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Abstract

Measuring semantic similarity between sentences is a significant task in the fields
of Natural Language Processing (NLP), Information Retrieval (IR), and biomedical
text mining. For this reason, the proposal of sentence similarity methods for the
biomedical domain has attracted a lot of attention in recent years. However, most
sentence similarity methods and experimental results reported in the biomedical
domain cannot be reproduced for multiple reasons: the copying of previous results
without confirmation, the lack of source code and data to replicate both methods and
experiments, and the lack of a detailed definition of the experimental setup, among
others. As a consequence of this reproducibility gap, the state of the problem can
be neither elucidated nor new lines of research be soundly established.

In addition, there are other significant gaps in the literature on biomedical sen-
tence similarity, such as: (1) the performance and scalability drawbacks in current
state-of-the-art semantic measures libraries for the biomedical domain; (2) the lack of
an efficient shortest-path algorithm for real-time computation of path-based seman-
tic similarity measures; (3) the evaluation of several unexplored sentence similarity
methods which deserve to be studied; (4) the evaluation of an unexplored benchmark
on biomedical sentence similarity, called Corpus-Transcriptional-Regulation (CTR);
(5) a study on the impact of the pre-processing stage and Named Entity Recogni-
tion (NER) tools on the performance of the sentence similarity methods; and finally,
(6) the lack of software and data resources for the reproducibility of methods and
experiments in this line of research. Despite the research effort carried out in this
area, we believe that there is room for improvement in the development of specific
methods, since current methods are adaptations of general domain methods. In
addition, the research community has focused on Deep Learning methods with no
previous evaluation of different alternatives.

This thesis introduces the largest, and for the first time, a reproducible experi-
mental survey on biomedical sentence similarity, as well as the proposal and evalu-
ation of new methods for estimating the degree of similarity between sentences. In
addition, this thesis makes several significant contributions to the reproducibility of
sentence similarity benchmarks and measures as follows: (1) a detailed reproducibil-
ity protocol together with a collection of software tools and dataset; (2) an updated
and extended version of the Half-Edge Semantic Measures Library (HESML) for
the biomedical domain, called HESML V1R5 ; (3) a fast approximation of Dijkstra’s
algorithm for taxonomies based on a relaxed graph spanner, called Ancestors-based
Shortest-Path Length (AncSPL); (4) the first collection of self-contained and repro-
ducible benchmarks on biomedical sentence similarity; (5) the evaluation of a set
of previously unexplored methods, such as a new string-based sentence similarity
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CHAPTER 0. ABSTRACT

method, called LiBlock, eight variants of the current ontology-based methods from
the literature, and a new pre-trained Word Embedding (WE) model based on Fast-
Text and trained on the full-text of articles in the PMC-BioC corpus; (6) the evalu-
ation for the first time of an unexplored benchmark, called Corpus-Transcriptional-
Regulation (CTR); (7) the study on the impact of the pre-processing stage and
Named Entity Recognition (NER) tools on the performance of the sentence sim-
ilarity methods; (8) the integration for the first time of most sentence similarity
methods for the biomedical domain into the same software library, called HESML
for Semantic Textual Similarity (HESML-STS); and finally, (9) an analysis of the
drawbacks and limitations of the current state-of-the-art methods.

Our experiments show that our novel string-based measure establishes the new
state of the art for the sentence similarity task in the biomedical domain and signifi-
cantly outperforms all the methods evaluated herein, with the only exception of one
ontology-based method. Likewise, our experiments confirm that the pre-processing
stages, and the choice of the NER tool for ontology-based methods, have a very
significant impact on the performance of the sentence similarity methods. We also
detail some drawbacks and limitations of current methods, and warn about the
need to refine the current benchmarks. Finally, a noticeable finding is that our new
string-based method significantly outperforms all state-of-the-art Machine Learning
(ML) models evaluated herein.

Keywords: HESML, semantic similarity measures, sentence similarity, seman-
tic measures libraries, ontology-based semantic similarity measures, SNOMED-CT,
MeSH, reproducible survey.
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Resumen

Medir la similitud semántica entre oraciones es una tarea importante en los cam-
pos del Procesamiento del Lenguaje Natural (PLN), la Recuperación de Información
(RI) y la minería de textos biomédicos. Por este motivo, la propuesta de métodos
de similitud de frases para el ámbito biomédico ha atraído mucha atención en los
últimos años. Sin embargo, la mayoría de los métodos de similitud de frases y
resultados experimentales reportados en el dominio biomédico no pueden ser repro-
ducidos por múltiples razones como las siguientes: la copia de resultados previos
sin confirmación, la falta de código fuente y datos para replicar tanto los métodos
como los experimentos, y la falta de una definición detallada de la configuración
experimental, entre otras. Como consecuencia de este vacío de reproducibilidad, no
se puede dilucidar el estado del problema ni establecer sólidamente nuevas líneas de
investigación.

Por otro lado, existen otras lagunas significativas en la literatura sobre similitud
de frases biomédicas, como son: (1) las limitaciones de rendimiento y escalabilidad
de las actuales bibliotecas de medidas semánticas de última generación para el ám-
bito biomédico; (2) la falta de un algoritmo eficiente de camino más corto para el
cálculo en tiempo real de medidas de similitud semántica basadas en caminos; (3) la
evaluación de varios métodos de similitud de oraciones inexplorados que merecen ser
estudiados; (4) la evaluación de un conjunto de datos inexplorado sobre similitud de
oraciones biomédicas, denominado Corpus-Transcriptional-Regulation (CTR); (5) el
estudio sobre el impacto de la etapa de preprocesamiento y las herramientas de Re-
conocimiento de Entidades Nombradas (NER) sobre el rendimiento de los métodos
de similitud de oraciones; y, por último, (6) la falta de recursos de software y datos
para la reproducibilidad de métodos y experimentos en esta línea de investigación. A
pesar del esfuerzo investigador realizado en este campo, creemos que hay margen de
mejora en el desarrollo de métodos específicos, ya que los actuales son adaptaciones
de métodos de dominio general. Además, la comunidad investigadora se ha centrado
en métodos de Deep Learning sin una evaluación previa de diferentes alternativas.

Esta tesis introduce el mayor, y por primera vez, estudio experimental repro-
ducible sobre similitud de frases biomédicas, así como la propuesta y evaluación
de nuevos métodos para estimar el grado de similitud entre oraciones. Además,
esta tesis introduce varias contribuciones significativas a la reproducibilidad de las
medidas de similitud entre oraciones, a saber (1) un protocolo detallado de re-
producibilidad junto con una colección de herramientas de software y un conjunto
de datos; (2) una versión actualizada y ampliada de la Half-Edge Semantic Mea-
sures Library (HESML) para el dominio biomédico, llamada HESML V1R5 ; (3) una
aproximación rápida del algoritmo de Dijkstra para taxonomías basado en grafos,
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CHAPTER 0. RESUMEN

llamado Ancestors-based Shortest-Path Length (AncSPL); (5) la evaluación de un
conjunto de métodos hasta ahora inexplorados, como un nuevo método de similitud
de oraciones basado en cadenas, denominado LiBlock, ocho variantes de los méto-
dos actuales basados en ontologías y un nuevo modelo de word embeddings (Word
Embedding, WE) preentrenado basado en FastText y entrenado con el texto com-
pleto de los artículos del corpus PMC-BioC; (6) la evaluación por primera vez de
un conjunto de datos, denominado Corpus-Transcriptional-Regulation (CTR); (7)
el estudio del impacto de la etapa de preprocesamiento y de las herramientas de re-
conocimiento de entidades con nombre (NER) en el rendimiento de los métodos de
similitud de frases; (8) la integración por primera vez de la mayoría de los métodos
de similitud de oraciones para el ámbito biomédico en la misma biblioteca de soft-
ware, denominada HESML for Semantic Textual Similarity (HESML-STS); y, por
último, (9) un análisis de los inconvenientes y limitaciones de los métodos actuales
de vanguardia.

Nuestros experimentos demuestran que nuestra novedosa medida basada en ca-
denas establece el nuevo estado del arte en la tarea de similitud de oraciones en el
ámbito biomédico y supera significativamente a todos los métodos aquí evaluados,
con la única excepción de un método basado en ontologías. Asimismo, nuestros
experimentos confirman que las etapas de preprocesamiento, y la elección de la
herramienta NER para los métodos basados en ontologías, tienen un impacto muy
significativo en el rendimiento de los métodos de similitud de frases. También detal-
lamos algunos inconvenientes y limitaciones de los métodos actuales, y advertimos
de la necesidad de perfeccionar las pruebas de referencia actuales. Por último, un
hallazgo notable es que nuestro nuevo método basado en cadenas supera significati-
vamente a todos los modelos de Aprendizaje Automático (Machine Learning, ML)
de última generación aquí evaluados.

Palabras clave: HESML, medidas de similitud semántica, similitud de ora-
ciones, librerías de medidas semánticas, medidas de similitud semántica basadas en
ontologías, SNOMED-CT, MeSH, survey reproducible.
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Chapter 1

Introduction

Measuring semantic similarity between sentences is an important task in the fields
of Natural Language Processing (NLP), Information Retrieval (IR), and biomedical
text mining, among others. For instance, the estimation of the degree of seman-
tic similarity between sentences is used in text classification [124, 55, 29], question
answering [114, 58], evidence sentence retrieval to extract biological expression lan-
guage statements [111, 110], biomedical document labeling [37], biomedical event
extraction [88], named entity recognition [42], evidence-based medicine [56, 46],
biomedical document clustering [21], prediction of adverse drug reactions [34], en-
tity linking [60], document summarization [9, 117] and sentence-driven search of
biomedical literature [10], among other applications. In the question answering task,
Sarrouti and El Alaomi [114] build a ranking of plausible answers by computing the
similarity scores between each biomedical question and the candidate sentences ex-
tracted from a knowledge corpus. Allot et al. [10] introduce a system to retrieve
the most similar sentences in the BioC biomedical corpus [31], called Litsense [10],
which is based on the comparison of the user query with all sentences in the afore-
mentioned corpus. In this area, the relevance of the research is also endorsed by
recent works based on sentence similarity measures, such as the work of Aliguliyev
[9] in automatic document summarization, which shows that the performance of
these applications depends significantly on the sentence similarity measures used.

The aim of any semantic similarity method is to estimate the degree of simi-
larity between two textual semantic units as perceived by a human being, such as
words, phrases, sentences, short texts, or documents. Unlike sentences from the
language in general use, whose vocabulary and syntax is limited both in extension
and complexity, most sentences in the biomedical domain are comprised of a huge
specialized vocabulary made up of all sorts of biological and clinical terms, in addi-
tion to an uncountable list of acronyms, which are combined in complex lexical and
syntactic forms. For these latter reasons, any kind of language processing task for
the biomedical domain, such as that tackled in this thesis, is extremely challenging.

Most methods on biomedical sentence similarity are adaptations from methods
for the general language domain, which are mainly based on the use of biomedical
ontologies, as well as word and sentence embedding models trained on biomedical
text corpora. For instance, Socioanglu et al. [120] introduce a set of sentence simi-
larity measures for the biomedical domain, which are based on adaptations from the
Li et al. [84] measure. Zhang et al. [135] introduce a set of pre-trained word embed-
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CHAPTER 1. INTRODUCTION

ding model called BioWordVec, which is based on a FastText [19] model trained on
the titles and abstracts from PubMed articles and term sequences from the Medical
Subject Headings (MeSH) thesaurus [97], whilst Chen et al. [30] introduce a set
of pre-trained sentence embedding models called BioSentVec, which is based on a
Sent2vec [101] model trained on the full text of PubMed articles and Medical In-
formation Mart for Intensive Care (MIMIC-III) clinical notes [51], and Blagec et al.
[18] introduce a set of word and sentence embedding models based on the training
of FastText [19], Sent2Vec [101], Paragraph vector [80], and Skip-thoughts vectors
[57] models on the full-text PubMed Central (PMC) Open Access dataset. Likewise,
several contextualized word representation models, also known as language models,
have also been adapted to the biomedical domain. For instance, Lee et al. [81]
and Peng et al. [104] introduce two language models based on the Bidirectional
Encoder Representations from Transformers (BERT) architecture [33], which are
called BERT for Biomedical text mining (BioBERT) and Biomedical Language Un-
derstanding Evaluation of BERT (BlueBERT), respectively. Despite the research
effort carried out in this area, we believe that there is room for improvement in
the development of specific methods since current methods are adaptations of gen-
eral domain methods. In addition, the research community has focused on Deep
Learning methods with no previous evaluation of different alternatives.

Currently, there are several works in the literature that experimentally evaluate
multiple methods on biomedical sentence similarity. However, they are either the-
oretical or have a limited scope and cannot be reproduced. Moreover, there is also
a significant lack of reproducibility software and data resources in this area. For
instance, Kalyan et al. [53], Khattak et al. [54], and Alsentzer et al. [11] introduce
theoretical surveys on biomedical embeddings with a limited scope; and the experi-
mental surveys introduced by Sogancioglu et al. [120], Blagec et al. [18], Peng et al.
[104], and Chen et al. [30] among other authors, cannot be reproduced because of
the lack of source code and data to replicate both methods and experiments, or the
lack of a detailed definition of their experimental setups. Likewise, there are other
recent works whose results need to be confirmed. For instance, Tawfik and Spruit
[125] experimentally evaluate a set of pre-trained language models, whilst Chen et
al. [27] propose a system to study the impact of a set of similarity measures on a
Deep Learning ensemble model, which is based on a Random Forest model [22].

Ontology-based semantic similarity measures based on SNOMED-CT, MeSH,
and Gene Ontology are being extensively used in many applications in biomedical
text mining and genomics respectively, which has encouraged the development of se-
mantic measures libraries based on the aforementioned ontologies. However, current
state-of-the-art semantic measures libraries have some performance and scalability
drawbacks derived from their ontology representations based on relational databases,
or naive in-memory graph representations, which limit their use in high-throughput
experiments and applications. Likewise, a recent reproducible survey on word simi-
larity [71] shows that one hybrid IC-based measure which integrates a shortest-path
computation [68, coswJ&C] establishes the state of the art in the family of ontology-
based semantic measures. However, the lack of an efficient shortest-path algorithm
for their real-time computation prevents both their practical use in any application
and the use of any other path-based semantic similarity measure.

The main ontologies used for biomedical text mining and information retrieval
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applications in health sciences are SNOMED-CT and MeSH, although there are
many other ontologies1 based on the OBO file format [119]. At the present time
there are only two semantic measures libraries based on the two aforementioned on-
tologies as follows: (1) the pioneering Perl software library and online web interface
called UMLS::Similarity [91], and (2) the most recent Java software library called
SML [44], which introduces several significant contributions, such as portable and
efficient object-oriented language programming, as well as a significant number of
methods, and the implementation for the first time of the most significant biomedical
ontologies and WordNet into a single software library. Despite the UMLS::Similarity
library [91] having been extensively used in the literature, it has several significant
drawbacks that prevent its use in high-throughput standalone applications, namely
a poor performance in the evaluation of measures, as well as a tedious, complex,
and long setup process to build several pre-calculated data structures and values
stored into an auxiliary database called UMLS::Interface. Likewise, SML [44] has
several significant performance and scalability drawbacks derived from the use of
a naive in-memory graph representation based on hash tables and caching, which
significantly impacts its overall performance, and very especially, its computation of
path-based measures and scalability regarding the ontology size [69]. In addition to
the aforementioned drawbacks which encourage our research in this thesis, neither
UMLS:Similarity nor SML implement most of the measures based on embedding
and language models, such as those evaluated in this thesis [66].

The main aim of this thesis is to bridge the gaps introduced in the paragraphs
above, which we can summarize as follows: (1) the proposal and evaluation of new
sentence similarity methods for the biomedical domain that are not adaptations
of the general domain; (2) the proposal and development of a new benchmark on
semantic measures libraries for the biomedical domain; (3) the proposal and eval-
uation of a protocol for reproducing all the results reported in this thesis; (3) the
development of reproducible software and resources for the evaluation of most sen-
tence similarity methods for the biomedical domain into the same software library;
(4) the proposal and evaluation of an extension of Half-Edge Semantic Measures Li-
brary (HESML) library [69] to integrate most important biomedical ontologies; and
(5) the proposal and evaluation of an efficient shortest-path algorithm for real-time
computation of path-based word similarity methods.

1.1 Definition of the research problem

The two main research problems tackled by this thesis are the design and imple-
mentation of reproducible benchmarks on biomedical sentence similarity, and the
proposal and evaluation of new methods for estimating the degree of similarity be-
tween sentences in the biomedical domain.

The research of this thesis tackles the following five main research problems: (1)
the design and implementation of a reproducible experimental survey on sentence
similarity measures for the biomedical domain; (2) the proposal and evaluation of
a new method for the approximation of Dijkstra’s algorithm for taxonomies, called
Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time com-

1http://www.obofoundry.org
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CHAPTER 1. INTRODUCTION

putation of any path-based semantic similarity measure; (3) the development and
release of an updated version of the HESML [69] library especially designed for the
biomedical domain, called HESML V1R5 [74], as well as all the necessary resources
for reproducing all experiments reported in the latter article; (4) the development of
a new aggregated measure for biomedical sentence similarity; and (5) the evaluation
of a set of unexplored methods based on adaptations from previous methods used
in the general language domain.

All our experiments are based on our software implementation and evaluation
of all methods analyzed in this thesis into two releases of a common and new soft-
ware platform based on an extension of the Half-Edge Semantic Measures Library
(HESML) [69, 77] 2. The first release, HESML V1R5 [74], extends HESML to the
biomedical domain by implementing the SNOMED-CT, MeSH, GO [14, 127], and
OBO file format ontologies [119], in addition to WordNet [93]. The second release,
HESML V2R1 implements most of the known methods for biomedical sentence
similarity, as well as a set of new sentence similarity methods adapted from their
definitions for the general-language domain. All our experiments have been recorded
in Docker virtualization images that are provided as supplementary material with
our software, detailed reproducibility protocols and datasets [76, 64, 63] to allow
the easy replication of all our methods, experiments, and results. Thus, this thesis
focuses on the reproducibility of the results to elucidate the current state of the art
in the task of semantic similarity of sentences in the biomedical domain.

1.2 Brief review of the literature

Current methods on sentence semantic similarity can be categorized into two classes
as follows: (a) the methods proposed for the general domain; and (b) the methods
proposed for the biomedical domain. For a more detailed presentation of the meth-
ods categorized herein, we refer the reader to our protocol [63] and reproducibility
survey [61], as well as the surveys on biomedical embedding models [53, 54, 11],
ontology-based semantic similarity measures [73, 68], word embeddings [73, 54],
sentence embeddings [95, 53], and neural language models [53, 15].

1.2.1 Methods proposed for the general language domain

There is a large corpus of literature on sentence similarity methods for the general
language domain as the result of a significant research effort during the last decade.
However, the literature for the biomedical domain is much more limited. Research
for the general language domain has mainly been boosted by the SemEval Short Text
Similarity (STS) evaluation series since 2012 [5, 6, 3, 2, 4, 24], which has generated
a large number of contributions in the area [113, 16, 43, 121, 123], as well as an STS
benchmark dataset [24]. On the other hand, the development of sentence similarity
benchmarks for the biomedical domain is much more recent. Currently, there are
only three datasets for the evaluation of methods on biomedical sentence similarity,
called BIOSSES [120], MedSTS [130], and CTR [87]. BIOSSES was introduced
in 2017 and it is limited to 100 sentence pairs with their corresponding similarity

2http://hesml.lsi.uned.es
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scores, whilst MedSTSfull is made up of 1,068 scored sentence pairs from the MedSTS
dataset [131], which contains 174,629 sentence pairs gathered from a clinical corpus
on biomedical sentence similarity. Finally, the CTR dataset includes 171 sentence
pairs, but it has not been evaluated yet because of its recent publication in 2019.

Figure 1.1 shows our categorization of the current sentence semantic similarity
measures into six subfamilies as follows. First, string-based measures, whose main
feature is the use of the explicit information contained at the character or word level
in the sentences to estimate their similarity. Second, ontology-based measures, such
as those introduced by Sogancioglu et al. [120], whose main feature is the computa-
tion of the similarity between sentences by combining the pairwise similarity scores
of their constituent words and concepts [73] based on the Systematized Nomencla-
ture of Medicine Clinical Terms (SNOMED-CT) [36] and WordNet [94] ontologies,
and the MeSH thesaurus [97]. Third, corpus-based methods based on the distri-
butional hypothesis [45], such as the work of Pyysalo et al. [107], which states
that words sharing semantic relationships tend to occur in similar contexts. The
corpus-based methods can be divided into three subcategories as follows: (a) meth-
ods based on word embeddings, (b) sentence embeddings, and (c) language models.
Methods based on word embeddings combine the word vectors corresponding to
the words contained in a sentence to build a sentence vector, such as the averaging
Simple Word EMbeddings (SWEM) models introduced by Shen et al. [118], whilst
methods based on sentence embeddings directly compute a vector representation for
each sentence. Then, the similarity between sentence pairs is calculated using any
vector-based similarity metric, such as the cosine function. In contrast, language
models explore the concept of Transfer Learning by creating a pre-trained model
on a large raw text corpus and fine-tuning that model in downstream tasks, such
as sentence semantic similarity, with the pioneering work of Peng et al. [104]. The
fourth subfamily consists of the syntax-based methods, which rely on the use of
explicit syntax information, as well as the structure of the words that compound
the sentences, such as the pioneering work of Oliva et al. [100]. Fifth, feature-based
approaches, such as the work of Chen et al. [26], whose main idea is to compute the
similarity of two sentences by measuring, according to different language perspec-
tives, the properties that they have in common or not, such as lexical patterns, word
semantics and named entities. Finally, aggregated methods, whose main feature is
the combination of other sentence similarity methods.

1.2.2 Methods proposed for the biomedical domain

Like that mentioned in the introduction, most methods on biomedical sentence sim-
ilarity are adaptations from the general domain, such as the methods which are
evaluated in this thesis. Sogancioglu et al. [120] proposed a set of ontology-based
measures called WordNet-based Similarity Measure (WBSM) and UMLS-based Sim-
ilarity Measure (UBSM), which are based on the Li et al. [84] measure. All word
and sentence embedding models for the biomedical domain in the literature are
based on well-known models from the general domain. Pyysalo et al. [107] train
a Skip-gram [92] model on document titles and abstracts from the PubMed XML
dataset, and all text content of the PMC Open Access dataset. Newman-Griffis et
al. [98] and Chen et al. [28] train GloVe [105], Skip-gram, and Continuous Bag of
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Sentence
semantic
similarity
methods



-String-based

 -Jaccard [49, 90], Levenshtein distance [83]
-Qgram: Ukkonen [128], Block distance: Krause [59]
-Overlap coefficient: Lawlor [79], Jimenez et al. [50]

-Ontology-based


-UBSM/WBSM, Sogancioglu et al. [120]*
-Wu et al. [133, 132, BIT], Pawar and Mago [102]
-Jimenez et al. [50], Islam and Inkpen [48]
-Lee et al. [82], Shajalal and Aono [116]
-Maharjan et al. [89], Li et al. [84]

-Corpus-based



-Word
embeddings



-GloVe [105]

{
-Newman-Griffis et al. [98]*
-BioConceptVec [28]*

-FastText [19]

 -BioWordVec [135]*
-Blagec et al. [18]*
-BioConceptVec [28]*

-Skip-gram [92]


-BioConceptVec [28]*
-Pyysalo et al. [107]*
-Newman-Griffis et al. [98]*
-Kajiwara et al. [52]

-CBOW [92]

{
-BioConceptVec [28]*
-Newman-Griffis et al. [98]*

-Shajalal and Aono [116]

-Sentence
embeddings


-Sent2vec [101]

{
-BioSentVec, [30]*
-Blagec et al. [18]*

-Paragraphvector [80]

 -Sogancioglu et al. [120]
-Blagec et al. [18]*
-Arora et al. [13]

-Language
models



-ELMo [106]
{
-Peters et al., [106]*

-Flair [7]
{
-Tawfik et al., [125, 7]*

-BERT [33]


-BioBERT [109]*
-NCBI-BlueBERT [104]*
-SciBERT [17]*,ClinicalBERT [11]*
-PubMedBERT [41]*
-ouBioBERT [104, 129]*

-Syntax-based
{
-Oliva et al. [100, SyMSS], Inan [47, SimiT]

-Feature-based

{
-Bar et al. [16, UKP], Saric et al. [113, Takelab]
-Chen et al. [27]*, Chen et al. [26]*, Hassanzadeh et al. [46]*

-Aggregated measures


-Blagec et al. [18]*, Sogancioglu et al. [120, COM]*
-Chen et al. [27]*, Rychalska et al. [112]
-Al-Natsheh et al. [8], Farouk [39]
-Maharjan2017-ve [89], Nguyen et al. [99]
-Bounab et al. [20], Sultan et al. [121, 122]

-Surveys on the topic
{
-Kalyan et al. [53]*, Khattak et al. [54]*, Alsentzer et al. [11]*

Figure 1.1: Categorization of the main sentence similarity methods reported in the litera-
ture. Citations with an asterisk (*) point out adaptations for the biomedical domain.
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Words (CBOW) [92] models using PubMed information, whilst Zhang et al. [135]
and Chen et al. [28] train FastText [19] models using PubMed and MeSH. Blagec
et al. [18] introduce a set of neural embedding models based on the training of
FastText [19], Sent2Vec [101], Paragraph vector [80], and Skip-thoughts vectors [57]
models on the PMC dataset. Chen et al. [30] also introduce a sentence embedding
model called BioSentVec, which is based on Sent2vec [101]. Likewise, we also find
adaptations from several contextualized word representation models, also known as
language models, for the biomedical domain. Tawfik and Spruit [125] evaluate a
Flair-based [7] model trained on PubMed abstracts. Ranashinghe et al. [109], Peng
et al. [104], Beltagy et al. [17] , Alsentzer et al. [11], Gu et al. [41] and Wada et
al. [104, 129] introduce BERT-based models [33] trained on biomedical information.
However, these latter models do not perform well in an unsupervised context be-
cause they are trained for downstream tasks using a supervised approach, which has
encouraged Ranashinghe et al. [109] to explore a set of unsupervised approximations
for evaluating BioBERT [106] and Embeddings for Language Models (ELMo) [106]
models in the biomedical domain.

1.2.3 Biomedical semantic measures libraries

The main ontologies used for biomedical text mining and information retrieval ap-
plications in health sciences are SNOMED-CT and MeSH, although there are many
other ontologies3 based on the OBO file format [119]. By the time this thesis started,
there were only two libraries for word-based semantic similarity based on the two
aforementioned ontologies: (1) the pioneering Perl software library and online web
interface called UMLS::Similarity [91], and (2) the most recent Java software li-
brary called SML [44], which introduces several significant contributions, such as
portable and efficient object-oriented language programming, as well as a significant
number of methods, and the implementation for the first time of the most signif-
icant biomedical ontologies and WordNet into a single software library. However,
both UMLS::Similarity and SML have several significant performance and scala-
bility drawbacks previously detailed in [77] which encourage our research and the
extension of the HESML [75, 62] semantic measures library to the biomedical do-
main. In addition, there is only one library for sentence-based semantic measures
libraries in the biomedical domain, named BIOSSES, which was introduced by So-
gancioglu et al. [120], and uses UMLS::Similarity [91] for calculating the similarity
of concepts. Thus, BIOSSES [120] inherits the drawbacks found in [77] by the use of
the UMLS::Similarity [91] library, and also does not evaluate most of the measures
based on embeddings and language models, such as those evaluated in this thesis
[66].

3http://www.obofoundry.org

9

http://www.obofoundry.org


CHAPTER 1. INTRODUCTION

1.3 Structure of this thesis
This thesis is structured in three parts as follows. Part I is the main body of this
thesis by compendium, whilst part II introduces the full-text of all of the publica-
tions derived from this thesis, and finally, part III introduces our software libraries,
reproducibility protocol and datasets.

In turn, part I is structured as follows. Chapter 2 introduces a summary of
the main motivations, research questions and hypotheses, research problems, and
objectives tackled by each publication derived from this thesis. Chapter 3 details
the theoretical foundations and domain knowledge of this thesis together with our
research methodology. Chapter 4 introduces our main conclusions and forthcoming
activities. Finally, chapter 5 enumerates our scientific contributions, both research
articles, software libraries and datasets, whilst chapter 6 introduces a summary table
detailing the quality metrics of our main publications.
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Chapter 2

Hypotheses, research questions and
Objectives

This chapter introduces a summary of the main motivation, hypotheses, research
questions, research problems, and objectives tackled by each publication derived
from this thesis. We have structured this chapter into three sections, one for each
of our main publications. In turn, each section is divided into two other subsections
detailing our main motivation and research questions or hypothesis, as well as the
research problems and objectives tackled by each publication.

2.1 Protocol for a reproducible experimental survey
on biomedical sentence similarity

The main aim of this publication is the introduction of a very detailed experimental
setup for the development of the largest, and for the first time, reproducible exper-
imental survey of methods on biomedical sentence similarity in order to elucidate
the state of the problem. The research detailed in this section corresponds to the
content introduced by Lara-Clares et al. [61].

2.1.1 Main motivations and research questions

The main motivation for the research detailed in this section is the lack of a repro-
ducible experimental survey on biomedical sentence similarity, and the impossibility
of reproducing most of the methods in this line of research. For instance, Sogan-
cioglu et al. [120] provide neither the pre-trained models used in their experiments
nor a detailed guide for replicating them, and their software artifacts do not repro-
duce all of their results. Blagec et al. [18] provide neither a detailed definition of
their experimental setup nor their source code and pre-processed data, nor the pre-
trained models used in their experiments. Chen et al. [30] based their assessment of
the state of the art in biomedical sentence similarity exclusively on the results from
Blagec et al. [18]; thus, their work allows neither previous results to be confirmed
nor are they directly comparable with other works. In several cases, biomedical lan-
guage models based on BERT, such as BioBERT [81] and NCBI-BlueBERT [104],
can be reproduced neither in an unsupervised context nor in any other supervised
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way, because of the high computational requirements and the non-deterministic
nature of the methods used for their training, respectively. Therefore, these two
reproducibility gaps prevent the elucidation of the state of the art in a sound and
reproducible way. For this reason, our research introduces a detailed protocol to
implement a reproducible experimental survey that allows answering the following
research questions:

RQ1 Which methods get the best results on biomedical sentence similarity?

RQ2 Is there a statistically significant difference between the best performing meth-
ods and the remaining ones?

RQ3 What is the impact of the biomedical Named Entity Recognition (NER) tools
on the performance of the methods on biomedical sentence similarity?

RQ4 What is the impact of the pre-processing stage on the performance of the
methods on biomedical sentence similarity?

RQ5 What are the main drawbacks and limitations of current methods on biomed-
ical sentence similarity?

A second motivation is the implementation of a set of unexplored methods which
are based on adaptations from other methods proposed for the general language
domain.

A third motivation is the evaluation in the same software platform of the fol-
lowing benchmarks on biomedical sentence similarity reported in the literature: (1)
the Biomedical Semantic Similarity Estimation System (BIOSSES) [120] dataset;
(2) the Medical Semantic Textual Similarity (MedSTS) [130] dataset; and (3) the
evaluation for the first time of the Microbial Transcriptional Regulation (CTR) [87]
dataset in a sentence similarity task, despite it having been previously evaluated in
other related tasks, such as the curation of gene expressions from scientific publica-
tions [86].

A fourth motivation is a study of the impact of the pre-processing stage and NER
tools on the performance of the sentence similarity methods, such as that done by
Gerlach et al. [40] for stop-words in the topic modeling task.

And finally, our fifth motivation is the lack of reproducibility software and data
resources on this task, which allow an easy replication and confirmation of previous
methods, experiments, and results in this line of research, as well as encouraging
the development and evaluation of new sentence similarity methods.

12



2.1.2 Definition of the problem and objectives

The main research problem tackled in this work is the design and proposal of a com-
prehensive and reproducible experimental survey on sentence similarity measures
for the biomedical domain. The main objectives of the research detailed herein are
as follows:

1. To introduce the largest, and for the first time, a reproducible experimental
survey on biomedical sentence similarity.

2. To introduce the first collection of self-contained and reproducible benchmarks
on biomedical sentence similarity.

3. To identify the existing gaps in the literature on biomedical sentence similarity.

4. To introduce a comprehensive and updated categorization of the literature on
biomedical sentence similarity.

5. To check the reproducibility of previous methods reported in the literature, as
well as pointing out the irreproducibility of others.

6. To propose the evaluation of a set of previously unexplored methods, as well as
the proposal of a new word embedding model based on FastText and trained
on the full-text of articles in the PMC-BioC corpus [31].

7. To integrate for the first time most of the sentence similarity methods for the
biomedical domain into the same software library, called HESML-STS.

8. To introduce a detailed reproducibility protocol together with a collection of
software tools and datasets, which will be provided as supplementary material
to allow the exact replication of all our experiments and results.

2.2 A real-time semantic measures library for the
biomedical domain

The main aim of this work is to introduce an updated and extended version of the
HESML [69] semantic measures library for the biomedical domain, called HESML
V1R5 [74], together with a fast approximation of Dijkstra’s algorithm [35] for tax-
onomies based on a relaxed graph spanner, called Ancestors-based Shortest-Path
Length (AncSPL), which allows for the first time the real-time computation of any
path-based similarity measure on large ontologies, such as SNOMED-CT, GO, and
WordNet. The research detailed in this section was first published by Lastra-Diaz
et al. [77].
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2.2.1 Main motivation and hypothesis

The main motivation of this work is to overcome some performance and scalability
drawbacks in the current family of state-of-the-art semantic measure libraries for the
biomedical domain, which are mainly used in the fields of biomedical text mining
and genomics. Despite the UMLS::Similarity similarity software library having been
extensively used in the literature, it has several significant drawbacks that prevent
its use in high-throughput standalone applications, such as poor performance in the
evaluation of measures, as well as a tedious, complex, and long setup process to build
several pre-calculated data structures and values stored in an auxiliary database
called UMLS::Interface. The drawbacks of UMLS::Similarity are mainly derived
from its use of a scripting programming language like Perl and an ontology repre-
sentation based on a relational database, which strongly impacts its performance
and software architecture. More recently, Harispe et al. [44] introduced the SML
Java software library, implementing for the first time the most significant ontologies
in a single library, such as WordNet [93], SNOMED-CT [36], MeSH [1], the Gene
Ontology [14, 127] and all others based on the OBO [119] and OWL file formats.
However, SML has several significant performance and scalability drawbacks derived
from the use of a naive in-memory graph representation based on hash tables and
caching, which significantly impacts its overall performance, and very especially, its
computation of path-based measures and scalability regarding the ontology size [69,
§1.1.1]. To bridge the aforementioned drawbacks, Lastra-Diaz et al. [69] introduce
the HESML Java software library based on WordNet, together with a very efficient
and linearly scalable taxonomy representation called PosetHERep which allows this
library to outperform SML by several orders of magnitude [69]. However, the field
of biomedical research has not benefited yet from these aforementioned advances
because previous HESML versions implement none of the most significant biomedi-
cal ontologies, such as SNOMED-CT, MeSH, GO and others based on the OBO file
format. Our main hypothesis is that the efficient and scalable in-memory represen-
tation for ontologies implemented by HESML should solve these performance and
scalability drawbacks, as detailed in hypothesis 1 below.

Hypothesis 1 (H1) A HESML implementation of the main biomedical ontologies
should significantly outperform the state-of-the-art biomedical semantic measures li-
braries in the evaluation of ontology-based semantic similarity measures, as previ-
ously shown for WordNet ontology [69].
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The second motivation of our work is to overcome a significant performance and
scalability drawback of all path-based semantic similarity measures, which prevents
their use in high-throughput experiments, or any practical application demanding
their real-time computation. This problem is especially relevant because a recent
reproducible survey on word similarity [71, 72, 70] shows that one hybrid IC-based
similarity measure [68, coswJ&C] sets the state of the art in the family of ontology-
based measures for the general domain. However, its practical use in any application
is limited because of the lack of an efficient shortest-path algorithm for its real-time
computation. Path-based similarity measures require an efficient implementation of
a shortest-path algorithm, such as Dijkstra’s algorithm [25]. However, its computa-
tional complexity prevents its practical use in high-throughput applications based on
large ontologies like SNOMED-CT, GO, or WordNet. A common strategy followed
by most of the software libraries and tools to tackle the aforementioned problem
is to pre-calculate some auxiliary data structures, or all pairwise similarity scores,
with the aim of speeding-up the subsequent evaluation of any path-based measure,
as done by UMLS::Similarity, whilst other libraries like SML compute the path-
based measures on-the-fly, and store the resulting similarity scores in a cache. The
caching of auxiliary data structures and values demands large quantities of memory
and complex setup processes, which does not solve the main practical problem in
the real-time computation of path-based measures, and leads to poor performance,
long setup processes, and running out of memory on large ontologies when they are
used on average workstations. Our hypothesis with respect to the aforementioned
problem of performance and scalability of path-based similarity measures is that
a new approximated shortest-path algorithm, specifically designed for taxonomies,
should overcome this problem, as detailed in hypothesis 2 below.

Hypothesis 2 (H2) A new approximated shortest-path algorithm specifically de-
signed for taxonomies could provide an efficient and linearly scalable method for re-
formulating and evaluating any path-based semantic similarity measure in real time,
whereby the resulting similarity values would show a high-correlation value as regards
the implementation of the measure using any exact shortest-path algorithm.

And finally, a third motivation is to provide a larger and most updated set of
ontology-based semantic similarity measures and Information Content (IC) models
[67, 71] than those provided by the UMLS::Similarity and SML libraries.
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2.2.2 Research problem and objectives

The two main research problems tackled in this work are as follows: (1) the de-
velopment and release of an updated version of the HESML [69] library especially
designed for the biomedical domain, called HESML V1R5 [74]; and (2) the proposal
and evaluation of a new method for the approximation of Dijkstra’s algorithm for
taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows
the real-time computation of any path-based semantic similarity measure.

