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The Observational Representation Framework and its
Implication in Document Similarity, Feature Aggregation and

Ranking Fusion

by Fernando Giner Martínez

Document representation is a core issue in information access tasks. Representing docu-
ments requires managing features in terms of three aspects: weighting, redundancy and
scaling (i.e., quantitative vs. discrete features). In supervised scenarios, this is done by
maximizing effectiveness over specific tasks and training data. However, in this thesis,
we focus on non-supervised scenarios, in which document representation is guided by
how features are distributed throughout a document collection. Based on an analysis of
the literature, we claim in this thesis that traditional representation approaches are not
able to capture weighting, redundancy and quantitativity simultaneously. In this thesis,
we present the Observational Representation Framework (ORF), which overcomes this
limitation. The ORF integrates aspects of representation models based on vector spaces,
feature sets and information theory. In addition, we explore the theoretical and practical
implications of the ORF in three ways. In the first study, we exploit ORF as a formal
framework for document similarity. In this study, we identify the strengths and weak-
nesses of existing similarity functions based on metric spaces (cosine distance, Euclidean
distance, etc.), feature sets (Jaccard distance, Dice distance, etc.) and information the-
ory (pointwise mutual information (PMI), Lin’s similarity, conditional probability, etc.).
To overcome the limitations observed in this analysis, we define the Information Con-
trast Model (ICM), which is a parametrized generalization of the PMI. In the second
study, we empirically check the ability of the ORF to integrate heterogeneous features
(i.e., features with discrete and continuous values) without requiring supervision. We
perform experiments in the context of message clustering for online reputation manage-
ment. Finally, in the third study, we analyse the ORF as a formal basis for ranking
fusion. Our formal analysis shows that the ORF can accommodate different ranking
fusion algorithms depending on the assumptions adopted, such as averaging schemes
and the Borda, Copeland and Unanimous Improvement Ratio (UIR) algorithms. Our
experiments on six ranking fusion datasets shed light on which aspects of the scenarios
at hand determine the suitability of different assumptions and ranking fusion algorithms.
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Fusión de Rankings.

por Fernando Giner Martínez

La representación de documentos es un elemento clave en tareas de acceso a la infor-
mación. Representar documentos requiere gestionar características en términos de tres
aspectos: ponderación, redundancia y escalado (i.e., características cuantitativas vs. dis-
cretas). En escenarios supervisados, éstos se abordan maximizando la efectividad sobre
tareas específicas y datos de entrenamiento. Sin embargo, en esta tesis, nos centramos
en escenarios no supervisados, donde la representación de documentos está dirigido por
la distribución de los rasgos en una colección de documentos. Basado en un análisis
de la literatura, afirmamos que las aproximaciones de representación tradicionales no
son capaces de capturar la ponderación, redundancia y escalado simultáneamente. En
esta tesis presentamos el marco de representación observacional (Observacional Repre-
sentation Framework, ORF), el cual supera esta limitación. El ORF integra aspectos
de modelos de representación basados en espacios vectoriales, conjuntos de rasgos y
teoría de la información. Además, exploramos las implicaciones teóricas y prácticas de
ORF de tres formas. En el primer estudio, explotamos ORF como un marco formal
para la similitud entre documentos. En este estudio, identificamos las fortalezas y de-
bilidades de las funciones de similitud basadas en espacios métricos (distancia coseno,
distancia Euclídea, etc.), conjuntos de rasgos (distancia Jaccard, distancia Dice, etc.)
y teoría de la información (pointwise mutual information (PMI), similaridad de Lin,
probabilidad condicional, etc.). Para superar las limitaciones observadas en el análisis,
definimos el Information Contrast Model (ICM), el cual es una generalización parame-
trizada de PMI. En el segundo estudio, comprobamos empíricamente la habilidad de
ORF para integrar características heterogéneas (i.e., carcterísticas con valores discretos
y contínuos) sin requerir supervisión. Llevamos a cabo los experimentos en el contexto
de clustering de mensajes para la gestión de la reputación online. Finalmente, en el
tercer estudio, analizamos ORF como una base formal de fusión de rankings. Nuestro
análisis formal muestra que ORF puede ser acomodado a diferentes algoritmos de fusión
de rankings dependiendo de las suposiciones hechas, tales como, los algoritmos de esque-
mas de promedio, Borda, Copeland y Unanimous Improvement Ratio (UIR). Nuestros
experimentos en seis conjuntos de datos de fusión de rankings arrojan luz sobre qué
aspectos del escenario determinan la idoneidad de diferentes asunciones y algoritmos de
fusión de rankings.
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1
Introduction

1.1. Motivation

Information access is a research area that involves many tasks, such as text mining, in-
formation retrieval and text categorization. In all these tasks, document representation
is a key step. Some document features are binary, such as word occurrence, named en-
tities, links, or any kind of linguistic structure. Other features are defined in continuous
ranges, such as time stamps, topicality, and sentiment polarity.

We highlight three main issues in document representation. First, different features
have different levels of importance in the information access process. For instance, the
word “Obama” has more weight than “said” when managing news. The second issue is
the analysis of feature dependencies. For instance, expected words do not provide new
information. In the news domain, “Barack Obama” does not contribute substantially to
the information provided by “Obama”, given that “Obama” is sufficiently informative
in this context. The third issue is feature scaling. For instance, time stamps and word
occurrences are expressed on completely different scales.

These three issues are addressed in different ways in supervised or unsupervised scenar-
ios. In the former case, manually annotated output samples are available, and features
can be weighted, reduced or projected on the basis of their predictive power. In other
words, the training process adapts the learned model to the statistical dependencies and
scaling properties of the features. For instance, a supervised classifier will learn that
“Obama” is more relevant than “said” when classifying news by topic. It can also infer
that “Barak” does not provide additional information relative to “Obama” and that
news published less than 72 hours ago is more relevant to readers than older news. Al-
though supervised approaches have been shown to be highly effective in some contexts,
their drawbacks have also been widely discussed in the literature, such as overfitting,
domain dependency, data bias, and a high annotation cost. Another important draw-
back is that supervised learning does not provide mechanisms for managing pieces of
information, e.g., aggregation or comparison operators.

On the other hand, in the absence of human-annotated data, the weighting, dependence
or scaling of features is determined in accordance with their distribution in a document
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2 Chapter1. Introduction

collection. Typically, unexpected features have greater presence in a representation than
expected feature values. For instance, the word feature “Obama” has greater weight in
a document representation than frequent common words. Feature dependencies can
also be inferred from co-ocurrence. For instance, “Barack” and “Obama” are two word
features that tend to appear together. As we will analyse in later chapters, the unex-
pectedness and co-ocurrence of features serve as the basis of the popular tf·idf feature
weighting, stopword removal and word sequence perplexity in language models. How-
ever, this paradigm is not compatible with the management of continuous feature values.
The reason is that estimating expectedness in terms of occurrence requires some kind
of value discretization. That is, although we can estimate the probability of a word,
n-gram, tag, etc., the likelihood of a time stamp depends on the granularity with which
time is discretized (e.g., days, minutes, etc.). To our knowledge, there are no stan-
dard criteria for quantifying the likelihood of continuous feature values in the context
of information access.

To overcome this challenge, this thesis presents the Observational Representation Frame-
work (ORF). This approach integrates properties from representation frameworks based
on feature sets, vector spaces and information theory. Similar to vector space represen-
tations, it captures continuous values. Similar to feature-set-based representations, it
allows the application of operators such as inclusion or union, and similar to information-
theory-based representations and weighting functions, the ORF weights features in terms
of their likelihood.

The ORF has relevant implications from various perspectives. In this thesis, we delve
into three of them. First, it provides a common theoretical framework for analysing,
comparing and generalizing document similarity functions that are based on different
representation schemes. Second, it allows the integration of intrinsic and extrinsic doc-
ument features in the same representation. Intrinsic features include words, n-grams,
etc., whereas extrinsic features may be the output of a clustering process or category
membership values generated by classification systems. Third, the ORF provides us
with a theoretical foundation and mechanism for ranking fusion.

1.2. Contributions

The first contribution in this thesis is an in-depth study of the benefits and limitations of
existing representation models. In particular, we analyse their ability to capture feature
specificity, diversity and quantitativity (discrete vs. continuous feature values). After
formalizing a number of desirable properties, we observe that none of the families of
document representation frameworks (e.g., representations based on sets, metric spaces,
language models, etc.) complies with all constraints.

On the basis of this analysis, the second and main contribution of this thesis is the defi-
nition of the Observational Representation Framework (ORF), which extends Shannon’s
traditional notion of the information content (−log(P (x))) to the management of con-
tinuous feature values. This extension is called the Observational Information Quantity
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(OIQ) and is grounded on fuzzy feature sets and inclusion relationships between docu-
ment observation outcomes in a document collection. We study the formal properties of
the ORF and OIQ in a comprehensive way as well as their generalization power relative
to traditional representation approaches.

The third contribution is an analysis of similarity functions and their foundations (i.e.,
cosine distance, Euclidean distance, feature overlap, etc.). We will see, through a study
of counterexamples and evidence provided in the literature, that neither Euclidean ax-
ioms nor set-based axioms (Tversky’s model) properly capture similarity in the context
of information access systems. On the basis of the ORF, we review the axiomatic on
which traditional similarity functions are based. Again, our analysis shows that different
families of similarity functions comply with different constraints. Based on this analy-
sis, we present a general and parametrizable similarity function called the Information
Contrast Model (ICM). The ICM, in addition to satisfying desirable formal constraints,
generalizes traditional functions such as the PMI, conditional probability, Euclidean
distance and Tversky’s linear contrast model.

The fourth contribution is related to the capability of the ORF to aggregate heteroge-
nous features into a document representation. For this, we develop a study case: the
clustering of tweets in the context of online reputation management. We empirically
prove that the model effectively integrates discrete features (words) with continuous
feature values. In our study case, the continuous values represent the proximity to
pre-annotated categories of tweets and previously generated clusters. The results show
that adding heterogeneous features increases the predictive power regarding the sim-
ilarity between tweet representations. In this sense, the ORF allows us to integrate
explicit features (i.e., words) with features extracted from supervised processes (class
membership).

Finally, the fifth contribution is a study of the foundations of unsupervised ranking fusion
on the basis of the OIQ and ORF. The application of our framework to ranking fusion
is developed on the basis that rank scores can be interpreted as quantitative document
features. We verify that the Observational Information Quantity (OIQ) generalizes tra-
ditional ranking fusion algorithms and explains the effectiveness of existing approaches
in different situations. We empirically study these phenomena in six different ranking
fusion scenarios.

1.3. Structure of the Thesis

This thesis is organized in eight chapters. A brief summary of the content of each chapter
is provided below.

Chapter 1

Introduction: It provides a motivation for the formalization of document repre-
sentation as a task of information access and establishes the contributions of this
thesis.
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Chapter 2

A Review of Representation Frameworks: We review the main represen-
tation approaches in unsupervised tasks. We highlight their strengths ans weak-
nesses, analysing their ability to capture: (i) specificity, which establishes that
the less common aspects of the information pieces should have greater relevance,
since they are the features that distinguish them from the rest of the information
pieces, (ii) diversity, which establishes the existence of relationships between the
different features of the information pieces; the elimination of redundancies facil-
itates the study of these relationships and (iii) quantitativity, which establishes
the need to capture binary and quantitative characteristics.

Chapter 3

Observational Representation Framework: Our representation framework
ORF is presented. Our framework deals to an extension of the traditional Shan-
non’s notion of information content, the one we have called Observational Infor-
mation Quantity (OIQ). This extension is able to manage continuous feature val-
ues. ORF not only fulfils the three properties highlighted in the previous chapter
(specificity, dependence and quantitivity), but also verifies others, such as mono-
tonicity with respect to values and features, as well as monotonicity with respect
to union and the combination of inverse features. It is also able to generalize the
most used representation models.

Chapter 4

Revisiting Similarity Axiomatics: We present a revision of the similarity
axiomatic between pieces of information, such as distances in a metric space,
Tversky’s feature-based similarity, etc. Based on the hypothesis that there is a
universal set of similarity principles that must be observed with respect to the
space of features and the representations of pieces of information, we define a
set of restrictions: identity, identity specificity, unexpectedness and dependency.
These restrictions can be summarized in a single axiom: similarity information
monotonocity (SIM), which considers pointwise mutual information (PMI) and
conditional probability as two complementary aspects.

Chapter 5

Analysing Similarity Functions: In this chapter, similarity functions are clas-
sified according to their representation paradigm. Based on ORF, we propose
a similarity measure called information contrast model (ICM). ICM generalizes
both the Pointwise Mutual information and the set-based models considering ad-
ditions and joints of information quantities. We also present a study case on
sentence similarities based on statistics in a popular image description corpus.

Chapter 6
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On-line Reputation Management on Twitter: A study case: We focus on
the reputation-monitoring scenario, in which social media messages are analysed
to identify conversations or events that can affect the reputation of a company
or brand. The proposed ORF model is compared with different representation
frameworks, using as baseline common schemes, such as bag of words and tf.idf.
In order to measure the proximity between information pieces, similarity measures
common in the literature are used (pointwise mutual information, Jaccard and
Lin’s distances), in addition to the similarity measure proposed in this work: ICM.
Our experiments confirm the hypothesis that adding heterogeneous features under
the same ORF-based weighting criterion increases progressively the similarity
estimation performance, even when features include both discrete and continuous
values and have different scale properties. Finally, a small study is carried out to
improve the performance of the approaches through the parameterization of the
proposed model.

Chapter 7

Applying the Observational Information Framework to Ranking Fu-
sion: Based on experimental results, we highlight a set of desirable properties
that any ranking fusion procedure should satisfy. We then analyse whether the
main ranking fusion methods, such as averaging, Borda’s rule, the family of Con-
dorcet’s methods, etc, satisfy them. Then, we observe that the ORF model
presented in this work can be adapted as a ranking fusion method (assuming
item scores as features). In addition, ORF satisfies all the desired properties,
and moreover, we see under which conditions the ranking fusion algorithms ap-
proximate OIQ. Finally, we also present the performance of the ranking fusion
methods in the experimental part.

Chapter 8

Conclusions: A summary of each chapter can be seen, and some conclusions are
drawn.

In addition, the thesis contains an appendix with the formal demonstrations of the
statements established in previous chapters.
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2
A Review of Representation Frameworks

2.1. Introduction

In this chapter, we analyse existing document representation frameworks. Representing
documents in non-supervised scenarios is challenging. In the absence of training data
sets, it is not easy to weight or scale feature values. For this purpose, a representa-
tion must capture at least three aspects of feature. The first is specificity. Uncommon
features, such as infrequent words, have greater weight than common features. This
principle underlies many popular representation techniques, such as tf·idf weighting,
stopword removal and perplexity in language models. The second aspect is feature de-
pendence. Statistically redundant features do not add information about documents.
This principle underlies many dimensionality-reduction methods such as latent seman-
tic indexing, latent Dirichlet allocation and word embeddings. The third property is
quantitativity. A suitable representation framework should be able to capture both dis-
crete and continuous feature values (e.g., binary word occurrence vs. class membership
or latent features). These three aspects will guide our analysis throughout this chapter.

Throughout this analysis of the literature, we will see that Shannon’s notion of informa-
tion content (IC), which is expressed as I(x) = − log(P (x)), is an underlying concept
in many representation schemes, enabling the capture of specificity and (in some cases)
dependency. However, the traditional definition of the IC is not compatible with contin-
uous feature values (quantitativity), given that the unlikelihood of features is estimated
in terms of discrete statistical events. Consequently, existing representation models are
not able to simultaneously capture specificity, dependency and quantitativity.

2.2. Documents as Vectors: Vector Space Models

In the following, we consider a collection of documents, denoted by D, and a set of
features, denoted by Γ = {γ1, . . . , γn}. We assume that for each document, there exists a
function, namely, πd(γi), that projects the document onto each feature γi. We formalize
existing document representation models on the basis of this function.

9
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Table 2.1: Characterization of representation models. None of the existing representa-
tion models are able to capture the three properties simultaneously.

Specificity Dependency Quantitativity
Documents as a Vector Space

tf (1) − − −
tf.idf (2) X − −

Documents as Density Distr.
Normalized tf (3) − − X

Documents as Feature Sets
Boolean model (4) − − −

Multi-sets (5) − − −
Lin’s Model (6) X − −

Documents as Fuzzy Sets
Original Fuzzy Set (7) − − X

Luca and Termini, Kaufman (8) − − X
Zadeh’s model (9) X − −

Documents as Feature Seq.
Non probabilistic (10) − − −

General Language Model (11) X X −
n-grams Language Model (12) X − −
Neural Language Models (13) X X −

Documents as Single Events:
Conjoint of Features (14) X X −

Documents as Feature Vectors
with Dimensionality Reduction
Principal Component Analysis (15) − X X

LDA, LSI (16) − X −

In vector space representation models, each document, d ∈ D is projected into an n-
dimensional space in accordance with its feature values:

d = (x1, . . . , xn), xi = πd(γi), 1 ≤ i ≤ n

The simplest representation approach is the binary bag of words (BoW) representation,
in which the value of the projection function, namely, µd(γi), is either zero or one
depending on whether the target feature is present in the document. This model can
be extended to the term frequency (tf ), which considers the frequency of words or
terms instead of their appearance; in this case, πd(γi) ∈ N. To capture the specificity of
features, vector space models are complemented by a weighting factor; the most popular
model of this kind is tf·idf (see (2) in Table 2.1):

πd(γi) = tf(d, γi) · idf(γi) ,

where:
tf(d, γi) = Frequency of γi in d ,

idf(γi) = log

( ∣∣D∣∣∣∣{d′ ∈ D : tf(d′, γi) > 0}
∣∣
)
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There is a direct correspondence between idf and the concept of IC (IC(γi) = −log(P (γi))
[101]. Thus, vector space models incorporate the notion of the IC to weight features in
accordance with their specificity.

Several extensions of idf weighting have been proposed, such as xI [100], the z-measure
[54], the residual idf [23] and gain [93]. More recently, Shirakawa et al. [108] proposed
an extension of idf for longer text pieces, such as phrases, that is based on information
theory. The use of Shannon’s entropy in IR has been explored in terms of weighting,
feature selection and search engines [64, 53, 61]. In all these cases, the feature weighting
methods focus on discrete features (e.g., words or phrases).

Another extension of vector space models consists of representing documents as proba-
bilistic density functions. This establishes the following constraint:

n∑
i=1

πd(γi) = 1

Within this family, the most common approach is the normalized tf approach (see (3)
in Table 2.1), which considers the frequencies of words (features) relative to the total
number of words in a document. This extension enables the consideration of quantitative
features; however, dependency and specificity are not captured since the distribution of
features in the whole collection of documents is ignored.

A general limitation of vector space models, e.g., (1), (2) and (3) in Table 2.1, is that
they do not consider feature dependency. For instance, single words in common phrases
(e.g., “Obama” vs. “Barack Obama”) can be redundant. There are two main types
of approaches for mitigating this issue. The first consists of considering more complex
linguistic units, such as named entities, n-grams, and phrases, as features. The second
consists of applying dimensionality-reduction processes, which are discussed in later
sections. Another important drawback, which is the focus of this thesis, is that specificity
(i.e., tf·idf ) is formalized on the basis of the feature frequency in documents; hence, it
is not possible to manage continuous valued features (quantitativity).

2.3. Documents as Feature Sets

Documents can be represented as sets of features. The most basic approach is the
Boolean model, shown with (4) in Table 2.1, where γi ∈ Γ is a feature in consideration
of the following:

d = {γ1, . . . , γm}, γi ∈ Γ, 1 ≤ i ≤ m ≤ n

Words and n-grams are the most commonly considered features; however, more complex
linguistic structures or even semantic units such as ontological concepts can also be
used in such a representation. Feature-set-based frameworks enable the application of
set operators, such as the intersection and union operators. Accordingly, it is easy to
adop set-theoretic similarity measures, such as the Jaccard distance:

(
|d∩d′|
|d∪d′|

)
. These

frameworks can be extended to countable features by using multi-sets and applying the
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maximum and minimum operators as the union and intersection operators; see (5) in
Table 2.1.

The main disadvantage of feature-set-based representation frameworks is that they do
not address specificity and dependency. In general, weights of the features correspond
to their salience in a document, whereas these two properties require consideration of
the statistics of the features in the whole document collection. However, specificity can
be captured by appending probabilities to a feature-set-based representation model; see
(6) in Table 2.1. That is, it is assumed that the features are statistically independent.
Therefore, the specificity and IC of a document can be estimated as products of proba-
bilities across features. In addition, it is possible to compute the union and intersection
of documents by applying the same operators as in set-based models:

d = {γ1, . . . , γm}, P
(
{γ1, . . . , γm}

)
=

m∏
i=1

P (γi) .

P (d ∩ d′) =
∏

γ∈d∩d′
P (γ), P (d ∪ d′) =

∏
γ∈d∪d′

P (γ) .

Dekang Lin [77] used such a representation to estimate the similarity between pieces of
information in terms of their unique and common contents. However, this representation
sacrifices dependency. Moreover, as in weighted vector space models, the definition of
the IC in Shannon’s theory is not able to capture quantitative features.

2.4. Documents as Fuzzy Sets

A natural way to extend feature-set-based models to quantitative features is via fuzzy
sets; see (7) in Table 2.1. Consider a collection of features Γ, which is also called a
universe of features. A document d can be directly represented as a fuzzy set as follows:

d =
(
Γ, f

)
, f(γi) = πd(γi)

where µd(γi) represents the salience or membership degree of feature γi with respect to
document d. Corresponding to the ordinary set operations of union and intersection,
fuzzy sets have similar operations that are based on maxima and minima. Fuzzy sets
were applied as an extension of the basic Boolean model in the 1980s and 1990s [26].
However, although fuzzy-set-based representations can capture quantitative features,
specificity and dependency are still ignored. Similar to the weighting schemes in vector
space models, capturing specificity requires linking fuzzy-set-based representations to
information theory.

Decades ago, various proposals asserted a direct connection between fuzzy sets and
Shannon’s entropy. For instance, [33] and [63] transformed a fuzzy representation into
a probability density function; see (8) in Table 2.1. Then, they computed the entropy
of the corresponding document in the traditional manner. Although this representation
captures quantitativity, like representation models based on density distributions (see



Section 2.5. Documents as Sequences of Features: Language Models 13

the previous section), it is not able to capture specificity and redundancy given that the
distribution of features across documents is not inferred; only the distribution, within
the same document is considered.

Another exception is a model that was previously proposed by [122]; see (9) in Table 2.1.
The author suggested a definition that considers both the probabilities and memberships
of elements.

H(d) = −
∑
γi∈Γ

πd(γi) · P (γi) · log
(
P (γi)

)
.

This representation approach captures specificity by means of the P (γi) component,
which represents the likelihood of a feature in probabilistic terms. However, this comes
at the cost of discretizing the features (quantitativity). In addition, this model assumes
feature independence.

A connection between fuzzy set-based representations and the IC has been partially
established, in a theory referred to as fuzzy information theory [67, 104]; however, this
theory focuses on the vagueness of fuzzy sets rather than on their unlikelihood (speci-
ficity) in the space of pieces of information.

Other approaches extract linguistic variables from documents and represent them as
fuzzy sets [35, 55]. However, these approaches are outside the scope of this thesis, as
they do not focus on document representation.

2.5. Documents as Sequences of Features: Language
Models

Other representation models start from the assumption that documents are sequences
of features (words or characters); see (10) in Table 2.1. Let γid denote the feature that
is located in the i-th position of document d, and let m denote the document length:

d =
(
γ1
d , . . . , γ

m
d

)
, γid ∈ Γ, 1 ≤ i ≤ m

The number of dimensions corresponds to the length of the document rather than the
number of features (as in a vector space model). Most editing-distance-based measures
work under such a representation [89, 112]. They are based on the number of changes
that are necessary to transform one sequence of words or characters into another se-
quence.

To capture specificity, language models extend this representation by considering the
probability distribution of word sequences; see (11) in Table 2.1. The inclusion rela-
tionships between shorter and longer sequences permit the inference of probabilities of
documents of various lengths. A key concept in language models is perplexity, which
refers to the likelihood of a word sequence normalized by its length. There is a di-
rect correspondence between the IC and perplexity. Texts are word sequences, and the
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perplexity of a text in the context of a language model reflects its IC.

Perplexity(d) = P
(
γ1
d , . . . , γ

m
d

)− 1
m =

m∏
i=1

P
(
γid | γ1

d , . . . , γ
i−1
d

)− 1
m .

I
(
γ1
d , . . . , γ

m
d

)
= −log

(
P
(
γ1
d , . . . , γ

m
d

))
= m · log

(
Perplexity

(
γ1
d , . . . , γ

m
d

))
.

The main contribution of language models is that they capture both word specificity
and dependencies. Language modelling has been exploited in multiple tasks. Several
works have expanded such representations to other linguistic features, such as part of
speech (PoS) tags and dependency structures [113]. Zhai [123] showed that a connec-
tion exists between language models and the tf·idf representation technique. However,
since language models are based on word occurrence, they do not capture quantitative
features.

On the other hand, estimating the likelihoods of long sequences of words is highly
challenging. Typically, this challenge is addressed via the n-gram model; see (12) in
Table 2.1, which assumes independence beyond a certain distance n: P

(
γ1
d , . . . , γ

m
d

)
'∏n

i=1 P
(
γid | γ

i−n
d , . . . , γi−1

d

)
. This approach partially captures dependency (only for

contiguous words).

A fundamental problem in this paradigm is the curse of dimensionality, which limits
modelling on larger corpora for universal language models. Neural language models are
language models based on neural networks, exploiting their ability to learn distributed
representations to reduce the impact of the curse of dimensionality. The first approaches
developed in this direction were word embeddings, which operate under the assumption
that the meaning of a word is defined by its textual context. In particular, neural
embeddings represent words as their internal neural network representations [85, 95].
Some previous works [11, 74] have demonstrated that the most popular word embedding
model, namely, skip-gram with negative sampling (Word2Vec) implicitly factorizes a
word-context PMI matrix: 〈~vw, ~vw′〉 ≈ PMI(w,w′). The main consequence is that a
correspondence exists between the inner scalar product of such word representations and
the IC: 〈~vw, ~vw〉 ≈ I(w). That is, the word vector length in Word2Vec preserves the IC
of words, thereby capturing specificity. Linguistic units that are longer than words and
other features, such as PoS tags and topic identifiers, have also been used [107].

Word embeddings generate word representations. However, in recent years, multiple
contextual neural language models have emerged that provide representations, not only
for single words but also for word sequences. These leverage the intuition that the
meaning of a particular text depends not only on the identity of a word itself, but
also on the other words that surround it this moment. Some models that have had
particular impact in the community are LSTM [58], COVE [81], ELMo [96], ULMFit
[59] and BERT [36].
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2.6. Documents as Single Statistical Events

Another alternative approach consists of representing documents as sets of features with
a conjoint probability distribution over the whole collection of documents:

d = {γ1, . . . , γn}, P (d) = P (γ1, . . . , γn)

This representation approach is able to capture the specificity of features, given that
less frequent features affect the conjoint probability to a greater extent. That is, the
conjoint probability is upper bounded by the probability of single features:

P (γ1, . . . , γn) ≤ P (γi), 1 ≤ i ≤ n .

In addition, unlike previous approaches, this representation model captures dependency.
For instance, redundant features do not affect the likelihood of documents:

P (γ1, . . . , γi, γi, . . . , γn) = P (γ1, . . . , γi, . . . , γn), 1 ≤ i ≤ n .

