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Abstract

The �eld of Emotional Robots begins to be perceived by many as a tangible reality that
seems to develop robustly in the �eld of research, promoting interdisciplinary approaches.
Emotional or socially intelligent robots try to emulate human social intelligence, to be
integrated into our society naturally. To this end, robots must be able to learn both to
detect and reproduce the way humans communicate, since in our relationships we use
emotional signs that are expressed in non-verbal communication patterns, di�erences in
the tone of voice, or nuances in the semantics of the message used. Therefore, the main
aim of this thesis is to improve the human-robot interaction, to produce a more natural
interaction for the user, under the hypothesis that the robot can improve its interaction
if it can reduce its uncertainty when detecting the user's emotional states. Therefore, our
goal is to �nd how to assess the user's emotional state by adding information related to
physiological signals such as pulse, skin conductance, electroencephalography, and facial
expressions.

Emotion estimation systems based on brain cortical activity, among other physiolog-
ical signals are gaining special attention in recent years because of the possibilities they
o�er. The �eld of human-robot interactions could bene�t from a broader understanding of
the coding of the brain and physiological properties during emotion processing, together
with the use of lightweight software and cheap wearable devices, and thus enhance the ca-
pabilities of robots to fully engage with the user's emotional reactions. On the other hand,
facial expression recognition has been extensively researched over the past two decades
because of its direct impact on the �eld of computer vision and a�ective robotics, but it
has yet to address several drawbacks such as posture variations, occlusions, lighting, etc.
To break down the complexity of the problem taking into account real-time constraints,
the process is performed in two stages, automatic face detection, and facial expression
recognition.

The a�ective interaction between humans and robots requires lightweight software and
cheap wearable devices, that could boost this �eld. However, the estimation of emotions
in real-time poses a problem that has not yet been fully addressed, namely the challenge of
�ltering artifacts and extracting features, while reducing processing time and maintaining
high accuracy results. Thus, optimization processes must face several stages, such as
artifact removal, feature extraction, feature smoothing, and pattern classi�cation, while
maintaining real-time constraints.

A�ective human-robot interaction is still an active area of research in part due to the
great advances in arti�cial intelligence. Now, the design of autonomous devices that work
in real therapeutic environments has become a plausible reality. A�ective human-robot
interaction requires a robot to analyze the emotional state of the human interlocutor and
interpret emotional responses that can be used, not merely in the interaction but, for
example, to provoke desired therapeutic responses. It is, therefore, necessary to broaden
experimental techniques into more realistic paradigms, where the capacity of emotion
estimation can be completely explored. Standard experimental designs face emotion es-
timation using constant stimuli to have control over the variables under experimenta-
tion, allowing for the development of the research, but staying far from real scenarios
where emotions are dynamically evoked. The experimental design is by far the most
important issue which must be faced, therefore, to properly evaluate our methodologies,
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�rstly, standard databases using constant stimuli have been used to design a well-validated
methodology. Secondly, a dramatic �lm has been proposed to dynamically evoke emo-
tions. This made it possible to demonstrate that our method was robust enough even in
realistic scenarios. Finally, an experimental design of human-robot interaction implies a
complex paradigm in which dynamic emotional feedback from users is required, which is
far from the initial standard methodologies of emotional stimulation. To minimize the
leap involved in the experimental paradigm shift, a strategy has been proposed that com-
bines the two previous approaches in which the robot conducts a dramatic story under
a dynamic emotion stimulation strategy that, in addition, uses constant stimuli to evoke
speci�c emotions after which it requests emotional feedback from the user.

In conclusion, emotion estimation is achieved by the use of three di�erent sources,
brain patterns, signals from the autonomous neural system, and facial expressions, which
allowed us to measure emotions within the developed methodologies. From physiological
signals, a combination of �negative-positive� and �relax-intense� emotions can be achieved,
while for the facial expressions seven discrete emotions (�happy�, �surprise�, �neutral�,
�sad�, �fear�, �disgust�, �angry�) can be measured with signi�cant con�dence.

This exploratory research study proposes realistic experimental designs, using dra-
matic �lms and story-telling robots, to evoke emotions in the users, and assessing previ-
ously self-designed methodologies, to be able to make estimates of the users' emotional
states in real-time. Regardless of the multiple restrictions, and all the aspects that could
still be improved, this research can outline the feasibility of the proposed methodology in
realistic scenarios.



Resumen

El campo de la robótica emocional comienza a ser percibido por muchos como una
realidad tangible que parece desarrollarse con fuerza en el campo de la investigación pro-
moviendo enfoques multidisciplinarios. Los robots emocionales o socialmente inteligentes
intentan emular la inteligencia social humana para integrarse en nuestra sociedad de for-
ma natural. Para ello, los robots deben ser capaces de aprender tanto a detectar como
a reproducir la forma en que los humanos se comunican, ya que en nuestras relaciones
personales utilizamos signos emocionales que se expresan en patrones de comunicación no
verbales, diferencias en el tono de voz o matices en la semántica del mensaje utilizado. Por
lo tanto, el objetivo principal de esta tesis es mejorar la interacción humano-robot para
producir una interacción más natural para el usuario, bajo la hipótesis de que el robot
puede mejorar su interacción si es capaz de reducir su propia incertidumbre a la hora de
detectar los estados emocionales del usuario. Es por ello, que el objetivo se centra en inves-
tigar cómo evaluar el estado emocional del usuario añadiendo información relacionada con
señales �siológicas, tales como el pulso, la conductancia de la piel, la electroencefalografía
o las expresiones faciales.

Los sistemas de estimación de emociones basados en actividad neural cortical, entre
otras señales �siológicas, están recibiendo una atención especial en los últimos años debi-
do a las posibilidades que ofrecen. El campo de las interacciones entre humanos y robots
podría bene�ciarse de una comprensión más amplia de la codi�cación de las propieda-
des de la actividad neural cortical y señales �siológicas, durante el procesamiento de las
emociones, junto con el uso de programas informáticos ligeros y dispositivos baratos que
sean portátiles y orientados al usuario, y así mejorar las capacidades de los robots para
participar plenamente en las reacciones emocionales del usuario. Por otra parte, el reco-
nocimiento de las expresiones faciales se ha investigado ampliamente en las dos últimas
décadas debido a su impacto directo en el campo de la visión por computadora y la robó-
tica afectiva, pero aún debe lidiar con inconvenientes como las variaciones en la postura,
las oclusiones, la iluminación, etc. Para desglosar la complejidad del problema teniendo
en cuenta las limitaciones en tiempo real, el proceso se lleva a cabo en dos etapas, la
detección automática de caras y el reconocimiento de las expresiones faciales.

La interacción afectiva entre los seres humanos y los robots requiere un software ligero y
dispositivos baratos que sean portátiles que puedan potenciar este campo. Sin embargo, la
estimación de las emociones en tiempo real plantea un problema que aún no se ha abordado
plenamente, como es el reto de �ltrar los artefactos de la actividad neuronal cortical y
la extracción de características, al tiempo que se reduce el tiempo de procesamiento y
se mantienen los resultados en el reconocimiento. Así pues, los procesos de optimización
deben hacer frente a varias etapas, como la eliminación de artefactos, la extracción de
características, el suavizado de características y la clasi�cación de patrones, manteniendo
al mismo tiempo las limitaciones en tiempo real.

La interacción afectiva entre el hombre y el robot sigue siendo un área de investigación
activa, en parte debido a los grandes avances de la inteligencia arti�cial. Actualmente, el
diseño de dispositivos autónomos que funcionan en entornos terapéuticos reales se ha
convertido en una realidad plausible. La interacción afectiva humano-robot requiere que
un robot analice el estado emocional del interlocutor humano e interprete las respuestas
emocionales que pueden utilizarse, no sólo en la interacción sino, por ejemplo, para pro-
vocar las respuestas terapéuticas deseadas. Por lo tanto, es necesario ampliar las técnicas
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experimentales a paradigmas más realistas, en los que se pueda explorar completamente
la capacidad de estimación de las emociones. Los diseños experimentales estándar se en-
frentan a la estimación de las emociones utilizando estímulos constantes para facilitar el
análisis de las respuestas evocadas, permaneciendo lejos de escenarios realistas, donde las
emociones se evocan dinámicamente. El diseño experimental es, con mucho, la cuestión
más importante a la que hay que enfrentarse, por lo que, para evaluar adecuadamente
nuestras metodologías, se ha seguido una estrategia incremental. En primer lugar, se han
usado bases de datos estándar que utilizan estímulos constantes para diseñar una meto-
dología bien validada. En segundo lugar, se ha propuesto una película dramática para
evocar dinámicamente las emociones. Esto permitió demostrar que nuestro método era
lo su�cientemente robusto incluso en escenarios realistas. Por último, un diseño experi-
mental de la interacción entre el hombre y el robot implica un paradigma complejo en el
que se requiere una retro-alimentación emocional dinámica por parte de los usuarios, lo
que dista mucho de las metodologías estándar iniciales de estimulación emocional. Para
minimizar el salto que supone el cambio de paradigma experimental, se ha propuesto
una estrategia que combina los dos enfoques anteriores en la que el robot lleva a cabo
una historia dramática bajo una estrategia de estimulación emocional dinámica que, ade-
más, utiliza estímulos constantes para evocar emociones especí�cas, tras lo cual solicita
la retro-alimentación emocional del usuario.

A modo de conclusión, la estimación de las emociones se consigue mediante el uso de
tres fuentes diferentes, patrones cerebrales, balance entre sistemas simpático y parasim-
pático, y expresiones faciales, que nos permiten medir las emociones tanto en el modelo
emocional continuo como en el discreto. A partir de señales �siológicas se puede lograr
estimar una combinación de emociones �negativa-positiva� y �relax-intenso�, mientras que
para las expresiones faciales se pueden reconocer siete emociones discretas (�felicidad�,
�sorpresa�, �neutral�, �tristeza�, �disgusto�, �miedo�, �ira�) con una con�anza signi�cativa.

Esta investigación exploratoria propone diseños experimentales realistas utilizando es-
tímulos dinámicos, como las películas dramáticas o el uso de robots que cuentan historias,
para evocar emociones en los usuarios, a la vez que se evalúan metodologías para poder
hacer estimaciones de los estados emocionales de los usuarios en tiempo real. Independien-
temente de las múltiples restricciones, y de todos los aspectos que aún podrían mejorarse,
esta investigación puede esbozar la viabilidad de la metodología propuesta en los diferentes
escenarios realistas propuestos.
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Chapter 1

Introduction

The aim of this thesis is to demonstrate that it is possible to improve a�ective human-
robot interaction by reducing the uncertainty of the robot when detecting the user's
emotional state. To this end, the use of physiological signals and facial expressions is
proposed which implies a multidisciplinary approach. Therefore, it is indispensable to
justify the theoretical background that allows us to make such an approach.

Consequently, the next section 1.1 de�nes the starting point of this research and
the �eld of study is contextualized in section 1.2. Next, in sections 1.3 and 1.4, the
biological context in which emotions are produced is explained, and in section 1.5, the
main emotional models proposed by the �eld of study of psychology are presented. Finally,
the current state of the art in the scienti�c �eld in which this thesis is being developed is
reviewed, section 1.6.

The next chapter 2 establises the hypothesis and the objectives to be developed.
Chapter 3 de�nes the methods used, both hardware and software developed, sections 3.1
and 3.2, which in our case is provided for future use by the scienti�c community. Chapter
4, presents the articles that make up the body of the thesis. These articles have been
carried out in an incremental manner according to the hypotheses and objectives set
out, in such a way that the methodologies developed for the �rst article are used in the
following articles, and the same is true of the third article with respect to the �rst and
second articles. Section 4.4 contains a series of collaborative research studies of relevance
for the consecution of this thesis objectives. The fourth chapter, also includes the general
discussion of the results obtained, section 4.5, although each article has its own detailed
discussion of results. Finally, chapter 5 describes the conclusions.

1.1 Scienti�c context

The era of robotics has just started to jump into the real world thanks to the last advances
in the �elds of control theory and deep and reinforcement learning [Liu and Theodorou,
2019, Recht, 2019]. The general desire that robots perform complex tasks requiring a
high level of expertise in complex environments is driving their evolution fast in areas like
perception [Burschka, 2019, Stroessner, 2020], sensing and interaction [Reig et al., 2020,
Engwall et al., 2020], and in fact, on some tasks they are outperforming humans [Silver
et al., 2016]. Nevertheless, there is still a big challenge in the �eld of robotics directly
related to how humans perceive and sense the world [Yang et al., 2018]. Humans are not
only capable of perceiving and sensing the world, but they are also conscious about it
and they can respond emotionally. Both properties are qualitatively superior from the
previous ones and have become one of the next science barriers in the actual era.

1



2 1.2 The scope of the study

Related to consciousness and autonomous learning, several approaches have been de-
veloped that reveal the endeavor of building arti�cial cognitive architectures [Cialdella
et al., 2020, Samsonovich, 2020, Kelley and Twyman, 2020]. Concerning emotions, a re-
cent branch of studies based on human emotion recognition is being developed to both
give robots the ability to measure human emotions and to understand how emotions are
produced [Suguitan et al., 2020, Hasegawa and Takahashi, 2020, Vásquez and Matía, 2020,
Martínez Albán et al., 2019, Lee et al., 2020, Todd et al., 2020].

1.2 The scope of the study

There are four main capacities of the human brain in processing the environment:

� First, the capability of sensing the world: In the �eld of robotics, sensing has been
one of the �rst concerns and, in fact, several types of sensors have been developed.

� Second, the capability of perceiving: This is a qualitatively superior abstraction
over the sensing result, where the sensed data is related to meaning.

� Third, emotions: Human perceptions are biased by emotional states at di�erent de-
grees, that is the reason why emotions play a fundamental role in social interactions.

� Four, the faculty of reasoning: This is the highest abstraction over all prior capa-
bilities, which allow us not only to dynamically accommodate a changing world but
additionally to modify it.

In �gure 1.1 these capabilities are represented in a graphical sense where qualitative
interactions can be abstracted. The main idea of this abstraction is to isolate the possible
subsets of interactions that will allow us to clearly de�ne our �eld of study. Currently, the
�eld of robotics is making huge leaps in the highlighted subareas. Our research area is
focused on subarea 3, that merges the act of, sensing and perceiving the emotional states
of robot users but still not reasoning.

Figure 1.1: Our research reference point.

Mikel Val Calvo Universidad Nacional de Educación a Distancia
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1.3 The biological sense

The central nervous system (CNS) has a series of systems that make it possible to obtain
information about both the environment, the body, and itself. Therefore, the interaction
with the environment is carried out through e�ectors that alter it. Although indeed, it
can also be carried out through language in social interaction, it is necessary to point out
that these interactions in turn require motor actions to be able to articulate the contents
of our thoughts. This is important for the analysis of the functional organization of the
CNS since in some way it must re�ect this importance in its structure. For instance,
main regions of the cortex and their associated high-level functions together with the
cerebellum are shown in �gure 1.2. Human high level capabilities are distributed over the
brain structure leading to a highly emerging system of parallel dynamic neural behaviors.

Figure 1.2: The autonomous nervous system.

From the architectural perspective of the brain, �gure 1.3 shows how di�erent struc-
tures have evolved to cope with tasks that must be performed autonomously or con-
sciously.

Figure 1.3: Major regions of the mammalian brains.

Emotional Human-robot interaction using physiological signals PhD. Thesis



4 1.3 The biological sense

Hence, the brain stem is in charge of most of the autonomous functions such as relay
and processing of sensory information, hormone production, emotion control, generation
of re�exive somatic motor responses and regulation of visceral functions such as cardio-
vascular activity, while the telencephalon plays the role of producing the consciousness,
thought processes and intellectual functions such as memory storage, multi-modal pro-
cessing, or emotion management.

Finally, in 1.4 a topological view of interactions between parasympathetic and sympa-
thetic systems is shown. In 1994, Dr. Stephen Porges introduced the Polyvagal Theory
[Porges, 1995]. Porges described an interaction between the central nervous system and
source nuclei in the brain stem. This interaction involves pathways in the autonomic ner-
vous system that connect somatomotor components to visceral e�erent pathways (that
regulate muscles of the face) and to visceromotor components (that regulate the heart,
among others). A model is shown in �gure 1.4 describing how the limbic structure inter-
acts balancing suppressions and activations of both, the parasympathetic and sympathetic
circuits. As a result, the output of the sympathetic and parasympathetic autonomous sys-
tems produce variations in these systems.

Figure 1.4: The sympathetic and parasympathetic nervous system.

Mikel Val Calvo Universidad Nacional de Educación a Distancia
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1.4 The biological model abstraction

It is necessary for the study to justify an abstract biological model from which the math-
ematical model will emerge. As shown above, there is a highly interconnected and struc-
tured central nervous system. The abstract interactions are shown in �gure 1.5. From this
biological model, our assumption is based on the idea that emotional cues can be mea-
sured by signals processed both in the cortex and through physiological signals directly
in�uenced by the parasympathetic and sympathetic systems.

The regulation of emotions involves a series of central nervous subsystems that interact
with each other to produce complex behaviors. In this context, behavioral demands
induce their coordination to produce changes that allow dynamic adaptation to the latter.
Several subsystems intervene in these processes, from high to low levels of nervous activity,
which involve close interactions between the central and autonomic nervous systems in
di�erent ways. Although the hypothalamus regulates part of the autonomic subsystems,
many of the activities of the hypothalamus are, in turn, regulated by certain cortical
areas, as well as by the central nucleus of the amygdala, which processes inputs from the
external environment. The amygdala comprises several nuclei on the medial aspect of
the temporal lobe, mainly the anterior hippocampus and the tip of the temporal horn
[Téllez-Zenteno and Hernández-Ronquillo, 2012]. The amygdala receives inputs from the
association cortex and its main projections are towards the septal area and the prefrontal
cortex, mediating from emotional responses to sensory stimuli [Strominger et al., 2012].

Emotions may provide rapid and reliable responses to recurrent life challenges and
therefore, as a result of these synergic interactions throughout the CNS, see �gure 1.5,
respiratory and electrodermal activity together with electroencephalographic measure-
ments and facial expressions can provide the necessary information on the processing of
emotions [Damasio, 1998, Hagemann et al., 2003].

1.4.1 Electroencephalography

Electroencephalography (EEG) measures the electrical changes produced by the neural
populations under the scalp and skull, related to the brain activity that occurs in the
upper layers of the cerebral cortex. The synchronization and desynchronization of these
neural populations produce variations that can be measured by electrodes located on the
scalp. What the EEG measures are the oscillation of the slow �elds of the neuron popu-
lations [Buzsáki et al., 2012]. When a single neuron �res, transmitting a signal from the
presynaptic to the postsynaptic neuron, the action potential of the former produces the
release of glutamate which, in turn, causes glutamate binding in the latter, producing
a change in voltage called excitatory post-synaptic potential (EPSP). For a large pop-
ulation of neurons, under synchronized activity, these EPSPs add up to stronger signal
measurements. An electrode located in the occipital lobe, which belongs to the area of
the visual cortex, is capable of measuring alpha-synchronized brain activity when the eyes
are closed while complex information processing is not being performed. On the contrary,
when the eyes are opened, a complex and unsynchronized signal is produced. Therefore,
brain activity can be considered with Claude Shannon's information theory [Shannon,
1948], where the highly synchronized activity is related to low information processing,
so that the more synchronized the neurons in the brain are, the fewer data processing
takes place Singer [1993]. Such a property has made it possible to measure several syn-
chronized events, such as epileptic seizures [Saab and Gotman, 2005, Ocak, 2009, Mirzaei
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et al., 2010, Kumar et al., 2014, Al Ghayab et al., 2019], which caused large populations
of neurons to start �ring rapidly and at the same time. In that context, the brain uses a
set of oscillatory rhythms [Berger, 1929, Dement and Kleitman, 1957, Foster et al., 2017]
to allow parallel communication across neuronal structures. These rhythms can generally
be characterized in the following set of frequency bands, from slowest to fastest: delta
0.1− 4Hz, theta 4− 8Hz, alpha 8− 15Hz, beta 15− 30Hz, and gamma > 30Hz.

1.4.2 Blood volume pressure

The blood volume pressure (BVP) is obtained through a photoplethysmogram that ob-
tains the volumetric changes in the super�cial blood vessels by illuminating the skin and
measuring the changes in light absorption. When a cardiac cycle occurs, the heart pumps
blood through the cardiovascular system, distending the arteries and arterioles just behind
the skin to measure the pressure pulse. Signal analysis of the BVP requires the introduc-
tion of some brief concepts regarding the properties of signal dynamics and their related
biological processes. In 1.6, several key points can be seen, each related to signi�cant
biological events:

� The diastolic points are the pressure in the blood vessels between heartbeats when
the heart is at rest. It is the part of the heart's cycle during which the heart �lls
with blood. The diastolic points are the key points used for estimating the interval
between heartbeats (IBI), also called the RR intervals.

� The systolic points measure the maximum pressure when the ventricles contract,
during the emptying part of the heart cycle.

� Dichrotic notch points are related to the transient increase in aortic pressure when
the aortic valve is closed, called a dichrotic wave. It can be used as a marker for the
end of the systole period.

� The point of the second-wave marks the highest pressure point related to the
dichrotic wave.

Figure 1.6: An example of a BVP signal. The output may vary depending on user and
conditions.

The BVP signal is often used to calculate the heart rate variability (HRV), so the
variability of the corresponding RR intervals is calculated. The shape and time dynamics
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8 1.4 The biological model abstraction

of the BVP waveform re�ect arterial changes correlated with interlocking changes in
the sympathetic and parasympathetic nervous systems. Heart rate variability has been
associated with changes in emotional arousal [Peper et al., 2007, Jönsson, 2007]. On the
one hand, excessive emotions such as fear, worry, panic or stress, emotional tension, or high
state anxiety, can produce a decrease in HRV [Nickel and Nachreiner, 2003], presumably
related to attention focus and motor inhibition [Jönsson, 2007]. Conversely, emotions
related to appreciation or love may increase HRV [Petrocchi et al., 2017]. Changes in
the range of HRV may re�ect, to some extent, the presence of an emotional state. The
stronger the emotional engagement, the longer it takes for the signal to return to the
baseline. These signals can provide insight into the level of activation of an emotional
state, i.e. a trauma or a state of vigilance. Besides, BVP can be measured with the
use of wearable devices that have some advantages over electrocardiogram(ECG) systems
because they are user friendly and o�er easy experimental set-ups.

