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ABSTRACT

Over the past few decades, biomedicine and neuroscience have seen significant growth due

to advances in "omics" technologies like genomics, proteomics, and metabolomics, as well as

improvements in advanced imaging and deep phenotyping. These advances have generated

large, multimodal datasets, prompting the development of platforms to manage biomedical

research data. Nonetheless, the integration of these diverse data sources into actionable

outputs remains a technological challenge. Bio-ontologies have emerged as critical tools

to address this issue, providing a robust framework for data organization, integration, and

interpretation. They have also fostered collaboration and knowledge sharing. Concurrently,

advancements in graph database technologies have offered more natural representation

models and enhanced querying capabilities for interconnected data.

Knowledge Graphs (KGs) constitute a key development in semantic and knowledge

modeling, particularly suited for the biomedical domain. Using a graph-based data model,

KGs integrate and manage large-scale data from various sources, such as molecular

biology, drugs, and disease characterization databases. These graphs link key biomedical

entities and their relationships, overcoming data dispersal issues and enabling unified,

comprehensive research. In addition, graph-based analytics and machine learning have

become essential tools for analyzing complex biological data.

Despite technological progress, the adoption rate among research groups is low, mainly

due to the steep learning curve associated with these advanced technologies. Many

implementations are either ad-hoc or domain-specific, restricting broader applicability and

data sharing. There is a pressing need for more flexible and universally applicable solutions.

This work focuses on the challenges of multimodal data integration in neuroscience and

Dementia research. By utilizing semantic models and Knowledge Graphs, we aim to ease

the different aspects of interconnecting data entities and artifacts from different research

sources. To achieve this, we examine new frameworks and tools across three studies,

marking a shift towards data-intensive and integrative applications.

Across this investigation, we present a semantic framework for aligning multidomain

biomedical ontologies with research data and show that current graph database management

systems can effectively support data-intensive applications in both research and clinical

environments. Building on this, we introduce the DemKG framework, a toolkit that facilitates
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Knowledge Graph creation and the incorporation of study-specific data, concentrating on

Dementia research. Finally, the framework is applied in multiple real-world scenarios to

demonstrate its advantages in leveraging interconnected knowledge, ranging from executing

expressive graph queries to employing graph embedding techniques, thereby illustrating its

relevance for addressing potential questions of interest in Dementia research.

KEYWORDS: Knowledge Graphs, Biomedical ontologies, Semantic Web, Graph

databases, Knowledge Representation, Dementia
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RESUMEN

En las últimas décadas, campos como la biomedicina y la neurociencia han avanzado

notablemente, impulsados tanto por tecnologías "ómicas" —genómica, proteómica,

metabolómica— como por mejoras en técnicas de imagen y fenotipado de alta resolución.

Estos progresos han generado vastos conjuntos de datos multimodales, lo que ha llevado a

la necesidad de crear plataformas especializadas para la gestión de datos biomédicos. La

unificación de estos conjuntos de datos para obtener resultados prácticos continúa siendo

un desafío tecnológico. Las ontologías biomédicas se han establecido como herramientas

esenciales para enfrentar este desafío, ofreciendo un marco sólido para la organización,

integración e interpretación de datos. Además, han facilitado la colaboración y el intercambio

de conocimiento. De forma simultánea, los avances en tecnologías de bases de datos

de grafos han proporcionado modelos de representación más intuitivos y capacidades

mejoradas para consultar datos interrelacionados.

Los Grafos de Conocimiento (KGs por sus siglas en inglés) representan un avance

crucial en el modelado semántico y de conocimiento, con aplicaciones particularmente

relevantes en el ámbito biomédico. Mediante un modelo de datos basado en grafos,

los KGs facilitan la integración y gestión de extensos conjuntos de datos provenientes

de diversas fuentes, tales como biología molecular, farmacología y bases de datos de

enfermedades. Estos grafos enlazan entidades biomédicas importantes y sus respectivas

relaciones, mitigando así problemas como la fragmentación de datos y posibilitando un

enfoque de investigación más cohesivo e integral. Asimismo, al emplear este tipo de

estructuras pueden explotarse junto a métodos analíticos y de aprendizaje automático

orientados a grafos, que se están consolidando como herramientas fundamentales para el

análisis de datos biológicos complejos.

A pesar del avance tecnológico, la adopción de estas tecnologías en grupos de

investigación sigue siendo limitada, en gran parte debido a la empinada curva de aprendizaje

que conllevan. Esta situación resulta en implementaciones ad-hoc o circunscritas a dominios

específicos, lo que restringe una aplicación más generalizada y el intercambio eficaz de

datos. En consecuencia, surge una necesidad creciente de soluciones que sean abiertas,

flexibles y de aplicación universal.
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Este trabajo aborda los desafíos inherentes a la integración de datos multimodales en

los ámbitos de la neurociencia y la investigación sobre demencia. Mediante el uso de

modelos semánticos y grafos de conocimiento, aspiramos a lograr una representación más

intuitiva de los datos biomédicos. A través de tres estudios, evaluamos herramientas y

marcos emergentes con el objetivo de catalizar un cambio hacia aplicaciones que sean

tanto integrativas como intensivas en el uso de datos.

A lo largo de la investigación, introducimos un marco semántico para alinear ontologías

biomédicas multidominio con datos de investigación y demostramos cómo los sistemas de

gestión de bases de datos de grafos pueden facilitar aplicaciones intensivas en el uso de

datos en contextos tanto clínicos como de investigación. En este contexto, presentamos

DemKG, un conjunto de herramientas diseñadas para simplificar la creación de Grafos

de Conocimiento y la integración de datos de investigación, con un enfoque particular

en la investigación sobre demencia. Finalmente, implementamos estas herramientas en

diversos escenarios prácticos para evidenciar su utilidad en la generación de conocimiento

interconectado, desde la realización de consultas de datos expresivas basadas en grafos

hasta la aplicación de técnicas de embeddings de grafos, subrayando así su relevancia para

abordar cuestiones críticas en la investigación de la demencia.

PALABRAS CLAVE: Grafos de Conocimiento, Ontologías biomédicas, Web

Semántica, Bases de datos de Grafos, Representación del Conocimiento, Demencia
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Chapter 1

Introduction

1.1 Research Context

The emergence of omics technologies, such as genomics, transcriptomics, and proteomics,

has had a transformative impact on biomedical research [Manzoni et al., 2018, Misra

et al., 2019, Glaab et al., 2021, Sun et al., 2011, Lussier and Liu, 2007, Che and Liu,

2017, Che et al., 2015]. These technologies produce a variety of data types, from DNA

sequences to gene expression profiles and protein interactions. Alongside, advances in

imaging techniques like magnetic resonance imaging (MRI), functional magnetic resonance

imaging (fMRI), and Positron Emission Tomography (PET) modalities offer anatomical and

functional data, while clinical data gathering provides patient histories, biomarker levels, and

treatment outcomes. Lab tests contribute additional layers of data, such as blood chemistry

and cellular pathology, and phenotyping adds observable traits and characteristics. In this

context, the field of Dementia research stands as a clear example of a complex, multimodal

research environment. Dementia, along with other neurodegenerative diseases, presents a

multifaceted landscape where a variety of factors contribute to the onset and progression of

the condition. The techniques mentioned above have been applied for years to study a range

of factors, including genetic predispositions [Del-Aguila et al., 2018, Leonenko et al., 2019,

Creese et al., 2021], cardiovascular health [Brain et al., 2023], immune system responses

[Peralta Ramos et al., 2022, McManus, 2022], and environmental influences [Killin et al.,

2016, Zhao et al., 2021], typically as part of distinct research endeavors. This multimodal

environment offers a comprehensive perspective on intricate biological systems, prompting

a more integrated approach to disease understanding, as shown in Figure 1.1.

However, this wealth of data introduces its own set of challenges. In many research

settings, it is common to navigate through spreadsheets and files from different modalities,

where researchers are often left to manage and process data in an ad-hoc manner. This

fragmented approach to data management can lead to inefficiencies and errors, hindering

1



2 1.1. Research Context

Figure 1.1: A visual representation of the complexity scaling in interactions among biomedical
entities.

the potential for integrated analyses. To mitigate these difficulties, several research data

management systems have been developed [Izzo, 2016], such as RedCap [Harris et al.,

2019] for secure data collection, the eXtensible Neuroimaging Archive Toolkit (XNAT) [Marcus

et al., 2007] for neuroimaging data, the Collaborative Informatics and Neuroimaging Suite

(COINS) project [Scott et al., 2011] for neuroimaging data storage and retrieval, and the

eXTENsible platform for biomedical Science (XTENS) [Corradi et al., 2009, Izzo, 2016]

for managing heterogeneous biomedical data. Research data management systems offer

the advantage of centralized storage, structured metadata, and streamlined data retrieval,

thereby enhancing data integrity, facilitating collaboration, and expediting the analytical

process.

Another significant challenge lies in the standardization of data and terminology, which is

crucial for interoperability among different data types and research platforms. Inconsistent
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nomenclature and varying data formats can impede multimodal data integration, leading

to analytical inaccuracies and inefficiencies. Ontologies offer a solution to this problem by

clearly defining the shared terminology and relationships between concepts within a specific

domain. Their technological evolution is closely related to the evolution and proliferation of

the Semantic Web, which developed technologies like Resource Description Framework1

(RDF) and Web Ontology Language2 (OWL) to encode these structures, enhancing their

accessibility and interpretability.

In biomedicine, bio-ontologies offer standardized vocabularies that improve data

representation and structure biomedical knowledge. These ontologies simplify the semantic

integration of varied datasets, leading to more accurate analyses. Acting as a shared

language, they streamline the merging of data from multiple sources, thereby improving

both the quality and utility of the resulting analyses. This role is pivotal for advancing

integrative research and contributing to new discoveries in biology and biomedicine. Given

their wide adoption in the field, ongoing community efforts aim to maintain and standardize

the development of these ontologies. Notable initiatives include the Open Biological and

Biomedical Ontologies (OBO) Foundry [Jackson et al., 2021] and the National Center for

Biomedical Ontology (NCBO) [Musen et al., 2012], along with its BioPortal [Whetzel et al.,

2011].

Ontologies and the Semantic Web are closely related to graph models as a knowledge

modeling approach. Formally, a graph G(V,E) is composed of an ordered pair of two

disjoint sets: vertices V (also referred to as nodes) and edges E (also referred to as link

or relations) [Bollobás, 1998]. This abstraction directly translates concepts and instances

into nodes and their relationships into edges. In the context of the semantic web, the RDF

graph model employs a subject-object-predicate triple format, naturally resulting in a graph

structure where subjects and objects become nodes, and predicates serve as the edges

that connect them. Triple-stores, designed to store these RDF triples, act as specialized

databases that extend the capabilities of the semantic web for efficient storage and querying.

Beyond triple-stores, other graph models like Labeled Property Graphs (LPG) offer additional

flexibility, especially for annotating edges. Native graph databases like Neo4j3 or TigerGraph4

maintain an explicit graph model, proving efficient querying and data retrieval. This storage

approach also enables the application of graph analytics techniques, which can uncover

hidden relationships, identify clusters, and perform complex traversals. These techniques

enrich the semantic integration and analysis initiated by ontologies and the semantic web,

1https://www.w3.org/TR/rdf11-primer/
2https://www.w3.org/TR/owl2-primer/
3https://neo4j.com/
4https://www.tigergraph.com/
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serving as a complementary technology that enhances the utility and scalability of integrated

analyses across different data modalities.

The rise of large interconnected datasets, coupled with advancements in graph models

and databases, has paved the way for the conception of Knowledge Graphs (KGs) [Hogan

et al., 2021] and has become another hallmark of semantic and knowledge modeling

advances. After Google introduced its Knowledge Graph in 20125, highlighting the

advantages of the approach, KGs have gained significant traction in industry and academia

[Sheth et al., 2019, Ehrlinger and Wöß, 2016]. Conceptually, KGs use a graph-based data

model to capture knowledge in application scenarios that involve integrating, managing,

and extracting value from diverse sources of data at a large scale [Noy et al., 2019]. Given

that biological systems are frequently conceptualized as networks or graphs [Barabasi and

Oltvai, 2004, Barabási et al., 2011], KGs are particularly well-suited for this domain. In

such graphs, nodes correspond to key biomedical entities, while edges define the various

relationships among them. The biomedical field is rich in open databases that offer scientific

knowledge from various subdomains, including molecular biology (genomics, proteomics,

and pathways), drugs, and disease characterization. These sources hold the potential for a

more comprehensive understanding of biomedical phenomena; however, their value is often

hindered by their dispersal across different platforms. KGs have emerged as instrumental

tools for integrating and exploiting these disparate sources [Nicholson and Greene, 2020],

fostering a multitude of projects that aim to unify the spread-out biomedical knowledge.

Relevant examples of large biomedical KGs are the Monarch Integrated Knowledge Graph

[Mungall et al., 2017], the Clinical Knowledge Graph (CKG) [Santos et al., 2022], PrimeKG

[Chandak et al., 2023], and the Scalable Precision Medicine Open Knowledge Engine

(SPOKE) [Morris et al., 2023].

With the growing proliferation of KGs, both social and technical challenges have become

apparent, notably in the areas of entity naming and graph representation standardization

[Badal et al., 2019, Chaves-Fraga et al., 2019]. In response to these challenges, the

Biolink Model [Unni et al., 2022] has been developed as a high-level schema offering

standardized terminology and relationships for biological entities, facilitating data organization

in biomedical KGs. Biolink not only unifies data from diverse sources but also acts as an

intermediary between different ontological domains. Parallel to the OBO initiative but focused

on KGs, the KG-Hub project [Caufield et al., 2023] contributes a suite of tools and libraries

for constructing interoperable KGs, along with mechanisms to encourage their reuse.

In summary, the increasing adoption of KGs, as evidenced by scientific research and

various technological initiatives, indicates their expanding role in the biomedical domain.

5https://blog.google/products/search/introducing-knowledge-graph-things-not/
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This trend presents multiple opportunities for further investigation and contributions to the

evolving field.

1.2 Research gaps and hypothesis

As introduced in the previous section, the construction and adoption of KGs in the biomedical

domain are rapidly increasing, with several examples of relevance in the context of large,

curated biomedical KGs that we further describe below.

• The Monarch Initiative is a collaborative, open science effort that aims to semantically

integrate genotype, phenotype, and disease knowledge from a large variety of sources

into a KG in support of improved diagnostics and mechanism discovery through various

algorithms and tools. Its purpose is to provide a breadth of knowledge unavailable

from individual sources and enable diverse user profiles to explore relationships

between phenotypes and genotypes across species. Monarch connects phenotypes to

genotypes across species by organizing and harmonizing the heterogeneous genotype-

phenotype data found across clinical and organism model resources, creating a unified

overview of this rich landscape of data sourcesmaking extensive use of bio-ontologies

and actively maintaining some, like the Mondo Disease Ontology [Vasilevsky et al.,

2022].

• Built on Neo4j, CKG is an open-source platform that integrates a diverse array of

omics data, including genomics, transcriptomics, proteomics, and metabolomics, into

a single, coherent graph structure. Instead of using a standard data model, CKG

opts for an in-house data model, selecting specific concepts and relationships from

particular ontologies grouped in self-defined higher-level concepts. Additionally, CKG

enhances its KG with integrated statistical and machine learning algorithms to optimize

the analysis and interpretation of common proteomics workflows.

• PrimeKG is another multimodal KG aimed at precision medicine analyses. Like its

counterparts, it integrates a plethora of resources to describe a broad spectrum of

diseases with relationships across major biological scales. PrimeKG sets itself apart

from other disease-focused KGs in a few key ways. It offers broader disease coverage,

includes detailed drug-disease relationships like indications and contraindications, and

spans a wide range of conditions from rare to prevalent, unlike other graphs that may

focus exclusively on one or the other. Similarly to CKG, PrimeKG employs a custom

data model consisting of 10 node types, some of which include imported ontology

terms and 30 types of undirected edges. It is provided in a platform-agnostic CSV

format, consisting of triplets that include source nodes, relations, and target nodes.



6 1.2. Research gaps and hypothesis

• SPOKE is a biomedical KG that connects information from 41 biological data sources,

structured as 21 different node types and 55 edge types, ranging from low-level

molecular biology to pharmacology and clinical practice. It uses 11 different ontologies

to organize the data semantically meaningfully and, in its last iteration, also integrates

the Biolink model whenever it is found to be practical. Aside from Monarch, SPOKE

is one of the most semantically expressive KGs available. It is implemented as a

Neo4j database built from a collection of Python scripts and provides a graphical user

interface and a REST API for end-user access.

While these examples, along with the literature, show remarkable advantages, we

can identify relevant gaps that call for further investigation, especially in the case of their

application in Dementia research:

1. Expressiveness and Standardization: Most current KGs often resort to less

expressive, ad-hoc implementations. These models frequently introduce broader

categories defined in-house, without relying on established upper models or reference

ontologies. This approach limits the semantic richness and interoperability of the data.

2. Extensibility and Customization: Many existing solutions are designed as fixed

outcomes, offering limited options for extension or customization. This rigidity impedes

the adaptability of these systems to evolving research needs and technological

advancements.

3. Research Data Integration: There is a noticeable absence of mechanisms for

integrating source research data into existing KGs. This shortfall largely stems from the

predominant focus of most solutions on serving as external platforms for knowledge

retrieval or interaction. However, this limitation is especially relevant for research

groups interested in augmenting the knowledge within their datasets or leveraging

graph-based analytics and machine learning.

4. Terminological Limitations in Dementia Research: Although numerous ontologies

aim to encompass Dementia and Neurodegenerative Diseases, recent shifts in the

field reveal gaps that require attention to better align with biomarker-based analyses.

5. Platform Dependency: Some solutions are tightly coupled with specific platforms,

limiting their applicability and hindering their adoption across different computational

environments.

To address the aforementioned research gaps, this study formulates the following specific

hypotheses:
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H1 Employing a more expressive knowledge model that leverages reference ontologies and

upper models can significantly improve the semantic richness, interoperability, and

utility of biomedical KGs, particularly in the context of Dementia research.

H2 Introducing extensibility and customization features into the design of biomedical KGs

will enhance their adaptability, making them more aligned with evolving research and

technological landscapes.

H3 The integration of source research data into KGs, facilitated by a robust methodological

framework, will lead to more comprehensive and actionable insights in biomedical

research.

H4 Addressing the terminological limitations specific to Dementia research through

dedicated extensions or adaptations of existing ontologies will result in a more accurate

and effective knowledge representation.

H5 The availability of platform-agnostic KG implementations could expand their reach and

acceptance for greater integration and collaboration within the biomedical research

community.

These hypotheses form the basis for the proposed research, aiming to address the gaps

mentioned above through the development and evaluation of a comprehensive, extensible,

and semantically rich KG framework tailored for biomedical and, more specifically, Dementia

research.

1.3 Research objectives

In accordance with the hypotheses formulated, the main objective of this thesis is to design

and implement a modular unifying framework that addresses the identified limitations by

providing flexible means for exploiting KGs in the context of Dementia research. This

framework will use a solid ontological knowledge model as its foundation by integrating

widely accepted biomedical ontologies, employing tools designed to allow flexibility and

customizations, and providing means to incorporate research data with a low usage barrier.

To approach this endeavor, we define the following research objectives (RO).

RO1 Investigate and evaluate the available biomedical ontologies, considering their scope,

implementation, design principles, and ease of alignment in the context of a more

extensive knowledge model.

RO2 Identify possible gaps in the target terminology regarding Dementia research.
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RO3 Study the general approaches to the problem of harmonizing semantic expressiveness

with raw data and propose an integrative framework.

RO4 Determine the most appropriate current technologies for constructing, manipulating,

and querying graph models for biomedical research data.

RO5 Design a flexible means to integrate the outputs of the previous objectives to produce

biomedical KGs.

RO6 Validate such framework with real-world Dementia research data from several angles,

specifically emphasizing modeling and querying capabilities and state-of-the-art ML

approaches.

1.4 Research plan

We introduce a specific research plan that serves as a concrete roadmap to achieve the

ROs and, ultimately, materialize the main aim of this work described above. The plan is

designed to be modular and iterative, allowing for adaptability in response to emerging

findings and technological advancements. It encompasses a range of activities, from the

initial investigation of methodological frameworks and terminological foundations to the

eventual evaluation of real-world data. Due to the interconnected nature of the objectives,

individual components of the plan often address multiple facets that span different research

objectives, ensuring a unified yet thorough exploration of the topic. The primary tasks of the

plan are as follows.

T1 Design a modular, scalable methodological framework to approach the problem of

terminology selection and alignment to integrate semantic technologies into existing

neuroimaging and biobanking systems.

1. Follow a layered architecture to incorporate schemas, ontologies, and services.

2. Enable solid and straightforward means for integrating research data management

platforms into extract-transform-load (ETL) pipelines for semantic research data

integration.

T2 Create ontological extensions specifically crafted to facilitate detailed Dementia research

data analysis.

1. Identify gaps in the existing terminology and propose extensions to address them,

and reusing relevant classes when necessary.

2. Follow ontology design patterns for newly defined terms.
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3. Align the proposed extensions with existing ontologies and upper models.

4. Employ modular building methods to streamline the ontology implementation life

cycle.

T3 Develop a low-code transformer module to simplify the data integration process, making

the framework accessible to researchers with varying levels of expertise.

1. Implement transformations following the proposed design patterns.

2. Introduce a data descriptor template to couple with usual research outcome data

artifacts.

T4 Implement a flexible graph builder able to obtain, transform, and merge sparse ontology,

knowledge, and data annotation sources while providing a friendly means for extension

and customization.

1. Ensure consistent knowledge merging by employing consistent ID mechanisms.

2. Provide platform-independent KG serialization formats.

3. Employ configuration files to guide the different building steps to limit the need for

extra development efforts.

T5 Evaluate the applicability of Graph Database Management Systems (GDBMSs) in

Biomedical Research and the context of the framework.

1. Conduct a comprehensive assessment of existing GDBMSs, comparing them

with Relational Database Management Systems (RDBMSs) and other NoSQL

engines regarding scalability, query languages, and efficiency.

2. Identify scenarios within the biomedical domain where GDBMSs offer advantages,

focusing on datasets with complex relationships.

3. Assess the performance of GDBMSs in relationship-centric searches, such as

path traversals, and compare it with other database systems.

4. Examine the evolution of GDBMS technology to identify its readiness for

deployment in both small prototypes and large, production-ready projects.

T6 Evaluate the framework with real-world Dementia research data.

1. Investigate the effectiveness of the different design patterns.

2. Use GDBMSs to execute different querying scenarios involving biological data at

different levels of complexity.
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3. Use currently available graph processing libraries to compute metrics and

embedding methods and apply them to answer potential questions of interest in

the field of Dementia research.

We address all tasks and therefore objectives in a series of three published articles.

In the first article, "Extending XNAT Platform with an Incremental Semantic Framework,"

[Timón et al., 2017], we present an Incremental Semantic Framework that addresses the

challenge of semantically annotating research data across three levels of abstraction while

retaining pertinent metadata in research data management systems. The framework is

applied to the XNAT neuroimaging platform through multiple use cases. This article fulfills

the initial task T1 and part of T6 in the research plan, targeting RO1 and partially RO6.