This representation enables the application of information-theory-based similarity mea-
sures. In particular, the pointwise mutual information (PMI) of two documents, denoted
by d and d′, has been widely used. The PMI can also be expressed as a combination of
ICs:

PMI
(
d, d′

)
= log

(
P
(
d, d′

)
P (d) · P (d′)

)
= I

(
d
)

+ I
(
d′
)
− I

(
d, d′

)
,

where I(d) = −log
(
P (d)

)
and I

(
d, d′

)
= −log

(
P (d, d′)

)
. Moreover, the IC can be

expressed as the PMI of a document with itself: PMI(d, d) = I(d). The PMI has
been proven to be highly effective in multiple word-similarity tasks [20, 28]. In addition,
several works on state-of-the-art approaches combine the notion of the IC with the
topological depth of ontologies [98, 1].

A conjoint probabilistic representation, which corresponds to (14) in Table 2.1, has the
main limitation of capturing only discrete feature values. Again, the reason is that the
notion of the IC was originally defined over discrete statistical events, thereby sacrificing
quantitativity.

2.7. Dimensionality Reduction

According to our analysis, the existing models do not capture dependency or provide a
feasible way of estimating it. According to the literature, the most successful way of
overcoming this problem is by projecting an object representation into a reduced set of
dimensions:

d = fproj
(
πd(γ1), . . . , πd(γn)

)
, fproj : Rn −→ Rm,m� n
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where fproj is a projection function that reduces the dimensionality from n to m. The
available projection functions include principal component analysis (PCA), kernel PCA,
and linear discriminant analysis (LDAn). PCA avoids redundancy and allows the man-
agement of continuous feature values; see (15) in Table 2.1. However, the notion of
specificity for continuous feature values remains an open issue.

In the context of text representation, the most traditional and well-known approach is
latent semantic indexing (LSI). As successors to LSI, in the 2000s, generative topic mod-
els such as latent Dirichlet allocation (LDA) [18] became popular; see (16) in Table 2.1.
LDA-based models have been exploited in multiple unsupervised scenarios. Given the
generalization power of generative models, some attempts have been made to include
continuous feature values in the Topic Over Time model [117]; however, the complexity
of the model definition does not permit the incorporation of many quantitative features.
Note that the neural language models described in Section 2.5 can also be understood
as dimensionality reduction techniques.

2.8. Conclusions: The Gaps in Representation Mod-
els

The analysis described in this chapter suggests that the IC is a key issue in many
representation models. It has direct correspondences with the popular idf weighting
method, the perplexity in language models, information-based measures such as the PMI
and some neural language models. The notion of the IC captures both specificity and
(at least on a theoretical level) dependence. However, Shannon’s IC does not enable the
management of continuous feature values. The reason is that it requires the estimation of
probabilities of discrete events. Note that the traditional differential entropy quantifies
the information of a whole distribution. However, the information quantity of a single
event (IC) cannot be applied to single values in a continuous distribution.

Consequently, specificity, dependence and quantitativity are incompatible in existing
representation models (see Table 2.1). Therefore, existing representation models do
not provide mechanisms for integrating, without supervision, heterogeneous features
such as time or second level features generated by processing tools (polarity, topicality,
factuality, centrality, etc.). In this sense, the main goal of the representation model
proposed in this thesis (the Observational Representation Framework) is to allow discrete
and continuous-valued features to be combined in the same representation. The proposed
representation approach is described in the next chapter.



3
Observational Representation Framework

3.1. Introduction

Measuring an object of study is a fundamental aspect of research in many disciplines.
Information systems and, in particular, information retrieval and natural language pro-
cessing, are not exceptions. In these areas, information is the object of study. The
closest notion to a measure of information is Shannon’s information content (IC), which
quantifies the information of a single message m in terms of its probability of being
drawn from among all possible choices in the message space: I(m) = −log(P (m)). As
shown by our analysis in the previous chapter, the IC is a core concept in many represen-
tation frameworks. Features that add specificity to documents have more weight than
frequent or statistically redundant features. We referred to those aspects of features as
specificity and dependence.

However, Shannon’s notion of the IC has an important limitation. As seen in the
previous chapter, the IC is applicable only to discrete events. Therefore, messages
cannot be characterized by continuous features1. That is, the IC is not compatible
with quantitative features such as the document length, creation date or number of
views. Other quantitative features of documents include the outputs of external system
components, such as the response of a sentiment polarity classification module or the
expected relevance according to alternative search engines. Features of this kind cannot
be captured and measured with the traditional notion of the IC. In the previous chapter,
we referred to this capability of a representation framework as quantitativity.

In this chapter, we present theObservational Representation Framework, which is grounded
on the Observational Information Quantity (OIQ) and its properties. The OIQ general-
izes the definition of Shannon’s IC to continuous values. The OIQ quantifies information
as in language models, captures quantitative features as in vector space models, and
allows an information algebra to be defined via set operators as in set-based represen-
tations.

In Section 3.2, the proposed observational representation model is defined and the al-
1Notice that differential entropy quantifies the information of continuous distributions, but not single

values.
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lowed algebraic operations are specified; in Section 3.3, the formal properties of this
model are analysed. Section 3.4 addresses the computability of the OIQ under various
statistical assumptions. Finally, in Section 3.5, the OIQ is related to several traditional
methods of representing texts: the weighted vector space model, language models and
distributional representations among others.

3.2. Defining the Observational Information Quan-
tity

The Observational Information Quantity (OIQ) [8, 48] is based on the intuition that
computers observe feature sets rather than documents themselves. Consequently, the
OIQ framework starts from the assumption that each document is unique and that there
exists a practically infinite amount of information underlying each document. This
implicit information is determined by aspects such as the author, context, situation,
time, scenario, channel, etc. In other words, all documents are extremely and equally
improbable. Therefore, we cannot compare them to each other in terms of the traditional
IC (−log(P (m))).

The observational framework studied in this thesis solves this conflict through a change of
paradigm. In brief, documents have no measurable information quantity to be estimated,
but the feature set instantiation can be derived from the observed document outcome.
Traditional Shannon information theory quantifies the IC in terms of the probability of
the message of interest being drawn from among all possible choices in the message space.
In contrast, the OIQ quantifies the IC of a message in terms of the probability
of its features appearing (being subsumed) in other messages. Consequently,
the OIQ quantifies to what extent the observed outcome allows the message
to be identified within the space of all messages.

To capture quantitative features, document observation outcomes are modelled as fuzzy
sets, and their inclusion relationships are used to model their likelihood, that is, the
number of document observations in which a certain observation is subsumed. In this
way, using inclusion relationships between representations based on fuzzy feature sets,
we can capture quantitative features and measure their informativeness in a probabilistic
framework.

Let D be the countable and infinite set of possible documents and let Γ be a set of
features. The projection of each document, d ∈ D, onto a feature, γ ∈ Γ, is denoted,
as in Chapter 2, by πd(γ). That is, as in vector space models, the representation is
grounded on the feature salience in documents. Then, document observation outcomes
are modelled as fuzzy feature sets, which are instantiations of quantitative features.

Definition 3.1 (Observation Outcome). An observation outcome X under the uni-
verse of features Γ is a fuzzy set (Γ, f) of features, where f : Γ→ R+ ∪ {0} is a feature
membership function.
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This means that an observation outcome is basically a value instantiation (membership
function) of features. On the other hand, each document has an associated Document
Observation Outcome:

Definition 3.2 (Document Observation Outcome). The observation outcome of
a document d, denoted by OΓ(d), under the universe of features Γ is an observation
outcome

(
Γ, πd

)
, where the membership function, πd : Γ→ R+ ∪ {0} corresponds to the

document feature projection function.

The purpose of using the notion of fuzzy sets is to exploit the associated inclusion
operators (see Definition 3.3). Regarding the range of a membership function, it should
be noted that the image of a feature set can be normalized; thus, the range of salience
or membership values is not relevant to our study.

According to the above definitions, the notion of an observation outcome can be under-
stood independently of the notion of a document. In fact, we can say that any fuzzy
set of features, denoted by X, is a possible observation outcome. This understanding
allows us to treat an observation outcome as an abstract object, without thinking in
terms of the representation of a particular document. For clarity, we will denote the
fuzzy feature set X =

(
Γ, f

)
by (x1, . . . , xn) where xi = f(γi) and n = |Γ|.

Now, we formalize the occurrences of an observation outcome X as follows.

Definition 3.3 (Occurrence of an Observation Outcome). The occurrence, Occ(X),
of an observation outcome X is the set of documents within the document set D whose
observation outcomes subsume X.

Occ(X) =
{
d ∈ D : OΓ(d) ⊇ X

}
.

To capture information-theory-based similarity functions such as the pointwise mutual
information or Lin’s similarity, it is necessary to define a formal probabilistic framework.
Our framework considers the probabilistic space

(
D, ℘(D), P

)
, where the probability

function is defined over the power set of documents ℘(D).

Under this probabilistic framework, an occurrence set Occ(X) is actually an element of
the power set ℘(D), i.e., a probabilistic event:

P
(
Occ(X)

)
= P

(
{d ∈ D : OΓ(d) ⊇ X}

)
.

Therefore, we can model the likelihood of a fuzzy feature set as its probability of oc-
currence among document observation outcomes. For instance, if words are considered
as features (BoW), the text (or document) d = “My pen” produces the observation out-
come OΓ(d) =

(
{“My”, “pen”}, f

)
. The occurrence of OΓ(d) is the set of documents

containing “My” and “pen”, which is a superset of the occurrence of “My little pen is
lost” :

Occ
(
{“My”, “pen”}

)
⊃ Occ

(
{“My”, “pen”, “is”, “lost”}

)
.
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Figure 3.1: An example of documents, observation outcomes, occurrences and observa-
tional information quantity over the BoW feature set.

Thus, larger observation outcomes have lower likelihoods than smaller outcomes.

P
(
Occ

(
{“My”, “pen”}

))
> P

(
Occ

(
{“My”, “pen”, “is”, “lost”}

))
.

Note that our sample space is defined by the set of possible documents D, while tradi-
tional probabilistic representation frameworks are defined over a feature sample space(
Γ, ℘(Γ), P

)
, which prevents the modelling of quantitative features (probabilistic events

are discrete). In addition, considering documents as the sample space allows us to cap-
ture the notion of feature occurrence as well as statistical relationships between features
via set operators.

The ORF combines strengths from various representation frameworks. Similar to feature-
set-based representations, it allows the union and intersection operators to be applied to
observation outcomes. Similar to vector-space-based representations, it allows continu-
ous feature values to be captured via fuzzy sets. Similar to probabilistic representation
frameworks, it allows the likelihood of features to be defined. This is the purpose of the
OIQ which is defined as follows:

Definition 3.4 (Observational Information Quantity). The Observational Infor-
mation Quantity (OIQ) of an observation outcome, denoted by I

(
X
)
, is the negative

logarithm of the probability of its occurrence:

I
(
X
)

= −log
(
P
(
Occ(X)

))
.

For clarity, we will use IΓ
(
d
)
to denote the OIQ of a document observation outcome

under the feature set Γ: IΓ
(
d
)

= I
(
OΓ(d)

)
.

We can illustrate the representation framework with the example showed in Figure 3.1.
Let us imagine a universe of only three documents “My pen”, “My little pen is lost” and
“My bag is lost”. Then, the OIQ that is associated with “My pen” would be estimated as
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−log
( 2

3
)
, given that these two word features are contained in two existing observation

outcomes. In a document corpus, the OIQ of an observation of two specified words
corresponds to the probability of observing those two words in a randomly selected
message.

Note that this formalization links the OIQ with the extent to which the representation
identifies the message. In other words, the more information the observation outcome
contains, the more likely this message is to be the one that is actually observed. For
instance, the words “my” and “pen” appear in multiple of the above messages. If we
include additional information such as other words, time, author, or context, then the
resulting feature set will identify the particular message.

In terms of the set operators, an inclusion relationship between representations is related
to the minimum feature value between them. Therefore, the inclusion of a fuzzy feature
set X in a document observation outcome, OΓ(d) can be expressed as:

OΓ(d) ⊇ X ⇔ πd(γi) ≥ xi, i = 1, . . . , |Γ| .

In other words, the occurrence of an observation outcome X is the set of documents
that have a greater instantiation of features πd(γi) than xi for every feature. On this
basis, we can express the OIQ of an observation outcome X as follows:

I
(
X
)

= log

(
1

P
(
{d ∈ D : πd(γi) ≥ xi, i = 1, . . . , |Γ|}

)) .

where πd(γ) is the projection of features onto documents in D. Likewise, the OIQ of a
document observation outcome can be expressed as:

IΓ
(
d
)

= log

(
1

P
(
{d′ ∈ D : πd′(γ) ≥ πd(γ),∀ γ ∈ Γ}

)) .

In addition, we can aggregate information via the fuzzy set union operator.

Proposition 3.1. The OIQ of a union of observation outcomes is equivalent to the OIQ
of their maximum feature values. Formally, given two observation outcomes X and Y:

I
(
X ∪ Y

)
= −log

(
P
(
{d ∈ D : πd(γi) ≥ max(xi, yi), i = 1, . . . , |Γ|}

))
.

3.3. Formal Properties

For simplicity, we illustrate the formal properties of the OIQ by assuming that the
documents of interest are texts and the features are words. The first property is mono-
tonicity. The value of the information quantity should grow with the feature values. In
the context of word features, increasing the number of occurrences of words in a text
should increase its OIQ. This property can be formalized as follows.
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Property 3.1 (Feature Value Monotonicity). Increasing the feature instantiation
values increases the OIQ. Given two observation outcomes (fuzzy feature sets) X and Y
over a feature set Γ = {γ1, . . . , γn}, the following is verified:

xi ≥ yi, ∀ i ∈ {1, . . . , n} ⇒ I
(
X
)
≥ I

(
Y
)
.

Note that this property also holds for any quantitative feature. In addition, since the
set of possible documents, D, is countable and infinite, a strict increase in one feature
is sufficient to produce a strict increase in the OIQ.

xi ≥ yi, ∀ i ∈ {1, . . . , n} ∧ ∃i ∈ {1, . . . , n}
(
xi > yi

)
⇒ I

(
X
)
> I

(
Y
)
.

Therefore, the OIQ exhibits quantitativity, as it is sensitive to changes in continuous-
valued features.

On the other hand, the more features we consider, the more information we have about a
document. This aspect is also captured by the OIQ, in the sense that it is also monotonic
with respect to the feature set.

Property 3.2 (Feature Set Monotonicity). Adding features to the set Γ increases
the OIQ values of document observation outcomes. Let X and Xsub be two observation
outcomes such that X =

(
Γ, f

)
and Xsub =

(
Γ− {γ}, f

)
:

I
(
X
)
≥ I

(
Xsub

)
.

In addition, the OIQ is additive in regard to the observation outcomes. More concretely,
the OIQ is monotonic with respect to the union of observations.

Property 3.3 (Monotonocity of the Union of Observation Outcomes). Given
two observation outcomes X and Y the OIQ of their union is larger than those of the
individual outcomes:

I
(
X ∪ Y

)
≥ I

(
X
)
.

The above property can be interpreted as follows. Taking union of an increasing num-
ber of observation outcomes gradually specifies the identity of the observed document,
through either the inclusion of new features or higher feature values. For instance, the
union of the two outcomes {“my”,“red”,“pen”} and {“red”,“red”,“is”} characterizes the
document “My red pen is indeed red” to a greater extent than the individual observation
outcomes do.

The next property states that the OIQ captures specificity by giving more weight to
infrequent features. For instance, if two words (features) appear in a document to the
same extent, then, as in traditional tf·idf weighting, the information quantity associated
with each feature depends on the frequency of that word in the entire collection.

Property 3.4 (Specificity). The more unexpected a feature instantiation is, the more
informative it is. Given two single feature observation outcomes X =

(
{γ}, f

)
and
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X ′ =
(
{γ′}, f ′

)
where f(γ) = f ′(γ′) = v, we have the following implication:

P
(
{d ∈ D : πd(γ) ≥ v}

)
< P

(
{d ∈ D : πd(γ′) ≥ v}

)
=⇒ I

(
X
)
≥ I

(
X ′
)
.

The next property is related to dependency. Let us consider a collection of web pages.
Suppose that “Barack” and “Obama” always appear together. Then, the probabilities
of observing “Barack”, “Obama” and “Barack Obama” on various web pages would
be similar. That is, “Obama” does not contribute additional information relative to
“Barack”. This also holds for continuous values. Consider the recentness of web pages
as measured in either seconds or days, both of which are real-valued quantities. These
two features are redundant in terms of the OIQ. The probability of a page being more
recent than another page is independent of whether the recentness is measured in seconds
or days. That is, two features are redundant if they are monotonically related.

Property 3.5 (Dependence). Redundant features do not affect the OIQ values of
document observation outcomes. Given two features γ1, γ2 ∈ Γ, if there exists a
real strict monotonic function g that satisfies: πd(γ1) = g

(
πd(γ2)

)
, ∀ d ∈ D, then,

I{γ1}
(
d
)

= I{γ1,γ2}
(
d
)
, ∀ d ∈ D .

This property is closely related to the idempotency axiom in information algebra [65],
which states that combining a piece of information with part of itself yields nothing new.

As explained previously, the Observational Representation Framework allows different
OIQs to be derived for the same document depending on which features are considered.
The OIQ converges to Shannon’s IC when an infinite set of features is considered.

Property 3.6 (Convergence with Shannon’s Information Quantity). The OIQ
of a document observation outcome under an infinite number of heterogeneous features
corresponds to the likelihood of the document itself.

lim
|Γ|→∞

IΓ
(
d
)

= − log
(
P (d)

)
.

This is true whenever we assume that we can always find a feature that discriminates
two distinct documents. Therefore, only a document itself improves its feature instan-
tiation in terms of any potential feature. This property suggests that the ground-truth
OIQ of a document is obtained as the result of considering an infinite number of fea-
tures. Therefore, features and their instantiations can be interpreted as artefact to make
estimation feasible.

Another possible concern is the effect of combining inverse features. For instance, we
could consider both the ’height’ and ’shortness’ of a person. According to the concept
of the OIQ, being extremely tall is equally informative as being extremely short. If we
combine these two features, the only way that both features can be (non-strictly) satisfied
simultaneously is if all people being compared have the same height. For instance, if we
consider the occurrence of a word as a feature, the OIQ will correspond to the likelihood
of observing this word. By contrast, if we consider the absence of the same word as
a feature, then the OIQ will correspond to the likelihood of representations that do
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not contain this word. If both the occurrence and absence of a word are considered
as features, then the OIQ can be interpreted as the likelihood of observing exactly the
same numbers of word occurrences. Formally, this property is described as follows.

Property 3.7. The OIQ for two inverse and continuous-valued features corresponds
to the probability of equality in this feature. Given a document d ∈ D and a feature
γ ∈ Γ, consider the set of features

{
γ, γ−1}, where γ−1 is defined by πd(γ−1) = πd(γ)−1,

∀d ∈ D; then:
I{γ,γ−1}

(
d
)

= − log
(
P
(
{d′ : πd′(γ) = πd(γ)}

))
.

This property has also been studied in algebraic information theory [65] (the nullity ax-
iom), in which it has been concluded that contradictory information absorbs everything
and can only be derived from contradictions.

3.4. Estimating the Observational Information Quan-
tity

According to Definition 3.4, computing the OIQ requires estimating the following:

IΓ
(
d
)

= log

 1
P
({
d′ : πd′(γ) ≥ πd(γ),∀ γ ∈ Γ

})
 .

When managing a limited set of document features (e.g., creation date, views, topicality
and sentiment polarity), it is possible to estimate the conjoint probability distribution of
features from a finite collection Dc ⊂ D. We can use conjoint cumulative distributions
and copula analysis techniques to overcome this challenge.

On the other hand, in the case of discrete features such as words, OIQ estimation
converges with the traditional challenge encountered in both n-grams and neural-based
language models, that is, the estimation of the probability of a sequence of discrete
features. The next section formally describes this connection.

The open issue is how to integrate categorical and quantitative features. Unfortunately,
an exponential number of samples would be required to estimate the conjoint cumulative
distribution for all features simultaneously2. One way to address this problem is by
assuming independence between categorical and quantitative features:

Definition 3.5. Feature Independence: Given two disjoint sets of features, F , F ′ ⊆
Γ, under the assumption of feature independence, the OIQ of these two disjoint sets of
features corresponds to the sum of the OIQs:

IF∪F ′
(
d
)

= IF
(
d
)

+ IF ′
(
d
)
.

2For instance, just considering the occurrence of a few words as text features is enough to obtain an
empty result in a standard web search engine.
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In other words, under the assumption of independence between two feature sets, the
resulting OIQ corresponds to the sum of their OIQs. Note that the feature independence
assumption implies that the probability of documents improving projections in terms of
several features is equivalent to the product of the probabilities over single features:

P
(
{d′ : πd′(γ) ≥ πd(γ),∀ γ ∈ Γ}

)
=
∏
γ∈Γ

P
(
{d′ : πd′(γ) ≥ πd(γ)}

)
.

Strictly speaking, calculating the OIQ under this assumption sacrifices dependency, but
the dependency within each feature subset can be preserved. In any case, our main goal
is to simultaneously preserve specificity and quantitativity, which is not achieved by any
existing representation method (see Table 2.1).

The second aspect to address when estimating the OIQ of a document is the document
length. Our formalization starts from a set of potential documents D. For homogeneity,
this set is assumed to consist of sentences, or paragraphs, or posts, or full documents, etc.
The problem is that the longer the documents are, the more challenging the cumulative
probability estimation is. One way of managing long passages of text is by assuming
information additivity.

Definition 3.6. Information Additivity: Consider a document d, that is a concate-
nation of a set of document pieces, {ω1, . . . , ωn}. Under the assumption of information
additivity, the OIQ is the sum of the OIQs of each document piece:

IΓ
(
d
)

=
n∑
i=1
IΓ
(
ωi
)
.

For instance, suppose that we consider words as document pieces, each of which is char-
acterized by the word itself. Then, the OIQ of a concatenation of m words, w1, . . . , wm,
is expressed as:

I
(
{w1, . . . , wm}

)
= −

m∑
i=1

log
(
P (wi)

)
.

Note that considering words as document pieces is not equivalent to considering words
as features due to the effect of repeated words:

I
(
{w1, w2, w2}

)
= −log

(
P
(
{d : tf(d,w1) ≥ 1}

)
· P
(
{d : tf(d,w2) ≥ 2}

))
6=

6= IΓ
(
{w1}

)
+ IΓ

(
{w2}

)
+ IΓ

(
{w2}

)
.

The accumulation of highly probable features can produce noise in the OIQ computation.
The effectiveness of stopword removal or vocabulary reduction via the tf·idf criterion
has been reported repeatedly in the literature. Supported by this principle, we can
similarly apply feature projection reduction by truncating projections under a specified
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OIQ threshold, which is denoted by th:

IthΓ
(
d
)

=

IΓ
(
d
)
, if IΓ

(
d
)
≥ th

0 in other case
. (3.1)

In summary, given a partition of features such that Γ = Γ1∪· · ·∪Γk and an OIQ threshold
th, under the assumptions of feature independence and information additivity, the OIQ
of a document that consists of a set of atomic text pieces {ω1, . . . , ωm} can be estimated
as follows:

IthΓ
(
{ω1, . . . , ωm}

)
=

m∑
i=1

k∑
j=1
IthΓj
(
ωi
)
. (3.2)

3.5. The OIQ vs. Other Text Representation Models

In this section, we relate the OIQ to several traditional methods of representing texts:
the weighted vector space model, language models and distributional representations. In
the following, to generalize binary and quantitative feature values, we define the notion
of a feature indicator.

Definition 3.7. Given a feature γ ∈ Γ, a feature indicator, denoted by χγ , is a mapping
function from the set of documents to R, defined as follows:

χγ(d) =

1, if γ ∈ d

0, otherwise
.

The following properties state how the OIQ generalizes both the idf and tf·idf repre-
sentation models:

Proposition 3.2. Under the assumptions of word information additivity and equiprob-
ability, the OIQ is equivalent to the tf representation. Let d = (x1, . . . , xn) be the
tf representation of a document d with respect to the vocabulary (feature set) Γ =
{χw1 , . . . , χwn}:

I{χwi}
(
d
)

= tf(wi, d) = xi .

Proposition 3.3. When word occurrences are taken as features, the OIQ of a word is
equivalent to its idf.

I{χw}
(
w
)

= idf(w) .

Proposition 3.4. When word occurrences are taken as features and under the assump-
tion of information additivity, the OIQs of single features are equivalent to the tf·idf
representation.

I{χwi}
(
d
)

= tf(wi, d) · idf(wi) .

Intuitively, idf corresponds to the OIQ of a word-feature, and tf is captured by the
information additivity across words, that is, the OIQ that is associated with a word is
accumulated across its appearances in the document.
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In addition, language models can be generalized by considering word/position pairs as
features:

Proposition 3.5. When the occurrences of word-position pairs are taken as features
and under the assumption that the documents in the collection are generated from a
probability distribution Θ, the perplexity over the language model defined by θ of a word
sequence d = (w1, . . . , wm) is an exponential function of the OIQ:

Perplexity(d) = 2
1
mIΓ

(
d
)
.

Given the correspondence between IΓ
(
w1, . . . , wm

)
and P (w1, . . . , wm), we can infer the

unigram model by assuming information additivity:

IΓ
(
w1, . . . , wm

)
= −log

(
m∏
i=1

P (wi)
)
,

or the n-gram model by considering the corresponding statistical assumptions:

IΓ
(
w1, . . . , wm

)
= −log

(
m∏
i=1

P (wi | wi−(q−1), . . . , wi−1)
)
,

Traditional feature-set-based models and their information theory extensions are also
generalized by the OIQ. For instance, Lin’s distance can be expressed in terms of OIQs.

Proposition 3.6. Given two documents d1 and d2, when word occurrences are taken as
features and under the assumptions of feature independence and information additivity,
Lin’s distance can be expressed as:

Lin
(
d1, d2

)
=
I
(
OΓ(d1) ∩ OΓ(d2)

)
I
(
OΓ(d1)

)
+ I

(
OΓ(d2)

) .

3.6. OIQ vs. Copulas and Information Algebra The-
ories

Copulas are models that describe the relationship between a multivariate distribution
and the marginal distributions. For a random vector X with continuous marginal distri-
butions Fi(xi), i = 1, . . . , d, according to Sklar’s theorem [88], a multivariate cumulative
distribution can be expressed using the univariate marginal cumulative distributions and
a copula function, C:

P (X1 ≤ x1, . . . , Xd ≤ xd) = F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) .

Then, through the application of the probability integral transformation to the original
random vector X, it is possible to produce a uniform random vector U = (U1, . . . , Ud),
with Ui = Fi(Xi). The copula is the joint distribution function of the random variables
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Ui = Fi(Xi), i = 1, . . . d. In addition, given the joint distribution and the marginals it
is possible to define a copula as:

P (U1 ≤ u1, . . . , Ud ≤ ud) = C(u1, . . . , ud) = F (F−1(u1), . . . , F−1(ud)) ,

where the generalized inverse function G−1 of a cumulative density function G is defined
as G−1(u) := inf{x ∈ R ∪ {∞} : G(x) ≥ u} for all u ∈ (0, 1] and G−1(0) := sup{x ∈
R ∪ {∞} : G(x) = 0}. A detailed treatment of copulas is given in [88, 62].

Copulas can facilitate the analysis of the structures of joint distributions. The OIQ can
be expressed in terms of copulas, that is, cumulative joint distributions. Redefining each
feature γi as a random variable whose distribution is determined by its projection values
πd(γi) in D, we obtain:

I
(
X
)

= −log(C(x1, . . . , xn)) = −log(P (γ1 ≥ x1, . . . γn ≥ xn)) .

In this way, we can separately estimate each marginal distribution Fi(.) and the depen-
dency structure among the marginal distributions.