1.4.3 Galvanic skin response

Galvanic skin response (GSR) measures the di�erential potential of the skin produced by
changes in the activity of the sympathetic system, which in turn innervate the eccrine,
apocrine, and apoecrine sweat glands [Donadio et al., 2019]. The �rst ones participate in
the process of regulation of emotions and re�ect changes in emotional arousal [Caruelle
et al., 2019], producing changes in the potential measurements of the skin. The sweat
glands on the palmar and plantar surfaces may have evolved to increase sensitivity and grip
in some circumstances and are therefore related to psychological stimuli [Edelberg, 1972,
Boucsein, 2012], thus allowing the quanti�cation of the level of arousal during cognitive
processes and the processing of emotions.

The conductance of the skin is composed of the phasic and tonic components. While
the former is related to rapid changes (aproximately 1 − 3per/min during rest and
20per/min in high arousal states) in the di�erential potential of the skin, the latter
represents changes on a slower time scale (from seconds to minutes).
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Figure 1.7: Electrodermal activity. Phasic and tonic components visualization.

The phase component is therefore the re�ection of the sympathetic system for envi-
ronmental stimuli in the short term, while the tonic component shows slow changes. Both
are directly related to the level of arousal.
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1.4.4 Facial expressions

Charles Darwin wrote at the end of the 19th century �The expression of the emotions
in man and animals� Darwin [1872] where he stated that some basic emotions remain
universal across some species. This original research opened a �eld that has been ex-
tensively studied in various scienti�c disciplines. Then, the study of facial expressions
received little attention because of the lack of a proper tool to measure facial expressions
and, as a result, the prevailing view was that facial expressions could not provide accurate
information regarding emotion [Landis, 1924, Frois-Wittman, 1930, Bruner and Tagiuri,
1954]. Later, in the 20th century, Paul Ekman followed this research [Ekman and Friesen,
1971, Ekman et al., 1988, Ekman, 1997] and stated that among other emotional expres-
sions, there are seven universal expressions of discrete emotions shared across cultures:
anger, disgust, fear, happiness, sadness, and surprise; the neutral emotion is de�ned as a
baseline.

The main issues regarding facial expressions are related to the ability of human beings
to inhibit emotional expressions in contrast with other a�ective phenomena but still raise
emotion physiology [Ekman, 1992] because of the contribution to emotion processing and
facial muscles motor control of the amygdala [Livneh et al., 2012, Gothard, 2014].

Figure 1.8: Facial muscles.

1.5 Emotional models

Di�erent factors make the recognition of emotions a di�cult task [Mi et al., 2019] and
despite the variability of emotional responses and their dependence on culture [Jack et al.,
2012], it is necessary to narrow down the reference system for experimental research by
creating an emotional model. On the one hand, there is no basic truth for self-evaluation,
since the assessment of experienced emotions is guided by emotional models developed
in the �eld of psychology. These can generally be grouped as discrete and dimensional
models. The former assumes that emotions are qualitatively di�erentiated neurophysio-
logical responses that produce independent emotional experiences [Roseman et al., 1990].
Following Ekman's [Ekman, 1976] research, emotions are generally divided into six proto-
typical categories: anger, disgust, fear, happiness, sadness, and surprise; plus the neutral
emotion is de�ned as a baseline. In contrast, the dimensional approach consisting on a
dimensional model with two orthogonal dimensions, valence and arousal, captures the con-
tinuous quanti�ed relationships between emotions [Russell, 1980]. The valence dimension
re�ects the emotional reactions related to pleasantness or unpleasantness of the evoked
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reaction while the arousal dimension measures the level of excitement. Furthermore, there
are signi�cant variations for each individual in the correlation between the properties of
the measured physiological signals and the respective emotion, therefore, studies di�er
in methodology to attempt to better bridge this gap. Figure 1.9 shows graphically the
relation between both models.

Figure 1.9: The valence-arousal dimensional model.

1.6 State of the art in emotion estimation

The estimation of emotions can be achieved through di�erent strategies and sources of in-
formation. On the one hand, the hand-crafted features can be computed using a standard
machine learning approach, in which the goal is to �nd a set of relevant invariant features
that allow for robust estimation. On the other hand, deep learning strategies have re-
ceived special attention because of the capacity for generalization they achieve when fed
with su�cient data. Besides, the use of an appropriate stimulus must be carried out since
it is an important factor concerning the strategy to be performed. Standard automatic
learning algorithms do not require a large amount of data as deep learning techniques do,
and the computation requirements on each strategy must be considered when real-time
constraints are imposed. Finally, it is also necessary to take into account the properties
of the stimulus, static or dynamic, and the physiological e�ect it generates in humans.

The latest advances in the �eld of emotion recognition have been made about new
techniques developed in the �eld of deep learning. Their use has outperformed conven-
tional approaches using traditional feature extraction techniques. These new advances
include the use of temporal and spatial information of brain activity models based on
deep learning [Zheng and Lu, 2015, Zheng et al., 2019, Yin et al., 2017, Tripathi et al.,
2017, Nguyen et al., 2018, Zheng et al., 2018, Song et al., 2018], deep convolutional neural
networks [Santamaria-Granados et al., 2018, Chen et al., 2019] and Long-Short-Term-
Memory (LSTM) based architectures [Chen and Jin, 2015]. Another approach, that is
often used, is based on network ensembles [Gjoreski et al., 2018], in which information is
fed through a set of deep architectures that must converge at some point using a score
fusion strategy. Although they generally achieve better performance, since each network
extracts di�erent relevant features and may lead to minimizing generalization error, they
are computationally heavy. Other architectures take advantage of splitting the feature
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extraction step for each information source while having a multi-modal feature represen-
tation layer just before classi�cation takes place. Also, novel techniques such as domain
adversarial learning [Chai et al., 2016] or attention mechanisms have been proposed re-
cently. If the main objective was to �nd a methodology for emotion estimation, researchers
have already developed methods that optimize that process and even achieve estimation in
a subject-independent paradigm [Lan et al., 2018, Li et al., 2019] that allows the discovery
of latent and shared components among subjects.

Although deep learning has generally outgrown most standard machine learning meth-
ods, it cannot still be a general approach to users, and such networks are very time-
consuming in both hyper-parameter and parameter tuning. Consequently, deep learning
methods remain user-dependent and require a huge training and tuning e�ort that is not
desirable for an a�ective human-robot interaction (a�ective-HRI) system to be adopted
in practical situations. Furthermore, most previous research studies do not take into ac-
count the real-time limitations, except for [Liu et al., 2017a]. This requirement imposes
constraints on computing resources that generally cannot be supported by lightweight or
wearable devices when processing deep learning models, but which can be better adapted
using standard machine learning methods.

With respect to HRI experimental designs, most studies rely on speech analysis [James
et al., 2018, Lakomkin et al., 2018, Pan, 2018, Tsiourti et al., 2019] and facial expressions
[Liu et al., 2017b, Chen et al., 2017, Faria et al., 2017b,a, Chen et al., 2018b,a, Benamara
et al., 2019, 2020] as the sole source. Other novel approaches consider multi-modal sources
of information [De Silva and Ng, 2000, Jung et al., 2004, Castellano et al., 2013, Cid
et al., 2015, Perez-Gaspar et al., 2016] to better accomplish the task at hand, based on
the assumption that correlations between signals related to the triggered emotions would
help the algorithms to improve their accuracy. Finally, only a few have considered the use
of physiological signals Kulic and Croft [2003], Liu et al. [2006], Kulic and Croft [2007],
Maaoui and Pruski [2010].

Bearing this in mind and taking into account that this research has to cover a large set
of items, a decision has been made to use standard machine learning methods with the
use of carefully and meaningfully chosen features to address the task of emotion recogni-
tion through physiological signals, while an ensemble deep learning method for emotion
estimation in facial expressions has been developed through a research collaboration with
Benamara et al. [2019, 2020]. Therefore, the development of such powerful deep learning
techniques for physiological signal processing is beyond the scope of this research study.
Hence, the current research aims to demonstrate that a�ective-HRI is possible with the
use of inexpensive, wearable devices, in collaboration with automatic and easy-to-tune
signal processing techniques.
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Chapter 2

Objectives

The main objective of this thesis is to build a methodology for the estimation of emotions
in real-time under an a�ective human-robot interaction (a�ective-HRI) paradigm. To
develop such a methodology, several sources of information have been taken into account
concerning their physiological relationships on the processing of emotions in the CNS
and the autonomous nervous system. Thus, this process must address several issues
regarding the properties of each signal, taking into account not only real-time limitations
but also experimental design decisions for human-robot interaction. A decision was made
based on the assumptions that EEG, GSR, and BVP are physiological signals closely
related to the processing of emotions. As explained above, these signals re�ect measurable
involuntary emotional reactions that, as a result, are very di�cult to socially mask during
the emotional experience [Kim et al., 2004, Kim and André, 2008]. Although not as
reliable, facial expressions are used for non-verbal and a�ective communication between
human beings, and therefore, have been considered for this research study. Such an
approach has been addressed by considering a set of items:

1. EEG signals are considered a reliable source for the estimation of valence emotion
but are widely a�ected by artifacts. Therefore, an artifact removal technique that
processes EEG signals in real-time must be developed.

2. Valence emotion estimation must be done by EEG signals using a light methodology
in terms of computing resources. Besides, it must be robust in terms of classi�cation
accuracy using a low density of electrodes, so the location over the brain areas is
crucial. Also, the features must be carefully selected to re�ect the di�erences in
brain activity through the perceived emotions.

3. GSR and BVP signals are considered a reliable source for the estimation of arousal
emotional dimension. The methodology should address noisy artifacts, in particular
BVP signals, which are highly sensitive to wrist movements. The acquisition of
these signals can be done with a low cost and wearable device.

4. For the estimation of facial expressions, several incomes have to be faced. Firstly,
facial detection must be carried out taking into account di�erent scenarios such as
variations in brightness, occlusions, or body postures, which may a�ect the informa-
tion available to recognize them. Also, most databases have been labeled by humans,
so they contain an inherent bias due to the complexity of emotion perception.

5. A realistic scenario, or at least close to it, should be designed to adequately evaluate
the proposed methodology under an a�ective-HRI paradigm.

13
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6. An appropriate statistical evaluation method must be performed, standard cross-
validation is not suitable for time series, instead, "leave-one-out" validation strate-
gies must be used.

The �rst article that constitutes this thesis [Val-Calvo et al., 2019a] covers items one
and two, an optimized methodology covering EEG signal acquisition, artifact removal,
and real-time processing with the desired objective of valence emotion estimation. This
research study was conducted using a well-de�ned and validated database for the �eld of
EEG emotion estimation, the SEED database [Duan et al., 2013, Zheng and Lu, 2015].
The third item was achieved in the second article [Val-Calvo et al., 2020a], which merges
three di�erent sources of information, EEG, GSR, and BVP, to include arousal emotional
dimension estimation into the previously designed methodology. Meanwhile, the exper-
imental design went beyond a more realistic scenario by using a dramatic �lm that is
argued to modulate emotional changes dynamically. The fourth item has been achieved
in a collaboration with Benamara et al. [2019, 2020] by developing a real-time face detec-
tion and facial expression recognition, based on an ensemble deep learning approach and
evaluated in several databases of facial expressions, FER-2013 [Goodfellow et al., 2013],
SFEW 2.0 [Dhall et al., 2011] and ExpW [Zhang et al., 2017]. Finally, the �fth item has
been achieved in the last article in this thesis [Val-Calvo et al., 2020b], which merges both
sources, physiological signals and facial expressions, for the task of emotion estimation. A
customized experimental design has been made based on the standard strategies of emo-
tion stimulation used in the research of the understanding and measurement of emotions,
but combined in an interesting way to provide an almost realistic scenario in the �eld of
a�ective-HRI. As for the use of appropriate statistical evaluation, the sixth item has been
taken into account as an essential requirement for all the articles that make up this thesis.

As part of the development necessary to achieve this objectives and within the work re-
quired for the articles that make up the thesis, three software applications have also been
implemented, Biosignals [Val-Calvo, 2020a], GEERT [Val-Calvo, 2020b], and GePHY-
CAM [Val-Calvo, 2020c]. These are further explained in more detail in the material and
methods part in the following chapter.
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Chapter 3

Material and methods

3.1 Hardware

The following devices have been used for the a�ective HRI:

1. Empatica E4 wristband by a Massachusetts Institute of Technology (MIT) spin-o�.

2. OpenBCI hardware for the EEG acquisition system.

3. Pepper robot from Aldebaran robotics.

3.1.1 Empatica E4

The E4 is a medical-grade wearable device that o�ers real-time physiological data ac-
quisition. It measures blood volume pulse, from which heart rate variability can be
derived, captures motion-based activity with a three-axis accelerometer, measures the
constantly �uctuating changes in certain electrical properties of the skin (GSR), and
reads peripheral skin temperature. It allows the synchronization of such signals by the
use of an internal clock. The GSR and temperature sensors have a sampling rate of 4Hz
while the accelerometers and the BVP signal are measured at 64Hz. The combination
of the GSR and BVP sensors enables to simultaneously measure the balance of sympa-
thetic nervous system activity and heart rate. More detailed information can be found at
https://www.empatica.com/en-eu/research/e4/.

3.1.2 OpenBCI hardware for the EEG acquisition system

The OpenBCI system is a collection of headsets, boards, sensors, and electrodes that
allow the research on brain-computer interfacing to purchase high-quality equipment at
a�ordable prices. In this research the OpenBCI Cyton Board, an Arduino-compatible
8-channel neural interface with a 32-bit processor, is used. At its core, the OpenBCI
Cyton Board implements the PIC32MX250F128B microcontroller, giving it lots of local
memory and fast processing speeds. The board comes pre-�ashed with the chipKIT�
bootloader, and the latest OpenBCI �rmware. Data is sampled at 250Hz on each of the
eight channels.

The OpenBCI Cyton Board can be used to sample brain activity (EEG), muscle activ-
ity (EMG), and heart activity (ECG). The board communicates wirelessly to a computer
via the OpenBCI USB dongle using RFDuino radio modules. It can also communicate
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wirelessly to any mobile device or tablet compatible with Bluetooth Low Energy. More
detailed information can be found at https://openbci.com/.

3.1.3 Pepper robot from Aldebaran robotics

Pepper is the world's �rst social humanoid robot able to recognize faces and basic hu-
man emotions. Pepper was optimized for human interaction and can engage with people
through conversation and his touch screen. It has 20 degrees of freedom for natural and
expressive movements, speech recognition and dialogue available in 15 languages, percep-
tion modules to recognize and interact with the person talking to him, touch sensors,
LEDs and microphones for multimodal interactions, infrared sensors, bumpers, an iner-
tial unit, 2D and 3D cameras, and sonars for omnidirectional and autonomous navigation
while being an open and fully programmable platform. More detailed information can be
found at https://www.softbankrobotics.com/emea/en/pepper.

3.2 Software

Wearable devices are tools of particular interest because of the possibilities they o�er for
brain-computer interface (BCI) related research, such as motor imagery, emotion esti-
mation, or attention-related studies, which could bene�t from open source applications.
Pragmatically, a project of this type requires technical solutions to be provided. There-
fore, a set of applications has been gradually developed to meet the requirements of
experimental designs. All the code has been developed with pure python libraries in an
object-oriented paradigm. The software engineering process was carried out taking into
account cohesion and coupling for proper modularization. This allows the applications to
be modular, scalable, and easy to maintain; in fact, this is a key aspect of any scienti�c
tool to allow researchers to make modi�cations and to ful�ll the speci�c requirements of
each experimental scenario.

The philosophy of these applications is based on a supervised machine learning ap-
proach and therefore they o�er two modes of interaction:

� The �rst allows for real-time acquisition and processing to generate a database and
build models.

� The second provides online signal processing using pre-trained models to classify
brain patterns.

The proposed applications are versatile and easily adaptable to di�erent experimental de-
signs while maintaining high-performance real-time signal processing. Aware that pattern
recognition is in constant development, these applications o�er the option of importing
python external scripts, which must have a prede�ned structure, to include self-developed
machine learning methodologies. Besides, as experimental designs require event synchro-
nization, a TCP/IP interface has been provided. These applications are expected to be
accessible to the entire scienti�c community, providing a resourceful tool for experimental
paradigms of human behavior, which encompasses the following functionalities:

� Real-time acquisition and visualization of physiological signals.

� Trigger synchronization by a TCP/IP interface that allows start/stop the recordings
remotely.
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� Recording of data on European Data Format (EDF) for physiological signals.

� Online behavior labeling interface whose labels are synchronized and stored in the
EDF �les.

� Online signal processing with self-developed methodologies through the possibility
of importing external python scripts.

3.2.1 Biosignals application

Title: General BVP, GSR, temperature (TMP) and accelerometers (ACC) experimenta-
tion in real-time, an open source software for physiological real-time experimental
designs

Authors: Mikel Val Calvo

URL: https://github.com/mikelval82/Biosignals

License: GNU General Public License v3.0

DOI: 10.5281/zenodo.3759262

This application has been built to further the research on the study of physiological
signals, such as BVP, GSR, temperature (TMP) and accelerometers (ACC), related to
human behavior, with the use of the Empatica E4 wristband. Figure 3.1 shows the layout
of the BIOSIGNALS interface. Each section has been numbered to properly explain the
role of each of the components:

Figure 3.1: BIOSIGNALS: General physiological experimentation in real-time, an open
source software for real-time physiological signals acquisition and processing with the
Empatica E4 wristband.
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1. Set Users: Allows for setting the name of the user �le where acquired data will be
stored.

2. Load Script: For loading external python scripts developed by users for speci�c
experiments.

3. Empatica Server Connect/Disconnect: Enables the connection and disconnection
between the Empatica Server and the Biosignals.

4. Empatica ID: A spin box to specify to which Empatica E4 device to connect.

5. Refresh: Requests to the Empatica Server the ID of Empatica E4 devices available.

6. Connect: Enables the connection and disconnection between the speci�ed device
through the Empatica Server and the Biosignals driver.

7. BVP Window size (seconds): A Spin Box to set the window size of the BVP signal.

8. GSR Window size (seconds): A Spin Box to set the window size of the GSR signal.

9. TMP Window size (seconds): A Spin Box to set the window size of the TMP signal.

10. ACC Window size (seconds): A Spin Box to set the window size of the ACC signals.

11. Start/Stop: A button to start/stop real-time visualization.

12. Log viewer: Shows information regarding the internal state of the application.

13. BVP Long Term View: Allows the visualization in real-time of acquired BVP signals.

14. GSR Long Term View: Allows the visualization in real-time of acquired GSR signals.

15. TMP Long Term View: Allows the visualization in real-time of acquired TMP
signals.

16. ACC Long Term View: Allows the visualization in real-time of acquired ACC sig-
nals.

3.2.2 GEERT application

Title: General EEG experimentation in real-time, an open source software for BCI real-
time experimental designs

Authors: Mikel Val Calvo

URL: https://github.com/mikelval82/GEERT

License: GNU General Public License v3.0

DOI: 10.5281/zenodo.3759306

This application has been built to further the research on the study of EEG signals related
to human behavior, with the use of the OpenBCI system. Figure 3.2 shows the layout of
the GEERT interface. Each section has been numbered to properly explain the role of
each of the components:

Mikel Val Calvo Universidad Nacional de Educación a Distancia

https://github.com/mikelval82/GEERT
https://doi.org/10.5281/zenodo.3759306


Material and methods 19

Figure 3.2: GEERT: General EEG experimentation in real-time, an open source software
for BCI real-time experimental designs. A novel open source software application for
real-time physiological signals acquisition and processing with the OpenBCI.

1. Set Users: Allows for setting the name of the user �le where acquired data will be
stored.

2. Load Script: For loading external python scripts developed by users for speci�c
experiments.

3. Connect: Enables the connection and disconnection between the OpenBCI driver
and GEERT through the corresponding serial device.

4. Trigger: Starts the trigger server for event synchronization.

5. Trigger port: A Spin Box to specify the TCP/IP port.

6. Butter �lter order: A Spin Box to set the order of the Butterworth �lter.

7. Windows size (seconds): A Spin Box to set the window size of the Short Term View.

8. Frequency range: Sets the frequency range of the Butterworth �lter applied to
signals.

9. Filtering method: Determines the online artifact removal (OAR) method to be
applied.

10. Start: Starts and stops real-time visualization.

11. Log viewer: Shows information regarding the internal state of the application.
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12. Long Term View: Allows the visualization in real-time of acquired EEG signals. By
default 60 seconds time window is shown.

13. Adjustable Sliding Window: De�nes the EEG temporal length and location to be
shown in the Short Term View. Size and location can be interactively changed in
real-time even during the acquisition.

14. Short Term View: Allows the visualization in real-time of acquired EEG signals
falling inside the length and temporal location of the Adjustable Sliding Window.

15. Spectrogram Term View: Allows the visualization of each EEG signals spectrogram
in real-time.

3.2.3 GePHYCAM application

Title: GePHYCAM: General electrophysiological and camera acquisition system for hu-
man behaviour recordings in real-time

Authors: Mikel Val Calvo

URL: https://github.com/mikelval82/GePHYCAM

License: GNU General Public License v3.0

DOI: 10.5281/zenodo.3727503

This application looks forward to providing a resourceful tool for human-behavior experi-
mental paradigms using several information sources such as EEG, GSR, BVP, TMP, ACC,
and VIDEO. Figure 3.3 shows the layout of the GePHYCAM interface. Each section has
been numbered to properly explain the role of each of the components:

1. Save: Allows for setting the name of the user �les where acquired data will be stored.

2. Script: For loading external python scripts developed by users for speci�c experi-
ments.

3. Trigger: Starts the trigger server for event synchronization.

4. Trigger PORT: A Spin Box to specify the PORT to be used.

5. Trigger IP: A Spin Box to specify the IP direction to be used.

6. Start: Starts and stops real-time visualization.

7. Empatica Server Connect/Disconnect: Enables the connection and disconnection
between the Empatica Server and the GePHYCAM.

