; and the extracted 0.5-isosurface (ϕ̃ = 0.5 in the isosurface extraction

problem posed in Section 1.4) intersects two wall face edges. The first condition states

that contact line cells are obviously wall cells; the second allows for a 0.5-isosurface

to be extracted at the cell; and the third ensures that a contact line exists, since the

other two conditions are necessary but not sufficient (e.g., just before the impact of a

drop on a solid surface, the 0.5-isosurface in a wall cell may be parallel to the surface).

The total force applied in the vicinity of each contact line cell i is defined as

fcl,i = σ
(
cos θd,i − cos θi

) λi
Vi

n′
iso,i, (3.53)

where θd,i = θd,i(ucl,i, θa, θr, θe) is the value provided by a DCA model as a function of

the contact line velocity at the contact line cell i, ucl,i, and the static contact angles;

θi the calculated DCA at the contact line cell i; n′
iso,i the projection to the wall of the

unit vector normal to the 0.5-isosurface at cell i pointing out of the liquid; and λi the

length of the contact line at cell i. The DCA model proposed by Kistler [75], briefly

described in Section 1.5, is used in the proposed CLFM because it has been found to

generally provide the best results for the range of conditions considered in this work.

The contact angle θi is calculated through the dot product of the unit vector normal

to the interface at the contact line cell i, niso,i, pointing to liquid side, and the unit

vector normal to the wall, nw,

niso,i · nw = cos θi. (3.54)

The 0.5-isosurface extraction at the contact line cells is carried out using the isoap

method developed by López et al. [87], which, making use of its code publicly available

at [90], has been implemented into OpenFOAM. Volume fractions are first interpolated

from cell centers to mesh vertices using an inverse distance weighting method (similar

expression to Eq. (3.48)). Then, the isoap method is applied to obtain an isosurface at
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each contact line cell. In this method, the isosurface is approximated locally at each

cell by a polygonal surface using a general polygon tracing procedure and the following

additional considerations: the isovertices are located at the cell edges connecting cell

vertices with assigned Fk values above and below 0.5; at most, one isovertex is inserted

at each cell edge; and the isovertices inserted at cell edges are sequentially joined by

line segments, forming polygons that may be non-planar. The isovertices ordering is

the most complex step of the algorithm, and further details can be consulted in [87].

At a cell where only a single isosurface is extracted, this isosurface is triangulated in

such a way that each triangle is formed by joining two consecutive isovertices with the

center of the isovertices xc,iv, computed using Eq. (3.41). The centroid of each triangle

is computed and the isosurface center xiso is calculated as a weighted average of the

triangle centroids using the areas of the triangles as weights. Then, the unit vector

normal to the isosurface pointing to the liquid side, niso,i, is obtained using Eq. (3.49)

by making nl = niso,i.

The length of the contact line at each contact line cell, λi, can be calculated by

simply computing the distance between the isovertices lying at the wall, i.e. the

length of the intersection line between the 0.5-isosurface and the wall face. In the rare

situation in which more than a single isosurface is extracted in a contact line cell, the

unit normal vector is calculated from the volume fraction gradient and the length of

the contact line is set equal to the cell size.

It is clear that the contact line force distribution is discontinuous, since it is only

concentrated at the contact line. However, it has been found that the concentration

of this force on contact line cells may promote an unrealistic break-up of the lamella

when the force value is sufficiently high. In order to avoid this non-physical effect, the

contact line force is convolved using a kernel K to smooth the discontinuity. The kernel

chosen here is the following monotonic eighth-degree polynomial function proposed by

Williams et al. [175],

K(x, rk) =




Ck(rk)[1− (|x|/rk)2]4 if |x| ≤ rk,

0 if |x| > rk,
(3.55)

where x is the vector joining the two points considered in the convolution, rk the kernel

radius, and Ck(rk) a constant that normalizes the kernel for each contact line cell i as

follows:

Ck(rk)
∑

j

[1− (|xiso,i − xj|/rk)2]4 = 1, (3.56)

where xj is the vector joining the centre of the isosurface at cell i and the centroid of

cell j. Typically, the value of the kernel radius is set so that, at least, all the point

neighbors at the wall of the contact line cells lie inside the kernel action; e.g., for a

uniform cubic mesh of cell size ∆x, the kernel radius is chosen as 2∆x ≤ rk ≤ 3∆x.
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The contact line velocity ucl,i involved in the calculation of the θd,i value used in

Eq. (3.53) is obtained as follows. In every contact line cell i, ucl,i is assumed to be

equal to the fluid velocity vector interpolated to the 0.5-isosurface center and projected

to the wall, uiso,i, and then dotted with the projection of the interface normal vector

pointing out of the liquid, n′
iso,i. It can be written as

ucl,i = [uiso,i − (nw · uiso,i)nw] · n′
iso,i. (3.57)

With this definition, when ucl,i is positive, the contact line is considered to advance

and, when negative, to recede. In cells that do not contain a contact line but where

the angle is required, uiso,i is substituted by the velocity at the cell center, ui, and

n′
iso,i by the unit vector calculated from the volume fraction gradient pointing out of

the liquid and projected to the wall.

Note that the force defined in Eq. (3.53) involves a DCA prescribed by a model

such as those described in the next section, instead of the static or equilibrium angles,

as in the models proposed by Malgarinos et al. [102] and Boelens and de Pablo [15],

respectively. Thus, in the proposed model the contact line force only acts when the

contact angle differs, not from the corresponding static value, but from the value

prescribed by the contact angle model as a function of the contact line velocity, which

has been found to improve the numerical predictions for the droplet impact outcome,

as shown below.

3.4 Solution procedure

In the previous sections, it has been described the procedure used to discretize the

governing equations with the FVM, as well as the VOF methods used to track the

interface. The description of the algorithm selected to deal with the pressure-velocity

coupling has been also addressed. The numerical procedure used in this work for the

solution of the two-phase flow problem is the following:

1. Initialization of all the variables: velocity, pressure and volume fraction distribu-

tions must be initialized in the discretized physical domain, considering also the

boundary conditions. Care must be taken in the volume fraction initialization

procedure, since a poor estimation of this distribution can yield to inaccurate

solutions.

2. CFL number and time step calculation: the CFL number is computed for each

cell to find the CFLmax through the entire domain using Eq. (3.17). Then, the

time step is calculated according to the CFL restriction previously chosen.

3. Calculate the new volume fraction distribution: solve the discretized advection

equation either algebraically (MULES) or geometrically (isoAdvector or gVOF)

using the old time, or initial, volume fraction and velocity distributions.
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4. Update the fluids properties distributions and the mass flux: according to the

new volume fraction distribution, update the density and viscosity associated to

each cell (Eq. (3.6)), as well as the mass flux at the faces (Eq. (3.52)). Update the

boundary conditions if required (see Section 3.5.3) and calculate surface tension

and contact line forces.

5. Obtain the pressure and velocity distributions: using the values updated in the

previous step, calculate the velocity and the pressure fields, and the volumetric

fluxes, using the PISO algorithm. Note that every time that the pressure or the

velocity fields are required, a system of algebraic equations must be solved (see

Section 3.5.1 for more details on this procedure).

6. If the final time is reached, end the procedure, if not, go back to step 2.

3.5 Other computational details

3.5.1 Solution of the system of algebraic equations

Once the discretization of the equations has been carried out and the proper boundary

conditions over the boundary faces have been applied, a system of algebraic equations

of the form Aφ = b is generated, where φ is the vector of unknowns located at the

centroids of the mesh elements, A is a sparse matrix containing the coefficients as the

result of the discretization procedure and the mesh geometry, and vector b contains

all sources, constants, boundary conditions, and non-linearizable terms. Due to the

non-linear nature of the fluid-mechanics problems, the coefficients resulting from their

linearization process are generally solution dependent. Therefore, direct methods for

the solution of the system of equations are not suitable for this purpose. Instead,

iterative methods are needed, which require less computational resources as will be

discussed next.

In a direct method, matrix A is inverted to obtain the vector solution φ in one

step as φ = A−1b. When this matrix is large, as is usual in CFD applications,

these methods are very expensive computationally, since they require a large amount

of arithmetic operations. Some of the most relevant methods are [111, 171]: Gauss

elimination, which comprises the forward elimination and backward substitution steps;

LU decomposition, which decomposes the matrix A into two matrices of upper and

lower coefficients such as LU = A and then solves two systems of equations using

forward and backward substitutions; the tridiagonal matrix algorithm (TDMA), which

can only be used if an structured mesh has been chosen for the discretization but is

much more efficient than the two previous methods.

On the other side, iterative methods compute a series of solutions from an ini-

tial guess that, under certain conditions, such as that matrix A must be diagonally

dominant, converge to the exact solution. The simplest point-iterative method is the
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Jacobi method, which from the initial guess solves explicitly the system to obtain a

new estimate that is used as initial guess for the next iteration until some convergence

criterion is satisfied. An improved point-iterative method with better convergence

characteristics is the Gauss-Seidel method, that uses the information from the cur-

rent iteration as initial guess for computing subsequent values of φ for that iteration.

However, despite its simplicity, these methods have a low rate of convergence [111].

Therefore, some other techniques for convergence improvement were developed. One

of the most employed is the preconditioning procedure, in which a preconditioning

matrix P is defined such that the system P−1Aφ = P−1b has the same solution as

the original one, but the spectral properties, directly related to the rate of convergence

of the method, of the coefficient matrix P−1A are improved. Another technique is the

incomplete LU decomposition (ILU), in which now matrices L and U have the same

nonzero structure than lower and upper parts of A yielding A = LU+R, where R is

the residual of the factorization procedure and is used in the iterative process in order

to obtain the solution. Many variants of the ILU factorization exist, the simplest is

based on taking the pattern of zero elements in the combined L and U matrices to

be exactly the pattern of zero elements in the original matrix A, namely the ILU(0)

method. If the matrix to be decomposed is positive definite, the method is known as

incomplete Cholesky decomposition, and the factorization is made only for the lower

or upper parts. Combining preconditioning and ILU factorization yields a class of

efficient preconditioners. One of the most employed is the diagonal ILU (DILU), in

which only the the diagonal elements are modified, and, thus, only one extra diagonal

of storage is required.

Another set of iterative procedures are the gradient methods, initially developed

for situations where the coefficient matrix is symmetric positive definite to reformulate

the problem as a minimization of a quadratic function, which leads to the solution

of the system of equations [111]. In the steepest descent method, the solution of

the minimization problem is to be found at the minimum of a paraboloid function,

following the fastest rate of descent, i.e., in the negative direction of the function

gradient. Despite this method ensures convergence, its rate is low due to oscillations

around local minima forcing the method to search in the same direction repeatedly.

This behaviour can be avoided in the conjugate gradient method (CG) if every new

search is in a different direction from the directions of previous searches, which must

satisfy certain conditions. Furthermore, the rate of convergence can be increased

using preconditioning (PCG). If matrix A is not symmetric, a transformation to a

symmetrical one is needed if CG is going to be used. When this method is applied to

the transformed system of equations, two sequences of CG-like vectors are obtained,

what is called bi-conjugate gradient method (BiCG). Preconditioning might also be

used in this method (PBiCG).
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Finally, it is known that the convergence rate of iterative methods reduces as the

mesh size increases since these methods cause rapid reduction in errors components

with short wavelengths but does not in long-wavelength components, which tend to

decay very slowly as the iteration count increases [171]. In order overcome such weak-

ness, multigrid methods have been developed, in which long-wavelength error com-

ponents are transformed to short wavelength components decreasing the mesh size.

This approach might involve the use of mesh geometric information or just a direct

agglomeration of the finer mesh elements, as in the algebraic multigrid method (AMG).

3.5.2 Computational mesh

In OpenFOAM, the mesh is treated as if it was of polyhedral unstructured type, i.e.,

no previous assumptions about the cells geometry are made. The code reads several

text files in which the coordinates of the points and the connectivity of the mesh is

provided. Each of the nodes, faces, and cells have a global index assigned to identify

them. The file faces contains the ordered list of faces, in which each face entry

provides the number of nodes and the list of sequently ordered nodes of the face. The

file points contains the ordered list of vectors with the x, y, and z coordinates of all

mesh nodes. The file owner contains the ordered list of indices of owner cells such that

each face entry provides the cell that owns that face. The file neighbour contains the

ordered list of indices of neighbor cells for all internal faces, i.e., the index of the cell

that shares the internal face with its corresponding owner cell (note that an internal

face is shared only by two cells). The file boundary contains a set of entries specifying

the boundaries of the mesh along with the number of faces and the index of the first

face in the face list for each boundary.

3.5.3 Boundary conditions

Due to that the mesh is treated without any geometry assumption, non-orthogonality,

as already introduced in Section 3.1.2, must be accounted for. On a boundary cell

Ω, vector dΩb joins the cell centroid with the boundary face b centroid. Using the

boundary face area vector, Sb, the vector joining the cell centroid and the boundary

face can be defined as perpendicular to the boundary face following

db =
Sb

|Sb|
dΩb · Sb

|Sb|
. (3.58)

Two different types of boundary conditions are usually employed:

• Dirichlet: in which the value of the variable at the boundary face is specified. For

the convection term, this type of boundary condition consists on setting uf = ub

in Eq. (3.7). For the diffusion term, which reads

µbSb · (∇u)b, (3.59)



CHAPTER 3. NUMERICAL METHODS 53

the product Sb · (∇u)b is calculated from the known face value ub and the cell

centroid value uΩ as

Sb · (∇u)b = |Sb|
ub − uΩ

|db|
. (3.60)

For the pressure, the Dirichlet boundary condition consists just on setting the

value of the pressure at the boundary face, pb, and then relate it to the pressure

gradient used in the pressure Eq. (3.28), similarly to the diffusion term, as

Sb · (∇p)b = |Sb|
pb − pΩ
|db|

. (3.61)

• Neumann: in which the value of the dot product of the gradient and the unit face

normal is prescribed at the boundary. For the convection term, ub is calculated

form the value at the cell centroid and the prescribed gradient as

ub = uΩ + |db| gb,u, (3.62)

where gb,u = ∇u · Sb/|Sb|. The diffusion term is simply

µb |Sb| gb,u. (3.63)

Similarly to the convection term, if the normal component of the pressure gradient

gb,p = ∇p · Sb/|Sb| is set, the pressure at the boundary face is calculated as

pb = pΩ + |db| gb,p, (3.64)

and the gradient gb is used in the pressure equation.

The combination of these boundary conditions gives rise to some other physical

boundary conditions: inlet, where the velocity field is prescribed and the pressure

gradient is set to zero; outlet, where the pressure field is prescribed and the velocity

gradient is zero; no-slip wall, in which the velocity is set equal to the wall velocity and

the pressure gradient is zero since there is no flux through the solid wall; symmetry, in

which the component of the gradient normal to the symmetry plane of the dependent

variables is zero (except for the velocity since its normal component is positive at one

side of the symmetry plane and negative at the other) and the components parallel

to it are projected from the inside of the domain, i.e., from the centroids of the cells

containing the boundary.

In two phase flows, boundary conditions for the volume fraction must also be con-

sidered. In the CSF framework, the interface curvature is specified at the solid surface

as a boundary condition. The orientation of the interface normal vector is prescribed

using the contact angle, so that the interface at the wall adopts the prescribed angle.

The unit vector normal to the interface given by the volume fraction gradient, n0, is
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corrected through

n = an0 + bnw, (3.65)

where a and b are scalar coefficients given by

a =
cos θ∗ − cos θ cos(θ∗ − θ0)

1− cos2 θ0
, b =

cos(θ∗ − θ0)− cos θ0 cos θ
∗

1− cos2 θ0
, (3.66)

where θ0 is the uncorrected contact angle given by n0 · nw = cos θ0 and θ∗ is the

prescribed contact angle, which satisfies n · nw = cos θ∗.

The prescribed contact angle, θ∗, is used to calculate the curvature at the contact

line in Eq. (3.21). This prescribed angle is sometimes taken to be constant, as in static

contact angle models (θ∗ = θs), or it can be assumed to be a function of certain flow

parameters, such as the contact line velocity (θ∗ = θd(ucl)). The latter formulation

is adopted by the DCA models described in Section 1.3, which, in this work, have

been implemented in OpenFOAM. In these implementations, the contact line velocity

is calculated as the component parallel to the wall of the fluid velocity normal to the

interface.

In addition, to get the value of the volume fraction at the boundary face that

corresponds with that given by the prescribed contact angle, the component of the

volume fraction gradient in the direction perpendicular to the wall is calculated as

(∇F )w · nw = |∇F |w cos θ∗, (3.67)

where (∇F )w is the volume fraction gradient at the wall face.