The aim of this work is to introduce an updated version of the HESML [69] library
especially designed for the biomedical domain, called HESML V1R5 [74], together
with a fast approximation of Dijkstra’s algorithm [35] for taxonomies based on a re-
laxed graph spanner called Ancestors-based Shortest-Path Length (AncSPL), which
allows for the first time the real-time computation of any path-based similarity mea-
sure on large ontologies, such as SNOMED-CT, GO, and WordNet. HESML V1R5
implements most of the ontology-based similarity measures and IC models reported
in the literature, as well as a very efficient and scalable in-memory representation
of WordNet [93], SNOMED-CT, MeSH, GO [14], and other ontologies based on the
OBO file format [119]. We introduce a set of reproducible benchmarks for test-
ing our main hypothesis (H1) by comparing the performance of HESML with the
UMLS::Similarity and SML libraries on the three most significant biomedical ontolo-
gies, as well as several experiments for testing our second hypothesis (H2) as regards
the new AncSPL algorithm. Finally, we introduce a reproducibility dataset [76] to-
gether with a detailed reproducibility protocol, which is provided as supplementary
material to allow the exact replication of all our experiments and results.

2.3 The reproducible experimental survey

The main aim of this work is to introduce a comprehensive and very detailed re-
producible experimental survey of methods on biomedical sentence similarity to
elucidate the state of the problem by implementing our previous registered report
protocol [61] introduced in section 2.1.

The research detailed in this section was first published by Lara-Clares et al. [66].
In addition, the experiments detailed in this publication are based on our software
implementation and evaluation of all methods analyzed herein in a common and new
software platform based on an extension of HESML1 [69, 77], which is called HESML
for Semantic Textual Similarity (HESML-STS). In addition, all the experiments
detailed in this publication have been recorded in a Docker virtualization image
that is provided as supplementary material together with our software [64] and a
detailed reproducibility protocol [63] and dataset [65] to allow the easy replication
of all our methods, experiments, and results.

2.3.1 Main motivations and research questions

Our main motivation is the lack of a comprehensive and reproducible experimental
survey on biomedical sentence similarity that would allow a sound and reproducible

1http://hesml.lsi.uned.es
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survey of the state of the problem, as detailed in our previous registered report
protocol [61]. Our main research questions are the same introduced in section 2.1.1,
which we reproduce below for the sake of completeness:

RQ1 Which methods get the best results on biomedical sentence similarity?

RQ2 Is there a statistically significant difference between the best-performing meth-
ods and the remaining ones?

RQ3 What is the impact of the biomedical Named Entity Recognition (NER) tools
on the performance of the methods on biomedical sentence similarity?

RQ4 What is the impact of the pre-processing stage on the performance of the
methods on biomedical sentence similarity?

RQ5 What are the main drawbacks and limitations of current methods on biomed-
ical sentence similarity?

A second motivation of this research is the implementation of a set of unexplored
methods based on adaptations from other methods proposed for the general language
domain.

A third motivation is the evaluation in the same software platform of the three
known benchmarks on biomedical sentence similarity reported in the literature: (1)
the Biomedical Semantic Similarity Estimation System (BIOSSES) [120] dataset; the
Medical Semantic Textual Similarity (MedSTS) [130] dataset; and (3) the evaluation
for the first time of the Microbial Transcriptional Regulation (CTR) [87] dataset in a
sentence similarity task, despite it having been previously evaluated in other related
tasks, such as the curation of gene expressions from scientific publications [86].

A fourth motivation is a study on the impact of the pre-processing stage and
NER tools on the performance of the sentence similarity methods, such as that done
by Gerlach et al. [40] for stop-words in the topic modeling task.

A fifth motivation is the proposal and evaluation of a new string-based sentence
similarity method, based on Li et al. [84] and Block distance [59], eight variants
of the current ontology-based methods from the literature based on the work of
Sogancioglu et al. [120], and a new pre-trained Word Embedding (WE) model
based on FastText [19] and trained on the full-text of articles in the PMC-BioC
corpus [31].

And finally, our sixth motivation is the lack of reproducibility software and data
resources for this task, which allow an easy replication and confirmation of previous
methods, experiments, and results in this line of research, as well as encouraging
the development and evaluation of new sentence similarity methods.
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2.3.2 Definition of the problem and objectives

The two main research problems tackled in this work are the implementation of a
comprehensive and reproducible experimental survey on sentence similarity mea-
sures for the biomedical domain, and the evaluation of a set of unexplored methods
based on adaptations from previous methods used in the general language domain.
The main objectives of the research detailed herein are as follows:

1. To introduce the largest, and for the first time, a reproducible experimental
survey on biomedical sentence similarity.

2. To introduce the first collection of self-contained and reproducible benchmarks
on biomedical sentence similarity.

3. To evaluate several unexplored sentence similarity methods.

4. To propose and evaluate a new string-based sentence similarity method, based
on Li et al. [84] and Block distance [59], eight variants of the current ontology-
based methods from the literature based on the work of Sogancioglu et al.
[120], and a new pre-trained Word Embedding (WE) model based on FastText
[19] and trained on the full-text of articles in the PMC-BioC corpus [31].

5. To evaluate for the first time an unexplored benchmark, called Corpus-
Transcriptional-Regulation (CTR) [87].

6. To carry out a study on the impact of the pre-processing stages and Named
Entity Recognition (NER) tools on the performance of the sentence similarity
methods.

7. To bridge the lack of software and data reproducibility resources for methods
and experiments in this line of research, integrating for the first time most
sentence similarity methods for the biomedical domain into the same software
library, called HESML-STS, which is available both on Github 2 and in a repro-
ducible dataset [65], together with a detailed reproducibility protocol together
with a collection of software tools and datasets provided as supplementary
material to allow the exact replication of all our experiments and results.

8. To elucidate the state of the art of the problem, with an analysis of the draw-
backs and limitations of the current state-of-the-art methods.

In addition, our reproducible experimental survey is based on a single software
platform called HESML-STS, which is available on Github 3, and is provided with
a detailed reproducibility protocol and dataset [65] as supplementary material to
allow the exact replication of all our experiments and results.

2https://github.com/jjlastra/HESML
3https://github.com/jjlastra/HESML/tree/HESML-STS_master_dev
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Chapter 3

Theoretical Foundations and
Methodology

This chapter briefly introduces the theoretical foundations of this thesis, which are
defined by the theories of Cognitive Lexical Semantics and Semantic Composition-
ality. These two theories are closely related to the main conclusions of this thesis,
highlighting the capabilities and limitations of different families of similarity mea-
sures depending on their way of extracting meaning from sentences.

The rest of the chapter is structured as follows: section 3.1 details the theoretical
foundations and closely related lines of research of this thesis, whilst section 3.2
introduces our research methodology.

3.1 Theoretical foundations

The aim of any semantic similarity measure is to estimate the degree of similarity
between two textual semantic units as perceived by a human being, such as words,
phrases, sentences, short texts, or documents. The notion of semantic similarity can
be studied at different linguistic levels such as: morphologic, syntactic, semantic,
pragmatic, and discursive. Compositional semantics is devoted to the study of
the building up of phrasal or sentence meaning from the meaning of smaller units,
a problem extensively studied in the field of cognitive semantics. Taylor et al.
[126] points out that the knowledge of a language can be partitioned into two main
components: (1) the knowledge of the lexicon and (2) the knowledge of the syntax.
The lexicon lists the words together with their meaning and syntactic category,
whilst the syntax comprises the rules for combining elements belonging to certain
syntactic categories into larger configurations, such as sentences. Thus, the meaning
of a sentence depends not only on the meaning of the words that constitute it but also
on how they are combined, i.e., the grammatical structure. However, this traditional
point of view assumes that words are typically conceived as static lexical entries.

New advances in Cognitive Lexical Semantics focus on issues such as polysemy,
semantic changes and meaning extensions, and extending the lexicon to an ency-
clopedic knowledge network. In this context, Evans [38] proposes the Theory of
Lexical Concepts and Cognitive Models and holds that meaning is not a property of
words but rather of a function of context. Evans integrates the Principle of Semantic
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Compositionality from Pelletier [103], which states that the meaning of a complex
expression (for example, a sentence) is a function of the meaning of its parts together
with how those parts are combined. Thus, the aforementioned theories on composi-
tional semantics suggest that given two sentences, their semantic similarity should
be computed by dividing them into semantic and syntactic units and composing the
semantic similarity between these units as mentioned above.

3.2 Research methodology
Our research methodology is based on the methodology followed in [78]. Firstly, we
developed an extensive reproducible protocol [61] with a detailed description of the
methodology, organization and schedule of this thesis. In summary, it is defined by
the workflow shown in figure 3.1 and detailed in steps 1 to 14 below:

1. Definition of our main research problem.

2. Comprehensive review of the literature on the problem studied as well as other
related problems and applications.

Our literature review consisted of the following steps: (1) formulation of our
research questions; (2) search of relevant publications on biomedical sentence
similarity, especially all methods and works whose experimental evaluation is
based on the sentence similarity benchmarks considered in our experimental
setup; (3) definition of inclusion and exclusion criteria of the methods; (4)
definition of the study limitations and risks; and (5) definition of the evalu-
ation metrics. Publications on our research topic were mainly searched for
in the Web Of Science (WOS) and Google Scholar databases, and the Se-
mEval [5, 6, 3, 2, 4, 24] and BioCreative/OHNLP [131] conference series. In
order to build a first set of relevant works on the topic, we selected a seed
set of highlighted publications and datasets on biomedical sentence similarity
[120, 84, 130, 18, 30, 81] from the aforementioned information sources. Then,
we reviewed all the papers related to sentence similarity which cited any seed
publication or dataset. Finally, starting from seed publications and datasets,
we extracted those methods that could be implemented and evaluated in our
experiments, and we downloaded and checked all the available pre-trained
models. Our main goal was to attempt an independent replication or evalua-
tion of all methods previously evaluated on the biomedical sentence similarity
benchmarks considered in our experiments.

3. Synthesis and categorization of the literature based on features such as: strat-
egy and tactics used, functional structure, application domain, specific prob-
lem or motivation, experimental setup, definition of the contingency plan and
schedule, etc.

4. Identification of the gap to be bridged, such as: drawbacks, inconsistencies
in the formulation of the models and methods, underlying assumptions, un-
explored notions and strategies, formulation of novel hypotheses or research
questions, refutation of previous conclusions, and studying the problem from
a novel point of view and from different disciplines.
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5. Selection of methods to be evaluated, by defining the following selection crite-
ria: (a) identification of all the methods in the biomedical domain that were
evaluated in the BIOSSES [120] and MedSTS [130] datasets; (b) identification
of those methods reported for the general domain, but not yet evaluated in
the biomedical domain; and (c) definition of the criteria for the selection and
exclusion of methods. In addition, our selection criteria for the sentence simi-
larity methods to be reproduced and evaluated herein have been significantly
conditioned by the availability of multiple sources of information, namely: (1)
pre-trained models; (2) source code; (3) reproducibility data; (4) detailed de-
scriptions of the methods and experiments; (5) reproducibility guidelines; and
finally, (6) the computational requirements for training several models. Thus,
this thesis reproduces and evaluates most of the sentence similarity methods
for the biomedical domain reported in the literature, as well as other methods
that have not been explored in this domain yet.

6. Selection of the pre-processing methods evaluated in this work to ensure a fair
comparison of the methods that are evaluated in a single end-to-end pipeline.
The selection criteria of the pre-processing components have been conditioned
by the following constraints: (a) the pre-processing methods and tools used
by state-of-the-art methods; and (b) the availability of resources and software
tools.

7. Proposal of novel methods and adaptations to bridge the previously identified
gaps. Correlation and generation of ideas based on analogies and personal
intuitions. Inquiry into related ideas in other fields of research, disciplines and
related problems.

8. Designing or replication of experiments to evaluate our novel hypotheses and
proposals.

9. Implementation of the experiments to evaluate our methods and hypotheses.

10. Replication and reproduction of related methods with the aim of comparing
our results with the state of the art.

11. Verification and contrasting of our results, as well as the results obtained in
the replication of other methods and those reported in the literature. Personal
communication with the authors whenever it is necessary to clarify any issue
regarding the precise replication and reproduction of their methods and results.

12. Critical discussion of the results and their consequences. Contrast of our
results as regards previous methods and results reported in the literature.
Confirmation and refutation of previous methods and results reported in the
literature based on our own experimentation.

13. Identification of drawbacks and limitations in our novel proposals.

14. Formulation of new hypotheses and forthcoming activities. Identification of
potential applications of our methods and results in other related problems or
fields of application.
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15. Publication and dissemination of our results.

16. Selection of a new research problem from our backlog of new hypotheses, ideas
and forthcoming activities and start of a new iteration of our research method-
ology.

Figure 3.1: Research methodology adopted in this thesis, which is based on the methodol-
ogy proposed by [78]. We place a special emphasis in the replications of previous methods
and results, as well as their confirmation and refutation.
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Chapter 4

Conclusions and Future Work

This chapter introduces a summary of the main conclusions derived from the research
carried out in this thesis.

4.1 Main conclusions
The main conclusions drawn from the research introduced from our research (Lara-
Clares et al. [61]) introducing a protocol for a reproducible experimental survey on
biomedical sentence similarity are detailed below.

1.1 We introduce a detailed experimental setup to reproduce, evaluate, and com-
pare the most comprehensive set of methods on biomedical sentence similarity
reported in the literature, as detailed in [61, pp. 7-20]. Our experimental
setup proposed includes a selection of sentence similarity methods, language
pre-processing methods and tools [61, pp. 7-10], a detailed software integration
and contingency plan [61, pp. 11-13], a detailed workflow of our experiments
[61, pp. 13-14], and a detailed description of the evaluation metrics [61, pp.
14-15].

1.2 We introduce a comprehensive and updated categorization of the literature on
sentence semantic similarity measures for the biomedical language domain, as
shown in [61, fig. 1], and detailed in [61, pp. 4-7].

1.3 We propose a protocol and development plan to build the first collection of
self-contained and reproducible benchmarks on biomedical sentence similarity
based on the same software platform, as detailed in [61, pp. 15-20].

1.4 We propose for the first time the evaluation of the CTR [87] dataset, as shown
in [61, table 5].

1.5 We propose the evaluation of most biomedical sentence similarity methods, as
well as a set of new sentence similarity methods adapted from their definitions
in the general-language domain, as detailed in [61, tables 1-4].

1.6 We propose the evaluation of a new word embedding model based on FastText
and trained on the full text of the articles in the PMC-BioC corpus [31], as
shown in [61, table 3].
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1.7 We propose the study of the impact of different pre-processing configurations
on the performance of the sentence similarity methods, as detailed in [61, pp.
10-11, figure 6].

1.8 We propose the study of the impact of different Name Entity Recognition
(NER) tools, such as MetaMap [12] and clinic Text Analysis and Knowledge
Extraction System (cTAKES) [115], on the performance of the sentence simi-
larity methods, as detailed in [61, pp. 10-11, figure 6].

1.9 We propose a detailed statistical significance analysis of the results, as detailed
in [61, pp. 14-15].

1.10 We point out the existence of several reproducibility problems in the replication
of some methods and experimental results previously reported in the literature,
as detailed in [61, pp. 1-3].

The main conclusions drawn from the research introduced from our research
(Lastra-Díaz et al. [77]) introducing a real-time semantic measures library for the
biomedical domain with a reproducible survey are as follows:

2.1 We introduce a new semantic measures library for the biomedical domain called
HESML V1R5, which implements the largest set of ontology-based semantic
similarity measures and IC models for the SNOMED-CT, MeSH, GO [14, 127],
and OBO file format ontologies [119], in addition to WordNet [93], as detailed
in [77, pp. 9-12].

2.2 We propose and evaluate a new approximated shortest-path algorithm called
AncSPL which provides a real-time and highly-correlated reformulation of any
path-based semantic similarity measure, as detailed in [77, pp. 12-17].

2.3 We introduce a set of reproducible benchmarks for testing our main hypothesis
(H1) by comparing the performance of HESML with the UMLS::Similarity and
SML libraries on the three most significant biomedical ontologies, as detailed
in [77, pp. 19, tables 6-9].

2.4 In addition, we introduce several experiments for testing our second hypothesis
(H2) as regards the new AncSPL algorithm, as detailed in [77, pp. 19, tables
10-12].

2.5 We confirm that HESML outperforms by four orders of magnitude the imple-
mentation of the Rada et al. [108] path-based measure of UMLS::Similarity in
the MeSH ontology as shown in [77, tables 7-9]. However, the UMLS::Similarity
implementation of the Rada et al. [108] measure based on caching is roughly
three times faster than the HESML real-time implementation in the large
SNOMED-CT ontology, as shown in [77, table 6].

2.6 HESML outperforms by six and three orders of magnitude, respectively, the
implementation of the Lin [85] IC-based measure of UMLS::Similarity in the
SNOMED-CT and MeSH ontologies, as shown in [77, tables 6, 7, 9].
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2.7 HESML outperforms by seven and four orders of magnitude, respectively, the
implementation of the depth-based approximation of the Wu and Palmer [134]
measure of UMLS::Similarity in the SNOMED-CT and MeSH ontologies, as
shown in [77, tables 6, 7, 9].

2.8 HESML outperforms by six, two, and four orders of magnitude the implemen-
tation of the Rada et al. [108] path-based measure of SML in the MeSH and
GO ontologies as shown in [77, tables 7-9]. In addition, SML is unable to
provide a practical implementation of the Rada et al. [108] measure on the
large SNOMED-CT ontology, as shown in [77, table 6].

2.9 The HESML implementation of the Lin [85] IC-based measure is roughly 2.43
times faster than the implementation of SML based on SNOMED-CT as shown
in [77, table 6], as well as roughly 1.55 times faster on MeSH as shown in [77,
tables 7,9], and roughly 2.86 times faster on GO as shown in [77, table 8].

2.10 We positively confirm our hypothesis H1 which states that HESML signifi-
cantly outperforms current state-of-the-art semantic measures libraries in the
real-time evaluation of semantic similarity measures.

2.11 Path-based measures based on the new AncSPL algorithm are six and five
orders of magnitude, respectively, faster than their exact implementation in the
large ontologies with multiple inheritance, SNOMED-CT and GO, as shown
in [77, tables 6,8], whilst AncSPL obtains similar performance to the exact
implementation on tree-like ontologies like MeSH, as shown in [77, tables 7,9],
because both implementations are identical by definition.

2.12 The results reported in [77, table 10] show that the reformulation of any
path-based measure using AncSPL is highly correlated both in Pearson and
Spearman correlation metrics with their corresponding exact implementations.
Thus, this conclusion endorses the reformulation of any path-based similarity
measure using AncSPL to obtain real-time approximations of any path-based
measure on large ontologies with multiple inheritance, such as SNOMED-CT,
GO, or WordNet.

2.13 Groupwise similarity measures based on GO implemented by HESML provide
a high average speed in the evaluation of the pairwise protein similarity be-
tween two large organisms in a large-scale experiment, as shown in [77, table
11]. Thus, HESML can significantly contribute to improving the performance
of any application using GO-based semantic similarity measures. Likewise,
HESML opens the possibility of processing large-scale GO annotated data
at high computation rates, which could encourage new applications like the
similarity-based search of proteins in large GO-annotated databases, among
others.

2.14 The shortest-path length estimated by AncSPL is always greater or equal
to the exact value, as shown in [77, figure 2] by the empirical Cumulative
Distribution Function (CDF) for SNOMED-CT, GO, and WordNet ontologies,
respectively. The signed length error of AncSPL is 0 with a probability of
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0.479, 0.581, and 0.612, on SNOMED-CT, GO, and WordNet, respectively.
Thus, the AncSPL-based reformulations of any path-based similarity measure
on non-tree-like ontologies always return a lower or equal value than their
corresponding base measures evaluated using an exact shortest-path algorithm.

2.15 The signed length error of AncSPL is lower than or equal to 2 with a probability
of 0.874, 0.898, and 0.8841, on SNOMED-CT, GO, and WordNet, respectively,
as shown in [77, figure 2]. Thus, AncSPL-based reformulations obtain close
results to the exact shortest-path algorithm with a high probability.

2.15 The signed length error of AncSPL decreases with the tree-like deviation, as
shown in [77, figure 2]. This means that, the lower the number of concepts
with multiple parents, the higher is the probability of obtaining an AncSPL
length error equal to 0. However, looking at the correlation values reported in
[77, table 10], we can observe that correlation values obtained by the AncSPL-
based reformulations in WordNet are not significantly higher than the values
obtained in SNOMED-CT and GO as would be expected. We conjecture that
AncSPL-coswJ&C is more immune to the AncSPL approximation error than
the edge-counting measures because it is defined by the length of the IC-based
weighted shortest path between concepts.

2.16 The average running time of the AncSPL algorithm is linear regarding the
dimension of the ancestor-based subgraph, as predicted by [77, theorem 1]
and shown experimentally in [77, fig. 3] for SNOMED-CT, GO, and WordNet
ontologies, respectively.

2.17 We confirm that the significant performance gain shown in [77, tables 6-9],
together with the high-correlation values shown in [77, table 10], confirm pos-
itively our hypothesis H2 on the performance, scalability, and approximation
quality of the new AncSPL algorithm.

2.18 We introduce a reproducibility dataset [76] together with a detailed repro-
ducibility protocol, which is provided as supplementary material (see addi-
tional files) to allow the exact replication of all our experiments and results.

The main conclusions drawn from the research introduced from our research
(Lara-Clares et al. [66]) introducing the experimental reproducible protocol of biomed-
ical sentence similarity are detailed above. Because of the high number of factual
conclusions, we have chosen the most important conclusions, and we refer the reader
to the Discussion section [66, pp. 26-37].

3.1 We introduce the largest, detailed, and for the first time, reproducible experi-
mental survey on biomedical sentence similarity reported in the literature.

3.2 We introduce a collection of self-contained and reproducible benchmarks on
biomedical sentence similarity based on the same software platform, called
HESML-STS, which has been especially developed for this work, being pro-
vided as part of the new HESML V2R1, as detailed in [66, page 9].
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3.3 We introduce a new aggregated string-based sentence similarity method called
LiBlock, together with eight variants of the ontology-based methods intro-
duced by Sogancioglu et al. [120], and a new pre-trained word embedding
model based on FastText [19] and trained on the full-text of the articles in the
PMC-BioC corpus [31], as detailed in [66, pp. 4-8].

3.4 We evaluate for the first time the CTR [87] dataset in a benchmark on biomed-
ical sentence similarity [66, page 8, table 1].

3.5 Concerning our RQ1 and RQ2 research questions, the string-based method Li-
Block (M4) obtains the highest average harmonic score in all datasets, and sig-
nificantly outperforms the remaining string-based methods, as well as all meth-
ods based on embeddings and BERT language models, and all the ontology-
based methods with the only exceptions of COM (M17) and WBSM-Rada
(M7), as detailed in [66, table 8].

3.6 Our LiBlock sentence similarity measure obtains the highest Spearman corre-
lation values in the BIOSSES and MedSTS datasets, which contains 100 and
1068 sentence pairs respectively, as detailed in [66, table 8].

3.7 Concerning our RQ3 research question, our results show that the ontology-
based methods obtain their best performance in the task of biomedical sentence
similarity when they use either MetamapLite or cTAKES, as detailed in [66,
tables 10,11]. Thus, Metamap should not be used in combination with any of
the ontology-based methods evaluated herein in this task.

3.8 The results and p-values reported in [66, table 11] show that there is a signif-
icant difference in the performance of each ontology-based method according
to the NER tool used in most cases. The conclusions above confirm that the
selection of the NER tool significantly impacts the performance of the sentence
similarity methods using it.

3.9 Our experiments show that there is no statistically significant difference be-
tween the performance of the LiBlock (M4) method using the cTakes or no
NER tool, as detailed in [66, table 12]. Thus, using the LiBlock method with-
out any NER tool could be a competitive and much more efficient solution for
high-throughput applications.

3.10 Concerning our RQ4 research question, our results and the conclusions above
show that the pre-processing configurations significantly impact the perfor-
mance of the sentence similarity methods. Thus, it should be specifically
defined for each method, as shown in [66, table 9].

3.11 Concerning our RQ5 research question, string-based methods capture neither
the word semantics within the sentences nor the semantic relationships be-
tween words, such as synonymy and meronymy, and their effectiveness mainly
relies on the word overlapping frequency in the sentences.

3.12 Ontology-based methods use NER and WSD tools to recognize the underlying
concepts in the sentences, but are not able to correctly identify and disam-
biguate these concepts in many cases, as detailed in [66, tables 13,14]. In
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addition, they require external resources to capture the semantic information
from the sentences, which limits their lexical coverage. Thus, ontology-based
methods require both high word overlapping and high recognition coverage of
named entities to properly estimate the similarity between sentences.

3.13 The methods based on pre-trained embeddings and language models need a
large corpus for training, a complex training phase, and considerable computa-
tional resources to calculate the similarity between sentences. Moreover, those
methods tend to obtain high similarity scores in most cases, as detailed in [66,
tables 15,16,17], which may penalize them in a balanced dataset and in a real
environment.

3.14 BERT-based methods are trained for downstream tasks, using a supervised
approach, and do not perform well in an unsupervised context, as detailed in
[66, table 8].

3.15 LiBlock method uses the NER tool to normalize and disambiguate the un-
derlying concepts in a sentence, but unfortunately, it does not significantly
outperform LiBlock with no use of a NER tool, as shown in [66, table 12]. We
conjecture that this behaviour could be due to two reasons. Firstly, the in-
capability of LiBlock to capture semantic relationships beyond the synonymy,
and secondly the current limitations of cTakes to recognize all mentions of
biomedical entities.

3.16 We provide a detailed reproducibility protocol [63] and dataset [65] to allow
the exact replication of all our experiments, methods, and results.

Finally, table 4.1 shows a summary of the confirmation of the main hypotheses
and research questions studied by this thesis.
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Id Hypothesis Results
H1 A HESML implementation of the main biomedical on-

tologies should significantly outperform the state-of-the-art
biomedical semantic measures libraries in the evaluation of
ontology-based semantic similarity measures, such as previ-
ously shown for WordNet ontology [69].

Positively
confirmed

H2 A new approximated shortest-path algorithm specifically de-
signed for taxonomies could provide an efficient and lin-
early scalable method for reformulating and evaluating any
path-based semantic similarity measure in real time, whereby
the resulting similarity values would show a high-correlation
value as regards its implementation using any exact shortest-
path algorithm.

Positively
confirmed

RQ1 Which methods get the best results on biomedical sentence
similarity?

Answered

RQ2 Is there a statistically significant difference between the best-
performing methods and the remaining ones?

Answered

RQ3 What is the impact of the biomedical Named Entity Recog-
nition (NER) tools on the performance of the methods on
biomedical sentence similarity?

Answered

RQ4 What is the impact of the pre-processing stage on the per-
formance of the methods on biomedical sentence similarity?

Answered

RQ5 What are the main drawbacks and limitations of current
methods on biomedical sentence similarity?

Answered

Table 4.1: Results obtained for the main hypotheses and research questions studied by this
thesis.

4.2 Future work
As forthcoming activities, we plan to continue our work in four complementary
directions:

1. Evaluation of the sentence similarity methods implemented in HESML in an
extrinsic task, such as semantic medical indexing [32] or summarization [96].

2. Extending the pre-processing configurations, such as biomedical NER systems
based on recent Deep Learning techniques [42], or extending our experiments
and research to the multilingual scenario by integrating multilingual biomed-
ical NER systems like Cimind [23].

3. Extending the scope of the HESML library, developing new Python or R inter-
faces, since the research community currently tends to focus its developments
on these languages.

4. Evaluating the new sentence similarity methods introduced in [66] in a bench-
mark for the general language domain.
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Chapter 5

Scientific contributions

This chapter sets out all contributions derived directly from this thesis, which are
divided into five types as follows: (1) peer-reviewed articles, (2) articles published
in workshops, (3) protocol, (4) software libraries and (5) replication datasets and
benchmarks.

5.1 Peer-reviewed articles

1. Lara-Clares A., Lastra-Díaz J. J., Garcia-Serrano A. (2021). Protocol for a
reproducible experimental survey on biomedical sentence similarity. PLOS
ONE, 16, 1-28.
https://doi.org/10.1371/journal.pone.0248663

2. Lastra-Díaz, J.J., Lara-Clares, A., Garcia-Serrano, A. (2022). HESML: a real-
time semantic measures library for the biomedical domain with a reproducible
survey. BMC Bioinformatics 23, 23-54.
https://doi.org/10.1186/s12859-021-04539-0

3. Lara-Clares A., Lastra-Díaz J. J. , Garcia-Serrano A. (2022). A reproducible
experimental survey on biomedical sentence similarity: A string-based method
sets the state of the art. PLOS ONE, 17, 1-44.
https://doi.org/10.1371/journal.pone.0276539

4. (Co-authored as reproducibility reviewer) Mandilaras G, Papadakis G, Gagliardelli
L, Simonini G, Thanos E, Giannakopoulos G, Bergamaschi S., Palpanas T.,
Koubarakis M., Lara-Clares A., Fariña A. (2021). Reproducible experiments
on Three-Dimensional Entity Resolution with JedAI. Information Systems,
102, 101830.
https://doi:10.1016/j.is.2021.101830

5.2 Workshops

1. Lara-Clares A., Garcia-Serrano A. (2019) Key Phrases Annotation in Medical
Documents: MEDDOCAN 2019 Anonymization Task. In IberLEF@ SEPLN
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(pp. 755-760).
http://ceur-ws.org/Vol-2421/MEDDOCAN_paper_15.pdf

2. Lara-Clares, A., García-Serrano, A. (2019). LSI2_UNED at eHealth-KD
Challenge 2019: A Few-shot Learning Model for Knowledge Discovery from
eHealth Documents. In IberLEF@ SEPLN (pp. 60-66).
https://ceur-ws.org/Vol-2421/eHealth-KD_paper_6.pdf

3. Lara-Clares, A., Garcia-Serrano, A. (2020). Statistical Graph Matching for
Indexing Spanish Biomedical Documents. In CLEF Working Notes (pp. 60-
66).
http://ceur-ws.org/Vol-2696/paper_80.pdf

5.3 Protocols
1. Lara-Clares A., Lastra-Díaz J. J., Garcia-Serrano A. (2022). A reproducibil-

ity protocol and dataset on the biomedical sentence similarity. protocols.io.
Version created by Alicia Lara Clares
https://dx.doi.org/10.17504/protocols.io.36wgq429xvk5/v4

5.4 Software libraries
1. Lastra-Díaz J. J., Lara-Clares A., Garcia-Serrano A. (2020) HESML V1R5

Java software library of ontology-based semantic similarity measures and in-
formation content models. e-cienciaDatos.
https://doi:10.21950/1RRAWJ

2. Lara-Clares, A.; Lastra-Díaz, J. J.; Garcia-Serrano, A. (2022) HESML V2R1
Java software library of semantic similarity measures for the biomedical do-
main, e-cienciaDatos, V2
https://doi.org/10.21950/AQLSMV

5.5 Replication datasets and benchmarks
1. Lastra-Díaz, J. J., Lara-Clares, A., Garcia-Serrano, A.. (2020) Reproducibil-

ity dataset for a benchmark of biomedical semantic measures libraries, e-
cienciaDatos, V5
https://doi.org/10.21950/OTDA4Z

2. Lara-Clares, A., Lastra-Díaz, J. J., Garcia-Serrano, A. (2021) Reproducible
experiments on word and sentence similarity measures for the biomedical do-
main, e-cienciaDatos, V2
https://doi.org/10.21950/EPNXTR
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Chapter 6

Impact factor of the publications

Table 6.1 shows the JCR quartile and Impact Factor (IF) of our three main publi-
cations corresponding to the JCR-2021 ranking, as shown in figure 6.1.

Reference Journal IF-2021 Quartile
Lara-Clares et al. [61] Plos One 3.752 Q2
Lastra-Díaz et al. [77] BMC Bioinformatics 3.328 Q2
Lara-Clares et al. [66] Plos One 3.752 Q2

Overall Impact Factor 10.842

Table 6.1: JCR impact factors of the three main publications derived from this thesis.

Figure 6.1: JCR-2021 Impact Factor of our two main publications (source: WoS-FECYT)
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Abstract
Measuring semantic similarity between sentences is a significant task in the fields of Natural
Language Processing (NLP), Information Retrieval (IR), and biomedical text mining. For this
reason, the proposal of sentence similarity methods for the biomedical domain has attracted
a lot of attention in recent years. However, most sentence similarity methods and experi-
mental results reported in the biomedical domain cannot be reproduced for multiple reasons
as follows: the copying of previous results without confirmation, the lack of source code and
data to replicate both methods and experiments, and the lack of a detailed definition of the
experimental setup, among others. As a consequence of this reproducibility gap, the state of
the problem can be neither elucidated nor new lines of research be soundly set. On the
other hand, there are other significant gaps in the literature on biomedical sentence similarity
as follows: (1) the evaluation of several unexplored sentence similarity methods which
deserve to be studied; (2) the evaluation of an unexplored benchmark on biomedical sen-
tence similarity, called Corpus-Transcriptional-Regulation (CTR); (3) a study on the impact
of the pre-processing stage and Named Entity Recognition (NER) tools on the performance
of the sentence similarity methods; and finally, (4) the lack of software and data resources
for the reproducibility of methods and experiments in this line of research. Identified these
open problems, this registered report introduces a detailed experimental setup, together
with a categorization of the literature, to develop the largest, updated, and for the first time,
reproducible experimental survey on biomedical sentence similarity. Our aforementioned
experimental survey will be based on our own software replication and the evaluation of all
methods being studied on the same software platform, which will be specially developed for
this work, and it will become the first publicly available software library for biomedical sen-
tence similarity. Finally, we will provide a very detailed reproducibility protocol and dataset
as supplementary material to allow the exact replication of all our experiments and results.

Introduction
Measuring semantic similarity between sentences is an important task in the fields of Natural
Language Processing (NLP), Information Retrieval (IR), and biomedical text mining, among
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others. For instance, the estimation of the degree of semantic similarity between sentences is
used in text classification [1–3], question answering [4, 5], evidence sentence retrieval to
extract biological expression language statements [6, 7], biomedical document labeling [8],
biomedical event extraction [9], named entity recognition [10], evidence-based medicine [11,
12], biomedical document clustering [13], prediction of adverse drug reactions [14], entity
linking [15], document summarization [16, 17] and sentence-driven search of biomedical liter-
ature [18], among other applications. In the question answering task, Sarrouti and El Alaomi
[4] build a ranking of plausible answers by computing the similarity scores between each bio-
medical question and the candidate sentences extracted from a knowledge corpus. Allot et al.
[18] introduce a system to retrieve the most similar sentences in the BioC biomedical corpus
[19] called Litsense [18], which is based on the comparison of the user query with all sentences
in the aforementioned corpus. Likewise, the relevance of the research in this area is endorsed
by recent works based on sentence similarity measures, such as the work of Aliguliyev [16] in
automatic document summarization, which shows that the performance of these applications
depends significantly on the sentence similarity measures used.

The aim of any semantic similarity measure is to estimate the degree of similarity between
two textual semantic units as perceived by a human being, such as words, phrases, sentences,
short texts, or documents. Unlike sentences from the language in general use whose vocabu-
lary and syntax is limited both in extension and complexity, most sentences in the biomedical
domain are comprised of a huge specialized vocabulary made up of all sort of biological and
clinical terms, in addition to an uncountable list of acronyms, which are combined in complex
lexical and syntactic forms.

Most methods on biomedical sentence similarity are adaptations from methods for the gen-
eral language domain, which are mainly based on the use of biomedical ontologies, as well as
word and sentence embedding models trained on biomedical text corpora. For instance,
Socioanglu et al. [20] introduce a set of sentence similarity measures for the biomedical
domain, which are based on adaptations from the Li et al. [21] measure. Zhang et al. [22] intro-
duce a set of pre-trained word embedding model called BioWordVec, which is based on a Fas-
tText [23] model trained on the titles and abstracts from PubMed articles and term sequences
from the Medical Subject Headings (MeSH) thesaurus [24], whilst Chen et al. [25] introduce a
set of pre-trained sentence embedding models called BioSentVec, which is based on a Sent2vec
[26] model trained on the full text of PubMed articles and Medical Information Mart for
Intensive Care (MIMIC-III) clinical notes [27], and Blagec et al. [28] introduce a set of word
and sentence embedding models based on the training of FastText [23], Sent2Vec [26], Para-
graph vector [29], and Skip-thoughts vectors [30] models on the full-text PubMed Central
(PMC) Open Access dataset. Likewise, several contextualized word representation models,
also known as language models, have also been adapted to the biomedical domain. For
instance, Lee et al. [31] and Peng et al. [32] introduce two language models based on the Bidi-
rectional Encoder Representations from Transformers (BERT) architecture [33], which are
called BERT for Biomedical text mining (BioBERT) and Biomedical Language Understanding
Evaluation of BERT (BlueBERT), respectively.

Nowadays, there are several works in the literature that experimentally evaluate multiple
methods on biomedical sentence similarity. However, they are either theoretical or have a lim-
ited scope and cannot be reproduced. For instance, Kalyan et al. [34], Khattak et al. [35], and
Alsentzer et al. [36] introduce theoretical surveys on biomedical embeddings with a limited
scope. On the other hand, the experimental surveys introduced by Sogancioglu et al. [20], Bla-
gec et al. [28], Peng et al. [32], and Chen et al. [25] among other authors, cannot be reproduced
because of the lack of source code and data to replicate both methods and experiments, or the
lack of a detailed definition of their experimental setups. Likewise, there are other recent
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works whose results need to be confirmed. For instance, Tawfik and Spruit [37] experimentally
evaluate a set of pre-trained language models, whilst Chen et al. [38] propose a system to study
the impact of a set of similarity measures on a Deep Learning ensembled model, which is
based on a Random Forest model [39].