It concentrates on the methodology for ontology design and the foundational aspects of

research data instantiation.

The second article, [Timón-Reina et al., 2021], provides a narrative review of the

application of GDBMSs in biomedical data. It explores the different available GDBMS

technologies, assesses their performance, and examines how the research community

utilizes them. This article covers RO5 and T5 of the research plan.

In the third and final article of this thesis, [Timón-Reina et al., 2023], we present DemKG

as the culminating result of the research. The article outlines the methodology employed,

sources of knowledge, modular component implementation, and use cases for validation.

This contribution fulfills tasks T2, T3, T4, and T6 in the research plan, addressing RO2, RO3,

RO4, and RO6.



Chapter 2

Methods

This thesis is framed at the intersection of several domains, particularly within Knowledge

Representation (KR), its storage, the modeling and transformation into KGs, and their

application in Dementia research. Thus, our work engages with and extends real-world

Dementia research projects, key research areas, and technologies. This section discusses

these materials and our methodological approach.

First, we detail the research data sources that underpin the primary motivation of this

thesis, providing an overview of their origins and the data modalities that serve as inputs for

the following modeling. The subsequent section elaborates on the data capture strategies

and the data management system that serves as the central repository for later research

stages. We then describe the open-source tools integral to the framework’s implementation.

Following this, we discuss the methodological approach underlying our ontology extensions

and then present the final semantic model. The section concludes with an overview of the

software implementations that constitute the full functionality of the DemKG framework.

2.1 Source study research data

This research is conducted in collaboration with the Neurology department at Akershus

University Hospital and aligns with the objectives of the Dementia Disease Initiation (DDI)

and Precision Medicine Interventions in Alzheimer’s Disease (PMI-AD) projects [Fladby

et al., 2017]. The DDI study, a longitudinal observational initiative involving all Norwegian

health regions and university hospitals, aims to identify early biomarkers for individuals at

risk of developing Dementia. The cohort comprises individuals who have either self-reported

cognitive decline or have been referred from memory clinics, along with healthy controls

sourced from spouses and family of patients. Data collection involves both clinical and

biomarker assessments. Clinical data is captured using a Case Report Form (CRF) that

includes medical history, physical and neurological examinations, cognitive assessments,

11
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and the Geriatric Depression Score (GDS) [Mitchell et al., 2010]. The cognitive assessments

encompass the Mini-Mental State Examination (MMSE-NR) [Kurlowicz and Wallace, 1999],

clock drawing test [Mainland and Shulman, 2017], the Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD) word list test [Fillenbaum and Mohs, 2023], VOSP silhouettes

[Quental et al., 2013], psychomotor speed, Trail making A and B [Bowie and Harvey, 2006],

and Controlled Oral Word Association Test (COWAT) [Benton et al., 1994]. Biomarker data

is obtained from cerebrospinal fluid and blood samples, yielding measurements of proteins,

enzymes, and cells pertinent to biological functions like amyloid metabolism, innate immune

response, and synaptic activity. MRI scans are conducted for all subjects, and when available,

FDG-PET and amyloid PET scans are also performed. The amassed data necessitates

robust storage solutions for efficient management, querying, and retrieval.

These studies serve as both the conceptual foundation for the developments proposed

in this thesis and the empirical context for validating the stated hypothesis and objectives

Figure 2.1: Overview of the DDI experimental categories.

2.2 Research data capture and management

To manage diverse datasets and imaging modalities effectively, the data management

system needed to fulfill specific requirements and offer key functionalities. These included

an open-source license, the ability to store various neuroimaging modalities, customizable

data structures for different types of non-imaging experiments, remote access with role-

based user administration, and integration capabilities with computational methods. After a

thorough evaluation of available options, we selected the eXtensible Neuroimaging Archive

Toolkit (XNAT).
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XNAT is an open-source software platform designed to facilitate the comprehensive

management of neuroimaging and related data. Developed primarily in Java, XNAT provides

a robust framework for secure data storage, retrieval, and sharing while also offering

customizable data structures to accommodate various research needs. It supports a wide

range of imaging data types, including MRI, PET, and CT scans, among others. One of its key

features is the ability to integrate with existing data processing pipelines, thereby streamlining

the workflow from data acquisition to analysis. Additionally, XNAT’s RESTful API enables

seamless interoperability with other software tools and platforms, making it a versatile choice

for multi-center studies and collaborative research endeavors. Its modular architecture and

extensibility make it particularly well-suited for complex neuroimaging projects that require

a high degree of customization and scalability. Thus, the platform not only provides robust

storage and management features for imaging data but also offers a flexible plugin framework

to tailor the system to the study’s specific needs.

Our first article outlines how to exploit these capabilities in an ETL pipeline that

implements a proposed Incremental Semantic Framework (ISF), elevating raw research data

that follow several low-level schemas into formal semantics of a higher level. This integration

enables several benefits, such as quality control, as evidenced in the article.

Lastly, given the sensitive nature of the clinical data involved, a secure deployment

environment was imperative. The project set up the system within the service for sensitive

data (Tjeneste for Sensitive Data, TSD), operated by the University of Oslo. This environment

is equipped with stringent access control measures to ensure data security and restrict

external internet access.

2.3 Knowledge Graph tooling

In order to manipulate, create, and further process or analyze graphs, we take advantage of

many graph-oriented tools.

Although not explicitly designed for graph structures, certain Semantic Web standards

and technologies inherently support them. Specifically, RDF offers various mechanisms for

interacting with RDF Graphs, and its databases and SPARQL1 query language are essential

for effective utilization. We employed these technologies with ontology development tools for

multiple tasks, ranging from ontology construction to enabling graph-based functionalities.

The field of Knowledge Graphs is experiencing significant growth. This expansion

has led to the development of a myriad of software and tools designed to address the

unique challenges posed by knowledge representation and graph-specific requirements.

In the biomedical field, initiatives such as the Knowledge Graph Hub (KG-Hub) [Caufield

1https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/
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et al., 2023], Monarch [Mungall et al., 2017], and the “universal biomedical data translator”

program from the National Center for Advancing Translational Sciences (NCATS) [Fecho

et al., 2022] are instrumental in fostering the development of open-source tools that serve

the KG community. These initiatives contribute to the standardization, scalability, and utility

of KG tooling, thereby accelerating research and application in various scenarios.

2.3.1 KGX

One of the fundamental tools exploited in this work is the Knowledge Graph eXchange

(KGX). KGX is both a serialization of Biolink Model compliant knowledge graphs, and a

graph processing library. The KGX format specification is designed as flat files that can

be processed, subsetted, and exchanged easily. Each node (or edge) is represented with

all of its properties that further describe the node (or edge). The default serialization is

TSV. As a library, KGX supports the transformation of graphs into standard formats like

KGX TSV, JSON, or RDF, making it easier to integrate disparate data sources. KGX also

provides functionalities for merging multiple KGs, thereby enabling the creation of more

comprehensive and interconnected knowledge networks.

2.3.2 KG-Hub

KG-Hub is an initiative for standardizing the construction, exchange, and reuse of KGs. The

platform employs a modular extract-transform-load workflow to generate graphs aligned with

the Biolink Model. It facilitates seamless integration of ontologies from the OBO initiative and

offers features such as cached downloads of upstream data, version-controlled builds with

stable URLs, and cloud-based, web-accessible storage of KG artifacts. KG-Hub is versatile,

supporting a variety of research projects that range from COVID-19 and drug repurposing to

microbial-environmental interactions and rare disease studies. Additionally, the platform is

equipped with analytical tools for KG manipulation and is closely integrated with machine

learning tools for automated graph-based tasks, including node embeddings, link prediction,

and node classification.

2.3.3 KG-OBO

KG-OBO focuses on the conversion of OBO ontologies into KGs. It provides a set of tools

and guidelines for transforming OBO ontologies into RDF triples, thereby enabling their

integration into broader KGs. This is particularly useful in biomedical research where OBO

ontologies like Gene Ontology (GO) [The Gene Ontology Consortium et al., 2023] and

Human Phenotype Ontology (HPO) [Köhler et al., 2021] are widely used.
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2.3.4 High performant graph processing libraries

Executing standard graph operations on large KGs—including filtering, merging, centrality

computation, embedding generation, and other machine learning-oriented tasks—poses

computational challenges. To address these issues, there are actively developed libraries

designed to meet these specific needs. The Knowledge Graph Toolkit (KGTK) [Ilievski et al.,

2020] and Graph Representation leArning, Predictions, and Evaluation (GRAPE) [Cappelletti

et al., 2023] library are two relevant examples that we employed for computing several graph

metrics and analytics.

2.4 Ontology engineering, technologies, and development

We aimed to establish a robust methodology for the design, development, and maintenance

of the framework’s terminological component. Accordingly, we selected technologies and

patterns well-suited for ontology development.

Among the various technologies for ontology development and serialization, we chose to

use Semantic Web ontology standards as defined by W3C, given their widespread adoption.

Specifically, we employed OWL for ontology definition and RDF for intermediate serialization.

OWL’s compatibility with Description Logics (DL) [Baader et al., 2008, Krötzsch et al., 2014]

allowed us to create logically grounded definitions. To ensure the integrity of the ontology, we

used the ELK reasoner [Kazakov et al., 2014] for logical reasoning, which helps in identifying

and avoiding errors and inconsistencies early on in the process.

For term definition, we adhered to a systematic approach, following OBO guidelines and

utilizing ontology design patterns. We particularly relied on the framework provided by Dead

Simple OWL Design Patterns (DOS-DP) [Osumi-Sutherland et al., 2017], which is effective

in minimizing errors when defining multiple interrelated terms.

To streamline the building and releasing process, we employed the Ontology Development

Kit (ODK) [Matentzoglu et al., 2022]. This tool automated and validated several crucial

intermediate steps, including ontology imports and term pattern materialization, thereby

facilitating the final ontology-building process.

These topics are described and discussed in articles 1 [Timón et al., 2017] and 3

[Timón-Reina et al., 2023] of this thesis.

2.5 Terminological and semantic model

A primary research objective of this thesis, RO1 with tasks T1 and T2, is to develop a robust

semantic model that articulates clear definitions for pertinent concepts within the target
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knowledge domain and establishes expressive relationships among them. Additionally, the

model aims to facilitate the transition from raw, low-level data to enriched semantics at both

the domain-specific and upper-levels of abstraction, emphasizing retaining references to the

source, provenance, and other metadata, which is extremely important for tasks like Quality

Control.

For this purpose, we introduce the mentioned Integrated Semantic Framework (ISF),

detailed in this thesis’s first article. The ISF serves as the foundational element for the

semantic modeling carried out by the DemKG framework. It offers a structured blueprint

for transforming raw research data models into more semantically enriched representations

facilitated by domain-specific ontologies.

This framework may process raw data in XML format, adhering to a predefined set of

supported XML Schema Definition (XSD) schemas and from source tabular data in CSV or

TSV formats. To enhance semantic richness, bio-ontologies supply the requisite terminology

and logical axioms defining them. Due to the complexity of the biological domain, the

development of these ontologies often targets specific subdomains, leading to a diverse

array of reference or domain ontologies.

2.5.1 Bio-ontologies

The fundamental principle in the framework for the foundational semantic model is the

utilization of domain reference ontologies to ensure the following aspects:

1. The concept definitions are concise, accurate, and relevant;

2. There exists an active community maintaining the ontology updated;

3. They are widely recognized, cross-referenced, and follow consistent design patterns.

The selection criteria align with the guiding principles of the OBO Foundry. OBO supports

a wide array of domain-specific ontologies characterized by clearly defined scopes, concept

reusability across different ontologies, and alignment with a unified top-level ontology,

namely the Basic Formal Ontology (BFO) [Arp and Smith, 2008]. Relationships within

these ontologies are further standardized through the Relations Ontology. Due to these

features, OBO ontologies received priority consideration in our selection process.

2.5.2 Biolink

Even employing domain and upper-level ontologies, there are situations where these do

not cover all alignment needs, such as with non-OBO ontologies. The Biolink Model is

an open-source, universal data model for organizing data in biomedical KGs that defines
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entities and the relationships between these entities within translational science. The model

serves both as a map for bringing together data from different sources under one unified

model, and as a bridge between ontological domains. Biolink provides high-level biomedical

concepts (e.g., Protein, Gene, or Disease) and relationships (e.g., "has part", "expressed

in"), acting as a gluing component at the higher level of abstraction, completing the design of

the semantic model for DemKG.

Figure 2.2: Conceptual incremental level of abstraction across the terminological components
defined by the ISF.

2.6 Software implementations

In this section, we delve into the software implementations that constitute the DemKG

framework. The aim is to provide a clear overview of the technical architecture, the

technologies employed, and the rationale behind key design decisions. We will discuss the

various modules that make up DemKG, their interdependencies, and how they collectively

contribute to achieving the framework’s objectives.

DemKG is structured around a modular design, with each component assigned a specific

role. The final implementation is composed of three primary modules: the extensions

ontology builder, the transformation module, and the KG builder module. This modular

approach allows users to integrate or modify individual components as needed or utilize the

complete KG construction pipeline.

Each module serves a distinct function and is publicly available in its own GitHub

repository. The design, implementation, and validation of the complete DemKG framework

are detailed in the third article of this thesis [Timón-Reina et al., 2023], chapter 5.
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2.6.1 Extensions ontology builder

Title: DemKG extensions ontology

GitHub URL: https://github.com/demkg-framework/extensions-ontology

License: MIT License

DOI: 10.5281/zenodo.8412054

The extensions ontology builder module generates the terminological and axiomatic

extensions in the form of a final OWL ontology. The key gaps addressed include:

• Phenotypic and Physiological Normal Concepts: To model phenotypic normality, we

employ a DOS-DP pattern that creates the phenotypic normality branch by adapting

"normality terms" from "abnormal terms" in the Human Phenotype Ontology and

following the Quality-Entity pattern and creating.

• Abnormal Biomarker Phenotypes: Given the increasing focus on biomarker-based

research in Dementia, we introduce terms not yet defined in domain ontologies that

offer detailed logical descriptions linking biological entities, such as proteins and cells,

to quantities and anatomical locations.

• AT(N) Biomarker Profiles: We extend the Ontology for Biomedical Investigations (OBI)

[Bandrowski et al., 2016] classes to include the AT(N) classification system developed

by the NIA-AA Research Framework [Jack Jr. et al., 2018], which assesses biological

states based on Beta-amyloid deposition, pathologic tau, and neurodegeneration.

• Assay-Related Classes: Additional assay and platform definitions missing from OBI

are also implemented.

The module is built as an ODK project and integrates several functionalities:

• Importing domain ontology dependencies.

• Applying DOS-DP patterns.

• Manually editing non-systematic terms.

• Materializing implicit relations, particularly class equivalance restrictions, that do not

directly translate to graph edges.

In line with modularity and concept reuse principles [Kazakov, 2008], the extensions

ontology places new terms as subclasses of relevant parent terms from reference ontologies.

This is achieved through ontology extraction and importing pipelines configured in ODK and

based on ROBOT commands [Jackson et al., 2019]. The approach allows for the integration

https://github.com/demkg-framework/extensions-ontology
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of essential logical axioms while managing ontology size and complexity. Most classes in

the extensions ontology are systematically defined using DOS-DP patterns.

The final building step involves executing the relation-graph datalog to materialize

subclass and class equivalence restrictions that do not directly translate to graph edges.

This is crucial for preserving knowledge in the form of relationships between defined classes.

Figure 2.3: An overview of the extensions ontology builder processing.

2.6.2 Research data transformation module

Title: DemKG KG-Transform

GitHub URL: https://github.com/demkg-framework/kg-transform

License: MIT License

DOI: 10.5281/zenodo.8412821

The transformation module delivers a low-code Python package to process source

research data into an instantiation graph that aligns with the semantic framework’s

terminology. The transformation leverages ontology design patterns, focusing on various

aspects of scientific data relevant to biomedical and Dementia research. These patterns are

mainly rooted in the Ontology for General Medical Science (OGMS) [Scheuermann et al.,

2009] and the experimental patterns from OBI. Key features include:

• Support for modeling longitudinal study visits.

• Detailed experimental measurements that capture essential metadata and provenance,

and establish explicit links between actors and biological entities involved in processes

such as lab assays, omics assays, imaging, cognitive testing, and final diagnoses.

The low-code feature is facilitated through a human-friendly YAML schema, which outlines

the mapping rules for generating graph representations and associating relevant ontology

classes based on the input dataset’s columns and values. A template schema is provided to

ease adoption.

https://github.com/demkg-framework/kg-transform
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The design patterns address critical data capture elements in Dementia studies, including:

• Subject demographics.

• Medical and clinical history.

• Physical examinations.

• Cognitive screening.

• Diagnosis.

• Specimen assays, encompassing laboratory, proteomics, and genomics tests.

• Imaging-derived analyses.

This methodology effectively enables expressive phenotyping, diagnoses, and

conclusions based on the experimental evidence contained in the data. Furthermore,

the dataset descriptor schema allows for expressing phenotype findings and conclusions

based on data with categorical, cutoff, or range assignments. The module is versatile,

functioning either as a Command-Line Interface (CLI) program or as a Python module.

Figure 2.4: A snapshot of an specimen assay descriptor.
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2.6.3 KG builder module

Title: DemKG KG-Builder

GitHub URL: https://github.com/demkg-framework/kg-builder

License: MIT License

DOI: 10.5281/zenodo.8412831

The KG builder module is implemented in Python and utilizes various KG tooling

technologies, supported by initiatives such as KG-Hub, Monarch, and NCATS. Similar

to the transformation module, it can operate either as a CLI program or as a Python module.

The module orchestrates the creation of the final KG through a series of steps:

• Downloading predefined knowledge sources.

• Transforming sources to KGX format for ingestion.

• Merging KG artifacts to produce the final KG.

Each step is highly configurable, allowing customization through YAML files and

transformation code when specific knowledge sources require it. The module can function

as a complete building pipeline or execute individual steps as needed.

Download

The download step fetches the necessary knowledge sources for constructing the final

DemKG artifact. While it is configured to obtain default DemKG sources, it is possible to

further customize or extend through a YAML file. This file allows users to specify source

URLs and optional local names to prevent file naming conflicts. Users can also choose

whether to cache existing files or overwrite them, an essential feature given the potentially

large size of some knowledge sources.

Transform

The transform step ensures that all sources are available in KGX format for the final merge.

Given that transformation requirements can vary significantly between sources, this step is

more variable and may require additional development. The module designates a specific

location for users to place their transformation code. Although the transformation operation

is user-defined, the KG builder expects the output to be in KGX format.

https://github.com/demkg-framework/kg-builder
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Merge

The merge step primarily utilizes KGX merge functionality to identify, combine, and serialize

all nodes and edges from various sources into the final KGX graph. This step is also

configurable through a dedicated YAML file, which includes all default DemKG sources and

can be easily customized or extended. Additional graph operations, such as computing

structural statistics, and other serialization formats like RDF in n-triples, can also be specified.

Figure 2.5: Overview of the KG builder elements and processing flow.

By following these design principles, the KG builder module provides a flexible and

efficient means to construct knowledge graphs tailored to specific research needs by offering

a modular and configurable approach.
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Informatics increases the yield from neuroscience due to improved data. Data sharing and

accessibility enable joint efforts between different research groups, as well as replication

studies, pivotal for progress in the field. Research data archiving solutions are evolving

rapidly to address these necessities, however, distributed data integration is still difficult

because of the need of explicit agreements for disparate data models. To address

these problems, ontologies are widely used in biomedical research to obtain common

vocabularies and logical descriptions, but its application may suffer from scalability

issues, domain bias, and loss of low-level data access. With the aim of improving

the application of semantic models in biobanking systems, an incremental semantic

framework that takes advantage of the latest advances in biomedical ontologies and

the XNAT platform is designed and implemented. We follow a layered architecture that

allows the alignment of multi-domain biomedical ontologies to manage data at different

levels of abstraction. To illustrate this approach, the development is integrated in the

JPND (EU Joint Program for Neurodegenerative Disease) APGeM project, focused on

finding early biomarkers for Alzheimer’s and other dementia related diseases.

Keywords: biomedical ontologies, Semantic Web, knowledge management, XNAT, data exchange, data analysis,

Neurodegenerative Diseases

INTRODUCTION

Nowadays, neuroscience research projects take place in multidisciplinary, heterogeneous multi-
center environments, where an efficient mean of data exchange is crucial. One of the main
challenges is the accurate and effective exchange of data for its subsequent analysis, that leads to
the need of a common structure, data standardization or some mediation strategies (Ashish et al.,
2010). Some currently in use archiving solutions, as reviewed in Izzo (2016), are the Extensible
Neuroimaging Archive Toolkit (XNAT) (Marcus et al., 2007), the Collaborative Informatics
and Neuroimaging Suite (COINS) project (Scott et al., 2011), or the eXTENsible platform for
biomedical Science (XTENS) (Corradi et al., 2009).

Despite the flexibility and ease of customization offered by the mentioned archiving systems,
data scalability is somehow limited, as significant changes in the data model typically require
fine configuration of the database or an important reorganization. These shortcomings have been
addressed by the use of ontologies and Semantic Web technologies (mainly OWL1, RDF2, and
SPARQL3) (Hoehndorf et al., 2015). The Mayo Clinic made one of the first examples of such
approach by applying Linked Data principles to its Electronic Health Records (Pathak et al., 2012a).

1https://www.w3.org/TR/owl2-primer/
2https://www.w3.org/TR/rdf11-primer/
3https://www.w3.org/TR/sparql11-overview/
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They leveraged publicly available data from the Linked Open
Drug Data cloud (Samwald et al., 2011) to federated querying
for type 2 diabetes patients. Following the same principle, Leroux
and Lefort (2015) showed an efficient approach to enrich the
semantics in clinical trials. They developed a semantic, linked
data model from CDISC Operational Data Model4, focusing
just on the easy data sharing and consumption, and leaving
further modeling and reasoning for the future. On a more
domain-specific context, Hsu et al. designed an ontology-driven
system employing an application ontology that imports and
aligns ontologies from different domains (Hsu et al., 2015). It
integrates phenotypes generated through analyses of available
clinical data sources. Their approach demonstrated how an
ontological framework could help to enforce consistent data
representation and even enable further studies to identify clinical
predictors. Also, numerous approaches have been proposed
for complex knowledge intensive tasks in the past years, like
radiological assistance (Mejino et al., 2008), surgical planning
(Mechouche et al., 2007, 2009), or clinical management (Sonntag,
2008) and patient care systems (Su and Peng, 2012).