Chapter 4

Accuracy and efficiency of the

geometric VOF methods

In this chapter, the geometric VOF methods described in Section 3.2.2 are compared

in a consistent and systematic study through the simulation of reconstruction and

advection tests with prescribed and non-prescribed velocity fields. Also, the efficiency

of the proposed alternative implementation of the CLCIR method, described in Sec-

tion 3.2.3, is tested. Results obtained when this implementation is coupled with the

advection step of isoAdvector are also provided. The algebraic method MULES is left

out of this comparison since it has been already compared to isoAdvector and other

algebraic methods by Roenby et al. [136].

4.1 Computational details

In order to test the performance of the methods on different meshes, three different

types are considered. Figure 4.1 shows examples for these types in a unit-cubic do-

main. Hexahedral meshes (Fig. 4.1(a)) consist of a set of rectangular parallelepipedic

cells, arranged in a structured way. For its construction, the blockMesh tool is used,

in which the user specifies the coordinates of the points that enclose the physical do-

main to be discretized and the number of cells on each spatial direction. This tool also

allows to define multiple regions with different geometries and mesh refinements. How-

ever, in these tests, only structured hexahedral meshes are constructed. Unstructured

tetrahedral meshes (Fig. 4.1(b)) are formed by a set of tetrahedral cells of different

sizes. These meshes are obtained using the program tetGen v1.5 [150]. The gener-

ated files with this program with extensions .ele, .node and .face are converted to

OpenFOAM’s format using the tetGenToFoam tool. Unstructured polyhedral meshes

of convex polyhedral cells (Fig. 4.1(c)) are constructed from a tetrahedral mesh ob-

tained with tetGen and converted to OpenFOAM’s format with the tetGenToFoam

tool. Then, using the polyDualMesh utility, the cells centers surrounding a tetrahe-

dral cell vertex are connected to construct a polyhedral cell. It should be noted that

55
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(a) Hexahedral (b) Tetrahedral (c) Unstructured polyhedral

Figure 4.1: Examples of the different 3D mesh types with around 203 cells in a unit-cubic domain.

the number of points in the tetrahedral root mesh must be equal to the desired number

of cells in the unstructured polyhedral mesh. The faces of the cells generated with this

method are generally non-planar, thus, every face is triangulated by joining its center

with two consecutive vertices using a program developed specifically for this purpose.

For example, for an unstructured polyhedral mesh with 643 cells, a tetrahedral mesh

of 262122 (≈ 643) points is generated with the command tetgen -pq1.2a0.00000127

cube.poly where the file cube.poly defines the domain, and the value 0.00000127

sets the maximum volume for the tetrahedra. Then, the tetrahedral mesh is converted

to OpenFOAM’s format, the unstructured polyhedral mesh is constructed using the

command polyDualMesh 60 -overwrite and the mesh is triangulated. Note that in

Fig. 4.1(c), the faces in the domain boundary are not yet triangulated since the un-

structured polyhedral mesh is represented before the triangulation procedure to show

more clearly the shape of the faces.

It should be noted that the size of the hexahedral meshes is expressed as the number

of cells on each spatial direction, n, and, therefore, the total number of cells can be

calculated as n3. The size for the tetrahedral and unstructured polyhedral meshes used

in this thesis is approximately equal to the cubic root of the total number of cells. In

Table 4.1, the total number of points, faces and cells of the meshes are presented. Also,

the average number of faces, points and cell-node neighbors per cell is provided, as

well as the average number of faces, points and cell-node neighbors per internal cell (a

cell whose faces are all internal). This last distinction between cells allows to see more

clearly the real amount of neighbors, faces and points per cell. It is worth mentioning

that the number of faces and points per cell remains independent of the mesh size for

hexahedral and tetrahedral meshes, whilst in unstructured polyhedral meshes changes

not monotonically for the internal cells and increases with mesh size for the overall

average. The number of cell-node neighbors for the internal cells is independent of n

in hexahedral meshes and also almost independent in unstructured polyhedral meshes.
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Table 4.1: Average number of points, faces and cell-node neighbors per cell (n) and internal cell (nin)
for the different 3D meshes and sizes used in the tests. Also, the total number of points (np), faces
(nf ) and cells (nc) are provided.

n np,in np nf,in nf nn,in nn np nf nc

Hexahedral meshes

10 8 8 6 6 26 21 1 331 330 1 000
20 - - - - - 23.4 9 261 25 200 8 000
32 - - - - - 24.3 35 937 101 376 32 768
40 - - - - - 24.7 68 921 196 800 64 000
64 - - - - - 25.2 274 625 798 720 262 144
80 - - - - - 25.3 531 441 1 555 200 512 000
128 - - - - - 25.6 2 146 689 6 340 608 2 097 152
160 - - - - - 25.7 4 173 281 12 364 800 4 096 000
256 - - - - - 25.8 16 974 593 50 528 256 16 777 216

Tetrahedral meshes

10 4 4 4 4 67.8 53.1 320 2271 999
20 - - - - 73.5 63.4 1 982 17 229 7 981
32 - - - - 74.8 68.7 6 766 68 636 32 790
40 - - - - 74.7 69.4 12 979 133 069 63 965
64 - - - - 76.5 73.2 47 374 536 692 262 139
80 - - - - 75.1 72.5 93 742 1 056 634 518 135
128 - - - - 77.3 75.6 352 489 4 245 287 2 097 390
160 - - - - 75.9 74.4 687 720 8 164 336 4 038 731
256 - - - - 77.7 76.8 2 687 095 33 443 678 16 620 595

Unstructured polyhedral meshes

10 43.3 33.7 82.9 63.3 15.8 11 13 379 36 054 1 012
20 41.9 36.2 79.9 68.5 15.3 12.8 105 620 290 502 8 077
32 41.4 37.4 78.8 70.7 15.1 13.4 432 805 1 195 863 32 756
40 41.3 38.1 78.5 72.1 15 13.4 853 761 2 634 735 64 076
64 41 38.9 78.1 73.9 15 14.1 3 538 197 9 819 651 262 122
80 41 39.3 77.9 74.5 15 14.3 6 929 638 19 247 250 510 961
128 40.8 39.7 77.7 75.5 14.9 14.5 28 523 863 79 293 605 2 086 918
160 40.8 39.9 77.6 75.8 14.9 14.6 57 097 689 158 781 022 4 164 794

Note that the number of nodes and faces per cell in unstructured polyhedral meshes

is high due to that the faces have been triangulated, increasing the total numbers of

nodes and faces.

Two-dimensional domains are also considered in the non-prescribed velocity tests

using pseudo 2D meshes with a single cell in one spatial direction. For hexahedral

meshes, in which the cells are square prisms, the blockMesh utility is also used.

For 2D tetrahedral meshes, composed by triangular prisms, gmsh v4.4.1 and the

gmshToFoam tool are used. For 2D unstructured polyhedral meshes, gmsh v4.4.1,

and the polyDualMesh and extrudeMesh tools are used. Since the resulting cells

are polygonal prisms, no triangulation is needed. For the 3D non-prescribed velo-

city tests, statically refined meshes are used, generated with the snappyHexMesh tool.

These meshes are constructed from a uniform Cartesian root mesh whose cells are

successively divided up to a certain level of maximum refinement in regions where

required. More specifically, several concentric regions are defined in which the root

mesh is refined by up to several levels, as described in detail below, while maintaining
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the same highest resolution at the interface. To avoid instabilities due to changes in

mesh resolution, a graded octree mesh is used.

Other computational details regarding the compilers and the hardware used for

running the tests are provided in the following. The OpenFOAM code, written in

C++, was compiled using gcc 9.3.0 with the -o3 optimization flag. The gVOF package,

written in FORTRAN and implemented in OpenFOAM as a shared library (see Section

3.2.3), was first compiled using gfortran 9.3.0 with the -O3 optimization flag and then

as a shared library using gcc 9.3.0 with the -o3 optimization flag. All reconstruction

and advection test cases were run on a 2.50 GHz Intel Xeon W with 96 GB of DDR4.

The tests for studying the efficiency of the alternative implementation were run on a

2.50 GHz Intel Xeon Gold with 256 GB of DDR4.

4.2 Volume fraction initialization

The volume fraction initialization is the process involved in the computation of the vol-

ume fraction of the initial liquid volume contained in each computational cell. There-

fore, this operation computes the correspondent distribution of volume fractions for

a certain initial geometry shape on a mesh. Results obtained in multiphase-flow nu-

merical simulations are very sensitive to the accuracy of the volume fraction initial-

ization since they are directly related to the surface tension contribution, as shown in

Eqs. (3.19) and (3.23), or in the fluid properties in Eq. (3.6). As stated in [95], the

lack of accuracy of this initialization procedure can give rise to numerical instabilities

in the simulations. Thus, an accurate method for the volume initialization is required.

At the time of writing this work, there are two utilities available in OpenFOAM

for this purpose: setFields and setAlphaField. The former initializes cell volume

fractions only with full or empty values, i.e., 1 or 0 respectively, which clearly does

not represent well the initial interface, especially for non-planar shapes. The latter

utility uses a widely employed method based on defining implicit functions to describe

the shape of the regions to be initialized, which is much more precise than the former

method. The implicit function, fimp(x, y, z) = 0, is used to approximate the signed

distance from the interface to every mesh node by simply substituting their x, y, and z

coordinates in the implicit function (note that computing the true distance for certain

shapes is not a trivial task [95]).

Another method used in this work, available in the routine initfgrid of the gVOF

package, is the method developed by López et al. [101] and extended to non-convex

cells by López et al. [95]. This accurate procedure is based on a recursive local mesh

refinement to compute the liquid volume bounded by a convex or non-convex, polyg-

onal or polyhedral cell and a given implicitly-defined liquid interface. Each interfacial

cell is subdivided using a superimposed sub-mesh of size n3
sc of hexahedral cells of

size ∆x/nsc × ∆y/nsc × ∆z/nsc, where ∆x = xmax − xmin, ∆y = ymax − ymin, and
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∆z = zmax − zmin are the maximum cell sizes along the coordinate axes. The volume

fraction of each interfacial cell is calculated as the ratio between the summation of

the liquid volumes of the sub-regions, obtained from the computation of its truncation

with the approximated interface, and the interfacial cell volume.

Despite the improvement yielded by the setAlphaField method compared to the

original setFields, it has been found that setAlphaField generally gives an initial-

ization error two orders of magnitude larger than the method proposed by López et al.

[95] for nsc = 10. In order to show the assessment of this two methods, four shapes

have been initialized in a domain of size 1 × 1 × 1. These shapes are defined by the

following implicit functions:

fimp(x, y, z) = 0.252 −
[
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

]
, (4.1)

fimp(x, y, z) = −0.22 +
[
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

]
, (4.2)

fimp(x, y, z) = 0.12 −
{
0.2−

[
(x− 0.5)2 + (y − 0.5)2

]0.5}2

− (z − 0.5)2, (4.3)

fimp(x, y, z) = 1−
[
(x− 0.5)2

0.32
+

(y − 0.5)2

0.152
+

(z − 0.5)2

0.12

]
, (4.4)

where Eq. (4.1) defines a sphere of radius 0.25, Eq. (4.2) a sphere of radius 0.2, Eq. (4.3)

a torus, and Eq. (4.4) an ellipsoid. The convex sphere of Eq. (4.2) is used to obtain a

hollow sphere of radius 0.4 with a spherical core of radius 0.2 computing the minimum

distance for each node, i.e., min[fimp,R=0.4(x), fimp,R=0.2(x)], where fimp,R=0.4(x, y, z) is

equal to Eq. (4.1) but with radius value of 0.4 instead of 0.25, and fimp,R=0.2(x, y, z)

to Eq. (4.2).

Figure 4.2 shows the initialization error as a function of the mesh size for different

meshes. This error is defined as

Ev =
|Vinit − Vexact|

Vexact
, (4.5)

where Vinit is the initialized volume and Vexact is the exact volume. It can be seen

that both methods yield second-order convergence for all mesh types in all geometric

shapes. For hexahedral and tetrahedral meshes, the initialization error obtained with

the method of López et al. [95] with nsc = 10 is two orders of magnitude lower than

that obtained with the setAlphaField tool, whilst for unstructured polyhedral meshes

this difference is reduced to one order of magnitude. This behavior can be explained

as follows. The construction of the isopolygon carried out by the setAlphaField

tool, which is formed by the cut points at the cell edges with zero signed distance

to the interface, is performed using the signed distance value stored at each mesh

node. As the total number of nodes in an unstructured polyhedral mesh is higher

than in a hexahedral mesh, considering the same number of cells, more information

about the spatial distribution of the signed distance function is available, and, also,
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López et al. [95], nsc = 10
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Figure 4.2: Initialization error as a function of the mesh size in the initialization of the volume fraction
for different mesh types and interface shapes.

the distance between two consecutive nodes is smaller. Thus, since the cut points

are obtained using a linear interpolation between two consecutive vertex, the error

introduced by this approximation is reduced. However, in the method of López et al.

[95], the superimposed Cartesian mesh applied to hexahedral meshes results in a great

reduction of the initialization error, as it could be thought as a local refinement (note

that increasing nsc can reduce the initialization error dramatically).

4.3 Reconstruction tests

In order to compare the accuracy of the reconstruction procedures, the reconstruction

error, Erec, defined as the volume between the exact interface and its approximate

representation

Erec =
∑

i

2
∣∣Vi Fi − Vcut,i Fcut,i

∣∣ , (4.6)
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is used, where Vcut,i is obtained truncating the cell i with its corresponding recon-

structed PLIC, and Fcut,i is the volume fraction obtained when the volume fraction

initialization procedure by López et al. [95], already described in Section 4.2, is applied

to the truncated polyhedron resulting from the cell truncation with the PLIC plane.

This error measurement procedure is similar to that described by Aulisa et al. [8] and

is available in the routine recerr of the gVOF package.

For the sake of clarity, the reconstruction methods compared in this section are only

CLCIR, ELCIR, gradAlpha and plicRDF, since these are the methods that give rise

to the better results in terms of efficiency and accuracy. In the plicRDF method the

maximum number of iterations is set equal to 5. With the purpose of comparing the

computational efficiency of the methods, the consumed cpu-time in the reconstruction

step, trec, is measured. The volume fraction tolerance, Ftol, is the same for all methods,

with a value of 10−8.

4.3.1 Sphere

This test consists on reconstructing a sphere of diameter 0.65, which, to avoid artificial

regularities in the results due to mesh dependence, is centered at (0.525, 0.464, 0.516)

in a unit-cubic domain. Figure 4.3 shows the reconstruction error and the consumed

cpu-time for the compared methods as a function of mesh resolution, measured in cells

per radius (cpr) of the sphere for hexahedral, tetrahedral and unstructured polyhedral

meshes. As depicted in Fig. 4.3(a), for hexahedral meshes, CLCIR and plicRDF

methods show the best results in terms of convergence and reconstruction error. For

the rest of meshes, the results obtained with these two methods are practically equal

for all mesh resolutions. ELCIR shows second-order convergence and reconstruction

errors like those of CLCIR and plicRDF for low and medium mesh resolutions, whilst

the gradAlpha scheme only yields first-order convergence and shows the largest values

for Erec. In terms of computational efficiency, plicRDF consumes the largest cpu-time,

an order of magnitude higher than that obtained with the CLCIR method for almost all

mesh resolutions. The gradAlpha method consumes a cpu-time like that of the CLCIR

method for high mesh resolutions, although at low mesh resolutions it is a 35% larger,

and the ELCIR method gives the smallest trec. For tetrahedral meshes (Fig. 4.3(b)),

CLCIR gives slightly smaller reconstruction errors than plicRDF except for the finest

mesh size, where plicRDF produces slightly smaller errors. ELCIR and gradAlpha

produce very similar errors and convergence orders, smallers than the remaining two

methods. In this case, ELCIR also takes the smallest time to reconstruct the interface

for all mesh resolutions whilst plicRDF the largest, again an order of magnitude larger

than the times consumed by CLCIR. These differences in the reconstruction time

between CLCIR and plicRDF are mainly due to that the procedure used by CLCIR

to calculate the PLIC position, CIBRAVE, is about 2 to 4 times more efficient than

that implemented in the plicRDF method, and, as the latter repeats the reconstruction
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procedure several times per reconstruction step, the differences are more evident. Also,

since the reconstructed distance function in a cell is obtained as a weighted average

of the distances from the cell center to its own interface and the interfaces in its cell-

node neighbors, and, as tetrahedral cells have a higher amount of cell-node neighbors

compared to an hexahedral cell, the time spent in reconstructing the distance function

also increases.