The main aim of this registered report is the introduction of a very detailed experimental
setup for the development of the largest and reproducible experimental survey of methods on
biomedical sentence similarity with the aim of elucidating the state of the problem, such as will
be detailed in the motivation section. Our experiments will be based on our implementation
and evaluation of all methods analyzed herein into a common and new software platform
based on an extension of the Half-Edge Semantic Measures Library (HESML, http://hesml.lsi.
uned.es) [40], called HESML for Semantic Textual Similarity (HESML-STS), as well as their
subsequent recording with the Reprozip long-term reproducibility tool [41]. This work is
based on our previous experience developing reproducible research in a series of publications
in the area, such as the experimental surveys on word similarity introduced in [42–45], whose
reproducibility protocols and datasets [46, 47] are detailed and independently confirmed in
two reproducible papers [40, 48]. The experiments in this new software platform will evaluate
most of the sentence similarity methods for the biomedical domain reported in the literature,
as well as a set of unexplored methods which are based on adaptations from the general lan-
guage domain.

Main motivations and research questions
Our main motivation is the lack of a reproducible experimental survey on biomedical sentence
similarity, which allows the state of the problem to be elucidated in a sound and reproducible
way by answering the following research questions:

RQ1. Which methods get the best results on biomedical sentence similarity?

RQ2. Is there a statistically significant difference between the best performing methods and
the remaining ones?

RQ3. What is the impact of the biomedical Named Entity Recognition (NER) tools on the
performance of the methods on biomedical sentence similarity?

RQ4. What is the impact of the pre-processing stage on the performance of the methods on
biomedical sentence similarity?

RQ5. What are the main drawbacks and limitations of current methods on biomedical sen-
tence similarity?

Most experimental results reported in this line of research cannot be reproduced for
numerous reasons. For instance, Sogancioglu et al. [20] provide neither the pre-trained models
used in their experiments nor a detailed guide for replicating them and their software artifacts
do not reproduce all of their results. Blagec et al. [28] provide neither a detailed definition of
their experimental setup nor their source code and pre-processed data, as well as the pre-
trained models used in their experiments. Chen et al. [25] set the state of the art on biomedical
sentence similarity by copying results from Blagec et al. [28]; thus, their work allows neither
previous results to be confirmed nor are they directly compared with other works. In several
cases, biomedical language models based on BERT, such as BioBERT [31] and NCBI-Blue-
BERT [32], can be reproduced neither in an unsupervised context nor in any other supervised
way, because of the high computational requirements and the non-deterministic nature of the
methods used for their training, respectively.
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A second motivation is the implementation of a set of unexplored methods which are
based on adaptations from other methods proposed for the general language domain. A third
motivation is the evaluation in the same software platform of the benchmarks on biomedical
sentence similarity reported in the literature as follows: Biomedical Semantic Similarity Esti-
mation System (BIOSSES) [20] and Medical Semantic Textual Similarity (MedSTS) [49] data-
sets, as well as the evaluation for the first time of the Microbial Transcriptional Regulation
(CTR) [50] dataset in a sentence similarity task, despite it having been previously evaluated in
other related tasks, such as the curation of gene expressions from scientific publications [51].
A fourth motivation is a study on the impact of the pre-processing stage and NER tools on the
performance of the sentence similarity methods, such as that done by Gerlach et al. [52] for
stop-words in topic modeling task. And finally, our fifth motivation is the lack of reproducibil-
ity software and data resources on this task, which allow an easy replication and confirmation
of previous methods, experiments, and results in this line of research, as well as encouraging
the development and evaluation of new sentence similarity methods.

Definition of the problem and contributions
The main research problem tackled in this work is the design and implementation of a large
and reproducible experimental survey on sentence similarity measures for the biomedical
domain. Our main contributions are as follows: (1) the largest, and for the first time, reproduc-
ible experimental survey on biomedical sentence similarity; (2) the first collection of self-con-
tained and reproducible benchmarks on biomedical sentence similarity; (3) the evaluation of
a set of previously unexplored methods, as well as the evaluation of a new word embedding
model based on FastText and trained on the full-text of articles in the PMC-BioC corpus [19];
(4) the integration for the first time of most sentence similarity methods for the biomedical
domain in the same software library called HESML-STS; and finally, (5) a detailed reproduc-
ibility protocol together with a collection of software tools and datasets, which will be provided
as supplementary material to allow the exact replication of all our experiments and results.

The rest of the paper is structured as follows. First, we introduce a comprehensive and
updated categorization of the literature on sentence semantic similarity measures for the gen-
eral and biomedical language domains. Next, we describe a detailed experimental setup for
our experiments on biomedical sentence similarity. Finally, we introduce our conclusions and
future work.

Methods on sentence semantic similarity
This section introduces a comprehensive categorization of the methods on sentence semantic
similarity for the general and biomedical language domains, which includes most of the meth-
ods reported in the literature. The categorization, shown in Fig 1, is organized into two classes
as follows: (a) the methods proposed for the general domain; and (b) the methods proposed
for the biomedical domain. For a more detailed presentation of the methods categorized
herein, we refer the reader to several surveys on ontology-based semantic similarity measures
[43, 45], word embeddings [35, 45], sentence embeddings [34, 53], and neural language mod-
els [34, 54].

Literature review methodology
We conducted our literature review following the next steps: (1) formulation of our research
questions; (2) search of relevant publications on biomedical sentence similarity, especially all
methods and works whose experimental evaluation is based on the sentence similarity bench-
marks considered in our experimental setup; (3) definition of inclusion and exclusion criteria
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Fig 1. Categorization of the main sentence similarity methods reported in the literature. Citations with an asterisk
(�) point out adaptations for the biomedical domain, whilst the citations in blue highlight those methods that will be
reproduced and evaluated in our experiments (see Table 8). [12, 20–23, 25, 26, 28, 29, 32–38, 55–93].

https://doi.org/10.1371/journal.pone.0248663.g001
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of the methods; (4) definition of the study limitations and risks; and (5) definition of the evalu-
ation metrics. Publications on our research topic were mainly searched in the Web Of Science
(WOS) and Google Scholar databases, and the SemEval [94–99] and BioCreative/OHNLP
[100] conference series. In order to build a first set of relevant works on the topic, we selected a
seed set of highlighted publications and datasets on biomedical sentence similarity [20, 21, 25,
28, 31, 49] from the aforementioned information sources. Then, we reviewed all the papers
related to sentence similarity which cited any seed publication or dataset. Finally, starting from
seed publications and datasets, we extracted those methods that could be implemented and
evaluated in our experiments, and we downloaded and checked all the available pre-trained
models. Our main goal was trying an independent replication or evaluation of all methods
previously evaluated on the biomedical sentence similarity benchmarks considered in our
experiments.

Methods proposed for the general language domain
There is a large corpus of literature on sentence similarity methods for the general language
domain as the result of a significant research effort during the last decade. However, the litera-
ture for the biomedical domain is much more limited. Research for the general language
domain has mainly been boosted by the SemEval Short Text Similarity (STS) evaluation series
since 2012 [94–99], which has generated a large number of contributions in the area [84, 85,
92, 101, 102], as well as an STS benchmark dataset [99]. On the other hand, the development
of sentence similarity benchmarks for the biomedical domain is much more recent. Currently,
there are only three datasets for the evaluation of methods on biomedical sentence similarity,
called BIOSSES [20], MedSTS [49], and CTR [50]. BIOSSES was introduced in 2017 and it is
limited to 100 sentence pairs with their corresponding similarity scores, whilst MedSTSfull is
made up by 1,068 scored sentence pairs of the MedSTS dataset [100], which contains 174,629
sentence pairs gathered from a clinical corpus on biomedical sentence similarity. Finally, the
CTR dataset includes 171 sentence pairs, but it has not been evaluated yet because of its recent
publication in 2019.

Fig 1 shows our categorization of the current sentence semantic similarity measures into
six subfamilies as follows. First, string-based measures, whose main feature is the use of the
explicit information contained at the character or word level in the sentences to estimate
their similarity. Second, ontology-based measures, such as those introduced by Sogancioglu
et al. [20], whose main feature is the computation of the similarity between sentences by
combining the pairwise similarity scores of their constituent words and concepts [45] based
on the Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) [103] and
WordNet [104] ontologies, and the MeSH thesaurus [24]. Third, corpus-based methods
based on the distributional hypothesis [105], such as the work of Pyysalo et al. [73], which
states that words sharing semantic relationships tend to occur in similar contexts. The cor-
pus-based methods can be divided into three subcategories as follows: (a) methods based on
word embeddings, (b) sentence embeddings, and (c) language models. Methods based on
word embeddings combine the word vectors corresponding to the words contained in a sen-
tence to build a sentence vector, such as the averaging Simple Word EMbeddings (SWEM)
models introduced by Shen et al. [106], whilst methods based on sentence embeddings
directly compute a vector representation for each sentence. Then, the similarity between sen-
tence pairs is calculated using any vector-based similarity metric, such as the cosine function.
On the other hand, language models, which explore the concept of Transfer Learning by cre-
ating a pre-trained model on a large raw text corpus and fine-tuning those models in down-
stream tasks, such as sentence semantic similarity, with the pioneering work of Peng et al.
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[32]. Fourth, syntax-based methods, which rely on the use of explicit syntax information, as
well as the structure of the words that compound the sentences, such as the pioneering work
of Oliva et al. [82]. Fifth, feature-based approaches, such as the work of Chen et al. [86],
whose main idea is to compute the similarity of two sentences by measuring at different lan-
guage perspectives the properties that they have in common or not, such as lexical patterns,
word semantics and named entities. Finally, aggregated methods, whose main feature is the
combination of other sentence similarity methods.

Methods proposed for the biomedical domain
Like that mentioned in the introduction, most methods on biomedical sentence similarity are
adaptations from the general domain, such as the methods which will be evaluated in this
work (see Table 8). Sogancioglu et al. [20] proposed a set of ontology-based measures called
WordNet-based Similarity Measure (WBSM) and UMLS-based Similarity Measure (UBSM),
which are based on the Li et al. [21] measure. All word and sentence embedding models for
the biomedical domain in the literature are based on well-known models from the general
domain. Pyysalo et al. [73] train a Skip-gram [72] model on document titles and abstracts
from the PubMed XML dataset, and all text content of the PMC Open Access dataset. New-
man-Griffis et al. [70] and Chen et al. [71] train GloVe [69], Skip-gram, and Continuous Bag
of Words (CBOW) [72] models using PubMed information, whilst Zhang et al. [22] and Chen
et al. [71] train FastText [23] models using PubMed and MeSH. Blagec et al. [28] introduce a
set of neural embedding models based on the training of FastText [23], Sent2Vec [26], Para-
graph vector [29], and Skip-thoughts vectors [30] models on the PMC dataset. Chen et al. [25]
also introduce a sentence embedding model called BioSentVec, which is based on Sent2vec
[26]. Likewise, we also find adaptations from several contextualized word representation mod-
els, also known as language models, for the biomedical domain. Tawfik and Spruit [37] evalu-
ate a Flair-based [77] model trained on PubMed abstracts. Ranashinghe et al. [78], Peng et al.
[32], Beltagy et al. [79], Alsentzer et al. [36], Gu et al. [80] and Wada et al. [32, 81] introduce
BERT-based models [33] trained on biomedical information. However, these later models do
not perform well in an unsupervised context because they are trained for downstream tasks
using a supervised approach, which has encouraged Ranashinghe et al. [78] to explore a set of
unsupervised approximations for evaluating BioBERT [76] and Embeddings for Language
Models (ELMo) [76] models in the biomedical domain.

The reproducible experiments on biomedical sentence similarity
This section introduces a very detailed experimental setup describing our plan to evaluate and
compare most of the sentence similarity methods for the biomedical domain. In order to set
the state of the art of the problem in a sound and reproducible way, the goals of our experi-
ments are as follows: (1) the evaluation of most of methods on biomedical sentence similarity
onto the same software platform; (2) the evaluation of a set of new sentence similarity methods
adapted from their definitions for the general-language domain; (3) the setting of the state of
the art of the problem in a sound and reproducible way; (4) the replication and independent
confirmation of previously reported methods and results; (5) a study on the impact of different
pre-processing configurations on the performance of the sentence similarity methods; (6) a
study on the impact of different Name Entity Recognition (NER) tools, such as MetaMap
[107] and clinic Text Analysis and Knowledge Extraction System (cTAKES) [108], onto the
performance of the sentence similarity methods; and finally, (7) a detailed statistical signifi-
cance analysis of the results.
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Selection of methods
The methodology for the selection of the sentence similarity methods was as follows: (a) identi-
fication of all the methods in the biomedical domain that were evaluated in BIOSSES [20] and
MedSTS [49] datasets; (b) identification of those methods reported for the general domain not
evaluated in the biomedical domain yet; and (c) definition of the criteria for the selection and
exclusion of methods.

Our selection criteria for the sentence similarity methods to be reproduced and evaluated
herein have been significantly conditioned by the availability of multiple sources of informa-
tion, as follows: (1) pre-trained models; (2) source code; (3) reproducibility data; (4) detailed
descriptions of the methods and experiments; (5) reproducibility guidelines; and finally, (6)
the computational requirements for training several models. This work reproduces and evalu-
ates most of the sentence similarity methods for the biomedical domain reported in the litera-
ture, as well as other methods that have not been explored in this domain yet. Some of these
later unexplored methods are either variants or adaptations of methods previously proposed
for the general or biomedical domain, which are evaluated for the first time in this work, such
as the WBSM-cosJ&C [20, 43, 109], WBSM-coswJ&C [20, 43, 109], WBSM-Cai [20, 100],
UBSM-cosJ&C [20, 43, 109], UBSM-coswJ&C [20, 43, 109], and UBSM-Cai [20, 100] methods
detailed in Tables 2 and 3.

Biomedical methods not evaluated. We discard the evaluation of the pre-trained Para-
graph vector model introduced by Sogancioglu et al. [20] because it is not provided by the
authors, despite this model having achieved the best results in their work. Likewise, we also
discard the evaluation of the pre-trained Paragraph vector, sent2vec, and fastText models
introduced by Blagec et al. [28], because the authors provide neither their pre-trained models
nor their source code and the detailed post-processing configuration used in their experi-
ments. Thus, not all of the aforementioned models can be reproduced.

Tables 1 and 2 detail the configuration of the string-based measures and ontology-based
measures that will be evaluated in this work, respectively. Both WBSM and UBSM methods
will be evaluated in combination with the following word or concept similarity measures:
Rada et al. [111], Jiang&Conrath [112], and three state-of-the-art unexplored measures, called
cosJ&C [43], coswJ&C [43], and Cai et al. [110]. The word similarity measure which reports
the best results will be used to evaluate the COM method [20]. Table 3 details the sentence
similarity methods based on the evaluation of pre-trained character, word, and sentence

Table 1. Detailed setup for the string-based sentence similarity measures which will be evaluated in this work.All
the string-based measures will follow the implementation of Sogancioglu et al. [20], who use the Simmetrics library
[113].

ID Method Detailed setup of each method
M1 Qgram [58] simða; bÞ ¼ 2�jq� gramsðaÞ[q� gramsðbÞj

jq� gramsðaÞjþjq� gramsðbÞj , being a and b sets of q words, and with q = 3.

M2 Jaccard [55, 56] simða; bÞ ¼ ja[bj
ja\bj, being a and b sets of words of the first and second sentence

respectively.
M3 Block distance [59]

simða; bÞ ¼ 1 �

Pn¼jajþjbj

n¼1
ðvan � vbnÞ

jajþjbj , being a and b sets of words of the first and second
sentence respectively; and va and vb the frequency vectors of a and b.

M4 Levenshtein distance
[57]

Measures the minimal cost number of insertions, deletions and replacements needed
for transforming the first into the second sentence. Insert, delete and substitution cost
set to 1.

M5 Overlap coefficient
[60]

simða; bÞ ¼ ja\bj
jMinðjaj;jbjÞj, being a and b sets of words of the first and second sentence

respectively.

https://doi.org/10.1371/journal.pone.0248663.t001

PLOS ONE Protocol for a reproducible experimental survey on biomedical sentence similarity

PLOSONE | https://doi.org/10.1371/journal.pone.0248663 March 24, 2021 8 / 28



embedding models that will be evaluated in this work. We will also evaluate for the first time a
sentence similarity method, named FastText-SkGr-BioC and detailed in Table 3), which is
based on a FastText [23] word embedding model trained on the full text of the PMC-BioC [19]
articles. Finally, Table 4 details the pre-trained language models that will be evaluated in our
experiments.

Table 2. Detailed setup for the ontology-based sentence similarity measures which will be evaluated in this work.

ID Sentence similarity method Detailed setup of each method
M6 WBSM-Rada [20, 111] WBSM [20] combined with Rada [111] measure
M7 WBSM-J&C [20, 112] WBSM [20] combined with J&C [112] measure
M8 WBSM-cosJ&C [20, 43] (this

work)
WBSM [20] with cosJ&C [43] measure and Sanchez et al. [109] IC model

M9 WBSM-coswJ&C [20, 43] (this
work)

WBSM [20] with coswJ&C [43] measure and Sanchez et al. [109] IC
model

M10 WBSM-Cai [20, 110] (this work) WBSM [20] combined with Cai et al. [110] measure and Cai et al. [110]
IC model

M11 UBSM-Rada [20, 111] UBSM [20] with Rada et al. [111] measure
M12 UBSM-J&C [20, 112] UBSM [20] combined with J&C [112] measure
M13 UBSM-cosJ&C [20, 43] (this

work)
UBSM [20] with cosJ&C [43] measure and Sanchez et al. [109] IC model

M14 UBSM-coswJ&C [20, 43] (this
work)

UBSM [20] with coswJ&C [43] measure and Sanchez et al. [109] IC
model

M15 UBSM-Cai [20, 110] (this work) UBSM [20] combined with Cai et al. [110] measure and Cai et al. [110]
IC model

M16 COM [20] λ�WBSM + (1 − λ) � UBSM [20] with λ = 0.5 and the best word similarity
measure

https://doi.org/10.1371/journal.pone.0248663.t002

Table 3. Detailed setup for the sentence similarity methods based on pre-trained character, Word Embedding
(WE), and Sentence Embedding (SE) models which will be evaluated in this work.

ID Sentence similarity method Detailed setup of each method
M17 Flair [77] Contextual string embeddings trained on PubMed
M18 Pyysalo et al. [73] Skip-gram trained on PubMed + PMC
M19 BioConceptVec [71] Skip-gram WE model trained on PubMed using word2vec program
M20 BioConceptVec [71] CBOW WE model trained on PubMed using word2vec program
M21 Newman-Griffis et al. [70] Skip-gram WE model trained on PubMed using word2vec program
M22 Newman-Griffis et al. [70] CBOW WE model trained on PubMed using word2vec program
M23 Newman-Griffis et al. [70] GloVe WE model trained on PubMed
M24 BioConceptVecGloVe [71] GloVe We model trained on PubMed
M25 BioWordVecint [22] FastText [23] WE model trained on PubMed + MeSH
M26 BioWordVecext [22] FastText [23] trained on PubMed + MeSH
M27 BioNLP2016win2 [114] FastText [23] WE model based on skip-gram and trained on PubMed

with training setup detailed in [114, table 18]
M28 BioNLP2016win30 [114] FastText [23] WE model based on skip-gram and trained on PubMed

with training setup detailed in [114, table 18]
M29 BioConceptVecfastText [71] FastText [23] WE model trained on PubMed
M30 Universal Sentence Encoder

(USE) [115]
USE SE pre-trained model of Cer et al. [115]

M31 BioSentVec [25] sent2vec [26] SE model trained on PubMed + MIMIC-III
M32 FastText-Skipgram-BioC (this

work)
FastText [23] WE model based on Skip-gram and trained on PMC-BioC
corpus (05,09,2019) with the following setup: vector dim. = 200, learning
rate = 0.05, sampling thres. = 1e-4, and negative examples = 10

https://doi.org/10.1371/journal.pone.0248663.t003
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Selection of language pre-processing methods and tools
The pre-processing stage aims to ensure a fair comparison of the methods that will be evalu-
ated in a single end-to-end pipeline. To achieve this later goal, the pre-processing stage nor-
malizes and decomposes the sentences into a series of components that evaluate the same
sequence of words applied to all the methods simultaneously. The selection criteria of the
pre-processing components have been conditioned by the following constraints: (a) the pre-
processing methods and tools used by state-of-the-art methods; and (b) the availability of
resources and software tools.

Most methods receive as input a sequence of words making up the sentence to be evaluated.
The process of splitting sentences into words can be carried out by tokenizers for all the meth-
ods to be evaluated in this work, such as the well-known general domain Stanford CoreNLP
tokenizer [117], which is used by Blagec et al. [28], or the biomedical domain BioCNLPToke-
nizer [118]. On the other hand, the use of lexicons instead of tokenizers for sentence splitting
would be inefficient because of the vast general and biomedical vocabulary. Besides, there
would not be possible to provide a fair comparison of the methods because the pre-trained lan-
guage models have no identical vocabularies.

The tokenized words that conform the sentence, named tokens, are usually pre-processed
by removing special characters and lower-casing, and removing the stop words. To analyze all
the possible combinations of token pre-processing configurations from the literature, for each
method we will replicate the methods used by other authors, such as Blagec et al. [28] and
Sogancioglu et al. [20], and we will also evaluate all the pre-processing configurations that
have not been evaluated yet. We will also study the impact of pre-processing configurations by
not removing special characters nor lower casing and not removing the stop words from the
tokens.

Table 4. Detailed setup for the sentence similarity methods based on pre-trained language models which will be
evaluated in this work.

ID Sentence similarity method Detailed setup of each method
M33 BioBERT Base 1.0 [31] (+ PubMed) BERT [33] trained on English Wikipedia + BooksCorpus + PubMed

abstracts
M34 BioBERT Base 1.0 [31] (+ PMC) BERT [33] trained on English Wikipedia + BooksCorpus + PMC

full-text articles
M35 BioBERT Base 1.0 [31] (+ PubMed

+ PMC)
BERT [33] trained on English Wikipedia + BooksCorpus + PubMed
abstracts + PMC full-text articles

M36 BioBERT Base 1.1 [31] (+ PubMed) BERT [33] trained on English Wikipedia + BooksCorpus + PubMed
abstracts

M37 BioBERT Large 1.1 [31] (+ PubMed) BERT [33] trained on English Wikipedia + BooksCorpus + PubMed
abstracts

M38 NCBI-BlueBERT Base [32] PubMed BERT [33] trained on PubMed abstracts
M39 NCBI-BlueBERT Large [32] PubMed BERT [33] trained on PubMed abstracts
M40 NCBI-BlueBERT Base [32] PubMed

+ MIMIC-III
BERT [33] trained on PubMed abstracts + MIMIC-III

M41 NCBI-BlueBERT Large [32] PubMed
+ MIMIC-III

BERT [33] trained on PubMed abstracts + MIMIC-III

M42 SciBERT [79] BERT [33] trained on PubMed abstracts
M43 ClinicalBERT [116] BERT [33] trained on PubMed abstracts
M44 PubMedBERT [80] (abstracts) BERT [33] trained on PubMed abstracts
M45 PubMedBERT [80] (abstracts + full

text)
BERT [33] trained on PubMed abstracts + full text

M46 ouBioBERT-Base [81] (Uncased) BERT [33] trained on PubMed abstracts

https://doi.org/10.1371/journal.pone.0248663.t004
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Ontology-based sentence similarity methods estimate the similarity of a sentence by
exploiting the ‘is-a’ relations between the concepts in an ontology. Therefore, the evaluation of
any ontology-based method in this work will receive a set of concept-annotated pairs of sen-
tences. The aim of the biomedical Named Entity Recognizers (NER) is to identify entities in
pieces of raw text, such as diseases or drugs. In this work, we propose to evaluate the impact of
three significant biomedical NER tools on the sentence similarity task, as follows: (a) MetaMap
[107], (b) cTAKES [108], and (c) MetaMap Lite [119]. MetaMap tool [107] is used by UBSM
and COM methods [20] for recognizing Unified Medical Language System (UMLS) [120] con-
cepts in the sentences, which is the standard compendium of biomedical vocabularies. In this
work, we will use the default configuration of MetaMap, using all the available semantic types,
the MedPost Part-of-speech tagger [121] and with the MetaMap Word-Sense Disambiguation
(WSD) module, but restricting UMLS sources to SNOMED-CT and MeSH, which are cur-
rently implemented by HESML V1R5 [122]. We will also evaluate cTAKES [108], which has
demonstrated to be a robust and reliable tool to recognize biomedical entities [123]. Encour-
aged by the high computational cost of MetaMap in evaluating large text corpus, Demner-
Fushman et al. [119] introduce a lighter MetaMap version, called Metamap Lite, which pro-
vides a real-time implementation of the basic MetaMap annotation capabilities without a large
degradation of its performance.

Software integration and contingency plan
To mitigate the impact of potential development risks or unexpected barriers, we have elabo-
rated a contingency plan based on identifying potential risk sources, as well as the testing and
integration prototyping of all third-party software components shown in Fig 2. Next, we detail
the main risk sources identified in our contingency analysis and the actions carried out to miti-
gate their impact on our study.

1. Integration of the biomedical ontologies and thesaurus. Recently published HESML V1R5
software library [122] integrates the real-time evaluation of ontology-based similarity mea-
sures based on MeSH [24] and SNOMED-CT [67], as well as any other biomedical ontology
based on the OBO file format [124]. Thus, this risk has been completely mitigated.

2. External NER tools. We have confirmed the feasibility of integrating all biomedical NER
tools considered in our experiments, such as MetaMap [107] or cTAKES [108], by proto-
typing the main functions for annotating testing sentences.

3. Availability of the pre-trained models. We have already gathered all the pre-trained embed-
dings [22, 25, 70, 71, 73, 77, 114, 115] and BERT-based language models [31, 32, 79–81,
116] required for our experiments. We have also checked the validity of all pre-trained
model files by testing the evaluation of the models using the third-party libraries as detailed
below.

4. Evaluation of the pre-trained models. The software replication required to evaluate sentence
embeddings and language models is extremely complex and out of the scope of this work.
For this reason, these models must be evaluated by using the software artifacts used to gen-
erate the aforementioned models. Our strategy is to implement Python wrappers for evalu-
ating the available models by using the provided software artifacts as follows: (1) Sent2vec-
based models [25] will be evaluated using the Sent2vec library [26]; (2) Flair models [77]
will be evaluated using the flairNLP framework [77]; and USE models [115] will be evalu-
ated using the open source platform TensorFlow [125]. All BERT-based pre-trained
models will be evaluated using the open-source bert-as-a-service library [126]. On the
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other hand, we will develop a parser for efficiently loading and evaluating FastText-based
[23] and other word embedding models [22, 70, 71, 73, 114] in the HESML-STS library that
will be specially developed for this work. Finally, we have developed all the necessary proto-
types to confirm the feasibility of evaluating all the pre-trained models considered in our
experiments.

5. Licensing restrictions. The licensing restrictions of third-party software components and
resources, such as SNOMED-CT [103], MeSH [24] and MetaMap [107], require users to
obtain previously a license from the National Library of Medicine (NLM) of the United
States to use the UMLS Metathesaurus databases, as well as SNOMED-CT and MeSH.
Users will be able to reproduce the experiments of this work by following two alternatives:
(1) downloading the third-party software components and integrating them in the

Fig 2. Concept map detailing the external software components that will be integrated in HESML-STS. Input data files are shown in green, whilst external software
libraries are shown in orange, and software components that will be developed are shown in blue. All experiments will be specified into a single experiment file, which is
executed by the HESMLSTSclient program.

https://doi.org/10.1371/journal.pone.0248663.g002
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HESML-STS framework as will be detailed in our reproducibility protocol; or (2) by down-
loading a Docker image file which will contain a pre-installed version of all the necessary
software for reproducing our experiments. In the first case, we will publish all the necessary
source code, binaries, data, and documentation in Github and Dataverse repositories, to
allow the user to integrate restricted third-party software components into the HESML-STS
framework. In the second case, users must send a copy of their NLM license to “eciencia@-
consorciomadrono.es” to obtain the password to decrypt the Docker file provided as sup-
plementary material.

Detailed workflow of our experiments
Fig 3 shows the workflow for running the experiments that will be carried out for this work.
Given an input dataset, such as BIOSSES [20], MedSTS [49], or CTR [50], the first step is to
pre-process all of the sentences, as shown in Fig 4. For each sentence in the dataset (named S1
and S2), the preprocessing phase will be divided into four stages as follows: (1.a) named entity
recognition of UMLS [120] concepts, using different state-of-the-art NER tools, such as Meta-
Map [107] or cTAKES [108]; (1.b) tokenize the sentence, using well-known tokenizers, such as
the Stanford CoreNLP tokenizer [117], BioCNLPTokenizer [118], or WordPieceTokenizer
[33] for BERT-based methods; (1.c) lower-case normalization; (1.d) character filtering, which

Fig 3. Detailed experimentation workflow which will be implemented by our experiments to preprocess, calculate
the raw similarity scores, and post-process the results contained in the evaluation of the biomedical datasets. The
workflow detailed below produces a collection of raw and processed data files.

https://doi.org/10.1371/journal.pone.0248663.g003

Fig 4. Detailed sentence preprocessing workflow that will be implemented in our experiments. The preprocessing
stage takes an input sentence and produces a preprocessed sentence as output. (�) The named entity recognizer will be
only evaluated in ontology-based methods.

https://doi.org/10.1371/journal.pone.0248663.g004
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allows the removal of punctuation marks or special characters; and finally, (1.e) the removal of
stop-words, following different approximations evaluated by other authors like Blagec et al.
[28] or Sogancioglu et al. [20]. Once the dataset is pre-processed in step 1 detailed in Fig 3),
the aim of step 2 is to calculate the similarity between each pair of sentences in the dataset to
produce a raw output file containing all raw similarity scores, one score per sentence pair.
Finally, a R-language script will be used in step 3 to process the raw similarity files and produce
the final human-readable tables reporting the Pearson and Spearman correlation values
detailed in Table 8, as well as the statistical significance of the results and any other supplemen-
tary data table required by our study on the impact of the pre-processing and NER tools.

Finally, we will also evaluate all the pre-processing combinations for each family of methods
to study the impact of pre-processing methods on the performance of the sentence similarity
methods results, with the only exception of the BERT-based methods. The pre-processing con-
figurations of the BERT-based methods will only be evaluated in combination with the Word-
Piece Tokenizer [33] because it is required by the current BERT implementations.

Evaluation metrics
The evaluation metrics used in this work are the Pearson correlation factor, denoted by r in Eq
(1), and the Spearman rank correlation factor, denoted by ρ in Eq (2). The Pearson correlation
is invariant regarding any scaling of the data, and it evaluates the linear relationship between
two random samples, whilst the Spearman rank correlation is rank-invariant and evaluates the
monotonic relationship between two random samples.

r ¼

Pn
i¼1
ðXi � XÞðYi � Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðXi � XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðYi � Y Þ2

q ð1Þ

r ¼ 1 �
6
Pn

i¼1
d2
i

nðn2 � 1Þ
; di ¼ xi � yið Þ ð2Þ

The use of the Pearson correlation to evaluate the task on sentence similarity can be traced
back to the pioneering work of Dustin and Alfonsin [127]. On the other hand, both Pearson
and Spearman correlation scores have been extensively used to compare the performance of
the state-of-the-art methods on biomedical sentence similarity in most works in this line of
research [20, 22, 28, 35]. Both aforementioned correlation metrics are also the standard metric
for evaluating the task on word similarity [45]. For this reason, we use both aforementioned
metrics to evaluate and compare the performance of the methods evaluated herein. However,
Spearman’s rank correlation has demonstrated to be more reliable in the evaluation of seman-
tic similarity measures of sentences or words in different applications, because it is rank-
invariant, and thus, it “provides an evaluation metric that is independent of such data-depen-
dent transformations” [128].

We will use the well-known t-Student test to carry-out a statistical significance analysis of
the results in the BIOSSES [20], MedSTSfull [49], and CTR [50] datasets. In order to compare
the performance of the semantic measures that will be evaluated in our experiments, we use
the overall average values of the two aforementioned metrics in all datasets. The statistical sig-
nificance of the results will be evaluated using the p-values resulting from the t-student test for
the mean difference between the values reported by each pair of semantic measures in all data-
sets, or a subset of them relevant in the context of the discussion. The t-student test is used
herein because it is a standard and widely-used hypothesis testing for small and independent
data samples with the normal distribution. The p-values are computed using a one-sided t-
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student distribution on two paired random sample sets. Our null hypothesis, denoted by H0, is
that the difference in the average performance between each pair of compared sentence simi-
larity methods is 0, whilst the alternative hypothesis, denoted byH1, is that their average per-
formance is different. For a 5% level of significance, it means that if the p-value is greater or
equal than 0.05, we must accept the null hypothesis. Otherwise, we can reject H0 with an error
probability of less than the p-value. In this latter case, we will say that a first sentence similarity
method obtains a statistically significantly higher value than the second one in a specific metric
or that the former one significantly outperforms the second one.

Software implementation and development plan
Fig 5 shows a concept map detailing the planned experimental setup to run all experiments
planned in this work, as detailed in Table 8. Our experiments will be based on our implemen-
tation and evaluation of all methods detailed in Tables 1–4 into a common and new Java soft-
ware library called HESML-STS, which will be specifically developed for this work. HESML-
STS will be based on an extension of the recent HESML V1R5 [122] semantic measures library
for the biomedical domain.

All our experiments will be generated by running theHESMLSTSclient program shown in
Fig 5 with a reproducible XML-based benchmark file, which will generate a raw output file in
comma-separated file format (�.csv) for each dataset detailed in Table 5. The raw output files
will contain the raw similarity values returned by each sentence similarity method in the evalu-
ation of the degree of similarity between each sentence pair. The final results for the Pearson
and Spearman correlation values planned in Table 8 will be automatically generated by run-
ning a R-language script file on the collection of raw similarity files using either R or RStudio
statistical programs.

Table 6 shows the development plan schedule proposed for this work. We have decom-
posed the work into seven task groups, called Work Packages (WP), whose deliverables are as
follows: (1) Python-based wrappers for the integration of the third-party software components
(see Fig 2); (2) HESML-STS library beta 1 version integrated on top of HESML V1R5 (https://
github.com/jjlastra/HESML) [122]; (3) HESML-STS beta 1 with an integrated end-to-end
pipeline and the XML-based experiment engine; (4) collection of raw output data files gener-
ated by running the XML-based reproducible experiments; (5) detailed analysis of the results,
including the identification of the main drawbacks and limitations of current methods; (6)
reproducible protocol and dataset published in the Spanish Dataverse repository; and finally,
(7) submission of the manuscript introducing the study that implements the protocol detailed
herein, together with a companion data article introducing our reproducibility protocol and
dataset.

Reproducing our benchmarks
For the sake of reproducibility, we will co-submit a companion data paper with the next work
reporting the results of this study, which will introduce a publicly available reproducibility
dataset, together with a detailed reproducibility protocol to allow the exact replication of all
our experiments and results. Table 7 details the reproducibility software and data that will be
published with our next work implementing this registered report. Our benchmarks will be
implemented using Java and R languages and could be reproduced in any Java-complaint or
Docker-complaint platforms, such as Windows, MacOS, or any Linux-based system. The
available software and data will be published on the Spanish Dataverse Network.
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Fig 5. Concept map detailing the software architecture for our experimental setup. Input data files are shown in green, whilst output raw and processed data files are
shown in yellow, external available software libraries in orange, and software components that will be developed are shown in blue. All experiments will be specified into a
single experiment file, which is executed by the HESMLSTSclient program.

https://doi.org/10.1371/journal.pone.0248663.g005

Table 5. Benchmarks on biomedical sentence similarity evaluated in this work.

Dataset #pairs Corresponding file (�.tsv) in future HESML-STS distribution
BIOSSES [20] 100 BIOSSESNormalized.tsv
MedSTS [49] 1,068 CTRNormalized_averagedScore.tsv
CTR [50] 170 MedStsFullNormalized.tsv

https://doi.org/10.1371/journal.pone.0248663.t005
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Detailed results planned
Table 8 shows the methods and datasets that will be evaluated in this work, together with the
detailed results which will be generated by our experiments. Finally, any further experimental
results resulting from our study on the impact of the pre-processing and NER tools on the per-
formance of the sentence similarity methods will also be reported in our next work, and they
could also be reproduced using our aforementioned reproducibility resources.

Answering our research questions
Next, we explain how our experimental results will allow answering every of our research
questions:

Table 6. Development plan proposed for this work.

Definition of the workpackages and tasks to be developed Workload
(weeks)

WP1—Implementation of Python wrappers for third-party components
Task 1.1 Implementation of the BERT Python wrapper 1
Task 1.2 Implementation of the Sent2vec, Tensorflow, and Flair wrappers 1

WP2—Software implementation of methods
Task 2.1 Implementation of all pre-processing methods shown in Fig 6 2
Task 2.2 Implementation of string-based methods detailed in Table 1 1
Task 2.3 Implementation of ontology-based methods detailed in Table 2 1
Task 2.4 Implementation of WE and SE methods detailed in Table 3 1
Task 2.5 Implementation of BERT-based methods detailed in Table 4 1

WP3—Implementation of the automatic reproducible experiments
Task 3.1 Implementation of the benckmark objects and file parsers 1
Task 3.2 Preparation of the experiment files to evaluate the impact of the pre-processing

configurations
1

Task 3.3 Preparation of the experiment files to evaluate the performance of the methods in the
three biomedical sentence similarity datasets

1

WP4—Evaluation of the entire set of reproducible experiments
Task 4.1 Execution of the pre-processing experiments to generate of all raw output data 4
Task 4.2 Execution of the method experiments and generation of all raw output data 2

WP5—Data analysis and results interpretation
Task 5.1 Design and development of the post-processing scripts for the generation of tables

and figures
2

Task 5.2 Data analysis and discussion 2
Task 5.3 Identification and analysis of the main drawbacks and limitations of current methods 3

WP6—Design and publication of the reproduciblity protocol and dataset
Task 6.1 Design and validation of the reproducibility dataset 1
Task 6.2 Design of the reproducibility protocol 1
Task 6.3 Private publication and validation of the reproducibility dataset 1
Task 6.4 Software release of the first HESML-STS version 1
Task 6.5 Creation and validation of the Docker file 1
Task 6.6 Writing and testing of the reproducibility protocol 2
Task 6.7 Writing of the companion data article introducing our reproducibility protocol and

dataset
2

WP8—Publishing the results
Task 8.1 Writing and submission of the research article reporting the results of this study and

co-submission of the companion data article
6

Overall estimated workload (weeks) 39

https://doi.org/10.1371/journal.pone.0248663.t006

PLOS ONE Protocol for a reproducible experimental survey on biomedical sentence similarity

PLOSONE | https://doi.org/10.1371/journal.pone.0248663 March 24, 2021 17 / 28



RQ1. Table 8 will report the Pearson and the Spearman rank correlation factors in the evalua-
tion of the three datasets. Therefore, we will draw up our conclusions by comparing the
performance of both metrics. However, we will set the best overall performing methods
using the Spearman correlation results because of its better predictive nature in most
extrinsic tasks, as pointed out in section “Evaluation Metrics”.