The copula is defined over ≤ comparisons. To adapt this structure to the OIQ, it is
sufficient to either reverse the feature values or use a survival function. A multivari-
ate survival function can be expressed using the univariate survival functions and the
survival copula:

P (X1 ≥ x1, . . . Xd ≥ xd) = F̄ (x1, . . . , xd) = C̄(F̄1(x1), . . . , F̄d(xd)) .

Here, the survival copula is a distribution function on the hypercube (not a survival
function) of the random vector Ū = (Ū1, . . . , Ūd) with Ūi = F̄i(Xi)

P (Ū1 ≤ u1, . . . , Ūd ≤ ud) = C̄(u1, . . . , ud) = F̄ (F̄−1(u1), . . . , F̄ (F̄−1(ud))) .

On the other hand, observational information theory has a connection with algebraic
information theory [66, 65], which concerns the inclusion relationships between pieces of
information. This theory refer to this relationship information as order information and
the information quantity is interpreted as the set of questions that a document is able
to answer. In contrast, in the OIQ, the information quantity of a document observation
outcome is related to the number of representations across the universe of documents in
which it is subsumed.

Like other information algebras, the OIQ permits operations between information rep-
resentations. However, instead of operating directly on documents as in previous in-
formation algebras [65], the OIQ operates on fuzzy feature sets, without requiring the
identity of the represented document to be specified.
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3.7. Conclusions: The Generalization Power of the
ORF and OIQ

In this chapter, we have proposed a representation framework that captures the three
aspects analysed in the previous chapter: specificity, quantitativity and dependence.
A review of these formal properties shows that the OIQ is invariant with respect to
redundant features (dependence), monotonic with respect to the feature values (quanti-
tativity) and sensitive to the likelihood of feature occurrences in the document collection
(specificity). In particular, to our knowledge, it is the first representation model capa-
ble of capturing dependence, quantitativity and specificity simultaneously. The OIQ
addresses these aspects by means of the following theoretical properties:

While the probability sample spaces in previous representation frameworks have
consisted of features (words, n-grams, etc.), in the ORF, the sample space is made
up of the infinite and countable universe of documents. In other words, each
document is a probabilistic event. Note that, with an infinite document space,
this probability tends towards zero.

To prevent the management of zero probability events, our framework distinguishes
between a document itself and the corresponding observation outcome.

Observation outcomes are modelled as feature fuzzy sets, capturing continuous
values.

The likelihood of an observation outcome is given by the mass probability of the
documents subsuming it. We call this likelihood the Observational Information
Quantity (OIQ).

We have validated the OIQ in terms of its generalization power. We have seen that the
OIQ can be considered equivalent to most traditional representation methods, such as
idf, tf·idf, and language models, under various statistical assumptions. The main chal-
lenge to be overcomed is OIQ estimation, which is related to copula theory in the case
of quantitative features and to traditional dimensionality reduction techniques in the
case of categorical (discrete) features. The assumptions of feature set independence and
the information additivity are baseline practical solutions for OIQ estimation when in-
tegrating quantitative and binary feature sets and managing variable-length documents.

The above properties enable the application of union and intersection operators to docu-
ment observation outcomes. Therefore, the OIQ can support similarity functions based
on both feature sets and information theory. In the next chapter, we exploit this ca-
pability to review the theoretical foundations of similarity functions in the context of
information access.
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Similarity
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4
Revisiting Similarity Axiomatic

4.1. Introduction

Computing similarity is a core problem that pervades, either implicitly or explicitly,
many information access tasks. For instance, document retrieval systems are (at least
partially) based on computing the similarity between queries and documents. Sum-
marization, document clustering and many other text processing applications require
computing the similarity between texts. Evaluation measures for text generation tasks
(such as summarization or machine translation) compare the output of systems against
reference models produced by humans. Beyond textual similarity, applications such
as collaborative recommendation are based on estimating the similarity between users
(based on their preferences and behaviour) and products (also based on user preferences).

In general, computing similarity requires, at a minimum, deciding how to represent items
and how to compare representations. We focus on the second problem: finding general,
suitable similarity functions able to operate accurately on as many kinds of items and
representation models as possible. Widely used similarity functions include the cosine
distance, the Euclidean distance, Jaccard distance, and Lin’s similarity.

In this chapter, we analyse various similarity axiomatic and their suitability for infor-
mation access scenarios. We will see that the properties of similarity functions and the
representation framework are interdependent. In particular, the representation frame-
work on which similarity functions are based determines which properties can be satisfied
or even defined.

The Observational Representation Framework (ORF) presented in this thesis captures
aspects of representations based on metric spaces, feature sets and information theory.
This generality opens the door for the formal comparison of similarity functions under
a unique theoretical framework. On the basis of the ORF, we define five general formal
constraints for similarity functions. Four of these formal constraints can be synthesized
into a single sufficient formal property called similarity information monotonicity. We
will describe its relation to traditional theoretical similarity frameworks.

33
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4.2. Previous Similarity Axiomatic Frameworks

In this section, we review the most popular similarity axiomatic frameworks. For each
one, we examine boundary cases in which the axioms are at least debatable. For simplic-
ity, in all our examples, the considered features are words; however, all our reasoning is
equally valid for other features used to represent documents, such as n-grams, concepts,
syntactic and semantic relationships, meta-data, user preferences in recommendation
scenarios, or followers in a network.

Note that our word-based examples are simplifications, and the reader might argue
that the problems found in previous axiomatic frameworks may be due to a poor or
incomplete definition of the corresponding representational features. For instance, some
word mismatch problems disappear if we use proper ontological concepts, instead of
words, as features. Our focus, however, is on the similarity function as an abstract
general mechanism for comparing documents, which should be equally valid regardless
of the particular choice of features. In other words, our goal is to identify desirable
properties of similarity functions in such a way that they do not need to be redefined
for each representation model, task, or dataset.

4.2.1. Metric Spaces

The most traditional axiomatic framework originates from the concept of a metric space
[106, 69]. In psychology, the assumption that similarity can be expressed as a distance in
a metric space was proposed by Shepards. His purpose was to give a rational probabilistic
argument for the origin of his generalization law [105]. In this theoretical framework,
a document is projected into a multidimensional space X = (x1, x2, . . . , xn) where xi
represents the projection of the document into the space with respect to feature γi. Then,
the corresponding similarity axioms are directly inherited from the standard geometric
distance axioms.

The first axiom is maximality, which states that every pair of identical objects achieves
a maximal and constant similarity:

Sim(X,X) = Sim(Y, Y ) ≥ Sim(X,Y ) .

Objections to maximality have already been raised in the context of cognitive science
[68]. Based on experiments on several topics – such as the cognition of Morse code [103]
and the cognition of rectangles varying in size and reflectance [16] – many researchers
believe that the axiom of maximality is not consistent with human intuition. Tversky’s
experiments, in particular, showed that maximality (or minimality in distance) does
not hold when a larger stimulus with more features is compared to a smaller stimulus
with fewer features: if a stimulus shows more details, its level of perceived self-similarity
increases [114]. Lee et al. [73] related this phenomenon to Hick’s law: the reaction time
to a choice in a visual search becomes longer as the amount of information increases.

An example of how maximality is violated in the context of information access problems
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is query specificity in information retrieval. If a query is identical to a document, then the
longer the query is, the more relevant the match. For instance, a two-word document is
less relevant to an identical two-word query than a 200 word document is to an identical
200-word query. In both cases, we are faced with self-similarity, but in the second case,
the object contains more information than in the first case, and the link between query
and document has much more specificity.

The second axiom related to metric spaces is triangular inequality:

Sim(X,Y ) ≥ Sim(X,Z) + Sim(Z, Y ) .

which has also been refuted in several cognitive experiments [102, 103]. Other studies
also have found evidence against the third axiom, symmetricity [14, 115, 92]:

Sim(X,Y ) = Sim(Y,X) .

From a cognitive point of view, the reason for discarding the symmetricity axiom is that,
according to human perception, specific concepts tend to be closer to generic concepts
than vice versa. For instance, Tversky found that subjects commonly perceived the
concept of “North Korea” as being closer to “Red China” than vice versa. Such asym-
metricity often plays a role in information access problems; for instance, query-document
similarity in information retrieval is inherently asymmetric. In the context of natural
language processing, Gawron found that an asymmetric lexical similarity measure, us-
ing parameters favouring the less frequent words, greatly improved the performance of a
dependency-based vector model [46]. Other authors have also achieved improvements in
the context of information access when modelling asymmetricity in similarity functions
in multiple domains [45, 50, 91, 52, 60, 38]. Therefore, a straightforward symmetricity
axiom is too restrictive for a general understanding of similarity. On the other hand,
similarities in opposite directions are rarely compared in the context of information ac-
cess systems; for instance, most test collections designed to test systems that compute
semantic textual similarity are symmetric by design.

4.2.2. Tversky and Gati

Other axiomatics start from a featural representation of the form X = {γ1, . . . , γn}.
In particular, Tversky and Gati [115] attempted to formulate axiomatics for similarity
from an ordinal perspective, defining a monotone proximity structure that is based on
three properties. The first property is dominance, which states that replacing features
with shared features increases the similarity:

Sim({γ1, γ
′
1}, {γ2, γ

′
2}) < min{Sim({γ1, γ

′
1}, {γ1, γ

′
2}), Sim({γ1, γ

′
1}, {γ2, γ

′
1})} .

When illustrated with words as features, this implies that the proximity of “brown mon-
key” to “red cross” is lower than that to “brown cross” because the feature “red” in the
second case has been replaced with the common feature “brown”. This axiom, however,
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is grounded on the idea of independence across dimensions: in this example, dominance
is assumed regardless of how “red” and “brown” interact with “cross”. However, words –
as well as other features – do not co-occur randomly. In the context of cognitive science,
several authors have reported a lack of feature independence in similarity [49, 82] 1.
For instance, let us consider a clustering scenario in which images are grouped in accor-
dance with their descriptors. Suppose that three images are tagged as “Disney mouse”,
“Mickey game” and “Mouse game”. “Mickey” is commonly associated with the Dis-
ney character, while “mouse game” can be associated with other contexts. Therefore,
even though they do not share any words, “Disney mouse” could be considered closer
to “Mickey game” than to “Mouse game”, as expressed in Example 4.1 below, which
contradicts the dominance axiom.

Example 4.1.
Sim(“Disney mouse”, “Mickey game”) > Sim(“Disney mouse”, “Mouse game”) .

The second axiom is consistency, which states that the ordinal relation between simi-
larities in one dimension is independent of any other dimension.

Sim({γ1, γ
′
1}, {γ2, γ

′
1}) < Sim({γ1, γ

′
1}, {γ4, γ

′
1})⇔

Sim({γ1, γ
′
2}, {γ2, γ

′
2}) < Sim({γ1, γ

′
2}, {γ4, γ

′
2}) .

Again, this axiom is grounded on the assumption that the features are mutually in-
dependent, and we can find counterexamples in the context of textual similarity. For
instance, the word “mouse” is closer to “Mickey” than to “hardware” in the context
of Disney films, but this is not true in the context of computers and external devices
(“wireless”). Therefore, one might consider the following relations.

Example 4.2.
Sim(“Disney mouse”, “Disney Mickey”) >

Sim(“Disney mouse”, “Disney hardware”)

Sim(“Wireless mouse”, “Wireless Mickey”) <

Sim(“Wireless mouse”, “Wireless hardware”) .

Finally, the third constraint, transitivity, is grounded on a definition of betweenness that
assumes the validity of consistency [115]. Therefore, Example 4.2 also contradicts this
third axiom.

4.2.3. Feature Contrast Model

The best-known work of Tversky on similarity is the Feature Contrast Model [114].
Under the assumption that documents can be represented as sets of features, he defined

1Notice that cognitive studies manage a generic notion of feature. Here we exemplify with word
features, but with the goal in mind that the principles apply to any type of feature
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three basic axioms: matching, monotonicity and independence. Once more, all of them
are based on the idea that the features are mutually independent. The matching axiom
states that the similarity between two feature sets X and Y can be computed as a
function of the intersection and difference of their feature sets:

Sim(X,Y ) = α · f(X ∩ Y )− β1 · f(X \ Y )− β2 · f(Y \X) ,

where f represents a certain salience function. The second axiom, monotonicity, is
closely related to dominance. It states that the similarity increases with an increase in
the intersection between sets or decrease in their difference.

(X \ Y ) ⊆ (X ′ \ Y ′)

(Y \X) ⊆ (Y ′ \X ′)

(X ∩ Y ) ⊇ (X ′ ∩ Y ′)

 =⇒ Sim(X,Y ) ≥ Sim(X ′, Y ′) .

In addition, the similarity strictly grows if at least one of the inclusion relationships
is strict. However, again, we know that this is not always true for texts, given that
words (and text features in general) do not occur independently of each other. Indeed,
adding different words to a pair of texts may increase their similarity, as in the following
example where “desktop” and “computer” bring “apple” and “mouse”, respectively, into
the context of computers.

Example 4.3.
Sim(“Apple desktop”, “Mouse computer”) > Sim(“Apple”, “Mouse”) .

Example 4.1 (from the previous section) also contradicts monotonicity, given that the
similarity increases despite the fact that the intersection decreases and the difference
increases.

The third property is independence. Its formalization is less intuitive than those of the
other axioms (refer to [114] for a deep explanation). Essentially, it states that features
affect similarity in an independent manner. However, as shown before, Example 4.2
contradicts independence. In addition, as stated above, previous work in the cognitive
science literature raises objections to the assumption of independence [49, 82].

In the context of information access the advantage of considering statistical dependen-
cies between features is corroborated by the use of multiple dimensionality reduction
approaches at the representation level: latent semantic indexing, latent Dirichlet alloca-
tion, neural distributional representations such as Word2Vec [84] or BERT [37], etc. In
this thesis, our purpose is to model dependency within a similarity axiomatic framework.

Note that a connection exists between the Feature Contrast Model and the metric-space-
based axioms: the Feature Contrast Model satisfies the metric space axioms for certain
parameter values. The following proposition is proved in the Appendix A.2 of this work.

Proposition 4.1. The Feature Contrast Model satisfies the metric space axioms if α = 0
and β1 = β2 > 0 (i.e., Sim(X,Y ) = −β · f(X \ Y ) − β · f(Y \ X)) and the salience
function is additive for disjoint feature sets: X ∩ Y = ∅ =⇒ f(X ∪ Y ) = f(X) + f(Y ).
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In other words, the main contribution of Tversky’s axioms with respect to metric spaces
is that they consider the salience of common features in addition to differences, and its
main limitation is the assumption of feature independence.

4.2.4. Similarity Axioms in Information Retrieval

Similarity plays a key role in information retrieval (IR). The most basic IR scenario
can be interpreted as the problem of estimating the similarity between a query (which
represents the needs of a user) and the documents in a collection. Fang and Zhai
presented a seminal work on the axiomatic of information retrieval. These axiomatic,
summarized below, have been used to improve search functions and term weighting
models [42, 41, 27].

Considering both a document and a query consisting of multisets of words (with possible
repeated words), D = {w1, . . . , wn} and Q = {w1, . . . , wm}, respectively; the frequency
c(w,D) of words in document D; and any reasonable measure td(w) for term discrim-
ination (such as the inverse document frequency), the axioms of Fang and Zhai are
expressed as follows.

TFC1: A greater number of occurrences of a query term increases the document
score:

Q = {q}, |D1| = |D2|

c(q,D1) > c(q,D2)

 =⇒ S(Q,D1) > S(Q,D2) .

TFC2: The increase in the score due to an increase in the frequency of a query
term is smaller for larger frequencies:

Q = {q}, |D1| = |D2| = |D3|

c(q,D3) = c(q,D2) + 1

c(q,D2) = c(q,D1) + 1

 =⇒ S(Q,D2)−S(Q,D1) > S(Q,D3)−S(Q,D2).

TFC3: Distinct query terms have a greater effect than repeated query terms:

Q = {q1, q2}, |D1| = |D2|

c(q1, D1) = c(q1, D2) + c(q2, D2)

c(q1, D2) > 0, c(q2, D2) > 0

 =⇒ S(Q,D2) > S(Q,D1) .

TDC: Discriminative terms have a greater effect:

Q = {q1, q2}, |D1| = |D2|

c(q1, D1) = c(q2, D2) = 1

c(q2, D1) = c(q1, D2) = 0

td(q2) > td(q2)


=⇒ S(Q,D2) > S(Q,D1) .
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LNC1: Non relevant terms decrease the score:

t /∈ Q

c(t,D1) = c(t,D2) + 1

∀w 6= t (c(w,D1) = c(w,D2))

 =⇒ S(Q,D2) > S(Q,D1) .

LNC2: Concatenating the document with itself does not decrease the score:

q ∈ Q, c(q,D1) > 0

∀w (c(w,D2) = k · c(w,D1))

 =⇒ S(Q,D2) ≥ S(Q,D1) .

TF-LNC: The relevance score should not decrease with the addition of more
query terms to the document:

Q = {q}, c(q,D2) > c(q,D1)

|D2| = |D1|+ c(q,D2)− c(q,D1)

 =⇒ S(Q,D2) > S(Q,D1) .

These axioms can be interpreted as a refinement of Tversky’s Feature Contrast Model
in which the informativeness (discriminativeness) of features is taken into account. The
axioms TFC1, TFC3, TF-LNC and LNC1 are closely related to Tversky’s monotonocity
axiom because they capture the effects of commonalities and differences between a query
and a document. TDC is related to the informativeness of single features. TF2 and TF3
reflect the idea that the informativeness of features progressively decreases when they
appear several times. Finally, LNC2 represents the idea that the informativeness of
features must be normalized with respect to the document size.

As in the cases of Tversky’s axioms and the metric space axioms, the main limitation of
Fang and Zhai’s framework is that it does not consider dependencies between features
(although this is a practical assumption in the context of IR). In fact, these axioms do
consider a restricted version of dependency because they assume that repeated features
(words) are interdependent (in particular, a repeated feature contributes less information
than different features; see axioms TF2 and TF3). However, this is not sufficient to
capture the characteristics of Examples 4.1, 4.2 and 4.3.

With regard to Example 4.1, according to LNC1, removing “Mickey” should increase
the score, as should adding “mouse”, according to TFC3. Therefore:

Sim(”Disney mouse”, ”Mickey game”) < Sim(”Disney mouse”, ”Mouse game”) .

With regard to Example 4.2, the above axioms do not state anything, although the
extended constraints defined in [43] are sensitive to this situation. Moreover, this theo-
retical framework is oriented towards retrieval problems, so it deals only with cases in
which different documents are compared against the same query. Therefore, Example
4.3 cannot be addressed by these axioms.
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4.3. A Formal Similarity Constraint Set for Informa-
tion Access

The analysis in the previous section suggests that similarity is still an unclear notion
and that the basic constraints or axioms of similarity functions defined in IR and other
research areas do not capture every relevant aspect in the context of information access.
In general, they focus on how many features are shared and to what extent. They
do not capture the specificity, informativeness and dependence of features, which are
core elements in information theory. This shortcoming arises from the fact that the
existing axiomatic and formal constraints are supported by geometric or set-based object
representations. In this thesis, we take advantage of the expressive power of the proposed
Observational Representation Framework (ORF), which generalizes vector- and feature-
set-based representations while capturing the notion of specificity or unexpectedness
from information theory. Based on this theoretical framework, we define a novel set of
formal similarity constraints2.

4.3.1. Notation: Representation and Similarity Functions

Here, we return to the notions of document observation outcomes, occurrence and the
Observational Information Quantity (OIQ) (see Chapter 3). Since document observa-
tion outcomes are modelled as fuzzy feature sets, we can apply set operators to them.
In addition, the membership values of a fuzzy feature set generalize the vector-based
representations, and the probabilities of features can be captured via the notions of
occurrence and the OIQ. Therefore, under this formal framework, we can analyse and
compare similarity measures from different families.

Let D be a collection of documents, Γ be the universe of features and P(Γ) be the set of
all possible fuzzy feature sets. We start by defining the similarity between fuzzy feature
sets as follows.

Definition 4.1. A similarity function, Sim : P(Γ) × P(Γ) → R, is a mapping from
P(Γ)× P(Γ) to the set of real numbers:

That is, the input to a similarity function is any pair of fuzzy feature sets, and the
output is a real value. Our axioms are defined in terms of larger/smaller similarity
value comparisons. Therefore, the range of the similarity values (e.g., (0..1), (0..∞),
(−∞..∞), etc.) is not relevant to our study.

The main hypothesis in this work is that there exists a universal set of basic similarity
principles (formal constraints) that should be observed regardless of the feature space
and the sample set of document representations. Therefore, our formal study does not
prescribe these aspects and can accommodate various notions of similarity, which will
depend on how the features and statistical events are defined.

2Note that we use the term "formal constraints" instead of “axioms” (which is more common in the
literature) because they are meant to restrict the space of admissible similarity functions, rather than
as a starting point for a deductive system (which is the usual interpretation of an axiomatics).
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In the remainder of the chapter, for clarity, we will denote the concatenation of two
disjoint fuzzy feature sets X and Y by XY :

XY ≡ (X ∪ Y ) where X ∩ Y = ∅ and X,Y 6= ∅ .

In addition, for readability, we will denote the probability of occurrence of a fuzzy feature
set. i.e., P (Occ(X)) = P

({
d ∈ D : OΓ(d) ⊇ X

})
, simply by P (X).

4.3.2. Formal Constraints

We define our formal constraints in terms of the behaviour of the similarity upon the
concatenation of fuzzy feature sets as expressed above (XY ). This is a simplified sit-
uation, as we do not consider aspects such as repeated words or quantitative features
(such as temporal meta-data). However, we note that the more a set of constraints is
able to characterize and discriminate similarity functions in such simple situations, the
more powerful these constraints are.

Constraint 4.1. [IDENTITY]: Adding or removing features to or from a fuzzy feature
set decreases its similarity to the original set:

Sim(X,X) > Sim(X,XY ) and

Sim(XY,XY ) > Sim(XY,X) .

This first constraint states that modifying a document representation (by removing or
adding information) decreases its similarity to the original representation. Intuitively,
“if something changes, it is no longer the same”. For instance, although we cannot
axiomatically state how close “Apple mouse” is to itself, we can at least say that it is
more similar to itself than to “Apple” or to “Apple mouse desktop”. This constraint is
actually a relaxed version of maximality: we postulate that any document representation
is more similar to itself than to any other representation, but not that its self-similarity
is necessarily maximal. The reason to avoid the postulation of maximality is that,
according to Tversky and many other authors (see Section 4.2.1), the more information
an object contains, the more self-similar it is; in fact, this is our second constraint.

Constraint 4.2. [IDENTITY-SP]: Adding new features to a fuzzy feature set increases
its self-similarity:

Sim(XY,XY ) > Sim(X,X) .

This constraint matches the observations in previous works that specific features have
a greater effect on similarity than generic features (see Section 4.2.1). Let us consider
Figure 4.1. In the leftmost case, the red pair seems to be more similar than the rest,
while when presenting the right distribution, the pair of white apples seems to be more
similar. In both cases, the most similar apples are identical. The key point is that the
less likely the documents are (or the more specific they are), the more they are similar
to themselves.
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Figure 4.1: Red and white apples are considered the most similar object pairs by humans
in the left and right side, respectively.

In the context of information retrieval, two documents with the same title are proba-
bly related, but two documents with the same content are certainly related. In other
words, the more information two identical document representations contain (feature
specificity), the more strongly we can ensure that the documents represented by those
representations are similar. Let us illustrate this constraint with the following basic
example.

Example 4.4.
Sim(“Apple mouse desktop”, “Apple mouse desktop”) >

Sim(“Apple mouse”, “Apple mouse”) > Sim(“Apple”, “Apple”) .

Note that the second part of Constraint 4.1:

Sim(XY,XY ) > Sim(XY,X) ,

can be directly derived from the first part:

Sim(X,Y ) > Sim(X,XY ) ,

together with Constraint 4.2:

Sim(XY,XY ) > Sim(X,X) ∧ Sim(X,X) > Sim(X,XY ) =⇒

=⇒ Sim(XY,XY ) > Sim(X,XY ) .

Therefore, we could reduce Constraint 4.1 to its first component. However, we maintain
this partial redundancy so that our formal constraints will better align with the intuitive
properties of similarity functions.

According to the literature, one limitation of Tversky’s axioms is that they do not
account for feature dependencies within the intersection and difference subsets [49]. To
overcome this limitation, we define two constraints UNEXPECTEDNESS and DEPENDENCY

that describe the expected behaviour of the similarity function in regard to feature
dependencies (for a discussion in probabilistic terms, see Chapter 3).
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Constraint 4.3. [UNEXPECTEDNESS]: Adding unexpected features affects the similar-
ity to a greater extent than adding expected features. Formally:

If P (Y | X) < P (Y ′ | X) then

Sim(X,XY ) < Sim(X,XY ′) .

For instance, suppose that we wish to improve the diversity of the search results for a
query about “Mickey”. Let us imagine that the first retrieval result is tagged as “Mickey”,
and as the second result, we need to select between two images tagged as “Mickey mouse”
and “Mickey apple”. “Mickey mouse” is more similar to “Mickey” than “Mickey apple”
is, because "apple" is less likely to appear in the context of “Mickey” than “mouse”
is. Therefore, we should select “Mickey apple” if we wish to improve the search result
diversity.

Example 4.5.
Sim(“Mickey”, “Mickey mouse”) > Sim(“Mickey”, “Mickey apple”) .

Constraint 4.4. [DEPENDENCY]: Adding new features to two fuzzy feature sets in-
creases their mutual similarity if their respective conditional probabilities increase:

If P (XZ | Y Z ′) > P (X | Y ) and P (Y Z ′ | XZ) > P (Y | X)

then Sim(XZ, Y Z ′) > Sim(X,Y ) .

This constraint introduces the possibility that adding different features to different doc-
ument representations may bring them closer instead of necessarily making them less
similar, as postulated by Tversky. For instance, in the following example, “apple” and
“mouse” become closer to each other once the domain is specified by the additional
words “desktop” and “computer”, respectively.

Example 4.6.
Sim(“Apple desktop”, “Computer mouse”) > Sim(“Apple”, “Mouse”) .

This example corresponds to the constraint through the following mapping: X = “ap-
ple”, Z = “desktop”, Y = “mouse” and Z ′ = “computer”. Thus, it is easier to find
“Computer mouse” given the context “Apple desktop” than it is to find “mouse” given
the context “apple” because “apple” is much more ambiguous. The constraint postu-
lates, in other words, that this increase in similarity occurs when each of the two new
pieces is more likely in the presence of the other.

Below, we prove that this formal constraint is not compatible with Tversky’s framework;
see Proof A.2.2.

Proposition 4.2. Tversky’s monotonicity axiom is not compatible with the DEPEN-

DENCY constraint.
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As shown in the previous section, asymmetricity is an accepted characteristic of simi-
larity. This assertion is corroborated by studies in both cognitive and computer science
[14, 115, 92, 45, 50, 91, 52, 60, 38]. However, to our knowledge, the asymmetricity
property and its behaviour have not yet been formalized. We attempt to formalize the
concept of asymmetry with the following formal constraint.

Constraint 4.5. [ASYMMETRICITY]: A fuzzy feature set is more similar to any of its
parts than vice versa:

Sim(XY,X) ≥ Sim(X,XY ) .

Intuitively, for instance, Louis Armstrong is more similar to the concept of human than
vice versa, because Louis Armstrong has all the features of a human, whereas human
describes Louis Armstrong in a very limited way. Another example, this time in the
space of pieces of information, is the similarity of a medical-surgical book on human
anatomy to an anatomical description of arms. The full book on human anatomy is
more similar to the description of arms than vice versa because the first fully describes
the second, but the converse is not true.