8. Refresh: Requests to the Empatica Server the ID of Empatica E4 devices available.

9. Empatica ID: A spin box to specify to which Empatica E4 device to connect.

10. E4: Enables the connection and disconnection between the speci�ed device through
the Empatica Server and the GePHYCAM E4 driver.
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Figure 3.3: GePHYCAM: General electrophysiological and camera acquisition system for
human behaviour recordings in real-time.

11. OpenBCI: Enables the connection and disconnection between the OpenBCI and the
GePHYCAM BCI driver through the corresponding serial device.

12. CAM: Enables the connection and disconnection between the webcam and the
GePHYCAM CAM driver.

13. Long Term View: Allows the visualization in real-time of acquired EEG signals.

14. BVP Long Term View: Allows the visualization in real-time of acquired BVP signals.

15. GSR Long Term View: Allows the visualization in real-time of acquired GSR signals.

16. TMP Long Term View: Allows the visualization in real-time of acquired TMP
signals.

17. Spectrogram: Activates/deactivates the visualization of the spectrogram in the spec-
trogram term view. When it is activated the spectrogram is shown, otherwise, power
spectral density function is shown for each EEG channel.

18. Channel_ID: A spin box that selects the EEG channel to be shown for the spectro-
gram.

19. Butter �lter order: A Spin Box to set the order of the Butterworth �lter.

20. Frequency range: Sets the frequency range of the Butterworth �lter applied to
signals.
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21. Filtering method: Determines the EEG online artifact removal (OAR) method to
be applied.

22. CAM Window size (seconds): A Spin Box to set the window size of the webcam
video signal.

23. EEG Window size (seconds): A Spin Box to set the window size of the EEG signals.

24. BVP Window size (seconds): A Spin Box to set the window size of the BVP signal.

25. GSR Window size (seconds): A Spin Box to set the window size of the GSR signal.

26. TMP Window size (seconds): A Spin Box to set the window size of the TMP signal.

27. Log viewer: Shows information regarding the internal state of the application.

28. Webcam viewer: Allows the visualization in real-time of acquired webcam signal.

29. Spectrogram Term View: Allows the visualization of each EEG channel spectrogram
in real-time.

30. Short Term View: Allows the visualization in real-time of acquired EEG signals
falling inside the length and temporal location of the adjustable sliding window.

3.2.4 Software design principles

As mentioned before, the design principles have been followed taking into account co-
hesion and coupling for proper modularization. All of the aforementioned applications
follow the same structural design approach and share the core structure so it would be
redundant a speci�c explanation for each of them. Therefore, a high-level description
is provided that allows us to understand the design principles of each application. As
can be noted in �gure 3.4 where the high-level �ow diagram scheme is detailed, one of
the key points of the design is focused on drivers and the data managers. Hence, each
device has its driver speci�cation which in turn is assigned a speci�c data manager. That
means, BIOSIGNALS and GEERT have only one driver each but for GePHYCAM three
drivers are needed running in parallel with their corresponding data managers. As a re-
sult, each application requires a speci�c graphical interface de�nition but overall the logic
is versatile, easy to maintain, and scalable.

� APP: This class serves as the main software module that builds the application. It
has been designed using PyQt5, a Python binding of the cross-platform graphical
user interface (GUI) toolkit Qt, implemented as a Python plug-in. It launches all
the other modules and forks several processes. First, the APP main fork. Second, a
Driver is forked for each device, using the multiprocessing python library. Finally,
it forks a thread for each Data Manager, using the multithreading python library.

� Constants: Sets the whole constants used along with the application. Thus facili-
tating the speci�cation of such general variables in a unique module. All adjustable
parameters are set in this object.

� Queue: This Queue follows the FIFO rule.
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Figure 3.4: Flow diagram.

� Ring Bu�er: Stores the last values for each sampled source of information. The �xed
size is de�ned by default in the Constants but it can also be dynamically modi�ed
during the GUI interaction through the 'Window size' Spin Box. Each time the
�xed size is modi�ed, the Ring Bu�er is emptied.

� Driver: Meets the requirements of the real-time acquisition. It inherits from multi-
processing python library. It o�ers the interface between the APP and the hardware.
Inter-process communication is facilitated by Queue. Once the fork starts running,
iterates acquiring samples that are inde�nitely queued.

� Data Manager: It is de�ned as an interface between the GUI and the Driver to
properly separate the management of the acquired data. It inherits from a multi-
threading python library. It has access to the shared Queue so its role consist on
extracting iteratively samples from the queue to insert them on a Ring Bu�er.

� GUI Manager: O�ers the management of each of the components of the GUI.

� GUI.ui: Implements the APP graphics. It has been designed using QtDesigner, the
Qt tool for designing and building GUIs.

� Trigger Server: A TCP/IP server for event synchronization. It can receive client
connections and handles each request by notifying the Slots Manager using a callback
function.

� Slots Manager: The purpose of this module is to bring the application to the ver-
satility of adding a set of callbacks that allow synchronizing the overall logic.

� Online Filtering: This module has been implemented as an interface for a set of
real-time signal processing methods.

� Modules Loader: The main purpose of this module is to expand the versatility of the
APP for a wide range of research scenarios. It is required that users code the scripts
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with a prede�ned structure as shown in 3.1. The module will receive a reference to
the APP instance so total access to the underlying object instances is o�ered.

Algorithm 3.1 Imported python scripts required structure.

# -- Add imports --

# import numpy as np

# -- Class definition --

class pipeline():

''' Predefined structure.'''

def __init__(self, app):

# -- initialize variables --

self.log = app.log

def run(self):

# -- code desired behaviour --

self.log.update_text('Start computing the user module.')

Main work�ow scheme: Once an app is launched it can work as follows; Data Manager
is threaded and starts iteratively trying to extract values from the queue. The thread
runs a loop that is controlled by a logical condition. The iteration process cannot acquire
data if the queue is empty. Then, the Driver is forked and automatically detects the
corresponding device to connect with. Following, the driver starts iteratively stacking
data into the Queue from the hardware. Both the thread and the fork form a consumer-
producer system. The Ring Bu�er acts as a short term memory. The Data Manager
�lls the Ring Bu�er each time a new value is obtained from the Queue. Once the Ring
Bu�er is full, it starts overwriting the oldest data and so on. At this point, two stages
are provided:

� Stage 1: Real-time visualization can be performed by pushing the start button.
It does not imply user data storage. The start button has been designed to test
the quality of the signal acquisition. The start button state will be changed, so
pushing it again will stop visualization. Parameter settings (user �lename, �lter
order, window size, online artifact removal method, and so on) should be done on
this stage.

� Stage 2: Once the signals are properly acquired, the Trigger button can be pushed
that initializes a TCP/IP server. The application only stores data in between a pair
of client received requests. It is expected that one request indicates the start instant
for event synchronization while the second, the stop instant. For the following, two
pairs of events form a trial. During the trial duration, the Ring Bu�er slots a call-
back to the Data Manager whenever an amount of data equal to the window size is
ful�lled, that is, a sample is generated. At the end of the event, the Data Manager
permanently stores acquired samples in the users' �le with its corresponding meta-
data. Data Manager counts the number of samples generated and the number of
trials, other metadata values are obtained from the Constants module.
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Versatile work�ow scheme Modules Loader allows the de�nition of own produced
scripts. Each imported script must follow a prede�ned structure. The versatility comes
due to the reference given to the imported script to the main object instance. Thus,
di�erent scenarios could be provided through this component.

� O�ine scenario: The user could experiment with the main work�ow scheme. After
collecting the required data, a script could be loaded containing the coding for an
o�ine analysis, i.e., training a machine learning model and store it on disk for future
use.

� Online scenario: The user, could perform online computation thanks to the reference
given, having access to all the underlying object instances. Access to the Data Man-
ager to acquire EEG samples online is therefore provided. Moreover, applying OAR
methods or even using pre-trained machine-learning models for online predictions
can be also easily implemented.

The main highlights of the applications consist of its versatility: First, modularizing the
interaction between the GUI manager and the Driver, which allows the embedding of
drivers for other acquisition systems. Second, the separation between the GUI and the
logic, where the former allows future modi�cations and performance of the GUI compo-
nents, without altering the logic, and vice-versa; Finally, the Modules Loader, further
expands the versatility, by o�ering the �exibility of incorporating self-developed scripts
for speci�c scenarios and work�ow schemes. The proposed applications are versatile and
easily adaptable to di�erent experimental scenarios while maintaining high-performance
signal processing in real-time.
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4.1 Article 1: Real-Time EEG Emotion Estimation

Title: Optimization of Real-Time EEG Artifact Removal and Emotion Estimation for
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This paper covers items 1, 2, and 6 of the objectives. An optimized methodology covering
EEG signal acquisition, artifact removal, and real-time processing with the desired objec-
tive of valence emotion estimation. In this experiment, an optimization process has been
performed for real-time processing requirements which allow us to partially denoise EEG
signals while also being acute in the estimation of the emotion, using standard machine-
learning algorithms and a set of meaningful features. To develop such a methodology,
the SEED database [Zheng and Lu, 2015, Duan et al., 2013] has been used which evoked
three discrete emotions with regard to the valence dimension. First, both methods, EAW-
ICA [Mammone and Morabito, 2014] and ICAW [Mahajan and Morshed, 2015] have been
compared and modi�ed for online removal of ocular artifacts. Second, a classi�cation ap-
proach has been proposed using a set of features related to the complexity of the signals,
and Savitzky-Golay (SG) �ltering method is proposed as an alternative to Linear Dy-
namic Systems (LDS). SG smoothing is signi�cantly faster than LDS and even improves
the accuracy reports.
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Affective human-robot interaction requires lightweight software and cheap wearable

devices that could further this field. However, the estimation of emotions in real-time

poses a problem that has not yet been optimized. An optimization is proposed for the

emotion estimation methodology including artifact removal, feature extraction, feature

smoothing, and brain pattern classification. The challenge of filtering artifacts and

extracting features, while reducing processing time and maintaining high accuracy

results, is attempted in this work. First, two different approaches for real-time

electro-oculographic artifact removal techniques are tested and compared in terms of

loss of information and processing time. Second, an emotion estimation methodology

is proposed based on a set of stable and meaningful features, a carefully chosen set

of electrodes, and the smoothing of the feature space. The methodology has proved to

perform on real-time constraints while maintaining high accuracy on emotion estimation

on the SEED database, both under subject dependent and subject independent

paradigms, to test the methodology on a discrete emotional model with three

affective states.

Keywords: real-time, EEG, artifact removal, emotion estimation, HRI

1. INTRODUCTION

The use of Electroencephalography (EEG) signals for emotion estimation has been in the point
of view of the field for the last decades. The future use of systems that could perform real-time
emotion estimations in subjects under different health conditions would improve the application
of therapies in different scenarios. One of the most promising fields for the application of such
methodologies is affective human-robot interaction (HRI).

Under the paradigm of emotion recognition, robots will allow the development of automatic
systems for the treatment and evaluation of the brain patterns of patients, taking into account the
emotional content and, furthermore, to have the ability to adapt their behavior as the mood of the
patient changes dynamically.

From the perspective of the field of robotics, emotions estimation can be performed by
evaluating the dynamical changes over facial expressions, body language, voice tone, EEG patterns,
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and physiological signals, related to the equilibrium between
the parasympathetic and sympathetic autonomous systems. The
EEG is a non-invasive method of high temporal resolution that
could allow real-time recognition of emotional responses. Also,
it can provide a better understanding of the user’s behavior and
emotional responses which involve facial expression, tone of
voice, or body gestures, which may remain hidden as is the case
for patients with expression and mobility problems. Therefore,
in this article, EEG patterns will be analyzed and related to
emotional responses, as they may provide a different perspective
on patients’ emotional responses.

Most research studies using EEG have presented
methodologies that used offline and supervised artifact removal
obtaining high accuracy results, however, often involving the use
of complex deep learning machines that require hyper-parameter
tuning (Khosrowabadi et al., 2014; Zheng and Lu, 2015; Zheng
et al., 2017; Song et al., 2018). Both processes could take up
to several days or even weeks of preparation which are not
affordable for domains of study where real-time constraints
are involved. On the other hand, the problem of real-time
recognition has been already addressed by Liu et al. (2010, 2017)
using the IADS database and own-produced video database,
respectively, using Fractal Dimensions as the main feature for
emotion recognition.

As EEG emotion estimation has proved to be affordable in
different ways, the next barrier is to perform such task under real-
time constraints. This process faces two main problems: online
artifact removal and classification with high accuracy results. The
former is usually performed in two steps. Firstly decomposing
the signals using independent component analysis (ICA) and
recompose the signals for the next step. Secondly, visualizing
the signals to manually remove the parts which are related to
artifacts. The latter involves the following procedures:

• Feature extraction, to represent the information as a set
of features.

• Feature smoothing, to remove variability over time.
• Scaling the training samples taking into account the

underlying data distribution.
• Dimensional reduction by means of feature

selection techniques.
• Model selection and hyper parameterization for

optimal generalization.

Finally, the development of such a methodology that could
work under real-time constraints must deal with two main
obstacles: artifact removal and accurate classification across
sessions and subjects.

1.1. Online Artifact Removal
The most common artifacts presented in EEG signals are
electro-oculographic (EOG) artifacts, muscle artifacts, and 50Hz
background noise. Artifact removal is necessary, as it reduces
possible classification errors and reduces the amount of processed
information. On the other hand, care must be taken while
carrying out such a process, since valuable information in the
signals could be damaged.

Taking into account these assumptions, an automatic artifact
removal method can be developed using the following approach.
Firstly, 50Hz background noise can be easily removed by a
notch filter based on IIR filters. Secondly, EOG artifacts, such as
blinking, are often presented within slow frequency bands, below
5Hz (Rani and Mansor, 2009), while muscle artifacts are usually
presented within medium to high-frequency bands 20–300Hz
(Muthukumaraswamy, 2013). Therefore, muscle artifacts are
partially removed outside the range of 1–50Hz when filtering
the signals, since this range includes the best frequency bands
for emotion estimation: delta (1–4Hz), theta (4–8Hz), alpha
(8–16Hz), beta (16–30Hz), and gamma (30–50Hz). As several
studies report (Zheng and Lu, 2015; Zheng et al., 2015, 2017),
the most effective band ranges for emotion estimation, are beta
and gamma bands. Finally, EOG artifacts can be effectively
removed with real-time constraints by using independent
component analysis (ICA) methods combined with wavelet
analysis. Although several real-time EOG artifact removal
methods have been developed, only twomethodologies (Mahajan
and Morshed, 2014; Mammone and Morabito, 2014) based on
these approaches were tested.

1.2. Emotion Estimation
EEG emotion estimation is considered a challenging task due
to different factors. Self-evaluation is needed as there is no
basic truth about emotion classification and thus, the assessment
performed over experienced emotions is a subjective task.
Therefore, a series of emotional models developed in the field
of psychology must be used to guide the self-evaluation process.
The most used, in the field of EEG emotion estimation, are the
discrete and dimensional models (Russell, 1980; Roseman et al.,
1990). The former is based on the assumption that emotions
produce differentiated and independent emotional responses.
The latter assumes that emotions are manifested dynamically
with subtle inter-relations among them. The use of discrete labels
for emotions is based on the affective-defensive emotional model
following Davidson and Fox (1982) and Davidson (1992). There
is still no clear evidence of whether emotions affect the brain
patterns across specific regions or spread over cortical and sub-
cortical areas (Kragel and LaBar, 2016). Due to the variability
in brain patterns, it is difficult to find invariant patterns across
sessions and subjects. In this paper, in total eight electrodes were
used, six temporal electrodes and two prefrontal (AF3, T7, TP7,
P7, AF4, T8, TP8, P8), since they have proved to be the best brain
areas for emotion estimation (Zheng and Lu, 2015; Zheng et al.,
2017).

EEG signals can be approached through several domains:
time, frequency, time-frequency, information theory, and signal
complexity. Features should be stable across sessions to avoid the
greatest amount of variability while carrying as much valuable
information as possible. To work in that direction, feature
smoothing is an effective technique that helps to erase such
variability over time. Linear Dynamic Systems (LDS), moving
average or Savitzky-Golay (SG) among other techniques can
be used (Zheng and Lu, 2015; Zheng et al., 2015, 2017).
Regarding scaling, outliers must be taken into account, by
choosing an appropriate methodology, since some methods such
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as standardizing or min-max scale approaches can damage the
feature space for the classification step.

One key step in such machine learning strategies is the
dimensional reduction stage for the selection of relevant and
stable features over time, which faces two main problems: First,
in real scenarios there is no access to the underlying distribution
related to the target, this makes it difficult to find relevant features
in a way that is closely related to bias-variance trade-off (Kohavi
and John, 1997). Second, finding the optimal set of features often
involves NP-hard search spaces and the selected model must take
into account time constraints in real-time scenarios.

Moreover, in the EEG emotion estimation, time series
corresponding to trials are split into a series of samples. The main
assumption is that time series related to trials are independent of
each other but related to the evoked emotion, so the time series is
homogeneous within the trial and heterogeneous between trials
(Tashman, 2000). This makes the EEG time series be a special
case. While in the time series prediction paradigms, as is the
case for regression models, past is used to predict the future,
supervised learningmodels assume independence of samples and
do not care about the time order of the samples. Therefore,
predefined cross-validation schemes for supervised learning
algorithms are not suitable for model performance evaluations.

For the dimensionality reduction step, different approaches
differ in the way they exploit the relation between features
and target (Kohavi and John, 1997). In general, they are
defined as filter-based, wrapper-based and embedded methods.
On one hand, filter-based methods perform feature selection
independently from the learning process and are based on the
assumption that a feature that has higher variance may contain
more useful information. On the other hand, wrapper-based
methods combine feature selection and the learning process
to select an optimal feature subset. This is also the case for
embedded methods, which perform a penalty against complexity
during the learning process to reduce the degree of overfitting or
variance of a model by adding more bias.

Wrapper and embedded methods involve the use of nested
cross-validation procedures which may lead to increased
computational cost and possible overfitting, especially when a
small number of observations are available. Also, as mentioned
earlier, these processes, when applied with predefined algorithms,
do not take into account the particularities of the EEG time series,
so that the feature subset estimates are further biased.

Regarding the classifier to be chosen for the methodology, in
recent years, very powerful deep learning approaches have been
developed and tested in the emotion estimation field (Tripathi
et al., 2017; Yin et al., 2017; Song et al., 2018). Although they have
proved to be promising tools, they usually require a very large
amount of time for hyper-parameter tuning, so there exists a need
to find an approach that could yield automatically and in a short
time, while still achieving high accuracy performances.

1.3. State of the Art
In this work, the proposed methodology is compared with the
latest performances in the field of emotion estimation. A set of
research studies are used for comparison as they show the best
results in terms of accuracy of the results, albeit the experimental

conditions which are not completely equivalent due to the real-
time constraints imposed on the present study.

First, Khosrowabadi et al. (2014) developed a Biologically
Inspired Feedforward Neural Network called ERNN. They
produced a database containing 57 subjects using emotionally
tagged audio-visual stimuli, achieving an average performance of
70.83% for arousal and 71.43% for valence dimensional spaces,
using the 5-fold cross-validation method.

Second, Zheng and Lu (2015) produced their own database,
SEED, for the estimation of three affective states. Deep Belief
Neural Networks (DBNs) were used to analyzing critical
frequency bands and channels through the weight distributions
of the trained DBNs. With a selection of 12 channels, the best
accuracy result obtained was a mean accuracy of 86.65% using
the first 9 trials as the training set and remaining 6 ones as the
testing set, Inter-trial (IT), for each subject.

Third, Zheng et al. (2017) explored a set of popular features
used in the domain of EEG emotion estimation. The SEED
database was used. Differential entropy and together with the
Graph regularized Extreme Learning Machine (GELM) classifier
outperformed state of the art results. Mean accuracy of 60.93%
was obtained using the Leave-one-out validation scheme (LOO).
For the inter-sessions validation scheme (IS) a mean accuracy of
79.28% was obtained.

Fourth, Tripathi et al. (2017) compared the use of both
Deep and Convolutional neural networks (DNN, CNN) using
the DEAP database. The valence and arousal dimensions were
split into three categories. The DNN model achieved 58.44 and
55.70%, while the CNN model achieved 66.79 and 57.58%,
respectively using the Leave-one-out validation scheme.

Later, Song et al. (2018) developed a novel Dynamical Graph
Convolutional Neural Network (DGCNN) tested over the SEED
database. Differential entropy features of five frequency bands
were combined resulting in average recognition accuracy of
90.40% using the first 9 trials as the training set and the
remaining 6 as the testing set.

Finally, a comparison is made taking into account those
experiments where real-time constraints were faced. As
mentioned above, Liu et al. (2017) developed a real-time emotion
recognition system which uses a three-level classification
approach and a real-time artifact removal algorithm. Regarding
the classifying strategy, in the first level, high-arousal and
valence emotions versus neutral emotions were estimated
with an average accuracy of 92.26. For the second level,
positive vs. negative emotions, with an average accuracy of
86.63 were estimated. For the last level, joy, amusement, and
tenderness were classified at an average accuracy of 86.43.
The training and validation scheme was done by using 8 trials
to elicit 7 discrete emotions and one neutral state and the
same amount of stimuli as a test set in a real-time emotion
estimation scenario.

2. METHODOLOGY

The objective of the present paper is to perform the whole process
involved in EEG emotion estimation under real-time constraints.
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To prove its feasibility, it will be tested on the SEED database. The
process comprises six main steps:

1. Online artifact removal: EAWICA.
2. Feature extraction: Differential Entropy, Amplitude Envelope,

Petrosian Fractal Dimension, Higuchi Fractal Dimension, and
Fisher Info.

3. Feature smoothing: Savitzky-Golay filter.
4. Feature scaling: Quantile transform followed by min-

max scaler.
5. Feature selection: Based on the chi-squared statistic.
6. Classification: Nearest Neighbors (KNN), Support Vector

Machines (SVM) with linear and radial basis function kernels,
decision trees, random forest, AdaBoost, naive Bayes, and
Quadratic Discriminant Analysis (QDA).