RQ2. We will use a t-Student test between the Spearman correlation values obtained by each
pair of methods in the evaluation of the three proposed datasets as a means to set the
statistical significance of the results. Thus, we will say that a method significantly out-
performs another one resulting p-values are less or equal than 0.05. The t-Student test
will be based on the Spearman rank correlation value for the same reasons detailed
above.

RQ3. Table 9 details the methods and biomedical NER tools that will be evaluated in this
work. We will consider only ontology-based methods since word and sentence pre-
trained models have been trained on raw texts and do not contain UMLS concepts. To
make a fair comparison of the methods, we will evaluate them using the best pre-pro-
cessing configuration defined by a selection of the tokenizer, lower-case normalization,
char filtering, and stop words list. Our analysis and discussion of the results will be
based on comparing the Pearson and Spearman correlation values reported for each
method. However, we will set the best overall performing NER tool using the Spearman
rank correlation results like the remaining research questions.

RQ4. Fig 6 details all the possible combinations of pre-processing configurations that will be
evaluated in this work. String, word and sentence embedding, and ontology-based
methods, will be evaluated using all the available configurations except the WordPiece-
Tokenizer [33], which is specific to BERT-based methods. Thus, BERT-based methods
will be evaluated using different char filtering, lower casing normalization, and stop
words removal configurations. We will use the Pearson and Spearman’s correlation
values to determine the impact of the different pre-processing configurations on the
evaluation results. However, we will set the best overall performing pre-processing
configuration using the Spearman rank correlation results like the remaining research
questions.

RQ5. Our methodology for identifying the main drawbacks and limitations is based on the
following steps: (1) analyzing evaluated methods and tools; (2) identifying which meth-
ods do not perform well in the datasets; (3) searching and analyzing the sentence pairs

Table 7. Detailed planning of the supplementary reproducibility software and data that will be published with our
future work implementing this registered report.

Material Description
Reproducibility dataset Contains all raw input and output data files, pre-trained model files, and a long-term

reproducibility image based on ReproZip or Docker, which will be publicly available in
the Spanish Dataverse Network.

Companion data article Data and methods article introducing our reproducibility protocol and dataset to allow
the independent replication of our experiments and results.

HESML-STS software
library

Release of the new HESML-STS library. This library will be integrated into a
forthcoming HESML version published both in Github and the Spanish Dataverse
Network under CC By-NC-SA-4.0 license.

HESML-STS software
paper

Software article introducing our sentence similarity library, called HESML-STS, which
will be especially developed for this work.

https://doi.org/10.1371/journal.pone.0248663.t007
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Table 8. Pearson (r) and Spearman (ρ) correlation values (0.xxx) which will be obtained in our experiments from
the evaluation of all sentence similarity methods detailed below in the BIOSSES [20], MedSTSfull [49], and CTR
[50] datasets.

ID Sentence similarity methods BIOSSES MedSTSfull CTR
r ρ r ρ r ρ

M1 Qgram .xxx .xxx .xxx .xxx .xxx .xxx
M2 Jaccard .xxx .xxx .xxx .xxx .xxx .xxx
M3 Block distance .xxx .xxx .xxx .xxx .xxx .xxx
M4 Levenshtein distance [57] .xxx .xxx .xxx .xxx .xxx .xxx
M5 Overlap coefficient [60] .xxx .xxx .xxx .xxx .xxx .xxx
M6 WBSM-Rada [20, 111] .xxx .xxx .xxx .xxx .xxx .xxx
M7 WBSM-J&C [20, 112] .xxx .xxx .xxx .xxx .xxx .xxx
M8 WBSM-cosJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx
M9 WBSM-coswJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx
M10 WBSM-Cai [20, 110] .xxx .xxx .xxx .xxx .xxx .xxx
M11 UBSM-Rada [20, 111] .xxx .xxx .xxx .xxx .xxx .xxx
M12 UBSM-J&C [20, 112] .xxx .xxx .xxx .xxx .xxx .xxx
M13 UBSM-cosJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx
M14 UBSM-coswJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx
M15 UBSM-Cai [20, 110] .xxx .xxx .xxx .xxx .xxx .xxx
M16 COM [20] .xxx .xxx .xxx .xxx .xxx .xxx
M17 Flair [37, 77] .xxx .xxx .xxx .xxx .xxx .xxx
M18 Pyysalo et al. [73] .xxx .xxx .xxx .xxx .xxx .xxx
M19 BioConceptVecword2vec_sg .xxx .xxx .xxx .xxx .xxx .xxx
M20 BioConceptVecword2vec_cbow .xxx .xxx .xxx .xxx .xxx .xxx
M21 Newman-Griffisword2vec_sg [70] .xxx .xxx .xxx .xxx .xxx .xxx
M22 Newman-Griffisword2vec_cbow [70] .xxx .xxx .xxx .xxx .xxx .xxx
M23 Newman-Griffisglove .xxx .xxx .xxx .xxx .xxx .xxx
M24 BioConceptVecglove [71] .xxx .xxx .xxx .xxx .xxx .xxx
M25 BioWordVecint [22] .xxx .xxx .xxx .xxx .xxx .xxx
M26 BioWordVecext [22] .xxx .xxx .xxx .xxx .xxx .xxx
M27 BioNLP2016win2 [114] .xxx .xxx .xxx .xxx .xxx .xxx
M28 BioNLP2016win30 [114] .xxx .xxx .xxx .xxx .xxx .xxx
M29 BioConceptVecfastText .xxx .xxx .xxx .xxx .xxx .xxx
M30 USE [115] .xxx .xxx .xxx .xxx .xxx .xxx
M31 BioSentVec (PubMed+MIMIC-III) .xxx .xxx .xxx .xxx .xxx .xxx
M32 FastText-SkGr-BioC (this work) .xxx .xxx .xxx .xxx .xxx .xxx
M33 BioBERT Base 1.0 (+ PubMed) .xxx .xxx .xxx .xxx .xxx .xxx
M34 BioBERT Base 1.0 (+ PMC) .xxx .xxx .xxx .xxx .xxx .xxx
M35 BioBERT Base 1.0 (+ PubMed + PMC) .xxx .xxx .xxx .xxx .xxx .xxx
M36 BioBERT Base 1.1 (+ PubMed) .xxx .xxx .xxx .xxx .xxx .xxx
M37 BioBERT Large 1.1 (+ PubMed) .xxx .xxx .xxx .xxx .xxx .xxx
M38 NCBI-BlueBERT Base PubMed .xxx .xxx .xxx .xxx .xxx .xxx
M39 NCBI-BlueBERT Large PubMed .xxx .xxx .xxx .xxx .xxx .xxx
M40 NCBI-BlueBERT Base PubMed + MIMIC-III .xxx .xxx .xxx .xxx .xxx .xxx
M41 NCBI-BlueBERT Large PubMed + MIMIC-III .xxx .xxx .xxx .xxx .xxx .xxx
M42 SciBERT .xxx .xxx .xxx .xxx .xxx .xxx
M43 ClinicalBERT .xxx .xxx .xxx .xxx .xxx .xxx
M44 PubMedBERT (abstracts) .xxx .xxx .xxx .xxx .xxx .xxx
M45 PubMedBERT (abstracts + full text) .xxx .xxx .xxx .xxx .xxx .xxx
M46 ouBioBERT-Base, Uncased .xxx .xxx .xxx .xxx .xxx .xxx

https://doi.org/10.1371/journal.pone.0248663.t008
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in which the methods report the largest differences from the gold standard; and finally,
(4) analyzing and hypothesizing why the methods fail. We have already identified some
of the drawbacks of several methods during our literature review and prototyping stage
as follows. First, most methods reported in the literature neither consider the structure
of the sentences nor the intrinsic relations between the parts that conform them. Sec-
ond, BERT-based methods are trained for downstream tasks, using a supervised
approach, and do not perform well in an unsupervised context. Finally, we expect to
find drawbacks and limitations by analyzing and studying the results.

Conclusions and future work
We have introduced a detailed experimental setup to reproduce, evaluate, and compare the
most extensive set of methods on biomedical sentence similarity reported in the literature,

Table 9. Pearson (r) and Spearman (ρ) correlation values (0.xxx) which will be obtained in our experiments from
the evaluation of ontology similarity methods detailed below in the MedSTSfull [49] dataset for each NER tool.

ID Methods MetaMap MetaMap Lite cTAKES
r ρ r ρ r ρ

M11 UBSM-Rada [20, 111] .xxx .xxx .xxx .xxx .xxx .xxx
M12 UBSM-J&C [20, 112] .xxx .xxx .xxx .xxx .xxx .xxx
M13 UBSM-cosJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx
M14 UBSM-coswJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx
M15 UBSM-Cai [20, 110] .xxx .xxx .xxx .xxx .xxx .xxx
M16 COM [20] .xxx .xxx .xxx .xxx .xxx .xxx

https://doi.org/10.1371/journal.pone.0248663.t009

Fig 6. Details of the pre-processing configurations that will be evaluated in this work. (�) WordPieceTokenizer [33]
will be used only for BERT-based methods. [20, 28, 33, 107, 108, 117–119, 129].

https://doi.org/10.1371/journal.pone.0248663.g006
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with the following aims: (1) elucidating the state of the art on the problem, (2) studying the
impact of different pre-processing configurations; (3) studying the impact of the NER tools;
and (4) identifying the main drawbacks and limitations of the current methods to set new lines
of research. Our work also introduces the first collection of self-contained and reproducible
benchmarks on biomedical sentence similarity based on the same software platform. In addi-
tion, we have proposed the evaluation of a new word embedding model based on FastText and
trained on the full text of the articles in the PMC-BioC corpus [19], and the evaluation for the
first time of the CTR [50] dataset.

All experiments introduced herein will be implemented into the same software library,
called HESML-STS, which will be developed especially for this work. We will provide a
detailed reproducibility protocol, together with a collection of software tools and a reproduc-
ibility dataset, to allow the exact replication of all our experiments, methods, and results.
Thus, our reproducible experiments could be independently reproduced and extended by the
research community, with the hope of becoming a de facto experimentation platform for this
research line.

As forthcoming activities, we plan to evaluate the sentence similarity methods in an extrin-
sic task, such as semantic medical indexing [130] or summarization [131]. We also consider
the evaluation of further pre-processing configurations, such as biomedical NER systems
based on recent Deep Learning techniques [10], or extending our experiments and research to
the multilingual scenario by integrating multilingual biomedical NER systems like Cimind
[132]. Finally, we plan to evaluate some recent biomedical concept embeddings based on
MeSH [133], which has not been evaluated in the sentence similarity task yet.
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Abstract
This registered report introduces the largest, and for the first time, reproducible experimental
survey on biomedical sentence similarity with the following aims: (1) to elucidate the state of
the art of the problem; (2) to solve some reproducibility problems preventing the evaluation
of most current methods; (3) to evaluate several unexplored sentence similarity methods;
(4) to evaluate for the first time an unexplored benchmark, called Corpus-Transcriptional-
Regulation (CTR); (5) to carry out a study on the impact of the pre-processing stages and
Named Entity Recognition (NER) tools on the performance of the sentence similarity meth-
ods; and finally, (6) to bridge the lack of software and data reproducibility resources for
methods and experiments in this line of research. Our reproducible experimental survey is
based on a single software platform, which is provided with a detailed reproducibility proto-
col and dataset as supplementary material to allow the exact replication of all our experi-
ments and results. In addition, we introduce a new aggregated string-based sentence
similarity method, called LiBlock, together with eight variants of current ontology-based
methods, and a new pre-trained word embeddingmodel trained on the full-text articles in
the PMC-BioC corpus. Our experiments show that our novel string-basedmeasure estab-
lishes the new state of the art in sentence similarity analysis in the biomedical domain and
significantly outperforms all the methods evaluated herein, with the only exception of one
ontology-basedmethod. Likewise, our experiments confirm that the pre-processing stages,
and the choice of the NER tool for ontology-basedmethods, have a very significant impact
on the performance of the sentence similarity methods. We also detail some drawbacks and
limitations of current methods, and highlight the need to refine the current benchmarks.
Finally, a notable finding is that our new string-basedmethod significantly outperforms all
state-of-the-art Machine Learning (ML) models evaluated herein.

Introduction
Measuring semantic similarity between sentences is an important task in the fields of Natural
Language Processing (NLP), Information Retrieval (IR), and biomedical text mining, among
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others. For instance, the estimation of the degree of semantic similarity between sentences is
used in text classification [1–3], question answering [4, 5], evidence sentence retrieval to
extract biological expression language statements [6, 7], biomedical document labeling [8],
biomedical event extraction [9], named entity recognition [10], evidence-based medicine [11,
12], biomedical document clustering [13], prediction of adverse drug reactions [14], entity
linking [15], document summarization [16, 17] and sentence-driven search of biomedical liter-
ature [18], among other applications. In the question answering task, Sarrouti and El Alaomi
[4] build a ranking of plausible answers by computing the similarity scores between each bio-
medical question and the candidate sentences extracted from a knowledge corpus. Allot et al.
[18] introduce a system to retrieve the most similar sentences in the BioC biomedical corpus
[19] called Litsense [18], which is based on the comparison of the user query with all sentences
in the aforementioned corpus. Likewise, the relevance of the research in this area is endorsed
by the proposal of recent conference series, such as SemEval [20–25] and BioCreative/OHNLP
[26], and studies based on sentence similarity measures, such as the work of Aliguliyev [16] in
automatic document summarization, which shows that the performance of these applications
depends significantly on the sentence similarity measures used.

The aim of any semantic similarity method is to estimate the degree of similarity between
two textual semantic units as perceived by a human being, such as words, phrases, sentences,
short texts, or documents. Unlike sentences from the language in general use whose vocabu-
lary and syntax is limited both in extension and complexity, most sentences in the biomedical
domain are comprised of a huge specialized vocabulary made up of all sorts of biological and
clinical terms, in addition to innumerable acronyms, which are combined in complex lexical
and syntactical forms.

Currently, there are several papers in the literature that experimentally evaluate multiple
methods on biomedical sentence similarity. However, they are either theoretical or have a lim-
ited scope and cannot be reproduced. For instance, Kalyan et al. [27], Khattak et al. [28], and
Alsentzer et al. [29] introduce theoretical surveys on biomedical word and sentence embed-
dings with a limited scope. On the other hand, the experimental surveys introduced by Sogan-
cioglu et al. [30], Blagec et al. [31], Peng et al. [32], and Chen et al. [33] among other authors,
cannot be reproduced because of the lack of source code and data to replicate both methods
and experiments, or the lack of a detailed definition of their experimental setups. For instance,
Sogancioglu et al. [30] provide the BIOSSES evaluation dataset evaluated in this work, as well
as a Demo application and the source code used in their biomedical sentence similarity dataset
(https://tabilab.cmpe.boun.edu.tr/BIOSSES/About.html); however, they do provide neither
the MetaMap [34] annotation tool and UMLS ontology subsets MeSH [35] and OMIM [36]
versions to reproduce the ontology-based measures nor the Open Access Subset of PubMed
Central (http://www.ncbi.nlm.nih.gov/pmc/) dataset used in their training stage. Blagec et al.
[31] introduce a comprehensive experimental survey for biomedical sentence similarity mea-
sures, providing the detailed hyper-parameters used for training the models, as well as several
code and data to allow the training and evaluation of their methods (https://github.com/
kathrinblagec/neural-sentence-embedding-models-for-biomedical-applications); however,
they provide neither the post-processed biomedical dataset used in their training phase, nor
the pre-trained models. Peng et al. [32] provide the pre-trained models and pre-processed
dataset used to train the models (https://github.com/ncbi-nlp/BLUE_Benchmark), but they do
not provide detailed information about the pre-processing of the dataset. Finally, Chen et al.
[33] provide the pre-trained models (https://github.com/ncbi-nlp/BioSentVec) but provide
neither the detailed information about the data used for training the models nor the informa-
tion on the pre-processing stage. Therefore, it is not possible to evaluate their results in our
experiments. Likewise, there are other recent works whose results need to be confirmed. For
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Data Availability Statement: All the necessary
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instance, Tawfik and Spruit [37] experimentally evaluate a set of pre-trained language models,
whilst Chen et al. [38] propose a system to study the impact of a set of similarity measures on a
Deep Learning ensemble model, which is based on a Random Forest model [39].

The main aim of this work is to introduce a comprehensive and very detailed reproducible
experimental survey of methods on biomedical sentence similarity to elucidate the state of the
problem by implementing our previous registered report protocol [40]. Our experiments are
based on our software implementation and evaluation of all methods analyzed herein into a
common and new software platform based on an extension of the Half-Edge Semantic Mea-
sures Library (HESML) [41, 42], called HESML (http://hesml.lsi.uned.es) for Semantic Textual
Similarity (HESML-STS). All our experiments have been recorded into a Docker virtualization
image that is provided as supplementary material together with our software [43] and a
detailed reproducibility protocol [44] and dataset [43] to allow the easy replication of all our
methods, experiments, and results. This work is based on our previous experience developing
reproducible research in a series of publications in the area, such as the experimental surveys
on word similarity introduced in [45–48], whose reproducibility protocols and datasets [49,
50] are detailed and independently confirmed in two companion reproducible papers [41, 51],
and a reproducible benchmark on semantic measures libraries for the biomedical domain
[42]. Finally, we refer the reader to our previous work [40] for a very detailed review of the lit-
erature on sentence similarity measures, which is omitted here because of the lack of space and
to avoid repetition.

Main motivations and research questions
Our main motivation is the lack of a comprehensive and reproducible experimental survey on
biomedical sentence similarity that allows state of the problem to be set out in a sound and
reproducible way, as detailed in our previous registered report protocol [40]. Our main
research questions are as follows:

RQ1Which methods get the best results on biomedical sentence similarity?

RQ2 Is there a statistically significant difference between the best-performing methods and the
remaining ones?

RQ3What is the impact of the biomedical Named Entity Recognition (NER) tools on the per-
formance of the methods on biomedical sentence similarity?

RQ4What is the impact of the pre-processing stage on the performance of the methods on
biomedical sentence similarity?

RQ5What are the main drawbacks and limitations of current methods on biomedical sen-
tence similarity?

A second motivation is implementing a set of unexplored methods based on adaptations
from other methods proposed for the general language domain. A third motivation is the eval-
uation in the same software platform of the three known benchmarks on biomedical sentence
similarity reported in the literature as follows: the Biomedical Semantic Similarity Estimation
System (BIOSSES) [30] and Medical Semantic Textual Similarity (MedSTS) [52] datasets, as
well as the evaluation for the first time of the Microbial Transcriptional Regulation (CTR) [53]
dataset in a sentence similarity task, despite it having been previously evaluated in other related
tasks, such as the curation of gene expressions from scientific publications [54]. A fourth moti-
vation is a study on the impact of the pre-processing stage and NER tools on the performance
of the sentence similarity methods, such as that done by Gerlach et al. [55] for stop-words in a
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topic modeling task. And finally, our fifth motivation is the lack of reproducibility software
and data resources on this task, which allow an easy replication and confirmation of previous
methods, experiments, and results in this line of research, as well as encouraging the develop-
ment and evaluation of new sentence similarity methods.

Definition of the problem and contributions
The two main research problems tackled in this work are the design and implementation of a
large and reproducible experimental survey on sentence similarity measures for the biomedical
domain, and the evaluation of a set of unexplored methods based on adaptations from previ-
ous methods used in the general language domain. Our main contributions are as follows:
(1) the largest, and for the first time, reproducible experimental survey on biomedical sentence
similarity; (2) the first collection of self-contained and reproducible benchmarks on biomedi-
cal sentence similarity; (3) the evaluation of a set of previously unexplored methods, such as a
new string-based sentence similarity method, based on Li et al. [56] and Block distance [57],
eight variants of the current ontology-based methods from the literature based on the work of
Sogancioglu et al. [30], and a new pre-trained Word Embedding (WE) model based on Fas-
tText [58] and trained on the full-text of articles in the PMC-BioC corpus [19]; (4) the evalua-
tion for the first time of an unexplored benchmark, called CTR [53]; (5) the study on the
impact of the pre-processing stage and Named Entity Recognition (NER) tools on the perfor-
mance of the sentence similarity methods; (6) the integration for the first time of most sen-
tence similarity methods for the biomedical domain into the same software library, called
HESML-STS, which is available both on Github (https://github.com/jjlastra/HESML) and in a
reproducible dataset [43]; (7) a detailed reproducibility protocol together with a collection of
software tools and datasets provided as supplementary material to allow the exact replication
of all our experiments and results; and finally, (8) an analysis of the drawbacks and limitations
of the current state-of-the-art methods.

The rest of the paper is structured as follows. First, we introduce a collection of new sen-
tence similarity methods evaluated here for the first time. Next, we describe a detailed experi-
mental setup for our experiments on biomedical sentence similarity and introduce our
experimental results. Then, we discuss our results and answer the research questions detailed
above. Subsequently, we introduce our conclusions and future work. Finally, we introduce
three appendices with supplementary material as follows. S1 Appendix introduces all statistical
significance results of our experiments, whilst S2 Appendix introduces all data tables reporting
the performance of all methods with all pre-processing configurations evaluated herein, and
the S3 Appendix introduces a reproducibility protocol detailing a set of step-by-step instruc-
tions to allow the exact replication of all our experiments, which is published at protocols.io
[44].

The new sentence similarity methods
This section introduces a new string-based sentence similarity method based on the aggrega-
tion of the Li et al. [56] similarity and Block distance [57] measures, called LiBlock, as well as
eight new variants of the ontology-based methods proposed by Sogancioglu et al. [30], and a
new pre-trained word embedding model based on FastText [58] and trained on the full-text of
the articles in the PMC-BioC corpus [19].

The new LiBlock string-based method
Two key advantages of the family of string-based methods are as follows. Firstly, they can be
very efficiently computed because they do not require the use of external knowledge or pre-
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trained models, and secondly, they obtain competitive results as shown in Table 8. However,
the string-based methods do not capture the semantics of the words in the sentence, which
prevent them from recognizing semantic relationships between words, such as synonymy and
meronymy among others. In contrast, the family of ontology-based methods capture the
semantic relationships between words in a sentence pair and obtain state-of-the-art results in
the sentence similarity task for the biomedical domain, as shown in Table 8. However, the
effectiveness of ontology-based methods depends on the lexical coverage of the ontologies and
the ability to recognize automatically the underlying concepts in sentences by using Named
Entity Recognition (NER) and Word Sense Desambiguation (WSD) tools, whose coverage and
performance could be limited in several application domains. In fact, the NER task is still an
open problem [59] in the biomedical domain because of the vast biomedical vocabulary and
the complex lexical and syntactic forms found in the biomedical literature. In comparison, the
methods based on pre-trained word embedding models provide a broader lexical coverage
than the ontology-based ones and obtain better results. However, the methods based on word
embedding do not significantly outperform all ontology-based measures in a word similarity
task [48] in addition to requiring a large corpus for training, a complex training phase, and
more computational resources than the families of string-based and ontology-based methods.

To overcome the drawbacks and limitations of the string-based and ontology-based meth-
ods detailed above, we propose here a new aggregated string-based measure called LiBlock and
denoted by simLiBk henceforth, which is based on the combination of a similarity measure
derived from the Block Distance [57] and an adaptation from the ontology-based similarity
measure introduced by Li et al. [56] that removes the use of ontologies, such as WordNet [60]
or Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) [61]. The LiBlock
similarity measure obtains the best results in combination with the cTAKES NER tool [62],
which allows the detection of synonyms of CUI concepts. Nevertheless, the LiBlock method
obtains competitive results regarding the state-of-the-art methods with no use, either implic-
itly or explicitly, of an ontology, as detailed in Table 12.

The simLiBk method detailed in Eq (1) is defined by the linear aggregation of an adaptation
of the Li et al. [56] measure, called simLiAd (Eq (3)), and a similarity measure derived from the
Block Distance measure [57], called simBk (Eq (2)). Let be LS the set of word sequences in a
universal unseen alphabet S, the simLiBk function returns a value between 0 and 1 which indi-
cates the similarity score between two input sentences, as defined in Eq 1. The simBk function
is based on the computation of the word frequencies fr(wi, sj) for each input sentence s1 and s2
and their concatenation s1+ s2, as detailed in equation (Eq (2)). The auxiliary function fr(wi, sj)
returns the frequency of a word wi in the word sequence sj, whilst the function fr(wi, s1+ s2)
returns the number of occurrences of the word wi in the concatenation of the two word
sequences, denoted by s1 + s2. On the other hand, the simLiAd function takes two word sets
obtained by invoking the σ function (Eq (5)) with the sentences s1 and s2, and then it computes
the cosine similarity of the two binary semantic vectors corresponding to invoke the φ(S1)
function (Eq (4)) with the σ(s1) and σ(s2) word sets. Finally, the simLiBk score is defined by
either the linear combination of simBk and simLiAd, as detailed in Eq (1), or simBk if simLiAd is 0.

A walk-through example. Algorithm 1 details the step-by-step procedure to compute the
simLiBk function, whilst Fig 1 shows the pipeline for calculating the LiBlock similarity score
defined in Eq 1, as well as an example for illustrating an end-to-end calculation of the simLiBk

similarity score of two sentences.
Algorithm 1 LiBlock sentence similarity measure for two input pre-processed sentences.

1: function: simLiBlock (s1, s2) ⊳ being s1, s2 word
sequences 2 LΣ
2: S1  σ(s1) ⊳ word set sentence 1
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3: S2  σ(s2) ⊳ word set sentence 2
4: D  S1 [ S2 ⊳ construct the dictionary D
5: b1  φ(S1) ⊳ construct the semantic binary vector b1
6: b2  φ(S2) ⊳ construct the semantic binary vector b2
7: scoreLiAd  simLiAd(b1, b2) ⊳ compute LiAdapted
similarity
8: scoreBk  simBk(s1, s2) ⊳ compute Block Distance
similarity
9: scoreLiBk  simLiBk(scoreLiAd, scoreBk) ⊳ compute LiBlock
similarity
10: return scoreLiBk

Fig 1. This figure details the workflow for computing the new LiBlock measure and an example illustrating a use
case of the workflow following the steps defined in algorithm 1.

https://doi.org/10.1371/journal.pone.0276539.g001
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11: end function

ðLiBlock similarityÞ

simLiBk : LS � LS ! ½0; 1� � R; LS ¼ fword sequences in alphabet Sg ð1Þ

simLiBkðs1; s2Þ ¼

simBkðs1; s2Þ; if simLiAdðsðs1Þ; sðs2ÞÞ ¼ 0

1

2
simBkðs1; s2Þ þ

1

2
simLiAdðsðs1Þ; sðs2ÞÞ; otherwise

8
>>>><

>>>>:

simBk : LS � LS ! ½0; 1� � R; ðBlock distanceÞ
ð2Þ

simBkðs1; s2Þ ¼ 1 �

XjDj

i¼1

jfrðwi; s1Þ � frðwi; s2Þj

XjDj

i¼1

frðwi; s1 þ s2Þ

; D ¼ sðs1Þ [ sðs2Þ 2 PðSÞ

simLiAd : PðDÞ � PðDÞ ! ½0; 1� � R; ðLi’s score adaptationÞ
ð3Þ

simLiAdðS1; S2Þ ¼
φðS1Þ � φðS2Þ

jjφðS1Þjj � jjφðS2Þjj

φ : PðDÞ ! f0; 1gjDj; ðbinary vector constructorÞ

φðSÞ ¼ ðb1; b2; . . . ; bjDjÞ; bi ¼
1;wi 2 D

0;wi =2D

(

ð4Þ

s : LS ! PðSÞ; ðword set generatorÞ

sðsÞ ¼ fw 2 S : 9k 2 ½1; lengthðsÞ� such that sk ¼ wg ð5Þ

The eight new variants of current ontology-based methods
The current family of ontology-based methods for biomedical sentence similarity proposed by
Sogancioglu et al. [30] is based on the ontology-based semantic similarity between word and
concepts within the sentences to be compared. Thus, this later family of methods defines a
framework in which we can design new variants by exploring other word similarity measures.
For this reason, we propose here the evaluation of a set of new ontology-based sentence simi-
larity measures based on two different unexplored notions as follows: (1) the evaluation of
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state-of-the-art word similarity measures from the general domain [48] not evaluated in the
biomedical domain yet; and (2) the evaluation of several ontology-based word similarity mea-
sures based on a recent and very efficient shortest-path algorithm, called Ancestors-based
Shortest-Path Length (AncSPL) [42], which is a fast approximation of the Dijkstra’s algorithm
[63] for taxonomies that is introduced with the first HESML version for the biomedical
domain [42].

Thus, we propose here the evaluation based on the combination of WBSM and UBSM
methods with the path-based word similarity methods as follows: WBSM-Rada (M7); WBSM-
cosJ&C (M9); WBSM-coswJ&C (M10); WBSM-Cai (M11); UBSM-Rada (M12); UBSM-
cosJ&C (M14); UBSM-coswJ&C (M15); and UBSM-Cai (M16). The detailed information
about this later method is shown in Table 3.

The new pre-trained word embedding model
Current sentence similarity methods based on the evaluation of pre-trained embedding mod-
els are mostly trained using PubMed Central (PMC) Open Access dataset (https://www.ncbi.
nlm.nih.gov/labs/pmc/), or Medical Information Mart for Intensive Care (MIMIC-III) clini-
cal notes [64]. However, as far as we know, there are no models in the literature trained on
the full text of the articles in the PMC-BioC corpus [19]. Therefore, we propose evaluating a
new FastText [58] word embedding model trained on the aforementioned BioC corpus. Fas-
tText overcomes one significant limitation of other methods, such as word2vec [65] and
GloVe [66], which ignore the morphology of words by assigning a vector to each word in the
vocabulary. For a more detailed review of the family of word embedding methods, we refer
the authors to the recent reproducible survey by Lastra-Dı́az et al. [48]. The configuration
parameters for training this model are detailed in Table 4, and all the necessary information
and resources for evaluating it are available in our reproducibility dataset [43], as detailed in
Table 6.

The reproducible experimental survey
This section introduces a detailed experimental setup to evaluate and compare all the sen-
tence similarity methods for the biomedical domain proposed in our primary work [40],
together with the new methods introduced herein. The main aims of our experiments are as
follows: (1) the evaluation of most of known methods for biomedical sentence similarity on
the three biomedical datasets shown in Table 1, and implemented on the same software plat-
form; (2) the evaluation of a set of new sentence similarity methods adapted from their defi-
nitions for the general-language domain; (3) the evaluation of a new sentence method called
LiBlock introduced in this work, eight variants of the current ontology-based methods from
the literature based on the work of Sogancioglu et al. [30], and a new word embedding model
based on FastText and trained on the full-text of articles in the PMC-BioC corpus [19]; (4)
the setting out of the state of the art of the problem in a sound and reproducible way; (5) the
replication and independent confirmation of previously reported methods and results; (6) a

Table 1. Benchmarks on biomedical sentence similarity evaluated in this work.

Dataset #pairs Corresponding file (�.tsv) in HESML-STS distribution
BIOSSES [30] 100 BIOSSESNormalized.tsv
MedSTS [52] 1,068 CTRNormalized_averagedScore.tsv
CTR [53] 170 MedStsFullNormalized.tsv

https://doi.org/10.1371/journal.pone.0276539.t001
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study on the impact of different pre-processing configurations on the performance of the
sentence similarity methods; (7) a study on the impact of different Name Entity Recognition
(NER) tools, such as MetaMap [34] and clinical Text Analysis and Knowledge Extraction Sys-
tem (cTAKES) [62], on the performance of the sentence similarity methods; (8) the evalua-
tion for the first time of the CTR [53] dataset; (9) the identification of the main drawbacks
and limitations of current methods; and finally, (10) a detailed statistical significance analysis
of the results.

Selection of methods
The criteria for the selection of the sentence similarity methods evaluated herein is as follows:
(a) all the methods that have been evaluated in BIOSSES and MedSTS datasets; (b) a selection
of methods that have not been evaluated in the biomedical domain yet; (c) a collection of new
variants or adaptations of methods previously proposed for the general or biomedical domain,
which are evaluated for the first time in this work, such as the WBSM-cosJ&C [30, 42, 46, 67],
WBSM-coswJ&C [30, 42, 46, 67], WBSM-Cai [30, 42, 68], UBSM-cosJ&C [30, 42, 46, 67],
UBSM-coswJ&C [30, 42, 46, 67], and UBSM-Cai [30, 42, 68] methods detailed in Tables 3 and
4; and (d) a new string-based method based on Li et al. [56] introduced in this work. For a
more detailed description of the selection criteria of the methods, we refer the reader to our
registered report protocol [40].

Tables 2 and 3 detail the configuration of the string-based measures and ontology-based
measures that are evaluated here, respectively. Both WBSM and UBSM methods are evaluated
in combination with the following word and concept similarity measures: Rada et al. [69],
Jiang&Conrath [70], and three state-of-the-art unexplored measures, called cosJ&C [42, 46],
coswJ&C [42, 46], and Cai et al. [42, 68]. The word similarity measure which reports the best
results is used to evaluate the COM method [30, 69]. Table 4 details the sentence similarity
methods based on the evaluation of pre-trained character, word, and Sentence Embedding
(SE) models that are evaluated in this work. Finally, Table 5 details the pre-trained language
models that are evaluated in our experiments.

Table 2. Detailed setup for the string-based sentence similarity measures which are evaluated in this work.All the
string-based measures follow the implementation of Sogancioglu et al. [30], who use the Simmetrics library [71]. The
LiBlock method proposed herein is an adaptation from Li et al. [56] combined with a string-based measure, as detailed
in the previous section.

ID Method Detailed setup of each method
M1 Qgram [72] simða; bÞ ¼ 2�jq� gramsðaÞ[q� gramsðbÞj

jq� gramsðaÞjþjq� gramsðbÞj , being a and b sets of q words, and with q = 3.

M2 Jaccard [73, 74] simða; bÞ ¼ ja[bj
ja\bj, being a and b sets of words of the first and second sentence

respectively.
M3 Block distance [57]

simðs1; s2Þ ¼ 1 �

PjDj

i¼1

jfrðwi ;s1Þ� frðwi ;s2Þj

PjDj

i¼1

frðwi ;s1þs2Þ

, as detailed in equation Eq 2.

M4 LiBlock (this work) LiBlock method (see Eq (1) annotated with CUI concepts and using cTAKES combined
with the Block Distance [57] method using its best pre-processing configuration.

M5 Levenshtein distance
[75]

Measures the minimal cost number of insertions, deletions and replacements needed
for transforming the first into the second sentence. Insert, delete and substitution cost
set to 1.

M6 Overlap coefficient
[76]

simða; bÞ ¼ ja\bj
jMinðjaj;jbjÞj, being a and b sets of words of the first and second sentence

respectively.

https://doi.org/10.1371/journal.pone.0276539.t002
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Table 3. Detailed setup for the ontology-based sentence similarity measures evaluated in this work. The evaluation
of the methods using Rada [69], coswJ&C [46], and Cai [68] word similarity measures use a reformulation of the origi-
nal path-based measures based on the new Ancestors-based Shortest-Path Length (AncSPL) algorithm [42].

ID Sentence similarity method Detailed setup of each method
M7 WBSM-Rada [30, 42, 69] WBSM [30] combined with Rada [69] measure using the AncSPL

algorithm [42]
M8 WBSM-J&C [30, 67, 70] WBSM [30] combined with J&C [70]measure and Sanchez et al. [67] IC

model
M9 WBSM-cosJ&C [30, 42, 46] (this

work)
WBSM [30] with cosJ&C [46] measure and Sanchez et al. [67] IC model
using the AncSPL algorithm [42]

M10 WBSM-coswJ&C [30, 42, 46, 67]
(this work)

WBSM [30] with coswJ&C [46] measure and Sanchez et al. [67] IC model
using the AncSPL algorithm [42]

M11 WBSM-Cai [30, 42, 68] WBSM [30] combined with Cai et al. [68] measure and Cai et al. [68] IC
model using the AncSPL algorithm [42]

M12 UBSM-Rada [30, 42, 69] UBSM [30] with Rada et al. [69] measure using the AncSPL algorithm [42]
M13 UBSM-J&C [30, 67, 70] UBSM [30] combined with J&C [70] measure and Sanchez et al. [67] IC

model
M14 UBSM-cosJ&C [30, 47, 67] (this

work)
UBSM [30] with cosJ&C [46] measure and Sanchez et al. [67] IC model
using the AncSPL algorithm [42]

M15 UBSM-coswJ&C [30, 42, 46, 67]
(this work)

UBSM [30] with coswJ&C [46] measure and Sanchez et al. [67] IC model
using the AncSPL algorithm [42]

M16 UBSM-Cai [30, 42, 68] UBSM [30] combined with Cai et al. [68] measure and Cai et al. [68] IC
model using the AncSPL algorithm [42]

M17 COM [30, 69] λ �WBSM-Rada + (1 − λ) � UBSM-Rada with λ = 0.5

https://doi.org/10.1371/journal.pone.0276539.t003

Table 4. Detailed setup for the sentence similarity methods based on pre-trained character, word (WE) and sen-
tence (SE) embedding models evaluated herein.