This constraint incorporates the results of multiple studies in cognitive sciences that have
concluded that similarity is inherently asymmetric [114] because specific objects (feature
supersets) are more similar to undefined objects (feature subsets) than vice versa. Under
this constraint, the fuzzy feature set XY has more features and is therefore more specific
than the fuzzy feature set X. In other words, XY describes X (and therefore, there
is a strong directional connection), but X does not describe XY (and therefore the
connection in this direction is weaker). The ASYMMETRICITY constraint is consistent
with the salience imbalance hypothesis studied by Ortony in the context of cognitive
science [92], which states that “the salience of the ground (common features) is higher
in the second component”.

Note, however, that the notion of similarity in information access problems has certain
unique characteristics, and there may be cases in which similarity is applied to tasks
that are symmetric in nature. In a clustering task, for instance, there is no preferred
direction for computing similarity, and therefore, the use of asymmetric measures can be
superfluous or even counterproductive. Indeed, in practice, most reference datasets used
to study the problem of similarity in information access are symmetric by construction.
Hence, ≥ is used instead of > in the constraint. We leave this last constraint as an open
proposal for further discussion.

4.3.3. Similarity Information Monotonicity (SIM): A Sufficient
Condition

We will now introduce a property called, similarity information monotonicity (SIM),
which subsumes our first four constraints: any similarity function that complies with
SIM also complies with IDENTITY, IDENTITY-SP, UNEXPECTEDNESS and DEPENDENCY. It
may also comply ASYMMETRICITYbut does not necessarily do so. We will use SIM as
the starting point to derive the similarity functions presented in this thesis. Note that
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defining a sufficient condition for these four axioms makes it easier to check the formal
suitability of similarity functions.

According to the analysis summarized in Table 5.1 (see following chapter), the pointwise
mutual information and conditional probability together are able to satisfy our four basic
formal constraints (only ASYMMETRICITY is violated by both the PMI and conditional
probability). The intuition is that the PMI and conditional probability represent two
complementary aspects of similarity, that might be combined into a single similarity
measure that satisfies our four main constraints.

We now postulate the similarity information monotonicity axiom, in accordance with
the above intuitions.

Definition 4.2. [Similarity Information Monotonicity] If the PMI and conditional
probabilities between two fuzzy feature sets grow, then the similarity between these sets
also grows. Formally, if:

∆PMI(X,Y ) ≥ 0 ∧ ∆P (X | Y ) ≥ 0 ∧ ∆P (Y | X) ≥ 0 .

then ∆Sim(X,Y ) ≥ 0. In addition, if at least one increase is strict (>), then the
increase in similarity is also strict.

In other words, SIM basically states that the PMI and conditional probability are the
two basic dimensions of similarity and that the similarity should be monotonic with
respect to them. If both grow, then the similarity grows. In the case of a trade-off in
the PMI and conditional probability values, SIM does not prescribe how the similarity
behaves; it will depend on the particularities of the similarity function. SIM can be
expressed in terms of increases in the joint and single information quantities, as stated
in the following lemma; see Proof A.2.3.

Lemma 4.1. SIM is equivalent to stating that a positive similarity increase occurs when
both the information quantities of the compared fuzzy feature sets and their sum increase
to a greater extent than the information quantity of the union of the fuzzy feature sets:

∆I(X) + ∆I(Y ) ≥ ∆I(X ∪ Y )⇐⇒ ∆PMI(X,Y ) ≥ 0

and ∆I(X) ≥ ∆I(X ∪ Y )⇐⇒ ∆P (X|Y ) ≥ 0

and ∆I(Y ) ≥ ∆I(X ∪ Y )⇐⇒ ∆P (Y |X) ≥ 0 .

The most important aspect of SIM is that it is a sufficient condition for our four basic
constraints. The following propositions state that satisfying SIM is a sufficient condition
for satisfing the IDENTITY, IDENTITY-SP, DEPENDENCY and UNEXPECTEDNESS constraints;
see Proof A.2.4.

Proposition 4.3. Satisfying SIM is a sufficient condition to satisfy IDENTITY, IDENTITY-

SP, DEPENDENCY and UNEXPECTEDNESS constraints.



46 Chapter4. Revisiting Similarity Axiomatic

Given that SIM is defined in a symmetric manner, it cannot be a sufficient condition
for the ASYMMETRICITY constraint. In fact, we instead have the following proposition;
see Proof A.2.5.

Proposition 4.4. SIM does not imply any constraint with respect to the ASYMMETRIC-

ITY conditions.

Finally, although we have discarded Tversky’s axioms due to the need to consider the
dependencies between features, SIM has a direct correspondence with Tversky’s mono-
tonicity axiom under the assumption of feature independence:

Proposition 4.5. Under the assumption of statistical independence between the inter-
section and difference components of two fuzzy feature sets and considering the OIQ as
the salience function:

I(XY ) = I(X ∩ Y ) + I(X \ Y ) + I(Y \X) .

SIM is equivalent to Tversky’s monotonicity axiom.

Let us summarize the properties of SIM: (i) it can be used to provide a single proof for
all of our four main constraints (identity, identity specificity, unexpectedness and depen-
dence); (ii) it models the traditional PMI and conditional probability as complementary
components of similarity; and (iii) it has a direct correspondence with Tversky’s axioms
when independence is assumed between the intersection and difference components.

4.4. Conclusions: The Gaps in Previous Similarity
Axiomatic

The importance of feature specificity and dependence in determining similarity has been
reported by many authors in cognitive studies and in the context of information sys-
tems. However, according to our analysis, traditional axiomatic similarity frameworks
fail to capture a number of intuitive characteristics in the context of information access
tasks. Specificity is not captured by metric space similarity axioms, and dependency
is not captured by Tversky’s feature-set-based axioms (only partially at the represen-
tation level). In addition, geometric models assume feature independence, which is not
consistent with information system scenarios.

The representation framework proposed in this thesis, the ORF, allows us to axiomatize
the specificity and dependence of features in similarity functions. In particular, our five
proposed basic constraints (identity, identity specificity, unexpectedness, dependency
and asymmetricity) capture specific situations that are consistent with psychological
studies and are not captured by previous axiom sets. In the next chapter we will study
existing similarity functions under these constraints.

Finally, four of these five constraints can be synthesized into a single property (SIM).
In addition, under certain statistical assumptions, SIM is equivalent to Tversky’s mono-
tonicity axiom. SIM examines the behaviour of the pointwise mutual information (PMI)
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and conditional probability. More precisely, SIM states that increases in the PMI and the
conditional probabilities in both directions between two objects must be accompanied
by an increase in similarity. This formal result suggests that the PMI and conditional
probability are the two main components of similarity [7]. In the next chapter, we will
use this property to define a similarity function that satisfies all constraints.





5
Analysing Similarity Functions

5.1. Introduction

As seen in Chapter 3, the representation framework presented in this thesis, the ORF,
allows us to capture notions from various representation paradigms. Under the ORF,
the formal constraints proposed in Chapter 4 enable an analytical study of existing
similarity functions from a novel perspective, capturing notions of representations based
on feature sets, distance measures and information theory. In this chapter, we provide a
global overview of existing similarity functions within a general theoretical framework.
More concretely, we classify existing similarity functions into families according to their
representation paradigms. We will see that the feature representation determines the
formal properties of similarity functions. In the literature, the formal limitations of
similarity functions are mitigated via feature selection and smoothing techniques. We
will see that these drawbacks can instead be addressed by the similarity function itself.

Based on the ORF paradigm and the SIM property described in the previous chapter, we
define the Information Contrast Model (ICM), a similarity function that generalizes the
pointwise mutual information (PMI) and Tversky’s linear contrast model. Consequently,
the ORF connects information theory with feature-set-based similarity functions. We
will also prove that among the similarity functions analysed in this thesis, the ICM is the
only one that satisfies the similarity axioms defined in Chapter 4. Finally, we will present
a study case consisting of estimating the similarities for the axiom counterexamples
shown in the previous chapter. This study supports the ICM as a suitable theoretically
grounded similarity function.

5.2. Similarity Functions from a Representational Per-
spective

We start with the categorization of the existing similarity functions proposed in [73]: ge-
ometric, featural and alignment-based functions, and we extend this categorization with
three additional categories. Table 5.1 summarizes the properties satisfied by different
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similarity functions, which will be discussed in the remainder of this section. We do not
analyse transformational approaches, as they do not follow a particular representation
scheme described in Chapter 2.

5.2.1. Similarity as a Distance in a Metric Space

As seen in Section 2.2, objects can be represented as points in a metric space, and
many similarity functions are based on this paradigm, which satisfies the maximality,
triangular inequality and symmetricity axioms. Typically, documents are modelled as
vectors of word frequencies, and similarity is defined in terms of metric distances such
as the Euclidean or cosine distance.

The IDENTITY constraint is satisfied by the metric space axiomatic, considering that
IDENTITY is actually a relaxed version of maximality. However, maximality is not com-
patible with IDENTITY-SP: in a metric space, every document is maximally similar to
itself regardless of its specificity. Therefore, the specificity of features is not considered
(see line 1 in Table 5.1).

In practice, this drawback is mitigated at the representation level. Weighting mecha-
nisms, such as the popular tf·idf, fulfil this role by assigning greater weights to infrequent
words. Note that the second component

(
log
(

1
p(w)

))
of the tf·idf expression has a cor-

respondence with Shannon’s information quantity [3]. Stopword removal is also a way
of discarding frequent (non-informative) features.

According to the literature, the metric-space-based cosine similarity outperforms other
measures, such as the Euclidean distance, in the context of information retrieval tasks.
One possible reason is that the cosine similarity smooths the effect of highly frequent
features by considering only proportionality instead of absolute differences between ob-
jects. In other words, the cosine similarity does not reward features if they are salient
in both pieces of information. This property mitigates the lack of IDENTITY-SP. For
instance:

Cosine((2, 10), (1, 12)) = Cosine((2000, 10), (1000, 12)) .

UNEXPECTEDNESS and DEPENDENCY are not satisfied by metric distances, considering
that feature dependency is not directly captured by such a similarity function. In
the context of textual similarity, many approaches mitigate this weakness by enrich-
ing text representations with semantic features from ontologies such as WordNet. Term
dependencies can then be captured by means of relationships such as synonymy and
hypernymy [83, 98].

UNEXPECTEDNESS and DEPENDENCY can also be approached by means of dimensionality
reduction techniques, which avoid redundant features. One of the earliest approaches
to be developed was latent semantic indexing (LSI) [34]. Later, in the 2000s, generative
topic models such as latent Dirichlet allocation (LDA) [18] became popular. More
recently, word embedding representations have gained popularity [85, 95]. Some word
embedding techniques, such as PMI matrix factorization or skip-gram with negative
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sampling (Word2Vec), allow the estimation of probabilistic similarity functions. More
specifically, a correspondence exists between the scalar product of two vectors and their
pointwise mutual information (PMI) [74, 11]. As we will analyse in Section 5.2.6, the
PMI satisfies IDENTITY-SP and DEPENDENCY but not UNEXPECTEDNESS. In addition, the
cosine similarity under the Word2Vec representation, which has been used as a baseline
in many tasks, satisfies UNEXPECTEDNESS(see Proof A.3.1) but neither IDENTITY-SP nor
DEPENDENCY. Given that the cosine distance is a metric distance, we can guarantee
that it does not satisfy IDENTITY-SP. However, we are unable to check analytically check
whether it satisfies DEPENDENCY. We leave this analysis for future work.

Proposition 5.1. Under the assumption that the PMI of words is not negative, the
cosine similarity under the skip-gram with negative sampling representation satisfies
UNEXPECTEDNESS.

There are alternative approaches that additionally consider the user context. In the
context of IR, Fuhr et al [44] proposed a method in which documents are represented
in terms of their relevance to different queries (according to a standard IR function).
In addition to applying user-oriented dimensionality reduction, this approach mitigates
non-compliance with UNEXPECTEDNESS, as features appearing in all queries will not
affect the similarity. It also mitigates non-compliance with the DEPENDENCY constraint,
as redundant features will reinforce the similarity of documents to identical queries.

Overall, the main conclusion that we can draw from this analysis is that the recent
improvements to metric space distances have been focused on indirect ways of satisfying
UNEXPECTEDNESS and DEPENDENCY. Strictly speaking, IDENTITY-SP is an underlying
shortcoming derived from the maximality axiom.

5.2.2. Similarity in the Form of Feature Set Operators

From this perspective, objects are represented as sets of features (see Section 2.3). Sim-
ilarity is characterized based on Tversky’s axioms (matching, monotonicity and inde-
pendence). As explained in previous sections, a key contribution of Tversky is the
representation theorem, which states that similarity can be modelled as a linear func-
tion of the intersection and difference of sets. This is known as Tversky’s linear contrast
model. Given two feature sets, X and Y :

Sim(X,Y ) = α1 · f(X ∩ Y )− β1 · f(X \ Y )− β2 · f(Y \X) ,

where f is a certain salience function that is monotonic with respect to set subsumption
(f(X) < f(X ∪ Y )).

As discussed in previous sections, Tversky’s independence axiom is not compatible with
UNEXPECTEDNESS or DEPENDENCY (see Proposition 4.2). However, its parametriza-
tion (β1 and β2) can capture ASYMMETRICITY. The linear contrast model also captures
IDENTITY-SP, given that (see line 3 in Table 5.1):

Sim(X,X) = α1 · f(X ∩X)− α2 · f(X \X)− α3 · f(X \X) =
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= α1 · f(X)− α2 · f(∅)− α3 · f(∅) = α1 · f(X) .

As an alternative, Tversky proposed the ratio contrast model,

Sim(X,Y ) = α1 · f(X ∩ Y )
α2 · f(X \ Y ) + α3 · f(Y \X) + α4 · f(X ∩ Y ) ,

which is more commonly applied in the literature. In fact, many set-based similarity
measures can be derived from the ratio contrast model by taking the set size as the
salience function f . Maurice Ling reported a comprehensive description of these mea-
sures [78]. By fixing different values for 〈α1, α2, α3, α4〉, we can obtain measures such as
the Jaccard distance (〈1, 1, 1, 1〉), the precision (〈1, 1, 0, 1〉), the recall (〈1, 0, 1, 1〉), the
Dice coefficient (〈2, 1, 1, 2〉), the Anderberg coefficient (〈1, 2, 2, 1〉) or the first Kulczynski
coefficient (〈1, 1, 1, 0〉).

Tversky’s empirical studies showed that the linear contrast model parametrization is
highly sensitive to the particular scenario. One of the reasons why the ratio contrast
model appears more commonly in the literature is its robustness to different parametriza-
tions. More formally, the ratio contrast model satisfies the following proposition; see
Proof A.3.2.

Proposition 5.2. Whenever α1 = α4, any variation in α1 and α4 in the ratio contrast
model produces ordinal equivalent similarity functions.

In other words, only the relative values of α2 and α3 must be estimated to mantain a
consistent ordering between similarity values. The drawback of the ratio formulation is
that IDENTITY-SP is no longer satisfied; see Proof A.3.3 and line (4) in Table 5.1.

5.2.3. Similarity as an Information-Theoretic Operator

In the literature, feature-set-based similarity functions have been enriched with notions
imported from information theory. Basically, such enrichment relies on considering
features as probabilistic events. In this way, feature salience can be modelled in terms
of information content (IC) and entropy.

For instance, in the context of cognitive science, Lee et al. [73] incorporated the IC into
Tversky’s featural model. Analogously, in the context of computer science, Lin’s model
extends Tversky’s ratio contrast model by capturing the specificity of features in terms
of Shannon’s theory [77]. Given a set of formal assumptions, Lin obtained the similarity
theorem, which is stated as follows.

Theorem 5.1 (Lin’s Similarity Theorem). The similarity between X and Y is mea-
sured by the ratio between the amount of information needed to express the commonality
of X and Y and the information needed to fully describe what X and Y are:

Sim(X,Y ) = logP (common(X,Y ))
logP (description(X,Y )) ,
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where common(X,Y ) is a proposition that expresses the commonalities between X and
Y , and description(X,Y ) is a proposition that describes what X and Y are.

For text string similarity, Lin instantiated the model into the following similarity mea-
sure, considering words as independent features:

Lin(X,Y ) =
2 ·
∑
w∈X∩Y I(w)∑

w∈X I(w) +
∑
w′∈Y I(w′) .

This expression is consistent with Tversky’s ratio contrast model, if we use the IC
(− logP (X)) as the f function [21].

Assumption 4 (maximality) in Lin’s work [77], intrinsically contradicts the IDENTITY-SP

constraint. DEPENDENCY also cannot be satisfied, as adding features necessarily increases
the information in the denominator. However, Lin’s model does capture UNEXPECTED-

NESS, as the addition of unexpected features increases the denominator to a greater
extent. Unfortunately, this property is lost under the assumption of independence in
Lin’s measure for text string similarity (see lines (5) and (6) in Table 5.1).

Cazzanti and Gupta [21] attempted to improve Lin’s similarity by applying the linear
contrast model with fixed parameters instead of the ratio contrast model, obtaining the
Residual Entropy Similarity (RES):

RES = f(X ∩ Y )− 0.5 · f(X \ Y )− 0.5 · f(Y \X) ,

where the salience function f is the conditional entropy of random pieces of information,
R, with respect to the observed features:

f(X) = H(R | X ⊂ R) .

Essentially, this salience function assigns more weight to infrequent features. The main
contribution of the RES with respect to Lin’s measure in terms of our axioms is compli-
ance with IDENTITY-SP. However, it has the same limitations as Lin’s model in terms of
DEPENDENCY. More explicitly, the RES satisfies Tversky’s monotonicity axiom (Prop-
erty 8 in [21]) which is not compatible with DEPENDENCY (see line (7) in Table 5.1).
Regarding ASYMMETRICITY, these measures take fixed parameters that make them sym-
metric; however, the parameters can be fixed to induce asymmetricity in the direction
required by the constraint.

In conclusion, set-based similarity functions can be extended to probabilistic events to
capture IDENTITY-SP and UNEXPECTEDNESS. The underlying limitation of both the RES
and Lin’s measures is that the intersection and difference sets are managed indepen-
dently. The effect is that feature dependence across these subsets is ignored, meaning
that DEPENDENCY cannot be satisfied (see lines (5), (6) and (7) in Table 5.1).
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5.2.4. Similarity as a Comparison of Probability Distributions

Objects can be represented as probability distributions of features. Cha et al. de-
scribed 65 different similarity measures based on comparisons of probability density
functions [22]. This perspective offers remarkable generalization power, and in fact,
metric distances and set-based similarity functions can be interpreted in these terms
[22]. However, a common limitation of this perspective is that the corresponding mea-
sures do not satisfy UNEXPECTEDNESS and DEPENDENCY. The reason is that representing
documents as independent probability distributions does not allow statistical dependen-
cies to be inferred from a document collection.

In addition, none of these measures complies with IDENTITY-SP. The reason is that in this
approach, a distribution is equally similar to itself regardless of how much information it
contains. Even measures based on Shannon’s entropy [22] assign a maximal similarity (or
minimal distance) to identical distributions. Consider the most representative measure,
the Kullback-Leibler divergence. Let Pi and Qi denote the probabilities of feature i in
the pieces of information P and Q, respectively; their divergence is:

dkl ≡
∑
i

Pi ln Pi
Qi

.

If Pi = Qi for all i, then, dkl =
∑
i Pi ln 1 = 0. Therefore, every object is equally similar

to itself. The same behaviour is found with other distribution-entropy-based measures,
such as the Jeffreys divergence, the K-divergence and the Jensen-Shannon divergence.

In addition, modelling objects as probability distributions does not allow the proba-
bilities of objects to be modelled. For this reason, UNEXPECTEDNESS and DEPENDENCY

cannot be satisfied. Finally, at least in the case of the Kullback-Leibler divergence, ASYM-

METRICITY is not formally satisfied. Zero probability features in either distribution are
not considered in either direction (see line (8) in Table 5.1).

5.2.5. Similarity as a Probabilistic Generative Process

Another way of modelling similarity is via the likelihood of a feature sequence given a
probability distribution. This is the case for perplexity in language models (see Section
2.5). For instance, in the information retrieval approach proposed by Ponte and Croft
[97], the similarity between a query q and a document d is estimated as the probability
of the query being produced from the probabilistic distribution θd inferred from the
document, (Sim(q, d) = p(q | θd)). In particular, their approach assumes that θd is a
multiple Bernoulli distribution:

p(q | θd) =
∏
w∈q

p(w | d) ·
∏
w/∈q

(
1− p(w | d)

)
,

where p(w | d) is estimated as the relative frequency of the word w in the document. In
practice, this requires a smoothing process in which the probabilities of unseen query
words are estimated from the whole collection. Many improvements have subsequently
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been proposed. For instance, Hiemstra and Kraaij [57] and Miller et al. [86] proposed a
variation based on multinomial word distributions.

In general, language models can satisfy IDENTITY and IDENTITY-SP. For instance, the
last component in the model proposed by Zhai and Lafferty [124] is the sum of the
probabilities of the query terms in the collection (. . .+

∑
w∈q p(w | D)). This component

is not considered in a document retrieval task because it does not affect the document
ranking, but it will increase the self-similarity of larger queries, as our constraint requires.

Strictly speaking, UNEXPECTEDNESS is not satisfied, as it is not possible to estimate
the dependency between unseen query words and the document because the probability
distribution is inferred from the document itself. However, according to Zhai’s analysis
[123, 124], smoothing techniques have a correspondence to the idf effect, and therefore
mitigate non-compliance with our UNEXPECTEDNESS constraint. Similar to the case
of probability-distribution-based measures, DEPENDENCY cannot be satisfied because
there is no probabilistic space external to both representations (see line (9) in Table
5.1). This limitation is partially mitigated by the use of n-grams, which capture the
dependencies of some word-based features. Finally, ASYMMETRICITY is satisfied. Note
that the perplexity of a word sequence given a distribution inferred from a document
containing that sequence is lower than the perplexity of the full document given the
distribution inferred from the sequence.

5.2.6. Similarity as a Probabilistic Event Operator

From this perspective, pieces of information are represented as compound events in an
overall probabilistic distribution; see Section 2.6. Their similarity is determined from the
distribution of features (single events). This paradigm captures psychological notions
such as specificity and the diagnosticity principle: “features are more salient if they help
discriminate objects”.

From this perspective, similarity can be modelled as a conditional probability of feature
sets:

Sim(X,Y ) = P (X | Y ) .

The strength of conditional probability as a similarity function is that it trivially satisfies
DEPENDENCY and UNEXPECTEDNESS. Adding different features to the second piece of
information can increase the estimated similarity. For instance:

P
(
“Computer” | “Apple Desktop”

)
> P

(
“Computer” | “Apple”

)
.

The main weakness of conditional probability is IDENTITY-SP. The self-similarity is max-
imal and constant for any pair of subsumed pieces of information; see line (10) in Table
5.1:

X ⊆ Y =⇒ P (X | Y ) = 1 .

.
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An alternative, and one of the most popular similarity functions developed from this
perspective, is the pointwise mutual information (PMI), which is based on the idea that
the more highly statistically correlated two pieces of information are, the more similar
they are. The PMI is computed as:

PMI = log
(

P (X,Y )
P (X) · P (Y )

)
,

which is equal to zero when the two events are independent. The PMI has been used in
multiple approaches to estimate pairwise word similarity. As in the case of conditional
probability, we can prove the following; see Proof A.3.4.

Proposition 5.3. The PMI satisfies DEPENDENCY.

From the point of view of our constraint framework, the main strength of the PMI is
that, unlike other functions, it complies with the IDENTITY-SP constraint. In particular,
the self-similarity of any piece of information corresponds to its information quantity:

PMI(X,X) = log
(

P (X,X)
P (X) · P (X)

)
= − log(P (X)) .

The main shortcoming of the PMI is that (as its name suggests) it focuses only on
common features. For this reason, the following proposition holds; see Proof A.3.5 and
line (11) in Table 5.1.

Proposition 5.4. The PMI does not satisfy UNEXPECTEDNESS.

5.2.7. Summary of the Theoretical Analysis of Similarity Func-
tions

As noted previously, the effect of feature specificity on similarity has been reported by
many authors in cognitive studies, in the form of principles such as the diagnosticity
principle [114] and the size principle [111]. Analogously, in the context of information
systems, most similarity approaches, such as the idf feature weighting, the Information
Content in Lin’s similarity function and the residual entropy similarity, or perplexity and
smoothing in language models, capture feature specificity in some way. All of them have
a direct connection with Shannon’s information quantity, which has been considered a
core concept of similarity since the earliest studies, such as Hick’s work in 1952 [56].

In addition, feature dependency has been at least partially captured at the representation
level; for instance, by means of dimensionality reduction in metric spaces, ontologies, or
n-grams in language models.

Both feature specificity and feature dependence must be captured to comply with the
IDENTITY-SP, UNEXPECTEDNESS and DEPENDENCY constraints. Table 5.1 summarizes
the properties satisfied by particular similarity functions organized by families. As the
table shows, the property most frequently missing is DEPENDENCY: it is not captured by
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transformational, feature- or event-set-based, density-function-based or language model
approaches.

To capture DEPENDENCY as a property of the similarity function (i.e., regardless of the
representation level), we must look at models that represent documents as compound
probabilistic events. In this familyof models, we find the PMI and the conditional
probability, which have complementary properties. Both comply with DEPENDENCY, but
the PMI does not satisfy UNEXPECTEDNESS, whereas the conditional probability does not
comply with IDENTITY-SP. This observation suggests that these two functions could serve
complementary purposes in defining a theoretically grounded similarity function. In fact,
in later sections, we will see that our proposed similarity function maps to either the PMI
or the conditional probability when its parameters are set at the external boundaries of
the range allowed by the formal constraints.

5.3. Proposed Similarity Function: The Information
Contrast Model (ICM)

Taking the SIM property as the core requirement for similarity measures, we now derive
a new similarity function, the Information Contrast Model (ICM)1. The SIM property
suggests that a similarity function should consider the relative increases in the individual,
sum and union information quantities. That is, I(X) and I(Y ) should have a positive
effect on similarity while I(X ∪ Y ) should have a negative effect.

ICM is defined over the notion of Observation Outcome (See Chapter 3), that is, feature
fuzzy sets. Recall that this representation generalizes both feature vectors and feature
sets. In addition, the notion of observation outcome has an associated probability via
its occurrence set which was defined as:

Occ(X) =
{
d ∈ D : OΓ(d) ⊇ X

}
.

The occurrence probability P (Occ(X)) of the observation outcome X is defined over the
sample space of documents. As a result, there exists a formal correspondence between
feature sets (observation outcomes) and probabilistic events in such a way that:

P (Occ(X), Occ(Y )) = P (Occ(X) ∩Occ(Y )) = P (Occ(X ∪ Y ))

and therefore I(X,Y ) = I(X ∪ Y ).

Definition 5.1. The Information Contrast Model value for a pair of observation out-
comes is the linear combination of the observational information quantity of each fuzzy
feature set and the observational information quantity of their union:

ICMα1,α2,β(X,Y ) = α1 · I(X) + α2 · I(Y )− β · I(X ∪ Y ) .
1We have selected this name by analogy with the Linear and Ratio Contrast model proposed by

Tversky.
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Under the Observational Representation Framework, this similarity function can be
interpreted as a generalized parametric version of the pointwise mutual information,
which is equivalent to

ICMα1,α2,β(X,Y ) = log
(

P (Occ(X), Occ(Y ))β

P (Occ(X))α1 · P (Occ(Y ))α2

)

An interesting characteristic of the ICM relative to other similarity functions is that
the feature sets are not dissected into their intersection or differences, thus allowing
the feature dependencies to be captured appropriately. This is because the similarity
is defined in terms of the information quantities of the individual feature sets and their
union.