2.1. SEED Database
The SEED database (Zheng and Lu, 2015) has 15 subjects but the
experiment was performed three times each, with a time interval
of one week. Emotions were quantified in terms of three discrete
categories: POSITIVE, NEGATIVE, and NEUTRAL. A set of
15 emotional-tagged videos were employed, each approximately
180 s long. The international 10–20 system for EEG acquisition
was used with a set of 62 channels.

2.2. Online Artifact Removal
Two main approaches that are affordable in real-time
constraints are used: EAWICA (Mammone and Morabito,
2014), and ICA-W (Mahajan and Morshed, 2014) methods.
The performance over artificial artifactual data is first analyzed
to compare them under controlled conditions but finally, are
compared over real EEG samples obtained from the objective
SEED database.

Both approaches use the same underlying philosophy, that
is, they employ a divide and conquer strategy to isolate the
artifacts as much as possible, both in time-frequency domain
through the wavelets transform decomposition and by analyzing
the independent components sources. Based on the assumption
that artifactual and EEG signals are linearlymixed but statistically
independent, and that propagation delays through the mixing
medium are negligible, ICA seems to be an optimal tool for
decomposing an identifying the source of artifactual signals
effectively. In order to properly take into account either sub-
Gaussian and super-Gaussian signals, the Extended-Infomax
ICA algorithm (Bell and Sejnowski, 1995) is used in both
approaches, which allows the computation of the unmixing
matrix, so that the components are as independent as possible.

Spurious isolated oscillations are then automatically detected
by a means of entropy and Kurtosis measurements. On one hand,
the entropy value for EOG artifacts is expected to be low due to
the regular shape so they are more predictable in comparison to
neural oscillations. On the other hand, peak distributions with
highly positive Kurtosis values are expected for the same type of
artifacts (Mammone and Morabito, 2014). Both approaches have
been compared using an analysis over all the frequency range
bands (delta, theta, alpha, beta, gamma) as well as over the delta
band only.

2.2.1. ICA-W
EEG signals are decomposed in a series of independent
components (ICs), where is expected that independent sources
are separated from each other. Artifactual ICs are identified
by analyzing the statistical properties in terms of Kurtosis and
Multi-Scale Sample Entropy measurements. To remove as little
information as possible, ICs identified as artifactual are further
selected for bandpass decomposition with wavelet analysis.
Decomposed wavelet independent components (WICs) require
a second identification stage with the aim of zeroing only those
wavelet components carrying artifactual information. Finally, the
original signals are reconstructed with the inverse transforms of
wavelets and ICA decompositions (Mahajan andMorshed, 2014).

2.2.2. EAWICA
The original EAWICA method proposes the isolation approach
of the artifactual signal component by first computing the
wavelet components over the EEG signals within the frequency
ranges associated with the emotion estimation task. Thus, once
the information is bandpass filtered, ICA decomposition is
applied to isolate artifactual data in a series of WICS. In order
to automatically detect artifactual WICS, Kurtosis, and Renyi
entropy measurements are used. Those marked as artifactual
are further split into a series of time windows with a temporal
interval of one second defined as epochs, which in case of being
marked as artifactual, are zeroed to remove as little information
as possible. Finally, ICA reconstruction followed by wavelet
components addition is performed to reconstruct the original
signals (Mammone and Morabito, 2014).

2.2.3. Differences and Modifications
One of the main differences between both algorithms is that
EAWICA methods improve the localization of the artifactual
data by first band-passing the signals, which also helps the
ICA algorithms to properly identify the sources as it takes the
advantage of the redundancy by having more data. Another key
difference is the way both methods apply the threshold steps
to identify the artifactual data. While the ICA-W performs an
automatic threshold method that works in the frequency domain
(wavelet components), the EAWICA method performs in the
time domain. Regarding the EAWICA threshold was restrictive,
in order to improve upon this, a design decision has been taken to
allow the variation of the thresholds by manually adjusting them
in terms of the quartiles over the distribution values.

2.2.4. Metrics
To properly compare both methods, EEG signals have been
artificially contaminated with a set of artificially generated
artifacts as is done by Mammone and Morabito (2014). A
series of measurements are computed to compare both methods:
root-mean-square error (RMSE), correlation (CORR), mutual
information (MI), and coherence (C) together with timing
measurements, will allow the best method to be chosen.

2.3. Emotion Estimation Methodology
The proposed methodology has been designed for its future use
on subject dependent paradigms in the domain of HRI. This
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implies that the time consumption of each of the following
processes must accomplish real-time constraints. Therefore,
this philosophy guides the decision-making process taking
into account an optimal balance between fast computation
and accuracy.

2.3.1. Preprocessing
EEG signals are arranged in a three-dimensional matrix
containing n trials, c channels, and s samples at a sampling
frequency, fs. First, given that each signal has its own scaling
factor values, signals are standardized using the z-score method.
Second, a filter bank, based on sixth-order Butterworth filters,
is applied for all n, c, and s, within a set of 5 non-overlapping
bandwidths: 1–4, 4–8, 8–16, 16–30, and 30–50 Hz.

2.3.2. Feature Extraction Methodology
Once the data-set has been preprocessed, a set of features are
computed based on the oscillatory properties of brain signals:

• Differential Entropy (DE): computed as ametric formeasuring
the predictability of signal X, whose values have a probability
density function similar to a Gaussian distribution, N(µ, σ 2),
as is the case for EEG signals. It can be defined as
h(X) = 1

2 log
(

2πeσ 2
)

.
• Amplitude Envelope (AE): computed using the Hilbert

transform (Boashash, 1992).
• Petrosian Fractal Dimension (PFD): defined as

PFD = log (N) /
(

log (N) + log (N/ (N + 0.4Nδ))
)

, where N
is the series length, and Nδ is the number of sign changes in
the signal derivative (Petrosian, 1995).

• Higuchi Fractal Dimension (HFD): Higuchi’s algorithm can be
used to quantify the complexity and self-similarity of a signal
(Accardo et al., 1997).

• Fisher Information (FI): Fisher information is a way of
measuring the amount of information that an observable
random variable X carries about an unknown parameter θ of a
distribution that models X (Fisher, 1925).

All features have been computed using a sliding window
of 6 seconds as suggested by Candra et al. (2015), without
overlapping. Each training sample represents the computed
features for each time window. Features are computed for each
band/channel and later concatenated for each training sample.
Thus, resulting in a feature set of 435 samples with 200 features.
AE has been computed with the Neuro Digital Signal Processing
Toolbox (NeuroDSP) python library (Cole et al., 2019) developed
at Voytek’s Lab. PFD, HFD, and FI have been computed with the
PyEEG python library (Bao et al., 2011).

2.3.3. Feature Smoothing
Emotions are often considered static in the field of EEG to
simplify the data processing for the classifiers, albeit continuous
and subtle changes should be considered in the time domain.
It has been noticed previously (Zheng and Lu, 2015; Zheng
et al., 2015, 2017), that considering the temporal dependence
and variation of emotions during the stimuli improves the
performance of the training step. To do that, smoothing the
feature space allows us to filter out those components that are

unrelated to emotional states, thus becoming a key step for the
design of an optimal methodology. In other words, smoothing
the feature space deals with the amount of variability that emerges
due to subtle changes in emotional states across trials and with
the lack of stability over time, of the computed features.

Savitzky-Golay (SG) filtering method is proposed as an
alternative to Linear Dynamic Systems (LDS). Both approaches
have the property of outperforming the classification accuracy
reports above the results obtained without smoothing the feature
space, but also SG smoothing is significantly faster than LDS and
even improves the accuracy reports.

2.3.4. Feature Scaling
Feature scaling is a key step in preprocessing data. Outliers can
severely damage the performance of the classifiers while looking
for statistical differences. Moreover, some machine-learning
algorithms for the dimensionality reduction and classification
processes require data to have a predefined range of values. The
process of scaling data must be performed taken into account
both constraints to properly feed the algorithms in the next
steps. In this paper, the Quantile-Transform method (histogram
equalization to uniform distribution) followed by the Min/Max
scaling method is performed. The former is a non-linear method
for scaling data distributions which is robust to outliers. The
later allows re-scaling in a positive range of values [0− 1] as the
dimensional reduction proposed method requires positive values
as input.

2.3.5. Dimensionality Reduction
As mentioned in the introduction, wrapper and embedded
methods combine feature selection and the learning process by
the use of nested cross-validation schemes but this leads to biased
results when taking into account the particularities of EEG time
series. Therefore, χ2 feature selection technique has been chosen
as it is a filter-based method where the selection of features is
based on the chi-squared statistic which measures the lack of
independence between a feature and the target, without involving
any cross-validation biased scheme nor combining the selection
and the learning process.

2.3.6. Set of Classifiers
Classification process has been performed using a set of eight
classifiers: K-nearest neighbors, Support Vector Machine with
linear and radial basis function kernels, Decision Trees, Random
Forests, Ada-Boost, Gaussian Naive-Bayes, and Quadratic
Discriminant Analysis. Results have been obtained with
default hyper-parameter values. The Scikit-learn python library
(Pedregosa et al., 2011) has been used.

2.3.7. Performance Evaluation
The crucial point is to ensure that samples in the validation
set are reasonably independent of the samples in the training
set. Therefore, three different validation methods are reported in
this paper.

• Validation across trials: Using the first nine trials as the training
set and remaining six ones as the testing set for each subject
and session.
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FIGURE 1 | EAWICA and ICA-W methods performance comparison over artificial artifactual data. (A) ICA-W using only the delta band component of artifactual

signals. (B) ICA-W using all bands components of artifactual signals. (C) EAWICA using only the delta band component of artifactual signals. (D) EAWICA using all

bands components of artifactual signals.

TABLE 1 | Metrics comparison for the four cases.

RMSE Correlation Mutual information Time (s)

EAWICA - ALL 0.27 0.87 0.66 0.19

ICA-W - ALL 0.16 0.92 0.87 0.60

EAWICA - DELTA 0.29 0.86 0.64 0.36

ICA-W DELTA 0.14 0.93 0.93 0.68

• Validation across sessions: Train and test are performed over
the whole set of sessions pairs for each subject.

• Validation across subjects: Leave-one-subject-out validation
scheme is used.

3. RESULTS

3.1. Online Performance Over Artificial and
Real Artifactual Data
Figure 1 shows the performance of both EAWICA and ICA-W
methods applied over artifactual data. Both methods have been

applied, on one hand, using all the frequency ranges of interest
(delta, theta, alpha, beta, gamma) and, on the other hand, over
the slowest frequency range (delta). It can be noted that ICA-W
focuses on the artifactual data better than EAWICA, moreover,
the latter seems to affect the signal in all the frequency ranges. As
a comparison, a set of metrics are shown in Table 1. Taking into
account these metrics, ICA-W outperforms the obtained results
in terms of CORR, MI, and RMSE, with regard to the artifactual-
free signals. Concerning time consumption, EAWICA performs
the filtering process in 0.19 s while still having low RMSE and
high CORR and MI results, and ICA-W takes 0.6 s.

Signal filtering performance can also be evaluated in terms
of the coherence lost relative to the original artifact-free signal.
Coherence is referred to as the cross-frequency spectrum of two
signals, it is a measurement of the loss of the filtered signals
relative to the original, in the frequency domain. Figure 2A
shows the coherence estimates between both the EAWICA and
ICA-W filtering methods relative to the artifact-free signals,
where it can be noted that EAWICA applied over all frequency
ranges, severely damages the original signal in all the frequency
spectrum. On the contrary, EAWICA applied over the delta band
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FIGURE 2 | Coherence estimates between filtered (EAWICA and ICA-W) signal and artifact-free signal. (A) Coherence estimation after artifact removal using all

frequency bands. (B) Coherence estimation after artifact removal using only the delta band.

outperforms the signal cross-frequency measurements against
ICA-W as it can be shown in Figure 2B.

Artificial artifactual data is useful in order to compare the
performance of a set of algorithms taking into account the
basic truth, but real domains often involve more complex
signals. Therefore, both methods need to be compared against
real artifactual EEG data, which in this case is obtained
from the SEED database. Figure 3A shows the performance
of both algorithms and for the real case EAWICA seems to
outperform ICA-W. Figure 3B better shows how the EOG
artifacts are removed by EAWICA while still maintaining all
the information in the frequency spectrum. Regarding time
consumption, EAWICA required 0.4 s and ICA-W 2.2 s both for
filtering 6 s of 8 signals with a sampling rate of 200Hz. Taking
all these results into account, EAWICA has been selected for
the methodology.

3.2. Emotion Estimation
In machine learning applied to emotion estimation, the standard
K-fold cross-validation is often applied. At that point, there is
a key issue that arises when the performance of the models
is evaluated. These methods cannot be directly used with time
series data as they assume that there is no relationship between
the observations, that is, each observation must be independent
while in fact, they are not. The EEG time series data in
emotion estimation strongly correlated along the time axis. The
randomization performed with cross-validation methods make
it likely that for each sample in the validation set, numerous
strongly correlated samples exist in the training set but this
defeats the very purpose of having a validation set: the model has
prior information about the validation set, leading to optimistic
performance reports on it. Such an analysis could provide an
insight into how the selected model works, or if there exists a
statistical difference between samples, but not if a correlation
between these statistical differences and the task at hand is really
present. Furthermore, any estimate of the performance will be
optimistic and any conclusion based on this performance will be
biased and could be completely wrong. This problem is not only
related to the classification step, as a result, it also arises in the
dimensionality reduction step if predefined algorithms are used,
which do not take into account these assumptions.

Therefore, to properly evaluate the performance, three
different validation schemes were used. The evaluation has been
performed taking into account different subsets of features,
ranging from 1 to 200.

3.2.1. Feature Smoothing
Figure 4 shows the comparison of applying LDS or SG methods
on the feature space. It can be clearly noted that smoothing the
features space makes it possible to clearly observe the correlation
with the corresponding targets. Moreover, the SG method makes
the features space even less noisy. Therefore, although the LDS
smoothing method works well eliminating the variability, the
SG method outperforms the obtained results, both in terms
of removing such variability, as well as with regard to the
time consumption needed. While LDS needs roughly 200 s for
smoothing a feature space of 435 samples × 200 features, SG
takes approximately 73ms.

3.2.2. Trial Validation Tests
Figure 5 shows the µ±σM performance for inter-trial validation
tests for all subjects in each session. A set of 9 trials for each
subject have been selected for training while 6 are used as a test
set, were 2 trials are present for each class (POSITIVE, NEGATIVE,
NEUTRAL). For each training step, a set of features ranging from
1 to 200 have been used. This evaluation provides an insight
into the robustness of the method in terms of generalization
performance of the model in a more realistic scenario for the
unseen. The best mean accuracy report for the best subset
of features for each subject is (82.3± 4.4)% for session 1,
(78.9± 5.7)% for session 2, and (80.5± 8.6)% for session 3.

3.2.3. Sessions Validation Tests
Figure 6 shows the µ ± σM performance for inter-session
validation tests for all subjects and for all session to session pairs.
For each training step, a set of features ranging from 1 to 200
have been used. As the SEED database consists of the same set
of stimuli for each session, these results prove the stability of the
selected features over time. The best mean accuracy report for
the best subset of features for each subject is (74.6± 8.8)% for
session 1 to session 2, (74.9± 11.1)% for session 2 to session
1, (76.8± 8.1)% for session 3 to session 1, (77.0± 10.1)% for
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FIGURE 3 | EAWICA and ICA-W methods performance comparison over real EEG data. (A) Comparison between EAWICA and ICA-W artifact removal strategies in

the time domain. (B) Coherence comparison between EAWICA and ICA-W artifact removal strategies in the frequency domain.

session 1 to session 3, (76.4± 8.4)% for session 2 to session 3,
and (75.9± 6.7)% for session 3 to session 2.

3.2.4. One Subject Out Validation Tests
Figure 7 shows the µ ± σM performance for inter-subject
validation tests. A leave-one-out subject evaluation scheme has
been used. For each training step, a set of features ranging from
1 to 200 have been used. This validation scheme provides an
insight into the robustness of the selected set of features for
the subject independent paradigm, confirming that underlying
common processes exist across subjects and that the selected
features are closely related to invariant properties of the brain
oscillations dynamics for the evoked emotion experimentation.
The best mean accuracy report for the best subset of features
for each subject is (77.6± 5.6)% for session 1, (73.4± 6.7)% for
session 2, and (77.1± 7.7)% for session 3.

3.2.5. Time Consumption
The main objective of this methodology is to perform under real-
time constraints while having high accuracy results in terms of
emotion estimation. Thus, time consumption analysis is needed
as a comparison for the design decisions. Methodologies based
on real-time constraints have to deal with the following key
processing steps:

• Time consumption of the artifact filtering process and feature
extraction steps.

• Time consumption of the feature smoothing and scaling steps.
• Time consumption of the classifying and fine-tuning step.

Feature smoothing has shown to be a key step to further improve
the performance of models but those filtering processes cannot
be performed over unique samples. Therefore, a set of samples

for each trial should be present in the training set before
smoothing the features. Thus, the experimental paradigm in
a real scenario needs to be performed on three main stages.
First, a real-time signal acquisition while the subject is stimuli
evoked. In that stage, signals could be stored without any filtering
process to alleviate the computation effort of the acquisition
application. The second should consist of the model training
step. Each EEG set of signals would be split on windowed
samples for the processing of training sets. This stage should
perform the following steps: artifact removal, feature extraction,
feature smoothing, and scaling, and finally model training. For
this stage, it is a requirement for the time consumption to be
short, in order to reduce the amount of time the subject under
study is waiting. Finally, the following steps for each acquired
sample should be performed: online artifact removal, feature
extraction, smoothing, and scaling taking into account training
samples to properly transform the computed features, and the
final prediction step.

For this experimental paradigm, several time metrics have
been computed for each step. As a comparison,Table 2 shows the
details of each processing step for the case of offline training and
online prediction stages. The software used was the Scikit-learn
python library (Pedregosa et al., 2011) running in an Intel Core
i7-8700 K (3.70GHz).

Offline training is analyzed taking into account one subject
session, which means using 435 ∗ 200(samples/features). The
process of online filtering performed in (151.89± 0.23) s. The
feature extraction step required (79.27± 0.03) s. Concerning
feature smoothing, LDS required (149.35± 0.07) s, while
SG was able to perform the same task in approximately
(67.31± 0.01)ms. The scaling process was performed in
approximately (98.42± 0.01)ms. Feature selection was
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FIGURE 4 | Feature smoothing applied over the feature space. At the (top), the label of each short film in the time domain. Below, the feature space after

Quantile-Transform normalization. Then, feature space smoothed using LDS. At the (bottom), feature space smoothed using Savitzky-Golay filtering. As it can be

noted, label smoothing clarifies the correlation of the feature space regarding labels.

computed for the worst-case scenario, selecting only the
best feature, which required (1.87± 0.05)ms. The classifying
step was proposed for a set of eight classifiers. The proposed
approach consists of selecting a range of features taking into
account the aforementioned results to reduce the amount of
time to find the number of features that best generalizes over
the unseen. The amount of time needed for each classification
of a number X of selected features for the set of eight classifiers
is approximately (873.65± 0.62)ms. Furthermore, there is
no need for fine-tuning, as the previous results show that the
methodology is robust enough without hyper-parameter tuning.

On the other hand, the online prediction is analyzed regarding
the time consumption for one unique sample. Online artifact
removal is carried out in (200± 16)ms, while feature extraction
is performed in (182.25± 0.08)ms. Based on previous results, SG
smoothing is used instead of LDS, as the processing time has been
shown to reduce. Furthermore, feature selection is not computed
as the set of best features are previously determined during the
offline training stage. As SG smoothing and normalization steps
cannot be performed over one unique sample, the strategy must
involve the set of features computed for the offline training stage,
thus, the time required is the same as in the offline training.

Stacking the incoming samples in this data structure allows for
both processes to be applied, and once the incoming sample has
been smoothed and normalized, taking into account previous
training samples, it is unstacked for the final prediction step over
the best selectedmodel during the offline training, at the time cost
of (38.8± 1.1) µs.

4. DISCUSSION

The proposed methodology accomplishes the main processing
steps required for a real-time emotion estimation approach
and overcomes the many difficulties presented in this field
of study.

Artifact removal is the first step of the whole process and
therefore plays a very important role in the outcome. As
mentioned earlier, only two methods for online artifact removal
were tested, EAWICA and ICA-W, since they show to be feasible
for real-time constraints. EAWICA outperforms ICA-W when
using real EEG data and was therefore chosen as part of this
method. Amodified version of EAWICA, constrained to the delta
band, was used to reduce artifacts (EOG), and therefore reduce
computation time.
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FIGURE 5 | Inter-trial validation accuracy. The figure on the left shows the accuracy results for validation between trials in session 1, the middle figure for session 2

and the right figure for session 3.

FIGURE 6 | Inter-session validation accuracy. Six different combinations of inter-session validation are shown.

In this paper, 8 electrodes were used, six temporal electrodes
and two prefrontal, placed at AF3, T7, TP7, P7, AF4, T8, TP8,
and P8, since these were previously shown in the literature to
be the best brain locations to use for emotion estimation (Zheng

and Lu, 2015; Zheng et al., 2017). The chosen set of electrodes
showed to be a good choice since it offered a proper balance
between the more informative electrodes and redundancy for
the classifying step (Kohavi and John, 1997), and achieved good
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FIGURE 7 | One subject out validation accuracy with respect to selected features. Inter-subject validation for the three sessions.

TABLE 2 | Time consumption regarding offline training and online prediction

stages.

Offline training Online prediction

(Samples, features) (435, 200) (1, 200)

Artifact removal 151.89(23) s 200(16) ms

Feature extraction 79.27(3) s 182.25(8) ms

LDS smoothing 149.35(7) s None

SG smoothing 67.31(1) ms 67.31(1) ms

Normalize 98.42(1) ms 98.42(1) ms

Feature selection 1.87(5) ms None

Training/Predicting 873.65(62) ms 38.8(11) µs

Total 381.55 s 548.02 ms

results. Due to the great number of electrodes employed, high
dimensional space is often a limitation in the domain of EEG
signal analysis. Such signals have a complicated structure since
their intrinsic properties are non-linear and non-stationary, thus,
the need for balance between a wide dimensional space of features
that must be treated carefully with feature reduction techniques,
often biased by the statistics in hand (Fan and Li, 2006), and a set
of low components feature space, which would be desirable.