On unstructured polyhedral meshes (Fig. 4.3(c)), CLCIR and plicRDF yield similar

errors for low resolutions although for higher mesh resolutions, plicRDF shows recon-

struction errors lower than CLCIR, due to the reduction in convergence order of the

latter. The gradAlpha scheme is the most efficient method, although it produces the

highest errors for medium-high resolutions. CLCIR consumes a slightly lower cpu-time

for the finest mesh and, although for coarser meshes CLCIR is faster than plicRDF,

the great difference shown in the other mesh types is now reduced to only a 35%. The

increment in the cpu-time shown by CLCIR in this kind of meshes is mainly due to

the increase consumed by the procedure to construct the local 0.5-isosurface and the

PLIC positioning, since polyhedral cells have a significant higher number of points

than tetrahedral or hexahedral meshes. In this case, plicRDF spends more time in the

calculation of the PLIC position than in reconstructing the distance function since the

number of point neighbors is considerably lower than in tetrahedral meshes. For exam-

ple, for n = 80, solving the VCE problem consumes the 88% of the reconstruction time

and the RDF construction only a 6.5%. For the same resolution but in tetrahedral

meshes, the percentages are 22% and 61%, respectively.

4.3.2 Hollow sphere

In the test proposed by Liovic et al. [85], a sphere of radius 0.4 with a spherical core

of radius 0.2 is centered at (0.525, 0.464, 0.516) in a unit domain. Fig. 4.4 shows the

reconstruction errors and consumed cpu-times as a function of mesh resolution for the

different mesh types considered. As in the previous test, plicRDF and CLCIR give rise

to very similar results in terms of convergence and reconstruction error for hexahedral

meshes, although CLCIR yields slightly smaller values in Erec, and, again, gradAlpha

shows first-order convergence. For tetrahedral meshes (Fig. 4.4(b)), the results are

very similar to those obtained for the sphere reconstruction test when comparing the

accuracy. However, in terms of computational efficiency, gradAlpha consumes now cpu-

times very similar to those of the CLCIR method, and ELCIR is the fastest method.

In this type of meshes, CLCIR is now 6.6-7.6 times faster than plicRDF. Also, for

unstructured polyhedral meshes (Fig. 4.4(c)), the results are close to those obtained

in the sphere reconstruction test, although it should be noticed how the difference in

consumed cpu-times for the plicRDF and CLCIR methods, which is about a 46%, is

now maintained for all mesh resolutions, and that the number of iterations required to

reach convergence of the plicRDF method in these reconstruction tests is, in general,
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Figure 4.3: Reconstruction error, Erec, and consumed cpu-time, trec, for different mesh types and
sizes for the sphere reconstruction test.
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higher than in a dynamic test, since plicRDF uses the previous normal as initial

guess, decreasing the number of iterations required to reach the desired convergence.

Therefore, the cpu-times spent in the reconstruction step in such tests, would be lower

than that presented in the reconstruction tests.

4.4 Advection tests

In this section, three tests with different prescribed velocity fields are used to compare

the accuracy and efficiency of the different methods. In the gVOF package, the FMFPA

flux polyhedra construction algorithm is selected for the advection step due to a less

expensive computation cost compared to the EMFPA method without a significant

change in accuracy (for sufficiently low CFL numbers). For the reconstruction step,

the CLCIR algorithm is chosen due to the better overall performance, as shown in the

previous comparison. This combination of methods is named as FMFPA-CLCIR. For

the isoAdvector advection scheme, the plicRDF reconstruction algorithm is selected,

since is the most accurate of the methods implemented by Scheufler and Roenby [145],

and this combination is named as isoAdvector-plicRDF.

The geometric error is estimated with an L1 error norm defined as

Eg =
∑

i

Vi
∣∣Fi − Fe,i

∣∣ , (4.7)

where Fe,i is the exact volume fraction at the final instant of the test t = T (in this

work is obtained with the routine initfgrid of the gVOF package). The order of

convergence can be then determined from

O =
ln[Eg(2n)/Eg(n)]

ln(1/2)
, (4.8)

where Eg(n) and Eg(2n) are the errors obtained using two different mesh sizes with

n3 and (2n)3 cells, respectively.

The volume conservation error is quantified as

Evol =

∣∣∣∣∣∣

∑

i

Vi
(
Fi − Fe,i

)
∣∣∣∣∣∣
, (4.9)

where the volume fractions are obtained at the final instant of the test. The bound-

edness of the solution at instant t is measured through the error

Et
bound = max



E

t−∆t
bound,max

[∣∣∣∣min
i

(Vi Fi)

∣∣∣∣ ,max
i

(Vi Fi)

]
 , (4.10)
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Figure 4.4: Reconstruction error, Erec, and consumed cpu-time, trec, for different mesh types and
sizes for the hollow sphere reconstruction test.
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where Et−∆t
bound is the boundedness error at the immediate precedent instant t − ∆t.

This definition allows to capture the unboundedness of the solution throughout the

complete simulation.

To compare the computational efficiency of the algorithms, the consumed cpu-

time, tadv, defined as the average time consumed by the advection procedure, and

the consumed cpu-time introduced in Section 4.3, trec, which now is defined as the

average time consumed by the reconstruction procedure, are measured. Also, the total

consumed cpu-time per time step, ttot, is defined as the summation of the advection and

reconstruction times. These times are provided relative to the corresponding smallest

total time value, hence, its relative values t̃adv, t̃rec, and t̃tot are used instead.

In the isoAdvector method, the parameter nAlphaBounds is set equal to 5, which

applies 5 times a conservative bounding step per advection-reconstruction step, redis-

tributing the fluid of unbounded cells to preserve volume conservation [136]. Besides,

isoAdvector offers the possibility to force the bounding of the volume fraction value,

but this procedure is kept unset for the sake of consistency in the comparison. The

volume fraction tolerance is the same for both combinations, with a value 10−12.

4.4.1 Simple translation

A sphere of radius 0.5 centered at (0.25, 0.25, 0.25) is translated by means of a steady

and uniform flow with velocity components (1, 1, 1) for a period of time T = 0.5, in

a cube domain of size 1 × 1 × 1. Figure 4.5 shows the geometric error as a function

of the CFL number for the two combinations in an hexahedral mesh with different

sizes. At high CFL numbers, the error obtained with isoAdvector-plicRDF is larger

than that obtained with the FMFPA-CLCIR methods for all mesh sizes, increasing the

difference between them as the mesh resolution increases. As the CFL decreases, the

error stabilizes around a constant value for each method, reaching the mesh resolution

dependent value described by Harvie and Fletcher [58]. For n = 10 and n = 20 the

error of FMPFA-CLCIR at low CFL numbers is a 11-14% lower than that obtained

with isoAdvector-plicRDF, whereas for n = 40 the error of the latter is a 11% lower

than that of the former. For the finest mesh resolution both combinations give a

similar geometric error.

It should be noted that the CFL calculation method defined by Eq. (3.17), results in

higher errors in FMFPA-CLCIR than that obtained with the CFL calculation method

defined by Eq. (3.18). The latter method yields larger time step sizes, and, since the ge-

ometric error obtained with FMFPA-CLCIR decreases with increasing time step sizes,

these errors are smaller. This trend in the geometric error was explained by Harvie

and Fletcher [58]: the authors argued that as the time step size decreases, more steps

are required to complete a given duration, therefore, more interface reconstructions

steps are carried out (one per time step). Since each reconstruction step introduces a

discrete amount of error, if the number of reconstructions is increased so it is the total
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Figure 4.5: L1 error norm as a function of the CFL number obtained for the translation test using
four different hexahedral mesh sizes,

amount of error introduced in the simulation. However, the error obtained with the

isoAdvector algorithm does not follow this trend. Instead, it decreases with decreasing

time step sizes, which could indicate that the error introduced by the advection step

dominates over the reconstruction error for high CFL numbers.

Figure 4.6 shows the L1 error norm as a function of mesh resolution obtained for

different mesh types and three CFL numbers. Fig. 4.6(a) depicts the L1 error norm

for hexahedral meshes. The convergence rate of the isoAdvector-plicRDF methods

increases as the CFL decreases achieving second order for CFL around 0.1, whereas

the convergence of the FMFPA-CLCIR methods is second order for all the range of

CFL numbers considered. These differences on the convergence rates yield to large

differences on the error norm for high mesh resolutions and high CFL numbers, being

about an order of magnitude. For tetrahedral meshes (Fig. 4.6(b)), the results are less

dependent on the CFL number, and both combinations show second-order convergence

in all the range of the CFL numbers. However, for low CFL numbers at high mesh

resolutions, FMFPA-CLCIR yield higher error norms than that obtained with the

other methods. For unstructured polyhedral meshes (Fig. 4.6(c)) both combinations

give very similar errors for low CFL numbers and high mesh resolutions, although for

the coarsest mesh the FMFPA-CLCIR methods yield smaller errors. For CFL=1, the

isoAdvector-plicRDF methods yield a smaller error for the coarsest mesh, whereas as

the mesh resolution increases, FMFPA-CLCIR give lower error norms.

4.4.2 3D deformation

The well-known benchmark test proposed by Enright et al. [45] consists on a sphere

of radius 0.15 initially centered at (0.35, 0.35, 0.35) within a unit-cube domain, which
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is deformed in a solenoidal velocity field, u = (u, v, w), given by

u(x, y, z, t) = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T ),

v(x, y, z, t) = − sin(2πx) sin2(πy) sin(2πz) cos(πt/T ),

w(x, y, z, t) = − sin(2πx) sin(2πy) sin2(πz) cos(πt/T ),

(4.11)

where a period T = 3 is used.

Table 4.2 shows the errors and consumed cpu-times for the two considered com-

bination of methods. The cpu-times are provided relative to the smallest total time

value, which in this case is given by ttot = 23.9 ms obtained using the isoAdvector-

plicRDF methods for an hexahedral mesh with n = 32. For all mesh types and sizes

the L1 error norm obtained with FMFPA-CLCIR is always smaller than that obtained

with the isoAdvector-plicRDF methods, except for the coarsest unstructured polyhe-

dral mesh, where isoAdvector-plicRDF yield an error a 3.7% lower. Differences for the

rest of mesh types and sizes range from the 4.9% lower error obtained with FMFPA-

CLCIR for tetrahedral meshes with n = 32, to the 56.3% lower error also obtained with

FMFPA-CLCIR for hexahedral meshes with n = 256. For hexahedral and tetrahedral

meshes, as the mesh size increases the differences in the geometric error also increase,

due to that the convergence order is higher for the FMFPA-CLCIR methods, although

both combinations reach second-order convergence for the finest resolution. For un-

structured polyhedral meshes, differences between the compared methods are reduced

and the convergence rate of isoAdvector-plicRDF is slightly higher for n = 128. This

behavior might be caused by a better performance of the advection step in the latter

method, since isoAdvector is based on the advection of an isosurface, and as this is

constructed with smaller interpolation errors in unstructured polyhedral cells than in

hexahedral or tetrahedral cells (for a given size a polyhedral cell requires a greater

amount of nodes, e.g., for n = 128 the average number of points per polyhedral cell is

39.7, as shown in Table 4.1), the advection error should be lower as well.

The error in volume conservation for hexahedral meshes is several orders of mag-

nitude lower using the FMFPA-CLCIR methods, except for n = 128. For the rest

of mesh types FMFPA-CLCIR yield a higher error, which although small (. 10−6),

is several orders of magnitude higher than that obtained with isoAdvector-plicRDF

(. 10−12). This difference is probably due to the use of the bounding procedure in the

isoAdvector advection stepg, which reduces the volume conservation error as well as

the geometric error. The boundedness error is very similar for all meshes, although for

some resolutions FMFPA-CLCIR yield an error several orders of magnitude lower. In

terms of computational efficiency, as the mesh size increases, the differences between

both combinations in the average total time, ttot, decrease. For the coarsest meshes,

isoAdvector-plicRDF yield the lowest values and for hexahedral meshes, as the mesh

resolution increases, the cpu-time consumed by FMFPA-CLCIR is more similar to
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that consumed by isoAdvector-plicRDF. However, for all mesh types, the total times

of isoAdvector-plicRDF are smaller. In hexahedral meshes, the time consumed by the

advection is of the same order for both combinations whereas the time consumed by

the reconstruction step is much lower for the CLCIR method, partially due to the

iterative nature of the plicRDF algorithm. For the finest tetrahedral and unstructured

polyhedral meshes, the reconstruction times consumed by the plicRDF algorithm are,

respectively, 7.5 and 3.7 times higher than that consumed by the CLCIR method,

whereas the advection times consumed by isoAdvector are 10.5 and 4.9 times lower

than that spent by FMFPA.

The great increase in the consumed cpu-time for the FMFPA algorithm in tetrahe-

dral and unstructured polyhedral meshes with respect to hexahedral meshes is mainly

due to the face advection flux calculation. In this algorithm, the advection of the fluid

is carried out using face flux polyhedra, which are first constructed using the velocities

interpolated at the cell nodes and then truncated with the reconstructed interface at

the cell and at the neighbor cells surrounding the face. Thus, if the number of neighbor

cells that contain the interface increases, the number of truncation operations will also

increase. For an internal tetrahedral cell, the average number of cell-node neighbors is

between 74 and 78 for the mesh sizes considered in this test (see Table 4.1), whilst for

an hexahedral cell, this number is only 26 and not size-dependent. Therefore, as the

number of interfacial cells increases with mesh refinement, the number of truncations

also increases, and, consequently, the consumed cpu-time rises. On the contrary, as

isoAdvector does not perform this kind of operations for the face flux calculation, the

time consumed by the advection step is considerably smaller. Note that as the number

of faces of a tetrahedral cell is lower than that of an hexahedral cell, the consumed

cpu-time is smaller in the latter.

For the unstructured polyhedral meshes considered in this test, the average number

of cell-node neighbors per internal cell is 15, whereas the average number of faces and

points per internal cell is from 40.8 to 41.4 and from 77.7 to 78.8, respectively, which

is a great increase compared to those of hexahedral meshes (6 and 8) or tetrahedral

meshes (4 and 4). Then, in a polyhedral cell, the number of truncations for a given

face is substantially smaller since the number of neighbors is very small compared to

other mesh types, but, as the number of flux polyhedra is highly increased due to the

great amount of faces, the total amount of truncation operations is thus increased.

This increase in the average number of faces per polyhedral cell also increases the time

consumed by the isoAdvector algorithm because it is based on the calculation of the

area described by the interface-face intersection movement within the time interval

considered.

Figures 4.7 and 4.8 depict the PLIC interfaces obtained with the two compared

combinations at the intermediate (t = 1.5) and final (t = 3) instants of the test where

differences on the geometric error can now be clearly noticed. The PLICs are printed in
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Table 4.2: Errors and consumed cpu-times for the 3D deformation test using a CFL = 0.5 for different
mesh types and resolutions.

Methods n Eg O Evol Ebound t̃tot t̃adv t̃rec

Hexahedral meshes

FMFPA-CLCIR 32 6.485e-03 - 5.204e-17 1.274e-18 1.94 1.78 0.16
isoAdvector-plicRDF 32 7.966e-03 - 8.726e-16 2.170e-17 1.00 0.18 0.82

FMFPA-CLCIR 64 2.070e-03 1.65 7.980e-17 8.008e-19 9.90 9.16 0.75
isoAdvector-plicRDF 64 3.018e-03 1.40 5.938e-15 2.015e-09 5.57 1.43 4.14

FMFPA-CLCIR 128 4.308e-04 2.26 1.299e-08 7.201e-10 56.84 53.18 3.66
isoAdvector-plicRDF 128 7.063e-04 2.10 1.878e-14 1.603e-10 35.64 12.57 23.06

FMFPA-CLCIR 256 6.131e-05 2.81 9.284e-15 2.926e-19 374.91 353.03 21.88
isoAdvector-plicRDF 256 1.061e-04 2.74 1.720e-13 1.924e-11 241.13 108.29 132.85

Tetrahedral meshes

FMFPA-CLCIR 32 1.326e-02 - 6.980e-06 1.123e-08 17.56 17.03 0.54
isoAdvector-plicRDF 32 1.394e-02 - 1.298e-15 4.887e-06 1.88 0.23 1.65

FMFPA-CLCIR 64 4.231e-03 1.65 3.290e-06 3.054e-10 77.90 75.07 2.83
isoAdvector-plicRDF 64 5.858e-03 1.25 2.475e-15 1.181e-06 19.68 2.90 16.78

FMFPA-CLCIR 128 9.386e-04 2.17 3.346e-07 2.106e-10 396.65 379.87 16.79
isoAdvector-plicRDF 128 1.464e-03 2.00 4.672e-15 1.263e-07 126.15 23.44 102.71

FMFPA-CLCIR 256 1.583e-04 2.57 2.157e-07 9.493e-11 2 694.72 2 563.02 131.70
isoAdvector-plicRDF 256 3.621e-04 2.02 2.618e-15 1.872e-08 1 121.66 244.59 877.07

Unstructured polyhedral meshes

FMFPA-CLCIR 32 1.052e-02 - 2.516e-07 8.873e-09 56.71 54.00 2.71
isoAdvector-plicRDF 32 1.013e-02 - 6.523e-16 4.481e-07 9.12 3.02 6.10

FMFPA-CLCIR 64 3.570e-03 1.56 3.121e-09 4.467e-09 279.05 258.57 20.49
isoAdvector-plicRDF 64 4.173e-03 1.28 1.631e-16 5.486e-08 162.03 38.97 123.06

FMFPA-CLCIR 128 6.226e-04 2.52 4.321e-08 2.376e-08 1 488.23 1 347.43 140.80
isoAdvector-plicRDF 128 6.945e-04 2.59 2.116e-16 8.783e-09 801.88 275.46 526.42

.vtk format using the printplic routine of the gVOF package. For all mesh types and

medium and high resolutions, the final shape obtained with FMFPA-CLCIR is closer

to the theoretical sphere. For the finest unstructured polyhedral mesh in Fig. 4.8, the

final shape obtained with isoAdvector-plicRDF show a small region of liquid detached

from the final sphere.