Notwithstanding the obvious growth in its application, the
adoption of ontological frameworks shows some drawbacks and
is still a challenging and time consuming venture (Hastings
et al., 2014). There exists a trade-off between the language
expressiveness and its computational tractability that requires
making decisions about the necessary level of description.
Usually, the use of highly descriptive ontologies alone results
in ad-hoc implementations for domain-specific solutions with
poor scalability that complicates raw data extraction for
less knowledge-aware tasks. Furthermore, ontology selection,
alignment, and mapping require the collaboration of domain
experts and development staff, in addition to the steep learning
curve for new users of ontologies. Ontology engineering
methodologies, such as the NeOnMethodology (Suárez-Figueroa
et al., 2012) provide a methodological guide for addressing
several of the mentioned issues, usually targeted at a final
high-level ontological ecosystem. However, leaving behind
intermediate low-level data is problematic when the goal
is integrating complex, distributed systems. The loss of the
original data structure compromises data quality and limits the
possibilities for its manipulation at the same time. A Bottom-
up approach that supports all description levels simultaneously
is more convenient for these projects. It has been successfully
applied in other domains, for e.g., in the video analysis domain
(Duan et al., 2003).

In this article, we describe an incremental semantic
framework; a methodological approach to address the problem
of enabling semantic-based modeling in already implemented
research archiving systems. Consequently improving data
management, from low-level data to semantic and logical
concepts. Built with Semantic Web technologies and using
biomedical ontologies, the framework provides a model for
homogenous data access and reasoning over multi-modal
neurological data.

4https://www.cdisc.org/standards/transport/odm

The design of the framework follows a bottom-up, layered
approach, allowing working with the data at different levels of
description. The framework adds reasoning capabilities from
implicit relations and logical definitions to derive new data,
as well as to perform data consistency checks for Quality
Control (QC). The use of Linked Data principles enables inter-
data linking, opening the door to reference external data sets.
Also, having a highly linked dataset eases data inspection from
different conceptualizations (project, subject, disease, etc.), a
highly desirable feature for pattern discovery and studying the
relationship between diseases as the dataset grows.

Our proposal differs from previous works in its focus on
advanced querying and reasoning without losing low-level
data, while taking advantage of already available and widely
used archiving platforms. Particularly, we chose XNAT as the
backbone for managing clinical and imaging data, for its rich set
of features and its flexible and customizable design.

To illustrate the benefits of the framework, this work
is encompassed in the JPND (EU Joint Program for
Neurodegenerative Disease)5/APGeM project6, aimed at
finding early biomarkers for Alzheimer’s and other dementia
related diseases. It comprises a significant amount of data from
different subdomains and modalities, such as neuroimaging,
biochemistry, clinical/neuropsychological screenings and
genetics, setting up a proper scenario to push and test the
framework with a current ongoing neurological research effort.

The remainder of the paper is organized as follows. In Section
Material and Methods we describe the design and technological
methodology, as well as the data from APGeM’s project. Next we
exemplify the utility of the framework through various use case
applications in Section Results. Finally, in Section Discussion we
discuss the benefits, problems encountered and limitations of our
implementation and conclude in Section Conclusion.

MATERIALS AND METHODS

This section starts describing the data from the APGeM project.
It is part of the driving material and an example of application
of the semantic framework. Later, in Section Data Management
with XNAT Platform we describe the features of the XNAT
platform. In Section Framework Design we outline the decisions
made to design each layer of the ontological framework. Finally,
in section Data Transformation and Storage, we describe the
details of the transformation and loading of the data for
persistence.

The related code that is not core to APGeM is available
at https://bitbucket.org/apgem-isf/ under Apache Licence,
version 2.0.

APGeM Project Data
The APGeM project, where this work is encompassed, is focused
on finding early biomarkers for Alzheimer’s and other dementia
related diseases (Fladby et al., 2017). It comprises individuals
assessed with subjective cognitive decline (SCD) (Jessen et al.,

5http://www.neurodegenerationresearch.eu/
6http://www.neurodegenerationresearch.eu/publication/apgem/
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2014), mild cognitive impairment (MCI) (Albert et al., 2011),
dementia, and healthy controls.

Subjects were recruited from January 2013 to January 2017
and examined following a standardized protocol. Recruitment
was based on two main sources: (1) self-referred patients
following advertisements in media, newspapers, or news
bulletins, and (2) recruited patients among referrals to regional
memory clinics. In addition, cognitively healthy controls were
also included from spouses of patients with dementia/cognitive
disorder, and from patients who completed lumbar puncture for
orthopedic surgery. Participants were staged as controls, SCD
or MCI using published criteria based on the comprehensive
assessment program. Controls were further classified as having
normal or abnormal cognitive screening and with or without
first-degree relative with dementia.

A case report form (CRF) was developed, comprising medical
history (captured from subject and informant separately), and
physical and neurological examinations including the 15-item
Geriatric Depression Score (Mitchell et al., 2010). The cognitive
examination included the Mini Mental State Examination
(Folstein et al., 1975), non-verbal cognitive screening (The clock
drawing test) (Shulman, 2000), verbal memory (Fillenbaum et al.,
2008), visuoperceptual ability, psychomotor speed, and divided
attention (Trail making A and B and word fluency). The dataset
also included relevant biomarkers for Alzheimer’s and other
dementia related diseases, obtained from Cerebrospinal fluid and
blood samples.

All subjects were referred to a standardized magnetic
resonance imaging (MRI) scan protocol; including high
resolution structural scans. A sub-set of subjects also underwent
an extended MRI protocol including advanced diffusion
weighted sequences as well as multiple positron emission
tomography (PET) modalities.

Data Management with XNAT Platform
The Extensible Neuroimaging Archive Toolkit (XNAT—
RRID:SCR_003048) is an archiving software platform designed
to facilitate common management and processing tasks for
neuroimaging and related data, providing a secure storage and
access layer. XNAT’s architecture follows a three-tier design
pattern that includes a relational database backend, Java-based
middleware engine, and a web-based user interface.

The key of XNAT’s flexibility resides in the XML-based
data model that defines the data-types that are to be handled
by the deployed system. XNAT uses these XML schemas7

(XSD) to generate custom components, content, and logic
for each of the tiers: (1) a relational database structure is
generated, equivalent to the elements defined in the XSDs;
(2) middleware classes are generated that can be used by
developers to implement custom functionality that utilizes
the XNAT database; and (3) user interface content, including
navigation menus, search options, and data tables. This
building mechanism allows research groups to customize data-
types and interfaces for storing the relevant data to their
studies. The level of this customization is left to developers,

7https://www.w3.org/TR/xmlschema-0

going from implementing simple types and questionnaires to
complex data structures, interactive interfaces, and business
logic.

Another fundamental part is the REST (Fielding and Taylor,
2002) API. It allows interacting with XNAT through HTTP
protocol to support basic actions like Create, Read, Update, and
Delete resources, as well as more advanced features like data
searching and listing, which permits to integrate external pieces
of software with XNAT.

Finally, XNAT also ships a pipeline engine that tightly
integrates and manages processing pipelines into XNAT’s
workflow. This was another key feature for the platform selection
process, since pipeline execution is critical in Neuroimaging
research to develop tasks such as image quality control and
automated segmentation.

To this day, there are several publicly available solutions to
manage clinical and omics data more efficiently than XNAT,
such as BRISK, caTRIP, cBio Cancer Portal, G-DOC, iCOD,
iDASH, and tranSMART (Scheufele et al., 2014; Canuel et al.,
2015), existing the option to implement a distributed data
warehouse system and leave XNAT in charge of neuroimaging
data. However, while adapting and customizing XNAT to fit
the project needs was a time consuming task, the learning
curve was applied only to one system. This allowed for better
understanding and, consequently, maximizing the exploitation of
XNAT’s features.

Framework Design
Conceptually, the framework follows an n-tiered incremental
design, composed of three layers, or levels (Figure 1): schema,
formal and domain. This approach intends to add the complexity
cumulatively, in a way that is possible to access low-level data
easily (schema and formal levels) and look for further relations
and descriptions based on logical axioms at the same time
(formal and domain levels). The schemas and ontology acronyms
included in Figure 1 are described in related subsections.

The schema level is the entry point of the framework; it defines
the source data structure through XML schemas. The formal level
delivers the data modeled with vocabularies under SemanticWeb
standards. It augments the basic semantics of the Schema level
introducing more abstract concepts. These concepts are defined
through Description Logics and translated to a RDF graph model
without losing completely its source, which allows low-level
inspection and data retrieval and also introduces more refined
provenance descriptions. Finally, the domain level provides
more expressive descriptions to enable further reasoning and
query capabilities, for instance, using richer domain specific
ontologies to include neuroanatomical terms and mereological
axioms.

Schema Level

The core data model of XNAT supports the storage of imaging
and custom clinical data, laying the foundation for the schema
level, the first layer of the semantic framework. XNAT itself
models the basic organizational and imaging data structures,
leaving further extensions for other three schemas used in this
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FIGURE 1 | The three component layers of the framework, ordered by abstraction.

layer, XCEDE, FreeSurfer (FS) (FreeSurfer, RRID:SCR_001847)
and W3C Provenance data model8.

While XNAT schema is well fitted for data persistence, its
expressivity is somehow limited for describing the study design.
We use the XCEDE (XML-based Clinical and Experimental
Data Exchange) schema (Gadde et al., 2012) (XCEDE Schema,
RRID:SCR_002571) to keep the imaging part of the CRF
and describe the study and protocol design under the same
specification. The existing overlap between XNAT and XCEDE
models facilitates mapping data in both ways and complements
the core data model of XNAT.

We leave XNAT schema to focus on data persistence and, as
a previous step before introducing more descriptive semantics,
employ XCEDE to describe the study protocol in an exchangeable
format and link to ontology terms from upper levels in
the framework through the “Terminology” component of the
schema.

To integrate XCEDE import/export processes properly, we
have implemented an XNAT service extension following the
same principles as its native REST API to serve study data in
XCEDE format. The service serves data by employing several
transformation scenarios designed for each resource type defined
in the model.

The XNAT community provides the FreeSurfer schema,
enabling a means to store FreeSurfer results into XNAT and share
them between researchers. Furthermore, having a results XML
model eases its processing at higher levels in the framework.

The schema level makes possible to work with XNAT’s native
data format for low-level data processing, while enabling at
the same time data sharing and further modeling through less
platform specific schemas. This is very valuable in situations
where low-level inspection is needed and abstractions are not
beneficial or even counterproductive.

Formal Level

The formal level provides an entry level to model the data
through SemanticWeb technologies. It serves as the foundational
layer to model XNAT experiment data as information entities
that describe data, studies and protocols, and which could be
further aligned or mapped to specific domain ontologies.
It improves low-level semantics by introducing logical
definitions with Description Logics (DL), more powerful

8https://www.w3.org/TR/prov-dm/

sharing mechanisms with data linking, query strategies, and
finally enabling DL reasoning.

We used NCBO’s Bioportal (Musen and Noy, 2011;
Whetzel et al., 2011) (BioPortal, RRID:SCR_002713) to
find the most suitable ontology. After evaluating various
ontologies based on the Basic Formal Ontology9 (BFO,
RRID:SCR_004818) upper-level model, such us the Ontology of
Clinical Research (OCRe) (Sim et al., 2014) (Ontology of Clinical
Research, RRID:SCR_010392), the Translational Medicine
Ontology (TMO) (Luciano et al., 2011), the Semanticscience
Integrated Ontology (SIO) (Dumontier et al., 2014)
(Semanticscience Integrated Ontology, RRID:SCR_010427),
and the Neuroimaging Data Model (NIDM)10 (Keator et al.,
2013) (Neuroimaging Data Model, RRID:SCR_013667), we
concluded that SIO covers more terms related to low-level
information representation in contrast with OCRe. Also, SIO
can be seen as the supported successor of TMO, as it emerged
from considerations in the TMO effort. Finally, NIDM is less
formal than SIO, but models in more detail concepts related to
neuroimaging. On this basis, we decided to employ an alignment
of SIO and NIDM as the foundational ontologies to model CRF
and imaging data. On the one hand, SIO was used to describe
studies and protocols and also to model information entities
and experiment data. On the other, NIDM was used to model
important provenance and processing neuroimaging results data
(Maumet et al., 2016).

At this level, the core elements in the base XNAT data model
had to be properly mapped to concepts of SIO. For versions
1.6.x, these elements were Project, Subjects, and Experiments,
and some of them lack of direct correspondence with SIO. Most
of the mapping process is as detailed bellow.

The term “experiment” in the SIO ontology is defined as
an “investigation that has the goal of verifying, falsifying, or
establishing the validity of a hypothesis,” while for XNAT it is
an event by which data is acquired. Therefore, the meaning
for “experiment” differs between them and we found “data
collection” a suitable entity to model experiment data in
XNAT’s sense, encoding final literal data with “data item”
instances. The description for the entity “data collection” is
defined as the process of acquiring information. Adding the
insertion/collection date to “data collection” instances complies

9http://ifomis.uni-saarland.de/bfo/
10http://nidm.nidash.org/
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with XNAT definition of experiment. Hence, the basic starting
point to model experiment data is using Data collection class
for experiment instances, which has output sub-sections as data
set instances. These specify the data fields with has data item
property and data item instances. The final values are literals
related with has value data type property. Formally in DL
notation:

Data collection ⊓ (∃has output.(Data set

⊓ (∃has data item.(Data item)))

Figure 2 depicts the basic means to represent an experiment and
its data. It is important to note that, depending on the experiment
type, the way of obtaining raw values may differ and should be
consequently modeled, distinguishing between observations (a
doctor’s assessment), measurements with values and units (the
amount of blood cholesterol) or test outputs (the T-Score for
TMT test).

Domain Level

Up to this level, the meaning of the data elements is still kept
at low level, leaving the interpretation to ad-hoc processes or
humans from coding conventions. The purpose of the domain
level is to provide high-level semantics and, when possible,
logical definitions for the concepts depicted in the data and
even rules to further enrich the model. This level tends to be
specific to the application or context of the project, thus the
ontology selection and modeling decisions depend heavily on it.
We demonstrate the building of this level through its application
to the Alzheimer’s Disease domain.

The Alzheimer’s disease ontology (ADO) (Malhotra et al.,
2014) (ADO, RRID:SCR_010289) is the first bridge for our
use case domain context, focused in Alzheimer’s and related
diseases. ADO was developed with the purpose of containing
information relevant to four main biological views: preclinical,
clinical, etiological, and molecular/cellular mechanisms, making
possible to map and classify most of the CRF items from
APGeM project. The SNOMED CT (Cote and Robboy, 1980)
ontology is widely adopted because of its comprehensive clinical
terminology. It was used to cover many of the leaf clinical
terms in almost every experiment type. To reference anatomical
entities we selected the Foundational Model of Anatomy (FMA)
(Rosse and Mejino, 2003) (FMA, RRID:SCR_003379) because
of its completeness and robust representation of the anatomical
reality (Zhang et al., 2003). The Phenotype And Trait Ontology
(PATO)11 was employed to represent biological and phenotypic
qualities. The Logical Observation Identifiers Names and Codes
(LOINC)12 (Huff et al., 1998; McDonald et al., 2003) (Logical
Observation Identifier Names and Codes, RRID:SCR_010341)
was a suitable terminology to map biochemical tests (Bakken
et al., 2000), complemented with SNOMED terms. Finally,
genetics were mapped to Gene Ontology concepts (Ashburner
et al., 2000; Gene Ontology Consortium, 2010). Table 1 shows
a summary of the application of the ontologies to the different
sub-domains.

11http://obofoundry.org/ontology/pato.html
12https://loinc.org/

TABLE 1 | Relation of the component parts of the CRF with subsections and the

ontologies with which are modeled.

CRF experiment/

questionnaire

Subsections Ontology/Vocabulary

Subject demographics PATO

SNOMED CT

Medical history Social information

Family history

Current medical history

(participant and informant)

Current medication

Stimulants

Other bodily functions

Previous medical history

Geriatric depression scale

ADO

SNOMED CT

Disease Ontology

Cognitive screening MMSE

CERAD word list

Trail Making Test

COWAT (FAS)

VOSP silhouettes

Clinical dementia rating

ADO

SNOMED CT

Disease Ontology

Physical examination General somatic examination

Neurological Exam

UPDRS

Modified UPDRS

ADO

SNOMED CT

FMA

Diagnosis Staging

Etiology

ADO

SNOMED CT

Disease Ontology

Biochemistry Blood tests

Spinal puncture (CSF)

ADO

LOINC

Snomed CT

Genetics ADO

Gene Ontology

Imaging reports NIDM

ADO

SNOMED CT

FMA

In a typical research project, each experiment type introduces
a significant amount of variables (more than 1,100 categorized
across several sub-domains in our use case) that need to be
mapped to concepts from domain ontologies, implying a very
time consuming task. To assist and reduce the time needed in
the process of finding term candidates, we developed a script that
uses XNAT’s search engine through PyXNAT library (Schwartz
et al., 2012) (pyxnat, RRID:SCR_002574). For each data-type
schema, it inspects complex and simple types to extract the
variables to be mapped. Then, for each variable a query is sent
to Bioportal’s search endpoint with a list of candidate ontologies.
The response is a collection of candidate terms for the variable,
among other related information, such as the ontology in which
the term is defined. The output is an XML file with possible term
mappings for each variable. This process has saved a fair amount
of time and resources for the ontology and concept selection.

Frontiers in Neuroinformatics | www.frontiersin.org 5 August 2017 | Volume 11 | Article 57



Timón et al. XNAT with Incremental Semantic Framework

FIGURE 2 | Schema to formal level transformation from a stripped down experiment for exemplification. XNAT XML data is transformed to an RDF graph using SIO

classes and properties. Instances are represented as white rectangles and classes as rounded orange rectangles.

Figure 3 shows an example of mappings at formal and domain
level.

The domain level for the project was built through the
alignment of the selected ontologies. We imported them when
possible and, for those too big or broad to be imported, we
followed the MIREOT process (Courtot et al., 2011) to include
terms of interest. Finally, further logical restrictions and rules
relevant to the domain of the use case were defined.

Data Transformation and Storage
At the schema level, the mappings were almost direct between
XNAT data model and XCEDE. The transformation was
accomplished with XSLT13 (eXtensible Stylesheet Language
Transformations), served on the fly over XNAT’s API
endpoint. However, before entering the semantic framework,
XNAT source data was transformed and mapped to the
target model.

To expose subject and experiment data coming from XNAT
as RDF, the Extract-Transform-Load (ETL) pipeline depicted in
Figure 4 was implemented.

The workflow is as follows: when any update operation is
performed in XNAT the pipeline retrieves the XNAT resource
XML and, executes the xnat2RDF script, which transforms it to
RDF format using both formal and domain level models. These
generated triples are then processed for reasoning, using Pellet

13https://www.w3.org/TR/xslt

reasoner (Sirin et al., 2007) and SPIN14 (SPARQL Inferencing
Notation) API. The output triples from the reasoner script are
then loaded into a Jena (JENA: A Semantic Web Framework for
Java, RRID:SCR_001766) Fuseki 215 triplestore instance.

The primary criterion for the selection of technologies was the
ease of integration between the different parts of the workflow,
in spite of sacrificing efficiency in some of the steps. Because
the execution of this transformation process is made “offline,” its
performance is not critical to the system’s usage. Nevertheless,
the execution time is restrained, lasting a couple of seconds per
complete subject data (demographics and all experiment data
included in the CRF), and less than one second for individual
resources.

Fuseki SPARQL Server performs very well in most of the
triplestore related operations (Butt and Khan, 2014), although
it suffers from write performance problems (Kilintzis and
Beredimas, 2014). The reasoning step can be tuned and adapted
to use different OWL profiles to reduce execution time. It would
be also beneficial to use high-performance reasoning engines like
Konclude (Steigmiller et al., 2014), the winner of OWL Reasoner
Evaluation 2015 (Parsia et al., 2017). However, these changes
would turn into a slightly more complex setup for the ETL
process.

We followed the recommendations from the Interoperability
Solutions for European Public Administrations (ISA2) for the

14http://spinrdf.org/
15https://jena.apache.org/documentation/fuseki2

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2017 | Volume 11 | Article 57



Timón et al. XNAT with Incremental Semantic Framework

FIGURE 3 | A diagram showing the relations building the assertion that a subject is staged with Mild Cognitive Impairment. The formal level improves the semantics of

experiment data, but is still attached to raw values. The domain level introduces specific concepts for a given domain, in this case diagnosis in Alzheimer’s Disease.

Instances are represented as rounded white rectangles and classes as rounded colored rectangles.

FIGURE 4 | Activity diagram of the ETL pipeline. When any change in the data is registered by XNAT’s middleware, the pipeline engine executes the xnat2rdf script

passing the XML of the changed resource. This script transforms XNAT XML to RDF, which is processed by the reasoner to execute DL and SPIN inferencing and the

resulting triples loaded into the triplestore. Finally QC related data is processed for reporting.
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Code 1 | SPIN constraint to determine if a subject meets exclusion criteria.

PREFIX sio: <http://semanticscience.org/resource/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX apgem: <http://www.apgem.org/resource/>

PREFIX snomed: <http://purl.bioontology.org/ontology/SNOMEDCT/>

# SPIN reserved word "this" refers to the evaluated instance of

# ’Study subject’

ASK WHERE {

# This data is obtained from Medical History experiment, previous and

# current medical history sections.

?this sio:SIO_000062 ?mhExperiment.

?mhExperiment a apgem:apgem_0003 ; sio:SIO_000312 ?mhdata.

# The exclusion criteria is met when the subject has filed

# any of these symptoms:

# Cerebral infarction, cerebral hemorrhage, epilepsy,

# head trauma with loss of consciousness,

# infection in CNS, bipolar disorder, psychosis,

# delirium/confusion or long term exposure to solvents

# and malignancy.

?mhdata sio:SIO_000028*/sio:SIO_001277 ?cb, ?ch, ?epilepsy, ?ht, ?cnsInfection,

?bipolar, ?psychosis, ?delirium, ?exposure.

# each data item ’denotes’ the conditions under SNOMED

# and the item must have ’true’ as value

?cb sio:SIO_000020 snomed:432504007 ; sio:SIO_000300 true.

?ch sio:SIO_000020 snomed:274100004 ; sio:SIO_000300 true.

?epilepsy sio:SIO_000020 snomed:84757009 ; sio:SIO_000300 true.

?ht sio:SIO_000020 snomed:82271004 ; sio:SIO_000300 true.

?cnsInfection sio:SIO_000020 snomed:128117002 ; sio:SIO_000300 true.

?bipolar sio:SIO_000020 snomed:13746004 ; sio:SIO_000300 true.

?psychosis sio:SIO_000020 snomed:69322001 ; sio:SIO_000300 true.

?delirium sio:SIO_000020 snomed:2776000 ; sio:SIO_000300 true.

}

design of persistent URIs16 that represent the generated resources
(instances).

RESULTS

To illustrate the utility of the proposed design methodology,
our framework was integrated into the system environment of
APGeM. In order to ensure secure access to sensitive medical
data, the environment runs on the Services for sensitive data
(TSD) provided by the University of Oslo.

The following sections describe how the integration of the
framework enabled data science researchers to engage QC,
subject classification, and advanced reporting tasks through
semantic querying and logical reasoning.