The robustness of the methodology is higher when only a
subset of eight temporal and prefrontal electrodes is used, leading
to a feature space with fewer dimensions. On the other hand,
the results show that in general, a subset ranging from 50 to 100
features leads to the optimal accuracy results, probably because
the redundancy on the features space enhances the performance
of the classifiers.

In the HRI domain, it is crucial to ensure that real-time
emotion estimation is a quick and versatile process. The set of
selected features chosen for this methodology is easy to compute
in any type of computer and can be easily implemented in
any programming language, allowing the quick development of
portable systems with high accuracy results, as is the case for the
openBCI system. Also, these features allow the interpretation of
the phenomenon under study, as they are direct measurements
of the properties of brain patterns, being far from black-
box techniques, which use deep-learning approaches such as
auto-encoders (Chai et al., 2016), or very complex features
with difficult interpretation in biological terms (Zheng et al.,
2015).

A proper validation scheme is important for every novel
methodology for it to be comparable to those in literature.
As mentioned earlier, predefined cross-validation schemes for
supervised learning algorithms are not suitable for model
performance evaluations in EEG emotion estimation (Tashman,
2000). Liu et al. (2017) proposed a real-time methodology
which recognized eight different brain affective states with a
three-step level classification. This methodology is therefore
comparable to the proposed method, however, the validation
scheme which was used is not clearly stated, and could, therefore,
be backtesting, IT or cross-validation. Without this knowledge,
a proper comparison of the results can not be achieved. On
the other hand, since different validation schemes were found
to be used in state of the art, this method was validated
using IT, IS, and LOO (see Table 3), in order to properly
compare the results. As observed in Table 3, the proposed
method is close to the results obtained by previous studies
in terms of accuracy for the cases of IT and IS schemes,
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TABLE 3 | State of the art comparison.

Validation scheme Database: Emotional model Accuracy (%)

Khosrowabadi et al. (2014) Cross-validation DEAP: valence/arousal 70.83/71.43

Zheng and Lu (2015) IT SEED: [pos., neg., neu.] 86.65

Zheng et al. (2017) LOO and IS SEED: [pos., neg., neu.] 60.93 and 79.28

Tripathi et al. (2017) LOO DEAP: valence/arousal 66.79/57.58

Song et al. (2018) IT SEED: [pos., neg., neu.] 90.4

Liu et al. (2017) Not specified Own produced: [neu., non-neu.]/[pos.,

neg.]/[joy, amusement, tenderness]/

[sad, angry, fear, disgust]

92.26/86.63/86.43/65.09

Proposed method IT/IS/LOO SEED: [pos., neg., neu.] 82.27/76.36/77.59

and outperforms the results obtained by previous studies in
the LOO scheme, which is the most complex due to inter-
subject variability.

5. CONCLUSION

Our method has proved to be robust and fast, reaching
comparable results to state of the art in subject dependent
and independent analysis for EEG emotion recognition. An
accurate and computationally light EEG emotional estimation
methodology could allow the use of portable and cheap devices
in the domain of emotional HRI.

This method uses a three-categories emotional model;
however, for more complex emotional models, more
complex deep learning strategies must be implemented
(Zheng et al., 2018; Zhao et al., 2019). Therefore, even
maintaining the three-categories emotional model, this
method could be improved by altering the filtering
methods and with a better coding strategy, that is,
with a set of features that better describe the invariant
relationships of emotionally evoked brain patterns and their
corresponding categories.

Since this method has proven to be fast, over 1 s total
processing time, and reliable, 82.27, 76.36, 77.59% for {IT, IS,

LOO} validation schemes respectively, it fulfills the proposed
task. Therefore, it is an optimal methodology for HRI, that could
further the research in this field.
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Emotion estimation systems based on brain and physiological signals (EEG,BVP and GSR) are gaining
special attention in recent years due to the possibilities they offer. The field of human-robot interac-
tions (HRI) could benefit from a broadened understanding of brain and physiological emotion encoding
together with the use of lightweight software and cheap wearable devices, and thus improve the capabil-
ities of robots to fully engage with the user’s emotional reactions. In this paper, a previously developed
methodology for real-time emotion estimation aimed for its use in the field of HRI is tested under real-
istic circumstances using a self-generated database created using dynamically evoked emotions. Other
real-time state of the art approaches face emotion estimation using constant stimuli in order to facilitate
the analysis of the evoked responses, remaining far from real scenarios, since emotions are dynamically
evoked. Therefore, the proposed approach studies the feasibility of the emotion estimation methodol-
ogy previously developed, under an experimentation paradigm which imitates a more realistic scenario
involving dynamically evoked emotions by using a dramatic film as the experimental paradigm. The
emotion estimation methodology has proved to perform on real-time constraints while maintaining high
accuracy on emotion estimation when using the own-produced dynamically evoked emotions multi-signal
(EEG,BVP and GSR) database.

Keywords: real-time; EEG; BVP; GSR; artifact removal; emotion estimation; HRI

1. Introduction

Different factors make recognition of emotions a chal-

lenging task. On one hand, there is no basic truth

for self-evaluation, as the assessment of experienced

emotions is guided by emotional models developed in

the field of psychology. These can be grouped gener-

ally as discrete and dimensional models. The former

assumes that emotions are qualitatively differenti-

ated neuro-physiological responses which produce in-

dependent emotional experiences,1 while the dimen-

sional approach captures continuous quantified rela-

tionships among emotions.2 However, qualitative dif-

ferences arise when moving across fuzzy boundaries,

between valence and arousal. In addition, there are

significant variations for each individual in the corre-

lation between the properties of the measured phys-

iological signals and the respective emotion, there-

fore, the studies differ in methodology to attempt

to better bridge this gap. In order to find the in-

variant features in the above across individuals, data

exploratory analysis (EDA) is performed. However,

user-adapted HRI techniques are required to face

inter-subject variability, therefore, focus on subject-

dependent analysis is also performed.

Studies based on off-line emotion recognition

1



December 19, 2019 12:2 output

2 Val-Calvo, et al.

were developed,3–6 amongst other reasons, to mea-

sure and understand how emotions are produced.

This feat was accomplished, however it remained

somehow unrealistic if it was not further developed

into a real-time process. The development of method-

ologies that work under real-time constraints must

deal with two main obstacles: artifact removal and

accurate classification across sessions and subjects.

Off-line methodologies addressed this problem by

performing offline analysis with the use of supervised

artifact removal techniques, obtaining high accuracy

results, however, often involving the use of complex

deep learning machines that require hyper-parameter

tuning, taking up to several days or even weeks of

preparation which are not affordable for domains of

study where real-time constraints are involved. The

increasing use of robots that can interact with hu-

mans is generating a greater interest on the appli-

cation of machine learning techniques for the recog-

nition of human emotions, since they offer a more

complex analysis. However, simplified and affordable

systems must be kept in mind when developing such

methodologies. Further research was carried out and

on-line or real-time approaches were successfully car-

ried out.7,8 This research will use a previously self-

developed real-time methodology to carry out emo-

tion estimation.

Both off-line and real-time methodologies were

accomplished using a plethora of stimuli, music, im-

ages, short audio-visual clips,8–13 however, all these

remain incomplete with regards to everyday human-

human interactions, as these stimuli evoked coher-

ent and predefined emotions. These approaches use

emotionally constant stimuli in order to facilitate the

analysis of the evoked responses. It is therefore nec-

essary to further evolve the technique and achieve

dynamically evoked emotions, using a different type

of stimulus, since real-life scenarios involve dynamic

changes in the mood of the subjects. Therefore, the

proposed approach is to study the feasibility of the

emotion estimation methodology under an experi-

mentation paradigm which could imitate a more re-

alistic scenario. On this topic, films have long been

developed to emotionally engage the audience with

alternating emotional stimuli as the different scenes

progress and tell a story. Thus, a dramatic film which

had a balance between negative and positive emo-

tions was chosen as the stimuli for the experiment.

Emotion estimation can be performed by evalu-

ating the dynamical changes over facial expressions,

body language, voice tone, EEG patterns and physio-

logical signals, related to the equilibrium between the

parasympathetic and sympathetic autonomous sys-

tems. Emotion regulation involves a series of central

nervous subsystems which interact with each other

producing complex behaviours. In that context, be-

havioural demands induce their coordination to pro-

duce changes which allow dynamic adaptation to the

later. In these processes several subsystems are in-

volved, from high to low levels of nervous activity,

involving close interactions between the central and

autonomic nervous systems in different ways. While

the hypothalamus regulates part of the autonomic

subsystems, many of the activities of the hypotha-

lamus are, in turn, governed by certain cortical ar-

eas, as well as the central nucleus of the amygdala,

which processes inputs from the external environ-

ment. The amygdala comprises several nuclei on the

medial aspect of the temporal lobe, mostly anterior

hippocampus and the tip of the temporal horn.14 The

amygdala receives inputs from the association cor-

tex and its major projections are to the septal area

and prefrontal cortex, mediating from emotional re-

sponses to sensory stimuli. Within this high degree of

specificity in the organisation of the central nervous

system (CNS), Figure 1, emotions may provide quick

and reliable responses to recurrent life challenges and

therefore, as a result of those synergic interactions

across the CNS, respiratory and electro-dermal ac-

tivity in conjunction with electroencephalographic

measurements may thus provide the necessary in-

formation on emotion processing.?, 15–20 Therefore,

this research will be based on a simple (NEGATIVE-

NEUTRAL-POSITIVE) discrete emotional model

for the case of valence dimension estimation, and

(RELAXED-NEUTRAL-INTENSE) for the arousal

dimension estimation, as previously carried out,21 to

further simplify the problem at hand.

The combined use of Electroencephalography

(EEG), blood-volume pressure (BVP) and galvanic

skin response (GSR) signals for emotion estimation

have been therefore in the view point of the field for

the last decades.9,11,22,23

Whether brain patterns evoked by emotions

can be mapped onto specific brain regions still re-

mains unresolved. In fact, current studies suggest

that information encoded during emotional experi-

ences spread over cortical and subcortical areas.24
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There is still no clear evidence on which of the local

and global distributions of brain patterns are consis-

tent among subjects, both in dimensional and dis-

crete emotion models. Therefore, there is not yet a

consensus on the relevant brain pattern features and

brain regions suitable for emotion detection, invari-

ant across subjects. In this paper, in total 8 elec-

trodes were used, four temporal electrodes and four

prefrontal, due to the previously explained relation-

ships between the temporal lobes, the prefrontal cor-

tex and emotion processing.

Figure 1: Graphical depiction of the inter-relations

between brain areas involved in emotion processing.

In conclusion, the main aim is to focus on the

feasibility of real-time emotion estimation for the

case of a scenario involving dynamically evoked emo-

tions. The developed methodology for real-time emo-

tion recognition25 will be used in the domain of HRI

with the openBCI system for EEG signal acquisi-

tion, and the Empatica-E4 wristband for the BVP

and GSR signals acquisition, taking that into ac-

count the pre-processing and feature extraction tech-

niques must be performed with feasible real-time

techniques. For validation of the methodology, the

self-produced database using a dramatic film has

been used.

2. Materials and Methods

The aim of the present paper is to perform the whole

process involved in emotion estimation under real-

time constraints for the case of dynamically evoked

emotions. In order to test its feasibility, it will be

tested on an own-produced multi-signal database us-

ing a dramatic film.

2.1. Database

In order to create a database for the experimen-

tal procedure a total of 18 volunteers, (50% fe-

male - 50% male) aged between 18 and 35, par-

ticipated on the validation of such film. Partic-

ipants rated arousal and valence dimensions us-

ing SAM mannequins on two discrete 3-point

scales, (NEGATIVE-NEUTRAL-POSITIVE) for va-

lence and (RELAXED-NEUTRAL-INTENSE) for

arousal. Finally, for the acquisition of EEG; BVP

and GSR signal respectively, in total 8 electrodes

were used for the OpenBCI EEG cap, four prefrontal

and four temporal, (F3, T7, P7, F7, F4, T8, P8, F8),

since they have proved to be the best brain areas for

emotion estimation.3,10 Empatica E4 wristband was

placed on the right hand as all of the volunteers were

right-handed.

10 volunteers were selected for posterior analysis

(3 females and 7 males aged between 18 and 23) as

the signals obtained with 8 volunteers were severely

corrupted due to noise artifacts or connection prob-

lems since the Empatica wristband was placed on

their dominant hand. The participants provided their

written consent and filled a health questionnaire, su-

pervised by the Ethics Committee of the Univer-

sity Miguel Hernandez. All volunteers were physi-

cally and mentally healthy and were not taking any

medication.

A commercial film was chosen in order to in-

duce dynamic changes in the emotional responses

of volunteers. The name of the film is ”Cien Met-

ros”(2016), which is a story of the self-acceptance

and personal growth of character after overcoming a

series of obstacles. ”Ramón”, who is detected a de-

generative disease, amyotrophic lateral sclerosis, and

although doctors assure him that he would not be

able to walk a hundred meters, he decides to face

life and train for an Iron-man, the toughest sporting

event on the planet. With the help of his wife and his

father-in-law, ”Ramón” will undergo special training

to show the world that surrender is not an option.

The film is 105 minutes long and was split into

27 different scenes based on the script structure.

Scenes must be longer than one minute(when pos-
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sible) in order to reduce variability in heart rate

measurements, and each scene must contain a unified

emotional drive. Scene length is specified in table 1.

Table 1: Film scenes specification

ID duration(s) ID duration(s) ID duration(s)

1 583 10 135 19 264
2 307 11 126 20 138
3 339 12 522 21 163
4 139 13 115 22 205
5 402 14 114 23 416
6 108 15 168 24 55
7 247 16 47 25 225
8 160 17 146 26 586
9 92 18 332 27 207

Prior to film visualisation, a black screen was

shown during 5 minutes in order to acquire EEG,

BVP and GSR signals for a resting state, using the

OpenBCI system and the Empatica E4 wristband,

respectfully. The volunteers then watched the whole

film, however a grey screen was shown for 6 seconds

between scenes, in order to allow volunteers to rate

the watched scene using the labels POSITIVE, NEG-

ATIVE or NEUTRAL for the valence dimension, and

RELAXED, NEUTRAL or TENSE for the arousal.

This decision was taken in order to minimise the in-

terruption of the visualization of the film, to affect

as less as possible the development of emotions. Dur-

ing the whole visualisation and rating process, the

EEG, GSR and BVP signals of the volunteers were

acquired for posterior analysis, figure 2.

Figure 2: Experimental design picture. (a) Top-Left,

EEG raw data acquired with the OpenBCI system.

(b) Top-Right, GSR and BVP signals acquired with

the Empatica E4 device.

2.2. Experimental procedure

In the following sections, processing, online artifact

removal, feature extraction and performance evalua-

tion methodologies are explained in detail.

2.2.1. Signal processing

BVP peak detection preprocessing The BVP

signal is acquired with a photoplethysmogram sen-

sor (PPG) to detect blood volume changes in the

microvascular bed of tissue. The signal consists of

the systolic peak, the dicrotic notch, and the diastolic

peak. The systolic peaks are used in order to compute

the inter-beat interval (IBI) time series which further

allows the measurement of the balance between sym-

pathetic and parasympathetic systems, with the use

of the heart rate variability analysis.

As the morphological properties of the BVP sig-

nals vary across subjects, the process of peak de-

tection must accomplish a series of steps. Standard

methods involve the use of adaptive peak detection

strategies based on the moving average computed

over the raw data, where regions of interest (ROI)

are selected as the signals amplitude is larger than

the moving average. R-peaks are marked at the max-

imum of each ROI, which allows the computation of

the IBI time series. Finally, detection and rejection

of outliers is performed.

GSR signal preprocessing: The GSR signals is

formed by two components: the skin conductance

level (SCL) and the skin conductance response

(SCR). The former represents slow changes in the

sympathetic tone, varying from seconds to minutes.

On the other hand, fast changes in the sympathetic

tone are presented as the SCR component which is

presented as a burst of GSR peaks. The last can

be further split into two types, whether an stimuli

evokes a response on the SCR, called an event-related

SCR (ER-SCR), or whether it does not, called non-

specific SCRs, which can happen spontaneously in

the range of 1 to 3 per minute. For the present anal-

ysis only the SCL component was taken into account

as a measure of the sympathetic tone during the film.
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The E4 wristband captures the conductance, in

microsiemens (µS), of the skin by measuring the po-

tential difference between two electrodes while a tiny

amount of current is applied between them. Due

to the low sampling rate, 64Hz, of the E4 wrist-

band, only tonic components were analysed. The

tonic component, called the skin conductance level

(SCL), was obtained using a Savitzki-Golay filter

(window length=31, order=2).

EEG preprocessing EEG signals are arranged in a

three dimensional matrix containing n trials, c chan-

nels and s samples at a sample frequency, fs. First,

given that each signal has its own scaling factor val-

ues, signals are standardised using a z-score method.

Second, a filter bank, based on sixth-order Butter-

worth filters, is applied for all n, c and s, within a set

of 5 non-overlapping bandwidths: 1 Hz to 4 Hz, 4 Hz

to 8 Hz, 8 Hz to 16 Hz, 16 Hz to 30 Hz and 30 Hz to

50 Hz.

2.2.2. Online artifact removal

Artifact removal is necessary, as it reduces possible

classification errors and reduces the amount of pro-

cessed information. Thus, care must be taken while

carrying out such process since valuable information

in the signals could be damaged. An EEG oriented

artifact removal technique (EAWICA) was used in

this methodology. It was analysed and validated with

EEG brain patterns in25 under real-time conditions.

On the other hand, BVP and GSR were filtered using

standard techniques.

The most common artifacts presented in EEG

signals are: electro-oculographic (EOG) artifacts,

muscle artifacts and 50 Hz background noise. Firstly,

50 Hz background noise, which can be easily removed

by a notch filter based on IIR filters. Secondly, EOG

artifacts, such as blinking, are often presented within

slow frequency bands, below 5 Hz,26 while muscle ar-

tifacts are usually presented within medium to high

frequency bands 20–300 Hz.27 Therefore, muscle ar-

tifacts are partially removed outside the range of

1–50 Hz when filtering the signals, since this range

includes the best frequency bands for emotion esti-

mation: delta (1–4 Hz), theta (4–8 Hz), alpha (8–16

Hz), beta (16–30 Hz) and gamma (30–50 Hz). In fact,

as several studies report,3,10 the most effective band

ranges for emotion estimation, are beta and gamma

bands.

Finally, with regard to EOG artifacts, these can

be effectively removed with EAWICA wich employs

a divide and conquer strategy in order to isolate the

artifacts both in time-frequency domain through the

wavelets transform decomposition and by analysing

the independent components sources (ICA). The

original EAWICA method proposes the isolation ap-

proach of the artifactual signal component by first

computing the wavelet components over the EEG

signals within the frequency ranges associated to the

emotion estimation task. Thus, once the information

is band pass filtered, ICA decomposition is applied in

order to isolate artifactual data in a series of WICS.

In order to automatically detect artifactual WICS,

Kurtosis and Renyi entropy measurements are used.

Those marked as artifactual are further split into a

series of time windows with a temporal interval of

one second defined as epochs, which in case of be-

ing marked as artifactual, are zeroed with the aim

of removing as less information as possible. Then,

ICA reconstruction followed by wavelet components

addition is performed to reconstruct the original sig-

nals.28 EAWICA was modified to allow the varia-

tion of the thresholds by manually adjusting them

in terms of the quartiles over the distribution values

and restricted to perform over delta band25 in order

to remove effectively EOG artifacts while preserv-

ing as much information as possible for higher band

ranges.

2.2.3. Feature extraction

The specifics of the feature selection and extraction

processes for each type of signal are detailed amongst

other necessary processes such as feature smoothing,

feature scaling, dimensionality reduction and the set

of selected classifiers.

Feature selection

(1) Population based EDA was done in order to find

relevant correlations between the experienced

emotions and a set of features computed. For

this analysis, the features were computed taking

into account the full time series corresponding

to each scene for each signal type and zscored

with respect to the baseline measure’s. There-

fore, for each scene, the window length used to

compute each feature was equal to the length of



December 19, 2019 12:2 output

6 Val-Calvo, et al.

each scene, this was also done for the baseline

recordings.

(2) Subject independent classification, consist on

splitting information carried on each scene in

sliding windows to compute a set of features.

Thus, two independent classification processes

were done in order to test the feasibility of the

emotion estimation under such a dynamic emo-

tion evoked context. The first process was per-

formed with the aim of discriminating the emo-

tions evoked in the valence dimension with the

use of EEG signals, while the second one was per-

formed for the arousal dimension with the use of

both BVP and GSR signals.

(a) Valence classification with EEG signals: All

features have been computed using a slid-

ing window of 6 seconds as suggested by29

with three seconds overlapping. Features are

computed for each band/channel and later

concatenated for each training sample. Four

consecutive samples were concatenated in or-

der to provide temporal order information to

the classifiers. Therefore, each training sam-

ple represents the computed features for four

overlapped time windows.

(b) Arousal classification with BVP and GSR sig-

nals: All features have been computed us-

ing a sliding window of 60 seconds, as most

heart rate variability meassures cannot be

computed reliable taking into account shorter

durations, with thirty seconds overlapping.

Features are concatenated for each training

sample. Two consecutive samples were con-

catenated in order to provide temporal or-

der information to the classifiers. Therefore,

each training sample represents the computed

features for two overlapped time windows.

For the scenes with shorter lengths, the total

scene length was taking into account for fea-

tures computation and the resulting sample

was concatenated with itself to be coherent

with the rest of the training data shape.
BVP and GSR Feature extraction methodol-

ogy for arousal estimation A set of features are

computed based on the properties of IBI and SCL

time series:

• GSR:

• OFFSET: Average of the series of amplitude val-

ues.