4.4.3 3D shearing

In this test proposed by Liovic et al. [85], a sphere of fluid of radius 0.15, initially

centered at (0.5, 0.75, 0.25) in a domain of size 1× 1 × 2, is deformed in the velocity

field defined as

u(x, y, z, t) = sin2(πx) sin(2πy) cos(πt/T ),

v(x, y, z, t) = − sin2(πy) sin(2πx) cos(πt/T ),

w(x, y, z, t) =
{
1− 2

[
(x− 0.5)2 + (y − 0.5)2

]1/2}2

cos(πt/T ),

(4.12)
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Figure 4.7: PLIC interfaces for the 3D deformation test at t = 1.5 (green and orange) and t = 3
(blue and yellow) using different mesh types and resolutions. Results obtained with CFL=0.5 for the
FMFPA-CLCIR (first row for each mesh type) and isoAdvector-plicRDF (second row for each mesh
type) methods.
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Figure 4.8: Same results as in Fig. 4.7, but for unstructured polyhedral meshes of different resolutions.

where T = 3. Table 4.3 shows the errors and consumed cpu-times using the two

combinations compared in the test. The cpu-times are also provided relative to the

smallest total time value, which in this test is given by ttot = 21.8 ms obtained us-

ing the isoAdvector-plicRDF methods for an hexahedral mesh with n = 32. Now,

for all mesh types and sizes, the L1 error norm obtained with FMFPA-CLCIR is

always smaller than that obtained with the isoAdvector-plicRDF method, with dif-

ferences ranging from 1.2% for an unstructured polyhedral mesh with n = 128 to

68.9% for the finest tetrahedral mesh. Both combinations yield second-order conver-

gence in hexahedral and unstructured polyhedral meshes, but for tetrahedral meshes,

the isoAdvector-plicRDF methods do not reach second-order convergence. The er-

ror in volume conservation is now always several orders of magnitude smaller in the

isoAdvector-plicRDF methods, whilst the boundedness error is of the same order for

both combinations in all meshes and resolutions.

The trend in the computational efficiency and the order of magnitude of the total

consumed cpu-times is generally the same as those commented in the previous test for

hexahedral and tetrahedral meshes. However, the differences are reduced in tetrahedral

meshes due to the decrease in the advection time in the FMFPA-CLCIR methods. If

the velocities defined by Eqs. (4.11) and (4.12) are compared, it can be seen that

the magnitudes of each component are smaller in this test, which implies that the

volumetric fluxes are also smaller although the time step is higher in this case (note

that the CFL is the same). The direction of the velocity components is also different

and combined with the previous makes the flux polyhedra intersect less interface cells
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Table 4.3: Errors and consumed cpu-times for the 3D shearing flow test using a CFL = 0.5 for
different mesh types and resolutions.

Hexahedral n Eg O Evol Ebound t̃tot t̃adv t̃rec

Hexahedral meshes

FMFPA-CLCIR 32 3.509e-03 - 7.027e-07 1.173e-08 1.90 1.74 0.17
isoAdvector-plicRDF 32 4.485e-03 - 9.177e-16 1.515e-09 1.00 0.20 0.80

FMFPA-CLCIR 64 9.686e-04 1.86 8.530e-08 8.896e-10 9.95 9.15 0.80
isoAdvector-plicRDF 64 1.276e-03 1.81 5.586e-15 3.138e-10 5.77 1.56 4.21

FMFPA-CLCIR 128 2.372e-04 2.03 1.028e-08 6.932e-11 60.02 55.79 4.23
isoAdvector-plicRDF 128 3.240e-04 1.98 2.839e-14 2.259e-10 55.46 19.89 35.57

FMFPA-CLCIR 256 5.421e-05 2.13 1.078e-09 4.649e-12 406.33 379.48 26.84
isoAdvector-plicRDF 256 7.690e-05 2.07 8.065e-14 5.695e-11 282.14 125.36 156.77

Tetrahedral meshes

FMFPA-CLCIR 32 6.184e-03 - 1.900e-05 1.195e-08 13.81 13.44 0.37
isoAdvector-plicRDF 32 8.680e-03 - 6.852e-16 4.118e-06 2.21 0.28 1.93

FMFPA-CLCIR 64 1.537e-03 2.01 6.499e-07 3.979e-10 60.34 58.00 2.34
isoAdvector-plicRDF 64 2.857e-03 1.60 1.952e-15 6.250e-07 16.27 2.85 13.41

FMFPA-CLCIR 128 4.032e-04 1.93 8.923e-09 8.491e-11 316.24 302.71 13.53
isoAdvector-plicRDF 128 9.290e-04 1.62 4.118e-15 5.857e-08 130.93 26.14 104.80

FMFPA-CLCIR 256 1.041e-04 1.95 1.941e-09 5.332e-11 1 771.46 1 686.99 84.47
isoAdvector-plicRDF 256 3.344e-04 1.47 7.615e-16 3.854e-09 1 222.58 270.78 951.80

Unstructured polyhedral meshes

FMFPA-CLCIR 32 5.348e-03 - 9.613e-08 2.795e-09 45.60 41.50 4.10
isoAdvector-plicRDF 32 5.934e-03 - 5.274e-16 4.262e-07 10.04 2.99 7.05

FMFPA-CLCIR 64 1.569e-03 1.77 4.565e-09 1.917e-10 221.74 201.94 19.80
isoAdvector-plicRDF 64 1.644e-03 1.85 3.990e-16 4.765e-08 197.73 53.18 144.55

FMFPA-CLCIR 128 4.176e-04 1.91 2.720e-08 3.310e-08 1 413.17 1 252.91 160.26
isoAdvector-plicRDF 128 4.225e-04 1.96 9.147e-15 4.617e-09 869.30 291.17 578.13

resulting in a reduction in the total number of truncation operations and decreasing

the computational time in the advection step.

Figure 4.9 depicts the PLIC interfaces for this test. For the coarsest meshes shown,

it can be seen how the shape obtained at the end of the test by FMFPA-CLCIR is

closer to the theoretical sphere. For higher mesh resolutions, these differences are also

very clear in hexahedral and tetrahedral meshes. However, for the finest unstructured

polyhedral mesh, both combinations give very similar intermediate and final shapes.

4.5 Non-prescribed velocity tests

4.5.1 Single bubble rising

This test case was described by Hysing et al. [63], and recently used by Gamet et al.

[50] on the validation of several reconstruction schemes coupled with the isoAdvector

advection step. A gas bubble of initial diameter D0 = 0.5 m with physical properties

ρg = 1kgm−3 and µg = 0.1Pa s, is surrounded by a liquid of properties ρl = 1000kgm−3



CHAPTER 4. ACCURACY AND EFFICIENCY OF THE GEOMETRIC VOF METHODS 75
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Figure 4.9: PLIC interfaces for the 3D shearing flow test at t = 1.5 (green and orange) and t = 3
(blue and yellow) for different mesh types and resolutions. Results obtained with CFL=0.5 using the
FMFPA-CLCIR (first row for each mesh type) and isoAdvector-plicRDF (second row for each mesh
type) methods.
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Figure 4.10: Same results as in Fig. 4.9, but for unstructured polyhedral meshes of different resolu-
tions.

and µl = 10 Pa s. The surface tension is σ = 1.96 Nm−1 and the gravity vector

g = (0, 0,−0.98)m s−2. Under these conditions, as argued by Hysing et al. [63], the

estimated Reynolds number, based on the gas velocity and liquid viscosity and density,

is Re = 35, whereas the Weber number is We = 125. Therefore, the expected outcome

lies between the skirted and dimpled ellipsoidal-cap regimes, where the bubble breakup

can occur [28].

The physical domain size is 2D0 × 4D0 for the 2D case, and 2D0 × 2D0 × 4D0 for

the 3D case. The bubble center is initially placed at (D0, D0) and (D0, D0, D0) for the

2D and 3D cases, respectively. Hexahedral, tetrahedral and unstructured polyhedral

meshes, generated as described in Section 4.1, with n = 40, 80, 160, 320, and 640 are

considered in the 2D tests, where n is the number of cells in the x direction. For the

3D test, only an hexahedral mesh with n = 80 is considered, and generated with the

snappyHexMesh tool by imposing on a root mesh of size 10 × 10 × 20 a cylindrical

region of diameter 1.4D0 centered at the bubble center with its axis parallel to the z

direction in the range 0.4D0 ≤ z ≤ 3.7D0.

The discretization and numerical schemes used in this test are the same for all the

methods. For the temporal discretization, the Crank-Nicolson scheme with a blending

coefficient, sets the weight to bound the Crank-Nicolson scheme with the first-order

implicit Euler scheme, of 0.9 is used. For the gradient terms, the Gauss scheme is

selected, and for the convective terms, a TVD scheme with a Sweby limiter function is

used. For the boundary conditions, lateral walls are considered as slip walls, meanwhile
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top and bottom boundaries are defined as no-slip walls. For the pressure and volume

fraction, the zero normal gradient boundary condition is used in all the walls.

For the resolution of the Navier-Stokes equations, the PISO algorithm with the

momentum predictor step and 3 iterations is used with a single non-orthogonal cor-

rector step for only tetrahedral and unstructured polyhedral meshes. The condition

CFL < 0.075 is used for all meshes and resolutions. A study of the influence of this

condition in hexahedral meshes has been carried out, as shown in the following. For

the solution of the linear systems of equations, the GAMG is used for the pressure

terms, whereas for the velocity, an iterative solver with the simplified diagonal incom-

plete Cholesky (DIC) smoother is selected. The tolerance for the volume fraction is

set as Ftol = 1× 10−8.

In order to compare quantitatively the results obtained with both combinations, the

bubble velocity, the circularity (2D) and sphericity (3D) are computed. The bubble

velocity is calculated as the following weighted average through the entire domain,

ub =

∑
i ui (1− Fi) Vi∑
i(1− Fi) Vi

, (4.13)

using the volume of gas (1−Fi) Vi as weight. Circularity and sphericity are calculated

as
[Vb/(π∆y)]

1/2

Ab/(2π∆y)
, and

[3Vb/(4π)]
2/3

Ab/(4π)
, (4.14)

respectively, where ∆y is the mesh size in the direction perpendicular to the xz plane

in the 2D simulations (note that 2D cells are polygonal prisms, thus ∆y corresponds

to their height), Vb the bubble volume calculated as Vb =
∑

i(1 − Fi) Vi, and Ab the

bubble area. This last term is obtained from the 0.5-isosurface area, which is calculated

from the isosurface extracted using the isoap method. This area calculation procedure

is used for the two compared combinations, so that the circularity and sphericity at

t = 0 ms are obviously the same for both methods.

Figure 4.11 shows the vertical component of ub, namely rise velocity ub, as a function

of time for a 2D hexahedral mesh with n = 160. As the CFL decreases, the velocity

converges to the same solution for both combinations with almost any difference. It

can be seen that the variation in the solution between the two smallest CFL numbers

is very small (less than 1%). Thus, these results manifest that using the condition

CFLmax < 0.075 does not suppose a significant decrease in accuracy, whilst the time

step is increased by a factor of 2 with respect to the lowest CFL number, saving

computational time.

Figure 4.12 depicts the time evolution of the rise velocity and circularity for dif-

ferent 2D mesh types and resolutions, and Fig. 4.13 shows the 0.5-isosurfaces for the

three finest mesh sizes at the final instant of the test. For hexahedral meshes, the

isoAdvector-plicRDF methods yield slightly higher velocities for coarser meshes, but
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Figure 4.11: Time evolution of the bubble rise velocity for different CFL numbers and a 2D hexahedral
mesh with n = 160. Comparison between isoAdvector-plicRDF and FMFPA-CLCIR.

as the mesh size is increased, both combinations give very similar results. Differences

in the circularity are more clear and as the mesh is refined both combinations con-

verge to very similar solutions. For n = 40, the secondary bubbles detach almost at the

same time (around t ≈ 2.64 ms) in both combinations. These similarities are shown in

Fig. 4.13(a) for all resolutions. This implies that for hexahedral meshes and the CFL

number considered the results are very similar for the advection-reconstruction meth-

ods compared here, and these results are mainly dependent on other factors, such as

the tolerances used in the PISO algorithm or the error introduced by the discretization

schemes.

For tetrahedral meshes (Fig. 4.12(b)), the differences in the rise velocity and cir-

cularity are now more evident. For all mesh resolutions, isoAdvector-plicRDF yields

from t = 0.7 ms a higher value of the rise velocity. For n = 40, the time evolution

obtained with isoAdvector-plicRDF shows several oscillations from t = 1.9 ms and in

that obtained with FMFPA-CLCIR these oscillations also appear but with a smaller

amplitude. For n = 160, the results obtained with both combinations are very simi-

lar, whilst for the remaining sizes the coincidences are not so good as for hexahedral

meshes. In the time evolution of the circularity, the isoAdvector-plicRDF methods give

rise, in general, to higher values for all mesh resolutions. The coincidence in the results

for n = 160 can also be seen in the 0.5-isosurface shown in Fig. 4.13(b), where for this

resolution both combinations yield very similar shapes. For n = 320 and 640, the

interfaces are slightly different for both combinations, and they show a more apparent

asymmetry than in hexahedral meshes.

For unstructured polyhedral meshes (Fig. 4.12(c)), the differences between both

combinations in the rise velocity are now very small for all resolutions. For n = 640,
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both combinations yield almost the same solution. However, in the time evolution of

circularity, at low resolutions and after t = 2.5 ms the results are slightly different,

although both combinations follow a similar trend. If the attention is now focused on

the isosurface contours depicted in Fig. 4.13(c), it can be seen that although the results

are again very similar, the FMFPA-CLCIR methods yield more evolved secondary

bubbles, i.e., bubbles that seem to detach a few instants before the same bubbles that

appear in the results provided by the isoAdvector-plicRDF methods.

Figures 4.14 and 4.15 show the results obtained in the 3D hexahedral mesh with

n = 80. The rise velocity time evolution (Fig. 4.14(a)) shows that, again, both com-

binations yield very similar solutions, although after t = 0.5 s, the velocity obtained

with isoAdvector-plicRDF is slightly higher. Figure 4.15 shows the 0.5-isosurfaces at

different instants which are extracted with ParaView [119] for visualization purposes.

Only a half of the bubble for each method is represented in order to show more clearly

the differences between the numerical results. From t = 1 s to t = 2.5 s, both com-

binations yield very similar results. At instant t = 3 s, the holes that appear in the

bubble tail are due to the lack of mesh resolution. The undulations formed at the

lower part of the tail, that remain at t = 3.5 s, are very similar in both combinations,

as well as is the shape of the tail breakup. The top part of the bubble shows almost

no difference between both combinations. These results were somehow expected since

the rise velocity and circularity evolutions are very similar.

4.5.2 Drop impact on a deep pool

The experimental results of this test are obtained from [60]. It consists on the impact

of a water drop of initial diameter D0 = 2.9 mm on a deep pool of the same liquid at

a velocity U = 1.55 m s−1. The water has physical properties ρl = 1000 kgm−3, µl =

1 mPa s and σ = 72.6 mNm−1. Hence, the Weber and Froude (U2(g D0)
−1) numbers

are We = 96 and Fr = 85. The pool has an initial depth of 4.5D0 and the drop

center is initially placed at (0, 0, 5.1D0) to avoid possible differences in the velocity

impact between both combinations. The velocity field is initialized by imposing the

velocity vector (0, 0,−U) at cells whose volume fraction is greater than 0 and the PISO

algorithm calculates the initial pressure field based on this initial velocity field.