Data Quality Control
Nowadays, the data managed in neuroscience research projects
cover very different biomedical fields and is therefore gathered by
several, diverse means, such as laboratory reports for biochemical
tests, interviews for screening data, MRI acquisitions, and
so on. The data obtained is then entered into XNAT by

16https://joinup.ec.europa.eu/catalogue/distribution/study-persistent-uris-

identification-best-practices-and-recommendations-topic

human collaborators or semi automated processes that need
human interaction at some point of their workflow, which is
prone to introduce errors and inconsistencies in the dataset.
Having a sound, error free, dataset is crucial for any data
analysis process. Consequently, there is a need for designing
a QC strategy that effectively detects and manages this
kind of errors. To tackle the QC problem our approach is
based on ontology-based data quality management principles.
It takes advantage of the logical model defined in the
ontologies and expands it with more explicit SPIN rules and
constructs.

After transformation, the reasoning step of the ETL
pipeline derives data and carries out consistency checks. The
reasoner checks the logical restrictions defined in the model
to assure data consistency. Simultaneously, the definition of
constraints using SPIN rules is also valuable for further
and more fine-grained inspections that may be difficult to
model using Description Logics alone (Fürber and Hepp,
2010).

The layered approach for the semantic model enables working
at different levels of abstraction, which allows to verify raw data
from XNAT (e.g., assuring the experiments follow predefined ID
patterns) and to control more abstract conceptualizations at the
same time.
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TABLE 2 | Description of stage categories and simplified criteria definition with

Description Logics.

Class Description Simplified formal definition

Normal Control

(NC)

The subject’s MMSE

score is over 28, all

T-Scores are equal or

greater than 35 and

does not report

subjective cognitive

decline

Normal

≡ StudySubject ⊓ (∃mmse.

≥ 28) ⊓ (∃TscoreVOSP.

≥ 35) ⊓ (∃TscoreCOWAT.

≥ 35) ⊓ (∃TscoreCERAD Recall .

≥ 35) ⊓ (∃TscoreTMTB.

≥ 35) ⊓ ¬(∃reports.SCD)

Subjective

Cognitive Decline

(SCD)

The subject’s MMSE

score is over 28, all

T-Scores are equal or

greater than 35 and

reports subjective

cognitive decline

SCD ≡ StudySubject ⊓ (∃mmse.

≥ 28) ⊓ (∃TscoreVOSP.

≥ 35) ⊓ (∃TscoreCOWAT .

≥ 35) ⊓ (∃TscoreCERAD Recall .

≥ 35) ⊓ (∃TscoreTMTB.

≥ 35) ⊓ (∃reports.SCD)

Mild Cognitive

Impairment (MCI)

The subject’s MMSE

score is between 23

and 28, having at least

one T-Score under 35

MCI

≡ StudySubject

⊓ ( ∃ mmse. > 23) ⊓ (∃ mmse.

< 28)

⊓ ( (∃ TscoreVOSP.

< 35) ⊔ (∃ TscoreCOWAT .

< 35) ⊔ (∃ TscoreCERAD Recall .

< 35) ⊔ (∃ TscoreTMTB. < 35) )

Dementia The subject’s MMSE

score is under 23 and

has at least one

T-Score under 35

Dementia

≡ StudySubject

⊓ (∃mmse.

≤ 23)

⊓ ((∃TscoreVOSP.

< 35 ) ⊔ (∃TscoreCOWAT .

< 35) ⊔ (∃TscoreCERAD Recall .

< 35 ) ⊔ (∃TscoreTMTB. < 35 ))

An example of a high-level QC task is finding subjects who
meet the exclusion criteria but have not been properly tagged
by human supervisors. These errors introduce noise in the data
analysis models but are easily overlooked. For this task, ADO
defines the class “exclusion criterion,” with a set of specific
subclasses modeling several exclusion criteria that covered most
of the needs of this project. Depending on which of the variables
from the subject’s medical history experiment are set to true,
the subject is related to the specific instance that represents the
exclusion. This check is modeled by the SPIN constraint depicted
in Code 1.

Automatic Staging
A central task within the APGeM project is assessing the subject’s
stage in cognitive decline for diagnostic purposes and it can be
automated based on available screening data stored in XNAT.
On the one hand, it is another mean of QC for submitted
data, highlighting possible discrepancies between evidence in
the screening tests and the final outcome, which may be due
to a human error made at data entry or an incorrect diagnosis
from the practitioner. On the other hand, it produces useful
staging information when the diagnostic interview is missing for
any reason. Moreover, the comparison with the manual staging
performed by a physician is also noteworthy.

Our approach integrates a simple stage classifier as part of
both formal and domain layer. The subject can be staged under
5 different categories, described in Table 2. The classifier has
been implemented as a set of SPIN rules (Code 2) that assess the
diagnostic staging by filtering screening data that meets several
conditions for different clinical tests.

Reporting and Data Extraction
XNAT provides various means to customize reports and
searches to make them accessible through the web interface,
such as the advanced use of display files. However, advanced
XNAT displaying customization requires good knowledge
of the underlying XNAT database structure (for customized
SQL views and displays). Also its REST API enables the
development of customized scripts. While this method
is very powerful for external software development and
library design (such as PyXNAT), it requires a fair amount
of programming to perform complex queries and data
retrieval.

Concept generalization (class subsumption in ontologies)
and the graph-based model of RDF provide a powerful and
flexible environment for query design. The use of ontologies
and SPARQL for “intelligent querying” has been demonstrated
many times in the literature (Pathak et al., 2012a,b; Leroux and
Lefort, 2015) and is one of the inspirations for the development
of our framework. It simplifies the creation of targeted
reports and the extraction of subsets of data from different
domains for further analysis. For instance, generating CSV
files from SELECT clauses or RDF graphs with CONSTRUCT
clauses.

Code 3 shows the query employed for tracking subjects that
have Diffusion Tensor Imaging (DTI) and are diagnosed with
MCI.

DISCUSSION

Comparing the framework to similar approaches is not
straightforward, as the benefits are focused in improving
development tasks and the assessment may be subjective,
dependent on the objectives pursued. We have presented several
use cases to illustrate the effectiveness and ease of use of the
proposed solution.

The use of ontologies and semantic technologies as a
means of data storage, access, and analysis is widely adopted
in biomedical projects. However, this type of ventures still
comprises a set of challenges. The most time consuming task of
them has been the ontology selection, alignment, and mapping.
Despite the great availability of different ontologies to the
scientific community, many of them overlap in some subsets
and/or lack some others, drawing a landscape of competing
standards.

The selection of the technologies involved in the
transformation, reasoning, and storing of the data is also
up to discussion. It is important for the developers to
evaluate and find a balance between ease of deployment
and performance optimization, which will ultimately depend on
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Code 2 | SPIN rule attached to study subject class instances. It constructs new triples to the subject’s diagnosis experiment and state Mild Cognitive

Impairment at both formal and domain level.

PREFIX sio: <http://semanticscience.org/resource/>

PREFIX ado: <http://scai.fraunhofer.de/AlzheimerOntology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX apgem: <http://www.apgem.org/resource/>

CONSTRUCT{

# MCI value at formal level

?staging sio:SIO_000300 ?inferred.

# MCI at domain level

?staging a ado:Mild_cognitive_Impairment.

}

WHERE {

# Count T-Scores < 35

{

SELECT ?mmsetotal (COUNT(?tscore) AS ?tscorecount)

WHERE {

?this sio:SIO_000062 ?csExperiment.

?csExperiment a apgem:apgem_0004 ; sio:SIO_000312 ?csdata.

?csdata sio:SIO_000028*/sio:SIO_001277 ?mmse.

?mmse rdfs:label "MMSE_Total" ; sio:SIO_000300 ?mmsetota.

?csdata sio:SIO_000028*/sio:SIO_001277 ?score.

?score rdfs:label ?label ; sio:SIO_000300 ?tscore.

# The variables must be Tscores

FILTER (regex(?label, "VOSP_Tscore")

|| regex(?label, "CERAD_Recall_Tscore")

|| regex(?label, "COWAT_Tscore")

|| regex(?label, "TMTB_Tscore")).

FILTER (?tscore < 35)

}

group by ?this ?mmsetotal

}

## data from Medical History experiment

?this sio:SIO_000062 ?mhExperiment.

?mhExperiment a apgem:apgem_0003 ; sio:SIO_000312 ?mhdata.

# Participant informed subjective cognitive decline

?mhdata sio:SIO_000028*/sio:SIO_001277 ?cmhpar.

?cmhpar rdfs:label "P_subcogdec" ; sio:SIO_000300 ?P_subcogdec.

# Informant informed subjective cognitive decline

?mhdata sio:SIO_000028*/sio:SIO_001277 ?cmhinf.

?cmhinf rdfs:label "I_subcogdec" ; sio:SIO_000300 ?I_subcogdec.

# MCI Criteria

FILTER(

# 23 < MMSE

23 < ?mmsetotal)

# Participant or informant cognitive decline

&& (?P_subcogdec != 0 || ?I_subcogdec != 0)

# One or more t-scores < 35

&& ?tscorecount >= 1)

# Diagnosis experiment to update

?this sio:SIO_000062 ?diagExperiment.

?diagExperiment a apgem:apgem_0001 ; sio:SIO_000312 ?diagdata.

?diagdata sio:SIO_001277 ?stagnode.

?stagnode rdfs:label "stag" ; sio:SIO_000300 ?staging.

BIND(6 as ?inferred.

}

the objectives pursued. Using query rewriting approaches like
Ontop (Calvanese et al., 2015) saves development time, but at
the expense of performance, which is bound to the complexity
of the ontology and mappings. For instance, the rewriting of the
queries suffers an exponential blow-up in the worst case (Gottlob
et al., 2014). To overcome these problems, the complexity of the

ontology needs to be restrained, which would potentially limit
the flexibility of the ontological design. Also, the SQL source
queries for the mappings need to be as optimal as possible. This
task requires good knowledge of both SQL and XNAT database
structure. Last but not least, the reasoning capabilities are also
limited.
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Code 3 | Query for tracking subjects that have Diffusion Tensor Imaging with a specific diagnosis staging.

PREFIX sio: <http://semanticscience.org/resource/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX apgem: <http://www.apgem.org/resource/>

PREFIX dicom: <http://purl.org/nidash/dicom#>

SELECT (count (?subject) as ?total)

WHERE {

?subject a sio:SIO_000399; sio:SIO_000062 ?session, ?diagnosis.

?session a apgem:apgem_0028; sio:SIO_000312 ?sessiondata.

?sessiondata sio:SIO_000028*/sio:SIO_001277 ?desc.

?desc a dicom:seriesDescription; sio:SIO_000300 ?description.

# staging information

?diagnosis a apgem:apgem_0001; sio:SIO_000312 ?diagdata.

?diagdata sio:SIO_001277 ?stag. ?stag rdfs:label "stag"; sio:SIO_000300 ?stagValue.

# Get only MCI staged subjects with labels starting with D10

# with MRSessions with ID ending with _1 and have scans with

# DTI in its series description

FILTER(?stagValue = 6

&& regex(?subject, "^D10")

&& regex(?description, "DTI")

&& regex(?expLabel, "-1$"))

}

GROUP BY ?subject

Regarding the use of the framework, the preliminary
applications show promising results. QC is tightly integrated
in the data update workflow, enabling the early detection
of noisy and inconsistent data, saving a significant amount
of time in data inspection. The data exposed in Fuseki’s
SPARQL endpoint allows data researchers to prepare very specific
datasets in less time. As we thought, the preliminary results
obtained by the stage classifier have highlighted discrepancies
between its output and the actual diagnosis. Further analysis
will be necessary to evaluate the source of these disagreements,
which may be due to the simple approach of the current
staging algorithm, errors in the data or in the diagnostic
process. It opens the way for future applications of the
framework.

While the implemented semantic environment already fulfills

many of our motivations, there is still room for further

improvements. One of the immediate enhancements for our
framework is the alignment of the formal level with Linked

Data Cubes to generate more self-contained datasets for external
analysis. This is easily implemented with dedicated SPARQL

constructs that translate from one vocabulary to another. The
cubes and slices can be optimized to fit specific Machine
Learning algorithms, saving intermediate adaptation steps.

Another interesting use for the framework would be information
retrieval and annotation of free text comments attached to

many different experiments. The challenge mainly lies in the

multilingual nature of the comments.
Although the development focuses on the XNAT platform,

the modeling and techniques applied foster reutilization and are
easily generalizable to other of the available archiving solutions
for neuroimaging and clinical data. The only requirement would
be the adaptation of the transformations and domain specific
conceptualizations.

CONCLUSION

We have presented an incremental, modular, and scalable
framework that enhances and extends the capabilities of
neuroimaging and biobanking systems through the use of
semantic technologies. The approach has been exemplified
through the XNAT platform in the context of the APGeMproject.

The union of schemas, ontologies and services that together
enable semantic data access composes the framework. XNAT
model, along with XCEDE and complementary schemas,
establish the schema level of the framework, providing a suitable
means to consume and exchange imaging and clinical research
data. The domain level provides the higher level with more
abstract concepts, supporting simpler queries and knowledge
modeling. The formal level, which works with low-level and raw
data/metadata, provides a good toolset for Quality Control and
consistency check. Integrating the reasoner in the pipeline allows
taking advantage of the formal definitions, generating further
assertions about data quality and classifications.

This work shows that following the proposed methodology is
possible to enhance non-semantic biomedical research systems
with semantic capabilities, improving data management from
low-level data to more descriptive logical concepts. The
use cases shown confirm the benefits of applying layered
semantic descriptions to multi-dimensional datasets, common
in the Neuroscience domain, highlighting the convenience of
integrating these technologies in current systems updates and
future developments.
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Abstract
Over the past couple of decades, the explosion of densely interconnected data has stim-
ulated the research, development and adoption of graph database technologies. From
early graphmodels tomore recent native graph databases, the landscape of implementa-
tions has evolved to cover enterprise-ready requirements. Because of the interconnected
nature of its data, the biomedical domain has been one of the early adopters of graph
databases, enabling more natural representation models and better data integration
workflows, exploration and analysis facilities. In this work, we survey the literature to
explore the evolution, performance and how the most recent graph database solutions
are applied in the biomedical domain, compiling a great variety of use cases. With this
evidence, we conclude that the available graph database management systems are fit
to support data-intensive, integrative applications, targeted at both basic research and
exploratory tasks closer to the clinic.

Introduction

Nowadays, the generation, consumption and, more impor-
tantly, analysis of highly interconnected data have become
ubiquitous. In this situation, where the relationships among
data grow both in quantity and in significance, graph
models become an appealing solution, as graphs are math-
ematical entities in which objects are connected. Formally,
a graphG(V, E) is composed of an ordered pair of two dis-
joint sets: vertices V (also referred to as nodes) and edges
(or links) E (1). The graph abstraction directly translates
concepts and instances into nodes and their relationships
into edges, making it intuitive for data modeling. However,
strong graph data is not straightforward in conventional

Database Management Systems (DBMSs), and the phys-
ical implementation of a given data model and how the
relations are treated ultimately depend on the database
type.

For example, the basis of Relational Database Manage-
ment Systems (RDBMSs) are tables (relations) (2–4), where
each row represents a single data element of an entity and
a single column usually defines a particular data attribute.
The standard mechanism to create relationships between
entities is by defining unique IDs (primary keys) that can
be copied into referencing tables (foreign keys). To exploit
these references and include different tables in a database
query, the Structured Query Language (SQL) (5) provides

© The Author(s) 2021. Published by Oxford University Press. Page 1 of 22
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the JOIN clause. The relational paradigm is very appro-
priate for well-defined data structures that are unlikely to
change and translate naturally to tables, and the relations
among its entities are not numerous and not as relevant
as the entities’ attributes. Hence, given its maturity and
technological development, RDBMSs are widely used for
data storage, with countless examples experienced in every-
day life, like user data, inventory tracking, blog posts and
many more. However, when most relationships are many-
to-many, prevalent in densely connected data, querying
the database requires multiple expensive JOIN operations,
impacting the performance (6).

Although graphs can be modeled with tables represent-
ing vertices and edges, complex queries or graph algorithms
(like path traversals) are challenging to optimize with-
out implementing complementary structures, such as adja-
cency lists (7). These modeling and performance limitations
have increased the interest in Graph Database Manage-
ment Systems (GDBMSs). GDBMSs, in contrast to regular
DBMSs, allow working directly with a graph model, avoid-
ing sophisticated engineering to represent relationships effi-
ciently, and provide straightforward ways to store, access
and operate graph data, especially for traversing paths
and matching subgraphs. Furthermore, the schema-less
or schema-optional approach that most GDBMSs follow
grants a high degree of flexibility, allowing applications
to adapt and evolve quickly and introduce abstraction,
specialization of entities and relations among them more
easily.

Graph models are present in multiple formal representa-
tions and become very powerful when the problem model
exhibits varied relations among the entities or concepts.
Consequently, the trend in graph databases has permeated
into many disparate domains, and we can find applications
in Energy Management Systems (EMS) (8), Power Grid
Modeling (9) and even less technologically driven fields
like Digital Humanities (10). The biomedical domain is a
complex area that is inevitably studied in many different
sub-domains that are inherently related and connected. For
instance, the study of human metabolism requires iden-
tifying hundreds of concepts (e.g. metabolites, proteins,
complexes and metabolic reaction names) and the relations
among them (e.g. consumption, production and catalysis),
and graph models provide a valuable framework in this
situation. Moreover, the amount of data produced in the
‘omics’ era results in large graphs that become difficult to
manage without a database optimized for the task.

We can illustrate the differences between the relational
and graph-based paradigms depicted in Figures 1 and 2,
a stripped-down biological model describing subject diag-
noses and their related phenotype–genotype and path-
way implications. For most GDBMSs, the physical design

resulting from the logical model described in Figure 1
would be almost equivalent. However, in the case of
RDBMSs, the implementation from the logical to the final
physical design requires dealing with the many-to-many
cardinality that most of the model’s relations will have.
A typical normalized relational design, at least to the
Third Normal Form (3NF) (11), prevents data redun-
dancy by introducing intermediate tables for each rela-
tionship between two entities, as shown in Figure 2. For
searching heavily connected entities, like genes, this layout
would require referencing (joining and sub-querying) sev-
eral tables multiple times, potentially with various filters,
ultimately eroding the query’s performance. Also, com-
plicated queries may end up being rather cumbersome.
Thus, designing a relational model for highly intercon-
nected data poses an engineering challenge, especially when
the model requires fine-grained semantics, which involves a
trade-off between implementing specialized relations (more
tables) or limiting the expressiveness at the expense of
semantics.

GDBMSs treat relationships as first-class objects,
improving the data model’s semantics and easing the
adoption of knowledge models and ontologies, which
are computer science constructs that provide well-defined
vocabularies that allow the precise and machine-readable
description of knowledge about a particular domain (12).
The biomedical domain has driven and benefited from
advances in Knowledge Representation (KR) and storage,
being one of the early adopters of ontological research. As a
result, there exists a significant number of formal biomedi-
cal ontologies (13) that capture and model knowledge from
disparate sub-fields, giving rise to initiatives like the Open
Biological and Biomedical Ontology (OBO) Foundry (14)
and the National Center for Biomedical Ontology (15) to
promote harmonization and interoperability. These con-
trolled vocabularies and ontologies support the research
in several ways, mainly in data annotation (16–19) and
biomedical text mining (20, 21).

In this paper, we survey the adoption of GDBMSs in the
biomedical domain to present a summary review from an
‘application perspective’ with categorization and descrip-
tion of biomedical applications employing GDBMSs as
storage systems. The applications presented are selected
from a broad literature search complying with the follow-
ing characteristics: (i) are biomedical applications using
GDBMSs, (ii) are well documented with papers and web-
sites (iii) have been peer-reviewed. Our coverage of bio-
logical graph-powered systems is by no means exhaustive,
focusing on recent developments that are high quality, pub-
licly available and expected to be of interest to experts
and developers in the community. It is worth noting that,
given the overlapping nature of biomedical knowledge,
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Figure 1. Graph model of diagnoses and its related phenotype–genotype and pathway implications.

some systems can be classified into more than one cat-
egory. First, we provide a technological background by
exploring the different database models and designs and
examining the performance through benchmark studies
from the literature. Afterward, we highlight the use of
GDBMSs within different applications in a wide variety
of biomedical contexts, describing the implications and
impact of graph technology in these settings. Finally, we
discuss the current state, limitations and possible future
lines.

Background

Graph database models and design

Graph database models may be defined as those in which
the data structures are modeled as a directed, possibly
labeled, graph, or its generalizations. The data manipu-
lation is done using graph-oriented operations and type
constructors, and appropriate integrity constraints can
be defined over the graph structure (22). Over the past

decade, graph database implementations have grown from
prototypical, application-driven approaches to fully devel-
oped products, providing external interfaces, database lan-
guages, query optimizers, storage and transaction engines,
and management features. This evolution has been actively
reviewed (23–28), showing how deficiencies such as the
lack of integrity constraints, partition and scalability limi-
tations, or the need for standard graph database languages
have been addressed throughout the version history. Besta
et al. describe the contemporary technological landscape of
graph database solutions through a taxonomy of six key
design aspects: type of backend technology, data model-
ing approach, internal data organization, data distribution,
query execution and type of transactions (29).

As far as backend technology is concerned, we can
see that, at present, most graph database systems are
built upon existing storage designs from both relational
and NoSQL (30) paradigms, such as key-value, docu-
ment, wide-column, tuple and object-oriented stores. Key-
value stores allocate items as (key, value) pairs, usually in
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Figure 2. The equivalent normalized relational physical design, with entity tables (white) to store attributes, and join tables (yellow) to implement
the relationships.

standalone hash tables. Document stores extend key value
so that the values are ‘documents’, encoded in standard
semi-structured formats such as XML, JSON or BSON
(Binary JSON). Wide-column stores represent data through
a tabular format of rows with a fixed number of column
families (an arbitrary number of columns that are logically
related to each other and usually accessed together). Triple
stores [also known as Resource Description Framework
(RDF) databases] work with the notion of triples (subject–
object–predicate), and tuple stores generalize these systems
to collect tuples of arbitrary size. Object-oriented stores
store data as true objects, identified by object IDs (OIDs)
and following a class hierarchy. Using existing engines
delivers the advantage of mature and well-tested technol-
ogy but at the expense of obtaining non-optimized graph
data representations and queries. In contrast, native graph
databases like TigerGraph (31) and Neo4j are specifically
built to maintain and process graphs. Table 1 provides
a list of different GDBMSs, which many of the reviewed
applications use, with their internal database engines.

Regarding data modeling, Labeled Property Graphs
(LPG) and RDF are the most common graph models found
in graph database systems (32–34). LPG augments the
simple graph model to allow defining labels for nodes

and edges, as well as an arbitrary number of proper-
ties (also called attributes) for both. RDF, a World Wide
Web Consortium (W3C) standard, was conceived as a
collection of specifications for representing information
to allow easy data exchange between different data for-
mats, and graphs arise from the collection of triples
in the form of subject, predicate and object (s, p, o).
The RDF format is widely used in biomedical setups,
due mainly to the fact that RDF is a serialization and
data instantiation format for OWL-based bio-ontologies,
and new systems using native graph databases rely on
transformations between models to fully exploit their
features.