• SLOPE: Average slope of the series of amplitude

values.

• STD: Standard deviation of the series of ampli-

tude values.

• BVP:

• Mean Heart Rate: Average of heart rate.

• SDNN: The Standard Deviation of a NN inter-

val series.

• RMSSD: Root Mean Square of the Successive

Differences.

• SDSD: Standard deviation of NN differences.

• NN20: Number of NN interval differences

greater 20 milliseconds.

• PNN20: Ratio between NN20 and total number

of NN intervals.

• NN50: Number of NN interval differences

greater 50 milliseconds.

• PNN50: Ratio between NN50 and total number

of NN intervals.

• Triangular index (TRI_INDEX): The ratio be-

tween the total number of NNs and the max-

imum of the NN histogram distribution.

• Low Frequency (LF): The power density estima-

tion for the frequency band in the range [0.04,

0.15]Hz.

• High Frequency (HF): The power density esti-

mation for the frequency band in the range [0.15,

0.40]Hz.

• Sample Entropy (SAMPEN): Used for assessing

the complexity of NN interval series.

Heart rate variability measurements were com-

puted with the pyhrv python library.30

EEG Feature extraction methodology A set of

features are computed based on the oscillatory prop-

erties of brain signals:

• Differential Entropy (DE): Is computed as a met-

ric for measuring the predictability of signal X,

whose values have a probability density function

similar to a Gaussian distribution, N(µ, σ2), as is

the case for EEG signals. It can be defined as

h(X) = 1
2 log

(
2πeσ2

)
.

• Amplitude Envelope (AE): Computed by means of

the Hilbert transform.31

• Petrosian Fractal Dimension (PFD): Defined as

PFD = log (N ) / (log (N ) + log (N / (N + 0 .4Nδ))),
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where N is the series length, and Nδ is the number

of sign changes in the signal derivative.32

• Higuchi Fractal Dimension (HFD): Higuchi’s algo-

rithm can be used to quantify the complexity and

self-similarity of a signal.33

• Fisher Information (FI): Fisher information is a

way of measuring the amount of information that

an observable random variable X carries about an

unknown parameter θ of a distribution that mod-

els X.34

AE has been computed with the Neuro Digi-

tal Signal Processing Toolbox35 python library de-

veloped at Voytek’s Lab. PFD, HFD and FI have

been computed with the PyEEG python library.36

Feature smoothing In the field of EEG, emotions

are often considered as static, in order to simplify

data processing for the classifiers, albeit continu-

ous and subtle changes should be considered in the

time domain, as it has been previously noticed that

considering the temporal dependence and variation

of emotions during the stimuli, improves the per-

formance of the training step.3,6, 10 To carry this

out, smoothing the feature space helps filter out

those components which are unrelated with emo-

tional states, thus becoming a key step for the de-

sign of an optimal methodology. In other words,

smoothing the feature space deals with both the

amount of variability that emerges due to subtle

changes in emotional states across trials and with the

lack of stability over time of the computed features.

A Savitzky-Golay (SG) filtering method is used as

it demonstrated to outperform in the classification

accuracy reports above the results obtained with-

out smoothing the feature space,3 and in addition,

SG smoothing is significantly faster while preserving

high accuracy results.25

Feature scaling Feature scaling is a key step in

preprocessing data. Outliers can severely damage the

performance of the classifiers while looking for sta-

tistical differences. Moreover, some machine-learning

algorithms used in both dimensionality reduction

and classification processes, require data to have a

predefined range of values. The process of scaling

data must be performed taking into account both

constraints, in order to properly feed the algorithms

in the next steps. In this paper, a Quantile-Transform

method (histogram equalisation to uniform distribu-

tion) followed by the Min/Max scaling method is per-

formed. The former is a non-linear method for scal-

ing data distributions which is robust with outliers.

The later allows re-scaling in a positive range of val-

ues [0− 1], as the proposed dimensionality reduction

method requires positive values as an input.

Dimensionality reduction Wrapper and embed-

ded methods combine feature selection and the learn-

ing process by the use of nested cross validation

schemes, however, this leads to biased results when

taking into account the particularities of time series.

Therefore, a χ2 feature selection technique has been

chosen as it is a filter-based method were the selec-

tion of features is based on the lack of independence

between a feature and the target, without involving

any biased cross-validation scheme, nor combining

the selection and learning processes.

Set of classifiers Classification process have been

performed using a set of 8 classifiers: K-nearest

neighbours, Support Vector Machine with linear and

radial basis function kernels, Decision Trees, Ran-

dom Forests, Ada-Boost, Gaussian Naive-Bayes and

Quadratic Discriminant Analysis. Results have been

obtained with default hyper-parameter values. The

Scikit-learn python library37 has been used.

2.2.4. Performance evaluation

In order to ensure a correct and unbiased perfor-

mance, the most important point is to ensure that

samples in the validation set are reasonably inde-

pendent from the samples in the training set.38,39

Therefore, Leave-One-Out (LOO) strategy was used

in this paper to asses the correct performance of the

methodology and the ’macro average F1score metric

was used.

3. Results

As mentioned in the experimental procedures the

analysis of the results is split into two main ques-

tions. First,EDA was carried out to explore whether

the computed features correlate with the evoked

emotions, in order to find the relevant relationships.

Second, the feasibility of this real-time emotion esti-

mation strategy under a subject dependent paradigm

and realistic conditions.
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3.1. Exploratory population-based data
analysis

The first step, in order to study the viability of such

an approximation using dynamic stimuli, requires

the observation of the voting distribution over the

previously selected scenes. This analysis has been

performed taking into account the ratings of all 18

volunteers that watched the dramatic film, with the

aim of validating the film, as a proper stimulus which

evokes the desired set of emotions. Figure 11 shows

the voting distribution over the selected scenes, from

which the dynamics of the emotions evoked in the

volunteers by the film can be deduced. This distri-

bution can be taken as a finger print of the emotional

engaging properties of this specific stimulus. As ob-

served in the figure, several scenes were coherently

rated by all the volunteers to correspond to a spe-

cific evoked emotion. Regarding the arousal dimen-

sion, it can be observed that the film was designed

to induce intense emotions in the beginning, as the

character in the movie is faced against a personal and

crucial problem, and in the end, were he achieves a

personal objective. On the other hand, the neutral-

arousal is mainly dominant over relaxed-arousal, ex-

cept in scene 19. Taking that into account, for the

arousal model training process, neutral and relaxed

labels were considered equally.

In order to better describe the film properties re-

garding the evoked emotions, figure 3 shows the fre-

quency distribution for all volunteers. In the arousal

dimension, neutral dominates over relaxed. In the

valence dimension, the distribution of the negative

and positive emotions leans mainly towards positive,

however, considering the previous figure 11, there are

enough negative and coherent scenes in order to test

the feasibility of statistical model.

Figure 3: Frequency distribution in the whole film for

all participants. (a) Left, shows the frequency rating

for the arousal dimension. (b) Right, shows the fre-

quency rating for the valence dimension.

An interesting question regarding the dynamics

of emotions is to analyse whether the target emo-

tions are correlated between them along the chosen

emotional model. Of course, this must be considered

as a finger print for the selected film, as different

stimuli could develop different correlations. In or-

der to properly check the correlation for the time

series given as the rating of all participants over

scenes, for each pair of emotions, taking into account

both the arousal and valence dimensions, the Spear-

man correlation has been computed. As expected,

figure 4 shows that positive and negative emo-

tions in the valence dimension, are anti-correlated

with a value of Correlation = −0.82, however,

as shown in figure 11, neutral-arousal is the domi-

nant emotion against relaxed-arousal, thus the anti-

correlation is higher for the case of neutral-arousal

versus intense-arousal correlation = −0.86 than

relaxed-arousal versus intense-arousal correlation =

−0.54. Positive-valence and relaxed-arousal are cor-

related correlation = 0.66 while relaxed-arousal and

negative-valence are anti-correlated correlation =

−0.77. On the other hand, intense-arousal is

correlated with negative-valence correlation =

0.46 while it is not correlated to the positive-

valence correlation = −0.08. Finally, both neutral-

arousal and neutral-valence have a high correlation

correlation = 0.71.
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Figure 4: Correlogram of emotions ratings over

scenes for each pair of emotions, taking into account

both the valence and arousal dimensions. Correlation

values labelled with (*) are statistically significant

Pvalue < 0.05.

Following EDA analysis, the correlation of GSR,

BVP and EEG computed features over the scenes,

with regards to the majority rating of emotions is

shown. This analysis has been performed taking into

account the signals of the set of 10 selected volun-

teers, as their physiological signals were not severely

corrupted by noisy artifacts or connection problems.

Figure 5 shows the correlation between OFF-

SET, SLOPE and STD features for the GSR signals.

OFFSET is mainly correlated with intense-arousal

correlation = 0.49, SLOPE is mainly anti-correlated

with neutral-arousal correlation = −0.40 and OFF-

SET is mainly anti-correlated with relaxed-arousal

correlation = −0.40. Std does not show any statis-

tically significant correlation with any of the arousal

emotions. From this figure, each emotion seems to

be described by the selected set of features as they

provide different correlations for each feature, mean-

ing that the emotional responses could be modelled

regarding the tendencies reflected on the GSR signal.

Figure 5: Correlogram between the set of features

over scenes computed with the GSR signals regard-

ing the arousal evoked emotions. Correlation values

labelled with (*) are statistically significant Pvalue <

0.05.

Figure 12 shows the correlation between OFF-

SET and SLOPE features of the GSR signals with

the valence and arousal majority ratings over time.

Figure 8 shows the correlation between the

whole set of selected features for the BVP signals

regarding the majority arousal ratings over scenes.

As it can be noted, the three arousal emotions could

be distinguishable taking into account different sub-

sets of features for each. As a case example, neutral-

arousal mainly correlates with HF correlation =

0.42 while being mainly anti-correlated for intense-

arousal correlation = −0.45, finally, relaxed-arousal

is mainly anti-correlated with RMSSD correlation =

−0.38.

Figure 13 shows the correlation between HF and

RMMSD of the BVP signals with the arousal major-

ity emotions ratings over time.

Regarding EEG features, Figures 9 and 10 show

the correlation between the whole set of selected fea-

tures for EEG signals with respect to the arousal

ratings over scenes. Three main insights can be eas-

ily deduced from these figures. First, high corre-

lated features are mostly accumulated in the beta

and gamma frequency ranges. Positive-valence and

negative-valence for all used electrodes, HFD feature

for the beta and gamma bands, is correlated and

anti-correlated respectively. Alternatively, neutral-

valence does not show any relevant correlation with

HFD but achieves its highest correlation values for

the F7, F3, F4 and P8 electrodes for the FI feature,

in the beta frequency range. Secondly, the correla-

tion of features over scenes with positive-valence and

negative-valence are mostly anti-correlated. Third,

only negative-valence shows a significant correlation

with the selected features for the slowest delta, theta

and alpha frequency ranges as it can be noted for the

several features, in all electrodes and in both hemi-

spheres.

Figure 14 shows only one of those features that

maximised the correlation or anti-correlation, on

each electrode and frequency range, for each emo-

tion.

3.2. Classification of emotions using
subject-dependent paradigm

Valence emotion estimation was performed using

EEG signals while for arousal estimation, BVP and

GSR signals were used. As mentioned before in the

methods section, LOO validation methodology was

used to test the performance of the model, by select-

ing 2 trials corresponding to divergent emotions. A
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feature selection algorithm was used in order to eval-

uate the stability of the classification process using

different subsets of features. The F1score (macro av-

erage) metric was used as it shows the highest penali-

sation when the performance of the trained model on

the test set is unbalanced in favour of one of the tar-

geted emotions. The classification process was per-

formed by doing 20 iterations, on each iteration two

randomly selected trials were chosen, belonging to

divergent emotions in each case, from valence and

arousal.

Figure 6: Arousal classification accuracy results using

macro average F1score validation metric. The per-

formance was evaluated with different subsets of fea-

tures.

Figure 6 shows the µ ± σM accuracy results

for the classification of relaxed-arousal and neutral-

arousal versus intense-arousal using a set of features

ranging from a minimum of 1 to all the computed

features, for all the volunteers selected for analysis.

Figure 7: Valence classification accuracy results us-

ing F1score validation metric. The performance was

evaluated with different subsets of features.

Figure 7 shows the µ± σM accuracy results for

the classification of positive-valence versus negative-

valence using a set of features ranging from a min-

imum of 1 to 500 computed features, using all the

volunteers selected for analysis.

Figure 8: Correlogram between the set of features over scenes computed with the BVP signals regarding the

arousal evoked emotions. Correlation values labelled with (*) are statistically significant Pvalue < 0.05.
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Figure 9: Left hemisphere correlogram between emotions and EEG computed features for each electrode and

frequency range. Squares labelled with (*) are statistically significant Pvalue < 0.05.

Figure 10: Right hemisphere correlogram between emotions and EEG computed features for each electrode and

frequency range. Squares labelled with (*) are statistically significant Pvalue < 0.05.
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4. Discussion

As expected, emotion estimation is not a straight

forward task, it requires the implementation of sev-

eral disciplines which have to be gracefully coordi-

nated to achieve a successful outcome. The first of

these barriers is the proper definition of an emotional

model, which must include a range of emotions. As

explained previously, this work has used a discrete

emotion model including both the arousal and va-

lence dimensions which have been previously used in

literature.10 The oversimplification of the emotional

model at hand, was required in order to simplify the

analysis under such a novel experiment.

The second barrier is a more physical one, sig-

nal acquisition and the apparatus. In order to ob-

tain accurate results the acquisition apparatus must

be reliable and have a constant performance. Out

of the 18 volunteers, 10 recordings were of sufficient

quality to perform any type of analysis on them. Af-

ter a thorough study, both OpenBCI and Empatica

E4 systems showed to be stable and consistent across

subjects, and the erroneous signals were due to move-

ments caused by the volunteers as the Empatica E4

wristband was placed on the dominant hand which

users used to annotate emotional labels. Further and

more detailed descriptions of the experimental pro-

cedure, together with a clear statement of the impor-

tance of the procedure steps could reduce the prob-

lem in the future.

Overall, using the reliable acquired data, the ex-

perimental procedure showed some expected results.

Figure 3 shows the film has a varied distribution of

all types of arousal and valence according to ratings

carried out by the volunteers across all scenes, and

was therefore a proper choice as a stimuli for the de-

sired experiment. Figure 11, shows expected arousal

and valence responses according to the film contents,

since at the start the film exposes the main prob-

lem for the protagonist to encounter, respectively

coinciding with both intense-arousal and negative-

valence peaks; as the film progresses and the plot

develops, both neutral-arousal and neutral-valence

prevail; as the plot shows some resolve a relaxed-

arousal peak and a positive-valence peak coincide;

finishing, as the plot finds its resolve, with mostly

intense-arousal and a mixture of positive and nega-

tive valence, coinciding with the mixture of resolve

and sadness intended by the film director. These out-

comes together with Figure 4, imply both expected

and interesting results. Taking into account the con-

tents and context of the film, which in a simplified

manner is a dramatic film which offers a bad or neg-

ative starting situation, followed by an intense over-

coming process, and ending with a relieving accom-

plishment of the protagonists goals with a constant

reminder of the constant presence of the obstacle.

Following the expected sensations that the film di-

rector intends, Figure 4 shows, as expected, that pos-

itive and negative valence are highly anti-correlated,

and negative-valence was mostly related to intense-

arousal while positive-valence was mostly related to

relaxed-arousal, meaning positive and relaxed feel-

ings appear after an intense and negative phase while

as the protagonist faces and overcomes the obstacles.

Figure 5 and Figure 12 shows that for GSR

features, each arousal state has a different correla-

tion sequence. Neutral-arousal is anti-correlated to

all features, intense-arousal is correlated with all fea-

tures, and relax-arousal is correlated with one and

anti-correlated with two features. This could hint

at a specific response of the GSR features for each

arousal state as previous studies suggest.40 How-

ever, higher statistical significance and further exper-

iments would be required before drawing any defini-

tive conclusions.

Figure 8 and Figure 13 shows that for BVP fea-

tures, neutral and intense arousal estates are cor-

related and anti-correlated respectively with HF,

however the relaxed state is anti-correlated with

RMSSD. Intense and relaxed states were expected

to have opposite correlations with the same feature,

but this was not the case. Further analysis and in-

depth experiments are required in order to draw a

proper conclusion, however, these findings could be

the beginning of an more complete understanding of

emotions.

Figures 9 and Figure 10 allow us to draw the

following conclusions: First, highly correlated fea-

tures are mostly accumulated in the beta and gamma

frequency ranges for positive-valence and negative-

valence while neutral-valence achieves its highest cor-

relation values for the beta frequency range, hint-

ing at a possibly different behaviour of the neural

flow. Secondly, positive-valence and negative-valence

opposite correlations for all features. Finally, only

negative-valence shows a significant correlation with

the selected features for the slowest delta, theta and
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alpha frequency ranges, in all electrodes and in both

hemispheres. All those findings are mostly coherent

with previous results,3 regardless of the experimental

paradigm and culture differences. In addition, there

is no evidence to draw any conclusion about lateral-

ization of emotions from the results obtained by this

experiment.

Regarding each type of emotion, EDA analy-

sis provided an insight of the relevant set of fea-

tures for the description of physiological changes.

However, those correlations are highlighted by the

use of the population of volunteers, but for the case

of a subject dependent paradigm, the inter-subject

variability makes emotion estimation a harder task.

A feature selection algorithm was therefore used in

order to evaluate the stability of the classification

process using different subsets of features. Further-

more, the main purpose in the analysis is to evaluate

the feasibility of the emotion estimation methodol-

ogy under the paradigms of dynamic emotions but

not to optimise the classification accuracy, as this

would require further research into the models and

into hyper-parameter optimisation. Thus, the afore-

mentioned machine learning models were built with-

out hyper-parameter optimisation to perform emo-

tion estimation, both for valence and arousal dimen-

sions.

Valence emotion estimation was performed us-

ing EEG signals, while for arousal estimation BVP

and GSR signals were used. As mentioned before in

the methods section, LOO validation methodology

was used for testing the performance of the model, se-

lecting 2 trials corresponding to divergent emotions.

However, such a process would be optimistic if only

one iteration is performed, as the process of selecting

those 2 trials could be statistically biased in favour

of the trained model. Thus, the classification pro-

cess is performed by doing 20 iterations, where on

each iteration two randomly selected trials were cho-

sen, ensuring they belong to divergent emotions on

each case, from the valence and arousal classifica-

tion processes. Therefore, on each iteration, the per-

formance of the best classifier from the set of eight

was chosen for performance evaluation, as done in.25

The F1score is chosen since, when the performance

of the test set is biased towards a specific result, it

shows the highest penalisation, and as it is desirable

to build models that properly generalise over the ob-

jective task, this was the best option.

EEG artifact removal and successive feature

processing steps were previously probed25 to per-

form in real-time constraints. In addition, the pro-

cesses involved for both, BVP peak detection and

GSR preprocessing and feature processing, does not

require heavy computations. Therefore, the proposed

methodology can be applied in real-time scenarios

with meaningful results taking into account a near

realistic scenario.

Several studies provide useful insights when

measuring the properties of functional connectiv-

ity under different scenarios.41–45 Although the pro-

posed approach has not taken into account a broader

study of functional connectivity properties during

the evolution of emotions. Future work will include

such an analysis to evaluate the connectivity prop-

erties during perceived emotions in order to better

understand the dynamics and correlations between

functional connectivity and physiological properties

over time.

Finally, the next research step will make use of

the proposed methodology under a HRI paradigm

to study whether the robot will adapt its behaviour

based on the estimated emotion.

5. Conclusions

This paper has introduced a method which has

proved to be feasible under the assumption of dy-

namically evoked emotions in the subject dependent

analysis for EEG, BVP and GSR emotion recogni-

tion. An accurate and computationally light emo-

tional estimation methodology could allow the use of

portable and cheap devices in domain of emotional

HRI where more realistic scenarios are involved.

This method uses three categories emotional

model, however, for the emotion estimation task only

two of them were used for each dimensional model.

Nevertheless, LOO validation scheme probed the fea-

sibility of such approach although the classifiers were

not tuned to optimise the accuracy results.

Finally, population based EDA analysis provide

useful insights on which features are best for deter-

mining the recognition of emotions.
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Figure 11: Rating distribution over selected scenes for all participants. (a) Top, shows the rating over time for

the arousal dimension. (b) Bottom, shows the rating over time for the valence dimension.

Figure 12: Correlation between OFFSET and SLOPE features of the GSR signals with the arousal majority

ratings over time.
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Figure 13: Correlation between HF and RMMSD features of the BVP signals with the arousal majority ratings

over time.

Figure 14: EEG most correlated or anti-correlated features across the scenes.
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ABSTRACT Affective human-robot interaction is still an active area of research in part due to the great
advances in artificial intelligence. Now, the design of autonomous devices that work in real therapeutic
environments has become a plausible reality. Affective human-robot interaction requires a robot to analyze
the emotional state of the human interlocutor and interpret emotional responses that can be used, not merely
in the interaction but, for example, to provoke desired therapeutic responses. It is, therefore, necessary to
broaden experimental techniques intomore realistic paradigms, where the capacity of emotion estimation can
be completely explored. This exploratory paper proposes a realistic experimental paradigm inwhich the robot
employs a dramatic story to evoke emotions in the users, and tests previously self-designed methodologies to
be able to make estimates of the users’ emotional state in real-time. Regardless of the multiple impediments
and restrictions, and all the aspects that could still be improved, this paper can outline the feasibility of the
proposed methodology in realistic scenarios.

INDEX TERMS Affective state, blood volume pressure, EEG, emotion estimation, face emotion recognition,
galvanic skin response, human-robot interaction, real-time.

I. INTRODUCTION
Affective HRI (Human-Robot Interaction) is one of the most
challenging tasks the research community is facing, but
recent technological advances allow for the development of
new attempts. The main objective of affective HRI is to build
intelligent systems that can adapt to the changing mood of
users, in order to enhance communication in real-time [1].
To cope with the lack of emotional connection between
humans and machines, emotion detection must meet some
requirements such as being automatic, reliable and adaptable.