Making use of the symmetry of the problem, only a quarter of it is solved using a

physical domain of 3.5D0 × 3.5D0 × 7D0, which is discretized with a statically refined

root mesh of 7 × 7 × 14 cells. Three concentric cylindrical regions centered at the

coordinate origin, with their axes parallel to the z direction with 4 refinement levels

are imposed to the root mesh: the first cylindrical region has a diameter of 0.345D0

and is imposed for 2.07D0 ≤ z ≤ 4.14D0, the second has a diameter of 1.035D0 and

is imposed for 4.14D0 ≤ z ≤ 5D0, and the last has a diameter of 0.345D0 and is

imposed for 5D0 ≤ z ≤ 6.03D0. The equivalent mesh resolution is 16 cpr, which is

maintained near the interface throughout the entire simulation. Fig. 4.16 shows the
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Figure 4.12: Rise velocity and circularity as a function of time for different 2D mesh types and
resolutions using the FMFPA-CLCIR and isoAdvector-plicRDF methods. The insets show a detailed
view of the last instants.
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Figure 4.13: 0.5-isosurface contours of the bubble at t = 3 s for different 2D mesh types and res-
olutions. Comparison between the FMFPA-CLCIR (black contours) and isoAdvector-plicRDF (red
contours) methods.



CHAPTER 4. ACCURACY AND EFFICIENCY OF THE GEOMETRIC VOF METHODS 82

0.29

0.30

0.31

0.32

0.33

2.6 2.8 3.0 3.2 3.4

0.58

0.60

0.62

0.64

0.66

2.6 2.8 3.0 3.2 3.4

3.53.5

(a) (b)

FMFPA-CLCIR

FMFPA-CLCIR

isoAdvector-plicRDF

isoAdvector-plicRDF

t [s] t [s]

u
b
[m

s−
1
]

S
p
h
er
ic
it
y

0
0

0

0.1

0.2

0.3

0.4

0.5 0.5

0.6

0.7

0.8

0.9

1.0 1.0

1.0

1.5 1.52.0 2.02.5 2.53.0 3.0
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Figure 4.15: 0.5-isosurface contours of the bubble at different instants obtained using the isoAdvector-
plicRDF (yellow) and FMFPA-CLCIR (blue) methods for an hexahedral mesh with n = 80. Only a
half of the complete bubble is represented.
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Figure 4.16: Results for the drop impact on a deep pool obtained using the FMFPA-CLCIR methods.
Detail of the statically refined mesh with three cylindrical regions of four refinement levels on each
one and the 0.5-isosurface contour at t∗ = 7.3.

statically refined mesh, where the three cylindrical regions used to refine the mesh

near the interface can be observed, and the 0.5-isosurface at the non-dimensional time

t∗ = tU/D0 = 7.3 obtained using the FMFPA-CLCIR methods. It should be noted

that, although only a quarter of the problem has been solved, a symmetry operation

has been performed in the ParaView program to show a more complete view of the

results.

In order to simulate a quarter of the drop impact, the boundaries normal to the

x and y directions passing through the coordinate origin are considered as symme-

try planes. The remaining boundaries are considered as walls, applying the no-slip

boundary condition for the velocity. For the volume fraction and the pressure, the

corresponding gradients normal to the walls are set to zero. In the discretization of

the gradient terms, the Gauss scheme is used, whereas for the convective terms, a TVD

scheme with a Sweby limiter function is chosen. For the temporal discretization, the

first-order implicit Euler scheme is chosen. In the resolution of the systems of alge-

braic equations, the GAMG solver with a DIC smoother is used for the pressure and

velocity terms. For the resolution of the Navier-Stokes equations, the PISO algorithm

is used with 3 corrections and the condition CFLmax < 0.2 is set for the calculation

of the variable time step. The tolerance for the volume fraction is set to 10−6 in both

combinations.

Figure 4.17 shows a comparison between the experimental and the numerical results

obtained using the FMFPA-CLCIR and isoAdvector-plicRDF methods, for which the

0.5-isosurfaces, are depicted in blue and yellow colors, respectively. Both combinations

give very similar solutions until t∗ = 8.7. Then, the numerical simulations are retarded
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about a dimensionless time of 0.9 with respect to the experimental results; difference

which is maintained over the rest of the simulation. Therefore, in order to compare

the numerical and experimental results, the instant at which the former coincide with

the latter for the experimental time t∗ = 10.6 is found, which corresponds with the

instant represented in Fig. 4.17(e) at which the bubble detaches from the free surface.

Then, the instant represented in Fig. 4.17(d) is that preceding the bubble detachment.

At instants t∗ = 11.1 and 11.4, the crater stretches and an air bubble is entrapped,

which appears fully detached from the crater at t∗ = 11.5. Both combinations can

reproduce well the dynamics of the bubble entrapment although FMFPA-CLCIR

yield a deeper air entrapment at t∗ = 11.4, and thus, the air bubble position at

the subsequent instants is deeper from the free surface than in the results provided by

isoAdvector-plicRDF. Also, at t∗ = 11.4, a secondary bubble entrapped is predicted by

the FMFPA-CLCIR methods, which is not observed experimentally, although, as the

secondary bubble is very small compared to the main bubble, the lack of resolution

in the experimental images might be the cause for not observing this phenomenon.

At t∗ = 13.6, the isoAdvector-plicRDF methods predict a secondary droplet detach-

ing from the Rayleigh jet, which is neither observed in the experimental results. The

Rayleigh jet is thinner and taller in the numerical results obtained with isoAdvector-

plicRDF, which suggests a higher vertical velocity that probably causes the droplet

detachment.

Figure 4.18 shows the volume conservation error as a function of the dimensionless

time for the deep pool impact. Three curves are shown: one for the FMFPA-CLCIR

methods and two for the isoAdvector-plicRDF methods. In the last case, the bounding

procedure is used with 5 iterations (bounding) and not used (no bounding) by making

nAlphaBounds equal to 0 and setting the snap tolerance equal to the volume fraction

tolerance in order to avoid unphysical results, i.e., if the calculated volume fraction in

a cell is F < Ftol or F > 1−Ftol, the resulting volume fraction value is snapped to 0 or

1, respectively. It is clear that the bounding procedure drops dawn the volume conser-

vation error since the over/undershoots produced in the advection are redistributed,

keeping this error almost constant during all the simulation. However, if this procedure

is not executed during the calculation, the error obtained with isoAdvector-plicRDF

is closer to that obtained with FMFPA-CLCIR, nearly in the same order of magni-

tude. The increased order of magnitude of this error obtained for both combinations

compared to the advection tests might arise from the fact that in this test the velocity

field is velocity-divergence free only up to a certain tolerance, which in this case is set

to 10−7. This generates more over/undershoots in the advection step.
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Figure 4.17: Comparison between the experimental results obtained from [60] (first and third rows)
and the numerical results showing the 0.5-isosurface (second and fourth rows) obtained in the deep
pool impact test using the FMFPA-CLCIR (blue) and isoAdvector-plicRDF (yellow) methods.
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Figure 4.18: Time evolution of the volume conservation error in the deep pool impact test obtained
using the FMFPA-CLCIR and isoAdvector-plicRDF methods in an hexahedral mesh with n = 80.

4.6 Alternative implementation analysis

4.6.1 Efficiency analysis

In order to compare the differences in efficiency of the two parallelization applica-

tions implemented (OpenMP and MPI, as described in Section 3.2.3) in the CLCIR

method, several simulations are carried out measuring the consumed cpu-time during

the reconstruction step. It is important to note that the results obtained with the

MPI application are very dependent on the method used to decompose the domain as

well as the case itself, since through the simulation the interfacial cells can all lie in

a single processor or can be distributed among a certain amount of the total number

of processors used, nproc. For this study, the simple decomposition is chosen, in which

the domain is subdivided in as many subdomains as processors are used, specifying for

each direction the number of subdomains, written in the form (nsd,x, nsd,y, nsd,z), where

the total number of subdomains, nsd, is equal to the number of processors, following

nsd = nproc = nsd,x × nsd,y × nsd,z. (4.15)

For example, for nproc = 16, the valid decompositions would be (1, 1, 16), (1, 2, 8),

(2, 2, 4), (4, 4, 1), and their corresponding permutations, i.e., there are 15 different

possibilities. Depending on the computational domain, and the characteristics of the

case that is being solved, such as the expected symmetry of the problem, the time evo-

lution, etc., the total amount of cells and the number of interfacial cells per processor

may vary, thus, it is difficult to make a general estimation of the performance using

MPI parallelization. Besides, it also depends on the hardware used, which influences
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the communication between processors. In any cases, a roughly estimation of the ef-

ficiency of the MPI and OpenMP parallelizations is carried out using two different

tests.

The first test consists on the reconstruction of a sphere of radius 0.325 whose

center is placed at (0.5, 0.5, 0.5) in a unit-cubic domain, which is discretized using an

hexahedral mesh with n = 64, 128, and 256. The two different parallelizations of the

CLCIR method are used and the number of processors is varied as nproc = 1, 2, 4, 8,

16, 32, and 64. Figure 4.19 shows the speedup ratio, trec(1)/trec(nproc), and efficiency,

trec(1)/[trec(nproc) × nproc], where trec(1) is the execution time when using only one

processor, as a function of the number of processors nproc used for the three mesh sizes

and for the OpenMP and MPI parallelizations of the CLCIR method.

For n = 64 and 256 and all number of processors, the MPI parallelization yields

higher speedup values, while for n = 128 and nproc = 16, the OpenMP parallelization

is faster (Fig. 4.19(a)). The speedup values obtained for low numbers of processors

are similar, but as nproc increases, the differences in the speedup also increase. The

MPI parallelization also shows better efficiency values (Fig. 4.19(b)) although as nproc

increases, the efficiency decays faster than in the OpenMP implementation due to

that the number of processors involved in the interface reconstruction (processors with

interfacial cells) does not necessarily increase with the total number of processors, since

the domain is divided in more subdomains but equally distributed. In this case, for all

mesh resolutions, the number of processors that are actually used for the reconstruction

in the MPI parallelization is 32 for nproc = 64 and 24 for nproc = 32, whereas for the

rest is the same as their corresponding nproc. This behavior can be improved if other

different domain decomposition methods are used, such as the Scotch algorithm [25],

or if the sub-region procedure is used, in which the domain is subdivided accordingly

to a certain distribution, i.e., it allows to use more processors for the regions of interest

and leave fewer processors for the regions which are not.

It has been found that the most time consuming step for the MPI parallelization

of CLCIR is the construction of the cell-node neighbors stencil using a procedure that

allows the communication of all processors neighboring the cells that have, at least,

a face lying on a processor boundary. Since this procedure is only needed for the

normal estimation using the least squares gradient technique (Youngs method) in cells

where more than a single 0.5-isosurface has been extracted, and, usually, the number of

interfacial cells reconstructed with such method is small compared to the total number

of interfacial cells (≃ 0.1% in the reconstruction of a sphere), it has been substituted

by a procedure that does not allow the communication between processors but that is

more efficient. Thus, cells in which the normal vector needs to be estimated with the

least squares gradient and that have at least one of its faces in a processor boundary

are treated as boundary cells, i.e., the volume fraction value of the neighbor cells that

belong to a different processor than that owning the considered cell are neglected.
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Figure 4.19: Speedup ratio (a) and efficiency (b) as a function of the number of processors for different
hexahedral mesh sizes in the reconstruction of a sphere of radius 0.325 in a unit-cubic domain using
different parallelizations of the CLCIR method.

This approximation leads to an important increase in efficiency (a reduction in the

reconstruction time of about an order of magnitude) but also can lead to a decrease

in accuracy if the amount of cells reconstructed with Youngs’ method lying in the

processors boundaries is important. However, this type of boundary cells has not been

found in the tests carried out.

This enhancement in the implementation has been used in the previous test, but, in

order to quantitatively show the improvement reached, Fig. 4.20 depicts the reconstruc-

tion times obtained using both MPI and OpenMP parallelizations along with the MPI

parallelization taking into account the Youngs cells liying at the processors boundaries

(MPI-Youngs parallel). It can be observed that the performance improvement ob-

tained neglecting the boundary Youngs cells is in general, as mentioned before, about

an order of magnitude and, as the number of processors increases, the time required for

the reconstruction with the MPI parallelization is very similar to that obtained with

the OpenMP. For nproc = 1, the OpenMP implementation, which is fully written in

FORTRAN, shows a better performance than the MPI implementation, partially written

in C++, with reconstruction times about a 25% lower. This is mainly due to the data

copy required in the integration of the VOFTools and isoap libraries into OpenFOAM,

although a solution based on data referencing is being implemented at the moment,

with promising results.

The ability of the CLCIR implementation to work on the simulation of a multiphase-

flow problem in which the Navier-Stokes equations are solved using the parallelization

of the complete code has also been tested. Since the interest is focused only on the

efficiency of the CLCIR method, the interface is reconstructed every time step but

it is not used in the advection step, to avoid the dependence of the results on the

accuracy of the reconstruction. With this purpose, the reconstruction step has been

integrated into the interFoam solver, which makes use of the algebraic MULES scheme,
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Figure 4.20: Reconstruction time as a function of the number of processors for different hexahedral
mesh sizes in the reconstruction of a sphere of radius 0.325 in a unit-cubic domain using different
parallelizations of the CLCIR method.

for solving the 3D rising bubble case simulated in Section 4.5.1, but using an uniform

hexahedral mesh of 40 × 40 × 80 cells and a CFL number of 0.2. As in the previous

test, several number of processors have been used. Figure 4.21 shows the total cpu

time consumed in the simulation of the test case and the total reconstruction time for

both parallelizations of the CLCIR method relative to the total time consumed by the

default interFoam solver on a single core, which is equal to 605 s. For the MPI, as the

number of processors increases, the total simulation time is reduced and, for nproc = 32,

the time is almost an order of magnitude lower than that obtained for the sequential

simulation (nproc = 1). The reduction of the reconstruction time is less evident, but

both times follow the same trend with a stabilization between nproc = 32 and 64. As

in the previous test, this is due to the subdomain decomposition and, therefore, to the

number of processors involved during the simulation. A possible solution might be to

use a different subdomain decomposition to increase the number of processors used in

the reconstruction step.

For the OpenMP implementation, the total time remains almost constant for all

the number of processors considered since, as stated at in Section 3.2.3, the solution

of the Navier-Stokes equations consumes a huge amount of the total time, whereas

the time spent in the interface reconstruction is less than the 20% of the total time.

Therefore, as suggested initially, using this last implementation in OpenFOAM makes

the use of CLCIR impractical, since its parallelization with OpenMP limits the rest

of the calculation to a single core. However, it can be observed how increasing the

number of cores decreases the reconstruction time with a higher rate than in the MPI

implementation. This is due to that this parallelization application does not depend
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Figure 4.21: Reconstruction and total times as a function of the number of processors in the 3D
rising bubble test. Reconstruction times correspond to the OpenMP and MPI implementations of
the CLCIR reconstruction method, whereas the total time corresponds to the time consumed through
the entire simulation.

on the domain decomposition and also to that if the number of interfacial cells is

high for a given mesh, as it happens in this case due to the interface smearing in

MULES, the MPI implementation is less efficient. Note also that the total time given

by the OpenMP implementation for nproc = 1 is slightly higher than that when using

nproc > 1. This is due to that some operations in OpenFOAM are prepared to work

with the OpenMP application but, clearly, it does not result in a significant reduction

of the calculation time and remains almost independent of nproc.

4.6.2 Coupling CLCIR reconstruction with isoAdvector advection

In Section 4.3 it was shown that the plicRDF method is as accurate as the CLCIR

method, whereas the latter is significantly faster for all mesh types and resolutions

considered in the tests. In Section 4.4, the greater efficiency achieved by isoAdvector

compared to the FMFPA method for tetrahedral and unstructured polyhedral meshes

has been revealed, whilst for hexahedral meshes the differences are lower. However,

in terms of advection accuracy, the results are less clear since these are affected by

the error introduced by the reconstruction algorithm, which is different in each case.

Thus, one may think that combining isoAdvector with CLCIR can be an interest-

ing approach to, on one side, compare the true accuracy of the advection step, since

both advection methods, isoAdvector and FMFPA, would make use of the same recon-

struction method, and, on the other side, check wether the greater efficiency yielded

by the CLCIR method speeds up the total time consumed during the advection and

reconstruction steps.
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The combination of these two schemes has been done making use of the proposed

alternative implementation for the CLCIR method, described above, and the template

class reconstructionMethods available in OpenFOAM v2106. In addition, in order

to make CLCIR work along with isoAdvector, the PLIC center (assumed to be the

interface center xint) must be calculated in the reconstruction step since it is required

by the advection algorithm to estimate the interface movement within the time step

(see Eq. (3.47)). Thus, the computation of the PLIC center is carried out by truncating

the cell with its PLIC plane using the VOFTools library.