Likewise, systems need to define data structures to rep-
resent graphs in the storage layer. The most common
representation formats are the adjacency matrix (AM), the
adjacency list (AL) and the edge list (EL). Figure 3 shows
a graphical representation of these formats. The AM is a
square matrix where its cells indicate whether vertex pairs
are adjacent (connected) or not. In the AL format, each
vertex has an associated adjacency list containing the IDs
of all adjacent vertices. The difference with EL is that AL
explicitly stores edges with its source and destination ver-
tex. The AL format is efficient on traversal operations, and

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab026/6277712 by guest on 19 Septem

ber 2023



Database, Vol. 2021, Article ID baab026 Page 5 of 22

Table 1. Summary of available implementations by core database engine

Product Link Database engine

WhiteDB http://whitedb.org Tuple store
GraphDB https://www.ontotext.com/products/graphdb Tuple store
OrientDB https://www.orientdb.org Document store
ArangoDB https://www.arangodb.com Document store
Azure Cosmos DB https://azure.microsoft.com/es-es/services/cosmos-db Document store
FaunaDB https://fauna.com Document store
RedisGraph https://oss.redislabs.com/redisgraph Key-value store
Dgraph https://dgraph.io Key-value store
HyperGraphDB http://www.hypergraphdb.org Key-value store
MS Graph Engine https://www.graphengine.io Key-value store
Titan https://titan.thinkaurelius.com Wide-column store
JanusGraph https://janusgraph.org Wide-column store
DSE Graph https://www.datastax.com/products/datastax-graph Wide-column store
InfiniteGraph https://www.objectivity.com/products/infinitegraph Object-oriented store
ThingSpan https://www.objectivity.com/products/thingspan Object-oriented store
VelocityDB https://velocitydb.com Object-oriented store
Oracle Spatial and Graph https://www.oracle.com/technetwork/database-options/

spatialandgraph/overview/spatialandgraph-1707409.html
RDBMS

Sparksee/DEX http://www.sparsity-technologies.com Native graph database
TigerGraph https://www.tigergraph Native graph database
GraphBase https://graphbase Native graph database
Memgraph https://memgraph.co Native graph database
Neo4j https://neo4j.com Native graph database

many graph databases use it. Other features, such as index
support, are also relevant for the overall performance.

Data distribution may be achieved through data repli-
cation or sharding. With replication, each instance main-
tains a copy of the dataset, while sharding fragments the
data across instances. Distribution becomes essential when
dealing with large amounts of data, and query execu-
tion is directly linked to it. Multi-server query execution
can be enabled in several ways. The concurrent execu-
tion allows the execution of different queries at the same
time, providing higher throughput. With parallelization,
a single query can be executed across servers to obtain
lower latencies. Because managing large amounts of data
can compromise the system’s performance or availability,
these features can become essential for projects in this
situation.

Finally, GDBMSs can be evaluated by the support of
transactions. Specifically, Atomicity, Consistency, Isola-
tion, Durability (ACID); Online Transaction Processing
(OLTP); and Online Analytics Processing (OLAP) support.
OLTP systems focus on smaller transactional queries, while
OLAP systems execute more expensive analytic queries that
span whole graphs.

The literature reveals that the field is evolving rapidly
and many referenced databases have either already
been discontinued or greatly improved at the time of
writing.

Performance and benchmarking

Because of their innate capabilities in dealing with highly
interconnected data, graph databases have been attract-

ing attention in the past years. As different technological
implementations of graph database engine have emerged,
so has the need for accurate, quantitative performance com-

parisons between them by using standardized queries and
workloads. Furthermore, the differences in relational and

graph-based paradigms also raised questions about how
they would behave in different contexts. Table 2 summa-
rizes the surveyed benchmark studies.

Within standard benchmarks, the Linked Data Bench-
mark Council (LDBC) (35) is one of the most consis-
tent works in this topic, and its workloads have been
employed and adapted in many benchmarking studies.
The library currently includes three kinds of workloads:
interactive, business intelligence and graph analytics. Inter-
active workloads focus on general graph database opera-
tions, executing read-only (short and complex) and transac-
tional update queries. Business Intelligence workloads are
designed to stress different performance aspects, employ-
ing read-only aggregation operations over significant vol-
umes of data that span large parts of the graph. The last
workload, ‘graphalytics’ (36), proposes six graph algo-
rithms to enable the objective comparison of graph anal-
ysis platforms: Breadth-First Search (37), PageRank (38),
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Figure 3. Graphic description of the most common graph representation formats. (a) Original directed graph; (b) adjacency matrix; (c) adjacency list;
and (d) edge list.

weakly connected components (39), community detection
using label propagation (40), deriving the local cluster-
ing coefficient (41), and computing single-source shortest
paths.

GDBMSs have been assessed in studies from differ-
ent contexts, like data provenance (42), biomedical set-
tings (43–46) and social networks (47–52). Most of the
social network benchmarks use or adapt the LDBC’s
Social Network Benchmark (SNB) (53). In parallel with
technological surveys, these studies show how GDBMS
technology has matured and grown into a competitive
and heterogeneous environment, with its weaknesses and
strengths.

The number of edges involved in a query has a big
impact on performance (44, 46). Likewise, subgraph-
matching queries are more challenging to handle in large
datasets, in contrast to traversal queries employed in
some of the works. Lastly, GDBMSs are, in general,
less optimized for aggregate operations (25, 51, 52, 54).
In contrast, all the studies acknowledge that schema-
less provides a high degree of flexibility to accommodate
new nodes or relations, avoiding the need to restruc-
ture the schema. GDBMSs are more efficient travers-
ing large graph instances, with lower computational cost
than RDBMSs (42, 43, 45, 47, 52, 55, 56), because

the search space is reduced to directly connected nodes,
avoiding scanning the entire graph to find the nodes
that meet the search criteria. Furthermore, graph algo-
rithms (e.g. pathfinding, community detection, central-
ity or similarity) are more natural to implement and
even available out of the box, like the case of Neo4j’s
Graph Data Science Library (https://neo4j.com/graph-
data-science-library/) or TigerGraph’s (31) GSQL Graph
Algorithm Library (https://docs-beta.tigergraph.com/tiger
graph-platform-overview/graph-algorithm-library).

To compare different paradigms, benchmarking imple-
mentations require an extra effort to address peculiarities.
In the case of RDBMSs vs. GDBMSs (52), Cheng et al. pro-
pose a unified benchmark that extends the TPC-H (http://
www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_
v2.18.0.pdf) standard RDBMS benchmark and LDBC
using transformation mechanisms between relational and
graph data, making it possible to evaluate different sys-
tems on the same datasets, query workloads and met-
rics. The query workloads consist of three main cate-
gories. Firstly, atomic relational queries (Projection, Aggre-
gation, Join and Order by) aim to evaluate the per-
formance of primitive relational operations implemented
in GDBMSs. Secondly, TPC-H query workloads eval-
uate the performance of GDMBSs on operations that
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Table 2. Relevant benchmarking studies

Reference
Benchmark/
methodology GDBMS RDBMS/NoSQL Description

(42) Own implementation Neo4j MySQL Technology comparison about recording and query-
ing data provenance information. Executes objective
benchmarks to measure query response time and
disk space usage. Also, it provides subjective com-
parisons based on system documentation and usage
experience. Concludes that Neo4j outperforms
on structural queries, but it is premature to use a
graph database in production environments for data
provenance

(57) HPC Scalable Graph
Analysis Benchmark

Neo4j
Jena
Hypergraph
DBDEX

Evaluates the performance of selected systems with the
HPC benchmark. This benchmark employs R-MAT
(58) for graph generation and measures the execu-
tion time over different kernels: data loading, scan
edges, 2-hops subgraph building and Traversed
Edges Per Second. All four platforms perform well
on small graphs. Only DEX and Neot4j were able
to load the largest graphs. DEX showed the best
performance

(47) Own implementa-
tion of a small social
network–like problem

Neo4j MySQL Small comparative analysis with social network
queries. In this study, Neo4j outperforms MySQL
in all queries

(59) GDB, an extensible tool
to compare Blueprints-
compliant graph
databases

Neo4j
DEX
Titan
OrientDB

A Tinkerpop-based distributed benchmarking frame-
work to compare Blueprints-compliant graph
databases. The benchmark measures traversal, load
and intensive workloads. The results show that all
databases perform similarly on read-only operations,
while Titan and DEX stood out on read–write work-
loads, and Neo4j did on traversal workloads. Code
available at https://github.com/Jsalim/GraphDB-
Benchmark

(43) Bioinformatics graph
processing problems

Neo4j PostgreSQL A query benchmark that evaluates Neo4j against
PostgreSQL in typical bioinformatics graph pro-
cessing problems. The study employed the human
interaction network from STRING v9.05 (60) and
measured the response time for finding immediate
neighbors and their interactions, finding the best
scoring path between two proteins and finding the
shortest path between them. Neo4j outperformed
PostgreSQL, showing speedups of 36× (immediate
neighbors), 981× (best scoring path) and 2441×
(shortest path)

(44) Graph-based exten-
sion to Conditional
random field Protein–
Protein Interface
identification

Neo4j Microsoft SQL
Server

A case study on how Neo4j can be applied to the
bioinformatics problem of protein–protein interface
identification

(45) Biomedical graph
traversal operations

Neo4j MySQL Compares the performance by employing biologi-
cal network information from 21 different datasets
and ontology resources. The benchmark measured
the query response time of retrieving all data that
traverse the relationships among genes, drugs and
diseases that increased the expression of the BRCA1
gene. The results report that Neo4j outperformed
MySQL in all cases and highlights the importance of
system tuning to obtain better performance

(continued)
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Table 2. (Continued)

Reference
Benchmark/
methodology GDBMS RDBMS/NoSQL Description

(49) LDBC SNB Neo4j Analyzed the fundamental points of graph databases
and employed the LDBC-SNB to evaluate the per-
formance of Neo4j. Without much detail, the work
concludes that Neo4j shows acceptable behavior
when dealing with different sizes of graph databases.

(55) Own implementation of
comparative measures
over a medical care
setup

Neo4j Oracle Compares the performance of Oracle 11g and Neo4j
over a hospital health-care system use case with a
set of predefined queries with different join/subquery
requirements. Neo4j outperformed Oracle in 4/5 of
the queries.

(50) Extension of the LDBC
SNB IW to simulate
real-time transactional
workloads

TitanDB
Neo4j
Virtuoso

PostgreSQL An improved graph database benchmarking archi-
tecture for real-time transaction processing built
upon LDBC-SNB and Apache Kafka (https://
kafka.apache.org/). Provides LDBC-SNB reference
implementations for Gremlin (61), SQL and Cypher.
The experiment employed two synthetic datasets
with scale factors of 3 and 10, to execute read-only
graph queries (point lookups, one-hop traversals,
two-hop traversals and single-pair shortest path)
and simulate a real-time Interactive Workload.
Their results showed that Neo4j achieved higher
throughput than TitanDB and that PostgreSQL
provided the best overall performance followed by
Virtuoso (https://virtuoso.openlinksw.com/) (SQL
mode). Concludes that RDBMSs with a native SQL
interface provides the best performance under real-
time streaming scenarios. Gremlin Server incurs
significant overhead

(56) Follow-up of Khan
2017 with database
tuning

Neo4j Oracle Follow-up work of Khan 2017 where they improve
the performance of Oracle 11g database about 35%
by creating separate tablespaces for each schema and
table, and five more query workloads. Still, despite
the physical tablespace tuning technique of Oracle
11g, Neo4j outperforms it in all proposed scenarios

(52) Domain-agnostic work-
loads. Two-way
adaptations to com-
pare graph databases
with other implemen-
tations. TPC-H and
LDBC

Neo4j
ArangoDB

MySQL
Microsoft SQL
Server

Oracle
PosgreSQL
RocksDB
HBase
Cassandra

Comparative evaluation between RDBMSs and
GDBMSs under a unified benchmark that extends
the TPC-H standard RDBMS benchmark and
LDBC. The query workload consists of three main
categories: atomic relational queries (projection,
aggregation, join and order by), TPC-H query work-
loads, and five graph algorithms from LDBC. The
metrics measured the average query processing time,
memory usage (peak) ratio and CPU usage (peak)
ratio of five query runs. This benchmark concluded
that RDBMSs outperform GDMBSs by a substantial
margin under the workloads that mainly consist of
group-by, sort and aggregation operations. On the
other hand, GDMBSs are superior in the execution
of those workloads that mainly consist of multi-table
join, pattern matching and path identification

(continued)
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Table 2. (Continued)

Reference
Benchmark/
methodology GDBMS RDBMS/NoSQL Description

(51) Complete LDBC-SNB
implementation for
Neo4j and TigerGraph

Neo4j
TigerGraph

A complete implementation of the LDBC-SNB bench-
mark in Neo4j and TigerGraph native GDBMSs.
The experimental setup consisted of four scale fac-
tors that ranged from 1 GB to 1 TB deployed on
three computing architectures. The results can be
fairly summarized in three key points: TigerGraph
stores graph data considerably more compactly
than Neo4j, Neo4j is faster at ingesting raw data
than TigerGraph, and lastly, Neo4j is faster than
TigerGraph only in 13 of the 368 configurations.
Concludes that TigerGraph is superior to Neo4j on
the LDBC-SNB benchmark

(46) Own benchmark
implementation with
biomedical data. Data
loading, path traversal
and aggregation tests

Neo4j Evaluates the aptness of the database system in terms
of analysis and visualization of a GRN by measuring
three test cases (bulk data insertion, path queries and
aggregation queries) with a small and large dataset.
The results showed that Neo4j performed well in
most of the tests; after warming up the cache, the
performance improved drastically, reducing query
time by about 64% for both dataset sizes. In the
same vein (44), the queries that involved more edge
operators performed worst

(62) TigerGraph’s bench-
mark

RedisGraph
TigerGraph
Neo4j
Neptune
JanusGraph
ArangoDB

The study executes TigerGraph’s benchmark to eval-
uate RedisGraph against leading graph databases.
Using graph data from Twitter and Graph500 gen-
erator, the benchmark measures the query response
time for k-hop neighborhood count, k=1,2,3 and
6. RedisGraph outperforms all competitors, and
the study highlights additional opportunities for
enhancement: aggregations, enhanced GraphBLAS
(http://graphblas.org), Cypher clauses/functionality
to support more diverse queries

legacy RDBMSs perform well. And lastly, graph query
workloads composed of five graph algorithms in the
LDBC Benchmark aimed to evaluate the performance of
RDBMSs under the situations GDBMSs are supposed to be
efficient.

Nevertheless, on the dichotomy between RDBMSs and
GDBMSs, we find how late benchmarks show equiva-
lent or even better performance of the former in dif-
ferent settings, questioning whether it is appropriate to
favor GDBMSs over RDBMSs without a proper evalua-
tion of the context. We can find one example in real-life
high-throughput scenarios, like those with critical con-
current access (59) or streaming transactional workloads
(50), where GDBMSs are less prevalent. In these set-
tings, RDBMSs can deliver competitive performance for
OLTP-like online social networking applications, especially
in single-node setups. Moreover, the implementation and

optimization of graph analytics in RDBMSs are growing
areas of research (63–66).

The physical data persistence strategy impacts the over-
all performance in both paradigms. For example (50),
Pacaci et al. show how similar SQL queries over the
same database schema drive different performance in Post-
greSQL and Virtuoso (SQL). The difference is attributable
to the fact that Virtuoso employs columnar storage, which
is known to suffer under transactional workloads with fre-
quent updates, while PostgreSQL implements row-oriented
storage. In the case of GDBMSs, adjacency lists are
common in native graph storage, as they enable index-
free adjacency access and provide apparent advantages
for read operations. However, other storage approaches
offer better performance regarding write operations, as
is the case of key-value storage engines implementing the
LSM-tree (67) index. Moreover, tuning procedures are
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Table 3. A short list of useful graph-oriented open-source tools and utilities

Tool Reference Code Description

STON (74) https://sourceforge.net/projects/ston Java-based framework for transforming SBGM
models to graphs

Pheno4J (75) https://github.com/phenopolis/pheno4j Java library to load patient genetic variants and
phenotype data into Neo4j

Recon2Neo4j (76) https://github.com/ibalaur/Recon2Neo4j Java library that allows loading SBGM mod-
els into Neo4j and parsing for translating the
Neo4j JSON networks into SBML and SIF
formats

ANIMA (77) https://github.com/adeffur/ANIMA R framework for producing multiscale
association networks, loaded in Neo4j

SciGraph https://github.com/SciGraph/SciGraph Neo4j backed ontology store
Dipper https://github.com/monarch-initiative/

dipper
Python package to generate RDF triples from
common scientific resources. Includes map-
pings and parsers for many sources from
different domains

NSMNTX https://github.com/neo4j-labs/neosemantics Neo4j plugin that enables the use of RDF in
Neo4j

Tarql https://github.com/tarql/tarql Java and Apache ARQ based command-line tool
for converting CSV files to RDF using SPARQL
1.1 syntax

RDF2Neo (78) https://github.com/Rothamsted/rdf2neo Java-based project providing configurable com-
ponents to convert RDF data into Cypher
commands that can populate a Neo4j graph
database

of utter importance to achieve the best possible perfor-
mance regardless of the system, like optimizing indexing
or tablespaces, as some studies report.

Graph database applications in the
biomedical domain

Biomedical research produces large amounts of densely
interconnected data belonging to many different domains,
and storing such data has always presented a technolog-
ical challenge. Storing graphs using traditional relational
databases presents several drawbacks. Relational databases
rely on fixed schemas and usually require redesigns when
introducing new data structures, affecting flexibility, effi-
ciency and scalability. More generic data models would
require many intermediate tables to represent many-to-
many relationships, degrading the overall performance
because of the need for multiple join operations to traverse
interconnected networks. As graph databases matured,
they started to gain more attention in the bioinformatics
community, given the ubiquity of graphs in this domain.
Consequently, many tools emerged to interoperate between
formats and paradigms. Table 3 brings together some of the
most relevant ones.

The evolution of Knowledge Representation technolo-
gies and, more specifically, ontology languages like

OWL, enables more complex and interconnected mod-
els. Although many of these tools do not necessarily use
an explicit graph model, it is commonly implicit in the
semantics, opening the door to exploit graph features.
One remarkable example of this approach is the Open
Biomedical Ontologies (14), which many of the works
we are about to describe employ as foundational mod-
els. Table 4 summarizes publicly available graph-powered
systems.

Applications in systems biology

Intrinsically, systems biology models encode networks of
entities and biological processes, such as reactions. As
advances in molecular biology produce more extensive
and complex networks, the computational demand for
analyzing those increases drastically. Consequently, the
use of in-house software and desktop solutions started
to become a bottleneck. GDBMSs allow decoupling a
significant part of the computational needs to dedicated
server machines, providing improved tuning of resources
for optimal query and algorithm execution performance.
One good example is cyNeo4j (68), a Cytoscape (69, 70)
app to link this popular network analysis desktop pro-
gram to a server environment using Neo4j. It enables the
user to upload network data and run algorithms both
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Table 4. Publicly available graph-powered Biomedical data systems

Platform Reference Domain/scope Implementation Interfaces Database

Arena-Idb (79) Genetics Hybrid MySQL-
Neo4j

cyNeo4j (68) Cytoscape App Cytoscape GUI
HRGRN (80) Genetics

Metabolomics
Web platform Web

miTALOS (81) Pathway analysis Web platform Web
Biochem4j (82) Biochemistry Exposed database Neo4j browser

REST
Neo4j

Recon2Neo4j (83) Metabolomics
Proteomics

Exposed database Neo4j browser

GeNNet (84) Transcriptome
analysis

Local web platform Web
Database interface

Monarch Initiative (85) Phenotype–Genotype
analysis

Web
Data endpoint
Ontology endpoint

Reactome (86, 87) Molecular biology
Pathway analysis

Web platform Web
Cypher interface REST

Spfy (88) Bacterial WGS Web platform Web Hybrid Blazegraph-
MongoDB

GREG (89) Genetics Web platform Web
Cypher interface

Neo4j

locally and on the Neo4j server, creating an interactive
workflow that uses the computational strength of the
Neo4j server without interrupting the typical workflow in
Cytoscape.

Standard formats of the domain, like Systems Biology
Markup Language (SBML) (71) or CellML (72), enable
modeling biological systems in terms of functional, behav-
ioral or structural aspects, including meta-data and seman-
tic annotations to relate model entities to external resources
describing the underlying biology. These meta-data are
of great importance to facilitate model reuse and repro-
ducibility, but this introduces heterogeneity, which com-
plicates the design in fixed-schema database systems (73).
Henkel, Wolkenhauer and Waltemath employed Neo4j to
store SBML and CellML models, including ontology terms
and relations from the semantic annotations that these for-
mats support, effectively combining computational mod-
els, semantic annotations and simulation experiments. The
approach integrated widely adopted bio-ontologies, adding
all classes and relations as nodes and edges but leaving
out cross-references between concepts of different ontolo-
gies. This integration allows querying the information
hidden in the semantic annotations of in-model represen-
tations and simulation descriptions. Furthermore, it allows
defining flexible connections between the data domains,
incorporating links between annotations, whole models
and model entities.

The Systems Biology Graphical Notation (SBGN) (90)
is another standard for visual representation of biological

networks. It is composed of three orthogonal languages
for representing different views of biological systems: Pro-
cess Descriptions (PDs), Entity Relationships (ERs) and
Activity Flows (AFs). SBGN-to-Neo4j (STON) (74) is a
Java framework to transform SBGN markup language files
into a Neo4j graph representation, focused only on the
PD and AF sub-languages. The authors report that the
persistent graph representation yields several benefits, e.g.
efficient management and querying of networks, identifi-
cation of subgraphs in networks, merging of SBGN dia-
grams/existing pathways into more extensive systems, or
the comparison of different layers of granularity in SBGN
languages.

Applications in biological and medicinal
chemistry

The fields of Biology and Biochemistry have been a pioneer
in the development of new data standards and knowledge
representation paradigms, such as ontologies, to foster
reuse, integration and translation of research data. These
standards enable publicly available data resources such as
UniProt (91), KEGG (92) and NCBI Taxonomy (93) to
soft-link entities between each other, allowing the user to
follow such links by manual browsing or through special-
ized workflows. The introduction of graph databases made
it easier to integrate these resources explicitly. Built on
Neo4j, Biochem4j (82) provides an integrated, queryable
database that warehouses chemical, reaction, enzyme and
taxonomic data from ChEBI (94), MNXref (95), Rhea

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab026/6277712 by guest on 19 Septem

ber 2023



Page 12 of 22 Database, Vol. 2021, Article ID baab026

(96), KEGG, UniProt and the NCBI Taxonomy resources.
Biochem4j translates ontology entities and raw biological
data into an integrated graph representation, which, lever-
aged through Cypher query language, allows performing
queries and detecting patterns across the whole range of
available information.

Logically, graph representations apply to lower-level
chemistry and related fields, like drug discovery research.
One example is the fragment-based drug discovery (FBDD)
(97), in which the validation stage of a project involves
testing sensible close analogs of a fragment hit. This pro-
cess needs adequate search tools to mine the many millions
of similar compounds that are currently available in the
fragment space from corporate collections or commercial
suppliers. The Fragment Network (98) employs Neo4j to
allow the user to search the chemical space around a com-
pound of interest. The graph model treats each compound
as a set of rings, linkers and substituents, with a resulting
network containing a total of 23 million nodes and 107
million edges.