5.3.1. Formal Properties

The ICM satisfies SIM for a certain range of its parameters; see Proof A.3.6.

Proposition 5.5. The ICM satisfies the similarity information monotonicity axiom
when α1 + α2 > β > α1 > α2.

The ICM will also satisfy ASYMMETRICITY if we add the restriction α1 > α2, which
preferentially rewards the directional similarity from the more specific text to the more
general text, as required by the ASYMMETRICITY constraint.

In a symmetric scenario, we can fix α1 = α2 = 1 without loss of generality; and then,
the condition to satisfy SIM is simply 2 > β > 1. With β in this range, the ICM satisfies
all four basic constraints.

The ICM has a direct relationship with the pointwise mutual information and the prod-
uct of conditional probabilities for certain values of its parameters (See Proof A.3.7):

Proposition 5.6. The ICM generalizes the pointwise mutual information and the prod-
uct of conditional probabilities.

ICMα1=1,α2=1,β=1(X,Y ) = PMI(Occ(X), Occ(Y ))

ICMα1=1,α2=1,β=2(X,Y ) = log(P (Occ(X) | Occ(Y )) · P (Occ(Y ) | Occ(X))) .

Note that the PMI (β = 1) and the product of conditional probabilities (β = 2) are
the (outer) limits of the ICM with the values allowed by the constraints (1 < β < 2).
In other words, the PMI and conditional probability measures are extreme cases of the
more general measure, the ICM.

The ICM is also closely related to set- and information-theory-based measures. It is a
generalization of the linear contrast model:

Proposition 5.7. If independence is assumed between the features in the intersection
and difference subsets in the ICM and the information quantity is used as the salience
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function in the linear contrast model, then the ICM and the linear contrast model are
equivalent.

ICMα1,α2,β(X,Y ) = (α1+α2−β)·I(X∩Y )−(β−α1)·(I(X\Y ))−(β−α2)·(I(Y \X)) .

5.4. Case Study: Capturing Counterexamples

Here, we present a basic empirical proof of concept of the ability of the ICM to capture
the characteristics of the counterexamples used in Section 4.2 to invalidate, in the context
of textual similarity, some of the axioms proposed in the literature.

Table 5.2: Case study: how ICM satisfies the intuitive inequalities used as examples
along this paper. Each inequality illustrates an expected behavior that contradicts
some axiom in the literature, or exemplifies the need for one of our formal constraints.
Computing ICM using co-ocurrence statistics in Flickr, it complies with all the expected
inequalities.

Intuitive inequality Sim(A) > Sim(B) ICM1 ICM2 Satisfied?
Example for IDENTITY-SP / counterexample for maximality axiom
Sim(“apple computer”,“apple computer”) > Sim(“apple”,“apple”) 1.32 0.88 X

Example for ASYMMETRICITY / counterexample for symmetricity axiom
Sim(“north korea”,“china”) > Sim(“china”,“north korea”) 2.86 -0.79 X

Counterexample for dominance axiom
Sim(“disney mouse”,“game mickey”) > 1.32 0.88 X
Sim(“disney mouse”,“game mouse”)

Counterexample for consistency and independency axioms (I)
Sim(“mouse disney”,“mickey disney”) > 2.86 -0.79 X
Sim(“mouse disney”,“hardware disney”)

Counterexample for consistency and independency axioms (II)
Sim(“mouse wireless”,“hardware wireless”) > 2.6 2.47 X
Sim(“mouse wireless”,“mickey wireless”)

Example for DEPENDENCY / counterexample for monotonicity Axiom
Sim(“apple desktop”,“mouse computer”) > Sim(“apple”,“mouse”) 4.03 -2.86 X

Example for IDENTITY axiom
Sim(“apple mouse”,“apple mouse”) > 4.06 2.29 X

Sim(“apple mouse”,“mouse”)

Example for UNEXPECTEDNESS
Sim(“mickey”,“mickey mouse”) > Sim(“mickey”,“mickey apple”) 2.59 1.51 X

To do so, we need to estimate the information quantities of phrases such as “Mickey
Mouse” or “Apple desktop”. We have used statistics from the Flickr search engine
because it gives exact numbers. Web search engine statistics are much larger but offer
only approximate statistics on the number of hits, and the numbers returned depend
on the length of the query. For instance, for the word set “Mickey apple”, Flickr finds
2, 141 documents. Given that Flickr stores approximately 13, 000 million photos, this
represents a probability of 0.164 · 10−6. We performed this estimation for every text
used in the examples and we computed the ICM value for each pair of texts. We set
the ICM parameters to α1 = 1.2, α2 = 1, and β = 1.5, arbitrary values that lie in the
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ranges specified in our theoretical analysis.

Table 5.2 shows the results. The first column presents the similarity inequality that we
intuitively expect. The second and third columns present the ICM values of the leftmost
and rightmost text pairs, respectively, in each inequality, and the last column indicates
whether the ICM result agrees with our intuition. The first example, for instance, shows
that the ICM assigns a higher self-similarity to “Apple computer” than to “Apple”, in
agreement with our identity specificity axiom and in disagreement with the maximality
axiom from the literature. Overall, the ICM satisfies our axioms for all examples and
violates other previous axioms in the cases in which they predict counterintuitive results.

This is, of course, anecdotal evidence rather than a quantitative confirmation of the
validity of the ICM, but it serves as a proof-of-concept of how the ICM works in extreme
situations derived from the formal analysis.

5.5. Conclusions: The Generalization Power of the
ICM as a Similarity Function

Our analysis has shown that the typology of similarity functions determines their weak-
nesses from a formal perspective. Existing similarity functions can be categorized into
a set of families: metric distances (e.g., cosine distance, Euclidean distance), operators
over features or event sets (e.g. Jaccard similarity, Lin’s similarity), measures of the
proximity of probability density functions (e.g., Kullback-Leibler divergence), measures
of the likelihood of pieces of information under probability distributions inferred from
other pieces of information (e.g., language models) and probability distributions of pieces
of information in a whole space (e.g., pointwise mutual information). None of the exist-
ing similarity functions known to us complies with the constraints proposed in Chapter
4. In most cases, this limitation is due to the nature of a similarity function in terms
of its typology. Existing similarity approaches mitigate the limitations of their simi-
larity functions in the feature selection stage. Some examples include tf·idf weighting,
n-grams, and dimensionality reduction methods (LDA, word embeddings, etc).

Our analysis has also shown that the PMI and conditional probability are the two
main components of similarity. First, the PMI and conditional probability together are
able to satisfy all axioms directly at the similarity function level, but it is necessary to
combine them to satisfy every axiom simultaneously. Second, the proposed constraints
(except ASYMMETRICITY) can be derived from a single property, which we call similarity
information monotonicity, in which the PMI and conditional probability are taken as
the basic complementary components of similarity. Third, both can be generalized into
a unique parametrizable function: the ICM.

We have also seen that a connection exists between traditional featural axiomatic (Tver-
sky’s model), metric spaces, and information-theoretic similarity functions (PMI and
conditional probability). In particular, the ICM generalizes similarity functions from
these families.
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The main challenge identified in our study is how to properly estimate the information
quantities (or probability of feature sets) for documents without assuming feature in-
dependence. Another open issue is whether the ASYMMETRICITY constraint might be
helpful for information access tasks in general or is instead a property that holds only
for problems that can be directly mapped to our cognitive understanding of language
and concepts.

Note that our proposed similarity function, independently of the feature space, does
not completely prescribe a unique notion of similarity; only its combination with a
particular feature space (which should be linked to some practical scenario) leads to an
operational notion of similarity. For instance, Barcelona may be closer to Paris or to
Madrid depending on whether the focus is geopolitical issues or touristic sites, and this
difference should be reflected in how features are distributed in the document collection
of interest (e.g. geopolitical or touristic documents) [7].

Our proposed framework assumes that the statistical dependencies of information pieces
(and therefore their proximity) may also be determined by the user context. Future
work will include an empirical verification of how our similarity function combines with
appropriate representation spaces to result in operational similarity models. However,
this issue is outside the scope of the present thesis.
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6
Feature Aggregation in On-line Reputation

Management on Twitter

6.1. Introduction

The explosion of available textual information on social media has opened the door to
multiple applications, such as opinion mining, trend analysis or story detection. In this
chapter, we take the online reputation monitoring (ORM) scenario as study case for
the representation framework presented in this thesis. In this scenario, social media
messages are analysed to identify conversations or events that can affect the reputation
of a company or brand. In particular, this study case focuses on Twitter, which is
probably the most common source for reputation monitoring. The following are two
examples of tweets that mention the company BMW.

@Usedcarexpert: BMW fires a new six-shooter http://torq.at/bf7

@yajnworb: BMW for sale,anyone interested?

According to the dimensions defined by the Reputation Institute [99], these tweets can be
classified as “products & sevices”. In a finer granularity level, they can be associated with
subtopics “new products” and “BMW vehicles for sale”, respectively. In other words,
we have a predefined finite set of dimensions (categories), for which we can generate
a training dataset. On the other hand, the subtopics are dynamic. They evolve over
time. Therefore, it is not enough to learn previously observed subtopics. The goal in
our study case consists in grouping tweets according to subtopics. This is at the end a
clustering problem and the core step is computing pairwise tweet similarity. That is, to
what extent two tweets belong to the same subtopic or not.

In this scenario, the most traditional way of representing tweets is as a sequence of
words. These are discrete and intrinsic tweet features. However, much more informa-
tion is available from external systems. Having, for instance, a Bayesian dimension
classifier, we have the membership value regarding each subtopic previously annotated
in a training dataset. The problem is that the subtopics previously identified do not

65



66 Chapter6. Feature Aggregation in On-line Reputation Management on Twitter

Figure 6.1

necessarily include emerging subtopics. However, it would be desirable to include this
information in the tweet representation. In addition, we can extend this reasoning for
other tweet categories for which training samples are available. For instance, we could
consider the dimension membership value previously learned. Notice that the dimension
is not the only feature to be compared when computing tweet similarity, but an addi-
tional characteristic. That is, we could combine intrinsic features (words) with extrinsic
features generated by a supervised system to characterise the tweet. In addition, we
could consider information from unsupervised learning. For instance, we could integrate
in the tweet representation the proximity to tweet clusters generated previously by an
external system.

Figure 6.1 illustrates this scenario. The working hypothesis is that integrating het-
erogeneous features (supervised vs unsupervised, intrinsic vs. extrinsic, etc.) can con-
tribute to the information organization and similarity estimation in the context of ORM.
Extrinsic features, such as supervised categorisation or proximity to clusters, capture
dependencies and knowledge that is inferred from previous data. On the other hand,
intrinsic features such as words capture new entities, events or terms that can affect
the reputation of the company. The challenge is how to combine word features (bi-
nary) with quantitative signals generated by the classifier and the clustering system. In
this chapter, we apply the Observational Representation Framework to overcome this
challenge.

The experiments described in this chapter demonstrate that adding all these heteroge-
nous features progressively increases the performance of tweet similarity computing.
This result is verified under various similarity functions (Pointwise Mutual Information,
Jaccard and Lin’s distances and the Information Contrast Model proposed in this the-
sis). To the best of our knowledge, this is the first attempt to combine these kinds of
signals in an unsupervised manner.
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6.2. Dataset

We chose the RepLab dataset [6], which uses Twitter data in English and Spanish (more
than 142000 tweets). The RepLab2013 corpus provides a collection of tweets that were
obtained by searching for the names of various companies and entities (e.g., BMW, Bank
of America and Oxford University). The corpus includes 61 entities and for each entity,
at least 700 and 1500 tweets were collected for the training and test sets, respectively.
The corpus also contains additional background tweets for each entity (up to 50000
tweets).

The tweet topic in the training and test datasets were manually annotated. Some
of these topics are organizational (e.g., “customer feedback”) while others correspond
with a particular event (e.g., “Bank of America Chicago Marathon”). The topics in
the training dataset do not necessarily correspond to the topics in the test dataset.
Therefore, applying classification techniques in isolation is insufficient. Furthermore,
the training topics contain, in most cases, just a few tweets.

Additionally, each tweet was manually categorized with respect to standard reputation
dimensions [99], which were the same for all the entities (e.g., performance, leadership,
innovation).

6.3. Similarity Functions

The objective is to compare several representation models when estimating tweet close-
ness. OIQ converges to various representation models depending on the statistical as-
sumptions about features. In this experiment we compare six representation approaches
(corresponding with each assumption) and study the effect of adding new features (su-
pervised and unsupervised). In particular, we study the effect of adding as features the
proximity to previously annotated topics, categories (supervised features), and clusters
(unsupervised features).

We aim to evaluate the relative effectiveness of representation models regardless of the
similarity measure that is used. In these experiments, we consider three similarity
schemes:

SJACCARD : It computes the ratio between the intersection and the union of OIQs.

SJACCARD =
I
(
OΓ(d1) ∩ OΓ(d2)

)
I
(
OΓ(d1) ∪ OΓ(d2)

) .
Considering words as features and assuming independence and equiprobability,
SJACCARD is equivalent to the original Jaccard similarity measure.
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SLIN : The second scheme considers the sum of OIQs instead of the union.

SLIN =
I
(
OΓ(d1) ∩ OΓ(d2)

)
I
(
OΓ(d1)

)
+ I

(
OΓ(d2)

) .
We will refer to this as scheme SLIN . According to Proposition 3.6, when consid-
ering words as features and assuming independence, it is equivalent to the original
Lin’s distance (see Subsection 2.3).

SICMβ
: Finally, the third similarity measure is the information contrast model (ICM:

see Subsection 2.6):

SICMβ
= I

(
OΓ(d1)

)
+ I

(
OΓ(d2)

)
− β · I

(
OΓ(d1) ∪ OΓ(d2)

)
.

Fixing the parameter β = 1 and considering discrete features as words, it is equiva-
lent to the traditional PMI. We experiment with the values β = 1 (SICM1 = SPMI)
and β = 1.5 (SICM1.5).

For computational reasons, for all similarity measures, we assume independence across
features and information additivity, as expressed in Equation (3.2). Let d = (w1, . . . , wm)

I
(
OΓ(d)

)
=
∑
γ∈Γ

m∑
i=1
I
(
Oγ(wi)

)
. (6.1)

6.4. Representation Schemes

We have observed in the previous sections that the Observational Information Quantity
(OIQ) converges to diferent representation schemes under different assumptions. In
addition, it enables quantitative signals that are produced by learned (supervised and
unsupervised) features to be captured. Each representation approach that is compared
in our experiments corresponds to a particular way of computing I

(
Oγ(wi)

)
in Equation

(6.1):

I
(
OΓtf (d)

)
: First, the simplest approach considers occurrence-based word features

and assumes equiprobability among words. It corresponds to the tf representation
model according to Proposition 3.2. Let Γtf be the set of occurrence-based word
features:

I
(
OΓtf (d)

)
=
∑
w∈Γtf

tf(w, d) .

I
(
OΓtf.idf (w)

)
: The second representation approach considers occurrence-based word

features, but does not assume equiprobability among words. It corresponds to the
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tf.idf representation model according to Proposition 3.4. Let Γtf.idf be the set of
occurrence-based word features:

I
(
OΓtf.idf (d)

)
=

∑
w∈Γtf.idf

tf.idf(w, d) .

Ith
(
OΓtf.idf (d)

)
: In the third approach, we use essentially the same approach as

I
(
OΓtf.idf (d)

)
; however, to avoid noise, we apply different thresholds to the IQ.

That is, for a fixed threshold, we truncate to zero the salience of a coordinate
if it is under the threshold, as expressed in Equation (3.1). According to trial
experiments, we set the threshold at 5.0 for the word features.

Ith
(
OΓtf.idf (d)

)
=

∑
w∈Γtf.idf

th(w) · tf.idf(w, d) .

where

th(w)

1, if − log(P (w)) ≥ th

0, otherwise
.

Ith
(
OΓTop(d)

)
: An important advantage of our representation model is that we can

integrate new features into the word-based feature set. In the fourth approach, we
consider the information of a set of topics, which is denoted as Top. Tweets in the
training dataset are categorized into topics. For this, we assume that each topic,
t ∈ Top, is a feature. We also assume information additivity across words and
the feature value for each word is estimated as a conditional probability, which is
denoted as P (t | w), in a similar way to the Naive Bayes classification method.
Specifically, given a topic, t ∈ Top, and the vocabulary, V, the projection of a
word, w ∈ V, for each annotated topic in the training corpus (topic feature):

t(w) = P
(
t | w

)
=
P
(
w | t

)
· P
(
t
)

P
(
w
) '

freqt(w)
|Top| ·

|Top|
|C|

freq(w)
|C|

= freqt(w)
freq(w) ,

where freqt(w) stands for the number of occurrences of a word w in topic t, (that
is, in the set of tweets of the training dataset that belong to the topic) and freq(w)
stands for the number of occurrences of a word in the corpus C. After that, and
according to Definition 3.4, the OIQ of a word, w ∈ d, given a topic feature,
t ∈ Top, is computed as follows:

Ith
(
OΓTop(d)

)
=

∑
t∈ΓTop

∑
w∈d

−log
(
Pw′∈C

(
t(w′) ≥ t(w)

))
.

In a frequentist manner, we compute the cumulative distribution of topic feature
values across word occurrences in the whole background tweet corpus (up to 50000
tweets).
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Ith
(
OΓDim(d)

)
: Furthermore, OIQ enables us to integrate information from various

sources. According to this, in addition to the topic training data, we consider the
classification of texts into reputational dimension categories (e.g., performance,
leadership, and innovation). We denote the set of dimensions by Dim. It is
assumed that belonging to the same dimensional category constitutes additional
evidence of similarity. For this, we also consider the projection of words into
reputational dimensions that are annotated in the training corpus in the same
way as in the case of topic training data.

Ith
(
OΓClus(d)

)
: To also integrate unsupervised learned features, the sixth representa-

tion approach consists of applying the same technique over automatically gener-
ated clusters instead of topic or category training datasets. We denote the set of
clusters as Clus. Each feature is given by the proximity to a cluster, c ∈ Clus,
which is estimated in a similar way to previous approaches. For this, we use the
clustering output from the best system that took part in the RepLab 2014 compe-
tition. For all the topic-, dimension- and clustering-based features, we have used
the OIQ threshold of 11.0, which systematically outperforms other thresholds over
the three types of features.

6.5. Evaluation Benchmark

The similarity estimation task consists of predicting whether two tweets refer to the same
topic. For each entity in the test dataset, we generate a random sample of 1000 tweet
pairs. Among them, there are 500 tweet pairs (d, d′) whose elements belong to the same
topic (not necessarily the same topic for all tweet pairs), and the remaining 500 pairs are
those whose elements belong to different topics. For each evaluated approach, we sort
the 1000 similarity instances according to the similarity estimation. Finally, considering
different ranking lengths (varying the parameter k from 1 to 1000), we calculate the
precision at k, which is the ratio of tweet pairs that belong to the same topic (according
to the gold-standard) within the k instances with the highest similarity according to the
approach.

Some similarity measures can produce many ties. In that cases, the evaluation results
could be biased by the arbitrary similarity instance sorting criterion. In order to avoid
this bias, we define Precision at k in probabilistic terms and pairs with equal similarity
in the measure count a half in the probability estimation. Being X the set of 1000
similarity samples, Xrel and Xunrel the sets of 500 related and non related tweet pairs
respectively, and being f a similarity function f : X −→ R:

Precisionk(f) = P
(
x ∈ Xrel | f(x) > thfk

)
.

where thfk is the similarity measure value such that the area of cumulative density
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Table 6.1: Precision at 200, 500 and 800 for all the evaluated approaches. Rows represent
feature configurations and columns the corresponding precisions.

Sim.
scheme Representation model Precision at k

200.0 500.0 800.0
S
J
A
C
C
A
R
D

I
(
OΓtf

)
0.863 0.652 0.546

I
(
OΓtf.idf

)
0.909 0.678 0.550

Ith
(
OΓtf.idf

)
0.917 0.682 0.551

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
0.927 0.691 0.553

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
+ Ith

(
OΓDim

)
0.926 0.691 0.553

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
+ Ith

(
OΓDim

)
+ Ith

(
OΓClus

)
0.931 0.704 0.559

S
L
I
N

I
(
OΓtf

)
0.862 0.652 0.546

I
(
OΓtf.idf

)
0.909 0.678 0.550

Ith
(
OΓtf.idf

)
0.917 0.682 0.551

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
0.927 0.691 0.553

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
+ Ith

(
OΓDim

)
0.926 0.691 0.553

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
+ Ith

(
OΓDim

)
+ Ith

(
OΓClus

)
0.931 0.704 0.559

S
I
C
M

1.
5

I
(
OΓtf (d)

)
0.848 0.651 0.542

I
(
OΓtf.idf

)
0.910 0.674 0.548

Ith
(
OΓtf.idf

)
0.917 0.679 0.550

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
0.927 0.688 0.553

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
+ Ith

(
OΓDim

)
0.925 0.689 0.554

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
+ Ith

(
OΓDim

)
+ Ith

(
OΓClus

)
0.928 0.698 0.556

S
P
M
I

I
(
OΓtf

)
0.795 0.573 0.505

I
(
OΓtf.idf

)
0.891 0.661 0.535

Ith
(
OΓtf.idf

)
0.896 0.665 0.531

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
0.910 0.673 0.536

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
+ Ith

(
OΓDim

)
0.908 0.673 0.535

Ith
(
OΓtf.idf

)
+ Ith

(
OΓTop

)
+ Ith

(
OΓDim

)
+ Ith

(
OΓClus

)
0.925 0.681 0.547

distribution, from the maximum f(x) to thfk , is
k
|X| :

P (f(x) > thfk) = k

|X|
.

Under this probabilistic definition, being xk the kth instance sorted by f (with any
arbitrary criterion for ties), precision at k can be estimated as:

Precisionk(f) = 1
k
·
(∣∣{x ∈ Xrel : f(x) > f(xk)}

∣∣+ 1
2
∣∣{x ∈ Xrel : f(x) = f(xk)}

∣∣) .

6.6. Results

Table 6.1 shows the results. Similarity measures are evaluated according to precisions
at 200 (the accuracy of the top 20% of similarity instances), 500 and 800. Each row
represents a combination of a representation approach and a similarity scheme. Each
column represents a precision level.Our purpose is to evaluate the capability of the
model to add more features without adding noise. In particular we are interested on
the differences among representation models for every similarity scheme (SJACCARD,
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Figure 6.2: SJACCARD Similarity Scheme performance across different sample sizes (k).
This scheme takes into account the union and the intersection of tweets.
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Figure 6.3: SLIN Similarity Scheme performance across different sample sizes (k). Note
the likeness with the SJACCARD Scheme due to their similar operation.
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Figure 6.4: SICM1.5 Similarity Scheme performance for different sample sizes (k). It
shows the improvement when integrating heterogeneous continuous valued features.
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Figure 6.5: SPMI Similarity Scheme performance for different sample sizes (k). It shows
the consistency with the others Similarity Schemes.
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SLIN , SICM1.5 , and SPMI), rather than the relative effectiveness of similarity measures.
The results for models SJACCARD and SLIN are identical. This is not an error. The
differences appear after 4 decimals places. These two schemes are very similar.

The first observation is that I
(
OΓtf.idf (d)

)
outperforms I

(
OΓtf (d)

)
for all similarity

schemes. There is an improvement of around 5% in precision at 200. That is, applying
IQ and assuming different probabilities among words increases the effectiveness of the
similarity estimation for every precision level and similarity scheme. This result is con-
sistent with the findings of multiple works that corroborate the effectiveness weighting
methods such as tf.idf. When adding a OIQ threshold, namely, Ith=5(OΓtf (d)

)
, further

improves the results. We can observe an improvement of around % in precision at 200.
This is consistent with the effectiveness of stop-word removal and vocabulary reduction
according to word frequency, which has been reported multiple times in the literature.

The addition of topic features (i.e. the proximity to topics in the training datasets)
improves the performance around 5%, specially in precision at 500. The addition of
dimension features (proximity to dimension tweet categories in the training dataset)
does not produce any improvement. This suggest that the dimension of tweets is not
necessarily related with their proximity in terms of dynamic topics. Finally, the addition
of cluster features (proximity to clusters) improves slightly the similarity prediction
performance.

Regardless the absolute quantitative improvements, the strength of these results is
ground on: (i) they are consistent across similarity functions, (ii) adding non informative
features do not affect the effectiveness substantially, (iii) the feature weighting does not
require supervision and (iv) our theoretical framework provides a single formalization for
diverse phenomena observed in the literature, such as the benefits of considering feature
specificity (idf weighting), removing non informative features (stopwords), and (v) con-
sidering heterogeneous features improves similarity estimation performance, even when
these features do not focus directly on the similarity evaluation target. In summary, the
most relevant aspect of these experiments is the corroboration of the hypothesis stud-
ied in this chapter: Adding heterogeneous features under the same OIQ-based
weighting criterion increases progressively the similarity estimation perfor-
mance, even when features include both discrete and continuous values and
have different scale properties.

As an additional experiment, Figure 6.2 shows the performance across k levels of pre-
cision with a fixed IQ threshold for the SJACCARD similarity scheme. Figures 6.3, 6.4
and 6.5 show similar results for the SLIN , SICM1.5 and SPMI similarity schemes, re-
spectively. These results suggest that the improvement when integrating heterogeneous
continuous-valued features without supervision is consistent across similarity schemes
and the k levels of precision. In addition, the performance increase due to additional
features is especially visible at medium k levels. A possible reason is that classification
methods do not contribute when there is a high similarity according to words. However,
the indirect evidence is more effective at medium similarity levels.
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6.7. Overcoming Limitations of Independence and Ad-
ditivity

The model presented in previous sections has two main drawbacks: the need to assume
feature independence and information additivity. One can view this representation model
as an ensemble aggregating different scores (independence) in which aggregation is only
performed for the sum operator (information additivity). To mitigate these effects, it
seems that a tuning process is feasible. For instance, a potential solution could involve
the use of an arbitrary function to combine features, which could assign weights in a
supervised manner. The function can be expressed as a weighted sum:

w1 · Ith
(
OΓtf.idf (d)

)
+ w2 · Ith

(
OΓTop(d)

)
+ w3 · Ith

(
OΓDim(d)

)
+ w4 · Ith

(
OΓClus(d)

)
,

where w1, w2, w3 and w4 could be learned from the training data. This question is also
motivated by the fact that in any of the features analysed so far, the number of values
they can take is arbitrary and defined by the user; for example, given a stream of tweets,
the user is the one who defines the possible topics of the stream, and the more topics
are defined, the more weight that feature will have on the sum. We will carry out two
experiments to check this question:

1. Directly converting the ICM schema into a weighted sum of OIQs, i.e., parametrize
the sum of OIQs of every feature and optimize the summation with several classi-
fication algorithms.

2. To study the effect of the weights directly on the initial model, i.e., to repeat the
experiments of previous sections modifying single parameters. This way, we can
observe the redundancy of one of the features, in particular, we have chosen the
feature Topics, since the experiments are evaluated on it.

First, we conduct a brief statistical analysis of these datasets. We verify that the training
dataset includes 9, 088 words. To determine the number of words used as features, we
eliminate repeated words and are left with a total of 2, 755 words (30.3%). Of these
words, 151 (5.5%) are stopwords. In the test dataset we have 20, 066 words, of which
only 4, 773 (23.7%) are used as features, while 329 (6%) are stopwords. On the other
hand, the test dataset (different from the training dataset) includes 3, 628 new words
(76.01%), and the percentage represented by stopwords of these words is 42.29%. These
data reflect dynamism found in the context of social media. With regard to topics, it
must be noted that they are not categories, as in general topics of the training corpus
are different from topics of the test corpus. The number of topics covered depends on
each company even though the number topics averages at 58 in the training dataset,
50 in the test dataset and only 10 repeated in both datasets for all companies. This
descriptive figures show the high dynamicity of the context; both words and topics are
constantly changing.
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6.7.1. Parametric Feature Weight Optimization

In the first experiment, we take advantage of the ICM scheme form defined in Section 6.3
to express its formula as a polynomial whose variables are the weights to be optimized.