ID Sentence similarity method Detailed setup of each method
M18 Flair [77] Contextual string embeddings trained on PubMed
M19 Pyysalo et al. [78] Skip-gram trained on PubMed + PMC
M20 BioConceptVec [79] Skip-gram WE model trained on PubMed using word2vec program
M21 BioConceptVec [79] CBOW WE model trained on PubMed using word2vec program
M22 Newman-Griffis et al. [80] Skip-gram WE model trained on PubMed using word2vec program
M23 Newman-Griffis et al. [80] CBOW WE model trained on PubMed using word2vec program
M24 Newman-Griffis et al. [80] GloVe WE model trained on PubMed
M25 BioConceptVecGloVe [79] GloVe We model trained on PubMed
M26 BioWordVecint [81] FastText [58] WE model trained on PubMed + MeSH
M27 BioWordVecext [81] FastText [58] trained on PubMed + MeSH
M28 BioNLP2016win2 [82] FastText [58] WE model based on skip-gram and trained on PubMed with

training setup detailed in [82]
M29 BioNLP2016win30 [82] FastText [58] WE model based on skip-gram and trained on PubMed with

training setup detailed in [82]
M30 BioConceptVecfastText [79] FastText [58] WE model trained on PubMed
M31 Universal Sentence Encoder

(USE) [83]
USE SE pre-trained model of Cer et al. [83]

M32 BioSentVec [33] sent2vec [84] SE model trained on PubMed + MIMIC-III
M33 FastText-Skipgram-BioC (this

work)
FastText [58] WE model based on Skip-gram and trained on PMC-BioC
corpus (05,09,2019) with the following setup: vector dim. = 200, learning
rate = 0.05, sampling thres. = 1e-4, and negative examples = 10

https://doi.org/10.1371/journal.pone.0276539.t004
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Pre-processing methods evaluated in this study
The pre-processing stage aims to ensure a fair comparison of the methods that are evaluated in
a single end-to-end pipeline. To achieve this goal, the pre-processing stage normalizes and
decomposes the sentences into a series of components that evaluate the same sequence of
words applied to all the methods simultaneously. The selection criteria of the pre-processing
components have been conditioned by the following constraints: (a) the pre-processing meth-
ods and tools used by state-of-the-art methods; and (b) the availability of resources and soft-
ware tools. Fig 2 details all the possible combinations of pre-processing configurations that are

Table 5. Detailed setup for the sentence similarity methods based on pre-trained language models evaluated in this work.

ID Sentence similarity method Detailed setup of each method
M34 BioBERT Base 1.0 [85] (+ PubMed) BERT [86] trained on English Wikipedia + BooksCorpus + PubMed abstracts
M35 BioBERT Base 1.0 [85] (+ PMC) BERT [86] trained on English Wikipedia + BooksCorpus + PMC full-text articles
M36 BioBERT Base 1.0 [85] (+ PubMed + PMC) BERT [86] trained on English Wikipedia + BooksCorpus + PubMed abstracts + PMC full-text articles
M37 BioBERT Base 1.1 [85] (+ PubMed) BERT [86] trained on English Wikipedia + BooksCorpus + PubMed abstracts
M38 BioBERT Large 1.1 [85] (+ PubMed) BERT [86] trained on English Wikipedia + BooksCorpus + PubMed abstracts
M39 NCBI-BlueBERT Base [32] PubMed BERT [86] trained on PubMed abstracts
M40 NCBI-BlueBERT Large [32] PubMed BERT [86] trained on PubMed abstracts
M41 NCBI-BlueBERT Base [32] PubMed + MIMIC-III BERT [86] trained on PubMed abstracts + MIMIC-III
M42 NCBI-BlueBERT Large [32] PubMed + MIMIC-III BERT [86] trained on PubMed abstracts + MIMIC-III
M43 SciBERT [87] BERT [86] trained on PubMed abstracts
M44 ClinicalBERT [88] BERT [86] trained on PubMed abstracts
M45 PubMedBERT [89] (abstracts) BERT [86] trained on PubMed abstracts
M46 PubMedBERT [89] (abstracts + full text) BERT [86] trained on PubMed abstracts + full text
M47 ouBioBERT-Base [90] (Uncased) BERT [86] trained on PubMed abstracts
M48 BioClinicalBERT [29] BERT [86] trained on MIMIC-III
M49 BioDischargesummaryBERT [29] BERT [86] trained on MIMIC-III summaries
M50 DischargesummaryBERT [29] BERT [86] trained on MIMIC-III summaries

https://doi.org/10.1371/journal.pone.0276539.t005

Fig 2. Detail of the pre-processing configurations that are evaluated in this work. (�) WordPieceTokenizer [91] is
used only for BERT-based methods [30, 31, 34, 62, 91–94, 99].

https://doi.org/10.1371/journal.pone.0276539.g002
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evaluated in this work. String, word and sentence embedding, and ontology-based methods,
are evaluated using all the available configurations except the WordPieceTokenizer [91],
which is specific to BERT-based methods. Thus, BERT-based methods are evaluated using dif-
ferent char filtering, lower casing normalization, and stop word removal configurations. We
use the Pearson and Spearman correlation metrics together with their harmonic score values
to determine the impact of the different pre-processing configurations on the performance of
the methods evaluated herein. However, we set the best overall performing pre-processing
configuration using the harmonic average scores, as well as answering the remaining research
questions.

Most methods receive as input the sequences of words making up the sentences to be com-
pared. The process of splitting sentences into words can be carried out by tokenizers, such as
the well-known general domain Stanford CoreNLP tokenizer [92], which is used by Blagec
et al. [31], or the biomedical domain BioCNLPTokenizer [93]. On the other hand, the use of
lexicons instead of tokenizers for sentence splitting would be inefficient because of the vast
general and biomedical vocabulary. Besides, it would not be possible to provide a fair com-
parison of the methods because the pre-trained language models have no identical
vocabularies.

The tokenized words that constitute the sentence, named tokens, are usually pre-processed
by removing special characters and lower-casing, and removing the stop words. To analyze all
the possible combinations of token pre-processing configurations from the literature, we repli-
cate for each method those pre-processing configurations used by other authors, such as Bla-
gec et al. [31] and Sogancioglu et al. [30], and we also evaluate all the pre-processing
configurations that have not been evaluated yet. We also study the impact of the pre-process-
ing configurations by not removing special characters and stop words from the tokens, nor
normalizing them using lower-casing.

Ontology-based sentence similarity methods estimate the similarity of a sentence by
exploiting the ‘is-a’ relationships between the concepts in an ontology. Therefore, the evalua-
tion of any ontology-based method receives a set of concept-annotated pairs of sentences. The
aim of the biomedical NER tools is to recognize automatically biomedical entities in pieces of
raw text, such as diseases or drugs. We evaluate the impact of the three more broadly-used bio-
medical NER tools on the performance of the sentence similarity methods, as follows: (a)
MetaMap [34], (b) cTAKES [62], and (c) MetaMap Lite [94]. MetaMap tool [34] is used by
UBSM and COM methods [30] for recognizing Unified Medical Language System (UMLS)
[95] concepts in the sentences, which is the standard compendium of biomedical vocabularies.
Likewise, we use the default configuration of MetaMap restricted to the UMLS sources of
SNOMED-CT and MeSH implemented by HESML V1R5 [42, 96], which is defined by the fol-
lowing features: (i) the use of all available semantic types; (ii) the MedPost Part-of-speech tag-
ger [97]; and (iii) the MetaMap Word-Sense Disambiguation (WSD) module. We also
evaluate cTAKES [63] because it has shown to be a robust and reliable tool to recognize bio-
medical entities [98]. Given the high computational cost of MetaMap in evaluating large text
corpora, Demner-Fushman et al. [94] introduced a lighter MetaMap version, called Metamap
Lite, which provides a real-time implementation of the basic MetaMap annotation capabilities
without a large degradation of its performance.

Due to the large number of possible combinations of each pre-processing dimension, such
as Named Entity Recognizers, tokenizers or char filtering methods, we have evaluated the pre-
processing combinations of each dimension by defining a fixed pre-processing configuration
for the rest of the dimensions, except for the string-based methods, whose performance is high
enough to not cause a significant variation in the running time of the experiments.
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Detailed workflow of our experiments
Fig 3 shows the workflow for running the experiments implemented in this work. Given an
input dataset, such as BIOSSES [30], MedSTS [52], or CTR [53], the first step is to pre-process
all the sentences, as shown in Fig 4. For each sentence pair (s1, s2) in the dataset, the pre-pro-
cessing stage is divided into four stages as follows: (1.a) named entity recognition of UMLS
[95] concepts, using different state-of-the-art NER tools, such as MetaMap [34] or cTAKES
[62]; (1.b) tokenization of the sentences, using well-known tokenizers, such as the Stanford
CoreNLP tokenizer [92], BioCNLPTokenizer [93], or WordPieceTokenizer [91] for BERT-
based methods; (1.c) lower-case normalization; (1.d) character filtering, which allows the
removal of punctuation marks or special characters; and finally, (1.e) the removal of stop-
words, following different approximations evaluated by other authors like Blagec et al. [31] or
Sogancioglu et al. [30]. Once each dataset is pre-processed in step 1 detailed in Fig 3), the aim
of step 2 is to calculate the similarity score between each pair of sentences in the dataset to pro-
duce a raw output file containing all raw similarity scores, one score per sentence pair. Finally,
a R-language script is used in step 3 to process the raw similarity files and produce the final
human-readable tables reporting the Pearson and Spearman correlation values shown in
Table 8, as well as the statistical significance of the results and any other supplementary data

Fig 3. Detailed workflow implemented by our experiments for pre-processing the input sentences, calculating the
raw similarity scores, and post-processing the results obtained in the evaluation of the biomedical datasets. This
workflow generates a collection of raw and processed data files.

https://doi.org/10.1371/journal.pone.0276539.g003

Fig 4. Detailed sentence pre-processing workflow that are implemented in our experiments. The pre-processing
stage takes an input sentence and produces a pre-processed sentence as output. (�) The named entity recognizer are
only evaluated in ontology-based methods.

https://doi.org/10.1371/journal.pone.0276539.g004
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table required by our study on the impact of the pre-processing and NER tools reported in
appendices A and B respectively.

Finally, we also evaluate all the pre-processing combinations for each family of methods to
study the impact of the pre-processing methods on the performance of the sentence similarity
methods, with the only exception of the BERT-based methods. The pre-processing configura-
tions of the BERT-based methods are only evaluated in combination with the WordPiece
Tokenizer [91] because it is required by the current BERT implementations.

Evaluation metrics
The evaluation metrics used to compare the performance of the methods analyzed are the fol-
lowing: (1) the Pearson correlation, denoted by r in Eq (6); (2) the Spearman rank correlation,
denoted by ρ in equation (Eq (7)); (3) and the harmonic score, denoted by h in equation (Eq
(8)). The Pearson correlation evaluates the linear correlation between two random samples,
whilst the Spearman rank correlation is rank-invariant and evaluates the monotonic relation-
ship between two random samples, and the harmonic score allows comparing sentence simi-
larity methods by using a single weighted score based on their performance in Pearson and
Spearman correlation.

r ¼

Pn
i¼1
ðXi �

�XÞðYi �
�Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðXi �

�XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1
ðYi �

�Y Þ2
q ð6Þ

r ¼ 1 �
6
Pn

i¼1
d2
i

nðn2 � 1Þ
; di ¼ xi � yið Þ ð7Þ

h ¼
2rr
r þ r

ð8Þ

Statistical significance of the results
We use the well-known t-Student test to carry-out a statistical significance analysis of the
results of the evaluation of the methods in the tree biomedical datasets shown in Table 1. In
order to compare the overall performance of the semantic measures that is evaluated in our
experiments, we use the harmonic score average in all datasets. The statistical significance of
the results is evaluated using the p-values resulting from the t-student test for the mean differ-
ence between the harmonic score values reported by each pair of semantic measures in all
datasets. The p-values are computed using a one-sided t-student distribution on two paired
random sample vectors made up of the harmonic (h) score values obtained in the evaluation of
the three aforementioned datasets. Our null hypothesis, denoted byH0, is that the difference in
the average performance between each pair of compared sentence similarity methods is 0,
whilst the alternative hypothesis, denoted byH1, is that their average performance is different.
For a 5% level of significance, it means that if the p-value is greater than or equal to 0.05, we
must accept the null hypothesis. Otherwise, we can reject H0 with an error probability of less
than the p-value. In this latter case, we say that a first sentence similarity method obtains a sta-
tistically significantly higher value than the second one or that the former one significantly
outperforms the second one.

Uniform size datasets for our statistical significance analysis. The scarcity of datasets for
this problem and the notable size difference among datasets varying from 100 to 1,068 sen-
tence pairs makes it impossible to study the statistical significance of the results with an
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adequate sample size and to carry out a fair and unbiased comparison of the results. It is a
known fact [48] that the statistical distribution of the Pearson and Spearman correlation values
reported by any semantic similarity measure can significantly vary regarding the dataset size,
which means that the statistical distribution of the harmonic score obtained for small subsets
of a large dataset as MedSTS is not the same as that obtained for the whole dataset, as shown in
Fig 5a. Fig 5a shows the histogram plots for the harmonic score obtained by the Li-Block mea-
sure [M4] in evaluating the sentence similarity of 10,000 different equal-size subsets of sen-
tence pairs extracted from the MedSTS dataset for four different subset sizes: 100, 300, 600,
and 900 sentence pairs. Fig 5a shows that the harmonic score follows a different normal distri-
bution for each subset size, whose normality is subsequently confirmed by the Q-Q plot shown
in Fig 5b and the Shilford-Wilk (p-value = 0.123) and Chi-square (p-value = 0.317) tests for
the sample of harmonic score values for subsets with size 100. Thus, the correlation values
derived from MedSTS (1,068 pairs) could bias our results and violate the underlying hypothe-
sis of the t-Student test that requires that the data has the same normal distribution. This
potential risk of degradation of our significance analysis increases by the fact that we only have
3 datasets of different sizes (100; 1,068; 170). For this reason, we have divided the MedSTS
dataset into 10 parts, considered as independent datasets, to perform the study of the statistical
significance of the results. Thus, we have artificially obtained 12 datasets of 100 to 200 pairs of
sentences to build the vectors of harmonic score values used in the computation of the p-val-
ues. This set of datasets allows us to obtain the p-values to compare the statistical significance
between the different measures, but does not affect the processed results from Table 8. All the
necessary resources for obtaining both Table 8 and the table containing all the p-values
reported in S1 Appendix are publicly available in the reproducibility dataset and the compan-
ion Lab Protocol article currently in preparation, as detailed in Table 6.

Bonferroni correction for multiple hypothesis testing.Our discussion introduces some
conclusions derived from the evaluation of multiple pairwise hypothesis tests to elucidate the
statistical significance of the outperformance of one baseline similarity measure among a fam-
ily of methods. In these latter cases, we define a set of null hypotheses {H1, . . .,Hm} setting that

Fig 5. Figure (a) below shows the histogram plots for the harmonic score obtained by the Li-Block measure [M4] in
evaluating the sentence similarity of 10,000 different equal-size subsets of sentence pairs extracted from the MedSTS
dataset. Each histogram plot represents the frequency distribution of 10,000 samples of the harmonic score with
subsets of sentence pairs with sizes: 100, 300, 600, and 900. Figure (b) shows the Q-Q plot normality test for the
harmonic score obtained for a random subset with size 100, along with the p-values reported by the Shapiro-Wilk and
Chi-square normality tests.

https://doi.org/10.1371/journal.pone.0276539.g005
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the pairwise mean difference between the harmonic score obtained by one baseline measure
and the remaining methods in the same family is 0. To reduce the family-wise type I error
(false positives) derived from our multiple comparisons [100], we define a Bonferroni correc-
tion to evaluate the statistical significance of multiple hypothesis tests involved in those conclu-
sions in which one baseline sentence similarity measure is compared with a family of methods.
For each single conclusion comparing one baseline measure with other methods, we define a
corrected null-hypothesis rejection threshold αc defined as αc = α/m, where α is equal to 0.05
for a 5% level of significance and m is the number of pairwise comparisons (uncorrected p-val-
ues). Thus, the null-hypothesis is only rejected if the p-values are lower than αc when multiple
pairwise hypotheses are tested.

Statistical performance analysis of the best methods
In order to answer the RQ5 research question, we study how well the sentence similarity meth-
ods estimate the degree of semantic similarity between two sentences by analyzing the devia-
tion of their estimated values with respect to the human similarity scores. We want to analyze
why the methods are doing well or badly on specific sentence pairs to provide an explanation
for this behaviour, as well as identifying the main drawbacks and limitations of the current
state-of-the-art methods. To carry out this performance analysis, we analyze the statistics of
the similarity error function Esim of the methods defined in Eq 9. We only use some sentences
extracted from the BIOSSES dataset for this analysis because this dataset has no licensing
restrictions on its use, which allows us to reproduce their sentences here, unlike MedSTS. We
could have also used CTR because it has no licensing restrictions; however, CTR has not been
previously used in this sentence similarity task.

Esim : LS � LS ! ½0; 1� � R

Esimðs1; s2Þ ¼ simðs1; s2Þ � humanSimðs1; s2Þ
ð9Þ

Our methodology to conduct the performance analysis is detailed below:

1. Selection of the best-performing method from each family of methods.

Table 6. Supplementary material and reproducibility resources of this work.

Material Description
Reproducibility dataset [43] All raw input and output data files, pre-trained model files, and a long-

term reproducibility image based on Docker, which is publicly available
on the Spanish Dataverse Network (https://doi.org/10.21950/EPNXTR)

Reproducibility protocol [44] Raw step-by-step instructions to download the required resources and
reproduce the experiments evaluated in this work

Lab Protocol article [44] (under
preparation)

Data and methods article introducing a very detailed description of our
experiments, datasets, and reproducibility protocol to allow the
independent replication of our experiments and results

HESML-STS software library (integrated
into HESML V2R1)

Release of the new HESML-STS library. This library is based on the
previous HESML V1R5 version [41, 42] published in Github (https://
github.com/jjlastra/HESML) and the Spanish Dataverse Network [43]
under a CC By-NC-SA-4.0 license.

HESML V2R1 software release [105] Release of the new HESML V2R1 version. This new release is based on
the previous HESML V1R5 version [42], including the new HESML-STS
software package that has been developed for this study, after managing
all the licensing restrictions of the NER tools.

HESML-STS software paper [104] (under
preparation)

Software article introducing our sentence similarity library, called
HESML-STS, together with some benchmarks under preparation.

https://doi.org/10.1371/journal.pone.0276539.t006
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2. Estimation of the Probability Density Function (PDF) of the Esim function for the evaluation
of the selected best-performing methods in each dataset by calling the “density” function
provided by the R statistical package.

3. Selection of the sentences based on their similarity error in the BIOSSES dataset:

3.1 the sentences with the lowest and highest absolute similarity error |Esim| for each
method are extracted.

3.2 each sentence selected in the step above is pre-processed using the best pre-processing
configuration for each method.

3.3 the resulting pre-processed sentences and the statistical information of the similarity
scores are analyzed in the Discussion section.

Software implementation
We have developed a new sentence measures library for the biomedical domain called
HESML-STS, which is based on HESML V1R5 [41, 42], as detailed in Table 6. All our experi-
ments are generated by running theHESMLSTSclient and HESMLSTSImpactpre-processingcli-
ent programs, which generates a raw output file in comma-separated file format (�.csv) for
each dataset detailed in Table 1. The raw output files contain the raw similarity values returned
by each sentence similarity method in the evaluation of the degree of similarity between sen-
tences. The final results for the Pearson and Spearman correlation, and the harmonic values
detailed in Table 8 are automatically generated by running an R-language script file on the col-
lection of raw similarity files, which also generates all the tables reported in appendices A and
B provided as supplementary material. All tables are written both in LaTeX and comma-sepa-
rated file format (�.csv) formats. For a more detailed description of the protocol for running
our experiments, we refer the reader to the protocol [44] detailed in S3 Appendix.

We implemented a parser for loading pre-trained embedding models based on FastText
[58] and other word embedding models [78–82], which are efficiently evaluated as sentence
similarity measures in HESML by implementing the averaging Simple Word EMbedding
(SWEM) approach introduced by Shen et al. [101]. However, the software replication required
to evaluate sentence embedding and BERT-based language models is extremely complex and
out of the scope of this work. For this reason, these models are evaluated using the original
software artifacts used to generate the aforementioned pre-trained models. Thus, we imple-
mented a collection of Python wrappers for evaluating the available models by using the pro-
vided software artifacts as follows: (1) Sent2vec-based models [33] are evaluated using the
Sent2vec library [84]; (2) Flair models [77] are evaluated using the flairNLP framework [77];
and USE models [83] are evaluated using the open source platform TensorFlow [102]. All
BERT-based pre-trained models are evaluated using the open source bert-as-a-service library
[103].

Reproducing our benchmarks
For the sake of reproducibility, we introduce a detailed reproducibility protocol on protocols.
io [44] that is based on a reproducibility dataset [43] containing all the software and data nec-
essary to allow the exact replication of all our experiments and results. Our reproducibility
protocol is mainly based on a Docker-based image that includes a pre-installation of all the
necessary software and the Java source code and binary files of our benchmark program,
which is provided as supplementary material in our reproducibility dataset [43] and
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DockerHub (https://hub.docker.com/repository/docker/alicialara/hesml_v2r1). Our source
code files are tagged on Github with a permanent tag named “Release_HESML_V2R1”
(https://github.com/jjlastra/HESML/releases/tag/Release_HESML_V2R1).

In addition, we plan to submit a Lab Protocol article under preparation [44] (https://
collections.plos.org/collection/lab-protocols), which will provide a detailed description of the
publicly available reproducibility dataset [43] and a very detailed reproducibility protocol [44]
to allow the exact replication of all our methods, experiments, and results. We also plan to sub-
mit another article [104], currently in preparation, to introduce the new HESML-STS software
library integrated into the latest HESML V2R1 version [105], together with a set of reproduc-
ible benchmarks on semantic measures libraries for biomedical sentence similarity. However,
our reproducibility dataset allows the full and exact replication of all our experiments by com-
pleting the licensing requirements of the UMLS databases and the aforementioned NER tools
for the National Library of Medicine (NLM) of the United States (https://www.nlm.nih.gov/
databases/umls.html#license_request).

Table 6 details all the reproducibility resources provided as supplementary material with
this work. Our benchmarks are implemented using Java 8, Python 3 and R programming lan-
guages, and thus, they can be reproduced in any Java-compliant or Docker-compliant plat-
forms, such as Windows, MacOS, or any Linux-based system.

Results obtained
Table 7 shows the selected pre-processing configuration of each method for obtaining their
best-performing results, whilst Table 8 shows the results obtained in the evaluation of all meth-
ods in the three biomedical datasets evaluated herein by using their best pre-processing config-
urations. Table 9 shows the comparison of results for the highest (best) and lowest (worst)
average harmonic score values for the best-performing method of each family shown in blue
in Table 8, which are defined by the method obtaining the highest average harmonic score.
Furthermore, Table 10 shows the results obtained in our study on the impact of NER tools on
the performance of the sentence similarity methods in the evaluation of the MedSTS dataset
[52]. Table 11 shows the harmonic and average harmonic scores obtained in the evaluation of
the three biomedical datasets, as well as the resulting p-values comparing the NER tools for
each ontology-based method. Table 12 shows the results obtained in the evaluation of the
LiBlock method in the three biomedical datasets by using its best pre-processing configuration,
and annotating the sentences with all the NER tools combinations. In addition, the aforemen-
tioned table details the resulting p-values comparing the best-performing LiBlock-NER combi-
nation with the other NER tools. Tables 13–16 show the raw input sentence pairs and their
corresponding pre-processed versions in which the best-performing methods obtain the low-
est and highest similarity error (Esim) in the BIOSSES dataset [30]. Table 17 details the statisti-
cal information for the best-performing methods of each family in the evaluation of the three
biomedical datasets evaluated in this study. Finally, Fig 6 shows the Probability Density Func-
tion (PDF) of the similarity error obtained by the best-performing methods of each family in
the evaluation of the BIOSSES, MedSTS, and CTR datasets respectively.

S1 Appendix shows the p-values resulting from comparing all the methods using their best
pre-processing configuration as detailed in Table 8, which allows us to study the statistical sig-
nificance of the results, as detailed in the Discussion section. In addition, appendix B shows
the experimental results regarding the impact of pre-processing configurations in all the meth-
ods evaluated here; the best configuration has been used to determine the final scores for each
method. Finally, S3 Appendix details the protocol for reproducing all the experiments evalu-
ated in this paper, and is also published on protocols.io [44].
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Table 7. Best-performing pre-processing configurations used to evaluate the methods compared in this work as reported in Table 8, derived from our cross-evalua-
tion of each method with the pre-processing configurations shown in Fig 2 (see S2 Appendix). (�) COM (M17) uses the best configuration of the WBSM-Rada (M7)
and UBSM-Rada (M12) methods for computing the similarity scores.

ID Sentence similarity method NER Tokenizer Lower-case Char filtering Stop words removal
M1 Qgram None WhiteSpace yes BIOSSES NLTK2018
M2 Jaccard None WhiteSpace yes BIOSSES NLTK2018
M3 Block distance None WhiteSpace yes BIOSSES NLTK2018
M4 LiBlock (this work) cTAKES CoreNLP yes Default NLTK2018
M5 Levenshtein distance None WhiteSpace no None BIOSSES
M6 Overlap coefficient None CoreNLP yes Default NLTK2018
M7 WBSM-Rada Exact matching CoreNLP yes BIOSSES NLTK2018
M8 WBSM-J&C Exact matching CoreNLP yes BIOSSES None
M9 WBSM-cosJ&C (this work) Exact matching CoreNLP yes BIOSSES None
M10 WBSM-coswJ&C (this work) Exact matching CoreNLP yes BIOSSES NLTK2018
M11 WBSM-Cai Exact matching CoreNLP yes BIOSSES None
M12 UBSM-Rada cTAKES CoreNLP yes BIOSSES NLTK2018
M13 UBSM-J&C MetamapLite CoreNLP yes BIOSSES NLTK2018
M14 UBSM-cosJ&C (this work) MetamapLite CoreNLP yes BIOSSES NLTK2018
M15 UBSM-coswJ&C (this work) cTAKES CoreNLP yes BIOSSES NLTK2018
M16 UBSM-Cai MetamapLite CoreNLP yes BIOSSES NLTK2018
M17 COM (�) - - - -
M18 Flair None WhiteSpace no BIOSSES None
M19 Pyysalo et al. None CoreNLP yes Default BIOSSES
M20 BioConceptVecword2vec_sg None CoreNLP yes Default BIOSSES
M21 BioConceptVecword2vec_cbow None CoreNLP yes Default BIOSSES
M22 Newman-Griffisword2vec_sgns None CoreNLP yes Default NLTK2018
M23 Newman-Griffisword2vec_cbow None CoreNLP yes Default NLTK2018
M24 Newman-Griffisglove None CoreNLP yes Default NLTK2018
M25 BioConceptVecglove None CoreNLP yes Default BIOSSES
M26 BioWordVecint None CoreNLP yes BIOSSES None
M27 BioWordVecext None CoreNLP yes BIOSSES None
M28 BioNLP2016win2 None CoreNLP no Default NLTK2018
M29 BioNLP2016win30 None CoreNLP no Default NLTK2018
M30 BioConceptVecfastText None CoreNLP yes Default BIOSSES
M31 USE None CoreNLP no Default None
M32 BioSentVec (PubMed+MIMIC-III) None CoreNLP yes BIOSSES BIOSSES
M33 FastText-SkGr-BioC (this work) None CoreNLP yes Default None
M34 BioBERT Base 1.0 (+ PubMed) None WordPiece yes BIOSSES None
M35 BioBERT Base 1.0 (+ PMC) None WordPiece yes BIOSSES None
M36 BioBERT Base 1.0 (PubMed+PMC) None WordPiece yes BIOSSES None
M37 BioBERT Base 1.1 (+ PubMed) None WordPiece no Blagec2019 NLTK2018
M38 BioBERT Large 1.1 (+ PubMed) None WordPiece no Blagec2019 NLTK2018
M39 NCBI-BlueBERT Base PubMed None WordPiece yes Blagec2019 None
M40 NCBI-BlueBERT Large PubMed None WordPiece yes BIOSSES None
M41 NCBI-BlueBERT Base PubMed + MIMIC-III None WordPiece yes BIOSSES BIOSSES
M42 NCBI-BlueBERT Large PubMed + MIMIC-III None WordPiece yes BIOSSES None
M43 SciBERT None WordPiece yes BIOSSES NLTK2018
M44 ClinicalBERT None WordPiece no Blagec2019 BIOSSES
M45 PubMedBERT (abstracts) None WordPiece yes Default NLTK2018
M46 PubMedBERT (abstracts+full text) None WordPiece yes Default NLTK2018
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Discussion
Comparison of string-based methods
LiBlock (M4) obtains the highest average harmonic score among the family of string-based meth-
ods and significantly outperforms all of them. This conclusion can be drawn by looking at the
average column in Table 8 for this group of methods and checking the p-values reported in
Table A.1 in S1 Appendix. Table A.1 in S1 Appendix shows that LiBlock obtains p-values
lower than αc = 0.05/5 (0,01) when it is compared with all the string-based methods, such as
Block Distance (p-value = 0.000), Jaccard (p-value = 0.000), QGram (p-value = 0.000), Overlap
Coefficient (p-value = 0.000), and Levenshtein (p-value = 0.000).

LiBlock (M4) obtains the highest Pearson correlation value in the BIOSSES and MedSTS
datasets among the family of string-based methods, whilst Block Distance (M3) obtains the high-
est Pearson correlation in the CTR dataset. This conclusion can be drawn by looking at the
results for the first group of methods detailed in Table 8.

LiBlock (M4) obtains the highest Spearman correlation value in all datasets among the family
of string-based methods. This conclusion can be drawn by looking at the results for the first
group of methods detailed in Table 8.

LiBlock (M4) obtains the highest harmonic score in all datasets among the family of string-
based methods. This conclusion can be drawn by looking at the results for the first group of
methods detailed in Table 8.

Comparison of Ontology-based methods
COM (M17) obtains the highest average harmonic score among the family of ontology-based
methods and significantly outperforms all of them, with the sole exception of WBSM-Rada (M7).
This conclusion can be drawn by looking at the average column in Table 8 for the second
group of methods and checking the p-values shown in Table A.1 in S1 Appendix. Table A.1 in
S1 Appendix shows that COM obtains a p-value lower than αc = 0.05/10 (0,005) when it is
compared with all ontology-based methods, with the only exception of WBSM-Rada (M7)
(p-value = 0.088).

COM (M17) obtains the highest Pearson correlation value in the BIOSSES and CTR datasets
among the family of ontology-based methods, whilst the WBSM-Rada (M7) methods obtain the
highest Pearson correlation value in the MedSTS dataset. This conclusion can be drawn by look-
ing at the second group of methods in 8.

COM (M17) obtains the highest Spearman correlation values in the BIOSSES dataset among
the family of ontology-based methods, whilst WBSM-Rada (M7) and UBSM-Rada (M12) do so
in the MedSTS and CTR datasets, respectively. This conclusion can be drawn by looking at the
second group of methods in 8.

COM (M17) obtains the highest harmonic score in the BIOSSES and CTR datasets among the
family of ontology-based methods, whilst WBSM-Rada (M7) does so in the MedSTS dataset.
This conclusion can be drawn by looking at the second group of methods detailed in Table 8.

Table 7. (Continued)

ID Sentence similarity method NER Tokenizer Lower-case Char filtering Stop words removal
M47 ouBioBERT-Base, Uncased None WordPiece yes Default None
M48 BioClinicalBERT None WordPiece yes Blagec2019 BIOSSES
M49 BioDischargesummaryBERT None WordPiece no Blagec2019 NLTK2018
M50 DischargesummaryBERT None WordPiece no Blagec2019 NLTK2018

https://doi.org/10.1371/journal.pone.0276539.t007
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Table 8. Pearson (r), Spearman (ρ), harmonic (h), and harmonic average (AVG) scores obtained by each sentence similarity method evaluated herein in the three
biomedical sentence similarity benchmarks arranged by families.All reported values were obtained using the best pre-processing configurations detailed in Table 7. The
results in bold show the best scores whilst results in blue show the best average harmonic score for each family.

ID Sentence similarity methods BIOSSES [30] MedSTSfull [52] CTR [53] AVG
r ρ h r ρ h r ρ h h

M1 Qgram 0.752 0.773 0.763 0.701 0.674 0.687 0.763 0.766 0.764 0.738
M2 Jaccard 0.782 0.815 0.798 0.706 0.680 0.693 0.759 0.797 0.777 0.756
M3 Block distance 0.798 0.818 0.808 0.731 0.683 0.706 0.797 0.801 0.799 0.771
M4 LiBlock (this work) 0.820 0.828 0.824 0.769 0.710 0.739 0.793 0.808 0.800 0:788
M5 Levenshtein distance 0.529 0.536 0.533 0.610 0.634 0.622 0.498 0.536 0.516 0.557
M6 Overlap coefficient 0.782 0.795 0.788 0.696 0.564 0.623 0.781 0.793 0.787 0.733
M7 WBSM-Rada 0.772 0.791 0.782 0.774 0.709 0.740 0.785 0.765 0.775 0.766
M8 WBSM-J&C 0.483 0.549 0.514 0.647 0.614 0.630 0.536 0.516 0.526 0.557
M9 WBSM-cosJ&C (this work) 0.483 0.549 0.514 0.647 0.614 0.630 0.536 0.516 0.526 0.557
M10 WBSM-coswJ&C (this work) 0.571 0.566 0.568 0.705 0.651 0.677 0.637 0.590 0.613 0.619
M11 WBSM-Cai 0.458 0.542 0.497 0.629 0.601 0.615 0.492 0.459 0.475 0.529
M12 UBSM-Rada 0.792 0.809 0.800 0.763 0.700 0.730 0.776 0.794 0.785 0.772
M13 UBSM-J&C 0.529 0.573 0.550 0.683 0.621 0.650 0.620 0.585 0.602 0.601
M14 UBSM-cosJ&C (this work) 0.615 0.648 0.631 0.699 0.638 0.667 0.709 0.646 0.676 0.658
M15 UBSM-coswJ&C (this work) 0.730 0.769 0.749 0.697 0.625 0.659 0.713 0.673 0.693 0.700
M16 UBSM-Cai 0.545 0.579 0.562 0.686 0.628 0.656 0.642 0.576 0.607 0.608
M17 COM 0.793 0.809 0.801 0.773 0.708 0.739 0.789 0.783 0.786 0:776

M18 Flair 0.628 0.625 0.626 -0.014 -0.035 -0.020 0.652 0.719 0.684 0.430
M19 Pyysalo et al. [78] 0.713 0.706 0.709 0.754 0.641 0.693 0.744 0.803 0.773 0.725
M20 BioConceptVecword2vec_sg 0.742 0.743 0.742 0.751 0.652 0.698 0.738 0.800 0.768 0.736
M21 BioConceptVecword2vec_cbow 0.670 0.655 0.662 0.746 0.650 0.695 0.659 0.714 0.685 0.681
M22 Newman-Griffisword2vec_sgns 0.771 0.763 0.767 0.764 0.641 0.697 0.799 0.835 0.817 0.760
M23 Newman-Griffisword2vec_cbow 0.675 0.686 0.681 0.746 0.647 0.693 0.697 0.768 0.731 0.701
M24 Newman-Griffisglove 0.671 0.678 0.674 0.740 0.643 0.688 0.732 0.729 0.731 0.698
M25 BioConceptVecglove 0.547 0.585 0.565 0.720 0.648 0.682 0.624 0.694 0.657 0.635
M26 BioWordVecint 0.831 0.806 0.818 0.766 0.686 0.724 0.757 0.735 0.746 0:763

M27 BioWordVecext 0.752 0.725 0.738 0.756 0.673 0.712 0.736 0.729 0.732 0.727
M28 BioNLP2016win2 0.697 0.693 0.695 0.699 0.594 0.642 0.691 0.759 0.724 0.687
M29 BioNLP2016win30 0.745 0.751 0.748 0.714 0.609 0.657 0.742 0.810 0.774 0.727
M30 BioConceptVecfastText 0.091 0.262 0.135 0.416 0.456 0.435 0.178 0.264 0.212 0.261
M31 USE 0.666 0.669 0.668 0.679 0.606 0.640 0.663 0.684 0.674 0.660
M32 BioSentVec 0.797 0.767 0.782 0.763 0.638 0.695 0.791 0.821 0.806 0.761
M33 FastText-SkGr-BioC (this work) 0.814 0.777 0.795 0.758 0.660 0.706 0.761 0.760 0.760 0.754
M34 BioBERT Base 1.0 (+ PubMed) 0.569 0.567 0.568 0.662 0.576 0.616 0.616 0.642 0.629 0.604
M35 BioBERT Base 1.0 (+ PMC) 0.664 0.663 0.664 0.674 0.581 0.624 0.601 0.647 0.623 0.637
M36 BioBERT Base 1.0(PubMed+ PMC) 0.616 0.609 0.612 0.647 0.561 0.601 0.638 0.663 0.650 0.621
M37 BioBERT Base 1.1 (+ PubMed) 0.668 0.647 0.657 0.712 0.616 0.661 0.643 0.663 0.653 0.657
M38 BioBERT Large 1.1 (+ PubMed) 0.557 0.546 0.551 0.695 0.622 0.657 0.579 0.650 0.612 0.607
M39 NCBI-BlueBERT Base PubMed 0.682 0.668 0.675 0.679 0.565 0.617 0.668 0.719 0.693 0.662
M40 NCBI-BlueBERT Large PubMed 0.688 0.712 0.700 0.636 0.588 0.611 0.609 0.674 0.640 0.650
M41 NCBI-BlueBERT Base PubMed + MIMIC-III 0.537 0.536 0.536 0.733 0.624 0.674 0.548 0.553 0.550 0.587
M42 NCBI-BlueBERT Large PubMed + MIMIC-III 0.560 0.578 0.569 0.675 0.628 0.651 0.487 0.504 0.496 0.572
M43 SciBERT 0.653 0.616 0.634 0.727 0.643 0.683 0.604 0.682 0.641 0.652
M44 ClinicalBERT 0.415 0.483 0.447 0.652 0.566 0.606 0.470 0.500 0.485 0.512
M45 PubMedBERT (abstracts) 0.502 0.524 0.513 0.626 0.531 0.575 0.479 0.645 0.550 0.546
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PLOS ONE A reproducible experimental survey on biomedical sentence similarity

PLOSONE | https://doi.org/10.1371/journal.pone.0276539 November 21, 2022 21 / 44



Table 8. (Continued)

ID Sentence similarity methods BIOSSES [30] MedSTSfull [52] CTR [53] AVG
r ρ h r ρ h r ρ h h

M46 PubMedBERT (abstracts+full text) 0.659 0.651 0.655 0.712 0.590 0.645 0.596 0.675 0.633 0.644
M47 ouBioBERT-Base, Uncased 0.687 0.729 0.707 0.707 0.583 0.639 0.670 0.694 0.682 0:676

M48 BioClinicalBERT 0.416 0.447 0.431 0.646 0.562 0.601 0.472 0.478 0.475 0.502
M49 BioDischargesummaryBERT 0.376 0.397 0.387 0.637 0.565 0.599 0.385 0.465 0.421 0.469
M50 DischargesummaryBERT 0.395 0.465 0.427 0.655 0.567 0.608 0.376 0.407 0.391 0.475

https://doi.org/10.1371/journal.pone.0276539.t008

Table 9. Comparison of results for the “best” and the “worst” pre-processing configurations for the best-performing methods of each family in Table 8. The last col-
umn shows the t-Student p-values comparing the best and worst configurations.