Several social groups could benefit from the development
of affective HRI. This is the case for lonely elders, children

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiqing Zhang .

with an autism spectrum disorder or people with limited capa-
bilities of communication. For many of them, communicating
emotions is a problem that could be solved by the help of
affective computing. For instance, using wearable sensors
for measuring their physiological responses with the addition
of an analysis of their behavioral responses, such as facial
expressions or body gestures, could improve the attention
given to the users by having a closer insight of their feelings,
and therefore, improve their quality of life and happiness.
For the case of autism spectrum disorder or children with
difficulties to express their emotions, affective HRI can be
used to allow them to express emotions through story-telling
strategies by remotely controlling a robot. As an example, the
use of puppets to help children learn how to express emotions
has been widely studied [2]–[4]. In that way, children could
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improve their expressiveness and therefore allow them to
integrate better in society. Regarding elders, a robot that
could understand their feelings could be an appropriate tool
to mitigate their loneliness. Therefore, it would be desirable
to develop a deep understanding of how robots can effectively
influence users’ emotions, both evoking and detecting them,
in order to be able to adapt to interactions dynamically and
effectively.

Emotion recognition is an interdisciplinary field that
requires knowledge from different domains such as psychol-
ogy, neuroscience, signal processing electronics, and artifi-
cial intelligence among others. It can be addressed with the
use of different types of signals. On one hand, physiological
signals such as electroencephalography (EEG), galvanic skin
response (GSR), or heart-rate variations by measuring blood
volume pressure (BVP) or by electrocardiogram, can be used.
These are internal signals which reflect the balance between
sympathetic and parasympathetic systems, as is the case for
BVP and GSR, while EEG manifests changes in the cortical
areas of the brain. On the other hand, there are externally
observable cues such as facial expressions, body gestures,
or speech. While the internal signals are considered to be
more objective due to the intrinsic properties of several func-
tional areas of the central nervous system, the external ones
remain as subjective measures of the expressed emotions,
which can be intentionally modulated or manifested as very
subtle changes, such as for facial expressions [5]. Taking
all of this into account, recent approaches tend to exploit
multiple sources in parallel [6].

Emotional models are needed to give users a homoge-
neous reference system for self-assessment of emotions, both
involved in the learning process and affective HRI. Histori-
cally, two main models have been developed which remain
controversial: the discrete emotional model, which assumes
that emotions are qualitatively differentiated neurophysio-
logical responses [7] that produce independent emotional
experiences; and the dimensional model, which assumes con-
tinuous quantified relationships among emotions [8]. For the
present paper, the dimensional model has been chosen, but
the assessment space is discrete, to simplify the number of
labels for the users to choose from [9], [10].

Research in emotion recognition involves a series of tasks
to be developed. It requires the definition of the set of sig-
nals to be chosen as sources of information. The correlation
between signals must be studied to better understand the
expression of emotions and, therefore, requires the develop-
ment of an adequate selection of stimuli and, more generally,
the causal model underlying the experimental design that
allows the generation of emotions. Finally, as detection is
one of the main objectives, feature extraction methods must
be developed and tested according to a set of algorithms for
statistical inference.

Regarding the selection of sources, EEG signals are con-
sidered a useful source, as they measure the brain responses,
reflected on the cerebral cortex, during emotion processing
[11], [12], both in perception and expression, and is sensible

to valence in the dimensional emotional model. GSR and
BVP signals, on the other hand, reflect the balance between
sympathetic and parasympathetic systems of the autonomic
nervous system. While GSR is mainly driven by the sympa-
thetic subsystem, BVP reflects the balance of both subsys-
tems. Both are sensitive to arousal [13] in the dimensional
emotional model. Finally, changes in facial expressions can
easily be measured using cameras and sometimes reflect
spontaneous changes in users’ emotions.

Regulation of emotions occurs as a result of close inter-
actions between various subsystems of the central nervous
system under behavioral demands to dynamically adapt to
changes in the environment in order to produce complex
behaviors. The interaction involves the autonomic system,
which alters the balance of the sympathetic and parasym-
pathetic systems which can be measured by BVP and GSR
signals. It also affects the prefrontal cortex and temporal lobes
which can be measured by EEG. Finally, facial expressions
are directly modulated by the amygdala’s innervations while
also guided by high-level behavioral intentions [14], [15].
As a result of those synergic interactions across the central
nervous system, respiratory and electrodermal activity in con-
junction with electroencephalographic and facial expression
measurements may thus provide the necessary information on
emotion processing [16]–[21], Fig. 1.

FIGURE 1. Brain areas. Graphical depiction of the inter-relations between
brain areas involved in emotion processing. (partially modified [22]).

In recent years, deep learning has attracted interest in this
field, as it has proven to have great results in the fields
of computer vision and natural language processing, mainly
due to the ability to learn high-level hierarchical representa-
tions [23]. As for the case at hand, several research studies
have tried to attack the problem by the use of multi-modal
sources which require the fusion of the information at hand.
This fusion strategy can be done at two different levels.
The first and easiest involves training a single model for
every single source and finally perform a score-level fusion.
The second and the hardest requires feature-level fusion in
order to allow the models to take advantage of the intrinsic
correlations among different sources but this is typically more
difficult as their representations are not always directly com-
patible. So the problem becomes to find a proper representa-
tion of the set of sources to exploit the information presented.
Moreover, such models must treat properly both temporal
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FIGURE 2. General electrophysiological and camera acquisition system for human-behavior recordings and processing in
real-time. Middle-Left: long-term view of EEG raw data acquired with the OpenBCI system. Middle-to-bottom-Left: BVP, GSR
and TMP signals acquired with the Empatica E4 device. Middle-Right: WebCam signal acquired using a self-customized
driver. Bottom-Right: short-term view of EEG signals for the selected temporal window and frequency/spectrogram plot.

and spatial representations in addition to the integration of
different types of data streams [24].

Previous studies have been carried out in dramatic environ-
ments, such as comedy or theater performances, measuring
the empathic responses of a group of volunteers, but the
employed HRI systems still lack the capability of dynam-
ically measure and adapt to users’ emotional responses.
The present paper involves a realistic scenario where a
robot dynamically drives users’ emotional responses by a
story-telling affective HRI. The robot sequentially presents
a series of stimuli, which are connected by a dramatic thread.
A dramatic story was created in order to allow the robot to
induce emotional changes on users, trying to compensate for
the lack of a simple implementation of a convincing android
facial expression. It is a matter of an existential story about
the nature of the human being, as a guide for the robotic
existence, to induce the users to reflect emotionally. The
robot’s story strategy covers fundamental existence dilemmas
such as love, nature-human relation, and war, among others.
The aim of this approach involves three main questions:

• Whether the effect of such an experimental emotional
driving paradigm can be measured over users’ phys-
iological responses, in a population-based exploratory
data analysis.

• At what extent each users’ emotional estimation can be
performed, based on the evoked properties of physiolog-
ical signals or facial expressions.

• Assess whether the affective HRI has produced an emo-
tional engagement, based on the subjective experience
of the users.

II. MATERIALS AND METHODS
The present paper aims to answer a set of questions. First,
to analyze the effect of affective HRI on the users’ physiolog-
ical responses by collecting data from physiological signals.
Second, to explore the plausibility of such an approximation
for the case of a real-time emotion estimation methodology in
terms of accuracy reports. Finally, to evaluate the subjective
experience of users regarding their emotional engagement
towards the affective HRI.

A. ACQUISITION SOFTWARE: GePHYCAM
To record and collect the data, a self-produced software,
GePHYCAM [25], is developed. This application looks
forward to being accessible to the whole scientific commu-
nity, providing a resourceful tool for human-behavior exper-
imental paradigms, covering the following functionalities
(see Fig. 2 and Fig. 3):
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FIGURE 3. Experimental design picture. Top-Left: EEG raw data acquired with the OpenBCI system. Top-Right: GSR and BVP
signals acquired with the Empatica E4 device.

1) Real-time acquisition and visualization of EEG, BVP,
GSR, TMP and WEBCAM signals.

2) Trigger synchronization by a TCP/IP interface which
allows start/stop recordings remotely.

3) Data recording on EDF (European Data Format) files for
electrophysiological signals and MP4 file format for the
audio-visual signals.

4) Online behavior labeling interface in which labels are
synchronized and stored on EDF files.

B. DATABASE
A total of 16 volunteers (5 male, 11 female) aged between
19 and 40, participated in the present study. Participants were
required to rate each scene of the dramatic story using the
Self-Assessment Manikin (SAM) on two discrete 3-point
scales, {NEGATIVE, NEUTRAL, POSITIVE} for valence
and {RELAXED, NEUTRAL, INTENSE} for arousal. Dur-
ing each of the key scenes of the experiment, a set of
iphysiological (EEG, BVP, GSR) and facial expression mea-
surements were performed with the use of the Empatica
E4 wristband, an OpenBCI system, and a standard webcam.
For the OpenBCI cap, four prefrontal and four temporal
electrodes, {F3, T7, P7, F7, F4, T8, P8, F8}, were used as
they proved to be the best areas for emotion estimation [9],
[10], [26], [27]. The Empatica E4 wristband was placed on
the non-dominant hand to avoid artifacts when users perform
self-assessment ratings.

Twelve different scenes, connected by a dramatic
thread, were created from audio-visual resources such as

documentaries and films, which were edited to accomplish
a series of requirements. Each scene must be longer than
one minute, to allow proper heart rate measurements, and
each scene must drive a constant emotion. The duration
(in seconds) of the scenes and the content are further
explained in Table 1. After each scene users must perform
self-assessment based on the two discrete valence and arousal
dimensions and, also, are required to express their current
emotions. The experiment is approximately 60 minutes long
as it depends on the time spent by each user to explain their
emotional responses after each scene.

TABLE 1. Story scenes specification. Time column is duration in seconds.
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FIGURE 4. Experimental design diagram.

The experiment is conducted entirely by a Pepper robot,
developed by SoftBank Robotics, after a prior prepa-
ration of the volunteer with the acquisition hardware
(see Fig. 4):
1) Pepper introduces itself to the volunteer and after a short

talk, asks the volunteer to rest with their eyes closed, for
one minute.
a) An explanatory message is shown in the chest tablet.

The volunteer has to activate that interaction by press-
ing on the screen of the tablet. During this interaction,
physiological signals are acquired, EEG, BVP, and
GSR, using the OpenBCI and the Empatica E4 wrist-
band.

b) For the next interaction, the robot asks volunteers if
they know about Plato’s allegory of the cave. A mes-
sage is shown on the interactive screen to allow them
to specify ‘‘yes’’ or ‘‘no’’. Regardless of the response
of each volunteer, Pepper explains Plato’s allegory
and after that, it asks them if they have had any experi-
ence where they have felt misunderstood, relating to
the protagonist of the myth. An interactive screen is
shown to allow the volunteer to activate the record-
ing and tell Pepper of a similar experience of their
own. The volunteer must click on the screen when
finished.

c) After that two consecutive interactive screens are
shown, each of them allows the volunteer to perform
the quantitative self-assessment using the SAM man-
nequins. This whole process is performed in order to
allow the volunteers to learn the interactive process
with the robot.

2) From that point until the end of the story, the robot acts
by iteratively telling the story. First, develop the drama.
Second, show a scene in the tablet while physiological
signals are acquired. Third, the volunteer explains the
evoked emotions while the robot records the volunteers
with his front camera. Fourth, self-assessment on the
valence-arousal discrete dimensions.

3) Finally, Pepper asks volunteers to tell their thoughts,
both positive and negative, about life.

III. DATA ANALYSIS
Each of the following sections addresses the methodology
applied when processing the aforementioned physiological
signals and facial expressions.

A. PHYSIOLOGICAL SIGNALS PREPROCESSING
1) BVP PEAK DETECTION PREPROCESSING
The E4 wristband uses a photoplethysmogram sensor which
allows BVP signal measurements. Processing steps involve
a series of stages to obtain noise-free inter-beat intervals to
properly code the signal properties. First, the moving average
is computed over the raw data, where regions of interest
are selected as the amplitude of the signal is larger than
the moving average. R-peaks are marked at the maximum
of each region of interest, which allows the computation of
the interbeat intervals (time interval between two successive
R-peaks of heartbeats) time series. Finally, detection and
rejection of outliers are performed.

2) GSR SIGNAL PREPROCESSING
The E4 wristband captures the conductance, in microsiemens
(µS), of the skin by measuring the potential difference
between two electrodes while a tiny amount of current is
applied between them. Due to the low sampling rate, 4Hz,
of the E4 wristband, only tonic components were analyzed.
The tonic component, called the skin conductance level,
was obtained using a Savitzky-Golay filter [28] (window
length=31, order=2).

3) EEG PREPROCESSING
EEG signals are arranged in a three-dimensional matrix con-
taining n trials, c channels, and s samples at a sampling
rate of 250 Hz. First, given that each signal has its own
scaling factor values, signals are standardized using a z-score
method. Second, a filter bank, based on sixth-order But-
terworth filters, is applied for all n, c, and s, within a set
of 5 non-overlapping bandwidths: 1-4 Hz, 4-8 Hz, 8-16 Hz,
16-30 Hz, and 30-50 Hz. An EEG oriented artifact
removal technique (EAWICA) was used in this methodology.
It was analyzed and validated with EEG brain patterns by
Val-Calvo et al. [27] under real-time conditions.

B. FEATURE EXTRACTION
To answer the first two questions which address this
paper, two different analyses were performed. First,
population-based exploratory data analysis is carried out
to analyze the statistical correlation between experienced
emotions and the properties of the set of features computed
for the EEG, BVP and GSR signals. Second, subject depen-
dent classification is performed to check the feasibility of
the emotion recognition methodologies, proposed for the
experimental paradigm in question.

For population-based exploratory data analysis, the set of
features was computed taking into account the full-time series
corresponding to each scene for each signal type, and then
z-scored relative to the baseline measurements. On the other
hand, subject dependent classification consists in splitting the
signals corresponding to each scene in sliding windows to
compute a set of features. Thus, three independent classifi-
cation processes were done to test the feasibility of affective
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FIGURE 5. Facial expression estimation. First stage, face detection by convolutional deep learning model and preprocessing of detected face. Second
stage, features extraction and classification by an ensemble of convolutional deep learning models.

state estimation. Therefore, the valence emotional dimension
can be estimated by the use of EEG signals and the arousal
by the use of GSR and BVP signals.

The following set of EEG features were computed based
on the oscillatory properties of brain signals:
• Differential Entropy: Computed as a metric for measur-
ing the predictability of a signal, whose values have a
probability density function similar to a Gaussian distri-
bution, N(µ, σ 2), as is the case for EEG signals. It can
be defined for a signal X as h(X ) = 1

2 log
(
2πeσ 2

)
.

• Amplitude Envelope [29]: Computed through the
Hilbert transformwith the Neuro Digital Signal Process-
ing Toolbox [30] python library developed at Voytek’s
Lab.

• Petrosian Fractal Dimension [31]: Defined as PFD =
log (N ) / (log (N )+ log (N/ (N + 0.4Nδ))), where N is
the series length, and Nδ is the number of sign changes
in the signal derivative.

• Higuchi Fractal Dimension [32]: Higuchi’s algorithm
can be used to quantify the complexity and self-
similarity of a signal.

• Fisher Information [33]: Fisher information is a way of
measuring the amount of information that an observable
random variable X carries about an unknown parameter
θ of a distribution that models X.

The last three EEG features mentioned have been computed
with the PyEEG python library [34].

The set of GSR features computed based on the properties
of skin conductance level time series were:
• Average of the series of amplitude values (offset).
• Average slope of the series of amplitude values.
• Standard deviation of the series of amplitude values.

The set of BVP features computed based on the properties of
interbeat intervals (IBI) time series were:

• Average heart rate, computed as the inverse of inter-beat
intervals.

• Standard Deviation of a IBI interval series.
• Root Mean Square of the successive differences of IBI.
• Standard deviation of IBI differences.
• Number of IBI differences greater than 20 milliseconds
(NN20).

• Ratio between NN20 and the total number of IBI inter-
vals.

• Number of NN interval differences greater than 50 mil-
liseconds (NN50).

• Ratio between NN50 and the total number of IBI inter-
vals.

• Triangular index: The ratio between the total number of
IBI and the maximum of the IBI histogram distribution.

• Low Frequency: The power density estimation for the
frequency band in the range [0.04, 0.15] Hz.

• High Frequency: The power density estimation for the
frequency band in the range [0.15, 0.40] Hz.

• Sample Entropy: Used for assessing the complexity of
the IBI interval series.

i Heart rate variability measurements and features were com-
puted with the pyHRV python library [35].

C. FACIAL EXPRESSION RECOGNITION
Facial expression estimation is achieved by a combination
of steps in two stages (see Fig. 5). In the first stage, facial
detection is performed to simplify emotion estimation infer-
ence. This is achieved with the use of a convolutional deep
learning model [36] that can work with real-time constraints.
The detected face is then preprocessed: the image is cropped
to extract the region of interest, converted from RGB to
grayscale, resized to a resolution of 48 × 48 pixels, and
finally normalized into a [0,1] range. In the second stage,
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the preprocessed image is fed into a low level feature extrac-
tion layer and a deep convolutional ensemble of neural net-
works to obtain the emotion classification [37], [38]. This
ensemble model was trained on the FER-2013 database [39]
achieving a 72.47% accuracy on the test set.

The FER-2013 database consists of 3 subsets containing
48 × 48 pixels images: 28709 images dedicated to training,
3589 images for validation and 3589 images for testing. All
images include the following labeling: 0 angry, 1 disgust,
2 afraid, 3 happy, 4 sad, 5 surprised and 6 for neutral.

In the approach presented, a model is trained with a
database of images of static facial expressions, however, it is
evaluated on dynamic facial expressions, while volunteers
explain their emotions.

Since the database in this paper cannot be made public,
and in order to allow the research community to compare the
results, the outcome of our approach on the public RAVDESS
database [40] has also been evaluated.

The Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) is a validated multi-modal
database of emotional speech and song. The database is
gender-balanced consisting of 24 professional actors, vocaliz-
ing lexically-matched statements in a neutral North American
accent. The speech includes calm, happy, sad, angry, fearful,
surprise, and disgust expressions; and the song contains calm,
happy, sad, angry, and fearful emotions. Each expression
is produced at two levels of emotional intensity, with an
additional neutral expression.

D. CLASSIFICATION
After computing a set of meaningful features, the fea-
ture space must be carefully transformed in order to allow
machine learning algorithms to exploit statistical infer-
ences. In that way, smoothing the feature space deals with
both, the amount of variability that emerges due to sub-
tle changes in emotional states across trials, and with the
lack of stability over time of the computed features. There-
fore, a Savitzky-Golay filtering method [28] is used. Also,
Quantile-Transform method (histogram equalization to uni-
form distribution) followed by the Min/Max scaling method
is performed to deal with outliers, which can severely damage
the performance of the classifiers, and state the range of
values according to the input requirements of classifiers.

Then, the classification process is performed using a set
of 8 standard classifiers: K-nearest neighbors, Support Vector
Machine with linear and radial basis function kernels, Deci-
sion Trees, Random Forests, Ada-Boost, Gaussian Naive-
Bayes, and Quadratic Discriminant Analysis. Results have
been obtained using default hyper-parameter values in the
Scikit-learn python library [41]. Also, it has been used to
ensure that samples in the validation set are reasonably
independent of the samples in the training set [42], [43].
In that context, the Leave-One-Out strategy was used to
asses the correct performance of the methodology and the
macro-average F1-score metric was used.

IV. RESULTS
In the following sections, offline analysis results are pre-
sented. First, population-based exploratory data analysis is
performed. The current experimental paradigm is validated
regarding the subjective self-assessment of volunteers. Also,
causal and correlation effects are presented, which both help
to answer the first question formulated in this paper. Sec-
ond, subject dependent classification is analyzed for each
source of signals to prove the feasibility and reliability of
the accuracy results. Finally, the subjective assessment of the
experiment, carried out by volunteers, is analyzed.

A. EXPLORATORY POPULATION-BASED DATA ANALYSIS
The first attempt at this exploratory analysis is to validate
the experimental design. The dramatic story was necessary to
boost emotions dynamically, so the effect on the subjective
self-evaluation (scene labeling) of the volunteers must be
pointed out. Fig. 6 shows the distribution of the frequencies
of each discrete set of emotions in the scenes labeling for the
emotional dimensions of valence and arousal. It can be noted
that the dramatic story is balanced in terms of the properties
of positive and negative stimuli, as neutral self-assessments
were not often used by the volunteers. It is therefore clear
that the dramatic story and the chosen scenes evoked very dif-
ferent emotional states in relation to the valence dimension.
On the other hand, in the excitement dimension, the balance
was produced by intense and neutral emotions since almost
no stimulus was qualified as relaxing.

FIGURE 6. Distribution of the frequency of scenes labeled with each
emotion in the whole story by all participants. Left: box-plots for
frequency of labels for the arousal dimension. Right: box-plots for
frequency of labels for the valence dimension.

The architecture of the dramatic script imprints a finger-
print of evoked emotions and specifies intrinsic relation-
ships between them. Fig. 7 shows the correlation of the
volunteers’ self-evaluations on the scenes. Cross-interactions
between the emotional dimensions indicate that POSITIVE
and RELAXED are highly correlated while POSITIVE and
INTENSE are highly anti-correlated. Also, POSITIVE and
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FIGURE 7. Correlation matrix (corrgram) of emotions ratings over scenes
for each pair of emotions. The valence and arousal dimensions are taken
into account. Correlation values labeled with (*) are statistically
significant Pvalue < 0.05.

NEUTRAL-VALENCE are highly correlated. Twomain con-
clusions can be drawn from these results. First, themajority of
volunteers agree to rate some scenes as NEGATIVEwhile the
ratings of POSITIVE and NEUTRAL-VALENCE indicate
that some scenes are not as clearly defined as those rated
primarily as NEGATIVE. On the other hand, it seems that
for most volunteers the POSITIVE emotions can also be
felt as RELAX regarding the arousal dimension. In contrast,
NEGATIVE and INTENSE are highly correlated, suggesting
that videos rated mainly as NEGATIVE cause a dramati-
cally stronger impact than those rated mainly as POSITIVE.
Finally, for NEUTRAL-VALENCE andRELAX, there seems
to be a high interrelationship, leading to the conclusion that
scenes rated mainly as NEUTRAL-VALENCE have a close
relation with those rated as POSITIVE. Taking that into
account, a pragmatical decision has been taken for the clas-
sification analysis, the NEUTRAL-VALENCE and RELAX
labels have been considered to be equal.