SICM = w1 · S
Γtf.idf
ICM + w2 · S

ΓTop
ICM + w3 · SΓDim

ICM + w4 · SΓClus
ICM ,

where each wi represents the relative weight of each type of feature and SΓtf.idf
ICM stands

for SICM using tf.idf as the only feature.

To perform this experiment, we represent each pair of tweets according to their sim-
ilarities over each single feature. In particular, we consider words from the training
dataset and use the similarities between both tweets considering each word as training
features. As a result, we replace the Information Quantity of features defined in our
model with a trained weighting criterion. In the calculation of similarities we use ICM
since among the four similarity schemes presented in subsection 6.3, only ICM allows to
decompose a similarity feature by feature, as it applies a formula whose operators are
additions and subtractions. However, similarities of Jaccard and Lin do not allow for
such decomposition due to their division operator. We use the same β values that we
used in previous experiments.

Once we have calculated the similarities between each pair of tweets, we train the data
using Naive Bayes, J48, SVM and Logistic Regression as classification algorithms. Then,
we average the IQs for all companies. We select the dependent variable belonging to the
same topic and the independent variables being the IQs of the features. The experiment
is performed with Weka software [118]. The performance is shown in Table 6.2. As
usual, the SVM classifier outperforms the other algorithms. However, regardless of
the algorithm used, this success rate corresponds to the “Precision at 500” shown in
Table 6.1 for the previous experiments, which achieve a higher degree of accuracy. We
also carried out the same experiment while applying different filters to the data by, for
example, eliminating those words with a frequency of less than four, but even more
random classifiers were obtained.

Table 6.2: ICM schema as a weighted sum of IQs. It is shown the precision of different
classification algorithms.

Precission
Naive Bayes 56.1%
J48 55.8%
SVM 57.4%
Logistic Regression 53.8%

The results show that the polynomial coefficients are all practically equal to 1. We could
infer that the relative effect of each feature is not so important, and this effect could be
because the components of the sum themselves are based on Information Theory. Notice
that the internal optimization function used by Weka (conditional log likelihood) is not
exactly the one used in our evaluation framework. However, in both cases high similarity
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Figure 6.6: Representation of SICM Similarity Scheme performance across different
weights assigned to features. On the x-axis it is possible to see the weight assigned to
each feature, while keeping the value 1 for the rest of feature types, the reached precision
at 500 can be seen on the y-axis.

values assigned to tweets pairs belonging to the same topic are rewarded. Another aspect
to be taken into account is that we could also optimize weights over other (non linear)
similarity schemes such as Jaccard or Lin. We let the empirical analysis of these aspects
for future researches.

The precision achievement shown in Table 6.2 confirms the results of the RepLab eval-
uation campaign [6] in which the low performance of the classifiers is shown due to the
high dynamicity of the context; both words and topics are constantly changing.

6.7.2. Robustness Analysis

In the second experiment, we study the influence of the weights directly on our eval-
uation framework. For each similarity scheme (ICM, Jaccard and Lin) we repeat the
experiments of Subsection 6.6 by modifying the weight of each feature type. The results
are shown in Figures 6.6, 6.7 and 6.8: on the x-axis, we have the value of the weights
given to each feature, while keeping the value 1 for the rest of the feature types (ablation
analysis), and on the y-axis, we can see the precisions at 500.

Figure 6.6 shows that increasing the weight of the features decreases accuracy in the cases
of Words and Clusters. It means that these features contribute more to the performance
than the other two features (this fact was not obvious from the results reported in the
previous section). In the case of Dimensions, the precision remains somewhat stable, and
only in the case of Topics there is a small improvement. This outcome occurs because
we are evaluating Topics, and the feature is more closely related to the answer. This
slight improvement is limited by the robustness of the model when all weights are equal
to 1.
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Figure 6.7: Representation of SJACCARD Similarity Scheme performance across different
weights assigned to features. On the x-axis it is possible to see the weight assigned to
each feature, while keeping the value 1 for the rest of feature types, the reached precision
at 500 can be seen on the y-axis.
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Figure 6.8: Representation of SLIN Similarity Scheme performance across different
weights assigned to features. On the x-axis it is possible to see the weight assigned
to each feature, while keeping the value 1 for the rest of feature types, the reached
precision at 500 can be seen on the y-axis.
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Figure 6.9: Representation of the robustness of the weighted model for the SICM Simi-
larity Scheme. On the x-axis the weight of Topis is increased, while the precision at 500
is observed on the y-axis.

A further step would be to determine how much redundancy would have to be added
to Topics so that the effect of the rest is annulled. Figures 6.9, 6.10 and 6.11 show the
parameter of features on the x-axis for a wider range of values than the previous figures,
and on the y-axis the precision at 500. If we add a weight of 100 to the feature Topics
while keeping the rest of features equal to 1, we obtain an accuracy of 63% for the ICM
similarity scheme, which is close to the precision considering Topics as the only feature
(61%); i.e., great redundancy is needed to match the action of the feature Topics in
isolation.

Independence and information additivity are two open issues to be solved in our model.
These experiments show us the difficulties associated with dealing with this concern,
and an interesting future task would be to tackle this issue by modelling dependence
between features.

6.8. Conclusions: The Aggregation of Heterogeneous
Features via ORF

In the case of study described in this chapter, we have estimated tweet similarity in order
to infer fine grained subtopics in the reputation information stream. We are interested
in integrating intrinsic features (i.e., words) with supervised and unsupervised extrinsic
features (i.e. tweet categories and clusters) in order to exploit previous data while
addressing the dynamic nature of information flows in reputation management. The
proposed representation framework (ORF and OIQ) and the similarity function derived
in Chapters 4 and 5 has been the base on which the experiments have benefited.

The experiments showed that, adding quantitative features, such as dimensions or prox-
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Figure 6.10: Representation of the robustness of the weighted model for the SJACCARD
Similarity Scheme. On the x-axis the weight of Topis is increased, while the precision
at 500 is observed on the y-axis.
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Figure 6.11: Representation of the robustness of the weighted model for the SLIN Simi-
larity Scheme. On the x-axis the weight of Topis is increased, while the precision at 500
is observed on the y-axis.
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imity to clusters, under the OIQ framework without supervision increases the tweet
similarity prediction effectiveness. Note that these features are not directly related
to the similarity target, e.g., proximity to previously seen topics, reputational dimen-
sions or automatically generated clusters. The effectiveness improvements are consistent
across similarity functions and evaluation metrics. In addition, the experiments confirm
that ORF provides a single theoretical basis and formalization for popular and effective
representation techniques such as tf.idf weighting or stopword removing.

On this line, there are many aspects to be investigated in future works. Maybe the most
inmediate issue is to prevent the feature independence assumption. At word feature level,
this limitation has been tackled in recent years via dimensionality reduction techniques
such as word or phrase embeddings. An open question derived from this study is whether
we can combine these representation techniques with heterogeneous features under the
ORF and OIQ framework.





7
Applying the Observational Information

Framework to Ranking Fusion

7.1. Introduction

Ranking fusion (or aggregation) consists of combining multiple rankings into a single
ranking. Under the assumption that different signals or information sources reflect differ-
ent aspects of a ranking problem, ranking fusion attempts to optimize the performance
of their combination. The ranking fusion problem is encountered in many research ar-
eas, such as averaging methods, meta-classifiers, feature analysis, information retrieval,
and the combination of evaluation measures [116, 119, 110, 90, 109, 10, 15, 19, 70]. The
unsupervised combination of rankings through voting is a powerful strategy. Empirical
studies addressing various scenarios have repeatedly corroborated that voting methods
offer a performance equivalent to the best individual measure. In addition, voting meth-
ods avoid overfitting and guarantee robust results across different data sets (compared
to supervised strategies), even if the optimal measure is different for each data set.

In this chapter, we study the application of the Observational Representation Frame-
work (see Chapter 3) to ranking fusion. In particular, we study whether, when item
scores (rankings) are considered as features, the Observational Information Quantity
(OIQ) behaves as a ranking fusion function and explains the strengths and weaknesses
of existing approaches.

On the basis of previous work, we first define a set of desirable formal properties for
ranking fusion. We then analyse whether the best existing ranking fusion methods
satisfy them. We observe that when item scores are taken as features, the OIQ satisfies
all these properties, and moreover, we identify under which conditions existing ranking
fusion algorithms approximate the OIQ. We empirically study the behaviour of different
OIQ estimation approaches over six ranking fusion benchmarks.

83
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7.2. Desirable Properties

In this section, we formalize the ranking fusion problem and define a set of formal
properties extracted from empirical practices in previous ranking fusion studies. Given
a set of items, D, a ranking, denoted by rγ , is a list of items in D sorted in accordance
with a certain score function, γ : D −→ R. We will use rankr(d) to denote the ranking
position of d in the ranking r. Rankings can be categorized into three types [10, 51, 40]:
total, partial, and top-k rankings. Here, we focus on total ranking, in which one item is
assigned to each ranking position (γ(d) 6= γ(d′), ∀ d, d′ ∈ D). Consider a set of available
rankings generated on the basis of different information sources (or signals) in Γ. The
ranking fusion function denoted by FΓ : D −→ R returns a score for each item on the
basis of its ranking positions.

There is a common intuition that a high ranking position represents positive evidence
regardless of the other rankings with which it is to be combined, i.e., the more high
ranking positions an item achieves, the higher a position it should receive in ranking
fusion. This can be stated as a monotonicity property.

Property 7.1 (Strict Monotonicity). Moving an item up in one ranking increases
its score as assessed by the fusion function. When γd1↔d2 the result of swapping the
scores of d1 and d2 in γ is verified as follows:

γ(d1) > γ(d2)⇒ FΓ∪{γ}(d1) > FΓ∪{γd1↔d2}(d1) .

Note that, when item scores are taken as feature values, this property is similar to
Property 3.1, which states that increasing the feature instantiation values increases the
OIQ.

The second issue is the treatment of redundant signals. When systems that have been
artificially generated are combined, equal signals do not provide additional information
and should be considered redundant. This is not the case for voting systems, since the
majority vote determines the final combined outcome method; however, this property
must be taken into account if we wish to consider minority votes. For instance, in the
context of meta-classifiers, multiple authors have shown that combining heterogeneous
classifiers increases the accuracy of the combined result [94, 70]. In regard to ranking
fusion, Vogt et al. found that the effectiveness increases when relevant documents are
ranked in a different fashion [116]. More recently, it has been shown explicitly that
the diversity of the system outputs is related to the diversity of the documents in the
fused rankings [119]. In the prediction of IR system effectiveness1, Spoerri found that
selecting systems from different research teams when generating pseudo-qrels increases
the predictive power [110]. Nuray et al. found that selecting systems that differ from the
norm is also beneficial [90]. In the context of combining machine translation evaluation
measures (representing the similarity between system outputs and human-generated
references), the benefits of combining heterogeneous similarity-based measures have been

1IR system effectiveness prediction consists on replacing manual relevance annotation with a set of
highly ranked documents for evaluation purposes (Pseudo-QRels).
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observed on multiple occasions [5, 79, 4, 25]. More specifically, it has been observed that
mixing text similarity measures based on diverse linguistic levels (lexical, syntactic)
usually improves the results. This is stated by the next property, which is related to
Property 3.5 concerning the OIQ.

Property 7.2 (Dependence). Redundant rankings do not affect the fusion function.
Given two signals, γ1, γ2, if there exists a real strict monotonic function g that satisfies
γ1(d) = g

(
γ2(d)

)
, ∀ d ∈ D, then, F{γ1}(d) = F{γ1,γ2}(d) ∀ d ∈ D .

Finally, when combining a pair of contradictory rankings, i.e., rankings ordered with the
items in opposite positions to each other, the ranking fusion function does not have any
criteria for determining preference between items. Therefore, the fusion function should
be constant across items.

Property 7.3 (Cancellation). The fusion function for two inversely valued rankings
is a constant function. Given two inverse signals γ1 and γ2, if for every pair of items
d, d′ ∈ D, we have:

γ1(d) > γ1(d′)⇐⇒ γ2(d) < γ2(d′) ,

then F{γ1,γ2}(d) = k .

Note that this property has some similarities with Property 3.7 concerning the OIQ.

7.3. Ranking Fusion Algorithms

Various methods exist for merging rank-ordered lists [15, 39, 72, 120]. Basically, they
use information that is readily available from ranked lists of items, i.e., the ordinal rank
assigned to each item in each ranking list or some transformation of those ranks. The
simplest way to achieve unsupervised fusion consists of applying traditional averaging
schemes, such as the arithmetic and geometric means, or the maximum or minimum.

AvgΓ(d) ∝
∑
γ∈Γ

(
γ(d)

)
GeoΓ(d) ∝

∏
γ∈Γ

(γ(d))

 1
|Γ|

MaxΓ(d) ∝ max
γ∈Γ

(
γ(d)

)
MinΓ(d) ∝ min

γ∈Γ

(
γ(d)

)

In the case of the arithmetic and geometric means, a change in any single ranking pro-
duces a change in the combined result. Therefore, they exhibit monotonocity2. This is
not the case for the maximum and minimum schemes, which obviously are not strictly
monotonic with respect to the maximum or minimum measure score. Only the arith-
metic mean is strictly monotonic 3. Moreover, averaging schemes do not satisfy the

2In the case of geometric mean, we need to assume that γ(d) > 0, ∀d ∈ D.
3Note that a zero value avoids the effect of the rest of rankings in geometric and harmonic means,

and maximum and minimum only consider at the end one of the combined features.
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dependence property. If a ranking is replicated indefinitely, the combined score calcu-
lated with in the arithmetic, geometric or harmonic mean will tend to more strongly
resemble the replicated score. However, this is not the case for the maximum and min-
imum functions. These combination schemes are not sensitive to redundant features.
These score-based approaches also do not comply with cancellation. The reason is that
this property is defined over opposite ordinal rankings, whereas these fusion methods
rely on the original scores.

In the context of information retrieval, the most popular baseline for document ranking
fusion is perhaps the Reciprocal Rank Fusion (RRF) method proposed by Cormack [24].
This method considers the inverse of the item positions in a ranking, which is adjusted
by a specific constant. Thus, this method that relies on the ranking positions instead of
the original scores. The Reciprocal Rank Fusion score is defined as follows:

RRFΓ(d) =
∑
γ∈Γ

1
rankγ(d) + k

.

RRF is strictly monotonic and sensitive to changes in individual rankings. However, it
does not comply with dependence, as it is also sensitive to redundant rankings. RRF also
does not satisfy cancellation. The reason is that RRF manages each individual ranking
independently, and documents at the top in each ranking are especially influential.
Formally, it is sufficient to see that the expression 1

rankγ(d)+k + 1
|D|−rankγ(d)+k is not

constant.

Another closely related research area is the study of voting rules based on preferences.
In fact, a ranking fusion function can be seen as a preference function that takes the
voter preferences as input. In binary voting, that is, in a case with two alternatives
(items), the use of the simple majority voting rule has always been unquestionable [80].
However, when preferences for multiple items must be considered, formulating a voting
rule is not straightforward. The core of the problem is the impossibility theorem [121],
which establishes that majority voting is not necessarily transitive. This means that one
item can be considered an improvement over another when they are compared directly
in terms of majority voting, but the opposite result may be obtained in a corresponding
merged ranking. Such cycles of majority preference can be solved by different preference
systems.

The most popular voting system for preferences is the Borda count algorithm [31].
Borda’s rule is a voting procedure in which the agents must order the different candidates
linearly, in accordance with their merit in each case, and assign them correspondingly
graduated scores to determine the highest total count obtained, which indicates the
winning candidate. Let us define rγ(d) as the salience of document d in the ranking
produced by γ:

rγ(d) =
∣∣∣{d′ : rankγ(d) ≥ rankγ(d′)

}∣∣∣ .
The classical individual Borda count for an item d and a ranking rγ is given by rγ(d);
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then, the total or aggregated Borda count for a set of rankings is given by:

BordaΓ(d) =
∑
γ∈Γ

rγ(d) .

This approach is equivalent to the arithmetic average of the rankings when the rankings
are transformed into ordinal scales. Thus, the Borda count possesses the same properties
as the average rank. It complies withmonotonicity. For instance, if one item, d, improves
over another item, d′, in all rankings (and strictly for some of them), then the number
of items improved upon by d is at least the same as that for d′ plus one. Borda’s rule
assumes that each voter has an intrinsic value, even if it is redundant; thus, it fails to
satisfy dependence. Regarding cancellation, Borda’s rule satisfies this property since it
yields the same result for every pair of items.

As in the case of scor-based fusion methods, we can also consider the minimum rank
and maximum rank schemes.

MaxRankΓ(d) ∝ max
γ∈Γ

(
rγ(d)

)
MinRankΓ(d) ∝ min

γ∈Γ

(
rγ(d)

)

Again, these schemes satisfy dependence but not monotonicity or cancellation.

Another family of ranking fusion rules is majoritarian rules, in which preferences are
expressed between pairs of alternatives. These preferences are aggregated by means of
concrete majority rules yielding a peer-to-peer comparisons of the alternatives, as in the
family of voting methods called Condorcet methods [32, 87]. Condorcet noticed that
in an election carried out via the simple majority method, individuals can rationally
manifest their preferences, but this rationality may be lost in the aggregate (this is
known as the paradox of the vote, the Condorcet effect or the existence of cycles).

The pure Condorcet voting method avoids the Condorcet paradox by identifying items
belonging to the same transitivity cycle of majority voting and ranking them together.
However, it is very costly in computational terms because it requires detecting all cycles.
The Copeland Condorcet variant considers how many items are improved by considering
a majority of rankings, instead of avoiding differences in cycles as in Condorcet’s rule.
The score value of an item d in the Condorcet method can be written as:

CoppΓ(d) ∝
∣∣∣∣{d′ :

∣∣{γ : rγ(d) ≥ rγ(d′)}
∣∣ > ∣∣{γ : rγ(d′) ≥ rγ(d)}

∣∣}∣∣∣∣ .
This family of voting methods includes several alternative approaches [32, 87], such as
the ranked pairs, Copeland, Kemeny−Young, minimax and Schulze approaches.

In general, the Condorcet method and its variants do not strictly satisfy monotonicity,
as an increase in ranking position does not necessarily produce a change in the outcome
of pairwise majority voting. The Condorcet method assumes that each voter has an
intrinsic value; thus, it does not satisfy dependence. However, the Condorcet method
does cancellation since there is a voting tie for every pair of items.
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Table 7.1: Formal Comparison of Unsupervised Combining Signals.

Method Monotonocity Dependence Cancellation
Arithmetic and
geometric means X − −

Maximum and
Mininum − X −

Reciprocal Rank
Fusion X − −

Borda Count X − X

Maximum and
minimum rank − X −

Condorcet − − X

UIR − X X

The Unanimous Improvement Ratio (UIR) [9] was originally applied to compare two
systems s1 and s2 in terms of a set of metrics Γ given a set of test cases C. Basically,
the UIR counts in how many cases the first system outperforms the second in terms of
every metric simultaneously:

UIR(s1, s2) =
∣∣{c : (γ(s1) ≥ γ(s2)), ∀ γ}

∣∣− ∣∣{c : γ(s1) ≤ γ(s2)), ∀ γ}
∣∣

|C|
.

It is possible to adapt the UIR to the ranking fusion scenario in the following way4.
Given an item d, with all other items considered as test cases, the metrics are the score
functions γ ∈ Γ that generate the item rankings:

UIR(d) =
∣∣{d′ ∈ D : γ(d) ≥ γ(d′), ∀ γ}

∣∣− ∣∣{d : γ(d) ≤ γ(d′), ∀ γ}
∣∣

|D|
.

UIR(d) approximates the following probability:

P
(
{d′ ∈ D : γ(d) ≥ γ(d′), ∀ γ}

)
− P

(
{d′ ∈ D : γ(d) ≤ γ(d′), ∀ γ}

)
.

In essence, the UIR is similar to the Condorcet method, but the pairwise comparisons
are based on unanimous improvement rather than majority voting. In fact, the Copeland
approach and the UIR converge when only two rankings are considered. However, the
UIR is less sensitive to monotonic differences than the Condorcet method. The reason
is that outperforming another item in every ranking simultaneously is a very restrictive
condition. Therefore, it is very possible to move up in all rankings without affecting the
UIR.

On the other hand, the main strength of the UIR is that it satisfies dependence. Because
it is based on unanimous rank improvements, adding redundant rankings does not affect
the combined result. The UIR also satisfies cancellation, since it yields the same result
for each pair of oppositely ranked items. The desirable properties verified by each

4It is grounded on the fact that an unanimous improvement is the only Conjoint Relational Structure
which is independent from any weighting parameter.
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method of ranking fusion are summarised in Table 7.1.

7.4. The OIQ as a Ranking Fusion Algorithm

The OIQ behaves as a ranking fusion algorithm when items are considered as documents
and the scores function as the features, Γ. That is, the projection πd(γ) of feature γ
onto document d is γ(d). We also need to consider that the ranked items in the set D
are random samples of the universe of items Du whose feature values follow a certain
distribution. Then, the OIQ-based ranking fusion algorithm is expressed as follows:

IΓ
(
d
)

= log

(
1

P
(
{d′ ∈ Du : γ(d′) ≥ γ(d),∀ γ ∈ Γ}

)) .

In other words, given a document d ∈ D, the OIQ considers the probability that docu-
ments in Du will surpass d in every ranking.

An important contribution of the OIQ relative to previous ranking fusion approaches
is that, whenever the score distribution in Du is known, it satisfies the three desirable
properties described in Section 7.2.

Proposition 7.1. The OIQ based ranking fusion approach satisfies monotonicity, de-
pendence and cancellation.

Therefore, according to our analysis of the literature, the OIQ is the only ranking fusion
approach that satisfies these three constraints. However, computing the OIQ requires
knowing the continuous distribution of the features across items. If this distribution is
unknown, it is necessary to estimate it from the available items in the rankings. Under
the assumption that the items in D are a randomly sampled set from Du, the OIQ can
be formulated as follows:

IΓ
(
d
)

= log

(
N∣∣{d′ ∈ D : rankγ(d′) ≤ rankγ(d),∀ γ ∈ Γ}

∣∣)
)
,

where N represent the ranking length. This estimation is closely related to the UIR.
The correspondence can be seen in Proof A.4.2

Proposition 7.2. The UIR has the following correspondence with the OIQ:

UIR(d) ' 2I{γ1,...,γn}(d) − 2I{−γ1,...,−γn}(d) .

As in the case of the UIR, if the collection of documents is insufficient, i.e., |D| < |Γ|,
then the OIQ will not correctly capture the document relations and monotonicity will
not be satisfied. The reason is that there may not be enough document to observe a
new unanimous feature score improvements when an item moves up a ranking position.
However, the dependency and cancellation properties are preserved.
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If we assume feature independence, then the OIQ can be estimated as follows:

IΓ
(
d
)

=
∑
γ∈Γ

log

(
N

P
(
{d′ ∈ D : rankγ(d′) ≤ rankγ(d)}

)) .

This OIQ approach can be expressed as:

IΓ
(
d
)
∝ −

∑
γ∈Γ

log (N − rγ(d)) .

Therefore, this OIQ estimation shows a correspondence with Borda’s rule. Essentially,
it consists of averaging the ranking positions but on a logarithmic scale. Similar to the
Borda count, when independence is assumed, this OIQ formulation satisfiesmonotonicity
at the cost of dependence and cancellation.

Copeland’s method is based on the probability that the number of features that over-
come an item is higher than the number of features that do not overcome this item.
The Copeland method can be interpreted as a smoothed version of the OIQ in which
unanimous improvement is replaced by majority voting:

CoppF (d) =
∣∣∣∣{d′ ∈ D :

∣∣{γ ∈ Γ : rankγ(d′) ≥ rankγ(d)}
∣∣ ≥ |Γ|/2}∣∣∣∣

∝ P
({
d′ ∈ D : |{γ ∈ Γ : rankγ(d′) ≥ rankγ(d)}| ≥ |Γ|/2

})
∝− log

(
P
({
d′ ∈ D : |{γ ∈ Γ : rankγ(d′) ≤ rankγ(d)}| ≥ 1/2

}))
.

In summary, averaging schemes, the Copeland method, the Borda count algorithm and
the UIR are all closely related to different approaches to the Observational Information
Quantity that satisfy different desirable properties. In the next section, we will empiri-
cally study the suitability of these approaches based on their formal properties and the
ranking fusion context (the numbers of rankings and items).

7.5. Empirical Comparison of Ranking Fusion Func-
tions

We present experiments on test collections corresponding to six tasks. All of them are
related to some kind of document similarity. The experiments consist of ranking docu-
ment pairs by means of different similarity prediction systems. Highly similar document
pairs should be located at the top. We apply the analysed ranking fusion algorithms to
merge all rankings. The selected tasks are described below.

Document Clustering (CL): We use the WePS-1 data set [13], which contains ap-
proximately six thousand manually grouped web pages. Here, we consider a set of
167 similarity measures introduced in [12], that employ a wide range of features (from
n-grams to different classes of named entities) and provide state-of-the-art results.
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Semantic Textual Similarity (STS): We employ the dataset obtained from the pilot
task in SemEval-2012 [2], which includes 3050 similarity instances distributed among
four sets, and 88 runs (similarity measures). The similarity of pairs of sentences was
rated on a 0-5 scale (from low to high similarity) by human judges using Amazon Me-
chanical Turk.

Textual Entailment (TE): We use the training set provided as part of the RTE-2
evaluation campaign [17], which consists of 800 text-hypothesis pairs. We have developed
102 similarity measures for this scenario (all of them are based on [76]). They all measure
word overlap over different text components: levels in the parse tree, PoS tags, lemmas
and relations. To preserve the formal properties of these similarity measures, when
sentences do not include a text component (e.g. a certain PoS tag), the corresponding
similarity is set to 0.5.

Document Retrieval (IR): We use queries 701 to 750 in the GOV-2 collection used
in the TREC 2004 Terabyte Track. The document-query similarity measures consist of
the outcomes of 60 retrieval systems developed by the participants in the track. We
consider the top 100 documents from the output of each search engine.

Machine Translation Evaluation (MT): We use data sets from the Arabic-to-
English (AE) and Chinese-to-English (CE) NIST MT Evaluation campaigns in 2004
and 20055. We take the sum of adequacy and fluency, both on a 1-5 scale, as a global
manual assessment of quality [71]. These data sets include approximately 8000 similarity
instances between MT outputs and human-generated references. As similarity measures,
we use 64 automatic evaluation measures provided by the ASIYA Toolkit [47]6. This
set includes measures operating at different linguistic levels (lexical, syntactic, and se-
mantic) and includes all popular measures (BLEU, NIST, GTM, METEOR, ROUGE,
etc.)

Automatic Summarization Evaluation (AS): We use the DUC 2005/2006 test
collections 7 [29, 30]. At DUC, summaries were evaluated according to several criteria;
here, we focus on responsiveness judgements, for which the quality score is an integer
between 1 and 5. We employ standard variants of ROUGE [75] as similarity measures.

Using these datasets, we test the (comparative) ability of combined rankings to predict
the true similarity of documents. In our experiments, we consider pairs ((d1, d2), (d′1, d′2))
of similarity instances. For all of them, there is some difference in similarity according
to humans judgement (sim(d1, d2) > sim(d′1, d′2)). We randomly select 10, 000 pairs of
similarity instances from each data set.