To compare the accuracy and efficiency of this combination of advection and recon-

struction methods, the 3D deformation and the 3D shearing tests carried out in Sec. 4.4

are again performed. Tables 4.4 and 4.5 show the results obtained for each test. The

new combination yields smaller geometric errors with respect to isoAdvector-plicRDF,

between 5% and 35% smaller for all mesh types and resolutions, except for the coarsest

and finest unstructured polyhedral mesh, where the geometric error slightly increases.

The volume conservation and boundedness errors remain of the same order of magni-

tude, both with small improvements for distinct mesh types and resolutions. In terms

of efficiency, the improvement is more evident: throughout all the tests, mesh types and

resolutions, both advection and reconstruction times are systematically decreased with

respect to isoAdvector-plicRDF, except for the finer unstructured polyhedral meshes,

where the advection takes a slightly greater time. Despite of this, the total time con-

sumed by isoAdvector-CLCIR is between 8% and 46% lower than that consumed by

isoAdvector-plicRDF.

This behavior can be partially explained looking at the bounding procedure of

isoAdvector. Table 4.6 shows, per time step and for different mesh types with n =

64, the number of interfacial cells, ñc,int; the number of cells in which the bounding

procedure is applied, ñc,bound; the ratio of these cells with respect to the total number

of cells, in percentage; and the number of iterations carried out by the bounding

step until all cells are bounded or the maximum number of iterations is reached,

ñiter,bound. For hexahedral meshes, the ñc,bound given by isoAdvector-CLCIR is very

low, about 78 times lower. The average number of iterations of the bounding procedure

is also lower in isoAdvector-CLCIR, 2.4/2.8 iterations per time step against the 4.8

given by isoAdvector-plicRDF. Therefore, the time consumed in the advection step is

reduced. For tetrahedral meshes, the ñc,bound is slightly lower in isoAdvector-CLCIR,

whereas ñiter,bound is the same for both combinations, which corresponds to the specified

maximum number of iterations. For unstructured polyhedral meshes, isoAdvector-

CLCIR yields a greater ñc,bound. This does not increase the advection time for the

considered mesh size, but for n = 128 it has a greater influence, as can be seen in

tables 4.4 and 4.5.

The time consumed by CLCIR in this implementation is very similar to that in the

FMFPA-CLCIR combination for tetrahedral meshes, whereas it is higher for hexahe-
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Table 4.4: Same results as in Table 4.2, but including the results obtained with the new combination
of the isoAdvector-CLCIR methods.

Methods n Eg O Evol Ebound t̃tot t̃adv t̃rec

Hexahedral meshes

FMFPA-CLCIR 32 6.485e-03 - 5.204e-17 1.274e-18 1.94 1.78 0.16
isoAdvector-plicRDF 32 7.966e-03 - 8.726e-16 2.170e-17 1.00 0.18 0.82
isoAdvector-CLCIR 32 7.162e-03 - 1.082e-15 2.915e-17 0.47 0.15 0.32

FMFPA-CLCIR 64 2.070e-03 1.65 7.980e-17 8.008e-19 9.90 9.16 0.75
isoAdvector-plicRDF 64 3.018e-03 1.40 5.938e-15 2.015e-09 5.57 1.43 4.14
isoAdvector-CLCIR 64 2.376e-03 1.59 1.029e-15 2.517e-18 2.76 1.07 1.69

FMFPA-CLCIR 128 4.308e-04 2.26 1.299e-08 7.201e-10 56.84 53.18 3.66
isoAdvector-plicRDF 128 7.063e-04 2.10 1.878e-14 1.603e-10 35.64 12.57 23.06
isoAdvector-CLCIR 128 4.844e-04 2.29 9.298e-16 7.251e-12 18.50 10.56 7.93

FMFPA-CLCIR 256 6.131e-05 2.81 9.284e-15 2.926e-19 374.91 353.03 21.88
isoAdvector-plicRDF 256 1.061e-04 2.74 1.720e-13 1.924e-11 241.13 108.29 132.85
isoAdvector-CLCIR 256 7.185e-05 2.75 1.150e-13 2.168e-11 133.75 90.22 43.53

Tetrahedral meshes

FMFPA-CLCIR 32 1.326e-02 - 6.980e-06 1.123e-08 17.56 17.03 0.54
isoAdvector-plicRDF 32 1.394e-02 - 1.298e-15 4.887e-06 1.88 0.23 1.65
isoAdvector-CLCIR 32 1.314e-02 - 1.402e-15 3.936e-06 0.63 0.17 0.46

FMFPA-CLCIR 64 4.231e-03 1.65 3.290e-06 3.054e-10 77.90 75.07 2.83
isoAdvector-plicRDF 64 5.858e-03 1.25 2.475e-15 1.181e-06 19.68 2.90 16.78
isoAdvector-CLCIR 64 4.763e-03 1.46 5.959e-15 9.071e-07 4.43 1.57 2.86

FMFPA-CLCIR 128 9.386e-04 2.17 3.346e-07 2.106e-10 396.65 379.87 16.79
isoAdvector-plicRDF 128 1.464e-03 2.00 4.672e-15 1.263e-07 126.15 23.44 102.71
isoAdvector-CLCIR 128 1.218e-03 1.97 2.261e-14 1.549e-07 34.54 16.86 17.67

FMFPA-CLCIR 256 1.583e-04 2.57 2.157e-07 9.493e-11 2694.72 2563.02 131.70
isoAdvector-plicRDF 256 3.621e-04 2.02 2.618e-15 1.872e-08 1121.66 244.59 877.07
isoAdvector-CLCIR 256 3.496e-04 1.80 3.254e-14 1.818e-08 387.61 241.59 146.01

Unstructured polyhedral meshes

FMFPA-CLCIR 32 1.052e-02 - 2.516e-07 8.873e-09 56.71 54.00 2.71
isoAdvector-plicRDF 32 1.013e-02 - 6.523e-16 4.481e-07 9.12 3.02 6.10
isoAdvector-CLCIR 32 1.119e-02 - 3.643e-17 4.471e-07 8.17 2.78 5.38

FMFPA-CLCIR 64 3.570e-03 1.56 3.121e-09 4.467e-09 279.05 258.57 20.49
isoAdvector-plicRDF 64 4.173e-03 1.28 1.631e-16 5.486e-08 162.03 38.97 123.06
isoAdvector-CLCIR 64 3.904e-03 1.52 9.038e-16 7.127e-08 58.44 29.12 29.32

FMFPA-CLCIR 128 6.226e-04 2.52 4.321e-08 2.376e-08 1 488.23 1 347.43 140.80
isoAdvector-plicRDF 128 6.945e-04 2.59 2.116e-16 8.783e-09 801.88 275.46 526.42
isoAdvector-CLCIR 128 6.945e-04 2.49 1.528e-14 7.748e-09 490.58 321.01 169.58
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Table 4.5: Same results as in Table 4.3, but including the results obtained with the new combination
of the isoAdvector-CLCIR methods.

Methods n Eg O Evol Ebound t̃tot t̃adv t̃rec

Hexahedral meshes

FMFPA-CLCIR 32 3.509e-03 - 7.027e-07 1.173e-08 1.90 1.74 0.17
isoAdvector-plicRDF 32 4.485e-03 - 9.177e-16 1.515e-09 1.00 0.20 0.80
isoAdvector-CLCIR 32 3.808e-03 - 6.158e-16 1.866e-17 0.46 0.13 0.33

FMFPA-CLCIR 64 9.686e-04 1.86 8.530e-08 8.896e-10 9.95 9.15 0.80
isoAdvector-plicRDF 64 1.276e-03 1.81 5.586e-15 3.138e-10 5.77 1.56 4.21
isoAdvector-CLCIR 64 1.076e-03 1.82 5.548e-15 6.096e-11 2.83 1.30 1.53

FMFPA-CLCIR 128 2.372e-04 2.03 1.028e-08 6.932e-11 60.02 55.79 4.23
isoAdvector-plicRDF 128 3.240e-04 1.98 2.839e-14 2.259e-10 55.46 19.89 35.57
isoAdvector-CLCIR 128 2.657e-04 2.02 2.586e-14 7.731e-11 20.73 12.92 7.81

FMFPA-CLCIR 256 5.421e-05 2.13 1.078e-09 4.649e-12 406.33 379.48 26.84
isoAdvector-plicRDF 256 7.690e-05 2.07 8.065e-14 5.695e-11 282.14 125.36 156.77
isoAdvector-CLCIR 256 6.180e-05 2.10 6.664e-14 8.711e-12 142.90 99.13 43.77

Tetrahedral meshes

FMFPA-CLCIR 32 6.184e-03 - 1.900e-05 1.195e-08 13.81 13.44 0.37
isoAdvector-plicRDF 32 8.680e-03 - 6.852e-16 4.118e-06 2.21 0.28 1.93
isoAdvector-CLCIR 32 7.328e-03 - 6.939e-18 3.556e-06 0.55 0.17 0.38

FMFPA-CLCIR 64 1.537e-03 2.01 6.499e-07 3.979e-10 60.34 58.00 2.34
isoAdvector-plicRDF 64 2.857e-03 1.60 1.952e-15 6.250e-07 16.27 2.85 13.41
isoAdvector-CLCIR 64 2.232e-03 1.72 1.025e-15 4.903e-07 4.23 1.66 2.56

FMFPA-CLCIR 128 4.032e-04 1.93 8.923e-09 8.491e-11 316.24 302.71 13.53
isoAdvector-plicRDF 128 9.290e-04 1.62 4.118e-15 5.857e-08 130.93 26.14 104.80
isoAdvector-CLCIR 128 7.386e-04 1.60 1.101e-14 5.592e-08 33.91 17.98 15.93

FMFPA-CLCIR 256 1.041e-04 1.95 1.941e-09 5.332e-11 1 771.46 1 686.99 84.47
isoAdvector-plicRDF 256 3.344e-04 1.47 7.615e-16 3.854e-09 1 222.58 270.78 951.80
isoAdvector-CLCIR 256 3.022e-04 1.29 3.532e-14 4.172e-09 396.62 256.56 140.06

Unstructured polyhedral meshes

FMFPA-CLCIR 32 5.348e-03 - 9.613e-08 2.795e-09 45.60 41.50 4.10
isoAdvector-plicRDF 32 5.934e-03 - 5.274e-16 4.262e-07 10.04 2.99 7.05
isoAdvector-CLCIR 32 5.468e-03 - 1.717e-16 3.955e-07 7.23 2.63 4.60

FMFPA-CLCIR 64 1.569e-03 1.77 4.565e-09 1.917e-10 221.74 201.94 19.80
isoAdvector-plicRDF 64 1.644e-03 1.85 3.990e-16 4.765e-08 197.73 53.18 144.55
isoAdvector-CLCIR 64 1.600e-03 1.77 1.044e-15 5.365e-08 57.00 30.93 26.07

FMFPA-CLCIR 128 4.176e-04 1.91 2.720e-08 3.310e-08 1 413.17 1 252.91 160.26
isoAdvector-plicRDF 128 4.225e-04 1.96 9.147e-15 4.617e-09 869.30 291.17 578.13
isoAdvector-CLCIR 128 4.382e-04 1.87 2.189e-14 4.891e-09 462.29 308.87 153.42
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Table 4.6: Average number of cells and iterations per time step given by the bounding procedure of
isoAdvector when coupled with plicRDF and CLCIR. Data obtained in the 3D deformation flow test
for different mesh types with n = 64.

Mesh type Methods ñc,int ñc,bound ñc,bound/nc [%] ñiter,bound

Hexahedral
isoAdvector-plicRDF 3688.5 753 0.287 4.8
isoAdvector-CLCIR 3732.5 9.7 0.004 2.4

Tetrahedral
isoAdvector-plicRDF 4985.7 1128 0.430 5
isoAdvector-CLCIR 5541.1 1039.6 0.397 5

Unstructured polyhedral
isoAdvector-plicRDF 3536.4 1285.9 1.345 5
isoAdvector-CLCIR 4004.3 4735.7 1.807 5

dral and unstructured polyhedral meshes. This might be caused by the complexity of

the truncated polyhedra obtained when cutting a hexahedral or polyhedral cell, since

the number of its faces and points is usually greater in this kind of cells compared to

that of tetrahedral cells, in which always two polyhedra with 4 faces are formed. There-

fore, the time spent by copying the arrays containing the information of the truncated

polyhedra, operations needed to communicate the FORTRAN libraries with the C++ im-

plementation, is greater in these type of meshes. Besides, as the number of interfacial

cells per time step is also greater in isoAdvector-CLCIR than in FMFPA-CLCIR, the

time consumed in the reconstruction increases.

Some comments regarding the advection methods can be extracted at the light of

the results presented in tables 4.4 and 4.5. Considering that the error introduced

by the reconstruction step is approximately the same for both methods (note that

ñc,int depends on the method for a given Ftol and the total error introduced can vary if

ñc,int is different), the remaining differences between FMFPA-CLCIR and isoAdvector-

plicRDF in the measured errors are mainly due to the error yielded by the advection

algorithms. Thus, taking into account the geometric errors, the FMFPA method seems

to be slightly more accurate than isoAdvector, although it yields volume conservation

errors several orders of magnitude higher in tetrahedral and unstructured polyhedral

meshes. In this type of meshes, the velocity fields given in the tests are not solenoidal

and, therefore, the conservation errors increase in both methods but, in isoAdvector,

the redistribution algorithm helps to keep the volume error very low. The efficiency

of the isoAdvector method is higher, since the operations carried out at the cell faces

are much less computationally expensive than the truncation operations performed by

FMFPA.



Chapter 5

Results and discussion

In this chapter, several static and dynamic tests are presented in order to asses the

accuracy and robustness of the proposed contact line force model (CLFM) on a wide

range of Reynolds and Weber numbers. The results are compared with experimental

data obtained by other authors and with numerical results obtained with different con-

tact angle models, which are based on solely applying as a boundary condition either

the equilibrium contact angle (ECA-BC) or the dynamic contact angle (DCA-BC)

given by one of the models described in Section 1.3. Also, the results of the 3D nu-

merical simulation of a splashing drop are presented and compared with experimental

results.

5.1 Axisymmetric drop impact

5.1.1 Drop released on a wall under zero-gravity conditions

A first assessment of the implemented CLFM is carried out through a test in which

a “semi-spherical” drop of initial diameter D0 is placed at rest on a flat surface, with

an initial contact angle of 90◦, in a zero-gravity environment [141]. The only forces

acting are surface tension and the intermolecular forces between the wall and the fluids

(characterized by the contact line force), which deform the drop until the equilibrium

situation is reached. The shape of the drop in equilibrium calculated from volume

conservation corresponds to a spherical cap of diameter is given by

D = D0

[
(1− cos θe)(1 + sin2 θe − cos θe)/2

]−1/3
, (5.1)

height

h = D/2(1− cos θe), (5.2)

and radius of the base

rb = D sin θe, (5.3)
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Figure 5.1: Test of a drop released on a wall. Errors for the drop shape at equilibrium as a function
of mesh resolution, for an equilibrium contact angle of 60◦.

where θe is the static contact angle at equilibrium (therefore, θd,i = θe in Eq. (3.53)).

The test is performed for a water drop (ρl = 1000 kgm−3, µl = 1mPa s, σ =

72 mNm−1), of initial diameter D0 = 1 mm, surrounded by air (ρg = 1.25 kgm−3,

µg = 0.00182 mPa s), on a computational domain of wedge shape with a meridian

plane of size 2D0 × 2D0. Five different values of the equilibrium contact angle are

considered: 30◦, 60◦, 90◦, 120◦, and 150◦.

A mesh dependence analysis was first carried out. The total error between the

theoretical and simulated shapes of the drop at equilibrium (the numerical results

correspond to a long enough time of 100 ms) is defined as

ε = (εr + εz)/2, (5.4)

where εr = |rb − r|/rb and εz = |h− z|/h are the errors for the radius of the base and

height of the droplet, respectively, and z and r are measured from the 0.5-isosurface

contour. Figure 5.1 shows the error convergence as a function of mesh resolution (cells

per initial drop radius, cpr) for an equilibrium contact angle of 60◦. Note that the

convergence is first order for the drop height error, while the poor convergence of error

εr, which remains nearly constant with mesh resolution, causes the convergence of the

total error to deviate from the first order.