Applications in the omics domain

In the last five years, the usage of graph databases to sup-
port the integration of genomic, proteomic, metabolomic
and phenotypic data has substantially increased. Most of
the authors conclude that GDBMSs are valuable tools to
deal with heterogeneity and lax structured data models
because these provide a high degree of flexibility and lay
the foundations for building integrated solutions.

Biological pathways
Repositories of metabolic maps, reconstructions, path-
ways and interactions provide fundamental tools for the
biomedical investigation. Examples of these repositories are
the Reactome Knowledgebase (99), Recon2 (100) and the
latest development, Recon3D (101).

Reactome is a comprehensive repository of molec-
ular reactions that include signal transduction, trans-
port, DNA replication, protein synthesis and intermediary
metabolism. Reactome contains a detailed representation
of cellular processes, as an ordered network of molecu-
lar reactions, interconnecting terms to form a graph of
biological knowledge. This structure serves both as an
archive of biological processes and as a tool for discover-
ing unexpected functional relationships in data. Reactome’s
data model initially follows a frame-based design stored
in a relational MySQL database. Overcoming the rela-
tional model’s intrinsic limitations requires an increased
level of abstraction in its physical design to accommo-
date new concepts, ultimately affecting query complex-
ity and execution time. As graph database systems have

matured, the limitations of storing pathway data in rela-
tional databases have become more evident, motivating
the project to develop tools to migrate the content into
a Neo4j database (86, 87). The Reactome case is espe-
cially relevant because it exhibits a detailed description of
the process to adopt a native graph database and how it
improved the performance and capabilities of the whole
system. On the one hand, the average query time dropped
from 173.11ms to 12.56ms, a 93% reduction. On the
other hand, the new graph model provides more straight-
forward ways to perform complex queries over metabolic
pathways.

Recon2 is another large community-driven reconstruc-
tion of the human metabolic network, with thousands of
reactions, unique metabolites and proteins, included in
an SBML model. A model of this size and complexity
comprises a challenge for advanced exploration involv-
ing associations between multiple concepts (e.g. network
neighborhood of metabolites, shortest pathways between
metabolites, proteins and complexes). Recon2Neo4j (76)
is a Neo4j-based metabolic framework that models rel-
evant concepts involved in the metabolic reactions as
nodes in the graph database and the relationships among
them as connecting edges, facilitating the exploration of
comprehensive and highly connected human metabolic
data and identification of metabolic subnetworks of
interest.

HRGRN (80) is an integrative database for plant sig-
nal transduction, metabolism and gene regulation networks
that is also backed by Neo4j. The solution, implemented
as a web platform, provides the user with a graph-
centered search interface to explore these biological sys-
tems, allowing to find potential paths or build either node-
centralized or nodes-of-interest subnetworks. Regarding
the data model, it followed an ad hoc approach, where bio-
logical entities (such as genes, proteins, small compounds
and RNAs) are represented as nodes. For the relations
between these entities, they defined eight types of edges that
link the above nodes based on their biological functions.
The Property Graph model is employed to attach a prop-
erty indicating whether the relationship was validated or
predicted.

BioGraphDB (102) is a bioinformatics database to com-
bine different types of data from ten online public resources
related to genes, microRNAs (miRNAs), proteins, path-
ways and diseases. To integrate these disparate resources,
it builds on an Extract-Transform-Load (ETL) ecosystem
capable of dealing with several formats (Tab delimited,
XML, EBML and SQL) with a precise execution order
to satisfy dependencies between the integrated resources.
This process maps each biological entity and its prop-
erties into a vertex and its attributes, and relationships
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between two biological entities into edges. In this case,
the GDBMS of choice was OrientDB. When operating in
graph mode, referenced relationships are like edges, acces-
sible as first-class objects having start and end vertices and
properties. This feature allows representing a relational
model as a document-graph model, maintaining the rela-
tionships. With the end-user in mind, the Biograph web
application (103) allows users to query, visualize and ana-
lyze biological data belonging to the sources available on
BiographDB. However, the system is leaned toward a tech-
nical, graph knowledgeable audience, with explicit Gremlin
query interfaces.

Similarly (104), Lysenko et al. illustrate how to build a
graph structure to relate biomedical information at differ-
ent levels and provide biological context to disease-related
genes and proteins. It integrated genomic and proteomic
data along with disease concepts to investigate possible
relations between specific protein interactions, pathways,
and typical phenotypes associated with asthma disease. In
this case, the modeling strategy follows a protein-centric
approach without a rigid schema or upper model (such as
an ontology). This approach provides a higher degree of
flexibility to integrate many semi-structured data sources
and eases the development of ad hoc solutions, but at the
expense of data standardization. The study provides a good
insight into how graph databases can facilitate hypothe-
sis generation. Another relevant contribution is to show
how targeted Cypher queries exploit known structures, as
well as graph algorithms like network neighborhood analy-
sis, to provide biological context. An example of structural
queries is obtaining proteins common to asthma and other
related respiratory diseases, where protein nodes are con-
nected to health conditions with a concrete ‘associated’
relation. They also demonstrate how simple graph traversal
queries have the potential to assist in hypothesis gener-
ation by exploring relationships between concepts. For
instance, to explore the relationship between asthma and
alterations in circadian rhythm, they identify all shortest
paths in the graph between asthma disease and a subset of
protein-coding genes that generate and regulate circadian
rhythms.

Epigenetics
Epigenetics is a growing area of researchwithin the biomed-
ical domain, and it is being used in many different contexts,
such as the study of cancer. Existing relational databases
that focus on various features of cancer pathways are
restricted because the integration of multiple data types
in relational databases is nontrivial, and the concept link-
ing needed in the exploration of cancer-related hypotheses
is limited. EpiGeNet (83) is a graph database that stores
conditional relationships between molecular (genetic and

epigenetic) events observed at different stages of colorec-
tal oncogenesis. It integrates statistical data on molecular
interdependencies recognized in colorectal cancer develop-
ment, mined from StatEpigen (105) (a manually curated
and annotated database) into aNeo4j instance. For the data
model, ‘MolecularEvent’ nodes represent molecular events
of conditional relationships, modeled as edges in the graph.
The edge type is determined by phenotype information
and the direction by the conditionality of the relationship.
Attributes of ‘MolecularEvent’ are used to store event type
and gene information, and the probability value is stored as
a property of the edge. The resulting graph makes it possi-
ble to explore path connections associated with the highest
‘incidence score’ and employ Cypher queries in tasks like
identifying genetic–epigenetic modifications, or molecu-
lar phenomena observed and reported in the specialized
literature.

Transcriptomics
The transcriptome is the complete set of all RNA molecules
in a cell, a population of cells, or in an organism
(106). Transcriptomics studies generate large amounts of
data, raw or processed, that may be deposited in pub-
lic databases to make them available for a broader sci-
entific community (107). These data can be expressed
as gene expression and interaction networks, which may
additionally be integrated with other biological datasets,
such as protein–protein interactions (PPIs), transcription
factors (TFs) and gene annotations. In this context and
to evaluate the performance of Neo4j (46), Wiese et
al. constructed Genome Regulatory Networks (GRNs)
based on known enhancer–promoter interactions (EPIs)
and their shared regulatory processes by focusing on coop-
erative TFs. Exploiting these data, we can find platforms
like the non-coding RNA Human Interaction Database
(ncRNA-DB), later evolved into Arena-Idb (79), miTA-
LOS v2 (81), GeNNet (84), the Association Network
Integration for Multiscale Analysis (ANIMA) (77) and the
Gene Regulation Graph Database (GREG) (89). Except
ncRNA-DB, all these platforms employ Neo4j as the
GDBMS.

The ncRNA-DB is built on top of OrientDB, which
translates class instances into nodes, permitting to follow
an object-oriented design consisting of four main classes
and its specializations: BioEntity, Alias, DataSource and
Relation. The database imported and integrated associa-
tions among non-coding RNAs (miRNAs, circulating miR-
NAs, Long non-coding RNAs (lncRNAs) and other non-
coding RNAs), genes, RNAs and associated diseases from
10 online databases. ncRNA-DB provides three alterna-
tive interfaces: a Cytoscape app named ncINetView, a web
interface, and a command-line interface for raw resource
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queries. Later, ncRNA-DB evolved into Arena-Idb, intro-
ducing several improvements like a mapping procedure for
managing entities, an accurate integration process or recon-
structed data storage. The updated dataset included seven
new sources [such as Disease Ontology (108), lnc2cancer
(109), lncACTdb (110), PSMIR (111), StarBase (112) or
TarBase (113)]. Arena-Idb follows a hybrid RDBMS and
GDBMS implementation by using MySQL to store names,
annotations and sequences and Neo4j to handle the con-
struction and visualization of the networks of thousands of
biological entities.

To provide a tool to identify pathways regulated by
miRNAs in a tissue-specific manner, miTALOS v2 employs
Neo4j to integrate several heterogeneous data sources and
directly model molecular entities and their interaction net-
works. This graph model represents miRNAs, genes, path-
ways and tissues as nodes. miRNAs are connected to
genes with ‘REGULATES’ relationships, genes to tissues
with ‘EXPRESSED’ and genes to pathways with ‘MEM-
BER’ relationships. The graph structure allows to, for
instance, query the target genes of a miRNA expressed
in a tissue or the pathways in which the target genes are
involved. Furthermore, the schema-less approach enables
the platform to keep updated and integrate new aspects
like lncRNAs as regulators of gene expression or disease-
specific expression profiles to extend tissue-specific gene
expression.

GeNNet is an integrated transcriptome analysis plat-
form that unifies scientific workflows with graph databases
for selecting relevant genes according to the evaluated bio-
logical systems. The framework consists of three main com-
ponents: the Scientific Workflow (GeNNet-Wf), the Graph
database (GeNNet-DB) and the web interface (GeNNet-
Web). GeNNet-DB uses an in-house data model to group
nodes and edges into classes, according to the nature of
the objects [e.g. GENE, BP (Biological Process), CLUSTER,
EXPERIMENT and ORGANISM], and preloads a set of
specified organisms to serve as the initial layout. Along
with other associated elements, it includes genes anno-
tated/described from ENTREZ (114) and their relation-
ships integrated from STRING-DB (60), which contribute
to posterior transcriptome analysis. The study provides
analyses from the hepatocellular carcinoma (HCC) use
case, demonstrating how concise graph operations through
Cypher queries are capable of solving relatively complex
topological questions, like finding themost connected genes
that establish known connections to the PPI network. These
genes act as hubs and may be associated with relevant
pathways in the experimental context.

ANIMA allows the summarization and visualization of
different views of the state of the immune system under dif-
ferent conditions and at multiple scales. The framework

generates a multiscale association network from multiple
data types by executing a comprehensive analytic work-
flow, enumerating bipartite graphs from the results and
merging all graphs into a single network in Neo4j. ANIMA
is architectural and conceptually similar to GeNNet, dif-
fering mainly in the detail of the implementation, the con-
tainerization approach, and the complexity of the model.

GREG is an integrative database that merges numerous
source databases providing different scopes (e.g. DNA–
DNA interaction, PPIs, bindings, DNA annotations or
human cell data). It follows an in-house data model and
takes advantage of the graphmodel to tackle challenges like
integrating EPIs (with DNA binning strategy) or harmoniz-
ing data from chromatin interaction technologies with very
different resolutions. When using small bins, its graph com-
prises more than 2M nodes and more than 19M edges, and
the main limitation is that, due to include all non-coding
regions, search time grows with the size of the genomic
range. GREG provides both direct access to the Neo4j (via
Cypher) and a friendly web platform. Through the web
interface, the user can specify search parameters and access
typical network analysis algorithms.

Biological knowledge graphs

While there exist multiple definitions of Knowledge Graphs
(KGs) that depend on the application context (115), we
can define them as large, heterogeneous knowledgebases
modeled through graphs and ontologies, which derive new
knowledge from existing datasets (116). KGs are under-
going a renewed interest not only in academia but in the
industry as well (117). In addition to storing structured,
contextual data, the principal reasons are the capability of
obtaining new conclusions from existing data through rea-
soning (118), and the possibility to enrich machine-learning
models by providing context and produce extra informa-
tion through derived measures or embedding strategies
(119–124). Lastly, advances in machine learning create
new opportunities for automating the construction and
exploitation of biological KGs (125). We summarize sev-
eral platforms that, due to their broad integrative scopes,
can be seen as Biological Knowledge Graphs.

The Monarch Initiative (85) is an ambitious endeavor
that uses an ontology-based strategy to deeply integrate
genotype–phenotype data from many species and sources,
enabling computational interrogation of disease models
and revealing complex genotype–phenotype relationships.
Monarch employs RDF to ingest a variety of external data
sources, modeling several complex data types and con-
necting entities from different databases. SciGraph (https://
github.com/SciGraph/SciGraph) is its central database
engine, which provides means to represent ontologies and
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data described using ontologies as a Neo4j graph. The
resulting combined corpus of graphs, from ontologies and
ingested data, constitutes the Monarch Knowledge Graph.
The platform provides several data access means for graph
querying, application population and phenotype matching,
as well as a web portal. The Monarch Web Portal (https://
monarchinitiative.org/) exploits the graph to provide the
users with several powerful features, in the likes of basic
search, integrated information on entities of interest, search
by phenotype profile, or text annotation.

Similarly, on a smaller scale, Pheno4J (75) provides
a Java-based solution that loads annotated genetic vari-
ants and well-phenotyped patients into Neo4j. In order
to build the database, Pheno4J requires user-generated
files with the patient’s genetic variant and phenotype rela-
tions on the one hand, and both the Human Pheno-
type Ontology (HPO) (126) and a gene-to-HPO file on
the other.

Focused on the analysis and discovery of comorbid
diseases in humans, GenCoNet (127) proposes a semi-
automatic pipeline that provides the import, fusion and
analysis of stable disease, gene, variant and drug data in
a Neo4j database, resulting in a KG for network analy-
sis of gene–disease associations. The workflow consists of
four concrete steps. The first step determines comorbidi-
ties of high interest and obtains Disease Ontologies terms
associated with genes. Secondly, the workflow obtains
genes associated with disease variants from HPO, MalaC-
ards (128), DisGeNet (129) andOMIM (https://omim.org).
The third step determines the gene controlled by eQTL
and associated with the disease. Lastly, it finds the drugs,
extracted from DrugBank (130), which target genes and
treats or contraindicate the disease. GenCoNet showcases
the KG by employing network analysis to detect drug-
induced diseases or contraindications of drugs.

We can also find hybrid approaches that utilize dif-
ferent database implementations to build the KG (131).
Canevet et al. build on the Ondex software platform (132)
and employ both triple stores and the Neo4j, which sup-
ports gene-evidence graph patterns by making the KGs
accessible via Cypher. The data integration is harmonized
through the Bio-Knowledge Network Ontology (BioKNO),
a lightweight and general ontology. Likewise, focused
on bacterial whole-genome sequencing (WGS), Spfy (88)
employs ontologies and different database paradigms to
integrate disparate data sources and formats. Spfy pri-
marily uses Blazegraph (https://blazegraph.com/) for stor-
age along with MongoDB (https://www.mongodb.com/)
to cache a hash table for duplicate checking, arguing a
more efficient approach than would be possible through a

search of the graph structure. The graph allows retrospec-
tive comparisons across stored results as more genomes are
sequenced or populations change.

As mentioned before, ontological and semantic
approaches have proved its utility in knowledge-intensive
domains like the biomedical domain. Exploiting seman-
tic and logic descriptions is natural for graph databases
and triple stores and can be of great importance in KG
implementations. In contrast to the rest of similar efforts,
BioGrakn (133) builds upon Grakn (https://grakn.ai/) to
deliver a KG with deductive reasoning capabilities. It
employs almost the same data sources as BioGraphDB, but
its model is designed through an ontology implemented in
Graql, the Grankn’s declarative, knowledge-oriented graph
query language. In the same vein as OWL and SWRL stan-
dards, Graql allows categorizing objects and relationships
into distinct types, enabling inference and validation, used
for searching genes linked to a particular Gene Ontology
annotation, pathways linked to a particular gene, or finding
all the upregulated differentially expressed (DE) miRNAs
that also have validated mutations.

Discussion

The literature body shows several advantages when
biomedical systems and applications employ a graph model
in the storage layer. The graph model is especially use-
ful for representing and accessing biological data because
path-based queries are intuitive in biological networks,
closer to real-world conceptualizations. RDF schema or
OWL Bio-ontologies easily translate into a graph because
they are already based on triples, which can be further
expanded by identifying implied relations between classes
through logical reasoning (134). Also, exploiting graph
theory algorithms and subgraph matching queries enables
the inspection and discovering patterns of interest within
the graph structure. GDBMSs schema-less/schema-optional
grants a high degree of flexibility in research settings, allow-
ing applications to adapt and evolve quickly and intro-
duce abstraction and specialization of entities and relations
among them more easily. This adaptability eases data inte-
gration tasks, as we have seen in many of the integrative
platforms.

Specialized, industry-ready GDBMSs are relatively new
and well-established biological systems build upon conven-
tional databases, typically RDBMSs. Relevant examples are
the protein databases (135), which have to deal with mil-
lions of protein/complex interactions, as is PPI databases’
case (136, 137). As described in the technical back-
ground, the underlying design of relational systems can
lead to a trade-off between data integrity and performance.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab026/6277712 by guest on 19 Septem

ber 2023



Page 16 of 22 Database, Vol. 2021, Article ID baab026

BioGRID (138), for instance, approaches this problem by
utilizing a suite of tables specifically engineered to optimize
query time while maintaining a structured normalized form
that does not compromise fundamental design principles.
Other relevant databases like DIP (139), IntAct (140) and
STRING (141) maintain their relational model to fulfill the
storage needs without further considerations concerning
performance.

As seen in section 2 (43), Have and Jensen employed
STRING as the use case to evaluate GDBMSs in biomedical
settings and confront against RDBMSs, generally finding
better performance of the former in usual tasks in the
context of PPI networks. In section 3, we also see that
many applications integrate PPI databases by explicitly
transforming protein entries as nodes and intermediate rela-
tionship tables directly as edges, reporting performance
improvements with GDBMSs over RDBMSs in some of the
reviewedworks (45, 87). Still, it is important to remark that
redesigning the data storage/access layer usually involves a
notable development effort, whichmay discourage research
teams (usually short in human and economic resources).
Since most of the protein databases are freely available,
it would be relevant to compare their current implementa-
tion and a GDBMS implementation through formal bench-
marks in that specific scenario, justifying or not engaging
such development.

There exist limitations and potential issues of which
developers need to be aware. While ontologies avoid
designing specific problem-oriented data models and min-
imize reliability issues, these may increment the model’s
complexity, jeopardizing the performance and integration
time. If more relaxed schema approaches are adopted,
the main trade-offs are deciding when certain data items
become nodes or attributes and restraining both model
complexity and integrity. Regarding performance, compar-
ative benchmarks and more ad hoc studies are quite hetero-
geneous and show disparate findings in some cases, making
it challenging to identify a performance baseline to favor a
concrete technology. Those focused on specific problems,
like biological questions, report better GDBMS perfor-
mances and qualitative features for managing networks
(42, 43, 45, 47, 52, 55, 56). More formal benchmarks
(50) and (52) report superior RDBMS results in several cat-
egories, especially for grouping, sorting, aggregating and
setting operations. However, in graph analytics workloads
that mainly consist of multi-table joining, pattern matching
or path identification, GDBMSs still perform better. The
gap widens as the size of the dataset increases. Yet, some
benchmarks report problems when the graph is large. In
the case of Neo4j, the number of edges to evaluate and sub-
graph pattern matching size may be a performance pit. This
situation requires GDBMSs to provide proper mechanisms,

like node replication or partitioning, or forego features like
schema-less as TigerGraph does. All in all, GDBMSs are not
necessarily superior in all graph queries, and, like any devel-
opment, the aims and operational context should dictate
the technological choices.

From a development point of view, big projects natu-
rally tend to adopt traditional relational databases because
they require industry-level tools and libraries that ensure
code quality and architectural features such as scalability,
integration and standard design patterns. Both industry
and communities back RDBMS implementations with reli-
able frameworks that ease its adoption with, for instance,
database to object abstraction layers. However, at this
point, many current GDBMS implementations also offer
proper frameworks, programming interfaces and Object-
Graph Mapping that fulfill such needs.

Another important consideration is the current lack
of standardization of query languages and data access
methods across GDBMS implementations at both syn-
tactic and theoretical levels (142). Apache Tinkerpop
(https://tinkerpop.apache.org/) provides a high-level frame-
work and the functional graph traversal language Gremlin,
but not all GDSMS integrate it and this approach implies
more coupling with the application code. Neo4j’s Cypher
is a declarative language with similarities to common query
languages and provides a clear graph path description syn-
tax with full Create, Read, Update, Delete capabilities,
making it one of the best solutions for graph querying.
Cypher is the root of openCypher, a fully specified and
open query language for property graph databases with
>10 implementations across GDBMS solutions, even non-
native ones like RedisGraph. TigerGraph follows a dif-
ferent approach with GSQL (https://docs.tigergraph.com/
dev/gsql-ref), another powerful graph query language.
It maintains backward compatibility with SQL, impos-
ing a strict schema declaration in the query definition,
and the queries behave as stored procedures, consisting
of multiple SELECT clauses and imperative instructions
such as branches and loops. This design targets enter-
prise applications, where the number and heterogeneity
of external sources are not a concern, but instead, the
size and performance, by optimizing storage format and
query execution strategy, obtaining exciting results, as
seen in Rusu and Huang (51). Fortunately, at the time
of writing, the international committees that develop the
SQL standard have voted to initiate Graph Query Lan-
guage (GQL) (https://www.gqlstandards.org/) and intend
to develop a declarative graph query language that builds
on the foundations of SQL and integrates proven ideas from
the existing openCypher, Oracle’s PGQL, GSQL and G-
CORE (143) languages, a move that ensures the future of
GDBMSs.

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baab026/6277712 by guest on 19 Septem

ber 2023



Database, Vol. 2021, Article ID baab026 Page 17 of 22

We have seen different technologies come and go, and
deciding a GDBMS that satisfy the necessities may also
become a time-consuming task that can be seen as five
steps or stages: problem analysis, requirements analy-
sis, GDBMS analysis, benchmarking and GDBMS selec-
tion (144). Sites like https://db-engines.com provide useful
ranks, comparative tables and insights that help in the selec-
tion process. From what we have seen in the literature,
Neo4j outstands in its adoption, not only in the biomedical
domain, mainly due to the powerful Cypher query lan-
guage, decent performance and ease of implementation. We
foresee that this situation will be less evident in the near
future, given the number of competitive developments in
the field.