We test the ability of each method to combine rankings and predict the closest doc-
ument similarity. The effectiveness, Eff(rankF ), is computed as P

(
rankF (d1, d2) >

rankF (d′1, d′2) | sim(d1, d2) > sim(d′1, d′2)
)
. When the evaluated method returns the

same value for both instances, we estimate effectiveness as 0.5. We normalize the indi-
vidual rankings to values between 0 and 1 for averaging schemes. We also compare the
results with the best and worst rankings from the whole set.

5http://www.nist.gov/speech/tests/mt
6http://www.lsi.upc.edu/ nlp/Asiya
7http://duc.nist.gov/
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Table 7.2: Empirical Comparison of Unsupervised Ranking Fusion
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Combining all rankings
Best measure 0.73 0.69 0.62 0.69 0.74 0.81

Worst measure 0.63 0.50 0.46 0.54 0.52 0.50
UIR 0,70 0,66 0,60 0,65 0,67 0,79

Coppeland 0,72 0,67 0,67 0,69 0,75 0,83
Borda 0,72 0,67 0,66 0,68 0,75 0,83

OIQind 0,71 0,67 0,65 0,68 0,75 0,83
MinRank 0,67 0,61 0,56 0,64 0,68 0,79

Avg. 0,68 0,66 0,68 0,68 0,71 0,83
Geo. 0,50 0,54 0,51 0,52 0,50 0,50

Harm. 0,68 0,66 0,63 0,62 0,63 0,80
Combining two random rankings

Best measure 0.706 0.619 0.539 0.654 0.727 0.607
Alternative measure 0.679 0.559 0.505 0.613 0.671 0.529

UIR 0.703 0.613 0.539 0.654 0.723 0.617
Coppeland 0.703 0.613 0.539 0.654 0.723 0.617

Borda 0.703 0.612 0.539 0.654 0.723 0.616
OIQind 0.700 0.611 0.538 0.654 0.720 0.616

MinRank 0.693 0.604 0.532 0.645 0.710 0.615
Avg 0.696 0.606 0.539 0.653 0.723 0.616
Geo 0.693 0.607 0.539 0.647 0.716 0.616

Harm 0.692 0.587 0.539 0.644 0.712 0.616
Max 0.696 0.603 0.513 0.648 0.716 0.612
Min 0.688 0.581 0.537 0.624 0.698 0.554

Combining two random rankings plus five redundant rankings
Best measure 0.706 0.619 0.539 0.654 0.727 0.607

Alternative measure 0.679 0.559 0.505 0.613 0.671 0.529
UIR 0.703 0.613 0.539 0.654 0.723 0.617

Coppeland 0.681 0.599 0.532 0.631 0.714 0.618
Borda 0.690 0.599 0.536 0.637 0.696 0.615

OIQind 0.689 0.598 0.536 0.638 0.698 0.615
MinRank 0.693 0.604 0.532 0.645 0.710 0.615

Avg. 0.687 0.603 0.537 0.638 0.697 0.615
Geo. 0.686 0.603 0.538 0.635 0.695 0.615

Harm. 0.686 0.582 0.538 0.636 0.696 0.615
Max 0.696 0.603 0.513 0.648 0.716 0.612
Min 0.688 0.581 0.537 0.624 0.698 0.554

We consider three experiments. In the first one, all available rankings are merged. In
the second, experiment we test the performance of the fusion methods over two rankings
only to see how these methods perform with a small number of individual rankings. In
the third experiment, we replicate the less predictive ranking 5 times to test the ability
of the fusion functions to accommodate redundant rankings without introducing bias.
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Table 7.2 shows the results. A salient observation is that in all experiments, fusion
methods without any correspondence with the OIQ (MinRank, Max, Min., Harm. and
Geo.) achieve lower results than the other methods. In addition, on every dataset,
there is at least one method that is able to achieve results similar to the best individual
ranking in the combination, corroborating the phenomena observed in the literature.

When combining all rankings, the UIR is less reliable than other methods, although it
satisfies dependence and cancellation. The reason is that the need for sample instances
to compute the UIR grows exponentially with the number of rankings when computing
unanimous improvements. On the other hand, when only two rankings are combined,
the performance of the UIR drastically improves, achieving the best results on two
datasets. Moreover, when redundant rankings are added to the set, the UIR is the best
fusion method for all datasets because it is not affected by redundancy. Based on these
findings, we can conclude that when many rankings are to be combined, monotonicity
is an important property to consider.

In the absence of redundant rankings, regardless of whether all or only two rankings are
combined, Copeland’s method is the best performer across all datasets, indicating that
its compromise between dependence and monotonicity is suitable in these situations. In
particular, the Copeland results are equivalent to the UIR results when combining two
rankings. However, with the addition of redundancy its effectiveness decreases.

Finally, in general, the Borda and OIQind methods achieve similar performance, slightly
lower than that of the Copeland method and much lower than that of the UIR in the
presence of redundancy. This suggests an empirical convergence between the traditional
Borda algorithm and the OIQ estimation under the assumption of independence.

7.6. Conclusions: The OIQ as a Formally Grounded
Ranking Fusion Algorithm

We have presented an in-depth formal and empirical comparison of unsupervised rank-
ing fusion approaches. Our formal analysis suggests that some conflict exists between
capturing ranking monotonicity and dependence. That is, traditional voting approaches
such as the Borda, score averaging and Reciprocal Rank Fusion methods are able to
capture slight changes in rankings. However, they do not compensate for the effect
of redundant rankings. Whereas individual voters have an intrinsic decision weight in
the social sciences, in most information access problems, redundant information does
not contribute to the task of interest. For instance, in information retrieval, there is
no reason to reward documents that are relevant according to multiple identical search
engines. On the other hand, approaches such as the UIR, MinRank, minimum and
maximum scores satisfy dependence at the cost of monotonicity.

We have seen that, when document ranking scores are considered as features, the OIQ
behaves as a fusion ranking method and satisfies (at the theoretical level) the three
desirable properties identified in this chapter. However, the OIQ treats an infinite
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countable item set as a probabilistic sample space. Thus, we encounter the same conflict
(monotonicity vs. dependency) when approaching the OIQ under different statistical
assumptions.

On the other hand, we have seen that the OIQ is closely related to the traditional Borda
algorithm under the assumption of independence, to the Unanimous Improvement Ratio
(UIR) when estimating dependencies, and to the Copeland voting algorithm. As our
formal analysis predicts, our empirical study shows that the Copeland approach, which
establishes a compromise between dependency and monotonicity achieves competitive
results. However, with the addition of redundant rankings, the UIR clearly outperforms
the rest of the approaches.

This study offers evidence for the Observational Information Quantity as a theoretical
foundation of ranking fusion algorithms. This formal perspective allows us to identify
the bottleneck in ranking fusion for future works, i.e., the estimation of the feature
distributions.



8
Conclusions

Document representation is especially challenging in unsupervised scenarios. In the
absence of reference outputs, it is not easy to determine the feature weights, dependencies
and scaling. To overcome these challenges, we have presented a formal framework for
document representation.

We have identified three main properties that a representation framework should pos-
sess: (i) specificity, which establishes that the less frequently a feature appears, the more
relevant it is, since it more effectively distinguishes an object from others, (ii) depen-
dence, which establishes that redundant features do not provide information; and (iii)
quantitativity, the need to capture both discrete and quantitative feature values.

Based on an analysis of the literature (Chapter 2), one of the first conclusions drawn
in this thesis is that Shannon’s information content (IC(x) = −log(Px)) is an under-
lying notion in many representation frameworks that captures specificity and depen-
dence. It is related to tf·idf in the BoW approach, perplexity in language models and
information-theory-based variants of feature set representations. Another conclusion is
that a conflict exists between feature value quantitativity and specificity (and with fea-
ture dependence). Most existing representation frameworks capture specificity and, in
some cases dependence, but not quantitativity. To capture quantitativity, documents
have been represented as vectors and fuzzy sets. However, in that case, dependence
and specificity are ignored. The underlying reason for this conflict is that Shannon’s
information content is defined for discrete events. Note that Shannon based his theory
on discrete notions such as yes/no questions and bits. In representation, this translates
into discrete text features such as words or n-grams and their occurrence. The prob-
lem is that it is not possible to estimate the probability of continuous feature values.
Therefore, the notion of information content cannot be applied.

The Observational Representation Framework (ORF) presented in this thesis (see Chap-
ter 3) attempts to overcome this challenge under the following assumptions:

While the probability sample spaces in previous representation frameworks have
consisted of features (words, n-grams, etc.), in the ORF the sample space is made
up of the infinite and countable universe of documents. In other words, each

95
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document is a probabilistic event in our probabilistic framework. Note that, with
an infinite document space, this probability tends towards zero.

To prevent the management of zero probability events, our framework distinguishes
between a document itself and the corresponding observation outcome. An obser-
vation outcome is an instantiation of feature values, for instance, the occurrence
of the words “Once”, “upon”, “a”, and “time”. In other words, this observation is
subsumed by every story containing these words. The likelihood of an observation
outcome is given by the mass probability of the documents subsuming it, which
we call the Observational Information Quantity (OIQ).

Feature quantitativity is captured modelling observation outcomes as fuzzy sets
instead of crisp sets. Then, the subsumption of observation outcomes in documents
enables the derivation of cumulative probabilities of feature values. That is, the
probability of a feature value, e.g. fi(d) = 0.3, is the cumulative probability of
values above 0.3 in the document sample set.

We can highlight several interesting implications of the ORF and OIQ. The ORF not
only possesses the three properties highlighted in the previous chapter (specificity, de-
pendence and quantitativity), but also exhibits other interesting properties, such as
monotonicity with respect to feature values, feature sets and the union of observation
outcomes. In addition, the OIQ generalizes Shannon’s notions regarding an information
quantity as well as the most popular representation methods, such as tf, tf·idf and per-
plexity in language models, by assuming a convenient hypothesis. To the best of our
knowledge, the OIQ is the first representation model that captures the informativeness
(specificity) of quantitative features.

In this thesis, we have explored the strengths of the proposed representation framework
in various ways. More specifically, we have studied the ability of the ORF and OIQ to:

Define a general axiomatic framework for similarity functions based on metric
spaces, feature set operators, information theory and probabilistic events.

Integrate, in the same representation, intrinsic features such as words, with ex-
trinsic features such as clustering outputs or class memberships.

Behave as an unsupervised document ranking fusion algorithm.

8.1. Modelling Similarity

Our analysis suggests that the properties of similarity functions are closely related to
the corresponding representation frameworks and their properties (see Chapter 4), such
as the properties of metric spaces (maximality, triangular inequality and symmetry) or
Tversky’s Feature Contrast Model (matching, monotonicity and independence). Our
counterexamples and previous studies in cognitive science indicate that existing geo-
metric and set-based axiomatic do not capture every aspects of similarity in information
access scenarios.



Section 8.2. Aggregating Heterogeneous Features 97

On the other hand, the generality of the ORF opens the door for us to define a general
framework for comparing diverse similarity functions. This framework consists of a
set of formal constraints that capture aspects of similarity functions based on metric
spaces, feature sets, information theory, and probabilistic events. These constraints are
as follows: (i) identity, which states that adding or removing characteristics to or from
a pair of instances decreases their similarity; (ii) identity specificity, which states that
more specific pieces of information are more informative; (iii) unexpectedness, which
establishes that less common characteristics should have greater importance; and (iv)
dependency, which establishes the existence of relationships between characteristics. It is
also possible to consider one more constraint: (v) asymmetricity, which establishes that
the order in which two documents are compared affects the human notion of similarity.

From an analysis of the literature on similarity functions, we can highlight the following
two conclusions (Chapter 5). First, none of the reviewed similarity functions satisfies
every constraint simultaneously, but in general, their weaknesses are mitigated at the
document representation level; for example, specificity is addressed by means of tf, tf·idf,
unexpectedness is addressed through smoothing in language models, and the dependence
constraint is addressed via dimensionality reduction methods. The second conclusion is
that the pointwise mutual information (PMI) and conditional probability can be under-
stood as the two basic dimensions of similarity. Together, they satisfy every constraint
and a single property called similarity information monotonocity (SIM) can be iden-
tified that subsumes the four first constraints and is defined in terms of the PMI and
conditional probability.

Based on the ORF and SIM, we have defined a similarity function called the Informa-
tion Contrast Model (ICM), as introduced in Chapter 5. The ICM is a parametrized
generalization of the PMI. To our knowledge, it is the only similarity function that sat-
isfies every formal constraint, whenever the parameters are fixed in a certain range. The
ICM converges to the PMI and conditional probability for extreme parameter values. In
addition, the ICM generalizes the set-based similarity functions. A small empirical case
study over image descriptors shows that the ICM overcomes the shortcomings observed
in similarity counterexamples used in the analysis of previous axiomatic.

8.2. Aggregating Heterogeneous Features

The properties of the ORF allow documents to be characterized by both their intrin-
sic features (words, n-grams) and extrinsic features such as outputs from unsupervised
algorithms (e.g., clustering assignments) and supervised algorithms (e.g., class member-
ship). In addition, the OIQ allows all of these features to be combined in the form of
an information quantity. We have studied the practical consequences in the context of
reputation-monitoring (Chapter 6). In our experiments, the goal was to predict whether
two tweets referred to the same subtopic when analysing the reputation of companies
on Twitter. For this purpose, we represented tweets by means of word features together
with the output of a Bayesian classifier (supervised signal) acting on reputation cat-
egories and known subtopics as well as the output of tweet clustering (unsupervised
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signal). These experiments demonstrated that progressively adding features increases
the performance of the tweet similarity computation. This result was verified under
various similarity functions (the pointwise mutual information, the Jaccard and Lin
distances and the Information Contrast Model).

8.3. The ORF and OIQ in Ranking Fusion

The third application of the ORF studied in this thesis is a demonstration that when
document rank scores are considered as features, the OIQ behaves as an unsupervised
ranking fusion algorithm (Chapter 7). At the theoretical level, it exhibits three proper-
ties that are not possessed by traditional approaches, such as Reciprocal Rank Fusion,
score averaging schemes or voting algorithms. These three properties are (i) mono-
tonicity, which states that items with high scores in all rankings should have a high
score in the combined ranking; (ii) dependence, which states that the combined results
show better performance if redundancies are not considered; and (iii) cancellation, which
indicates the way in which two exactly opposite rankings should be combined.

However, in practice, the limitations of probability estimation prevent the OIQ from
satisfying, all these properties simultaneously due to the size of the document collec-
tion, computational cost considerations and the combinatorial explosion of the number
of pairs of ranking positions. Depending on the assumptions adopted for estimation
purposes, some properties are sacrificed. Our formal analysis shows that depending on
the approach taken, the OIQ is closely related to different ranking fusion algorithms.
Our empirical results confirm that different properties are more determinant of the ef-
fectiveness of ranking fusion than others in different situations.

8.4. Limitations and Future Work

The main limitations of the proposed representation framework originate from the as-
sumptions adopted at the empirical level, which are basically the assumptions of de-
pendency and additivity. Alternative representation models have relied on various ap-
proaches for addressing dependency (reduction of dimensionality, dependency modelling,
direct probabilistic calculation, etc.), but all of them are approximate solutions.

We have left several issues to be addressed in future work; among them, we highlight
the following:

In Section 5.2, we analyse similarity as a distance in a metric space; in particular,
the cosine similarity distance is one of the most representative measures of this
kind, and it would be interesting to analytically verify whether the cosine similarity
possesses the DEPENDENCY property.

In Chapter 5, a new similarity function (ICM) is proposed, which assumes that
the statistical dependencies of pieces of information may be determined by the
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user context. It is left to future studies to empirically verify how the ICM can be
combined with appropriate representation spaces to yield operational similarity
models.

In Section 6.7, the proposed model (OIQ) is parametrized to improve the perfor-
mance of similarity estimation. The parametrized model studied here is linear in
its components, and the optimization of verify the proposed model with non-linear
kernels remains to be investigated.

As noted in Chapter 3, one of the main limitations of the proposed model is the
dependency assumption at the empirical level. We believe that it could be possible
to model the dependence directly with features, for instance, by positing a formal
model in which the dependencies are drawn from the syntactical structure of the
sentences.
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A
Formal Proofs

A.1. Formal Proofs for Chapter 3

Proposition 3.1. The OIQ of a union of observation outcomes is equivalent to the
OIQ of the maximum feature values. Formally, given two observation outcomes X and
Y:

I
(
X ∪ Y

)
= −log

(
P
(
{d ∈ D : πd(γi) ≥ max(xi, yi), i = 1, . . . , |Γ|}

))
.

Proof A.1.1. The proof is straightfordward. According to the fuzzy set operators:

X ∪ Y = (Γ, f) ,

where
f(γi) = max(xi, yi), i = 1, . . . , |Γ| .

Property 3.1. Increasing the feature instantiation values increases the OIQ. Given two
observation outcomes (fuzzy feature sets) X and Y the following is verified:

xi ≥ yi, ∀ γi ∈ Γ⇒ I
(
X
)
≥ I

(
Y
)
.

Proof A.1.2. From xi ≥ yi, ∀ γi ∈ Γ, it follows,{
d ∈ D : πd(γi) ≥ xi, ∀ γi ∈ Γ

}
⊆
{
d ∈ D : πd(γi) ≥ yi, ∀ γi ∈ Γ

}
.

Then,

P
(
{d ∈ D : πd(γi) ≥ xi, ∀ γi ∈ Γ}

)
≤ P

(
{d ∈ D : πd(γi) ≥ yi, ∀ γi ∈ Γ}

)
.

This implies that:

P
(
{d ∈ D : OΓ(d) ⊇ X}

)
≤ P

(
{d ∈ D : OΓ(d) ⊇ Y }

)
.
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And therefore, according to definition 3.4:

I
(
X
)
≥ I

(
Y
)
.

Property 3.2. Adding features to the set Γ increases the OIQ values of document
observation outcomes. Let X and Xsub be two observation outcomes such that X =(
Γ, f

)
and Xsub =

(
Γ− {γ}, f

)
:

I
(
X
)
≥ I

(
Xsub

)
.

Proof A.1.3. Notice that if we add a feature, the new document observation outcome
is more restrictive than the initial observation, and thus, the set of documents which
verify the new observation is contained in the set of documents which verify the initial
observation, OΓ∪{γ′}(d) ⊆ OΓ(d). Then,

P
(
{d ∈ D : OΓ(d) ⊇ X}

)
≤ P

(
{d ∈ D : OΓ−{γ}(d) ⊇ Xsub

)
And therefore, according to definition 3.4:

I
(
X
)
≥ I

(
Xsub

)
.

Property 3.3. Given two observation outcomes X and Y , the OIQ of their union is
larger than those of the individual outcomes:

I
(
X ∪ Y

)
≥ I

(
X
)
.

Proof A.1.4. Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be, the corresponding repre-
sentations of two observation outcomes, by Proposition 3.1:

I
(
X ∪ Y

)
= −log

(
P
(
{d ∈ D : πd(γi) ≥ max(xi, yi), i = 1, . . . , |Γ|}

))
.

Given that,

P
(
{d ∈ D : πd(γi) ≥ max(xi, yi), ∀ γi ∈ Γ}

)
≤ P

(
{d ∈ D : πd(γi) ≥ xi, ∀ γi ∈ Γ}

)
.

We finally get, I
(
X ∪ Y

)
≥ I

(
X
)
. Similarly, we can get the same result for Y .

Property 3.4. The more unexpected a feature instantiation is, the more informative
it is. Given two single feature observation outcomes X =

(
{γ}, f

)
and X ′ =

(
{γ′}, f ′

)
where f(γ) = f ′(γ′) = v, we have the following implication:

P
(
{d ∈ D : πd(γ) ≥ v}

)
< P

(
{d ∈ D : πd(γ′) ≥ v}

)
=⇒ I

(
X
)
≥ I

(
X ′
)
.
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Proof A.1.5. By hypothesis,

P
(
{d ∈ D : πd(γ) ≥ f(γ)}

)
≤ P

(
{d ∈ D : πd(γ′) ≥ f ′(γ′)

)
.

Which is equivalent to,

1
P
(
{d ∈ D : πd(γ) ≥ f(γ)}

) ≥ 1
P
(
{d ∈ D : πd(γ′) ≥ f ′(γ′)

) ⇒
log
(

1
P
(
{d ∈ D : πd(γ) ≥ f(γ)}

)) ≥ log
(

1
P
(
{d ∈ D : πd(γ′) ≥ f ′(γ′)

))⇒
⇒ I

(
X
)
≥ I

(
X ′
)
.

Property 3.5. Redundant features do not affect the OIQ values of document observation
outcomes. Given two features γ1, γ2 ∈ Γ, if there exists a real strict monotonic function
g, that satisfies: πd(γ1) = g

(
πd(γ2)

)
, ∀ d ∈ D, then, I{γ1}

(
d
)

= I{γ1,γ2}
(
d
)
, ∀ d ∈ D .

Proof A.1.6. Consider two features, γ1, γ2 ∈ Γ, given a document, d ∈ D, it produces
an observation outcome under γ1, O{γ1}(d), whose OIQ is:

I{γ1}
(
d
)

= −log
(
P
(
{d′ ∈ D : πd′(γ1) ≥ πd(γ1)}

))
=

= −log
(
P
(
{d′ ∈ D : g

(
πd′(γ2)

)
≥ g
(
πd(γ2)}

)))
.

Given that g is a strict monotonic function,

−log
(
P
({
d′ ∈ D : g(πd′(γ2)) ≥ g(πd(γ2))

}))
=

= −log
(
P
({
d′ ∈ D : g(πd′(γ2)) ≥ g(πd(γ2)), πd′(γ2) ≥ πd(γ2)

}))
= I{γ1,γ2}

(
d
)
.

Property 3.6. The OIQ of a document observation outcome under an infinite number
of heterogeneous features corresponds to the likelihood of the document itself.

lim
|Γ|→∞

IΓ
(
d
)

= − log
(
P (d)

)
.

Proof A.1.7. Assume that we have a finite set of documents, the proof of this proposition
is a direct consequence of the representativity of the documents by the features. If we
have an infinite set of features, then they will describe every document, and documents
will be unequivocally determined by the values of a set of features.

Property 3.7. The OIQ for two inverse and continuous-valued features corresponds
to the probability of equality in this feature. Given a document d ∈ D and a feature
γ ∈ Γ, consider the set of features

{
γ, γ−1}, where γ−1 is defined by πd(γ−1) = πd(γ)−1,

∀d ∈ D; then:
I{γ,γ−1}

(
d
)

= − log
(
P
(
{d′ : πd′(γ) = πd(γ)}

))
.
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Proof A.1.8. Given a fixed document, d ∈ D, consider all the documents, d′ ∈ D, which
verify the inequalities:

πd′(γ) ≤ πd(γ) ∧ πd′(γ−1) ≤ πd(γ−1) .

These inequalities are equivalent to (by definition of γ−1):

πd′(γ) ≤ πd(γ) ∧ 1
πd′(γ) ≤

1
πd(γ) .

Notice that πd(γ) and πd′(γ) are non-negative numbers, therefore, these inequalities
imply that: πd(γ) = πd′(γ). Then, the Observational Information Quantity is:

I{γ,γ−1}
(
d
)

= − log
(
P
({
d′ ∈ D : πd′(γ) ≤ πd(γ) ∧ πd′(γ−1) ≤ πd(γ−1)

}))
.

Which is equivalent to:

I{γ,γ−1}
(
d
)

= − log
(
P
(
{d′ ∈ D : πd′(γ) = πd(γ)}

))
.

Proposition 3.2. Under the assumptions of word information additivity and equiprob-
ability, the OIQ is equivalent to the tf representation. Let d = (x1, . . . , xn) be the tf
representation of a document d with respect to the vocabulary Γ = {χw1 , . . . , χwn}:

I{χwi}
(
d
)

= tf(wi, d) = xi .

Proof A.1.9. Given the vocabulary, V = {w1, . . . , wn}, consider the set of features as
Γ = {χw1 , . . . , χwn}, and given a document from the collection, d ∈ D, we are interested
in computing the OIQ: I{χwi}

(
d
)
.

Assuming information additivity and considering text words as basic linguistic units, we
have,

I{χwi}
(
d
)

=
∑
wj∈d

I{χwi}
(
wj
)

=
∑
wj∈d

− log
(
P
(
{w′ ∈ V : χwi(w′) ≥ χwi(wj)}

))
.

Notice that, if wj 6= wi, then χwi(wj) = 0. Thus, P
(
χwi(w′) ≥ 0

)
= 1, since by

definition χwi(d) ≥ 0, ∀d ∈ D. Therefore, in the last summation all the terms are
null, except for wj = wi. In this case, we have that χwi(wi) = 1, and given that by
definition of the function χwi(.), its maximum value is 1, we can say that χwi(w′) ≥ 1
is equivalent to χwi(w′) = 1. Therefore, the probability P

(
χwi(w′) = 1

)
is exactly

P (w′ = wi) = P (wi). And, I{χwi}
(
d
)
∝ − log

(
P (wi)

)
.

One of the assumptions is that every word is equiprobable, i.e., P (wi) = k, 1 ≤ i ≤ n,
for an arbitrary k. In order to achieve the result, we can choose k in such a way that
− log(k) = 1. And finally, the summation give us the tf(wi, d).

Proposition 3.3. When word occurrences are taken as features, the observational in-
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formation quantity of a word is equivalent to its idf:

I{χw}
(
w
)

= idf(w) .

Proof A.1.10. Consider the set of features as Γ = {χw}, given the document d = {w}
from the collection, we are interested in computing the OIQ: I{χw}

(
w
)
.

By Definition 3.4, we have,

I{χw}
(
w
)

= − log
(
P
(
{d′ ∈ D : χw(d′) ≥ χw(w)}

))
.

Notice that, χw(w) = 1, and given that by definition of the function χw(.), its maximum
value is 1, we can say that χw(d′) ≥ 1 is equivalent to χw(d′) = 1. Therefore, the
expression − log

(
P
(
{d′ ∈ D : χw(d′) = 1}

))
is exactly:

− log
(
P
(
{d′ ∈ D : w ∈ d′}

))
= idf(w) .

And thus, I{χw}
(
w
)

= idf(w).

Proposition 3.4. When word occurrences are taken as features and under the assump-
tion of information additivity, the OIQs of single features are equivalent to the tf·idf
representation.

I{χwi}
(
d
)

= tf(wi, d) · idf(wi) .

Proof A.1.11. Given the vocabulary, V = {w1, . . . , wn}, considering the set of features
as, Γ = {χw1 , . . . , χwn}, and given a document from the collection, d ∈ D, we are
interested in computing the OIQ: I{χwi}

(
d
)
.

Assuming information additivity, and considering documents as basic linguistic units,
we have,

I{χwi}
(
d
)

=
∑
wj∈d

I{χwi}
(
wj
)

=
∑
wj∈d

− log
(
P
(
{d′ ∈ D : χwi(d′) ≥ χwi(wj)}

))
.

Notice that, if wj 6= wi, then χwi(wj) = 0. Thus, P
(
{d′ ∈ D : χwi(d′) ≥ 0}

)
= 1,

since by definition χwi(d′) ≥ 0, ∀d′ ∈ D. Therefore, in the last summation all the
terms are null, except for wj = wi. In this case, we have as many terms as the number
of times that the word wi appears in the document d, i.e., tf(wi, d). Moreover, we
have that χwi(wi) = 1, and given that by definition of χwi(.), its maximum value is
1, we can say that χwi(d′) ≥ 1 is equivalent to χwi(d′) = 1. Therefore, the expression
− log

(
P
(
{d′ ∈ D : χwi(d′) = 1}

))
is exactly − log

(
P
(
{d′ ∈ D : wi ∈ d′}

))
= idf(wi).