ID Methods Pre-processing configuration BIOSSES MedSTSfull CTR AVG p-val
r ρ h r ρ h r ρ h h

M4 LiBlock (worst) TOK-Whitespace
LC-No
SW-NLTK2018
CF-None

0.779 0.793 0.786 0.736 0.676 0.704 0.765 0.717 0.741 0.744

0.000
M4 LiBlock (best) TOK-CoreNLP

LC-Yes
SW-NLTK2018
CF-Default

0.820 0.828 0.824 0.769 0.710 0.739 0.793 0.808 0.800 0.788

M17 COM (worst) —WBSM-Rada
- UBSM-Rada
(worst):
TOK-Whitespace
LC-Yes
SW-None
CF-None

0.610 0.635 0.622 0.681 0.648 0.664 0.656 0.662 0.659 0.648

0.000
M17 COM

(best)
—WBSM-Rada
- UBSM-Rada
(best):
TOK-CoreNLP
LC-Yes
SW-NLTK2018
CF-BIOSSES

0.793 0.809 0.801 0.773 0.708 0.739 0.789 0.783 0.786 0.776

M26 BioWordVecint
(worst)

TOK-Whitespace
LC-No
SW-None
CF-None
Pooling-Sum

0.436 0.497 0.465 0.532 0.619 0.572 0.529 0.674 0.593 0.543

0.000
M26 BioWordVecint

(best)
TOK-CoreNLP
LC-Yes
SW-None
CF-BIOSSES
Pooling-Min

0.831 0.809 0.820 0.764 0.682 0.721 0.761 0.736 0.748 0.763

M47 OuBioBert
(worst)

TOK- WordPiece
LC-Yes
SW-BIOSSES
CF-Default

0.608 0.627 0.617 0.730 0.622 0.672 0.669 0.696 0.682 0.657

0.000
M47 OuBioBert

(best)
TOK-WordPiece
LC-Yes
SW-None
CF-Default

0.687 0.729 0.707 0.707 0.583 0.639 0.670 0.694 0.682 0.676

https://doi.org/10.1371/journal.pone.0276539.t009
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Table 10. Pearson (r), Spearman (ρ) and harmonic (h) values obtained in our experiments from the evaluation of ontology similarity methods detailed below in the
MedSTSfull [52] dataset for each NER tool.

ID Methods MetaMap MetaMap Lite cTAKES
r ρ h r ρ h r ρ h

M12 UBSM-Rada 0.711 0.653 0.681 0.753 0.689 0.720 0.764 0.7 0.73
M13 UBSM-J&C 0.576 0.547 0.561 0.683 0.621 0.65 0.634 0.549 0.588
M14 UBSM-cosJ&C 0.637 0.575 0.605 0.699 0.638 0.667 0.659 0.581 0.617
M15 UBSM-coswJ&C 0.675 0.608 0.64 0.722 0.659 0.689 0.697 0.625 0.659
M16 UBSM-Cai 0.606 0.555 0.58 0.686 0.628 0.656 0.635 0.552 0.591
M17 COM 0.758 0.692 0.724 0.770 0.706 0.737 0.773 0.708 0.739

https://doi.org/10.1371/journal.pone.0276539.t010

Table 11. Harmonic score obtained by each combination of a sentence similarity method with a NER tool in the evaluation of the three sentence similarity datasets.
The p-values shown in this table are obtained by using the method for building uniform size datasets detailed above. The last column shows the p-values corresponding to
the t-Student test comparing the performance of each combination with the best pair in each group.

ID Methods NER tool BIOSSES MedSTS CTR Avg p-value
h h h h

M12 UBSM-Rada cTAKES 0.800 0.730 0.785 0.772 —
MetamapLite 0.744 0.72 0.785 0.751 0.011
Metamap 0.742 0.680 0.723 0.715 0.000

M13 UBSM-J&C MetamapLite 0.55 0.65 0.602 0.601 —
cTAKES 0.595 0.588 0.552 0.578 0.000
Metamap 0.316 0.561 0.234 0.37 0.000

M14 UBSM-cosJ&C MetamapLite 0.631 0.667 0.674 0.657 —
cTAKES 0.681 0.617 0.626 0.641 0.002
Metamap 0.537 0.605 0.434 0.525 0.000

M15 UBSM-coswJ&C cTAKES 0.749 0.659 0.693 0.700 —
MetamapLite 0.678 0.689 0.732 0.700 0.018
Metamap 0.656 0.64 0.551 0.616 0.005

M16 UBSM-Cai MetamapLite 0.562 0.656 0.607 0.608 —
cTAKES 0.616 0.591 0.571 0.593 0.001
Metamap 0.419 0.58 0.318 0.439 0.000

M17 COM cTAKES 0.801 0.739 0.786 0.776 —
MetamapLite 0.788 0.737 0.789 0.772 0.052
Metamap 0.792 0.724 0.768 0.761 0.004

https://doi.org/10.1371/journal.pone.0276539.t011

Table 12. Pearson (r) and Spearman (ρ) correlation values, harmonic score (h), and harmonic average (AVG) score obtained by the LiBlock method in combination
with each NER tool using the best pre-processing configuration detailed in Table 7. In addition, the last column (p-val) shows the p-values for the comparison of the
LiBlock method with cTAKES and the remaining NER combinations.

ID Sentence similarity methods BIOSSES [30] MedSTSfull [52] CTR [53] AVG p-val
r ρ h r ρ h r ρ h h

M4 LiBlock-cTAKES 0.820 0.828 0.824 0.769 0.710 0.739 0.793 0.808 0.800 0.788 -
M4 LiBlock-noNER 0.814 0.823 0.819 0.770 0.709 0.738 0.795 0.805 0.800 0.786 0.14
M4 LiBlock-MetamapLite 0.799 0.819 0.809 0.763 0.705 0.733 0.794 0.808 0.801 0.781 0.015
M4 LiBlock-Metamap 0.807 0.826 0.816 0.753 0.690 0.720 0.792 0.807 0.799 0.779 0.003

https://doi.org/10.1371/journal.pone.0276539.t012
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Table 13. Raw and pre-processed sentence pairs obtaining the lowest and highest similarity error Esim together with their corresponding Normalized human similar-
ity score (Human) and normalized similarity value (Method) estimated by the LiBlock (M4) method for the raw and pre-processed sentence pairs with the lowest
(L) and highest (H) similarity error Esim.

Esim Input sentence Pre-processed sentence analyzed by the method Human Method
L s1: “Centrosomes increase both in size and in microtubule-nucleating

capacity just before mitotic entry.”
s1: “C0242608 increase size C0026046 nucleating capacity mitotic
entry”

0.0 0.0

s2: “Functional studies showed that, when introduced into cell lines,
miR-146a was found to promote cell proliferation in cervical cancer
cells, which suggests that miR-146a works as an oncogenic miRNA in
these cancers.”

s2: “functional studies showed introduced C0007634 lines mir 146a
found promote C0007634 C0334094 C4048328 C0007634 suggests
mir 146a works oncogenic mirna C0006826”

H s1: “Consequently miRNAs have been demonstrated to act either as
oncogenes (e.g., miR-155, miR-17–5p and miR-21) or tumor
suppressors (e.g., miR-34, miR-15a, miR-16–1 and let-7)”

s1: “consequently mirnas demonstrated C0427611 either oncogenes e
g mir 155 mir 17 5p mir 21 C0027651 suppressors e g mir 34 mir 15a
mir 16 1 let 7”

0.7 0.0

s2: “Given the extensive involvement of miRNA in physiology,
dysregulation of miRNA expression can be associated with cancer
pathobiology including oncogenesis], proliferation, epithelial-
mesenchymal transition, metastasis, aberrations in metabolism, and
angiogenesis, among others”

s2: “given extensive involvement mirna physiology dysregulation
mirna C0185117 associated C0006826 pathobiology including
oncogenesis C0334094 epithelial mesenchymal transition metastasis
aberrations C0025519 angiogenesis among others”

https://doi.org/10.1371/journal.pone.0276539.t013

Table 14. Raw and pre-processed sentence pairs obtaining the lowest and highest similarity error Esim together with their corresponding Normalized human similar-
ity score (Human) and normalized similarity value (Method) estimated by the COM (M17) method for the raw and pre-processed sentence pairs with the lowest (L)
and highest (H) similarity error Esim.We show the raw and pre-processed sentence pairs evaluated by the WBSM and UBSM similarity methods that make up the COM
method. The UBSM method use the cTAKES NER tool.

Esim Input sentence Pre-processed sentence analyzed by the method Human Method
Low s1: “The in vivo data is still preliminary and other potential roadblocks

such as drug resistance have not been examined.”
s1, WBSM-Rada: “vivo data still preliminary potential roadblocks
drug resistance examined”
s1, UBSM-Rada: “vivo data still preliminary potential roadblocks
C0013227 resistance examined”

0.0 0.0

s2: “The GEM model used in this study retains wild-type Tp53,
suggesting that the tumors successfully treated with bortezomib and
fasudil might not be as aggressive as those in most NSCLC patients”

s2, WBSM-Rada: “gem model used study retains wild type tp53
suggesting tumors successfully treated bortezomib fasudil might
aggressive nsclc patients”
s2, UBSM-Rada: “gem model used study retains wild type tp53
suggesting C0027651 successfully treated C1176309 fasudil might
aggressive C0007131 patients”

High s1: “The oncogenic activity of mutant Kras appears dependent on
functional Craf, but not on Braf”

s1, WBSM-Rada: “oncogenic activity mutant kras appears
dependent functional craf braf”
s1, UBSM-Rada: “oncogenic C0026606 mutant kras appears
dependent functional craf braf”

0.75 0.0

s2: “Notably, c-Raf has recently been found essential for development
of K-Ras-driven NSCLCs”

s2, WBSM-Rada: “notably c raf recently found essential
development k ras driven nsclcs”
s2, UBSM-Rada: “notably c raf recently found essential
development k C0525678 driven nsclcs”

https://doi.org/10.1371/journal.pone.0276539.t014

Table 15. Raw and pre-processed sentence pairs obtaining the lowest and highest similarity error Esim together with their corresponding Normalized human similar-
ity score (Human) and normalized similarity value (Method) estimated by the BioWordVecint (M26) method for the raw and pre-processed sentence pairs with the
lowest (L) and highest (H) similarity error Esim.

Esim Input sentence Pre-processed sentence analyzed by the method Human Method
Low s1: “The up-regulation of miR-146a was also detected in cervical

cancer tissues.”
s1: “the up regulation of mir 146a was also detected in cervical cancer
tissues”

1.0 0.986

s2: “The expression of miR-146a has been found to be up-regulated
in cervical cancer.”

s2: “the expression of mir 146a has been found to be up regulated in
cervical cancer”

High s1: “This oxidative branch activity is elevated in comparison to many
cancer cell lines, where the oxidative branch is typically reduced and
accounts for<20% of the carbon flow through PPP.”

s1: “this oxidative branch activity is elevated in comparison to many
cancer cell lines where the oxidative branch is typically reduced and
accounts for< 20% of the carbon flow through ppp”

0.0 0.912

s2: “The Downward laboratory went all the way from identifying
GATA2 as a novel synthetic lethal gene to validating it using Kras-
driven GEM models.”

s2: “the downward laboratory went all the way from identifying gata2
as a novel synthetic lethal gene to validating it using kras driven gem
models”

https://doi.org/10.1371/journal.pone.0276539.t015
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Comparison of embedding methods
BioWordVecint (M26) obtains the highest average harmonic score in all datasets among the fam-
ily of embedding methods detailed in Table 4, but does not significantly outperforms all of them.
This conclusion can be drawn by looking at the third group of methods in Table 8 and check-
ing the p-values reported in Table A.1 in S1 Appendix. Table A.1 in S1 Appendix shows that
the BioWordVecint (M26) obtains p-values higher than αc = 0.05/15 (0,003) when it is com-
pared with the FastText-SkGr-BioC (M33) and Flair (M18) embedding methods.

BioWordVecint (M26) obtains the highest Pearson correlation value in the
BIOSSES and MedSTS datasets among the family of embedding methods, whilst the

Table 16. Raw and pre-processed sentence pairs obtaining the lowest and highest similarity error Esim together with their corresponding Normalized human similar-
ity score (Human) and normalized similarity value (Method) estimated by the OuBioBert (M47) method for the raw and pre-processed sentence pairs with the low-
est (L) and highest (H) similarity error Esim.

Esim Input sentence Pre-processed sentence analyzed by the method Human Method
Low s1: “Expression of an activated form of Ras proteins can induce senescence

in some primary fibroblasts.”
s1: “expression activated form ras proteins induce senescence
primary fibroblasts”

0.9 0.908

s2: “The senescent state has been observed to be inducible in certain
cultured cells in response to high level expression of genes activated such
as the ras oncogene.”

s2: “senescent state observed inducible certain cultured cells
response high level expression genes activated ras oncogene”

High s1: “The in vivo data is still preliminary and other potential roadblocks
such as drug resistance have not been examined.”

s1: “vivo data still preliminary potential road bl ocks drug
resistance examined”

0.0 0.773

s2: “The GEM model used in this study retains wild-type Tp53, suggesting
that the tumors successfully treated with bortezomib and fasudil might not
be as aggressive as those in most NSCLC patients”

s2: “gem model used study retains wild type tp53 suggesting
tumors successfully treated bortezomib fas udi l might
aggressive nsclc patients”

https://doi.org/10.1371/journal.pone.0276539.t016

Table 17. Comparison of the mean, minimum andmaximum similarity scores of the Normalized Human similarity scores (Human) and the estimated values
returned by the best-performingmethods of each family in the evaluation of the three biomedical datasets.

BIOSSES dataset
ID Method Mean similarity Minimum similarity Maximum similarity
- Human 0.549 0 1

M4 LiBlock (this work) 0.194 0 0.506
M17 COM [30] 0.22 0 0.596
M26 BioWordVecint [81] 0.933 0.858 0.987
M47 OuBioBert [90] 0.808 0.582 0.936

MedSTS dataset
ID Method Mean similarity Minimum similarity Maximum similarity
- Human 0.632 0 1

M4 LiBlock (this work) 0.611 0 1
M17 COM [30] 0.631 0 1
M26 BioWordVecint [81] 0.957 0.832 1
M47 OuBioBert [90] 0.885 0.437 0.997

CTR dataset
ID Method Mean similarity Minimum similarity Maximum similarity
- Human 0.254 0 1

M4 LiBlock (this work) 0.103 0 0.743
M17 COM [30] 0.118 0 0.793
M26 BioWordVecint [81] 0.898 0.752 0.992
M47 OuBioBert [90] 0.724 0.472 0.98

https://doi.org/10.1371/journal.pone.0276539.t017
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Newman-Griffisword2vec_sgns (M22) model does so in the CTR dataset. This conclusion can be
drawn by looking at the results for third group of methods detailed in Table 8.

BioWordVecint (M26) obtains the highest Spearman correlation in the BIOSSES and MedSTS
datasets among the family of embedding methods, whilst the Newman-Griffisword2vec_sgns (M22)

Fig 6. Probability Density Function (PDF) and mean value of the similarity error (Esim) obtained by the best-
performing methods in the evaluation of each dataset as follows: (a) BIOSSES, (b) MedSTS, and (c) CTR.

https://doi.org/10.1371/journal.pone.0276539.g006
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model does so in the CTR dataset. This conclusion can be drawn by looking at the results for
the third group of measures detailed in Table 8.

BioWordVecint (M26) obtains the highest harmonic score in the BIOSSES and MedSTS data-
sets among the family of embedding methods, whilst the Newman-Griffisword2vec_sgns (M22)
model does so in the CTR dataset. This conclusion can be drawn by looking at the results for
the third group of measures detailed in Table 8.

Comparison of BERT-based methods
OuBioBERT (M47) obtains the highest average harmonic score among the family of BERT-based
methods. However, it does not significantly outperform all of them. This conclusion can be
drawn by looking at the last group of methods in Table 8 and checking the p-values reported
in Table A.1 in S1 Appendix. Table A.1 in S1 Appendix shows that ouBioBERT obtains
p-values higher than αc = 0.05/16 (0,003) when it is compared with many BERT-based meth-
ods, such as BioBERT Large 1.1 (p-value = 0.224) and PubMedBERT (abstracts+full text)
(p-value = 0.101) among others.

NCBI-BlueBERT Large PubMed (M40) obtains the highest Pearson correlation value in the
BIOSSES dataset among the family of BERT-based methods, whilst the NCBI-BlueBERT Base
PubMed + MIMIC-III (M41) and the ouBioBERT (M47) models do so in the MedSTS and the
CTR datasets, respectively. This conclusion can be drawn by looking at the last group of mea-
sures detailed in Table 8.

ouBioBERT (M47) obtains the highest Spearman correlation value in the BIOSSES dataset
among the family of BERT-based methods, whilst SciBERT (M43) and NCBI-BlueBERT Base
PubMed (M39) do so in the MedSTS and CTR datasets, respectively. These conclusions can be
drawn by looking at the last group of measures detailed in Table 8.

ouBioBERT (M47) obtains the highest harmonic score in the BIOSSES dataset among the
family of BERT-based methods, whilst SciBERT (M43) and NCBI-BlueBERT Base PubMed
(M39) do so in the MedSTS and CTR datasets, respectively. This conclusion can be drawn by
looking at the last group of measures detailed in Table 8.

Comparison of all methods
LiBlock (M4) obtains the highest average harmonic score for all the methods evaluated herein,
and significantly outperforms all the methods based on language models. However, there is no a
statistically significant difference in performance with the embedding methods Flair (M18) and
BioWordVecint (M26), and the ontology-based methods COM (M17) andWBSM-Rada (M7).
This conclusion can be drawn by looking at the average column in Table 8 and checking the p-
values reported in Table A.1 in S1 Appendix. Table A.1 in S1 Appendix shows that the LiBlock
obtains p-values higher than αc = 0.05/16 (0,003) when it is compared with the embedding-
based methods Flair (M18) and BioWordVecint (M26). In addition, the LiBlock method obtain
p-values higher than αc = 0.05/11 (0,004) when it is compared with the ontology-based meth-
ods COM (M17) and WBSM-Rada (M7).

BioWordVecint (M26) obtains the highest Pearson correlation values in the BIOSSES dataset
among all methods evaluated here, whilst WBSM-Rada (M7) and Newman-Griffisword2vec_sgns

(M22) do so in the MedSTS and CTR datasets, respectively. This conclusion can be drawn by
looking at the bold values detailed in Table 8.

LiBlock (M4) obtains the highest Spearman correlation value in the BIOSSES and MedSTS
datasets among all methods evaluated here, whilst Newman-Griffisword2vec_sgns (M22) do so in
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the CTR dataset. These conclusions can be drawn by looking at the bold values detailed in
Table 8.

LiBlock (M4) obtains the highest harmonic score in the BIOSSES dataset among all methods
evaluated here, whilst WBSM-Rada (M7) and Newman-Griffisword2vec_sgns (M22) do so in the
MedSTS and CTR datasets, respectively. This conclusion can be drawn by looking at the bold
values detailed in Table 8.

COM (M17) obtains the second highest average harmonic score among all methods evaluated
here, and it is able to outperform significantly all the methods based on language models. How-
ever, it does not significantly outperforms all the embedding, ontology or string-based methods.
This conclusion can be drawn by looking at the bold values detailed in Table 8 and checking
the p-values reported in Table A.1 in S1 Appendix. Table A.1 in S1 Appendix shows that COM
obtains p-values lower than αc = 0.05/17 (0,002) when it is compared with all the methods
based on language models. On the other hand, the COM method obtains p-values higher than
αc = 0.05/6 (0,008), αc = 0.05/11 (0,004) and αc = 0.05/16 (0,003) respectively, when it is com-
pared with string, ontology and embedding-based methods.

NonML-based methods versus ML-based ones
The string-based method LiBlock (M4) obtain a higher average harmonic score than all the
embedding-based methods in all datasets. Moreover, it significantly outperforms all methods
based on embedding models, with the only exceptions of Flair (M18) and BioWordVecint (M26)
This conclusion can be drawn by looking at the average column in Table 8 and checking the
p-values reported in Table A.1 in S1 Appendix. Table A.1 in S1 Appendix shows that LiBlock
obtains p-values lower than αc = 0.05/16 (0,003) when it is compared with all the embedding-
based methods except for the BioWordVecint (p-value 0.003) and Flair (p-value 0.027)
methods.

All string-based methods obtain a higher average harmonic score than all the BERT-based
methods considering all datasets, with the only exception of the Levenshtein distance (M5). How-
ever, string-based methods do not significantly outperform all BERT-based methods. This con-
clusion can be drawn by looking at the average column in Table 8 and checking the p-values
reported in Table A.1 in S1 Appendix. Table A.1 in S1 Appendix shows that the string-based
methods Qgram (M1), Jaccard (M2), Block distance (M3), Levenshtein distance (M5) and
Overlap coefficient (M6) obtain p-values higher than αc = 0.05/17 (0,002) when they are com-
pared with all the BERT-based methods.

The ontology-based methods COM (M17), WBSM-Rada (M7) and UBSM-Rada (M12)
obtain a higher average harmonic score than all the embedding-based methods considering all
datasets. However, they do not significantly outperform all embedding-based methods. This con-
clusion can be drawn by looking at the average column in Table 8 and checking the p-values
reported in Table A.1 in S1 Appendix. Table A.1 in S1 Appendix shows that the ontology-
based methods COM (M17), WBSM-Rada (M7) and UBSM-Rada (M12) obtain p-values
higher than αc = 0.05/16 (0,003) when they are compared with all the embedding-based
methods.

The ontology-based methods UBSM-Rada (M12), WBSM-Rada (M7), COM (M17) and
UBSM-coswJ&C (M15) obtain a higher average harmonic score than all the BERT-based meth-
ods. Moreover, the ontology-based methods UBSM-Rada (M12), WBSM-Rada (M7), and COM
(M17) significantly outperform all the BERT-based methods. This conclusion can be drawn by
looking at the average column in Table 8 and checking the p-values reported in Table A.1 in
S1 Appendix. Table A.1 in S1 Appendix shows that the UBSM-Rada (M12), WBSM-Rada
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(M7) and COM (M17) obtain p-values lower than αc = 0.05/17 (0,002) when they are com-
pared with all the BERT-based methods.

All embedding methods obtain a higher average harmonic score than all BERT-based meth-
ods, with the only exceptions of Flair (M18), BioConceptVecglove (M25), BioConceptVecfastText

(M30) and USE (M31). This conclusion can be drawn by looking at the last column in Table 8.
BioWordVecint (M26) obtains a higher average harmonic score than all the BERT-based

methods considering all datasets and significantly outperforms all of them, with the only excep-
tion of NCBI-BlueBERT Base PubMed +MIMIC-III (M41). This conclusion can be drawn by
looking at the average column in Table 8 and checking the p-values reported in Table A.1 in
S1 Appendix. Table A.1 in S1 Appendix shows that the BioWordVecint (M26) method obtains
p-values lower than αc = 0.05/17 (0,002) when it is compared with all the BERT-based meth-
ods, except for the NCBI-BlueBERT Base PubMed + MIMIC-III (p-value = 0.002).

Impact of the NER tools on the ontology-based methods
This section analyzes the impact of the NER tools on the performance of the sentence similar-
ity methods, and studies the overall impact of the NER configurations. Table 10 shows the
results obtained on the performance of NER tools for the sentence similarity methods evalu-
ated in the MedSTS dataset [52], whilst Table 11 shows the harmonic and average harmonic
scores, as well as the p-values which result from comparing the harmonic score of the best-per-
forming NER tool for each ontology-based method in the three datasets with the harmonic
scores obtained by the other two NER tools.

MetamapLite obtains the highest Pearson, Spearman, and harmonic scores for the MedSTS
dataset in combination with UBSM-J&C (M13), UBSM-cosJ&C (M14), UBSM-coswJ&C (M15)
and UBSM-Cai (M16), whilst cTAKES obtains the highest Pearson, Spearman and harmonic
scores for the MedSTS dataset in combination with UBSM-Rada (M12) and COM (M17). This
latter conclusion can be drawn by looking at the results shown in Table 10.

cTAKES obtains the highest average harmonic score for the three datasets in combination
with UBSM-Rada (M12), UBSM-coswJ&C (M15) and COM (M17) methods, whilst Metama-
pLite obtains the highest average harmonic score for the three datasets in combination with
UBSM-J&C (M13), UBSM-cosJ&C (M14) and UBSM-Cai (M16). This conclusion can be
drawn by looking at the harmonic scores of the NER tools in Table 11.

cTAKES combined with COM (M17) obtains the best-performing results of ontology-based
methods for the three datasets. This conclusion can be drawn by looking at the average har-
monic scores column shown in Table 11.

cTAKES is the best-performing tool in combination with the UBSM-Rada (M12), UBSM-
coswJ&C (M15), and COM (M17) methods in the three datasets, and significantly outperforms
MetamapLite and Metamap or the two former methods. However, there is no a statistically sig-
nificant difference regarding the Metamap tools when it is combined with the COM (M17)
method. This conclusion can be drawn by looking at the average harmonic scores and p-values
shown in Table 11, which are lower than αc = 0.05/2 (0,025).

MetamapLite is the best-performing tool in combination with the UBSM-J&C (M13), UBSM-
cosJ&C (M14), and UBSM-Cai (M16) methods in the three datasets, and significantly outper-
forms cTAKES and Metamap. This conclusion can be drawn by looking at the average har-
monic scores and p-values shown in Table 11, which are lower than αc = 0.05/2 (0,025).

The choice of the best NER tool for each method significantly impacts their performance in
most cases. This conclusion follows from the conclusions above.

Answering RQ3. Our results show that the ontology-based methods obtain their best per-
formance in the task of biomedical sentence similarity when they use either MetamapLite or
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cTAKES. Thus, Metamap should not be used in combination with any of the ontology-based
methods evaluated here in this task. Likewise, the results and p-values reported Table 11 show
that there is a significant difference in the performance of each ontology-based method
according to the NER tool used in most cases. The conclusions above confirm that the selec-
tion of the NER tool significantly impacts the performance of the sentence similarity methods
using it.

Impact of the NER tools on the new LiBlock measure
This section analyzes the impact of the NER tools on the new simLiBk similarity measure.
Table 12 shows the results obtained by the simLiBk measure in the three biomedical datasets
using its best pre-processing configuration, and annotating the sentences with all the combina-
tions of NER tools. In addition, the aforementioned table details the p-values resulting from
comparing the best-performing LiBlock-NER combination with the combinations based on
the other two NER tools.

LiBlock-cTAKES obtains the highest average harmonic score for the three datasets among the
LiBlock-NER combinations. However, it does not significantly outperform LiBlock with no use of
a NER tool. This conclusion can be drawn by looking at the average column in Table 12 and
checking the p-values in the last column. This conclusion is especially relevant because it
shows that there is no statistically significant difference between using a NER tool like cTAKES
or not using it, in the case of the LiBlock measure. We conjecture that this result could have
two explanations: firstly, the inability of LiBlock to capture semantic relationships beyond the
synonymy, and secondly, the current limitations of cTAKES in recognizing all mentions of
biomedical entities.

LiBlock-cTAKES obtains the highest Pearson correlation value in the BIOSSES dataset among
all LiBlock-NER combinations, whilst LiBlock with no use of a NER tool obtains the highest Pear-
son correlation value in the MedSTS and CTR datasets, respectively. This conclusion can be
drawn by looking at the results detailed in Table 12.

LiBlock-cTAKES obtains the highest Spearman correlation value in the BIOSSES and
MedSTS datasets among the LiBlock-NER combinations, whilst LiBlock-cTAKES and LiBlock-
MetamapLite obtain the highest Spearman correlation value in the CTR dataset. This conclu-
sion can be drawn by looking at the results detailed in Table 12.

LiBlock-cTAKES obtains the highest harmonic correlation value in the BIOSSES and MedSTS
datasets among the LiBlock-NER combinations, whilst LiBlock-MetamapLite obtains the highest
harmonic correlation value in the CTR dataset. This conclusion can be drawn by looking at the
results detailed in Table 12.

Impact of the remaining pre-processing stages
This section analyzes the impact of each pre-processing step on the performance of the sen-
tence similarity methods, except for the NER tools already analyzed in the previous section.
Finally, we study the overall impact of the pre-processing configurations.

Impact of tokenization. The family of string-based methods obtains its best-performing
results either by splitting the sentence on the spaces between words or using the Stanford Cor-
eNLP tokenizer. This conclusion can be drawn by looking at Table 7, which summarizes the
pre-processing tables detailed in S2 Appendix.

The family of ontology-based methods obtains its best-performing results in combination with
the Stanford CoreNLP tokenizer. This conclusion can be drawn by looking at Table 7.
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The family of methods based on embedding obtains its best-performing results in combination
with the Stanford CoreNLP tokenizer, with the only exception of Flair (M18). This conclusion
can be drawn by looking at Table 7.

No method based on strings, ontologies, or embedding obtains its best-performing results in
combination with the BioCNLPTokenizer. This conclusion can be drawn by looking at Table 7.
Thus, the BioCNLPTokenizer should not be used in combination with any method in the
abovementioned families in the task of biomedical sentence similarity. On the other hand, we
recall that all BERT-based methods evaluated herein can only be used in combination with the
WordPiece Tokenizer [91] based on a subword segmentation algorithm, because it is required
by the current BERT implementations.

All families of methods show a strong preference for a specific tokenizer, with the only excep-
tion of the string-based one. This conclusion can be drawn from previous conclusions that con-
firm the preference of the methods based on ontologies and embedding for the CoreNLP
tokenizer, and the mandatory use of the WordPiece tokenizer by the family of BERT-based
methods.

Impact of character filtering. The family of string-based methods obtains its best-perform-
ing results by using either the BIOSSES char-filtering method or the default method which
removes the punctuation marks and special symbols from the sentences, with the only exception
of the Levenshtein distance method (M5), which does not remove special characters. This conclu-
sion can be drawn by looking at Table 7, which summarizes the pre-processing tables detailed
in S2 Appendix.

All ontology-based methods obtain their best-performing results in combination with the
BIOSSES char-filtering method. This conclusion can be drawn by looking at Table 7.

Most embedding methods obtain their best-performing results in combination with the default
char filtering method. However, Flair (M18), BioWordVec (M26,M27), and BioSentVec (M32)
do better with BIOSSES char-filtering. This conclusion can be drawn by looking at Table 7.

The BERT-based methods do not show a noticeable preference pattern for a specific char filter-
ing method, obtaining their best-performing results with the BIOSSES, Blagec2019, or the default
one. This conclusion can be drawn by looking at Table 7.

Impact of stop-words removal. All string-based methods obtain their best-performing
results in combination with the NLTK2018 stop-word list, with the only exception of the Levensh-
tein distance (M5). This conclusion can be drawn by looking at Table 7, which summarizes the
pre-processing tables detailed in S2 Appendix.

All ontology-based methods obtain their best-performing results in combination with the
NLTK2018 stop-word list, with the only exception of WBSM-J&C (M8), WBSM-cosJ&C (M9),
which do not remove stop words. This conclusion can be drawn by looking at Table 7.

The methods based on embedding do not show a noticeable preference pattern for a specific
stop-word list, obtaining their best-performing results by using the stop-word list of BIOSSES,
NLTK2018, or none at all. This conclusion can be drawn by looking at Table 7.

The methods based on language models do not show a noticeable preference pattern for a spe-
cific stop-word list, obtaining their best-performing results by using the stop-word list of
BIOSSES, NLTK2018, or none at all. This conclusion can be drawn by looking at Table 7.

The best-performing results for the methods based on strings or ontologies show a noticeable
preference for the use of the stop-words list NLTK2018. This conclusion can be drawn by look-
ing at the Table 7.

Impact of lower-casing. Only 10 of the 50 methods evaluated in this work obtain their best
performance without converting words to lowercase at the sentence pre-processing stage. This
conclusion can be drawn by looking at Tables 7 and 8, and the pre-processing tables detailed
in S2 Appendix. Moreover, these ten aforementioned methods obtain a low performance in
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our experiments, with the sole exception of the BioNLP2016win30 (M29) pre-trained model,
which obtains the third best Spearman correlation value in the CTR dataset. Thus, our experi-
ments confirm that the lower-casing normalization of the sentences positively impacts the per-
formance of the methods, and it should be considered as the default option in any biomedical
sentence similarity task.

We conjecture that lower-casing improves the performance of the families of string-based
and ontology-based methods because it improves the exact comparison of words. On the other
hand, we also conjecture that the impact of lower-casing the sentences on the families of meth-
ods based on embedding and language models strongly depends on the pre-processing meth-
ods used in their training.

Overall impact of pre-processing. To study the overall impact of the pre-processing stage
on the performance of the sentence similarity methods, we selected the configuration report-
ing the highest (best) and lowest (worst) average harmonic score values for each method, as
shown in Table 9. These configurations were selected from a total of 1081 pre-processing con-
figurations reported in S2 Appendix.

The best-performing methods of each family show a statistically significant difference in per-
formance between their best and worst pre-processing configurations. This conclusion can be
drawn by looking at the average (AVG) and the p-values in Table 9.

Answering RQ4. Our results and the conclusions above show that the pre-processing
configurations significantly impact the performance of the sentence similarity methods,
and thus, they should be specifically defined for each method. All families of methods show
a strong preference for a specific tokenizer, with the sole exception of the string-based
one. In addition, the BioCNLPTokenizer does not contribute to the best-performing con-
figuration of any method evaluated here. The family of string-based methods shows a pref-
erence pattern for using either the BIOSSES or default char filtering method, whilst all
ontology-based methods use the BIOSSES char filtering method, and most embedding
methods use the default char filtering method. However, BERT-based methods do not
show a noticeable preference pattern for a specific char filtering method. On the other
hand, the families of string and ontology-based methods show a noticeable preference pat-
tern for the use of the NLTK2018 stop-words list, whilst the families of embedding- and
BERT-based methods do not show a noticeable pattern. Finally, the experiments confirm
that the lower-casing normalization of the sentences positively impacts the performance of
the methods, and it should be considered as the default option in any biomedical sentence
similarity task.

The new state of the art
We establish the new state of the art to answer our RQ1 and RQ2 questions as follows.

The LiBlock (M4) method sets the new state of the art for the sentence similarity task in the
biomedical domain (see Table 8), being the best overall performing method to tackle this task.
Moreover, LiBlock significantly outperforms all the methods based on language models. How-
ever, LiBlock cannot significantly outperform the ontology-based methods COM (M17) and
WBSM-Rada (M7), and the embedding-based methods Flair (M18) and BioWordVecint (M26)
(see S1 Appendix). Thus, LiBlock is a convincing but non-definitive winner among the bio-
medical sentence similarity methods evaluated here.

The COM (M17) method sets the new state of the art among the family of ontology-based
methods for biomedical sentence similarity, being the best-performing method in this task
(see Table 8). Moreover, COM significantly outperforms all methods based on language mod-
els (see S1 Appendix).
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BioWordVecint (M26) sets the new state of the art among the family of methods based on
pre-trained embedding models, being the best-performing method in this task (see Table 8).
However, BioWordVecint does not significantly outperforms the remaining methods in the
same family (see S1 Appendix).

OuBioBERT (M47) sets the new state of the art among the family of methods based on pre-
trained BERT models, being the best-performing method in this task (see Table 8). However,
OuBioBERT is unable to outperform significantly all remaining methods from the same family
(see S1 Appendix).