Figure 5.2 shows the numerical results for the equilibrium drop shape (0.5-isosurface)

at the end of the simulation, when the final form has already been reached, obtained

with a mesh of size 128 × 128 (32 cpr). Figure 5.2(a) depicts a comparison between

the numerical results obtained for different static contact angles and the analytical

solution. It can be seen how the contact angle obtained from the simulation better
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Figure 5.2: Numerical results obtained for the equilibrium drop shape, for different equilibrium
contact angles and a mesh resolution of 32 cpr. (a) Comparison with theoretical shapes (dashed
lines) and (b) total error, ε, as a function of θe.

matches that corresponding to the theoretical shape of the droplet as the value of the

equilibrium contact angle increases except for high values of this angle. Figure 5.2(b)

shows a comparison of the results for the total drop shape error obtained with the

proposed CLFM and with solely applying the equilibrium contact angle as a boundary

condition (ECA-BC), for different equilibrium contact angles. Note that the error ob-

tained with CLFM is larger for equilibrium contact angles below 90◦, and nearly equal

to that obtained with ECA-BC for θe = 90◦, since for this angle, which coincides with

the contact angle at drop release, the contact line force is zero. The error obtained

with ECA-BC increases dramatically for higher equilibrium contact angles, and the

drop even detaches from the solid surface when θe = 150◦, while with CLFM the error

turns out to be of a similar order for the whole range of contact angles considered, and

remains relatively low also for high equilibrium contact angles.

5.1.2 Drop depositions

To validate the proposed CLFM under dynamic conditions, several drop impacts onto

solid surfaces have been simulated for a wide range of Re and We numbers and different

wetting properties. For the sake of simplicity, a 2D axisymmetric domain will be used

in these tests. Table 5.1 summarizes the conditions of the different impacts simulated.

The air properties are assumed to be ρg = 1.25 kgm−3 and µg = 0.0182 mPa s.

In these tests, the boundary conditions, discretization schemes, and solution algo-

rithms are kept the same. For the discretization of gradient terms, the Gauss scheme is

used. For the convective term, the second-order upwind (LUD) scheme is used, which

uses an explicit correction based on the local cell velocity gradient. In the volume

fraction transport equation, a TVD scheme with a van Leer limiter function is used
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Table 5.1: Physical properties and drop impact conditions.

Test D0 [mm] U [m s−1] σ [mNm−1] Re We θe [◦] θa [◦] θr [
◦] Ref.

1 1.5 0.93 20.14 2 455 43 32 - - [20]
2 2.5 0.23 73 575 1.81 85.5 120 65 [137]
3 2.45 4.1 63 106 802 15.1 17 13 [153]
4 2.45 1.64 73 4 010 90 99.7 105 95 [153]
5 2 1 70 2 334 27 57 110 30 [120]

for the convection term, and a central differencing scheme for the artificial compression

term. For the temporal discretization, the first-order implicit Euler scheme is chosen.

For the resolution of the Navier-Stokes equations, the PISO algorithm is used with 3

corrections. The condition CFLmax < 0.2 is set for the calculation of the variable time

step. The GAMG solver with a DIC smoother is used for the pressure and velocity

terms, whereas the DILU smoother is preferred for the volume fraction terms.

Regarding the boundary conditions, at the solid boundary, the no-slip condition is

applied for the velocity and the pressure gradient is set to zero. At open boundaries,

i.e., top and lateral planes, the total pressure is set to zero and the static pressure

is calculated from the dynamic pressure using the velocity at the boundary, which

is obtained from the continuity equation if there is inflow and from the zero velocity

gradient condition if there is outflow. At the two planes normal to the azimuthal direc-

tion, vectorial quantities are rotated, preserving their magnitude, and scalar quantities

are linearly interpolated. On the axis of symmetry, the pressure and velocity gradients

are set to zero. The velocity field is initialized by imposing the corresponding velocity

vector (0, 0,−U) at cells whose volume fraction is greater than 0.

Test 1 is an impact of a heptane drop on a stainless steel surface [20]. An axisym-

metric computational domain of size 2.5D0 × 2.5D0 is used, where the center of the

droplet is initially set at a distance of 3D0/2 from the impact surface. Figure 5.3 shows

a comparison between the numerical results for the evolution of the spread factor us-

ing a mesh of 100 cpr. Two sets of simulations are presented: one using the proposed

CLFM and the other using the equilibrium contact angle boundary condition (ECA-

BC). Note that only the equilibrium contact angle value is available (θe = 32◦) and

there is no data on wettability hysteresis. To show the sensitivity of the results to the

value of θe used in the simulations, we compare in Fig. 5.3, as an example, the results

obtained for θe = 32◦ with those corresponding to a value not much different, of 40◦.

Note that small differences in θe produce appreciable differences in the results. In any

case, given that the accuracy of the experimental value of θe used is unknown and

considering that wettability hysteresis is not being taken into account, the differences

are not too significant except perhaps towards the end of the spreading process, when

the effect of θe is more appreciable. Figure 5.4(a) shows the dependence on the mesh

size of the numerical results of Fig. 5.3 for θe = 40◦. Note that the best agreement with

the experimental results is observed for the results obtained using the proposed CLFM
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Figure 5.3: Evolution of the spread factor for Test 1 in Table 5.1. Results obtained with the proposed
CLFM and with solely the boundary condition applied at the contact line based on the equilibrium
contact angle (ECA-BC) for two different values of this angle. Comparison with the experimental
results of Bussmann et al. [20].

and a mesh size of 100 cpr, as more quantitatively depicted in Fig. 5.4(b), which shows

the convergence of the radial error, εr, as a function of the mesh resolution. This error

is calculated, at t = 7 ms, as εr = |re−r|/re, where re is the experimental radius of the

lamella. The convergence for the contact line force model is now closer to 2nd order

than in the test of Fig. 5.2, whereas the solution does not converge when ECA-BC is

used.

In the remaining tests (2 to 5) shown in Table 5.1, the numerical results obtained

with the proposed CLFM are compared with those obtained using different DCA

models to solely impose a contact angle dependent on the contact line velocity ucl

as a boundary condition at the contact line. For this purpose, several DCA models

have been implemented in OpenFOAM, namely the Cox, Kistler, Shikhmurzaev and

Jiang models described in Section 1.3. The results will also be compared with those

obtained using the equilibrium contact angle to impose a boundary condition, without

taking into account wettability hysteresis or any other dynamic effect on the contact

angle. In all simulations, we used a computational domain of size 2D0×2D0, in which

the drop center was set at a distance of 2D0/3 from the impact surface, and, unless

otherwise stated, a mesh resolution of 50 cpr.

Test 2 corresponds to an impact of a water drop on a stainless steel substrate.

Surface wettability for water is experimentally characterized by the advancing and

receding contact angles θa = 120◦ and θr = 65◦, respectively. From these two values,

an equilibrium contact angle θe = 85.5◦ was determined using the correlation proposed
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Figure 5.4: (a) Same results as in Fig. 5.3 (numerical results for θe = 40◦) and three different mesh
sizes. (b) Radial spreading error as a function of mesh resolution.

by Tadmor [161]. The three values of θa, θr and θe are introduced into the DCA model

used in CLFM to reproduce the effect of surface wettability hysteresis.

Figure 5.5 shows the time evolution of the spread factor predicted by the proposed

CLFM and the alternative approach based on just imposing a boundary condition

at the contact line with different values for the contact angle. Note that the results

of CLFM agree with the experimental results appreciably better than those obtained

using any of the four DCA models considered or the equilibrium contact angle to

impose the boundary condition. CLFM is able to reproduce the drop receding after

t ≈ 10 ms better than the other models, thus yielding a better estimate of the spread

factor, closer to the experimental data. Figure 5.6 shows that the radial error obtained

with CLFM is substantially lower than those obtained with the other models during

most of the time of the spreading process.

Test 3 is an impact of a glycerin drop on a glass substrate. Figure 5.7 shows the

spread factor obtained with the different contact line models considered as a function

of the dimensionless time t∗ = tU/D0, along with the experimental results reported in

[153]. In the inertial regime, and before t∗ ≈ 1, all models predict the same evolution

of the lamella diameter except the ECA-BC, which oscillates around the experimental

data due to bubble entrapment at the advancing front rim. Subsequently, CLFM and

Kistler DCA-BC, which in this case give results that are in close agreement with each

other, provide the results that best fit the experimental data. Note, however, that

the Shikhmurzaev DCA model, when used to impose the boundary condition on the

contact line, and the proposed CLFM based on the same Shikhmurzaev model, whose

results are also in this case in close agreement with each other, predict better than the

Kistler model the behavior observed in the experiments that the contact line tends to

stop, without receding.
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Figure 5.5: Evolution of the spread factor predicted by the proposed contact line force model, and by
just imposing a boundary condition based on the equilibrium contact angle (ECA-BC) and several
DCA models (DCA-BC), for Test 2. Comparison with experimental results.
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Figure 5.6: Evolution of the radial error obtained in the simulations of Fig. 5.5, for Test 2.
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Figure 5.7: Results as in Fig. 5.5, for the drop impact of Test 3.

This better behavior at the end of the spreading process can be partly explained in

view of Figs. 5.8(a) and 5.8(b), which show the results for the dynamic contact angle

obtained with the proposed CLFM as a function of the dimensionless time and capillary

number, respectively. It can be observed from Fig. 5.8(a) how in the first instants after

impact the contact angles obtained numerically are below the experimental results. In

later instants, the numerical results reach a maximum that is observed to be delayed

in the experimental data. Later, in the interval 0.6 . t∗ . 4, the numerical results

agree better with experimental data, although some oscillations are observed in the

numerical results. Also for t∗ & 4, the numerical results for the Kistler model in

the CLFM begin to oscillate around a mean value near 80◦, and do not reproduce the

absolute minimum observed in the experiments. This disagreement could be expected,

since the measured receding contact angle is much higher than the corresponding static

value, θr, used in the Kistler model inside CLFM. The perturbations in the dynamic

contact angle, especially after t∗ ≈ 4, might be partly due to the very high ratio

between the viscosities of the two fluids: µl/µg ≈ 6.5 × 103 for this test compared

to µl/µg ≈ 55 for Test 2, which makes the PISO algorithm unstable, thus requiring

an increase in the number of iterations used to converge (from 3 to 20). They might

also be related to possible difficulties in locating the contact line and determining the

orientation of the interface on the wall when the contact angle is small. On the other

hand, the results for t∗ & 4 obtained when CLFM is used with the Shikhmurzaev

model show a better agreement with the experimental data up to t∗ ≈ 6, when the

dynamic contact angle begins to stabilize around a mean value of 60◦, still larger than

the measured minimum. This improvement might be due to a better prediction of the
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Figure 5.8: Evolution of the dynamic contact angle as a function of (a) the dimensionless time and
(b) capillary number (lines correspond to different dynamic contact angle (DCA) models) obtained
numerically in Test 3.
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contact angle for low Ca numbers, reached when the contact line is almost stopped,

as can be seen in Figure 5.8(b) for Ca . 0.1.

Figure 5.8(b) also shows the reasonable overall agreement between the dynamic

contact angle obtained using the proposed CLFM with two different DCA models and

the experimental data up to Ca ≈ 10, while the empirical correlations proposed in

[30, 70, 75] (Eqs. (1.10), (1.7) and (1.9), respectively) fit the experimental results rea-

sonably well only for small capillary numbers (Ca . 0.3). The computed θd values

underpredict the experimental ones up to Ca ≈ 0.2 and are above them in an approx-

imate range of Ca between 0.2 and 2, where the maximum values are reached. The

decreasing trend of the experimental data for θd after Ca ≈ 1 and the subsequent in-

crease for Ca & 10 are also reasonably well reproduced. For higher capillary numbers

(Ca & 20), there are no simulation data since the contact line velocity does not exceed

11 m s−1 at any time. Despite the above mentioned differences, the overall agreement

with the experimental data found in Test 3 is reasonably good.

Test 4 corresponds to the impact of a water drop on a wax substrate. It can be

observed from Fig. 5.9 that, due to the higher Re number compared to the previous

tests, all models are close to the experimental data, with small differences between

them, until t∗ ≈ 0.4, when Jiang DCA-BC and ECA-BC begin to overpredict more

clearly the diameter of the spreading lamella. Note that CLFM is the model that

better predicts the evolution of the spread after t∗ ≈ 0.7, particularly the maximum

spreading, whereas the Cox, Kistler and Shikhmurzaev models predict a delay of the

maximum spreading instant and then a receding stage that is considerably slower than

that observed in the experiments and predicted by CLFM (note that t∗ is in logarithmic

scale).

Test 5 corresponds to the impact of a drop on a stainless steel surface. The drop

liquid is water with sodium dodecyl sulfate at a concentration of 100 ppm by weight.

The surfactant addition results in a reduction of pure water viscosity (µl = 0.85 mPa s)

and density (ρl = 945 kgm−3), a surface tension σ = 70 mNm−1 and a wettability

characterized by the empirical contact angles shown in Table 5.1 [120]. Figure 5.10

shows the numerical results for the evolution of the spread factor. It can be observed

from the figure that, as in some of the previous tests, the results from ECA-BC and

Jiang DCA-BC deviate from the experimental results with a very considerable error

from the early stages of the impact. On the other hand, the rest of the models agree

better with the experimental data, but still with a radial error of between 10 and 15%.

Although the differences between the remaining models are small until t = 5 ms, after

that instant, CLFM approaches better the experimental data, whereas Cox and Kistler

models yield a higher radial error. The results obtained with CLFM and Kistler and

Shikhmurzaev models for the spreading drop diameter at the last instant simulated

are very close to the experimental value.
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Figure 5.9: Evolution of the spread factor in Test 4. Comparison between numerical results obtained
with different contact line models and experimental results.
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Figure 5.10: Results as in Fig. 5.5, for Test 5.
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Figure 5.11: Numerical results obtained with the proposed contact line force model and a mesh
resolution of 100 cpr for the drop impact of Test 5. Comparison with experimental results [120].

Figure 5.11 shows a comparison between the experimental and numerical results

for the drop shape at several instants after impact. The 3D representation is ob-

tained from the 2D axisymmetric using the post-processing software ParaView. The

agreement between the simulation results for the drop shape and contact angle and

the experimental ones is good. The numerical results also reproduce well the capil-

lary waves that undulate the drop surface. Also note the air bubble attached to the

substrate in the center of the droplet, which can be seen in both the numerical and

experimental results. At t = 2.6 ms, the diameter obtained with CLFM is appreciably

larger than that shown in the experiments. Note that the rebound motion predicted by

the numerical model at t = 6.2 ms is delayed with respect to the experimental image.

This is consistent with the faster receding velocity measured in the experiments, as

can be observed from Fig. 5.10. However, the subsequent acceleration of the receding

stage predicted by the numerical model makes the differences in the drop diameter and

shape to be reduced considerably, as can be observed at t = 10.2 ms from Figs. 5.10

and 5.11.
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5.2 Splashing drop impact

This section presents the experimental and numerical results of a drop impact on

a solid surface resulting in a splash. It consists of the impact of a water drop of

initial diameter D0 = 2.08 mm and properties µl = 1 mPa s, ρl = 1000 kgm−3 and

σ = 70.9 mNm−1, at a velocity U = 2.8 m s−1 (Re = 5826, We = 230), on a smooth

glass surface covered with a hydrophobic coating (Glaco Mirror Coat Zero, Soft 99

Ltd, Japan) that yields an equilibrium contact angle of about 160◦ for water. The

coating consists of a dispersion of silica nano-particles in an alcohol-based solution.

The experiments were performed using an apparatus similar to that described in

[117]. The water was injected into a needle from a syringe. The drops were released

from a height of about 0.4 m to obtain the desired impact velocity. Phantom v7.3 and

Photron NOVA S6 high-speed cameras were used. The images presented below were

recorded at 36,036 fps and using an exposure time of 25µs. Backlighting was provided

by four LED lamps with a total light output of 14,000 lumens.

The impact is simulated using a 3D computational domain of size 8D × 8D × 2D,

discretized using a root mesh of 48 × 48 × 12 cubic cells, which is statically refined

on two cylindrical regions centered at the coordinate origin, with their axis parallel to

the z axis (vertical direction) and four refinement levels. The first cylindrical region

has a diameter of 7.2D0 and covers an area 0 ≤ z ≤ 0.29D0, and the second has a

diameter of 1.44D0 and covers an area 0.29D0 ≤ z ≤ 1.15D0. The resulting mesh

has a maximum equivalent resolution of 50 cpr. The drop center is initially placed at

(4D0, 4D0, 0.55D0). Figure 5.12 shows a detail of the mesh cells around the contact

line where the force is applied and the force vector distribution.