And thus, I{χwi}
(
d
)

= tf(wi, d) · idf(wi).

Proposition 3.5. When the occurences of word-position pairs are taken as features
and under the assumption that the documents in the collection are generated from a
probability distribution Θ, the perplexity over the language model defined by θ of a word
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sequence d = (w1, . . . , wm), is an exponential function of the OIQ:

Perplexity(d) = 2
1
mIΓ

(
d
)
.

Proof A.1.12. Given the vocabulary, V = {w1, . . . , wm}, a language model, θ, is defined
as a probability distribution:

Θ = {wi, Plm(wi | θ) : wi ∈ V} .

With
∑n
i=1 Plm(wi | θ) = 1.

Given a document, d = {w1, . . . , wn} ∈ D, we can consider as fuzzy feature set, X,
the corresponding pairs word-position, {(w1, 1), . . . , (wn, n)}; where the membership
function is binary (the occurence of the feature). Then, by definition of OIQ:

I
(
X
)

= −log
(
P
(
{d ∈ D : d contains {(w1, 1), . . . , (wn, n)}}

))
=

= −log
(
P
(
{d ∈ D : d = (w1, . . . , wn)}

))
.

Given that documents are generated from a language model described by the proba-
bility distribution Plm, then, the probability that a document is a sequence of words
corresponds with the probability of a sequence according to the probability distribution
Plm. That is:

P
(
{d ∈ D : d = (w1, . . . , wn)}

)
= Plm

(
d = (w1, . . . , wn)

)
.

Then, I
(
X
)

= −log
(
Plm

(
d = (w1, . . . , wn)

))
, And finally, with trivial algebraic opera-

tions, we have,
Perplexity(d) = 2

1
mIΓ

(
d
)
.

Proposition 3.6. Given two documents d1 and d2, when word occurrences are taken as
features and under the assumptions of feature independence and information additivity,
Lin’s distance can be expressed as:

Lin
(
d1, d2

)
=
I
(
OΓ(d1) ∩ OΓ(d2)

)
I
(
OΓ(d1)

)
+ I

(
OΓ(d2)

) .
Proof A.1.13. Considering the definition of Lin’s distance and assuming information
additivity,

Lin(d1, d2) =

∑
w∈d1∩d2

IΓ
(
w
)

∑
w∈d1

IΓ
(
w
)

+
∑
w∈d2

IΓ
(
w
) .
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Assuming feature independence, it is equivalent to:

I
(
OΓ(d1) ∩ OΓ(d2)

)
I
(
OΓ(d1)

)
+ I

(
OΓ(d2)

) .

A.2. Formal Proofs for Chapter 4

Proposition 4.1. The Feature Contrast Model satisfies the metric space Axioms if
α = 0 and β1 = β2, i.e., Sim(X,Y ) = −β · f(X \ Y ) −β · f(Y \X), and the salience
function is additive for disjoint documents:

X ∩ Y = ∅ =⇒ f(X ∪ Y ) = f(X) + f(Y ) . (A.1)

Proof A.2.1. Maximality is satisfied given that:

Sim(X,X) = −β1 · f(X \X)− β2 · f(X \X) = 0− 0 = 0 .

In addition the salience function f is always positive. Therefore:

Sim(X,Y ) = −β1 · f(X \ Y )− β2 · f(Y \X) ≤ 0 .

The proof for symmetricity is straightfordward, given that β1 = β2. Let us prove that
it satisfies Triangular Inequality. According to the properties of set operators, we can
state that f(X) = f((X \ Y ) ∪ (X ∩ Y )). And according to Equation A.1:

f((X \Y )∪ (X ∩Y )) = f(X \Y ) + f(X ∩Y ) =⇒ f(X \Y ) = f(X)− f(X ∩Y ) . (A.2)

Then, we need to prove that:

sim(X,Y ) = −β1 · f(X \ Y )− β2 · f(Y \X) ≥

sim(X,Z) + sim(Z, Y ) = −β1 · f(X \ Z)− β2 · f(Z \X)− β1 · f(Z \ Y )− β2 · f(Y \ Z) .

Given that β1 = β2, what we need to prove is:

−f(X \ Y )− f(Y \X) ≥ −f(X \ Z)− f(Z \X)− f(Z \ Y )− f(Y \ Z)⇐⇒

f(X \ Y ) + f(Y \X) ≤ f(X \ Z) + f(Z \X) + f(Z \ Y ) + f(Y \ Z) .
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According to Equation A.2:

f(X)− f(X ∩ Y ) + f(Y )− f(Y ∩X) ≤ f(X)− f(X ∩ Z) + f(Z)− f(Z ∩X)

+ f(Z)− f(Z ∩ Y ) + f(Y )− f(Y ∩ Z)⇐⇒

−2 · f(X ∩ Y ) ≤ 2 · f(Z)− 2 · f(X ∩ Z)− 2 · f(Z ∩ Y )⇐⇒

−f(X ∩ Y ) ≤ f(Z)− f(X ∩ Z)− f(Z ∩ Y )⇐⇒

f(X ∩ Y ) ≥ f(X ∩ Z) + f(Z ∩ Y )− f(Z) .

Now, let as consider the following disjoint subsets:

A = X ∩ Y ∩ Z, B = (X ∩ Y ) \A, C = (X ∩ Z) \A,

D = (Y ∩ Z) \A, E = Z \ (X ∪ Y ) .

We can state that, X∩Y = A∪B, X∩Z = A∪C, Y ∩Z = A∪D and Z = A∪C∪D∪E.
Now, according to Equation A.1:

f(X ∩ Y ) ≥ f(X ∩ Z) + f(Z ∩ Y )− f(Z)⇐⇒

f(A)+f(B) ≥ f(C)+f(A)+f(A)+f(D)−f(A)−f(D)−f(C)−f(E)⇐⇒ f(B) ≥ −f(E) .

which is true, given that the salience function are necessarily positive.

Proposition 4.2. The Tversky’s monotonicity axiom is not compatible with the DEPEN-

DENCY constraint.

Proof A.2.2. Let us consider the situation in which X, Y , Z and Z ′ are four non
empty disjoint sets of features, and in addition, the DEPENDENCY conditions hold:
P (XZ | Y Z ′) < P (X | Y ) and P (Y Z | XZ) < P (Y | X). Then, according to the
DEPENDENCY constraint:

Sim(X,Y ) < Sim(XZ, Y Z ′) .

On the other hand, at least when the sets are not overlapped, we can also assert that:

X ∩ Y = XZ ∩ Y Z ′

XZ \ Y Z ′ = XZ \ Y ⊇ X \ Y

Y Z ′ \XZ = Y Z \X ⊇ X \ Y .

Therefore, accoring to Tverski’s monotonocity axiom:

Sim(X,Y ) ≥ Sim(XZ, Y Z ′) .

which contradicts the DEPENDENCY constraint.

Lemma 4.1. SIM is equivalent to stating that a positive similarity increase occurs
when both the information quantities of the compared fuzzy feature sets and their sum
increase to a greater extent than the information quantity of the union of the fuzzy
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feature sets:

∆I(X) + ∆I(Y ) ≥ ∆I(X ∪ Y )⇐⇒ ∆PMI(X,Y ) ≥ 0

and ∆I(X) ≥ ∆I(X ∪ Y )⇐⇒ ∆P (X | Y ) ≥ 0

and ∆I(Y ) ≥ ∆I(X ∪ Y )⇐⇒ ∆P (Y | X) ≥ 0 .

Proof A.2.3. First, notice that according to our probabilistic framework, the occurrence
of a union of two fuzzy feature sets, X and Y , considers all the documents which have a
less projection of feature values than the union, X∪Y , i.e., it considers all the documents
which have a less projection of feature values than the occurrence of X, and those which
have a less projection of feature values than the occurrence of Y .

Therefore:

I(X ∪ Y ) = −log
(
P
(
Occ(X ∪ Y )

))
= −log

(
P
(
Occ(X), Occ(Y )

))
,

which is denoted in this thesis as −log(P (X,Y )). Then:

∆I(X) + ∆I(Y ) ≥ ∆I(X ∪ Y )⇐⇒

log

(
1

P (X ′)

)
+ log

(
1

P (Y ′)

)
−
(
log

(
1

P (X)

)
+ log

(
1

P (Y )

))
≥

log

(
1

P (X ′, Y ′)

)
− log

(
1

P (X,Y )

)
⇐⇒

log

(
P (X) · P (Y )
P (X ′) · P (Y ′)

)
≥ log

(
P (X,Y )
P (X ′, Y ′)

)
⇐⇒

P (X) · P (Y )
P (X ′) · P (Y ′) ≥

P (X,Y )
P (X ′, Y ′) ⇐⇒

P (X ′, Y ′)
P (X ′) · P (Y ′) ≥

P (X,Y )
P (X) · P (Y ) ⇐⇒

PMI(X ′, Y ′) ≥ PMI(X,Y )⇐⇒ ∆PMI(X,Y ) ≥ 0 .

The other two conditions are also equivalent; ∆I(X) ≥ ∆I(X ∪ Y ) is equivalent to:

log

(
1

P (X ′)

)
− log

(
1

P (X)

)
≥ log

(
1

P (X ′ ∪ Y ′)

)
− log

(
1

P (X ∪ Y )

)
⇐⇒

log

(
P (X)
P (X ′)

)
≥ log

(
P (X ∪ Y )
P (X ′ ∪ Y ′)

)
⇐⇒ P (X)

P (X ′) ≥
P (X ∪ Y )
P (X ′ ∪ Y ′) ⇐⇒

P (X ′ ∪ Y ′)
P (X ′) ≥ P (X ∪ Y )

P (X) ⇐⇒ P (Y ′|X ′) ≥ P (Y |X)⇐⇒ ∆P (Y |X) ≥ 0 .

And in the same way: ∆I(Y ) ≥ ∆I(X ∪ Y ) ≡ ∆P (X|Y ) ≥ 0.

Proposition 4.3. Satisfying SIM is a sufficient condition for satisfying the IDENTITY,
IDENTITY-SP, DEPENDENCY and UNEXPECTEDNESS constraints.

Proof A.2.4. The IDENTITY constraint states that Sim(X,X) > Sim(X,XY ). It is
enough to prove that the object pairs (X,X) and (X,XY ) satisfy the SIM conditions:
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1.
PMI(X,X)− PMI(X,XY ) =

= log

(
P (X,X)

P (X) · P (X)

)
− log

(
P (X,XY )

P (X) · P (XY )

)
=

= log

(
P (X)

P (X) · P (X)

)
− log

(
P (XY )

P (X) · P (XY )

)
=

= log

(
1

P (X)

)
− log

(
1

P (X)

)
= 0 .

2.
P (X | X)− P (XY | X) = 1− P (XY,X)

P (X) = 1− P (XY )
P (X) > 0 .

3.
P (X | X)− P (X | XY ) = 1− 1 = 0 .

Notice that the notation XY implies that X and Y are disjoint feature sets. Therefore,
P (XY ) < P (X) and P (XY )

P (X) < 1. Therefore 1− P (XY )
P (X) > 0.

That is, the three conditions are satisfied and the second one is satisfied in an strict
manner. Therefore, according to the SIM axiom: Sim(X,X) > Sim(X,XY ), satisfying
the identity axiom. Notice that the second part of the IDENTITY constraint can be
derived from its first part and the IDENTITY-SP constraint (see Section 4.3.2).

The IDENTITY-SP constraint states that Sim(XY ,XY ) > Sim(X,X). It is enough to
prove that (XY,XY ) and (X,X) satisfies the SIM conditions:

1.
PMI(XY,XY )− PMI(X,X) =

= log

(
P (XY,XY )

P (XY ) · P (XY )

)
− log

(
P (X,X)

P (X) · P (X)

)
=

= log

(
1

P (XY )

)
− log

(
1

P (X)

)
> 0 .

2.
P (XY | XY )− P (X | X) = 0 .

3.
P (XY | XY )− P (X | X) = 0 .

Therefore, the three conditions are satisfied and the first one is satisfied in an strict
manner. Then, according to the SIM axiom: Sim(XY,XY ) > Sim(X,X), and the
IDENTITY-SP constraint is complied.

To see that SIM captures the UNEXPECTEDNESS constraint, we need to prove that if
P (Y | X) > P (Y ′ | X) then Sim(X,XY ) > Sim(X,XY ′). It is enough to prove that
(X,XY ) and (X,XY ′) satisfies the SIM conditions expressed in Lemma 4.1. Notice
that;

P (Y |X) > P (Y ′ | X) =⇒ P (XY ) > P (XY ′) .
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Therefore:

1.
PMI(X,XY )− PMI(X,XY ′) =

= log

(
P (X,XY )

P (X) · P (XY )

)
− log

(
P (X,XY ′)

P (X) · P (XY ′)

)
=

= log

(
P (XY )

P (X) · P (XY )

)
− log

(
P (XY ′)

P (X) · P (XY ′)

)
=

= log

(
1

P (X)

)
− log

(
1

P (X)

)
= 0 .

2.
P (X | XY )− P (X | XY ′) = 0 .

3.
P (XY | X)− P (XY ′ | X) = P (Y | X)− P (Y ′ | X) > 0 .

Therefore, the three conditions are satisfied and the second one is satisfied in an strict
manner. Therefore, according to the SIM axiom: Sim(XY,XY ) > Sim(X,X), satisfy-
ing the UNEXPECTEDNESS constraint.

The dependency axiom states that if P (XZ | Y Z ′) > P (X | Y ) and P (Y Z ′ | XZ) >
P (Y | X) then Sim(XZ, Y Z ′) > Sim(X,Y ). The three conditions of the SIM axiom
for stating Sim(XZ, Y Z ′) > Sim(X,Y ) are satisfied:

1.
PMI(XZ, Y Z ′)− PMI(X,Y ) =

= log

(
P (XZ, Y Z ′)

P (XZ) · P (Y Z ′)

)
− log

(
P (X,Y )

P (X) · P (Y )

)
=

= log

(
P (XZ | Y Z ′)

P (XZ)

)
− log

(
P (X,Y )

P (X) · P (Y )

)
>

> log

(
P (X | Y )
P (XZ)

)
− log

(
P (X,Y )

P (X) · P (Y )

)
>

> log

(
P (X | Y )
P (X)

)
− log

(
P (X,Y )

P (X) · P (Y )

)
=

= log

(
P (X,Y )

P (X) · P (Y )

)
− log

(
P (X,Y )

P (X) · P (Y )

)
= 0 .

2.
P (XZ | Y Z ′)− P (X | Y ) > P (X | Y )− P (X | Y ) = 0 .

3.
P (Y Z ′ | XZ)− P (Y | Z) > P (Y | X)− P (Y | X) = 0 ,

where one inequality must be strict. Thus, SIM captures de DEPENDENCY constraint.

Proposition 4.4. SIM does not imply any constraint with respect to the ASYMMETRIC-

ITY conditions.
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Proof A.2.5. The Pointwise Mutual Information does not change in the assymmetricity
condition:

PMI(XY ,X) = PMI(X,XY ) .

and the conditional probabilities grow in opposite directions:

P (XY | X)− P (X | XY ) = −
(
P (X | XY )− P (XY | X)

)
.

Therefore, the SIM conditions never hold.

Proposition 4.5:. Under the assumption of statistical independence between the inter-
section and difference components of two fuzzy feature sets and considering the OIQ as
the salience function:

I(X ∪ Y ) = I(X ∩ Y ) + I(X \ Y ) + I(Y \X) .

SIM is equivalent to Tversky’s Monotonicity axiom.

Proof A.2.6. The independence condition implies that:

I(X) = I(X ∩ Y ) + I(X \ Y )

I(Y ) = I(X ∩ Y ) + I(Y \X)

I(X ∪ Y ) = I(X ∩ Y ) + I(X \ Y ) + I(Y \X) .

Therefore:

∆I(X) + ∆I(Y ) ≥ ∆I(X ∪ Y )

=⇒2∆I(X ∩ Y ) + ∆I(X \ Y ) + ∆I(Y \X)

≥ ∆I(X ∩ Y ) + ∆I(X \ Y ) + ∆I(Y \X)

=⇒∆I(X ∩ Y ) ≥ 0 ,

and

∆I(X) ≥ ∆I(X ∪ Y )

=⇒∆I(X ∩ Y ) + ∆I(X \ Y )

≥ ∆I(X ∩ Y ) + ∆I(X \ Y ) + ∆I(Y \X)

=⇒0 ≥ ∆I(Y \X) .

And in the same way:

∆I(Y ) ≥ ∆I(X ∪ Y )

=⇒∆I(X ∩ Y ) + ∆I(Y \X)

≥ ∆I(X ∩ Y ) + ∆I(X \ Y ) + ∆I(Y \X)

=⇒0 ≥ ∆I(X \ Y ) .
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A.3. Formal Proofs for Chapter 5

Proposition 5.1. Under the assumption that the PMI of two objects is not negative,
the cosine similarity under the skip-gram with negative sampling representation satisfies
UNEXPECTEDNESS.

Proof A.3.1. First, the cosine similarity is a metric distance which satisfies maximality.
Therefore, IDENTITY-SP can not be satisfied. However, according to several studies [74,
11], the scalar product of vectors in Skip-gram representation approaches PMI:

vA · vB ' log
(

P (A,B)
P (A) · P (B)

)
.

Therefore,

Cos(vA, vB) = vA · vb
‖vA‖ · ‖vB‖

'
log
(

P (A,B)
P (A)·P (B)

)
(
log
(

1
P (A)

)
· log

(
1

P (A)

)) 1
2
.

In terms of Information Quantity, this can be expressed as:

Cos(vA, vB) ' I(A) + I(B)− I(A,B)
(I(A) · I(B)) 1

2
.

We can prove that UNEXPECTEDNESS is satisfied given that:

P (Y | X) < P (Y ′ | X) =⇒ P (XY | X) < P (XY ′ | X)

=⇒ I(X)− I(XY ) < I(X)− I(XY ′) =⇒ I(XY ) > I(XY ′) .

Therefore:

Cos(vX , vXY ) ' I(X) + I(XY )− I(X,XY )
(I(X) · I(XY )) 1

2

= I(X)
(I(X) · I(XY )) 1

2
<

I(X)
(I(X) · I(XY ′)) 1

2
= Cos(vX , vXY ′) .

Proposition 5.2. Whenever α1 = α4, any variation in α1 and α1 in the ratio contrast
model produces ordinal equivalent similarity functions.

Proof A.3.2. Being α1 = α4, according to the ratio contrast model:

Sim(X,Y ) > Sim(X ′, Y ′)⇐⇒
α1 · f(X ∩ Y )

α2 · f(X \ Y ) + α3 · f(Y \X) + α1 · f(X ∩ Y ) >

α1 · f(X ′ ∩ Y ′)
α2 · f(X ′ \ Y ′) + α3 · f(Y ′ \X ′) + α1 · f(X ′ ∩ Y ′) .
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Knowing that the salience function f is positive, this is equivalent to:

1
α2·f(X\Y )
α1·f(X∩Y ) + α3·f(Y \X)

α1·f(X∩Y ) + 1
>

1
α2·f(X′\Y ′)
α1·f(X′∩Y ′) + α3·f(Y ′\X′)

α1·f(X′∩Y ′) + 1
⇐⇒

α2 · f(X \ Y )
α1 · f(X ∩ Y ) + α3 · f(Y \X)

α1 · f(X ∩ Y ) <
α2 · f(X ′ \ Y ′)
α1 · f(X ′ ∩ Y ′) + α3 · f(Y ′ \X ′)

α1 · f(X ′ ∩ Y ′) ⇐⇒

α2 · f(X \ Y ) + α3 · f(Y \X)
f(X ∩ Y ) <

α2 · f(X ′ \ Y ′) + α3 · f(Y ′ \X ′)
f(X ′ ∩ Y ′) .

which is not affected by α1.

The Ratio contrast model, does not capture the IDENTITY-SP counter sample.

Proof A.3.3. Assuming that the salience function f is zero for an empty set, the self
similarity according to the ratio contrast model is:

Sim(X,X) = α1 · f(X ∩X)
α2 · f(X \X) + α3 · f(X \X) + α4 · f(X ∩X)

= α1 · f(X)
α2 · f(∅) + α3 · f(∅) + α4 · f(X) = α1 · f(X)

α4 · f(X) = α1

α4
.

Therefore, the self similarity is fixed and it can be affected by the characteristics of the
object, contradicting the IDENTITY-SP constraint.

Proposition 5.3: The PMI satisfies the DEPENDENCY constraint.

Proof A.3.4. Under our probabilistic framework, if P (XZ | Y Z ′) > P (X | Y ), then

PMI(XZ, Y Z ′) = log
(

P (XZ, Y Z ′)
P (XZ) · P (Y Z ′)

)
= log

(
P (XZ | Y Z ′) · 1

P (XZ)

)
>

log
(
P (X | Y ) · 1

P (XZ)

)
= log

(
P (X,Y )

P (Y ) · P (XZ)

)
> log

(
P (X,Y )

P (Y ) · P (X)

)
= PMI(X,Y ) .

Proposition 5.4: The PMI does not satisfy UNEXPECTEDNESS.

Proof A.3.5. When adding a feature set Z to an object X, the resulting PMI similarity
to the original one is:

PMI(XZ,X) = log
(

P (XZ,X)
P (XZ) · P (X)

)
= log

(
P (XZ)

P (XZ) · P (X)

)
= log

(
1

P (X)

)
= log

(
P (X)

P (X) · P (X)

)
= PMI(X,X) .

Therefore PMI is constant and the UNEXPECTEDNESS constraint can not be satisfied.

Proposition 5.5. The ICM satisfies the SIM axiom when α1 +α2 > β > α1 > α2 > 0.

Proof A.3.6. ICM is defined as:

∆ICMα1,α2,β(X,Y ) = α1 ·∆I(X) + α2 ·∆I(Y )− β ·∆I(X ∪ Y ) .

Let us consider the case in which I(X ∪ Y ) ≥ 0. This proposition states that α1 > 0,
α2 > 0. In addition, the SIM conditions state that ∆I(X) ≥ ∆I(X ∪ Y ) and ∆I(Y ) ≥
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∆I(X ∪ Y ). Therefore,

∆ICMα1,α2,β(X,Y ) ≥ α1 ·∆I(X ∪ Y ) + α2 ·∆I(X ∪ Y )− β ·∆I(X ∪ Y )

= (α1 + α2 − β) ·∆I(X ∪ Y ) .

Given that α1 + α2 < β, we can assert that:

(α1 + α2 − β) ·∆I(X ∪ Y ) > 0 .

That is, the ICM increase is positive and the SIM axiom is satisfied.

Now, we consider the case I(X ∪ Y ) < 0. The ICM conditions state that ∆I(X) +
∆I(Y ) ≥ ∆I(X ∪ Y ). Then:

∆ICMα1,α2,β(X,Y ) = α1 ·∆I(X) + α2 ·∆I(Y )− β ·∆I(X ∪ Y )

≥ α1 ·∆I(X) + α2 ·∆I(Y )− β ·∆I(X)− β ·∆I(Y )

= (α1 − β) ·∆I(X) + (α2 − β) ·∆I(Y )

= −(β − α1) ·∆I(X)− (β − α2) ·∆I(Y ) .

Given that ∆I(X) ≥ ∆I(X ∪ Y ), ∆I(Y ) ≥ ∆I(X ∪ Y ), β > α1 and β > α2, we can
assert that:

− (β − α1) ·∆I(X)− (β − α2) ·∆I(Y ) ≥

≥− (β − α1) ·∆I(X ∪ Y )− (β − α2) ·∆I(X ∪ Y ) =

=− (2β − α1 − α2) ·∆I(X ∪ Y ) .

Given that 2β − α1 − α2 > 2β − β − β = 0 and I(X ∪ Y ) < 0:

−(2β − α1 − α2) ·∆I(X ∪ Y ) > 0 .

Proposition 5.6. The ICM generalizes pointwise mutual information and the product
of conditional probabilities. Being α1 = α2 = 1 ≤ β ≤ 2

log(P (Occ(X) |Occ(Y ))·P (Occ(Y ) |Occ(X))) > ICMα1,α2,β(X,Y ) > PMI(Occ(X), Occ(Y )) .

Proof A.3.7. For the sake of simplicity, let us denote P (Occ(X)) as P (X). When
β = α1 = α2 = 1 then ICM matches with the Pointwise Mutual Information.

ICM1,1,1(X,Y ) = log

(
P (X,Y )β

P (X)α1 · P (Y )α2

)
= log

(
P (X,Y )

P (X) · P (Y )

)
.

At the opposite extrem when β = α1+α2 = 2, the ICM fit into the product of conditional
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probabilities.

ICM1,1,2(X,Y ) = log

(
P (X,Y )2

P (X)1 · P (Y )1

)
=

= log

(
P (X,Y ) · P (X,Y )
P (X) · P (Y )

)
= log

(
P (Y | X) · P (X | Y )

)
.

Proposition 5.7. If independence is assumed between the features in the intersection
and difference subsets in the ICM and the information quantity is used as the salience
function in the linear contrast model, then the ICM and the linear contrast model are
equivalent.

ICMα1,α2,β(X,Y ) = (α1+α2−β)·I(X∩Y )−(β−α1)·(I(X\Y ))−(β−α2)·(I(Y \X)) .

Proof A.3.8.
ICMα1,α2,β(X,Y ) = α1 · I(X) + α2 · I(Y )− β · I(X ∪ Y )

= α1 · (I(X ∩ Y ) + I(X \ Y )) + α2 · (I(X ∩ Y ) + I(X \ Y )))−

β · (I(X ∩ Y ) + I(X \ Y ) + I(Y \X))

= (α1 + α2 − β) · I(X ∩ Y )− (β − α1) · I(X \ Y )− (β − α2) · I(Y \X) .

A.4. Formal Proofs for Chapter 7

Proposition 7.1. The OIQ-based ranking fusion approach satisfies monotonicity, de-
pendence and cancellation.

Proof A.4.1. Let’s prove that OIQ satisfies monotonicity. Le be Γ the feature set
{γ1, .., γn} and let be γ another feature and γd1↔d2 the result of swapping the scores of
d1 and d2 in γ like in the Property 7.1.

According to the definition of the OIQ based ranking fusion, FΓ∪{γ}(d1) and FΓ∪{γd1↔d2}(d1)
correspond with the information quantity of the following observation outcomes:

OΓ∪{γ}(d1) = (γ1(d1), .., γn(d1), γ(d1))

OΓ∪{γd1↔d2}(d1) = (γ1(d1), .., γn(d1), γ(d2))

According to Property 3.1 (Feature Value Monotonicity), given that γ(d1) > γ(d2),
then:

IΓ∪{γ}
(
d1
)
> IΓ∪{γd1↔d2}

(
d1
)

Therefore, the Strict Monotonicity property of ranking fusion is satisfied. The depen-
dency and cancellation properties are also satisfied. They are directly connected with
properties 3.5 and 3.6.
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Proposition 7.2. The UIR has the following correspondence with the OIQ:

UIR(d) ' 2I{γ1,...,γn}(d) − 2I{−γ1,...,−γn}(d) .

Proof A.4.2. From the definition of the OIQ approach, we have:

2IΓ

(
d
)

= P
(
{d′ ∈ D : rankγ(d′) ≤ rankγ(d),∀ γ ∈ Γ}

)
.

Assume than the set of features is Γ = {γ1, . . . , γn}, if we consider the set with the
opposite features, we have that,

2I{−γ1,...,−γn}

(
d
)

= P
(
{d′ ∈ D : rank−γ(d′) ≥ rank−γ(d),∀ γ ∈ Γ}

)
.

Therefore, it is possible to write UIR easily as:

UIR(d) ' 2I{γ1,...,γn}(d) − 2I{−γ1,...,−γn}(d) .
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