Another perspective on the evolution of the emotions
evoked can be seen in Fig. 8, where the majority of votes
for each scene are shown. From this point of view, it can be
extrapolated that the valence dimension is mostly balanced
into the extremes, while in the arousal dimension, and rela-
tive to the valence dimension, the RELAX and NEUTRAL
majority ratings seem to correlate highly with the scenes
mainly rated as POSITIVE, and only the scenes mainly rated
as INTENSE are clearly defined, as they have a signifi-
cant coherence among the volunteers. Therefore, highlighting
more evidence that the aforementioned pragmatic decision of
merging both NEUTRAL-VALENCE and RELAX.

So far, subjective ratings have been analyzed, however,
an important aspect is the objective effect of the designed

emotional drive, over the physiological responses, which
allow us to understand and prove that subjective feelings
reflect unbalanced sympathetic and parasympathetic subsys-
tems. In the present case and considering the way the features
have been computed, some statistically significant correla-
tions have been found in the BVP and EEG features, which
are shown graphically in Fig. 9 and Fig. 10. Concerning the
dimension of excitation and for the case of BVP measure-
ments, the standard deviation of IBI differences characteristic
is highly correlated with the INTENSE excitation emotion.
On the other hand, no GSR features showed statistically
significant correlations. As for the valence dimension, for
the case of EEG measurements, Fisher’s information on the
T7 temporary electrode for the gamma band is highly corre-
lated with the NEGATIVE valence emotion, while the same
Fisher’s information but on the P8 parietal electrode for the
beta band, is highly correlated with the NEUTRAL valence
emotion.

B. CLASSIFICATION OF EMOTIONS USING A
SUBJECT-DEPENDENT PARADIGM
As the future aim is to build automatic systems for emotion
recognition on affective HRI scenarios, valence and arousal
emotion estimation was performed regarding physiological
signals. For facial expression recognition, although the model
is able to estimate seven discrete emotions, the estimation
process has been simplified in order to map from seven
discrete emotions {Neutral, Surprise, Happy, Sad, Angry,
Fear, Disgust}, detected by the aforementioned ensemble of
convolutional models, into three discrete valence emotions
{NEUTRAL, POSITIVE, NEGATIVE}. It seems that the
context plays a fundamental role in deciding the surprise
valence towards positive or negative. That is still an open
question, so we decided to categorize surprise as NEUTRAL,
see Table 2. This simplification allowed the homogenization
of the estimation outputs of the whole system and to val-
idate the results obtained regarding the self-assessment of
volunteers.

TABLE 2. Discrete emotion mapping.

For the present paper, the task was faced independently for
each emotional dimension, as the focus is on exploring the
plausibility of emotion estimation under this novel paradigm.
Regardless that GSR has not shown any statistically mean-
ingful correlations on the population-based EDA, arousal is
estimated using GSR and BVP signals.

As mentioned before, in order to properly validate the
performance of the models, a Leave-One-Out validations
strategy has been used. In fact, in order to exhaustively
test the performance, 20 classification iterations were car-
ried out. In each one, a set of two random scenes were
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FIGURE 8. Rating distribution over selected scenes for all participants. Top: rating over time for the arousal dimension.
Bottom: rating over time for the valence dimension.

FIGURE 9. Correlation between two features of the BVP signals with the arousal majority ratings over time. RMMSD is
Root Mean Square of successive differences in IBI. SDD is Standard Deviation of IBI differences.

selected as trials, each of them belonging to differentiated
labels (POSITIVE and NEGATIVE), and the final f1-score
value represents the mean and standard deviation of these
iterations.

Fig. 11 shows the overall tendency taking into account
different sets of features, from 1 to 13 for arousal dimension
and the following set of {1, 5, 10, 15, 20, 25, 30} number of
features, for valence dimension. Achieved accuracy results
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FIGURE 10. EEG most correlated or anti-correlated features across the scenes. Fisher’s information of both,
T7 temporary electrode for the gamma band (T7_gamma_FI) and P8 parietal electrode for the beta band (P8_beta_FI).

FIGURE 11. Arousal and Valence classification accuracy results.
Macro-average F1-score validation metric used. The performance was
evaluated with different subsets of features. Solid line is the mean value
and shadow area represent de standard error of mean.

are higher than 80% on average for both emotional dimen-
sions.

Fig. 12 shows the coherence of the facial expression recog-
nition model on the RAVDESS database, taking into account
that the real emotion expressed by the actors has beenmapped
to the set of three discrete emotions {NEUTRAL, POSITIVE,
NEGATIVE}. The model seems to fail mainly on angry and
surprise emotions but in general, is successful in the estima-
tion, regardless of the lack of temporal information.

On the contrary, facing a real-world scenario where emo-
tions are expressed sincerely and not merely acted, without

any emphasis on expressing them and therefore creating no
bias on the outcome of the recognition system, the model is
only capable of having meaningful results for some subjects,
as it can be noted in Fig. 13.

C. EXPERIMENT RATING QUESTIONNAIRE
In order to rate the affective HRI experience of users, a series
of questions have been done after the experiment. Fig. 14
shows box-plots for the distribution of ratings assigned by all
participants to the first 5 questions.
q1. When you started the experiment, were you in a good

mood to interact with the robot? or did the robot make
you nervous? Rate from 0 to 10, with 0 being fully
uncomfortable, 5 neutral and 10 fully comfortable.

q2. Did you like the story Pepper told you, or did it seem
like a series of unconnected videos with a meaningless
thread? Rate from 0 to 10 the story, being 0 fully uncon-
nected, 5 neutral and 10 fully connected.

q3. What level of emotional engagement, empathy, did you
generate in the interaction with the robot? Evaluate from
0 to 10 the perceived empathy, being 0 without any
empathy, 5 neutral and 10 full empathy.

q4. Do you consider yourself extroverted or introverted?
Evaluate from 0 to 10, being 0 fully introverted, 5 in
equal parts, 10 fully extroverted.

q5. Do you consider that the robot brings dramatic value
to the story, or a tablet with the same audio and videos
would cause the same level of involvement in the story?
Rating from 0 to 10, with 0 being the robot that con-
tributes nothing and 10 being the robot that makes me
fully involved.
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FIGURE 12. Facial expression recognition coherence on the acted out emotions of the RAVDESS database. Black cells show incorrect estimations.

FIGURE 13. Facial expression recognition coherence for the
self-expressed emotional reactions during the experiment. Black cells
show incorrect estimations.

q6. In the hypothetical case of having to express an emo-
tional experience, if you had to choose between a fully
unknown person or a robot, who would you choose?

Regarding the last question q6, 37.5% of users would
choose a robot. Finally, as a measure of emotional engage-
ment, the mean time spent by all volunteers after each scene
is shown in Fig. 15. It can be noted that most users tend to
spend more time as the affective HRI goes on.

V. DISCUSSION
To create a more realistic scenario, a dramatic story has
been chosen as the emotional drive for the robot to engage

FIGURE 14. Distribution of ratings assigned by all participants to
questions regarding the experiment experience (q1, q4, and q5 have
some outliers). As q6 is a binary question, it is not represented in these
box-plots.

emotionally with the volunteers. The dramatic story talks
about some of the most important human philosophical ques-
tions such as love, the relationship between humans and
nature, war and the future of humanity. Such a paradigm tries
to evoke the emotions of volunteers, to make them think about
them and express their deeper insights both verbally and emo-
tionally. Bias is one of the main questions for any experimen-
tal design and it is directly related to the experimental design.
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FIGURE 15. Mean and standard deviation of the time spent by all users
during the self-expressions of emotions after each scene during the
dramatic story. Solid line is the mean value and shadow area represent
de standard error of mean.

For the experiment at hand, after each scene, volunteers were
completely free to express their emotional thoughts to each of
the questions the dramatic story proposes. Such a paradigm
makes emotion prediction more complex, as observed when
comparing the results on the RAVDESS database, which con-
sists of a set of actors expressing emotions, with the results
obtained from the self-developed recordings in a completely
realistic scenario. Several papers have carried out an affective
HRI approach following at some point the same paradigm
as in the RAVDESS database, that is, asking volunteers to
act a series of emotional reactions [44]–[48]. This causes

volunteers to overreact their facial expressions. This is also
the case for the FER-2013 database which has more than
twenty thousand facial expressions that are overreacted, caus-
ing bias in any result obtained using this type of data. There-
fore, this is an important issue that must be faced to properly
validate the results obtained, since, on the one hand, these
databases allow the development of research in the field, but
on the other, they are still quite far from reality.

Facial expression recognition is still a challenging task due
to several problems. Firstly, databases developed are usually
carried out with actors, who overreact facial expressions,
as is the case for FER-2013 and RAVDESS databases. More-
over, for a proper algorithm to be developed, the temporal
and spatial connection of facial expressions should be taken
into account. That means, training a model over static facial
expressions is not enough to achieve accurate results. Indeed,
to properly exploit the emotional information contained in
the self-expressed emotional reactions, models should take
into account the dynamics inherent to each expressed emo-
tion which are, also, interviewed with facial movements
related to the current speech. Finally, culture and personal
differences arise between subjects, and therefore, algorithms
should be fine-tuned for some volunteers to improve the
accuracy on them as it can be noticed in the comparison
between emotional reactions from two distinct volunteers
shown on Fig. 16, Fig. 17, Fig. 18 and Fig. 19. Fig. 16 and
Fig. 17 show the evolution of the predicted facial expressions
corresponding to the real frames in order to properly evaluate
the reliability of the model for an expressive subject. On the
contrary, Fig. 18 and Fig. 19 show the same evolution of pre-
dictions and facial expressions for a non-expressive subject.

FIGURE 16. Expressive subject self-expressions. POSITIVE facial expression evolution.
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FIGURE 17. Expressive subject self-expressions. NEGATIVE facial expression evolution.

FIGURE 18. Non-expressive subject self-expressions. POSITIVE facial expression evolution.

As it can be noted, the model can capture the differences for
each facial expressions and therefore the predicted label is
close to reality, while this is not the case for a non-expressive
subject which clearly shows a noticeable tendency towards a
neutral facial expression where differences are too subtle for
the model to be able to capture them.

Regarding the correlations between signals and emotions,
the GSR signal did not show statistical results. This could be
due to the activation of the sympathetic tone during the ‘‘self-
expression’’ sections, which could be altering the balance of
the autonomic system, and therefore, the correlation of this
signal during the ‘‘watching’’ sections is disturbed.
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FIGURE 19. Non-expressive subject self-expressions. NEGATIVE facial expression evolution.

Concerning the physiological signals, both EEG, for
valence prediction, and GSR with BVP, for the arousal pre-
diction, showed to be robust even taking into account that our
methodology has been developed without hyper-parameter
tuning or the use of any powerful deep-learningmodel. There-
fore, emotion estimation in such a paradigm is not only
possible but has a wide margin for optimization. Regarding
the validation methodology, the Leave-One-Out strategy was
used to asses the correct performance. For the case of a set of
samples computed from temporal signals, the temporal cor-
relation must be taken into account and therefore reasonable
independence must be maintained between training and test
sets.

Taking into account that a population of size 16 is clearly
not enough to extract any conclusion, it is noticeable that
more than a third of the population would prefer a robot as an
emotional companion instead of a human. In addition, Fig. 14
shows that most volunteers were in a positive mood which
allowed them to empathize with the robot, moreover, they
rated the story as engaging, and the robot was part of the
effectiveness of such engagement, leading to the conclusion
that robots are appropriate tools to develop affective HRI
therapies.

VI. CONCLUSION
This paper has introduced a novel experimental paradigm
that has proved to be pragmatically useful as a causal
emotion generation mechanism. The use of computation-
ally light emotional estimation methodologies plus wearable
and cheap sensors could allow the development of affective

HRI therapies in realistic scenarios. This method uses a three-
category emotional model, however, for emotion estimation,
regarding physiological signals, only two of them were used
for each dimensional model. In addition, the Leave-One-
Out validation scheme ensures the appropriateness of the
proposed methodology in terms of the accuracy of the results,
regardless of hyper-parameter tuning.While facial expression
recognition provides a useful insight into which emotions are
in process, for realistic scenarios, further research must be
done in order to develop databases that are closer to reality.
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4.4 Related publications

Partial results of this thesis were also published by the author in collaborations with other
research studies:

� In collaboration with Bonomini et al. [2019, 2020], where a study was made on the
e�ect of deep breathing and cognitive task performance, the Biosignals application
for the recording of physiological signals [Val-Calvo, 2020a] was developed, and also
some of the experiments presented in those articles were performed as part of the
thesis to acquire skills as an experimenter with data from humans.

� The development of a methodology for real-time facial expression estimation, which
has been later used for the present thesis, was done in collaboration with Benamara
et al. [2019, 2020]. Through this collaboration, item 4 of the objectives has been
covered. The main collaboration related to this thesis was done by the author in
the search for a technical solution that could be run in real-time and the de�nition
of the deep learning model.

� An alternative methodology for real-time emotion estimation using EEG signals
was presented at the IWINAC 2019 conference by Val-Calvo et al. [2019b]. The
development of such a methodology helped the author to understand that a proper
validation methodology must be performed because simple cross-validation gener-
ates over-optimistic results yielding incorrect conclusions. Therefore, this paper
helped to cover item 6 of the objectives.

4.5 Results discussion

The development of an emotion estimation methodology has several concerns that must
be carefully faced. On one hand, emotion estimation is not a straight forward task, it
requires the implementation of several disciplines which have to be gracefully coordinated
to achieve a successful outcome. In the a�ective-HRI domain, it is crucial to ensure
that real-time emotion estimation is a quick and versatile process and to obtain accurate
results the acquisition methodologies must perform reliably. In this research, the main
purpose is to evaluate the feasibility of the emotion estimation methodology under dy-
namic conditions but without taking into account optimization processes regarding the
classi�cation algorithms used, as this would require further research into the models and
hyper-parameter optimization. In that context, the developed strategies showed to be
robust even taking into account the dynamic properties of the used stimuli, therefore,
emotion estimation in such a paradigm is not only possible but has a wide margin for
optimization.

On the other hand, the importance of an emotional model must be highlighted, which
must include a range of emotions. As explained previously, this work has used both,
discrete and continuous models. Concerning the physiological signals, EEG signals have
been used for valence prediction, and GSR with BVP, for the arousal prediction in the
continuous emotional model, while facial expressions have been used for the estimation
of the discrete emotional model. Physiological signals re�ect involuntary changes in the
CNS and autonomous nervous system and therefore can not be subjected to inhibition,
as is the case for facial expressions. It has been shown by Val-Calvo et al. [2020b] that
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depending on the expressiveness of the user, a property which mainly depends on cultural
and environmental learning, the estimation becomes feasible or not.

Besides, bias is one of the main questions for any experimental design. Such a bias
a�ects the results obtained through databases. For example, when dealing with facial
expressions, the RAVDESS database consists of a set of actors expressing emotions. Sev-
eral papers have carried out an a�ective-HRI approach following at some point the same
paradigm as in the RAVDESS database, that is, asking volunteers to act a series of emo-
tional reactions [Tsai et al., 2009, Chen et al., 2018b]. This causes volunteers to overreact
their facial expressions, which is also the case for the FER-2013 database, with more
than twenty thousand facial expressions that are overreacted, causing bias in any result
obtained using this type of database. Therefore, this is an important issue that must be
faced to properly validate the results obtained, since, on the one hand, these databases
allow the development of research in the �eld, but on the other, they are still quite far
from reality. In contrast, the self-developed recordings1 deal with a completely realis-
tic scenario where no acting is performed. To create a more realistic scenario, both, a
dramatic �lm and a dramatic story have been chosen as emotional drives. First, a �lm
has a varied distribution of all types of arousal and valence. For the paradigm of an
a�ective-HRI, a similar approach has been conducted, since, to allow the robot to drive
emotions, a dramatic story has been created that talks about philosophical questions to
make volunteers think about them and express their deeper insights both verbally and
emotionally, that is to evoke emotions on them.

A proper validation scheme is important for every novel methodology to be compa-
rable to those in literature. Prede�ned cross-validation schemes for supervised learning
algorithms are not suitable for model performance evaluations when using temporal series
[Tashman, 2000], as the temporal correlation must be taken into account and, therefore,
reasonable independence must be maintained between training and test sets. Di�erent
validation schemes were found suitable for the evaluation of temporal series as they are
based on Leave-One-Out strategies, leave-one-trial-out, leave-one-session-out or leave-one-
subject-out methodologies have been used. Furthermore, the F1 score is chosen since,
when the performance of the test set is biased towards a speci�c result, it shows the
highest penalization, and it is desirable to build models that properly generalize over the
objective task.

The set of selected features chosen for this methodology is easy to compute, allowing
the quick development of portable systems with high signi�cant results, which, also, are
far from black-box techniques such as deep-learning approaches or very complex features
with di�cult interpretation in biological terms. The feature processing also must consider
how the feature space is considered. To allow the management of the intrinsic complexities
of the feature space, smoothing techniques can often improve the results, as it is the case
for label smoothing or feature space smoothing before the classi�cation step is produced.
The �rst allows for algorithms to minimize the error in the case of mislabeled samples
while the second stabilized the variability of the feature space making it more suitable for
the classi�cation process.

Also related to the dimensionality of the feature space and the set of selected features,

1The recordings, used to build the speci�c databases of articles 2 and 3, were obtained during the

experiments carried out at the Instituto de Bioingeniería of the Univ. Miguel Hernández, authorized

by its Ethics Committee and complying with the legal requirements of the European General Data

Protection Regulation, since no other personal information was collected and all data were anonymized.

All participants were volunteers and provided their informed written consent. The other databases used

in the articles were publicly available.
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EEG signals often involve the use of high dimensional spaces, as they are produced by
a large set of electrodes. As our objective is to build easy to wear and lightweight com-
putational methods, a small set of electrodes have been chosen that are spatially highly
correlated with emotional processing in the CNS. The chosen set of electrodes showed to
be a good choice since it o�ered a proper balance between the more informative electrodes
and redundancy for the classifying step and, as a result, the robustness of the methodology
has proved to be higher.

Artifact removal is the �rst step of the whole process and therefore plays a very impor-
tant role in the outcome. A modi�ed version of EAWICA, constrained to the delta band,
was used to reduce artifacts (EOG), and therefore reduce computation time. EEG artifact
removal and successive feature processing steps were previously probed to perform in real-
time constraints. Besides, the processes involved for both, BVP peak detection and GSR
preprocessing and feature processing, does not require heavy computations. Therefore,
the proposed methodology can be applied in real-time scenarios with meaningful results
taking into account a near realistic scenario.

The obtained recognition results are in good agreement with other studies, positive and
negative valence are highly anti-correlated, for BVP features, neutral and intense arousal
states are correlated and anti-correlated respectively with HF and for GSR features, each
arousal state has a di�erent correlation sequence. For the case of EEG features, highly
correlated features are mostly accumulated in the beta and gamma frequency ranges for
positive-valence and negative-valence, while neutral-valence achieves its highest correla-
tion values for the beta frequency range, hinting at a possibly di�erent behavior of the
neural �ow. All those �ndings are mostly coherent with previous results, regardless of the
experimental paradigm and culture di�erences.
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Conclusions

� Online artifact removal to denoise EOG artifacts from EEG recordings can be per-
formed with signi�cant e�ciency using a strategy based on wavelet decomposition
and independent component analysis (ICA), as stated in article 1.

� Valence emotional dimension is feasible using an EEG-based methodology for three
discrete categories (�negative�, �neutral�, �positive�) and with a low density of elec-
trodes. A set of relevant and partially invariant features have been found which are
based on complexity measurements of the signal, and feature space smoothing has
been demonstrated in article 1 to improve the results in terms of time consumption
and accuracy, with the use of the Savitzky-Golay �ltering method.

� Arousal estimation can be achieved by the design of a GSR and BVP based method-
ology using three discrete categories (�relax�, �neutral�, �intense�), as probed in ar-
ticle 2.

� Multimodal emotion recognition based on both, physiological signals and facial ex-
pressions, ful�lls in article 3 the objective of minimizing the uncertainty of the robot
regarding the users' emotional state.

� The use of more realistic scenarios, �rst in article 2, using dramatic �lms as a
dynamic stimulus, and second in article 3, by an a�ective-HRI paradigm under a
realistic scenario that merges a dramatic story in combination with constant emo-
tional stimuli and users' emotional feedback, has proved the robustness of emotion
estimation methodologies.

� Real-time emotion estimation using lightweight methodologies can be achieved with
the use of proper optimization strategies, as stated in the three articles.

� The developed applications: BIOSIGNALS and GEERT, used for article 2, and
GePHYCAM, used for article 3, will help to further the research in the direction of
a�ective brain-computer interfaces.
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Future work

Future work will include multimodal integration of di�erent sources using innovative tech-
niques based on deep learning strategies that take into account temporal and spatial
information. For example, using long and short-term memory networks combined with
convolutional neural networks embedded in the time scale, with a strategy of merging mul-
timodal features and with the combination of attention mechanisms. In this sense, the
BIOSIGNALS, GEERT and GePHYCAM applications continue to be a work in progress
with the objective of being a platform that allows the integration of diverse multimodal
sources and that optimizes the visualization, signal processing, and pattern detection
processes in real-time.

As for the experimental design, the next step will consider the use of the emotion
estimated by the robot to dynamically modify the a�ective-HRI. This approach would
allow the robot to dynamically adapt to the user's emotional changes, or even modulate
it according to a prede�ned objective.

Finally, and in relation to the capacity of the robot to interact with the environment,
in this context, with the emotional reactions of the users, it could be approached a cogni-
tive architecture based on the continuous learning and using the methods of hierarchical
reinforcement learning developed more recently.
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