The discretization and numerical schemes are the same as that used in Section 5.1.2,

except for the VOF method and the discretization scheme of the convective term in

the momentum equation, which have been changed in some simulations. The impact

surface is considered as a solid wall and the rest of the boundaries are open boundaries,

and therefore the same boundary conditions used in Section 5.1.2 apply.

Initially, the simulations were carried out using the proposed CLFM and the same

algebraic VOF method used in the previous tests. However, this yielded results in

which the front of the spreading lamella broke in a physically unrealistic way in the

first instants after impact, probably due to the numerical diffusion of the interface

introduced by the algebraic VOF scheme, especially in regions of high velocity gradi-

ents. As noted above, this prompted to consider using more accurate interface tracking

methods. The alternative chosen here is to use CLFM in conjunction with the VOF

method resulting from the isoAdvector-CLCIR combination proposed in Section 3.2.3,

once verified the good results obtained in terms of efficiency and accuracy shown in

Section 4.6.
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Figure 5.12: Detail of the volumetric contact line force distribution in the vicinity of the interface
(0.5-isosurface, black line) at t = 1 ms, in the simulation of Test 6. (a) Top view of a finger with
plotted contact line force vector orientation and magnitude. (b) Side view (cut plane AA) of the
finger showing the calculated interface angle, θ = 145◦, and the dynamic contact angle obtained from
Kistler’s model, θd = 162◦.

In all the simulations, the volume fraction tolerance was set to 1 × 10−6 and the

maximum number of bounding steps to 5. In CLFM, since the advancing and receding

contact angles are unknown, only the equilibrium contact angle θe = 160◦ is used.

When a second-order scheme is used to discretize the convective term in the mo-

mentum equation, a fingering in the spreading lamella has been found to occur soon

after the drop impact. This has been observed to happen with different second-order

schemes. Numerical dispersion errors are expected to be responsible for instabilities

that can lead to undulations in the lamella that may eventually cause its local thin-

ning and the formation of holes, not observed in the experiments, located between

the front of the spreading lamella and the center of the droplet. Especially when the

contact angle is high, and due to the high velocity near the wall, the holes tend to

grow due to the effect of the surface tension and the force applied on the contact line,

increasing their diameter and eventually breaking the liquid front. Another effect that

might be attributed to the instabilities is the overgrowth of the length of the fingers,

which tend to be thinner than that observed in experiments. To avoid these numerical

difficulties, after the onset of finger formation and the detachment of the first sec-

ondary droplets, the simulation is stopped at t ≈ 0.4 ms and the second-order upwind

scheme used in the discretization of the convective term is replaced by a much more

diffusive first-order upwind scheme. Obviously, it would be interesting to have a more

robust and accurate discretization scheme of the convective term, which would make

it possible to better reproduce the complex phenomena that appear during droplet



CHAPTER 5. RESULTS AND DISCUSSION 109

impact under the conditions considered. The complexity of the numerical simulation

of these phenomena is probably the reason why there are relatively few publications

with numerical results obtained for conditions leading to impact outcomes of similar

degree of complexity.

Figure 5.13 shows the comparison between the experimental and numerical results

obtained at four representative instants. Note that the images of the experiments are

taken from below, while the numerical results are shown from above in order to observe

more clearly the evolution of the fingers. At instant t = 0.3 ms, fingers are observed

in both the experimental and numerical results, although in the latter they are clearly

thinner than in the experimental pictures. There are also detached droplets in the

numerical results that are not visible in the experiments. At instant t = 0.5 ms, the

shape of the fingers obtained numerically is not much closer to that observed in the

experiments, and there are secondary droplets that were detached from the fingertips

at instants in between those of Figs. 5.13(a) and (b), in agreement with experiments.

At t = 1 ms, the numerical results show that the model is able to reproduce the finger

coalescence phenomenon observed experimentally. Note that both the numerical and

experimental results show that the fingerstips and the rim of the lamella increase

in size with time. The undulations of the free surface propagating from the center

towards the periphery of the drop observed experimentally are also reproduced in the

numerical simulations. However, the number and especially the size of the secondary

droplets are smaller in the numerical results, which is the main discrepancy between the

numerical and experimental results. At t = 1.3 ms, the finger shape and distribution

along the lamella front obtained numerically are very similar to those observed in the

experiments, with a difference of about 2 in the number of fingers. Note that fingers of

different sizes and shapes coexist in both the experimental and numerical results. On

the other hand, note also that in the experimental images there are a few secondary

droplets (exactly three) that have detached from the fingertips between the instants

corresponding to Figs. 5.13(c) and (d), whereas they do not exist in the numerical

results, which can surely be attributed to the first-order accuracy of the discretization

of the convective term in the momentum equation.

In addition to the above qualitative comparison, which has shown reasonable agree-

ment between numerical and experimental results despite the complexity of the flow,

a quantitative comparison is presented below. The experimental images are treated

with image processing software imageJ [64] in order to measure the outer, Dext, and

inner, Dinn, diameters defined by the tip and base of the fingers. The value of each

of these diameters is obtained as an average of several measurements. Similarly, these

diameters are obtained from the numerical results by measuring them on the 0.5-

isosurface representation obtained with the help of ParaView software. Figure 5.14

shows good agreement between numerical predictions and experimental measurements

for the evolution of the dimensionless inner and outer diameters. The only more ap-
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(a) t = 0.3 ms (b) t = 0.5 ms

(c) t = 1 ms (d) t = 1.3 ms

Figure 5.13: Comparison between the numerical results obtained with the proposed CLFM and
isoAdvector-CLCIR and experimental results in the splashing drop impact. In the numerical results,
the 0.5-isosurface is represented as viewed from above while the experimental images are taken from
below.
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Figure 5.14: Evolution of the spread in the splashing drop impact. Comparison between the numerical
results obtained with the proposed CLFM and isoAdvector-CLCIR, and the experimental results.

preciable discrepancy occurs for the last two instants of Figs. 5.13(c) and (d), for

which the numerically predicted outer diameter is below the experimental data, while

the agreement for the inner diameter is better for the whole time range considered.

It then turns out that the predicted finger size is slightly smaller than that obtained

experimentally.

The approach used in this work to promote finger onset is different from that

adopted by Bussmann et al. [20], which, as mentioned in Section 1.5, relies on imposing

a perturbation to the radial component of the velocity near the solid surface that

triggers fingering at the advancing front. The application of such a perturbation to

the flow is intended to reproduce numerically the effects caused by the instabilities

that give rise to finger formation, as described in Section 1.2.

The results obtained in this work are compared with those obtained with the ap-

proach used by Bussmann et al. [20] to promote fingering. For this purpose, the radial

component of the velocity near the solid surface, ur,up, is perturbed to act on the

spreading front of the lamella at t∗ = 0.1. Thus, the perturbed radial velocity is

obtained through

ur,p = ur,up

[
1 + Ap e

−Bp(z/D0)2 cos(N ϑ)
]
, (5.5)

where Ap is the amplitude of the perturbation at the impact surface (z = 0), which

is assumed to be 0.25; Bp is the rate of decay of the perturbation away from the

solid surface, which is selected to be 4000; N is the number of fingers; and ϑ is the

azimuthal coordinate. The velocity perturbation is applied at the first three layers

above the solid surface. To apply the perturbation on the velocity, the simulation is

stopped and then restarted.
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Since the upwind scheme does not cause perturbations that promote fingering, but

is capable of propagating them once they have been introduced, it is used through-

out the simulation along with CLFM and isoAdvector-CLCIR. However, it should be

noted that such a scheme will tend to inhibit secondary droplet detachment. Based

on the experimental data, the number of fingers imposed is N = 34 and the rest of

the conditions are kept the same as in the previous simulation. Figure 5.15 shows

the results obtained with the implementation of this approach (blue) compared to

those obtained with the one used in this work (green). Note that, at t = 0.3 ms,

the distribution of fingers along the advancing front of the lamella obtained when the

perturbation in velocity and a first-order upwind (UD) scheme are applied is evidently

very regular compared to that obtained when it is the less diffusive and more unstable

second-order linear upwind differencing (LUD) scheme that causes the onset of fin-

gering. At t = 0.5 ms, the numerical results obtained when initially using LUD (up

to t = 0.3 ms) show secondary droplets detached from the fingers, while the simula-

tion with first-order upwind differencing and use of a velocity perturbation shows no

secondary droplets. Despite this, the shape and size of the fingers at t = 1 ms and

t = 1.3 ms are very similar in both results, although the regularity is much higher in

the second case.

Figure 5.16 shows a top view of the isosurface contour in the horizontal midplane

cutting the fingers. The plane is located a small distance above the surface (∼ 3µm).

The numerical results obtained with the LUD-UD and UD-perturbation schemes for

the convective term in the momentum equation are compared with the mean diame-

ters Dinn and Dext, measured on the experimental images. The agreement with the

experimental results is good. The differences on the size of the fingers is very clear

at t = 0.3 ms, where those obtained with the LUD-UD approach are slightly larger

than the measured experimentally and than that obtained with UD-perturbation. The

secondary droplets detached from these fingers can also be observed at t = 0.5 ms. At

this instant, the size of the fingers in UD-perturbation is closer to the experimental

data. At instants t = 1 ms and t = 1.3 ms, the agreement between experimental

diameters and those given by LUD-UD is very good, especially for Dinn.
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(a) t = 0.3 ms

(b) t = 0.5 ms

(c) t = 1 ms

(d) t = 1.3 ms

LUD-UD UD-perturbation

Figure 5.15: Comparison between the numerical results for the splashing drop impact obtained using
a LUD scheme up to t = 0.3 ms (green, left column) and a UD scheme with a perturbation in the
radial velocity (blue, right column).
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(a) t = 0.3 ms (b) t = 0.5 ms

(c) t = 1 ms (d) t = 1.3 ms

LUD-UD

UD-perturbation

Dext

Dinn

Figure 5.16: Top view of the isosurface contour at the mid-horizontal plane cutting the fingers,
obtained with LUD-UD and UD-perturbation. The black lines represent the experimental diameters
Dinn and Dext.



Chapter 6

Conclusions and future work

6.1 Conclusions

A numerical study of the flow resulting from the impact of drops on solid surfaces

has been carried out, with special emphasis on the analysis of the contact line dy-

namics. For this purpose, different aspects of the problem have been addressed: the

discretization schemes used for solving the Navier-Stokes equations, in particular for

the convective term in the momentum equation; the alternatives of using an algebraic

or geometric type VOF method of interface tracking; the algorithms used for the re-

construction and advection of the interface within the geometric type VOF method;

different possible models to reproduce the contact line dynamics; and other com-

putational aspects, in particular the chosen mesh. These aspects have been analyzed

making use of the general purpose code OpenFOAM. Some methods used were already

available in the code (the MULES algebraic VOF method and the advection algorithm

of the isoAdvector geometric VOF method); others, already existing, had to be imple-

mented (CLCIR reconstruction algorithm and isoap surface extraction method); and,

as regards the contact line model, which is the main contribution of the present work,

a new model (contact line force model, CLFM) has been proposed and implemented,

and compared with other models that have also had to be implemented in OpenFOAM.

The above has provided an analysis of the suitability of the proposed contact line

model and OpenFOAM for the simulation of the complex phenomena that may arise in

drop impacts for impact conditions leading to different flow patterns, from deposition

to splashing.

Different VOF-type interface tracking methods have been analyzed. On the one

hand, the capabilities of the algebraic VOF method used by default in interFoam have

been assessed, having found limitations to simulate drop impacts that give rise to

outcomes different from a simple deposition. On the other hand, some alternative

advection and reconstruction algorithms have been assessed for use in a geometric

VOF method to improve the performance of the algebraic method. A number of

kinematic and dynamic tests have shown that a combination of the advection algorithm

115
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used in isoAdvector and the CLCIR reconstruction algorithm provides an adequate

balance between accuracy and computational efficiency, not only for analyzing the

type of flow under study, but probably even more complex flows demanding higher

computational resources. Through the tests, an analysis of the parameters influencing

the performance of the algorithms was also carried out.

A contact line force model has been proposed to reproduce the dynamics of the

contact line on solid walls. Its main contribution lies in the fully three-dimensional

character, which allows its use in the numerical simulation of drop impacts on solid sur-

faces other than simple deposition (e.g., involving fingering and splashing), and which

has enabled good reproduction of experiments to be achieved. The development of a

3D model entails additional difficulties to those of 2D models, such as the calculation

of the contact line velocity and the introduction of an appropriate force distributed

along the contact line, aspects that become more relevant at complex interfaces, such

as those arising in drop impacts resulting in splashing. Another improvement has been

to assume that the force on the contact line depends on the local deviation of the cal-

culated contact angle from that predicted by a dynamic contact angle model for the

calculated contact line velocity, which takes into account wettability hysteresis. This

force is applied at wall cells in the vicinity of those containing the interface, which is

defined by a 0.5-isosurface obtained from the VOF distribution. When an algebraic

VOF method is used in the numerical simulations, and given the diffuse nature of the

interface, an interface reconstruction step is used to find the interfacial wall cells. In

addition, the interface contact angle is calculated from the 0.5-isosurface orientation,

which yields a more accurate value than that obtained from the volume fraction gradi-

ent. As already mentioned, the deviation of the angle calculated in this way from that

prescribed by a given dynamic contact angle model is used to determine the contact

line force. The force model is used while also imposing a boundary condition on the

wall for the fluid volume fraction, based on the contact angle prescription. The latter

is essentially equivalent to taking into account the prescribed interface orientation at

the wall when calculating the interface curvature used to determine the surface tension

force in the CSF method.

A detailed analysis of the sensitivity and validity of the proposed contact line force

model has been carried out by simulating several axisymmetric drop impacts on solid

surfaces in a wide range of Reynolds and Weber numbers. The results compare fa-

vorably with those obtained with other contact angle models. Also, the introduction

of the contact line force substantially improves the ability of the numerical model to

reproduce the interfacial dynamics observed in several experimental tests from other

authors.

The proposed contact line force model has been applied along with the VOF method

consisting of the selected combination of reconstruction and advection algorithms to

simulate the impact of a drop on a hydrophobic surface with a high contact angle. The
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numerical simulation has been proven to reproduce with reasonable agreement the fin-

gering and splashing phenomena observed in the experimental results. The numerical

results were shown to be highly sensitive to the scheme used in the discretization of

the convective term of the momentum equation. As in previous work by other authors,

it has been found that a first-order upwind scheme cannot trigger finger growth, so its

use requires introducing a velocity perturbation to achieve it. Even so, with the mesh

sizes used, it has not been possible to achieve secondary droplet detachment from the

fingertips, although the shape, size and number of fingers are reproduced quite well

at all times. On the other hand, second-order schemes such as LUD do predict finger

formation in adequate number without the need for any perturbation, but the fingers

are appreciably thinner than those observed experimentally, and thus the secondary

droplets detached from them are smaller in size than those generated in the experi-

ments. The combination of first- and second-order schemes at different stages of the

drop impact and lamella spreading processes allows the shape and size of the fingers

to end up very close to those observed experimentally.

6.2 Future work

The following are some topics that would be of interest for further research:

• It would be desirable to address the limitations of the proposed contact line force

model related to the dependence of the model on the experimental values of

the contact angle, values about which, moreover, there is often uncertainty. In

addition, the evolution of the receding stage needs in-depth analysis to find better

estimates of the dynamic contact angle that can be used in the proposed CLFM.

• The influence of the discretization scheme of the convective term in the momen-

tum equation on the fingering pattern and secondary droplet detachment, and

the development of more accurate schemes, requires further investigation.

• The effect of surface irregularities produced by the superhydrophobic coating

should be analyzed.

• A full implementation in OpenFOAM of the gVOF advection methods and their

parallelization with the MPI application would allow a comparison of advection

methods under similar execution conditions. It would also be desirable to improve

the implementation of the reconstruction methods to avoid data duplication and

thus increase their computational efficiency. Since the isoAdvector-CLCIR com-

bination has been shown to give very accurate results at low computational cost,

further modifications of these methods could improve the overall performance of

such a combination, particularly for high values of CFL, for which the advection

method loses accuracy.
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• A hybrid implementation of parallelization of the reconstruction methods us-

ing both MPI and OpenMP applications, with each MPI process using multiple

threads, would be desirable for future code enhancements. It is expected that this

could significantly reduce computational time, thus allowing much more complex

problems with finer mesh resolutions to be solved, with a small increase in com-

putational resource demand.

• The instabilities that arise in the impact of a drop of high viscosity and its rela-

tionship with the hysteresis of the static contact angle require further research.
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[153] Š. Šikalo, H. Wilhelm, I. Roisman, S. Jakirlić, and C. Tropea. Dynamic contact
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