Finally, our results show that our new string-based method, called LiBlock (M4), obtains
the best overall results, despite not capturing the semantic information of the sentences. This
is a very notable finding because it contradicts a common belief that ontology-based methods,
which integrate word and concept semantics, will outperform the non-semantic methods in
this similarity task. A second and very interesting finding is that our non-semantic and non-
ML LiBlock method is able to outperform significantly state-of-the-art methods based on
BERT language models [86] in an unsupervised context. This latter finding is very remarkable
because LiBlock is easy to implement and evaluate, very efficient (2635 sentence pairs per sec-
ond with no use of a NER tool), and it requires neither large text resources nor complex algo-
rithms for its training and evaluation, which is a very clear advantage in the biomedical
sentence similarity task.

Answering RQ1 and RQ2. The string-based method LiBlock (M4) obtains the highest
average harmonic score in all datasets, and significantly outperforms the remaining string-
based methods, as well as all methods based on language models, and all the ontology-based
methods with the only exceptions of COM (M17) and WBSM-Rada (M7). In addition, LiBlock
obtains the highest Spearman correlation values in the BIOSSES and MedSTS datasets, which
contain 100 and 1068 sentence pairs respectively.

Main drawbacks and limitations of current methods
This section analyzes the behaviour of the best-performing methods in each family of sentence
similarity methods to answer our RQ5. The best-performing methods of each family, accord-
ing to the harmonic average value reported in Table 8, are LiBlock (M4), COM (M17), Bio-
WordVecint (M26), and OuBioBERT (M47).

String and ontology-based methods underestimate, on average, the human similarity value in
the BIOSSES and CTR datasets, whilst their average similarity error is close to 0 in the MedSTS
dataset. This conclusion can be drawn by looking at the average similarity error values and the
mean error values shown in Fig 6 together with the mean values shown in Table 17. LiBlock
and COM obtain mean error values of -0.021 and -0.001 in MedSTS, as shown in Fig 6b. On
the other hand, both methods report a mean similarity score much lower than the mean of the
Human normalized score in the BIOSSES and CTR datasets and a mean similarity score close
to the Human normalized score in the MedSTS dataset, as shown in Table 17.

The methods based on embedding and language models overestimate, on average, the human
similarity value in the three datasets. This conclusion can be drawn by looking at the average
similarity error values and the mean error values shown in Fig 6, together with the mean simi-
larity values shown in Table 17. The two aforementioned families of methods report a mean
similarity score much higher than the mean of the Human normalized score in the three data-
sets, as show in Table 17.

String and ontology-based methods share a similar underestimation behavior, in contrast to
the overestimation behaviour shown by the methods based on embedding and language models,
which is very noticeable in the three datasets. This conclusion can be drawn by looking at the
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minimum and maximum similarity values columns in Table 17, and the plots of the probabil-
ity error distribution function for the three datasets in Fig 6. For instance, in spite of the
human similarity scores being in the range of 0 to 1 in the BIOSSES dataset, as shown in
Table 17, the string and ontology-based methods report similarity scores in the range of 0 to
0.596, whilst the methods based on embedding and language models report similarity scores
in the range of 0.582 to 0.987.

String and ontology-based methods tend to obtain their best results in sentences with a
Human normalized score close to 0, whilst the methods based on embedding and language mod-
els obtain their best results in sentences with a Human normalized score close to 1. This conclu-
sion can be drawn by looking at Tables 13–16. On the other hand, string and ontology-based
methods tend to obtain their worst results in sentences with a Human normalized score close
to 1, whilst the methods based on embedding and language models obtain their worst results
in sentences with a Human normalized score close to 0.

None of the methods for semantic similarity of sentences in the biomedical domain evaluated
here use an explicit syntactic analysis or syntax information to obtain the similarity value.We
conjecture that syntactic analysis would improve the performance in some cases. For instance,
the sentences s1 and s2 with highest Esim in Table 13 show an implicit relation between the
concepts “miRNA” and “oncogenesis”, which should increase the final semantic similarity
score of the sentences. However, none of the methods evaluated here consider and reward
these semantic relationships because its recognition demands some form of syntactic analysis.
On the one hand, string and ontology-based methods consider the concepts in a sentence as
bags of words, whilst on the other hand the methods based on embedding and language mod-
els implicitly consider the structure of the sentences but not the relationships between the
parts of the sentences that are related.

Our results show that the family of string-based methods benefits from a high frequency of
overlapping words in the sentences of the current biomedical datasets, whilst such methods are
not able to deal properly with sentences that are semantically different but not exhibit a word
overlapping pattern. The main advantages of the string-based methods are as follows: (1) they
are able to obtain high correlation values without the need of using external resources for their
training or evaluation; (2) they are fast and efficient; and finally; (3) they require low computa-
tional resources. However, string-based methods are unable to capture the semantics of the
words in the sentence, which prevent them from recognizing semantic relationships, such as
synonymy, meronymy and morphological variants. On the other hand, the use of NER tools in
combination with string-based methods is a good option to integrate at least the capability of
recognizing synonyms, as shown by LiBlocK-cTAKES (M4).

Ontology-based methods strongly depend on the lexical coverage of the ontologies and the
ability to recognize automatically the underlying concepts in sentences.Our results show that the
ontology-based methods are able to properly estimate a similarity score when used either with
a dataset with high word overlapping, or with NER and WSD tools that find all possible entities
to properly calculate the similarity between sentences. The main advantages of ontology-based
methods are that they are fast and require low computational resources. However, the effec-
tiveness of the ontology-based methods depends on the lexical coverage of the ontologies and
the ability of the NER and WSD tools to recognize the underlying concepts in sentences,
whose coverage and performance could be limited in several application domains.

The LiBlock (M4) string-based method and the COM (M17) ontology-based method use a
NER tool in the pre-processing stage to recognize the biomedical entities (UMLS CUI codes)
present in the input sentences. The objective of annotating entities in the semantic similarity
task is the identification and disambiguation of biomedical concepts to provide semantic infor-
mation to sentences. LiBlock uses the NER tool to normalize and disambiguate the underlying
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concepts in a sentence, unifying different concepts with acronyms and synonyms in the same
CUI code and creating an overlapping between concepts, while ontologies also make use of the
similarity of concepts within ontologies.

The biomedical NER tools evaluated in this work are unable to identify and disambiguate cor-
rectly many biomedical concepts due to the use of acronyms and different morphological varia-
tions, among others. For example, the CUI concepts “KRAS gene” (C1537502), “BRAF gene”
(C0812241), and “RAF1 gene” (C0812215) in the sentences s1 and s2 with highest Esim
obtained by the COM (M17) method in Table 14, appear as “K-ras”, “Braf”, “c-Raf” and “Craf’.
However, cTAKES is unable to recognize these later morphological variants of the same bio-
medical concepts. A second example is the word “act” in the sentence “Consequently miRNAs
have been demonstrated to act either as oncogenes [. . .]”, which is wrongly recognized as the
entity “Activated clotting time measurement” (C0427611), rather than as a verb in the sentence
s1 with highest Esim in Table 13. And finally, a third example is the acronym “NSCLC”, which
denotes the concept “Non-Small Cell Lung Carcinoma (C0007131), which is not recognized in
the plural variant “NSCLCs” in the sentence s2 with highest Esim from Table 14.

The methods based on pre-trained embedding and language models provide a broader lexi-
cal coverage than the ontology-based methods, and do not need the use of NER or WSD tools
to find intrinsic semantic relationships between the words in the sentences. However, these
methods need large corpora for their training, as well as a complex training phase and more
computational resources than the methods from the string-based and ontology-based families.
Moreover, our experiments show that those methods tend to estimate higher similarity values
than those estimated by a human being in the three datasets. In most cases, the aforemen-
tioned methods report similarity scores that tend towards 1, which indicates that the semantics
obtained from the sentences is not sufficient to compute correctly a similarity score. For
instance, the sentences s1 and s2 with highest Esim from Tables 15 and 16 shows similarity val-
ues close to 1, where the sentences have neither word overlapping nor similar concepts, and
the human similarity score is 0 in both cases. Lastly, BERT-based methods, are trained for
downstream tasks, using a supervised approach, and do not perform well in an unsupervised
context.

Answering RQ5. String-based methods capture neither the word semantics within the
sentences nor the semantic relationships between words, such as synonymy and meronymy,
and their effectiveness mainly relies on the word overlapping frequency in the sentences. How-
ever, the LiBlock method uses the NER tool to normalize and disambiguate the underlying
concepts in a sentence, but unfortunately, it does not significantly outperform LiBlock with no
use of a NER tool, which could have two explanations: firstly, the inability of LiBlock to capture
semantic relationships beyond the synonymy; secondly, the current limitations of cTAKES in
recognizing all mentions of biomedical entities. On the other hand, ontology-based methods
use NER and WSD tools to recognize the underlying concepts in the sentences, which are not
able correctly to identify and disambiguate these concepts in many cases. In addition, they
require external resources to capture the semantic information from the sentences, which lim-
its their lexical coverage. Thus, ontology-based methods require both high word overlapping
and high recognition coverage of named entities to properly estimate the similarity between
sentences. In comparison, the methods based on pre-trained embedding and language models
need large corpora for training, a complex training phase, and considerable computational
resources to calculate the similarity between sentences. Moreover, those methods tend to
obtain high similarity scores in most cases, which may penalize them in a balanced dataset and
in a real environment. Finally, BERT-based methods are trained for downstream tasks, using a
supervised approach, and do not perform well in an unsupervised context.
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Comparison of running times
Table 18 details the running time reported by the best-performing methods for each family, as
well as the sentences per second that each method computes on average for the three datasets
evaluated herein. The experiments were executed on a desktop computer with an AMD Ryzen
7 5800x CPU (16 cores) with 64 Gb RAM and a 2TB Gb SSD disk. In all cases, the running
time includes the pre-processing time for each method. The string-based method Block Dis-
tance (M3) obtains the lowest running times because it does not need complex mechanisms or
pre-trained models to calculate the similarity between sentences. On the other hand, the
BERT-based methods obtain the worst results mainly due to their pre-processing stage, which
uses the WordPiece tokenization method.

Inconsistent results in the calculation of the statistical significance matrix
Despite the artificial increase of datasets to calculate the statistical significance of the results,
we have identified an inconsistent result with respect to the comparison of the p-values of the
LiBlock (M4) and the WBSM-Rada (M7) and UBSM-Rada (M12) methods. Table 8 shows that
the UBSM-Rada method (M12) has a higher average harmonic score compared to WBSM-
Rada (M7). However, by building the artificial datasets, the value of UBSM-Rada (M12) with
respect to LiBlock (M4) shows a significant difference, while WBSM-Rada (M7) with respect
to LiBlock (M4) shows a non-significant difference. We conjecture that this problem could be
solved by increasing the number of datasets created for this task, which would allow the sample
size to be increased and obtain more consistent results.

Conclusions and future work
We have introduced the largest, detailed, and for the first time, reproducible experimental sur-
vey on biomedical sentence similarity reported in the literature. Our work also introduces a
collection of self-contained and reproducible benchmarks on biomedical sentence similarity
based on the same software platform, called HESML-STS, which has been especially developed
for this work, being provided as part of the new HESML V2R1 version that is publicly available
[105]. We provide a detailed reproducibility protocol [44] and dataset [43] to allow the exact
replication of all our experiments, methods, and results. In addition, we introduce a new
aggregated string-based sentence similarity method called LiBlock, together with eight variants

Table 18. This table shows the running times in milliseconds (ms) and the average sentences pairs per second
(sent/sec) reported by the best-performingmethod of each family of methods in the evaluation of the 1339 sen-
tence pairs that comprise the three datasets. (�) The LiBlock method reports the running times in both NER and
noNER versions showing that the efficiency of the method with no NER tool is much higher, despite the fact that there
is no statistically significant difference in the results between both pre-processing configurations.

ID Method Running time (ms) Sentence pairs / sec
M4 LiBlock-cTAKES 56605 23,66
M4 LiBlock-noNER (�) 508 2635,83
M3 Block distance 308 4347,4
M12 UBSM-Rada 32341 41,40
M17 COM 41558 32,22
M27 BioWordVecint 1211 1105,69
M32 BioSentVec 54706 24,48
M47 ouBioBERT 575770 2,33
M38 BioBERT Large 1.1 (+ PubMed) 3312566 0,40

https://doi.org/10.1371/journal.pone.0276539.t018
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of the ontology-based methods introduced by Sogancioglu et al. [30], and a new pre-trained
word embedding model based on FastText [58] and trained on the full-text of the articles in
the PMC-BioC corpus [19]. We also evaluate for the first time the CTR [53] dataset in a bench-
mark on biomedical sentence similarity.

The string-based LiBlock (M4) measure sets the new state of the art for the sentence similar-
ity task in the biomedical domain and significantly outperforms all the methods of each family
evaluated here, with the only exceptions of the Flair (M18), BioWordVecint (M26), COM
(M17) and WBSM-Rada (M7) methods. However, our data analysis shows that at least with
the three datasets evaluated herein, there is no statistically significant difference between the
performance of the LiBlock (M4) method using the cTAKES or using no NER tool at all. Thus,
using the LiBlock method without any NER tool could be a competitive and much more effi-
cient solution for high-throughput applications.

Concerning the impact of the Named Entity Recognition (NER) tools, our results confirm
that the choice of the best NER tool for each method significantly impacts their performance.
MetamapLite [94] and cTAKES [62] set the best-performing configurations for the family of
ontology-based methods, whilst Metamap [34] was not the best performer in any method.

Our experiments confirm that the pre-processing stage has a very significant impact on the
performance of the sentence similarity methods evaluated here, and yet this aspect has neither
been studied nor reported in the literature. Thus, the selection of the proper configuration for
each sentence similarity method should be confirmed experimentally. However, our experi-
ments suggest some default configurations to make these decisions, such as the use of lower-
casing normalization, some specific char filtering methods, and some specific tokenizers with
the sole exception of BioCNLPTokenizer. Finally, the families of string and ontology-based
methods show a noticeable preference pattern for the use of the NLTK2018 stop-words list.
For a detailed description of the best pre-processing configurations, we refer the readers to our
discussion.

String-based methods do not capture either the semantics of the words in the sentence or
the semantic relationships between words, and their effectiveness relies on the word overlap-
ping frequency in the sentences. Ontology-based methods Named Entity Recognition (NER)
and Word Sense Disambiguation (WSD) tools to recognize the underlying concepts in the sen-
tences and require external resources to capture the semantic information from the sentences,
which limits their lexical coverage. In addition, they require either high word overlapping or
high recognition coverage of named entities in order to properly calculate the similarity
between sentences. On the other hand, the methods based on pre-trained embedding and lan-
guage models need a large corpus for training, a complex training phase, and considerable
computational resources to calculate the similarity between sentences. Moreover, these meth-
ods tend to obtain high similarity scores in most cases, which may penalize them in a balanced
dataset and in a real environment. Finally, BERT-based methods are trained for downstream
tasks, using a supervised approach, and do not perform well in an unsupervised context.

Our experiments suggest that the current benchmarks do not cover all the language features
that characterize the biomedical domain, such as the frequent use of acronyms and rhetorical
expressions like synonymy, meronymy, etc. In addition, current benchmarks have a very lim-
ited sample size that make the analysis of results difficult. We conjecture that LiBlock, COM,
and UBSM-Rada perform well because there is a noticeable overlap of terms that may benefit
these methods over the others reported in the literature. Furthermore, Chen et al. [106] high-
light the need to improve and create new benchmarks from different perspectives, to reflect
the multifaceted notion of the similarity of sentences. Therefore, we found a strong need for
improving existing benchmarks for the task of semantic similarity of sentences in the biomedi-
cal domain.
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As part of our forthcoming activities, we plan to evaluate the new sentence similarity meth-
ods introduced herein in a benchmark for the general language domain. In addition, we will
study the evaluation of sentence similarity methods in an extrinsic task, such as semantic med-
ical indexing [107] or summarization [108]. We also consider the evaluation of further pre-
processing configurations, such as biomedical NER systems based on recent Deep Learning
techniques [10], or extending our experiments and research to the multilingual scenario by
integrating multilingual biomedical NER systems like Cimind [109]. Finally, we plan to evalu-
ate some recent biomedical concept embeddings based on MeSH [35], which has not been
evaluated in the sentence similarity task yet.

Supporting information
S1 Appendix. The statistical significance results. We provide a series of tables reporting the
p-values for each pair of methods evaluated in this work as supplementary material.
(PDF)

S2 Appendix. The pre-processing raw output files.We provide all the pre-processing raw
output tables for the experiments evaluated herein as supplementary material.
(PDF)

S3 Appendix. A reproducibility protocol and dataset on the biomedical sentence similar-
ity.We provide the reproducibility protocol published at protocols.io [44] as supplementary
material to allow the exact replication of all our experiments, methods, and results.
(PDF)
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ción a Distancia (UNED). http://e-spacio.uned.es/fez/view/bibliuned:DptoLSI-ETSI-Informes-Jlastra-
refinement; 2016. TR-2016-01.

48. Lastra-Diaz JJ, Goikoetxea J, Hadj TaiebMA, GarcÃa-Serrano A, Ben AouichaM, Agirre E. A repro-
ducible survey on word embeddings and ontology-basedmethods for word similarity: Linear combina-
tions outperform the state of the art. Engineering Applications of Artificial Intelligence. 2019; 85:645–
665. https://doi.org/10.1016/j.engappai.2019.07.010

49. Lastra-Dı́az JJ, Garcı́a-Serrano A. WordNet-based word similarity reproducible experiments based on
HESMLV1R1 and ReproZip; 2016. Mendeley Data, v1. http://doi.org/10.17632/65pxgskhz9.1.

50. Lastra-Dı́az JJ, Goikoetxea J, Hadj TaiebMA, Garcı́a-Serrano A, AouichaMB, Agirre E. Reproducibil-
ity dataset for a large experimental survey on word embeddings and ontology-basedmethods for word
similarity. Data in Brief. 2019; 26:104432. https://doi.org/10.1016/j.dib.2019.104432PMID: 31516953

51. Lastra-Dı́az JJ, Goikoetxea J, Hadj TaiebM, Garcı́a-Serrano A, Ben AouichaM, Agirre E, et al. A
large reproducible benchmark of ontology-basedmethods and word embeddings for word similarity.
Information Systems. 2021; 96:101636. https://doi.org/10.1016/j.is.2020.101636

52. Wang Y, Afzal N, Fu S, Wang L, Shen F, Rastegar-MojaradM, et al. MedSTS: a resource for clinical
semantic textual similarity. LanguageResources and Evaluation. 2018; p. 1–16.

53. Lithgow-Serrano O, Gama-Castro S, Ishida-Gutiérrez C, Mejı́a-Almonte C, Tierrafrı́a VH, Martı́nez-
Luna S, et al. Similarity corpus onmicrobial transcriptional regulation. Journal of Biomedical Seman-
tics. 2019; 10(1):8. https://doi.org/10.1186/s13326-019-0200-x PMID: 31118102

54. Lithgow-Serrano O, Gama-Castro S, Ishida-Gutiérrez C, Collado-Vides J. L-Regulon: A novel soft-
curation approach supported by a semantic enriched reading for RegulonDB literature. bioRxiv. 2020.

55. GerlachM, Shi H, Amaral LAN. A universal information theoretic approach to the identification of
stopwords. NatureMachine Intelligence. 2019; 1(12):606–612. https://doi.org/10.1038/s42256-019-
0112-6

56. Li Y, McLeanD, Bandar ZA, James DO, Crockett K. Sentence Similarity Based on Semantic Nets and
Corpus Statistics. IEEE Trans Knowl Data Eng. 2006; 18(8):1138–1150. https://doi.org/10.1109/
TKDE.2006.130

57. Krause EF. TaxicabGeometry: An Adventure in Non-EuclideanGeometry. Online: Courier Corpora-
tion; 1986.

PLOS ONE A reproducible experimental survey on biomedical sentence similarity

PLOSONE | https://doi.org/10.1371/journal.pone.0276539 November 21, 2022 41 / 44



58. Bojanowski P, Grave E, Joulin A, Mikolov T. EnrichingWord Vectors with Subword Information. Trans-
actions of the Association for Computational Linguistics. 2017; 5:135–146. https://doi.org/10.1162/
tacl_a_00051

59. Song B, Li F, Liu Y, Zeng X. Deep learningmethods for biomedical named entity recognition: a survey
and qualitative comparison. Brief Bioinform. 2021; 22(6). https://doi.org/10.1093/bib/bbab282 PMID:
34308472

60. Miller GA. WordNet: A Lexical Database for English. ACM. 1995; 38(11):39–41. https://doi.org/10.
1145/219717.219748

61. Donnelly K. SNOMED-CT: The advanced terminology and coding system for eHealth. Books Google.
2006; 121:279–290.PMID: 17095826

62. SavovaGK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text
Analysis and KnowledgeExtraction System (cTAKES): architecture, component evaluation and appli-
cations. J AmMed Inform Assoc. 2010; 17(5):507–513. https://doi.org/10.1136/jamia.2009.001560
PMID: 20819853

63. Dijkstra EW. A note on two problems in connexionwith graphs. NumerischeMathematik. 1959;
1(1):269–271. https://doi.org/10.1007/BF01386390

64. Johnson AEW, Pollard TJ, Shen L, Lehman LWH, FengM, GhassemiM, et al. MIMIC-III, a freely
accessible critical care database. Sci Data. 2016; 3:160035. https://doi.org/10.1038/sdata.2016.35
PMID: 27219127

65. Mikolov T, Sutskever I, Chen K, CorradoGS, others. Distributed representations of words and phrases
and their compositionality. Adv Neural Inf Process Syst. 2013;.

66. Pennington J, Socher R, ManningC. Glove: Global vectors for word representation. In: Proc. of the
2014 conference on empirical methods in natural language processing (EMNLP). ACLWeb; 2014.
p. 1532–1543.

67. Sánchez D, Batet M, Isern D. Ontology-based information content computation. Knowledge-Based
Systems. 2011; 24(2):297–303. https://doi.org/10.1016/j.knosys.2010.10.001

68. Cai Y, ZhangQ, LuW, Che X. A hybrid approach for measuring semantic similarity based on IC-
weighted path distance inWordNet. Journal of intelligent information systems. 2017; p. 1–25.

69. Rada R, Mili H, Bicknell E, Blettner M. Development and application of a metric on semantic nets.
IEEE Transactions on Systems, Man, and Cybernetics. 1989; 19(1):17–30. https://doi.org/10.1109/
21.24528

70. Jiang JJ, Conrath DW. Semantic similarity based on corpus statistics and lexical taxonomy. In:
Proc. of International Conference Research on Computational Linguistics (ROCLING X); 1997.
p. 19–33.

71. ChapmanS, Norton B, Ciravegna F. Armadillo: Integrating knowledge for the semantic web. In: Pro-
ceedings of the Dagstuhl Seminar in Machine Learning for the SemanticWeb. Researchgate; 2005.
p. 90.

72. Ukkonen E. Approximate string-matching with q-grams andmaximal matches. Theor Comput Sci.
1992; 92(1):191–211. https://doi.org/10.1016/0304-3975(92)90143-4

73. ,Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud sci nat. 1908; 44:223–270.
74. ManningCD, ManningCD, Schütze H. Foundations of Statistical Natural LanguageProcessing.

Online: MIT Press; 1999.
75. Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet

physics doklady. vol. 10. Springer; 1966. p. 707–710.
76. Lawlor LR. Overlap, Similarity, and CompetitionCoefficients. Ecology. 1980; 61(2):245–251. https://

doi.org/10.2307/1935181
77. Akbik A, Blythe D, Vollgraf R. Contextual String Embeddings for Sequence Labeling. In: Proc. of the

27th International Conference on Computational Linguistics. Santa Fe, NewMexico, USA: Association
for Computational Linguistics; 2018. p. 1638–1649.

78. Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional semantics resources for bio-
medical text processing. Proc of LBM. 2013; p. 39–44.

79. ChenQ, Lee K, Yan S, Kim S, Wei CH, Lu Z. BioConceptVec: Creating and evaluating literature-
based biomedical concept embeddings on a large scale. PLOSComputational Biology. 2020; 16(4):1–
18. https://doi.org/10.1371/journal.pcbi.1007617 PMID: 32324731

80. Newman-Griffis D, Lai A, Fosler-Lussier E. Insights into AnalogyCompletion from the Biomedical
Domain. In: BioNLP 2017. Vancouver, Canada,: Association for Computational Linguistics; 2017.
p. 19–28.

PLOS ONE A reproducible experimental survey on biomedical sentence similarity

PLOSONE | https://doi.org/10.1371/journal.pone.0276539 November 21, 2022 42 / 44



81. Zhang Y, ChenQ, Yang Z, Lin H, Lu Z. BioWordVec, improving biomedical word embeddings with sub-
word information andMeSH. Sci Data. 2019; 6(1):52. https://doi.org/10.1038/s41597-019-0055-0
PMID: 31076572

82. Chiu B, CrichtonG, KorhonenA, Pyysalo S. How to Train goodWord Embeddings for Biomedical
NLP. In: Proc. of the 15thWorkshop on Biomedical Natural LanguageProcessing. Berlin, Germany:
Association for Computational Linguistics; 2016. p. 166–174.

83. Cer D, Yang Y, Kong Sy, Hua N, Limtiaco N, St John R, et al. Universal Sentence Encoder for English.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations. Brussels, Belgium: Association for Computational Linguistics; 2018. p. 169–174.

84. PagliardiniM, Gupta P, Jaggi M. Unsupervised Learning of Sentence Embeddings Using Composi-
tional n-Gram Features. In: Proc. of the 2018Conference of the North AmericanChapter of the Associ-
ation for Computational Linguistics: Human LanguageTechnologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational Linguistics; 2018. p. 528–540.

85. Lee J, YoonW, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained biomedical language repre-
sentationmodel for biomedical text mining. Bioinformatics. 2019; 36(4):1234–1240.

86. Devlin J, ChangM, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for
LanguageUnderstanding. In: Burstein J, Doran C, Solorio T, editors. Proc. of the 2019 Conference of
the North AmericanChapter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT, (Long and Short Papers). Minneapolis, MN, USA: Association for Computa-
tional Linguistics; 2019. p. 4171–4186. Available from: https://doi.org/10.18653/v1/n19-1423.

87. Beltagy I, Lo K, Cohan A. SciBERT: A Pretrained LanguageModel for Scientific Text. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural LanguageProcessing (EMNLP-IJCNLP). Hong Kong, China: Asso-
ciation for Computational Linguistics; 2019. p. 3615–3620.

88. Huang K, Altosaar J, RanganathR. ClinicalBERT: Modeling Clinical Notes and Predicting Hospital
Readmission. arXiv e-prints. 2019; p. arXiv:1904.05342.

89. Gu Y, Tinn R, ChengH, LucasM, UsuyamaN, Liu X, et al. Domain-Specific LanguageModel Pretrain-
ing for Biomedical Natural LanguageProcessing. arXiv e-prints. 2020; p. arXiv:2007.15779.

90. Wada S, Takeda T, ManabeS, Konishi S, Kamohara J, Matsumura Y. A pre-training technique to
localizemedical BERT and to enhance biomedical BERT. arXiv e-prints. 2020; p. arXiv:2005.07202.

91. Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, MachereyW, et al. Google’s Neural Machine Transla-
tion System: Bridging the Gap betweenHuman andMachine Translation. arXiv. 2016;.

92. ManningC, SurdeanuM, Bauer J, Finkel J, Bethard S, McClosky D. The Stanford CoreNLP natural
language processing toolkit. In: Proc. of 52nd annualmeeting of the association for computational lin-
guistics: system demonstrations. ACL; 2014. p. 55–60.

93. ComeauDC, Islamaj Doğan R, Ciccarese P, Cohen KB, KrallingerM, Leitner F, et al. BioC: a minimal-
ist approach to interoperability for biomedical text processing. Database. 2013; 2013:bat064. https://
doi.org/10.1093/database/bat064 PMID: 24048470

94. Demner-FushmanD, RogersWJ, Aronson AR. MetaMap Lite: an evaluation of a new Java implemen-
tation of MetaMap. J AmMed Inform Assoc. 2017; 24(4):841–844. https://doi.org/10.1093/jamia/
ocw177 PMID: 28130331

95. Bodenreider O. The UnifiedMedical LanguageSystem (UMLS): integrating biomedical terminology.
Nucleic Acids Res. 2004; 32(Database issue):267–70. https://doi.org/10.1093/nar/gkh061 PMID:
14681409

96. Lastra-Dı́az JJ, Lara-Clares A, Garcia-Serrano A. HESMLV1R5 Java software library of ontology-
based semantic similarity measures and information content models; 2020. e-cienciaDatos, v1.
https://doi.org/10.21950/1RRAWJ.

97. Smith L, Rindflesch T, WilburWJ. MedPost: a part-of-speech tagger for bioMedical text. Bioinformat-
ics. 2004; 20(14):2320–2321. https://doi.org/10.1093/bioinformatics/bth227 PMID: 15073016
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Abstract

In Papadakis et al. [1], we presented the latest release of JedAI, an open-source Entity Resolution (ER) system that allows for
building a large variety of end-to-end ER pipelines. Through a thorough experimental evaluation, we compared a schema-agnostic
ER pipeline based on blocks with another schema-based ER pipeline based on similarity joins. We applied them to 10 established,
real-world datasets and assessed them with respect to effectiveness and time efficiency. Special care was taken to juxtapose their
scalability, too, using seven established, synthetic datasets. Moreover, we experimentally compared the effectiveness of the batch
schema-agnostic ER pipeline with its progressive counterpart. In this companion paper, we describe how to reproduce the entire
experimental study that pertains to JedAI’s serial execution through its intuitive user interface. We also explain how to examine the
robustness of the parameter configurations we have selected.

Keywords: Entity Resolution, Batch Methods, Progressive Methods, Reproducibility

1. Introduction1

Entity Resolution (ER) is the task of identifying matches2

or duplicates, i.e., different entity profiles that describe the3

same real-world object. For example, ER should match the4

entity profiles https://www.wikidata.org/wiki/Q305

and https://en.wikipedia.org/wiki/United_States,6

which refer to the United States of America in two different7

data sources, Wikidata1 and Wikipedia2 respectively. ER8

constitutes a core data integration task and, thus, numerous9

approaches for tackling it have been proposed in the literature.10

Overviews of the main methods can be found in recent books11

[2, 3, 4, 5], surveys [6, 7, 8] and tutorials [9, 10, 11, 12].12

To facilitate the use of the main ER methods, we created13

JedAI [1], an open-source system that allows for building end-14

to-end pipelines. JedAI enables users to effectively address the15

ER problem by categorizing the main methods into three or-16

thogonal dimensions:17

1. Schema-awareness categorizes ER methods into schema-18

based and schema-agnostic ones, depending on whether19

they rely on schema knowledge or not.20

∗Corresponding author
∗∗Reviewer
1https://www.wikidata.org
2https://www.wikipedia.org

2. Budget-awareness categorizes ER methods into budget-21

agnostic ones, which operate as batch processes, and22

budget-aware ones, which operate in a pay-as-you-go23

manner that produces results progressively — they maxi-24

mize the detected matches within a specific budget of tem-25

poral or computational resources.26

3. Execution mode categorizes ER methods into serial and27

massively parallelized ones, e.g., over Apache Spark.328

Using JedAI, we experimentally evaluated in [1] the relative29

performance of the main end-to-end ER pipelines that are de-30

fined by the three aforementioned dimensions. In this work, we31

focus on serially executed pipelines of any type.32

Regarding schema-awareness, the schema-agnostic pipeline33

consists of the following steps, as shown in Figure 1(a):34

• Data Reading loads the data to be processed into main35

memory.36

• Schema Clustering is an optional step that groups together37

different attributes that share syntactically similar values38

so as to improve the performance of the subsequent steps.39

Note that this task differs from Schema Matching, which40

tries to identify the semantically matching attributes.41

3https://spark.apache.org
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Figure 1: The three main end-to-end ER pipelines implemented by JedAI: (a) the budget- & schema-agnostic one, (b) the budget-agnostic, schema-based one, and
(c) the budget-aware, schema-agnostic one. Shaded rectangles indicate optional steps.

• Block Building aims to reduce the computational cost of42

the brute-force approach, by limiting the search space to43

similar entity profiles. To this end, it clusters together en-44

tity profiles that share identical or similar signatures.45

• Block Cleaning is an optional step that further curtails the46

computational cost of ER by refining the output of Block47

Building. Its goal is actually to discard those blocks that48

are dominated by redundant and superfluous comparisons;49

the former involve pairs of entities co-occurring in multi-50

ple blocks, while the latter compare pairs of entities that51

do not match.52

• Comparison Cleaning is another optional step that serves53

the same purpose as Block Cleaning. It offers a more time-54

consuming, but more precise functionality that operates at55

the level of individual comparisons.56

• Entity Matching estimates the matching likelihood for all57

entity pairs in the final set of blocks, using string similarity58

measures.59

• Entity Clustering models the estimated similarities as a60

weighted, undirected graph and then partitions it into61

equivalence clusters, i.e., disjoint sets of entity profiles62

that are considered as matches.63

• Data Writing & Evaluation allows for storing the final re-64

sults and for assessing the performance of the selected ER65

pipeline with respect to the main effectiveness and time66

efficiency measures.67

The schema-based end-to-end pipeline also starts with68

Data Reading and ends with Entity Clustering and Data Writing69

& Evaluation, as shown in Figure 1(b). In between, it applies a70

single step, called Similarity Join, which rapidly estimates the71

pairs of entity profiles that satisfy a given matching rule, which72

consists of:73

1. a similarity measure,74

2. the attribute on which the measure is applied, and75

3. a threshold designating the minimum acceptable similarity76

for two entity profiles that are considered as matching.77

As an example, consider the following matching rule for bibli-78

ographic entities: JaccardS im(title1, title2) > 0.8.79

In [1], we also compare the batch, schema-agnostic pipeline80

with its progressive counterpart, i.e., the budget-aware,81

schema-agnostic pipeline, which is shown in Figure 1(c). The82

only difference from the batch pipeline is the Prioritization83

step, which intervenes between Comparison Cleaning and En-84

tity Matching. Its goal is to define the optimal processing order85

of the entity pairs in the final set of blocks so that the matching86

ones are detected as early as possible.87

A video demonstrating JedAI in action is available at:88

https://www.youtube.com/watch?v=OJY1DUrUAe889

2. The reproducible experiments on Entity Resolution90

2.1. Preliminaries91

Depending on the input data, Entity Resolution is categorized92

into two main categories:93

1. Clean-Clean ER receives as input two datasets, which are94

individually duplicate-free (e.g., Wikipedia and Wikidata),95

and its goal is to identify the matches they share.96

2. Dirty ER receives as input one or more datasets, with at97

least one of them containing duplicates in itself. Its goal is98

to partition all entity profiles into equivalence clusters.99

In both cases, the end-result of any end-to-end pipeline is100

evaluated with respect to three effectiveness measures:101

• Recall assesses the portion of existing duplicates that are102

actually identified as such.103

• Precision estimates the portion of entity pairs that are104

marked as matches and are indeed duplicates.105

• F-Measure is the harmonic mean of Recall and Precision.106

The progressive pipelines are additionally assessed through107

Progressive Recall, which quantifies the evolution of recall108

as more entity pairs are compared. We actually consider the109

area under its curve (AUC), which is derived from a two-110

dimensional diagram, where horizontal axis corresponds to the111

number of executed comparisons and the vertical one to the112

number of detected duplicates. The larger (the area under the113

curve of) Progressive Recall is, the earlier are the matches iden-114

tified and the better is the progressive pipeline.115

All effectiveness measures are defined in the interval [0, 1],116

with higher values corresponding to higher effectiveness.117

The time efficiency of an end-to-end pipeline is measured118

through its run-time, i.e., the time that intervenes between re-119

ceiving the input entity profiles and producing the end result.120

2



Table 1: Technical characteristics of the Dirty ER datasets. |E| stands for the number of entity profiles, NVP for the total number of name-value pairs in the dataset,
|N| for the number of distinct attributes, |p̄| for the average profile size (in terms of name-value pairs), |D(E)| for the number of duplicate pairs, and ||E|| for the
comparisons executed by the brute-force approach.