Conclusion

In this work, we have followed the evolution and current
landscape of GDBMSs, reviewed the bibliography look-
ing for methods to evaluate their performance in different
contexts and explored their applications in the biomed-
ical domain. While RDBMSs and other NoSQL engines
still provide better scalability options, more standard-
ized query languages and more efficiency on typical data
aggregation operations, most of the comparative analyses
note that their performance suffers in densely connected
datasets that imply a majority of many-to-many relations.
Scenarios with a significant volume of complex relation-
ships may benefit from GDBMSs for the following reasons:
(i) graphs provide more natural modeling of many-to-
many relationships; (ii) graph-oriented query languages
provide more intuitive means for writing complex network
traversal and graph algorithm queries than table-oriented
ones like SQL, which require to join tables explicitly and
reference columns; (iii) the schema-less/optional grants
flexibility and (iv) in most situations, GDBMSs present
higher performance for relationship-centric searches, like
path traversals. These features yield several advantages
for the biomedical domain, like easing the communica-
tion between domain experts, providing tools for dis-
covering entities/clusters/patterns within the graph struc-
ture and facilitating data integration tasks, all of them
very common when the investigation involves multiple
sub-domains.

GDBMS technology is rapidly evolving to tackle scala-
bility and similar operational weaknesses, offering a wide
range of reliable choices to support the storage layer for
either small prototypes or large, production-ready projects.
The collection of described use cases and author expe-
riences provides evidence that GDBMSs are very fit for
biomedical data, as an individual storage system or as part
of a hybrid, partitioned architecture. Moreover, by provid-
ing direct access to a graph model, late GDBMSs enable the

use of graph algorithms and analytics in a very transparent
way, improving hypothesis generation and testing.
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Featured Application: Applying knowledge graphs, graph analytics, and graph machine learning
for integrating multi-modal dementia research data.

Abstract: Dementia disease research encompasses diverse data modalities, including advanced
imaging, deep phenotyping, and multi-omics analysis. However, integrating these disparate data
sources has historically posed a significant challenge, obstructing the unification and comprehensive
analysis of collected information. In recent years, knowledge graphs have emerged as a powerful
tool to address such integration issues by enabling the consolidation of heterogeneous data sources
into a structured, interconnected network of knowledge. In this context, we introduce DemKG, an
open-source framework designed to facilitate the construction of a knowledge graph integrating
dementia research data, comprising three core components: a KG-builder that integrates diverse
domain ontologies and data annotations, an extensions ontology providing necessary terms tailored
for dementia research, and a versatile transformation module for incorporating study data. In contrast
with other current solutions, our framework provides a stable foundation by leveraging established
ontologies and community standards and simplifies study data integration while delivering solid
ontology design patterns, broadening its usability. Furthermore, the modular approach of its com-
ponents enhances flexibility and scalability. We showcase how DemKG might aid and improve
multi-modal data investigations through a series of proof-of-concept scenarios focused on relevant
Alzheimer’s disease biomarkers.

Keywords: knowledge graphs; ontologies; graph databases; data modeling; dementia; omics

1. Introduction

The dawn of “omics” technologies, accompanied by advancements in imaging, clinical
data collection, laboratory testing, and phenotyping, has profoundly influenced biomedical
research [1–7]. This multi-modal setting has provided an unprecedented, comprehensive
view of complex biological systems, thereby inspiring a shift towards a more integrated
understanding of diseases. However, the introduction of data from diverse modalities
also presents unique challenges. Effectively integrating and interpreting the sheer volume,
complexity, and diversity of data generated by these sources requires sophisticated compu-
tational tools. Moreover, the data, which are often distributed across various databases,
publications, and repositories, pose considerable barriers to seamless data integration.
Even more daunting is the task of transforming multi-modal data into clinically action-
able insights, requiring the ability to connect data from molecular to clinical scales, a feat
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complicated by the enormous diversity and complexity of individual diseases. These
hurdles highlight the need for innovative strategies and tools to harness the potential of
multi-modal data in propelling the field of precision medicine.

Since biological reality is often modeled as a network or graph [8,9], one technological
approach that has gained significant traction is the use of knowledge graphs (KGs) [10],
which allow for the integration and organization of diverse biomedical data types, facilitat-
ing their analysis and interpretation.

After Google introduced the knowledge graph in 2012, highlighting the advantages of
the approach [11], KGs have become increasingly popular, finding adoption in industry
with subsequent launches by companies such as Microsoft, Amazon, Airbnb, and Face-
book [12], as well as in academia [13,14]. Nonetheless, the definition of KGs can vary based
on the application context. In biomedicine, they can be characterized as data structures
meant to gather and disseminate real-world knowledge, where nodes depict significant
biomedical entities and the edges delineate diverse relationships that could exist between
these entities [15]. KGs embody a methodological transition toward a more comprehensive
representation of reality, facilitating the integration of heterogeneous data types and pro-
viding an intuitive, graph-based structure for representing intricate relationships between
diverse biomedical entities.

Constructing a KG entails a series of methodological and technological decisions
that profoundly impact the utility and effectiveness of the resulting product. A pivotal
consideration in this process is the selection of a graph paradigm, which provides the
theoretical and practical foundation for the structure and function of the KG. There are two
primary approaches in this regard: Resource Description Framework (RDF) and Labeled
Property Graphs [16–18]. Both of these approaches offer robust technological solutions,
but each has its own strengths and weaknesses. While RDF offers standardization and
robustness ideal for semantic applications, it may suffer from verbosity and computational
inefficiency. Conversely, LPGs excel in their flexibility and intuitive structure, which allow
for the straightforward representation of complex relationships and properties on both
nodes and edges, but they may struggle in scenarios demanding high interoperability and
standardization. Thus, the choice often hinges on the specific project requirements and
constraints.

In addition to choosing a graph paradigm, selecting a data model or graph schema
is another critical decision for building a KG. This model dictates how entities of interest
and their relationships are represented within the KG. This aspect can be approached in
two main ways: using an ad hoc data model tailored to the project’s specific needs or
adopting a standard model such as ontologies. In particular, biomedical ontologies have
emerged as essential tools in standardizing terminology, modeling biological realities [19],
supporting data annotation [20–23], and facilitating biomedical text mining [24,25]. With
ongoing concerted efforts from the scientific community, these ontologies have evolved to
incorporate fine-grained knowledge across various biomedical subdomains, as exemplified
by initiatives such as the Open Biological and Biomedical Ontologies (OBO) Foundry [26]
and the National Center for Biomedical Ontology (NCBO) [27] and its BioPortal [28]. More-
over, using logical modeling and annotation, biomedical ontologies make assertions that
span and connect levels of biological organization, from the molecular level to pheno-
type and disease definitions. This ability to traverse and link multiple scales of biological
information makes ontologies an invaluable resource for the construction of KGs for
biomedical research.

The biomedical field is rich in open databases that offer scientific knowledge from
various subdomains, including molecular biology (genomics, proteomics, and pathways),
drugs, and disease characterization. These sources hold the potential for a more compre-
hensive understanding of biomedical phenomena; however, their value is often hindered
by their dispersal across different platforms. KGs have emerged as instrumental tools for
integrating and exploiting these disparate sources, fostering a multitude of projects that
aim to unify the spread-out biomedical knowledge.
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A prime example of such an initiative is the Monarch Initiative [29], which integrates
genetic, phenotypic, and disease-related data to facilitate the identification of disease
genes and variants. Similarly, the Clinical Knowledge Graph (CKG) [30] is an open-
source platform that integrates proteomics, public databases, and literature. It effectively
utilizes KGs to augment and enrich biomedical data, thereby facilitating informed clinical
decision-making. Likewise, PrimeKG [31] is a multimodal KG that integrates a multitude
of high-quality resources, representing various biological scales, i.e., from genotypes to
clinical phenotypes. The scalable precision medicine open knowledge engine (SPOKE) [32]
also integrates multiple biological data sources to provide structured knowledge ranging
from low-level molecular biology to pharmacology and clinical practice. Furthermore, the
KG-COVID-19 [33] project responded to the COVID-19 crisis by building a unified KG from
disparate biomedical information about SARS-CoV-2, illustrating how KGs can effectively
drive knowledge synthesis, particularly in emergent health situations.

As the number of available KGs increases, it has become evident that social and
technical limitations exist, especially the need for standardization in entity naming and
graph representation approaches [34,35]. Regarding modeling standardization, the Biolink
Model [36] has emerged as a high-level data model that provides standard terms and
relations for describing biological entities and their relationships for organizing data in
biomedical KGs. Biolink serves both as a map for bringing together data from different
sources under one unified model and as a bridge between ontological domains. As a similar
initiative to OBO, centered around KGs, the KG-Hub project [37] provides a collection of
tools and libraries for building interoperable KGs and a mechanism for sharing them to
foster their reuse.

In addition to their ability to model and query data, graph analytics and graph machine
learning techniques have made notable advancements [38,39], supported by open-source
libraries such as GRAPE [40] and KGTK [41]. One technique particularly relevant in the
biomedical domain is graph embedding [42–47], which allows us to capture complex graph
structures into lower-dimension vectors. Exploiting these features to integrate specific
patient data with large biomedical KGs has already shown promising results in deriving
actionable clinical outputs, as evidenced by advancements in understanding diseases such
as multiple sclerosis [42] and Alzheimer’s disease [48]. Recent dementia research uses
multi-modal data to understand the condition from various aspects, including genomics,
transcriptomics, metabolites, imaging, and clinical features. Having a framework that
enables the systematic construction and instantiation of research and clinical data in a
standardized manner offers significant benefits.

This paper introduces DemKG, a KG framework designed specifically for dementia
research needs. The framework leverages reference ontologies from OBO, standard KG
technologies from KG-Hub, and an instantiation tooling to transform source data into the
KG following sound design patterns within the ontological model. DemKG reuses most of
its knowledge sources, provides specific terminological extensions to cover gaps identified
in the scope of dementia, and ingests biological databases of interest, resulting in an
integrative KG that covers the multiple data modalities involved in the research, including
genomics, proteomics, imaging, fine-grained phenotyping, and clinical tests. Thanks to its
design, DemKG is easily extensible, delivering means to customize and deploy in modern
graph databases for enhanced data querying and retrieval. The expressive knowledge
model supports advanced analytics through graph and network algorithms, which play an
active role in the progression of research and better patient care through the implementation
of precision medicine.

2. Related Work

Advancements in storage and graph technologies, coupled with the increasing avail-
ability of open scientific data, have led to the emergence of multiple biological KGs [49].
Projects such as the Monarch Integrated Knowledge Graph, the Clinical Knowledge Graph
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(CKG), PrimeKG, and the scalable precision medicine open knowledge engine (SPOKE),
previously introduced in the introduction, bear similarities to our initiative.

The Monarch Integrated Knowledge Graph [29] is a notable example of biological
KGs, which assimilates various data types (including genotype, phenotype, and disease)
from multiple sources into a unified semantic graph model. The Monarch KG has been
instrumental in our project, DemKG, as it not only serves as a primary data source but also
offers an array of tools we utilize. Our philosophy aligns closely with that of the Monarch
KG, emphasizing a robust semantic foundation while integrating data from a variety of
external sources, including other ontologies and extensions. We build upon this work to
extend it with dementia-related knowledge and provide means for integrating study data.

CKG [30] is an open-source platform designed to harmonize a wide range of “omics”
data types into a coherent structure, including genomics, transcriptomics, proteomics, and
metabolomics. CKG favors a custom data model formed from a selected set of concepts
and relationships from specific ontologies. On top of the KG, CKG integrates statistical
and machine learning algorithms to streamline the analysis and interpretation of typical
proteomics workflows. DemKG resonates with CKG’s mission to improve the modeling
and integration of omics data. However, it deviates fundamentally from its approach to
data modeling, wherein CKG employs a more circumscribed model.

PrimeKG [31] is a multimodal KG for precision medicine analyses. Like its counter-
parts, it integrates a plethora of resources to describe a broad spectrum of diseases with
relationships across major biological scales. One of them is combining the entire range of
approved drugs with their therapeutic action, distinguishing it from other systems. More-
over, unlike DemKG, PrimeKG employs a custom approach to its data model, incorporating
ten types of nodes and thirty types of undirected edges extracted from reference ontologies.
Furthermore, it lacks a systematic schema to integrate experimental and study data.

SPOKE [32] is a KG that connects information from 41 biological data sources, struc-
tured as 21 different node types and 55 edge types, ranging from low-level molecular
biology to pharmacology and clinical practice. It uses 11 different ontologies to organize
the data semantically meaningfully and, in its last iteration, also integrates the Biolink
model whenever it is found to be practical. SPOKE is implemented as a Neo4j database
built from a collection of Python scripts and provides a graphical user interface and a REST
API for end-user access. Our method stands distinct from SPOKE in several crucial aspects.
Primarily, it offers an open toolkit for KG construction and personalization, ensuring both
platform and representational paradigm autonomy. Moreover, despite utilizing a compara-
ble modeling approach, DemKG fosters a closer connection with a vast array of domain
ontologies by preserving links to explicitly defined terms and relationships. Finally, our
framework provides a flexible and robust module for research data integration.

In summary, our work distinguishes itself from similar efforts through a comprehen-
sive approach that integrates a well-established terminological foundation and community
standards, follows design patterns conducive to data integration, and defines terminologi-
cal extensions specific to the dementia domain, facilitated through a dedicated low-code
solution for seamless study data integration.

3. Materials and Methods
3.1. Terminological Foundation

In the construction of the knowledge graph, the initial and pivotal decision revolves
around selecting an appropriate graph schema to provide a solid conceptual base that
effectively captures data entities drawn from the array of biological subdomains pertinent
to dementia research. This choice presents a dichotomy: one option involves creating
a flexible, ad hoc schema tailored to the identified needs, while the alternative entails
adopting a more structured strategy that employs standard terminologies and ontologies.
Our methodology aligns with the latter approach, and a fundamental design principle
in the construction of our KG is the utilization of domain reference ontologies to ensure
the following:
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1. The concept definitions are concise, accurate, and relevant;
2. There exists an active community keeping the ontology updated;
3. They are widely recognized, cross-referenced, and follow consistent design patterns.

The criteria set forth are congruent with the guiding principles of the OBO foundry.
OBO endorses an extensive range of domain-specific ontologies that are distinguished by
well-demarcated scopes, the reutilization of concepts across ontologies, and alignment
with a unified upper-level model, specifically the Basic Formal Ontology (BFO) [50], and
relations are defined in the Relations Ontology (RO). Given these attributes, we gave
preferential consideration to OBO ontologies during our selection process.

As the KG must cater to a variety of domains, adopting this approach enables us to
concentrate mainly on integration and only define new terms when detecting a gap. Some
notable examples of the employed OBO ontologies include the Gene Ontology [51,52],
Chemical Entities of Biological Interest (CHEBI) [53], and Protein Ontology (PR) [54] for
the genetic and molecular domain. For the phenotype and disease domain, we utilize the
Monarch Disease Ontology (MONDO) [55], Human Phenotype Ontology (HP) [56,57], and
Phenotype And Trait Ontology (PATO) [58]. In the area of anatomy, we incorporate the Uber-
Anatomy Ontology (UBERON) [59,60] and the Foundational Model of Anatomy (FMA) [61].
For neuropsychological tests and their relations, we include the Neuropsychological Testing
Ontology (NPT) [62] and the Neurocognitive Integrated Ontology (NIO) [63]. For modeling
experimental settings, the Ontology for Biomedical Investigations (OBI) [64,65] plays a
central role.

These ontologies provide a significant level of detail, and reusing or referencing
concepts between them expands the knowledge network, facilitating the exploitation of
multi-domain and multi-level relations. For example, this interconnectedness simplifies
navigation from HP phenotypes referenced in a disease definition in MONDO to specific
genes in GO, proteins in PR, and molecular entities in CHEBI. Furthermore, we also include
relevant Monarch data and annotation ingestions; specifically, gene and gene-phenotype
annotations, filtered protein–protein interactions from the STRING database [66], and
pathway knowledge from the Reactome pathway knowledgebase [67]. The complete list of
knowledge sources and annotations is listed in Table 1.

Table 1. List of DemKG knowledge sources.

Source Source Identifier Reference

Basic Formal Ontology BFO [50]
Biolink model biolink [36]

Chemical Entities of Biological
Interest CHEBI [53]

Cell Ontology CL [68]
Evidence and Conclusion

Ontology ECO [69]

Environmental Factor
Ontology EFO [70]

Gene Ontology GO [52]
Gene Ontology Annotations GOA -
Human Phenotype Ontology HP [57]
Human Phenotype Ontology

Annotations HPOA -

Information Artifact Ontology IAO -
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Table 1. Cont.

Source Source Identifier Reference

Mass Spectrometry Ontology MS [71]
Mondo Disease Ontology MONDO [55]

Monarch KG Monarch [29]
Neurocognitive Integrated

Ontology NIO [63]

Neuropsychological Testing
Ontology NPT [62]

Ontology of Biological
Attributes OBA [72]

Ontology for Biomedical
Investigations OBI [65]

Ontology for General Medical
Science OGMS [73]

Ontology of Medically
Related Social Entities OMRSE [74]

Phenotype And Trait
Ontology PATO [58]

Phenomics Integrated
Ontology PHENIO -

Protein Ontology PR [54]
Relations Ontology RO -

Reactome Reactome [67]
Scientific Evidence and
Provenance Information

Ontology
SEPIO -

STRING database ingestion STRING [66]
Uber Anatomy Ontology UBERON [59]

While the standardization offered by domain ontologies is undoubtedly a strength, it
can also impose limitations due to the inherent trade-off with flexibility. This high level of
detail can complicate the integration of non-OBO ontologies and external datasets. Addi-
tionally, querying the graph requires a comprehensive understanding of the underlying
model. We employ the Biolink model as our high-level data model to mitigate these issues.
Biolink offers a means to utilize higher-level concepts from its “category” hierarchy while
still allowing references to more specific ontology terms. The same versatility is available
for relationships through the use of the “related_to” hierarchy, thus providing a balance
between standardization and flexibility in our knowledge graph.

3.2. Terminological Extensions

OBO covers most of the conceptualization needs, but gaps remain relevant to the
implementation. To overcome this issue, we implement an application ontology that is also
one of the inputs of the merging process. The primary interventions relate to phenotypic
normality, as well as to the necessary assay and platform definitions missing from OBI.

HP and MONDO thoroughly model disease states, conditions, and abnormal phe-
notypes, leaving out any reference to normal counterparts. To allow the categorization
of instances of normal/healthy cases, we introduced a “Phenotypic normality” hierarchy.
This new hierarchy is modeled as a sibling branch of the HP “Phenotypic abnormality”,
mirroring its hierarchy to allocate the “normality” concepts of interests.

In dementia research, the utilization of neuropsychological assessments such as the
Mini-Mental State Examination (MMSE) [75], the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) wordlist memory test (WLT) [76], Visual Object and Space
Perception (VOSP) battery [77], Trail Making Test (TMT) [78], Clock Drawing Test [79], and
Controlled Oral Word Association Test (COWAT-FAS) [80] is instrumental in quantifying
cognitive function domains and tracking disease progression. We have implemented the
necessary concepts to cover CERAD, VOSP, and COWAT-FAS tests, with the primary classes
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allocated under the “cognitive function assay” branch of NPT, while also relating to the
mental and cognitive functions they assess.

The AT(N) classification system [81] is another tool of great importance for assessing
the subject’s biological state and understanding the intricate relationships between key
biomarkers and their impact on disease evolution. AT(N) categorizes biomarkers according
to their role in the disease progression, namely, Beta-amyloid deposition (A), pathologic
tau (T), and neurodegeneration (N). Within each biomarker category, values can be positive
or negative (+/−), derived from defined normal or abnormal cut points, resulting in
the creation of eight distinct AT(N) “biomarker profiles” (Table 2). To provide proper
terminological coverage, we have defined new classes for each biomarker profile and
phenotype terms related to abnormal CSF protein concentration phenotypes related to
phosphorylated tau (P-tau) and total tau (T-tau) missing from HP. Each biomarker profile
is defined under the “value specification” class from OBI, with asserted logical axioms to
associate them with the specific phenotype.

Table 2. AT(N) biomarker profiles and categories as defined by the NIA-AA Research Framework.
Each biomarker profile is modeled as a descendant of the “value specification” class defined in OBI.

AT(N) Profiles Biomarker Category

A-T-(N)- Normal AD biomarkers

A-+T-(N)- Alzheimer’s pathologic
change

Alzheimer’s continuum

A+T+(N)- Alzheimer’s disease
A+T+(N)+ Alzheimer’s disease

A+T-(N)+
Alzheimer’s and concomitant
suspected non-Alzheimer’s

pathologic change
A-T+(N)- Non-AD pathologic change
A-T-(N)+ Non-AD pathologic change
A-T+(N)+ Non-AD pathologic change

3.3. Technical Implementation

The implementation consists of three main software pieces covering different parts
of the KG generation, integrated into a building pipeline: the extensions ontology builder,
the KG-builder, and the data transformer module. To maximize effectiveness and repro-
ducibility, in all three sub-projects, we employ state-of-the-art ontology and graph tooling
maintained by the community and relevant projects such as Monarch and the “universal
biomedical data translator” from the National Center for Advancing Translational Sciences
(NCATS) [82].

The extensions ontology builder produces an OWL ontology using the Ontology
Development Kit (ODK) v1.4.1 [83] as the building framework. The ODK provides a
pre-configured, standardized environment with a set of tools that support all stages of the
ontology lifecycle (creation and editing, building, and testing, and releasing with version
control) and ensures a systematic approach to ontology maintenance. When possible, we
define new classes that follow a pattern using the Dead Simple OWL Design Patterns
(DOS-DP) v0.1.10 [84], reducing manual editing and consequently reducing errors and
improving reproducibility. All the axioms are kept under OWL2 [85] DL profile.

The KG-builder is responsible for obtaining the different sources of knowledge and
merging them into the terminological KG. Built upon the KG-Hub tooling ecosystem, the
main configuration inputs are the merge and download YAML descriptor files, guiding the
download and merge steps. When available, the ontologies are downloaded from the KG-
Hub repository [86]. OBO ontologies are already maintained as Biolink-compliant graphs
in the Knowledge eXchange Format (KGX) [87] in the KG-OBO project [88] and are directly
merged from each specific release artifact. The merging step includes all downloaded
sources and the extensions ontology to obtain a final KGX graph.
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One challenge when converting OWL ontologies into a graph structure lies in the
difficulty of accessing class relationships established through subclass and class equivalence
axioms. These assertions hold significant value in capturing the biomedical knowledge
outlined in the comprehensive OBO ontologies. To address this situation, both the ontology
and builder modules materialize class equivalence axioms. In the context of the extensions
ontology, we utilize the relation-graph [89] library during the later stages of the construction
process. In the case of OBO ontologies, the KG-builder retrieves a subset of links from the
materialization output within Ubergraph [90], which also employs relation-graph.

The transformer module is a Python solution that provides an accessible approach
to generating graph data in KGX format from tabular source input. This module adopts
a YAML-based transform definition schema, mirroring the approach of other tools in the
pipeline. This schema adheres to a standardized structure wherein users can define map-
pings from columns to specific classes paired with various instantiation design patterns.
The schema effectively models common research entities, including medical history, physi-
cal examination, and measurement assays, all aligned with dedicated instantiation patterns
that are further elaborated upon in the subsequent subsection.

The builder pipeline integrates all steps and can be configured to generate two artifacts:
solely the terminological graph or the terminological graph with data instantiation.

3.4. Data Transformation Design Patterns

One of the aims of the KG is to integrate raw research data to enable explicit connec-
tions with knowledge concepts. We propose a set of design patterns to support the data
instantiation of patient/subject study visits, phenotype observations arising from these
visits, measurements/analyses derived from samples collected from different specimens,
and neuropsychological test results. In all these patterns, OBI is the central ontology em-
ployed to enable the relating of clinical and research concepts with specific entities of the
biomedical domain. Figures 1–3 illustrate the main patterns through simplified concept
map figures, depicting the main ontology classes and properties involved, identified with
a pseudo-CURIE of the format PREFIX, namely, “class label”, where prefix is the OBO
ontology prefix.
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Figure 1. Concept map of the visits (light blue) and clinical (orange) design patterns, depicting the
main ontology classes employed to model data entities.

The first pattern models the relations between study protocol/visit encounters, the
agents involved, and the resulting outputs. The pattern mainly utilizes concepts defined
in the Neurodegenerative Disease Data Ontology (NDDO) [91] (integrated in NIO) and
the Ontology for General Medical Science (OGMS). The pattern supports a proper logical
definition of longitudinal protocols, common in dementia research studies.
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Clinical history phenotypes are characterized through observations at a study visit or
from existing records. The framework leverages a pattern that relates visits with specific
clinical administration, the finding, and the observed phenotype, usually a phenotype or
disease concept from MONDO or HP. Relevant metadata can also be linked to the OGMS
clinical entities, such as dates, agents involved, and locations. This pattern is shared across
medical history, physical examination, and diagnosis processes. Figure 1 illustrates both
the visits and clinical patterns.

A critical component of research data encompasses various assay measurements and
proteomic datasets. We employ OBI’s assay design patterns [92] to capture the multiple
aspects involved in this process. These patterns enable the comprehensive integration of
data pertaining to the assay, the specimen, and the molecule or material under examination,
such as a protein or leukocyte count. Several relevant ontologies, including GO, PR, and Cell
Ontology (CL), supply the necessary terminologies. We leverage entities from UBERON
to denote the anatomical origin of the sample. This pattern facilitates the preservation
of crucial metadata about processes, encompassing information about the type of assay,
the specimen or sample employed, experimental conditions such as freeze–thaw cycles,
and the date and time of collection. Such metadata is of considerable value for resource
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management and can significantly aid research analyses. For instance, the type of tube
in which a sample was collected could influence assay results and should be accounted
for in linear models. Overall, it provides a more comprehensive context of the conditions
under which experiments are conducted, enhancing the reproducibility and reliability of
experimental outcomes.

Analyses derived from neuroimaging techniques, including segmentation measure-
ments from tools such as Freesurfer [93] and Automatic Sub Hippocampal Segmentations
(ASHS) [94], along with white matter evaluations from Diffusion Tensor Imaging (DTI) [95]
and peak width of skeletonized mean diffusivity (PSMD) [96], play an indispensable role in
dementia research. The pattern supporting this data modality follows a similar approach
to the previous one, illustrated in Figure 2. To associate the measured anatomical enti-
ties, we utilize the FMA, which offers precise terms to align with the parcellation regions
delineated by the widely used brain atlases in segmentation software, particularly for
hemisphere-specific terms. More general terms from UBERON can be obtained using the
“xref” property, employed for mapping concepts between different ontologies.

The last design pattern focuses on effectively relating the information content of a
given test with the cognitive domain, providing means by which to stratify subjects via
cognitive staging and the specific domain or phenotypic abnormality from HP at query time.
This pattern exploits the axioms that connect cognitive tests with the
evaluated domains.

4. Results

We have developed a KG framework that harmonizes biomedical knowledge and evi-
dence from various sources, coupled with a transformation module designed to streamline
the integration of multi-modal and omics data in dementia research. The core components
of the framework encompass the extensions ontology builder, which provide ontological
definitions to fill identified gaps from the domain ontologies; the KG-builder, in charge of
obtaining, merging, and producing the KG; and the data transformer module, a low-code
interface to transform source study data. All components are publicly accessible on GitHub
(https://github.com/demkg-framework/, accessed on 30 August 2023). This trio of tools
forms an intuitive building pipeline and also offers flexibility for customization, enabling
users to construct the graph from scratch, adapt it to specific requirements, and deploy it
on their preferred platform and graph database.

The backbone of our implementation is rooted in established community standards,
technologies, and methodologies. The initial step involved the selection of a comprehensive
array of domain reference biomedical ontologies, primarily from OBO, to form an expres-
sive knowledge model for our primary KG. These ontologies offer a variety of well-defined
concepts across varying levels of granularity, encapsulating intricate details of biological
reality in the form of hierarchical relationships and concept networks.

To facilitate a consistent term mapping across various ontologies and mitigate compu-
tational demands, we utilized pre-built KGs from the KG-Hub initiative and the KG-OBO
subset as our foundation, employing the KGX tool for the merging phase of the KG-builder
pipeline. The KG-Hub initiative utilizes the Biolink model as its high-level data model,
which we adopted to introduce greater flexibility and provide a comprehensive yet adapt-
able terminology overlay on the ontological model. The Biolink model facilitated the
creation of both relaxed and detailed modeling and query capabilities, thereby enhancing
the standardization and flexibility of our model. The default KG consists of 1.5 M nodes
and 11.5 M edges.

To fill the identified gaps in the foundational model, we developed specific termino-
logical extensions through the extensions ontology. We employed ODK to systematically
introduce new terms, leveraging the OBO ecosystem to import and extend relevant external
terms using DOS-DP whenever feasible.

Finally, the transformation module provides a low-code solution to transform tab-
ular source data and generate necessary instance nodes and edges by following specific
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design patterns that effectively depict study visits, phenotype observations, measure-
ments/analyses derived from samples, and neuropsychological test results. These design
patterns promote efficient data instantiation under the ontological model of the source
research data, interconnecting various aspects of the study design outputs and providing
a robust platform for data querying and network-oriented analyses. Figure 4 shows an
overview of the framework components.
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4.1. Use Case: Graph-Enabled Phenotype, Flow, and Protein Exploration from AT(N)
Biomarker Profiles

To validate the DemKG framework, we applied it to the Dementia Disease Initia-
tion (DDI) study data, a multi-site longitudinal observational study aimed at identifying
early biomarkers for patients at risk of developing dementia [97]. The DDI dataset en-
compasses a range of clinical items, including medical history, standardized physical,
neurological, and cognitive examinations, as well as laboratory and proteomic assays de-
rived from blood and cerebrospinal fluid (CSF) samples, MRI, FDG-PET, and amyloid PET
imaging, along with genomic analyses. We integrated these diverse data modalities and
explored various aspects of the key biomarkers of the AD continuum, as categorized by the
AT(N) classification.

4.1.1. Experimental Setup

The central DDI data platform is the XNAT archiving system [98], which is comple-
mented by tailored customizations and data export functionalities, including automatic
biomarker-based AT(N) classification, and population-adjusted norming for pertinent
screening tests such as CERAD [99,100], VOSP [77], and TMT [78,101]. We implemented
the transformation descriptor for the DDI data, involving direct mappings from clini-
cal codes and rules to translate assay and experiment results into specific phenotype
and disease entities. We then fed the descriptor along with the aggregated Comma-
separated values (CSV) dump from XNAT to the transformation module to obtain the
graph representation.
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The DDI cohort graph comprises 96,939 nodes and 362,824 edges, whereas an average
subject subgraph with four visits has 3469 nodes and 8284 edges. This transformed graph
was merged into the final DDI-KG, which we ingested using the KGX module into a Neo4j
Community instance deployed in a Podman container configured with eight cores and
16 GB of RAM, running on the secured servers of the TSD (Tjeneste for Sensitive Data)
facilities managed by the University of Oslo. We opted for Neo4j due to its widespread
adoption, the capabilities of its Cypher query language, and its reliable performance.
Furthermore, KGX automatically creates node indices and constraints to improve loading
and query performance for this platform.

Taking advantage of these features, the setup proves efficient with the resultant graph
model, particularly for queries with clearly defined traversals and designated node labels.
Figure 5 offers a preliminary analysis for estimating query performance, tracing the time
consumed in navigating paths that extend from one to ten hops from subject nodes to
various relevant node types in the graph. As anticipated, the number of target nodes
considerably affects query performance, primarily driven by the increased number of edges
to evaluate and traverse, coupled with the augmented data volume to handle. This scenario
is especially pronounced in the most populated and interconnected node types, namely,
proteins, genes, and diseases. Therefore, queries involving numerous or unrestricted
quantities of such nodes require thoughtful design.
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4.1.2. Experimental Results

A key objective of the DDI study is to comprehend the evolution of subjects across
different disease states within the biological reality, and the AT(N) classification system is
a pivotal reference point. The developed design patterns facilitate connections at various
levels, enabling the exploration of individual and group trajectories across visits and
expediting the retrieval of relevant phenotypes using graph queries (Figure 6).
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helped unravel the transitions between them at the cohort level, aiding in data filtering 
for parallel research endeavors. Moreover, presented visually (Figure 7), the outcomes of 
these queries proved instrumental in quality control efforts by highlighting unlikely tran-
sitions from pathological to normal states. Such interventions are vital since AT(N) profiles 

Figure 6. A DDI subject subgraph that illustrates study visits and associated phenotypes, visualized
with Neo4j Bloom and further edited for readability. (a) An overview of longitudinal visits. Subjects
are connected to each visit via the “biolink:participates_in” predicate. The logical sequencing of
visits is established through the “biolink:precedes” predicate, facilitating query traversal. Clinical
entity nodes represent associated medical processes (medical history, cognitive screenings, lab assays,
and more), serving as the source of observations and conclusions while also supplying context and
metadata for encounters and experimental setups. These nodes link to phenotype and disease entities
to depict the outcomes of the clinical/research processes. (b) A specific visit branch tracing the
path from the individual subject to the evaluated phenotypes and diseases noted during a medical
history recording. Additional data from clinical entities are omitted to maintain clarity and uphold
subject privacy.

Using the AT(N) entities defined in the extensions ontology, we queried the graph
database to investigate the flow between the different biomarker profiles. This exploration
helped unravel the transitions between them at the cohort level, aiding in data filtering for
parallel research endeavors. Moreover, presented visually (Figure 7), the outcomes of these
queries proved instrumental in quality control efforts by highlighting unlikely transitions
from pathological to normal states. Such interventions are vital since AT(N) profiles derive
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from biomarker measurements, where unexpected transitions may result from issues or
errors in the respective assays.
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As shown in Figure 7b, one of the valuable attributes of KGs that incorporate do-
main ontologies is richer semantic querying. Leveraging the hierarchical structure within
phenotype and disease ontologies, we exploited semantic querying to gather phenotypes
spanning different domains and visualized their prevalence across the AT(N) profiles. As
depicted in Figure 8, we focused on phenotypes extracted from the “Abnormality of higher
mental function” class within the HP ontology. Phenotypes related to memory, language,
and executive function were referenced based on the rules established for the norming
items in the cognitive screening section of the dataset descriptor.
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To capture complex graph structures into low-dimensional vector space, we utilized
the GRAPE library to create node embeddings using the node2Vec algorithm [102] with
Skip Gram [103] and applied them to evaluate various aspects of the AT(N) biomarkers.

We conducted an interesting experiment to investigate if the embeddings of subject
visits showed any patterns in the low-dimensional space or were influenced by specific
AT(N) profiles. Using t-SNE [104] to reduce the embeddings to two dimensions, we
observed a clear tendency for Tau pathology to group together in the embedding space,
suggesting shared characteristics among the phenotypes assessed in those visits. The
visit node embeddings are visualized in Figure 9, accompanied by a decision boundary
computed through a logistic regression model.

Lastly, we combined the graph query capabilities, node embeddings, and topological
metrics to obtain a broader overview of the relationships between assay proteins and the
AT(N) protein biomarkers to assist in decision-making processes that could steer future
analyses. Since the graph provides explicit links between available assays and the analytes
being evaluated, we gathered CSF-derived ELISA and proteomics target proteins for
comparison, focusing on the shared network encompassing GO biological processes (BPs).

For assessing protein relationships, we employed a simple pair-wise cosine similarity
measure. This allowed us to quickly gauge how closely protein nodes were related and
then rank the proteins that were most closely associated with the AT(N) panel (Figure 10).

To examine shared BPs between AT(N) and the assessed proteins, we employed a
graph query to obtain the extensive network of protein activities. Given that proteins
participate in thousands of such processes, to enhance navigability, we used GRAPE to
calculate node betweenness and closeness centrality metrics, utilizing them as indicators of
node relevance for prioritizing and narrowing down the pool of BPs to be investigated. A
snapshot of this process is depicted in Figure 11.
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Figure 9. t-SNE visualizations of node embeddings. (a) Scatter plot output from GRAPE for all node
embeddings from the KG representing the topological connectivity, colored by node type. It displays
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types computed from a logistic regression model, with an accuracy of 0.831.
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5. Discussion

In our work, we introduce DemKG, a KG framework designed to integrate various
ontologies and knowledge sources to focus on dementia research data. This framework
aims to cover terminological and design needs for multi-modal and omics data, with
additional terminological extensions developed when necessary. We also followed specific
patterns to cater to typical dementia research data outputs.

A key advantage of DemKG is its flexibility and ease of extension or customization
to adapt to particular needs, made possible by the generalizable and pattern-based tech-
nologies employed in different components of the framework. Another relevant feature of
DemKG is the friendly interface of the transformation module, which lowers the technical
barrier to effectively integrating study research data in the KG.

However, there exists an important limitation in its implementation: once built, the
KG does not support modifications without risking underlying integrity, forcing a complete
build and possibly ingestion when new versions become available. This limitation, a
consequence of using KGX as the backbone for merging and building operations, may
ultimately limit projects with streamed or on-demand data ingestion needs.

Nevertheless, our implementations remain open-source, primarily based on open
knowledge sources, and the building pipelines employ systematic approaches with tem-
plating engines that are easily customizable. While our focus is dementia research, the
broad biomedical ontologies forming the foundation of our terminological model make
our KG applicable to other biomedical research datasets as well.

Thus, the broader implications of our work extend beyond the application of the KG.
Large biomedical KGs are proving to be an excellent tool for biomedical research, especially
in domains requiring knowledge across different fields. The capacity to integrate disparate
data and knowledge opens up opportunities for insights that were previously challenging
to achieve. Approaches such as Precision Medicine greatly benefit from the implementation
of KGs in their workflow.

This benefit is especially pronounced in dementia research, where the number of newly
discovered biomarkers, phenotypes, and life conditions rapidly increases. These elements
become part of the knowledge base that can be applied to the patient’s biological signature.
In this context, a KG like ours can play a crucial role in advancing our understanding of
dementia and potentially informing patient care strategies.

6. Conclusions

In conclusion, DemKG presents a flexible and integrative approach to handle the
ever-increasing complexity and multi-modality of dementia research data by leveraging a
KG representation and relation capabilities.

The DemKG framework offers several distinct advantages over other solutions cur-
rently available. First, it is constructed based on well-established ontologies and adheres
to recognized community standards, guaranteeing a solid and interoperable foundation.
This is further enhanced by ontological extensions specifically crafted to facilitate detailed
dementia research data analysis, filling a critical gap in the existing frameworks.

In addition to the above, DemKG integrates a low-code transformer module, simplify-
ing the integration of study data and making the framework accessible to researchers with
various levels of expertise. This module significantly reduces the time and technical know-
how needed to merge study data, streamlining the data integration process considerably
when compared to other solutions.

Furthermore, DemKG employs tooling to generate knowledge graphs in the platform-
agnostic KGX format. This approach allows for easy deployment in a platform of the
user’s choice, offering flexibility in how and where the data can be used, and ensuring that
the framework is adaptable to existing systems and future technological advancements.
Enhancing its flexibility, the framework offers an open-source and customizable design,
facilitating easy adoption and adaptation not only for dementia research but also potentially
extending its utility to research into other diseases.
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While there are limitations to the support for post-build modifications in its current
iteration, addressing these in future work could broaden its applicability further. De-
spite these challenges, DemKG and similar KGs hold significant potential for propelling
biomedical research and patient care advancements, extending from dementia to other
medical conditions.
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Chapter 6

Related publications

Apart from the main three articles, the development of this work has made different

contributions to other published results, both directly and indirectly.

The first scientific contribution of this thesis was shared in the International Work-

Conference on the Interplay Between Natural and Artificial Computation (IWINAC) with

"Towards an Integrated Semantic Framework for Neurological Multidimensional Data

Analysis" [Reina et al., 2015], where we outlined the first steps in developing the ISF.

As we described in the methods chapter, the collaboration with the DDI study has been

fundamental for the development of both this thesis and the study. This work has partly

contributed in the development of the research data ecosystem of DDI, firstly reported in

"Detecting At-Risk Alzheimer’s Disease Cases" [Fladby et al., 2017], by modeling the data

structures to support the research outcomes of DDI, implement all related aspects in the

XNAT platform, data capturing interfaces, and the KG-related improvements.

Finally, this work has contributed to the creation of regression-based norming from the

DDI cohort. It has aided in data processing for normative data in various neuropsychological

tests and has supported the development of XNAT tooling and open-source norm calculators

for the scientific community. The resulting publications are:

• "Demographically adjusted CERAD wordlist test norms in a Norwegian sample from

40 to 80 years" [Kirsebom et al., 2019].

• "Demographically adjusted trail making test norms in a Scandinavian sample from 41

to 84 years" [Espenes et al., 2020].

• "Regression-based norms for the FAS phonemic fluency test for ages 40–84 based on

a Norwegian sample" [Lorentzen et al., 2021].

• "Regression-based cognitive change norms applied in biochemically defined

predementia Alzheimer’s disease" [Eliassen et al., 2022].
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• "Regression-based normative data for the Rey Auditory Verbal Learning Test in

Norwegian and Swedish adults aged 49–79 and comparison with published norms"

[Espenes et al., 2022].



Chapter 7

Conclusions

With the proliferation of data in biomedical research due to technological advancements,

the challenge of effectively interconnecting diverse data modalities—such as omics data,

imaging studies, and clinical records—has become increasingly pressing. KGs offer a robust

framework for navigating and linking concepts across these varied data types and levels of

abstraction, both in biological and mathematical contexts. By serving as an integrative layer,

KGs facilitate the consolidation of information from disparate biological databases, including

genomics, proteomics, and radiological imaging repositories. This aggregation of essential

knowledge, which is often scattered across isolated platforms, has far-reaching implications

for the concept of Precision Medicine. The capacity to seamlessly link data and concepts,

from molecular and omics analyses to imaging studies and up to disease mechanisms and

phenotypic descriptions, is of great importance. This integrative approach is especially

relevant in the current landscape of Dementia research, where extensive efforts are being

made to profile the biological underpinnings of disease mechanisms in an inherently complex

and nuanced reality.

The overarching aim of this thesis was to explore and advance the use of semantic

technologies, graph databases, and knowledge graphs in the biomedical domain, with a

particular focus on Dementia research, ultimately producing DemKG. This open-source

framework brings the building of KGs closer to the research groups.

The contributions of this work are multiple and significant. The first article laid out the

foundational design principles of a framework that enhances neuroimaging and biobanking

systems through the integration of semantic technologies. Designed to be modular and

scalable, the framework integrates smoothly with existing systems such as XNAT. It adopts a

layered architecture incorporating schemas, ontologies, and services, enabling semantic

data access. This architecture is particularly effective in managing data across various

levels of abstraction, ranging from raw data to more refined logical concepts. The use

cases demonstrated the efficacy of this approach, particularly in the neuroscience domain,
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where multidimensional datasets are common, confirming the framework’s efficacy in such a

context.

In light of the growth of GDBMSs, the second article provided a comprehensive review

of GDBMSs and their applicability in the biomedical domain. While Relational Database

Management Systems (RDBMSs) and other NoSQL engines are the go-to choice in many

application settings, GDBMSs excel in handling densely connected datasets with complex

relationships. The article highlighted four key advantages of GDBMSs: natural modeling

of many-to-many relationships, intuitive query languages, schema flexibility, and superior

performance in relationship-centric searches. These features are particularly beneficial in

biomedical research, where data integration and complex network analyses are common.

Given the evidence supporting the suitability of GDBMSs for biomedical data and the variety

of available platforms, we designed DemKG to construct platform-agnostic KGs, thereby

leaving the choice of platform to the ultimate adopters.

The third article formally introduced DemKG, laying out the design details and

implementation to manage complex and multimodal data in Dementia research. In contrast

with related works, DemKG offers several advantages, including its foundation on well-

established ontologies, a low-code transformer module for easy data integration, and the

mentioned platform-agnostic design. The framework fills a critical gap in existing solutions

by providing detailed Dementia research data analysis capabilities. Despite some limitations

in support for post-build modifications, DemKG holds significant potential for advancing

biomedical research and patient care, not just in Dementia but also in other medical

conditions.

The work presented herein demonstrates the utility and adaptability of these technologies

in addressing complex, multimodal challenges in biomedical research, showcased by several

real-world scenarios faced in collaboration with the DDI and PMI-AD studies.

Future work

For the next phase of research, there are several avenues for future investigation and

development, aiming to address existing limitations and explore new functionalities and

applications of the framework.

Regarding the framework implementation, there are various interventions planned.

The initial focus will be on enhancing the support for post-build modifications in DemKG,

particularly when deployed on Graph Database Management Systems like Neo4j. This issue

will necessitate contributions to the KGX codebase to effectively manage conflicts within

node categories across different knowledge graph builds. Another planned improvement is

the incorporation of a YAML schema validator within the dataset descriptor of the transformer
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module. This addition aims to identify and alert users to any errors or inconsistencies in the

provided input descriptor.

As Graph-based Machine Learning (ML) techniques gain traction across various

research and industrial domains, many GDBMS platforms, including Neo4j, are evolving to

incorporate more than just traditional graph metrics and algorithms. They are now integrating

representation techniques such as embeddings and linked vectors directly into their systems,

obviating the need for external computations or the maintenance of parallel data structures.

In light of this, we aim to extend DemKG to better integrate with these emerging graph-ML

techniques. One first approach is including the Network Embedding All the Things (NEAT)1

pipeline engine within the KG builder module of the framework.

Related to these integration improvements, we plan to exploit DemKG in several ongoing

investigations about pre-dementia. The first one will consist of further improving the results

of synaptic-related proteomics by exploring available information about proteins of interest

and evaluate, in a systematic way, their role in a subset of the genomic sub-network. For

another application, we plan to compute fine-tuned graph embeddings to feed several deep-

learning architectures to improve prediction models further for amyloid pathology. One last

intervention will address the integration of drug information from DrugBank [Wishart et al.,

2018] to assist in drug repurposing investigations for several AD-related target molecules,

using both knowledge exploration and graph embeddings.

Finally, we plan to expand the terminological scope of DemKG to improve the ontological

descriptions of various biomarkers associated with Parkinson’s Disease. Additionally, we

intend to develop axioms and annotations to assert explicitly shared mechanisms across

different neurodegenerative diseases in the model.

1NEAT: https://github.com/Knowledge-Graph-Hub/neat-ml#network-embedding-all-the-things-neat

https://github.com/Knowledge-Graph-Hub/neat-ml#network-embedding-all-the-things-neat
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