Dcora Dcddb D10K D50K D100K D200K D300K D1M D2M

|E| 1,295 9,763 10,000 50,000 100,000 200,000 300,000 1,000,000 2,000,000
NVP 7,166 183,072 106,108 530,854 1,061,421 2,123,728 3,184,885 10,617,729 21,238,252
|N | 12 106 12 12 12 12 12 12 12
|p̄| 5.53 18.75 10.61 10.62 10.61 10.62 10.62 10.62 10.62
|D(E)| 17,184 299 8,705 43,071 85,497 172,403 257,034 857,538 1,716,102
||E|| 8.38·105 4.77·107 5.00·107 1.25·109 5.00·109 2.00·1010 4.50·1010 5.00·1011 2.00·1012

Table 2: Technical characteristics of the Clean-Clean ER datasets.
Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8

Dataset1 Rest.1 Abt Amazon DBLP Walmart DBLP DBPedia DBPedia 3.0rc
Dataset2 Rest.2 Buy Google Pr. ACM Amazon Scholar IMDB DBPedia 3.4
|E1|/|E2| 339/2,256 1,076/1,076 1,354/3,039 2,616/2,294 2,554/22,074 2,516/61,353 27,615/23,182 1.19·106/2.16·106

NVP1/NVP2 1,130/7,519 2,568/2,308 5,302/9,110 10,464/9,162 14,143/1.1·105 10,064/2·105 1.6·105/8.2·105 1.69·107/3.50·107

|N1|/|N2| 7/7 3/3 4/4 4/4 6/6 4/4 4/7 30,688/52,489
| p̄1|/| p̄2| 3.33/3.33 2.39/2.14 3.92/3.00 3.99/4.00 5.54/5.18 3.23/3.26 5.63/35.20 14.19/16.18
|D(E1 ∩ E2)| 89 1,076 1,104 2,224 853 2,308 22,863 892,579
||E1 × E2|| 7.65·105 1.16·106 4.11·106 6.00·106 5.64·107 1.54·108 6.40·108 2.58·1012

Note that we also provide the minimum amount of main121

memory that is required to successfully run each test in a way122

that approximates the lowest possible running time by minimiz-123

ing the impact of the garbage collector. The reported values cor-124

respond to the −Xmx parameter when running each experiment125

as a Java process, independently of Docker and the browser,126

which raise additional memory requirements.127

2.2. Sets of Experiments128

The experimental analysis of [1] used 17 datasets. Each of129

them consists of one or two sets of entity profiles, in the case130

of Dirty and Clean-Clean ER, respectively, as well as a golden131

standard, i.e., the complete ground-truth of the actual duplicate132

entity profiles. They are all publicly available in the form of133

Java serialized objects as a Mendeley dataset [13] and through134

JedAI’s repository.4 Their technical characteristics are reported135

in Tables 1 and 2, which are the same as Tables 1 and 2 in [11],136

but are repeated here for convenience. Additional information137

about all datasets is provided in Table 3.138

Our experiments are divided into three sets as follows:139

1. The Performance Tests examine the relative performance140

of the two budget-agnostic pipelines - the schema-based141

and the schema-agnostic one.142

2. The Scalability Tests examine how the performance of the143

two budget-agnostic pipelines evolves as the size of the144

input data increases.145

3. The Budget-awareness Tests examine the relative perfor-146

mance of the two forms of the schema-agnostic pipeline:147

the budget-agnostic and the budget-aware.148

Below, we describe every set of experiments in more detail.149

4https://github.com/scify/JedAIToolkit

Performance Tests. These experiments, which are reported150

in Table 4 of [1], compare the schema- and budget-agnostic151

pipeline with its schema-based counterpart over 10 real-world152

datasets. Two of them pertain to Dirty ER (Dcora and Dcddb) and153

the rest to Clean-Clean ER (Dc1-Dc8). The goal of these experi-154

ments is to evaluate both the relative effectiveness and the rela-155

tive time efficiency of these pipelines. For the schema-agnostic156

pipeline, we consider two configurations:157

1. the best one, which uses the parameters that maximize the158

F-Measure per dataset, and159

2. the default one, which uses the default parameters for each160

method in the pipeline, thus being the same for all datasets.161

For the schema-based pipeline, we exclusively consider the best162

configuration per dataset, which maximizes F-Measure.163

Note that these tests involve two baseline systems that have164

been developed by other research groups, Magellan [26] and165

DeepMatcher [27]. Due to their human-in-the-loop approach166

and the lack of necessary details, we could not test their perfor-167

mance ourselves. Instead, we reported their top F-measure per168

dataset in [27], among all configurations and dataset versions.169

For this reason, we disregard both systems in the following.170

Scalability Tests. These experiments are described in the di-171

agrams of Figure 7 in [1], comparing again the two budget-172

agnostic end-to-end pipelines. In this case, though, the goal173

is to assess how their time efficiency and effectiveness evolve174

as the size of the data increase from several thousand to few175

million entity profiles. To this end, we use seven datasets176

that pertain exclusively to Dirty ER; their names indicate their177

size, i.e., the number of their entity profiles: D10K , D50K ,178

D100K , D200K , D300K , D1M and D2M . These datasets con-179

tain synthetic census data, i.e., information about individu-180

als that has been enriched with various forms of artificial181
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Table 3: Core information about each dataset: its reference work, its type (i.e., whether it involves real or synthetic data), the corresponding ER task (Clean-Clean or
Dirty ER), the paths of its entity profiles and its golden standard files in the data repository of [13] and the original data source. We have categorized the 17 datasets
in three groups according to their type and task, following [13], which contains a different folder for each group. Note that in [13], all parts of Dc8 are provided
through a single zipped file, newDBPedia.tar.xz, to minimize their large size.

Dataset Type Task Path to the Entity Profiles File in [13] Path to the Golden Standard File in [13] Source

Dc1 [14] Real Clean-Clean ER Real Clean-Clean ER data/restaurant1Profiles Real Clean-Clean ER data/restaurant1IdDuplicates [15]Real Clean-Clean ER data/restaurant2Profiles

Dc2 [16] Real Clean-Clean ER Real Clean-Clean ER data/abtProfiles Real Clean-Clean ER data/abtBuyIdDuplicates [17]Real Clean-Clean ER data/buyProfiles

Dc3 [16] Real Clean-Clean ER Real Clean-Clean ER data/amazonProfiles Real Clean-Clean ER data/amazonGpIdDuplicates [17]Real Clean-Clean ER data/gpProfiles

Dc4 [16] Real Clean-Clean ER Real Clean-Clean ER data/dblpProfiles Real Clean-Clean ER data/dblpAcmProfiles [17]Real Clean-Clean ER data/acmProfiles

Dc5 [18] Real Clean-Clean ER Real Clean-Clean ER data/walmartProfiles Real Clean-Clean ER data/amazonWalmartIdDuplicates [19]Real Clean-Clean ER data/amazonProfiles2

Dc6 [16] Real Clean-Clean ER Real Clean-Clean ER data/dblpProfiles2 Clean-Clean ER data/dblpScholarIdDuplicates [17]Real Clean-Clean ER data/scholarProfiles

Dc7 [20] Real Clean-Clean ER Real Clean-Clean ER data/imdbProfiles Clean-Clean ER data/moviesIdDuplicates [21]Real Clean-Clean ER data/dbpediaProfiles

Dc8 [20] Real Clean-Clean ER Real Clean-Clean ER data/cleanDBPedia1 Clean-Clean ER data/newDBPediaMatches [21]Real Clean-Clean ER data/cleanDBPedia2
Dcora [22] Real Dirty ER Real Dirty ER data/coraProfiles Real Dirty ER data/coraIdDuplicates [23]
Dcddb [24] Real Dirty ER Real Dirty ER data/cddbProfiles Real Dirty ER data/cddbIdDuplicates [23]
D10K [25] Synthetic Dirty ER Synthetic Dirty ER data/10Kprofiles Synthetic Dirty ER data/10KIdDuplicates [21]
D50K [25] Synthetic Dirty ER Synthetic Dirty ER data/50Kprofiles Synthetic Dirty ER data/50KIdDuplicates [21]
D100K [25] Synthetic Dirty ER Synthetic Dirty ER data/100Kprofiles Synthetic Dirty ER data/100KIdDuplicates [21]
D200K [25] Synthetic Dirty ER Synthetic Dirty ER data/200Kprofiles Synthetic Dirty ER data/200KIdDuplicates [21]
D300K [25] Synthetic Dirty ER Synthetic Dirty ER data/300Kprofiles Synthetic Dirty ER data/300KIdDuplicates [21]
D1M [25] Synthetic Dirty ER Synthetic Dirty ER data/1Mprofiles Synthetic Dirty ER data/1MIdDuplicates [21]
D2M [25] Synthetic Dirty ER Synthetic Dirty ER data/2Mprofiles Synthetic Dirty ER data/2MIdDuplicates [21]

noise (see [1] for more details). For both pipelines, we con-182

sider a single configuration that is applied to all datasets:183

the default configuration for the schema-agnostic pipeline and184

the matching rule that consistently achieves reasonable per-185

formance across all datasets for the schema-based one, i.e.,186

JaccarS im(all tokens 1, all tokens 2) > 0.4, executed by187

PPJoin and followed by Connected Components with the same188

similarity threshold.189

Budget-awareness Tests. These experiments are reported in190

the diagrams of Figure 8 in [1]. They compare the budget-191

and schema-agnostic pipeline with its budget-aware counterpart192

across the same datasets as the Performance Tests - except the193

largest one, Dc8. For each dataset, the parameter configuration194

that corresponds to the optimal performance of the budget- and195

schema-agnostic pipeline is also used for the common meth-196

ods of its budget-aware version. In this way, these tests assess197

the impact of the Prioritization step, which constitutes the sole198

difference between the two pipelines. We evaluate the time effi-199

ciency of the two workflows through their running times and the200

effectiveness through the area under their Progressive Recall.201

2.3. Experimental setup in our primary paper202

All single-core experiments in [1] were implemented in Java203

8 and can be reproduced through JedAI’s Docker image, which204

is publicly available.5 The only requirement is to have Docker6
205

5https://hub.docker.com/repository/docker/gmandi/

jedai-webapp
6https://www.docker.com

installed. Table 4 provides detailed instructions for installing206

the latest version of Docker on Ubuntu. A similar procedure207

is required for other Linux distributions, like Debian,7 Fedora8
208

and CentOS.9 JedAI’s Docker image is expected to run seam-209

lessly in all these cases. Upon successful completion of these210

commands, JedAI’s Web application appears in a browser at:211

http://localhost:8080.212

Note that the option -e JAVA OPTIONS=‘-Xmx4g’ deter-213

mines that 4 Gigabytes (GB) of RAM memory is allocated to214

Java to run JedAI’s Web application. This is an optional pa-215

rameter, as the vast majority of our experiments can be run with216

much fewer memory, as indicated by the memory requirements217

that are reported in Tables 8, 9 and 10 for each experiment. In218

our tests, though, we noticed that 4GB are more suitable for219

ensuring Docker’s stability. Otherwise, it needs restarting af-220

ter some tests. When experimenting with larger datasets, it is221

actually recommended to devote all or most of the available222

memory to Docker so as to avoid out-of-memory exceptions223

or excessively large running times, due to the overuse of the224

garbage collector.225

Note also that the option -v /absolute/path is necessary226

because JedAI’s Docker starts by downloading all datasets from227

the Mendeley data repository [13]. Thus, this option determines228

the directory on the host system (e.g., /home/user/jedai),229

7See https://docs.docker.com/engine/install/debian for de-
tailed instructions.

8See https://docs.docker.com/engine/install/fedora for de-
tailed instructions.

9See https://docs.docker.com/engine/install/centos for de-
tailed instructions.
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Table 4: Detailed instructions for installing and running JedAI’s Docker image on Ubuntu. The steps 1-7 install the latest version of Docker Community Edition. For
more details, please refer to the official Docker setup page at: https://docs.docker.com/engine/install/ubuntu. The remaining steps download JedAI’s
Docker image from the Docker Hub (step 8) or from JedAI’s Mendeley data repository (step 8’) and execute it (step 9).

Step Setup instructions
Update the apt package index.

(1) $ sudo apt-get update
Install packages to allow apt to use a repository over HTTPS.

(2) $ sudo apt-get -y install apt-transport-https ca-certificates curl gnupg-agent software-properties-common
Add Docker’s official GPG key.

(3) $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
Set up the stable repository.

(4) $ sudo add-apt-repository “deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb release -cs) stable”
Update the apt package index.

(5) $ sudo apt-get update
Install the latest version of Docker Engine.

(6) $ sudo apt-get -y install docker-ce docker-ce-cli containerd.io
Verify that Docker Engine is installed correctly.

(7) $ sudo docker run hello-world
Download the latest JedAI Docker image from Docker Hub.

(8) $ sudo docker pull gmandi/jedai-webapp:latest
Alternatively, download JedAI’s Docker image from the Mendeley dataset.

(8’) wget -O jedai.tar https://data.mendeley.com/public-files/datasets/4whpm32y47/files/79f5ccdd-e60a-4f9c-99cb-8f2d7ef0fc25/file_downloaded

$ sudo docker load < jedai.tar
Launch the JedAI Web application.
Note that parameter -Xmx4g allows JedAI to use up to 4Gb RAM. Higher values can be used if more main memory is available.
Note also that parameter -v should point to a directory, e.g., /home/user/jedai, with user-write permissions.

(9) $ sudo docker run -e ‘JAVA OPTIONS=-Xmx4g’ -p 8080:8080 -v /absolute/path gmandi/jedai-webapp

where Docker will store and unpack the dataset files as long as230

it has user-write permissions.231

It is also worth noting that in the option -p 8080:8080, the232

first 8080 refers to the host port, and could be replaced by any233

other free port in the host. Docker will map the first port 8080234

to the http port (second 8080) from the docker container.235

Finally, it is worth noting that it is also possible to use Docker236

on Windows 10. The installation is a straightforward proce-237

dure10 that merely needs some additional steps.11 After the238

successful installation, all experiments can be seamlessly run,239

without any performance issue. Indeed, one of our testing plat-240

forms runs on Windows 10 Pro (Windows − base1 in Table 5).241

2.4. System requirements and performance evaluation242

All single-core experiments in [1] can be reproduced on any243

Java 8 compliant platform, which practically includes all major244

Linux distributions. Our experiments have been successfully245

reproduced on all testing platforms reported in Table 5, with the246

aggregate running times that are reported in Table 6. Note that247

in all systems, a single CPU core was used for each experiment.248

Our original configuration corresponds to Ubuntu−base1 for249

the Performance and Scalability Tests and to Ubuntu − base1′250

for the Budget-awareness Tests. Ubuntu − base2 is a similar251

10See https://docs.docker.com/docker-for-windows/install for
detailed instructions.

11See https://docs.docker.com/docker-for-windows/wsl for
more details.

server but with a different CPU that accounts for significant di-252

versity in the running times. A more important difference is that253

in Ubuntu − base1 and Ubuntu − base1′, all experiments were254

run through script files,12 whereas in Ubuntu − base2, the ex-255

periments were carried out through the user interface of JedAI’s256

Web application. The same applies to all other systems.257

Among the other platforms, it is worth stressing that258

Ubuntu−base4 consists of a bootable USB stick that runs a live259

Ubuntu instance on top of a Windows 10 laptop. The only im-260

plication was that it required a different approach for installing261

Docker.13 No performance issue arose. In fact, Ubuntu−base4262

is often one of the fastest testing platforms, due to the newer263

generation of CPU and RAM technology.264

Regarding the minimum system specifications required by265

our experiments, the size of the hard disk plays a minor role.266

Given that all experiments are executed in main memory and267

produce no output files, the hard disk requirements are deter-268

mined by the space occupied by the Java JDK and the Docker269

installation as well as the size of JedAI’s Docker image, which270

also includes all datasets. In total, this amounts to around 4271

GB, assuming an underlying blank Ubuntu installation. Note,272

though, that this space is occupied whenever command 9 in Ta-273

ble 4 is executed. To recover the space occupied after multiple274

12The source code of all tests is available at: https://github.com/

scify/JedAIToolkit/tree/master/src/test/java/org/scify/

jedai/version3.
13For more details, please refer to https://stackoverflow.com/

questions/30248794/run-docker-in-ubuntu-live-disk.
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Table 5: The testing platforms that were successfully used to reproduce our experiments. Note that Ubuntu− base1 was used in [1] for performing the experiments
reported in Tables 8 and 9, while Ubuntu − base1′ was only used for the experiments in Table 10.

Testing platform Type Software Configuration Hardware Configuration Tested by

Ubuntu − base1 Server Ubuntu 14.04.5 LTS 1 Intel Xeon E5-4603 v2 @2.20GHz, AuthorsOpenJDK 1.8.0 128 Gb DDR3 RAM, 1.6 Tb mechanical disk

Ubuntu − base1′ Server Ubuntu 14.04 LTS 1 Intel Xeon E5-2670 v2 @2.50GHz, AuthorsJava 1.8.0 80GB DDR3 RAM, 1Tb mechanical disk

Ubuntu − base2 Server Ubuntu 14.04.6 LTS 1 AMD Opteron 6320 @2.80GHz, Authors
Docker 19.03.13, Java 1.8.0 128 Gb DDR3 RAM, 1.6 Tb mechanical disk

Ubuntu − base3 Laptop Ubuntu 18.04.5 LTS 1 Intel Core i7-4710MQ @2.50GHz, AuthorsDocker 20.10.5, Java 1.8.0 16 Gb DDR3 RAM, 120 Gb SSD

Ubuntu − base4 Laptop Ubuntu 20.04 LTS 1 Intel Core i5-1035G1 @1.00GHz, AuthorsDocker 19.03.8, OpenJDK 1.8.0 4 Gb DDR4 RAM, 32 Gb flash drive

Ubuntu − base5 Laptop Linux Mint 19.1 Tessa 1 Intel Core i7-3770 @3.40GHz, AuthorsDocker 19.03.8, Java 1.8.0 16 Gb DDR3 RAM, 1 Tb mechanical disk

Ubuntu − base6 Laptop Ubuntu 20.04.2 LTS Intel Core i7-9750H @2.60GHz, ReviewerDocker 19.03.14, OpenJDK 1.8.0 32 GB RAM, 2.5Tb mechanical disk

Ubuntu − base7 Server Ubuntu 20.04.2 LTS 1 Intel Xeon Bronze 3204 @1.9GHz, Reviewer512 Gb DDR4 RAM,120Gb mechanical disk

Ubuntu − base8 Server Ubuntu 16.04.7 LTS 1 Intel Core i7 8700k @3.7GHz, 64Gb swap, Reviewer64 Gb DDR4 RAM, 3Tb mechanical disk

Ubuntu − base9 Laptop Ubuntu 20.04.1 LTS 1 Intel Core i5 8265u @1.6GHz, 16 DDR4 RAM, Reviewerno swap, 34Gb virtual disk over SSD

Windows − base1 Laptop Windows 10 Pro v. 20H2, 1 Intel Core i5-1035G1 @1.00GHz, AuthorsDocker 20.10.5, Java 15.0.1 6 Gb DDR4 RAM, 240 Gb SSD

Table 6: The aggregate time required to run all the experiments included in
Tables 8, 9 and 10 (that could be completed in less than 40 hours) for each
testing platform, while reproducing most experiments from [1]. The testing
platforms Ubuntu− base3, Ubuntu− base4, Ubuntu− base5, Ubuntu− base6,
Ubuntu − base9 and Windows − base1 were limited in some experiments by
the available main memory, thus exhibiting lower aggregate running times.

Run Testing platform Running time Tested by
1 Ubuntu − base1 5,526 min ≈ 92.1 hrs Authors
2 Ubuntu − base2 6,832 min ≈ 113.9 hrs Authors
3 Ubuntu − base3 2,678 min ≈ 44.6 hrs Authors
4 Ubuntu − base4 187 min ≈ 3.1 hrs Authors
5 Ubuntu − base5 2,198 min ≈ 36.6 hrs Authors
6 Ubuntu − base6 1,428 min ≈ 23.8 hrs Reviewer
7 Ubuntu − base7 6,393 min ≈ 106.5 hrs Reviewer
8 Ubuntu − base8 3,212 min ≈ 53.5 hrs Reviewer
9 Ubuntu − base9 1,731 min ≈ 28.8 hrs Reviewer
10 Windows − base1 1,743 min ≈ 29.1 hrs Authors

runs, we can:275

• Remove the existing Docker containers:276

sudo docker container ls -a | grep gmandi277

obtains the IDs of JedAI’s containers, and278

sudo docker rm -f containerID279

removes a given container.280

• Remove JedAI’s Docker image:281

sudo docker rmi gmandi/jedai-webapp.14
282

14Alternatively, run sudo docker images to obtain the IDs of the images,
and then use sudo docker rmi imageID to remove them.

• Finally, recover disk space for unused volumes:283

sudo docker volume prune.284

Regarding the size of main memory (RAM), the vast major-285

ity of experiments require less than 2 Gb, as reported in Tables286

8, 9 and 10, but 4 Gb are suggested to ensure Docker’s sta-287

bility, as explained above. However, the experiments with the288

two largest synthetic datasets, D1M and D2M , require up to 25289

Gb, whereas the largest real dataset, Dc8, requires up to 105290

Gb. The corresponding experiments cannot be run on most291

testing platforms that are equipped with 16 Gb RAM or less,292

namely Ubuntu − base3, Ubuntu − base4, Ubuntu − base5,293

Ubuntu − base6, Ubuntu − base9 and Windows − base1. Be-294

low, we report in detail the memory requirements of every ex-295

periment, highlighting the experiments that were not feasible,296

due to insufficient main memory in the testing platforms.297

Finally, it is worth noting that the times reported in Table 6298

merely correspond to the time taken by each system to run all299

experiments. Given that each experiment is carried out through300

the user interface of JedAI’s Web application (i.e., they are not301

executed through a script), significant time is taken to manually302

navigate through all menus. Among them, the Entity Matching303

step requires additional time to transform the selected dataset304

into the textual representation that is suitable for assessing en-305

tity similarity (e.g., by tokenizing all attribute values into char-306

acter n-grams). This time, which is negligible only for the307

smallest datasets, is not added to the overall running times in308

Table 6, which disregard completely the navigation time.309
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Table 7: Detailed instructions for reproducing all single-core experiments in [1] using the graphical user interface of JedAI’s Web application.

Step Reproduction instructions
After launching JedAI’s Docker image with the last command in Table 4:

(1) Open a browser at http://localhost:8080.
If Docker runs on a server, replace ‘localhost with its URL. The host port 8080 was arbitrarily specified by the last
command in Table 4 and can be changed at will. JedAI’s homepage, depicted in Figure 2(a), shows up.

(2) Press the button ‘New Workflow’.
The window ‘Choose New Workflow mode’ in Figure 2(b) pops up.

(3) Press the button ‘Desktop Mode’.
Because we are interested in the serial execution of JedAI’s experiments.
The Web page ‘Select Workflow’ in Figure 2(c) shows up.

(4) Press the button ‘Run tests’ at the bottom right corner.
The window ‘Select Test to execute’ in Figure 2(d) shows up.
The web application is already equipped with the parameters of all experiments.
Thus, any experiment in [1] can be reproduced simply by selecting it from the menus of Figure 2(d).

(5) In ‘Test Type’, select ‘Performance Test’, ‘Scalability Test’ or ‘Budget-awareness Test’.
The options for the rest of the selection criteria in the same window are activated.

(6) In ‘ER Mode’, select ‘Clean-Clean ER’ or ‘Dirty ER’.
For Scalability Tests, only ‘Dirty ER’ is available.

(7) In ‘Workflow Type’, select ‘Best Schema-agnostic’, ‘Default Schema-agnostic’ or ‘Schema-aware’ pipelines.
For Scalability Tests, only the last two options are available.

(8) In ‘Datasets’, select one among the available datasets in Tables 1, 2 and 3.
(9) Press the button ‘Confirm’.

JedAI loads the selected pipeline with the parameter configuration corresponding to the selected dataset.
One Web page for each step in the selected pipeline (see Figure 1) shows up.

(10) Press the button ‘Next’ in the window of each pipeline step to proceed to the next one.
After going through all pipeline steps, the Web page ‘Confirm Configurations’ in Figure 2(e) shows up.

(11) Press the button ‘Confirm’.
The Web page ‘Workflow Execution’ shows up.

(12) Press the button ‘Execute Workflow’.
The selected experiment is carried out. Upon completion, the respective performance is reported in the same window
with respect to Recall, Precision, F-Measure and running time, as in Figure 2(f).

(13) In case of Budget-awareness Tests, press the button ‘Show Plot’ at the bottom left corner.
A window similar to the one in Figure 2(g) shows up, depicting Progressive Recall along with the area under its curve.

(14) Press JedAI logo at the top of the window to return to the first screen and proceed with the next test.

2.5. Obtaining and compiling our source code310

The source code for JedAI version 3.0, which is used in311

[1] and in the present experimental study, has been publicly312

released at: https://github.com/scify/JedAIToolkit.313

Any development kit and/or IDE for Java 8 or higher can be314

used for compiling it, but this is not necessary. JedAI’s Docker315

image contains an executable jar file with the entire source code316

and its dependencies. When executed, it deploys JedAI’s Web317

application, allowing users to reproduce all experiments by fol-318

lowing the instructions below, in Section 2.6.319

2.6. Running the experiments320

Table 7 provides detailed guidelines for reproducing all ex-321

periments. In essence, the user merely needs to navigate322

through the windows of JedAI’s user interface, which are il-323

lustrated in Figure 2. This means that minimal human interven-324

tion is required. For example, all datasets in Tables 1, 2 and 3325

are already included in JedAI’s Docker image; the one selected326

in Step 8 is automatically loaded after the Data Reading step,327

which follows Step 9 in all pipelines. Similarly, there is a sep-328

arate window with all available methods for each pipeline step,329

but no particular action is required from the user: the method330

used in the chosen experiment is already marked as selected and331

its parameters are appropriately configured. The user simply332

needs to press ‘Next’ in each step to proceed with the next one.333

It is worth stressing at this point the wealth of informa-334

tion that is provided by the final window, called ‘Workflow335

Execution’, after completing an experiment:336

1. The button ‘Explore’ presents the entity profiles that form337

each equivalence cluster.338

2. The tab ‘Details’ contains the output of each step in the339

latest pipeline so as understand its operation and contribu-340

tion to the overall performance.341

3. The tab ‘Workbench’ summarizes the performance of all342

pipelines executed so far, as shown in Figure 2(h). This al-343

lows for juxtaposing the performance of different pipelines344

over the same dataset, even at the level of individual steps:345

pressing the button ≡ in the leftmost column displays a346

performance breakdown among all steps.347
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: The screens of JedAI’s Web application for reproducing all single core experiments in [1]: (a) The initial screen of JedAI’s Web application. The button
‘New Workflow’ should be pressed. (b) The second screen, which defines the execution mode. The button ‘Desktop Mode’ should be pressed for the single-core
experiments. (c) The third screen, which defines the type of the end-to-end pipeline. The button ‘Run tests’ should be pressed to start the reproduction of the
experiments. (d) The fourth screen, which defines the experimental settings we want to reproduce with respect to the type of experiments, the type of ER, the type of
end-to-end pipeline and the dataset. (e) The ‘Confirm Configuration’ screen that summarizes the experimental settings we have selected. (f) The final screen,
‘Workflow Execution’, which presents the performance of the selected end-to-end pipeline. (g) The screen showing the area under the curve of Progressive
Recall (AUC) in case of Budget-awareness Tests. (h) The benchmark screen summarizing the performance of all pipelines executed so far with respect to Precision,
Recall, F-Measure, Run-time and Progressive Recall (AUC), in case of Budget-awareness Tests.
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Table 8: The results of the Performance Tests over all real datasets across all testing platforms. For each pipeline, the effectiveness measures per dataset are common
among all testing platforms. Only the running times differ among them. IM indicates a test that was not carried out due to insufficient memory. Note that Precision,
Recall and F-Measure are rounded to three decimal places, memory requirements to two decimal places and running times to one decimal place.

Clean-Clean ER Dirty ER
Restau- Abt Amazon DBLP Walmart DBLP IMDB DBP-3.0rc

Dcora Dcddbrants Buy GP ACM Amazon Scholar DBPedia DBP-3.4
Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8

Precision 0.473 0.902 0.544 0.975 0.310 0.887 0.908 0.806 0.876 0.874
Recall 1.000 0.836 0.653 0.988 0.878 0.952 0.834 0.819 0.816 0.856
F-Measure 0.643 0.867 0.594 0.981 0.459 0.919 0.869 0.813 0.845 0.865
Memory (Gb) 0.02 0.04 0.19 0.09 0.32 0.75 0.99 105.00 0.17 1.45
Ubuntu − base1 1.1 sec 1.3 sec 12.0 sec 2.0 sec 8.3 sec 23.5 sec 91.0 sec 14.5 hrs 5.5 sec 65.0 sec
Ubuntu − base2 0.6 sec 1.3 sec 15.1 sec 1.3 sec 6.2 sec 28.9 sec 113.0 sec 22.1 hrs 2.7 sec 61.8 sec
Ubuntu − base3 0.5 sec 1.0 sec 11.2 sec 0.9 sec 4.4 sec 10.2 sec 68.0 sec IM 1.8 sec 30.6 sec
Ubuntu − base4 0.2 sec 0.6 sec 8.6 sec 0.7 sec 3.5 sec 9.2 sec 53.4 sec IM 1.8 sec 23.4 sec
Ubuntu − base5 0.3 sec 0.6 sec 8.2 sec 0.8 sec 3.7 sec 9.1 sec 48.5 sec IM 1.3 sec 23.9 sec
Ubuntu − base6 0.1 sec 0.6 sec 8.3 sec 0.7 sec 3.0 sec 7.7 sec 51.9 sec IM 1.3 sec 21.7 sec
Ubuntu − base7 0.2 sec 1.3 sec 15.9 sec 1.2 sec 5.3 sec 15.3 sec 98.4 sec 16.8 hrs 2.4 sec 49.0 sec
Ubuntu − base8 0.2 sec 0.6 sec 7.9 sec 0.6 sec 2.5 sec 6.5 sec 39.5 sec IM 1.0 sec 18.8 sec
Ubuntu − base9 0.4 sec 1.1 sec 16.1 sec 1.0 sec 5.1 sec 11.8 sec 75.5 sec IM 1.8 sec 30.8 sec
Windows − base1 0.3 sec 1.0 sec 8.7 sec 0.9 sec 4.2 sec 18.2 sec 98.6 sec IM 1.7 sec 26.7 sec

(a) Default configuration of the budget- and schema-agnostic pipeline
Precision 0.788 0.946 0.576 0.993 0.590 0.946 0.905 0.841 0.912 0.869
Recall 1.000 0.854 0.646 0.992 0.753 0.949 0.876 0.821 0.819 0.886
F-Measure 0.881 0.898 0.609 0.992 0.662 0.948 0.890 0.831 0.863 0.877
Memory (Gb) 0.03 0.04 0.07 0.04 0.12 0.98 0.80 64.00 0.02 1.47
Ubuntu − base1 1.0 sec 1.1 sec 4.5 sec 1.3 sec 5.3 sec 30.0 sec 46.0 sec 12.7 hrs 0.9 sec 65.7 sec
Ubuntu − base2 0.7 sec 1.1 sec 6.1 sec 0.8 sec 12.9 sec 45.1 sec 49.5 sec 21.9 hrs 0.8 sec 70.0 sec
Ubuntu − base3 0.5 sec 0.8 sec 5.0 sec 0.6 sec 2.4 sec 16.4 sec 29.0 sec IM 0.6 sec 32.4 sec
Ubuntu − base4 0.5 sec 0.7 sec 4.1 sec 0.4 sec 1.8 sec 12.6 sec 23.9 sec IM 0.4 sec 25.6 sec
Ubuntu − base5 0.4 sec 0.6 sec 3.2 sec 0.7 sec 2.0 sec 12.2 sec 24.5 sec IM 0.5 sec 30.8 sec
Ubuntu − base6 0.1 sec 0.5 sec 3.1 sec 0.5 sec 1.7 sec 13.1 sec 21.8 sec IM 0.3 sec 23.3 sec
Ubuntu − base7 0.1 sec 0.6 sec 7.3 sec 0.8 sec 2.8 sec 23.9 sec 41.7 sec 16.5 hrs 0.7 sec 51.3 sec
Ubuntu − base8 0.1 sec 0.4 sec 3.5 sec 0.4 sec 1.2 sec 11.2 sec 18.6 sec 12.9 hrs 0.3 sec 24.5 sec
Ubuntu − base9 0.2 sec 0.4 sec 5.9 sec 0.6 sec 2.2 sec 16.8 sec 34.8 sec IM 0.3 sec 34.9 sec
Windows − base1 0.2 sec 0.6 sec 4.8 sec 0.5 sec 2.3 sec 18.7 sec 28.9 sec IM 0.5 sec 32.5 sec

(b) Best configuration of the budget- and schema-agnostic pipeline
Precision 0.755 0.884 0.663 0.978 0.829 0.953 0.931 0.833 0.751 0.278
Recall 0.933 0.438 0.423 0.932 0.552 0.775 0.499 0.370 0.859 0.719
F-Measure 0.834 0.585 0.517 0.954 0.663 0.855 0.649 0.512 0.802 0.401
Memory (Gb) 0.01 0.02 0.02 0.02 0.06 0.11 0.42 30.00 0.02 0.06
Ubuntu − base1 0.2 sec 0.4 sec 0.5 sec 0.6 sec 0.5 sec 14.0 sec 7.7 sec 15.2 min 0.3 sec 0.6 sec
Ubuntu − base2 0.2 sec 0.2 sec 0.2 sec 0.5 sec 0.2 sec 13.8 sec 6.9 sec 12.4 min 0.3 sec 0.3 sec
Ubuntu − base3 0.2 sec 0.3 sec 0.3 sec 0.2 sec 0.2 sec 10.6 sec 5.2 sec IM 0.2 sec 0.3 sec
Ubuntu − base4 0.1 sec 0.1 sec 0.1 sec 0.1 sec 0.1 sec 10.2 sec 3.5 sec IM 0.2 sec 0.3 sec
Ubuntu − base5 0.1 sec 0.1 sec 0.2 sec 0.2 sec 0.3 sec 7.4 sec 3.4 sec IM 0.2 sec 0.3 sec
Ubuntu − base6 0.1 sec 0.1 sec 0.2 sec 0.3 sec 0.1 sec 6.3 sec 3.3 sec IM 0.1 sec 0.3 sec
Ubuntu − base7 0.1 sec 0.2 sec 0.2 sec 0.2 sec 0.2 sec 14.2 sec 7.7 sec 11.0 min 0.1 sec 0.2 sec
Ubuntu − base8 0.1 sec 0.1 sec 0.1 sec 0.1 sec 0.1 sec 5.9 sec 3.2 sec 5.2 min 0.1 sec 0.1 sec
Ubuntu − base9 0.1 sec 0.1 sec 0.2 sec 0.2 sec 0.1 sec 16.5 sec 5.6 sec IM 0.1 sec 0.2 sec
Windows − base1 0.1 sec 0.1 sec 0.2 sec 0.2 sec 0.1 sec 16.5 sec 5.6 sec IM 0.1 sec 0.2 sec

(c) Best configuration of the budget-agnostic, schema-based pipeline

The outcomes of the Performance, the Scalability and the348

Budget-awareness tests over all testing platforms are reported349

in Tables 8, 9 and 10, respectively. In all cases, the effec-350

tiveness measures are common among all platforms, with the351

only differences corresponding to the running times. Compared352

to the experiments reported in [1], the effectiveness results of353

Budget-awareness tests are practically identical in most cases.354

The only significant exceptions pertain to the best schema-355

agnostic pipeline over Dc2, Dc3 and Dcddb, whose F-Measure356

has now changed from 0.900, 0.607 and 0.872 to 0.898, 0.609357

and 0.877, respectively, after some bug fixes. The F-Measure358

of the default schema-agnostic pipeline over Dc3 has also in-359

creased from 0.586 to 0.594. The effectiveness results of the360

Scalability and the Budget-awareness tests are also identical361

9



Table 9: The results of the Scalability Tests over the seven synthetic datasets across all testing platforms. For each pipeline, the effectiveness measures per dataset
are common among all testing platforms. Only the running times differ among them. IM indicates a test that was not carried out due to insufficient memory. Note
that Precision, Recall and F-Measure are rounded to three decimal places, memory requirements to two decimal places and running times to one decimal place.

D10K D50K D100K D200K D300K D1M D2M

Precision 0.948 0.899 0.887 0.844 0.866 0.868 0.836
Recall 0.994 0.989 0.983 0.978 0.973 0.960 0.954
F-Measure 0.970 0.942 0.933 0.906 0.916 0.911 0.891
Memory (Gb) 0.12 0.80 3.10 6.20 7.20 15.00 25.00
Ubuntu − base1 1.8 sec 12.8 sec 35.1 sec 120.2 sec 193.1 sec 32.3 min 147.1 min
Ubuntu − base2 1.6 sec 11.4 sec 37.3 sec 130.8 sec 199.3 sec 33.4 min 145.4 min
Ubuntu − base3 1.4 sec 5.2 sec 19.8 sec 51.9 sec 141.9 sec 22.1 min IM
Ubuntu − base4 0.9 sec 4.3 sec 10.7 sec 54.3 sec IM IM IM
Ubuntu − base5 1.0 sec 3.7 sec 11.5 sec 37.8 sec 77.0 sec 16.9 min IM
Ubuntu − base6 0.7 sec 4.2 sec 10.8 sec 36.7 sec 114.6 sec – –
Ubuntu − base7 0.8 sec 6.3 sec 19.9 sec 63.4 sec 148.0 sec 24.2 min 93.5 min
Ubuntu − base8 0.5 sec 3.6 sec 9.0 sec 27.1 sec 71.3 sec 12.9 min 51.4 min
Ubuntu − base9 1.5 sec 8.2 sec 15.7 sec 46.9 sec 118.4 sec 22.6 min IM
Windows − base1 1.4 sec 5.0 sec 10.8 sec 47.2 sec 232.5 sec IM IM

(a) Default configuration of the budget- and schema-agnostic pipeline
Precision 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Recall 0.593 0.598 0.602 0.600 0.602 0.603 0.602
F-Measure 0.744 0.749 0.752 0.750 0.751 0.752 0.752
Memory (Gb) 0.03 0.10 0.30 1.15 1.75 11.00 16.00
Ubuntu − base1 7.0 sec 137.2 sec 695.3 sec 55.6 min 140.3 min 17.8 hrs >40 hrs
Ubuntu − base2 5.3 sec 120.3 sec 534.8 sec 49.6 min 96.9 min 19.3 hrs >40 hrs
Ubuntu − base3 4.0 sec 89.4 sec 367.8 sec 26.3 min 69.4 min 13.0 hrs >40 hrs
Ubuntu − base4 3.9 sec 74.6 sec 316.5 sec 24.0 min 48.4 min IM IM
Ubuntu − base5 3.6 sec 67.9 sec 298.2 sec 21.3 min 55.9 min 10.3 hrs >40 hrs
Ubuntu − base6 3.8 sec 78.6 sec 341.5 sec 23.6 min 57.1 min – >40 hrs
Ubuntu − base7 7.9 sec 172.2 sec 704.1 sec 49.5 min 111.9 min 19.8 hrs >40 hrs
Ubuntu − base8 3.1 sec 140.1 sec 375.2 sec 22.3 min 49.7 min 10.2 hrs 39.8 hrs
Ubuntu − base9 5.3 sec 96.8 sec 376.4 sec 28.7 min 64.5 min 10.8 hrs >40 hrs
Windows − base1 4.3 sec 87.3 sec 376.7 sec 26.7 min 56.8 min IM IM

(b) Best configuration of the budget-agnostic, schema-based pipeline

with those reported in [1]; only their format has changed from362

diagrams to tables. In all cases, the running times in [1] are363

reproduced here, corresponding to Ubuntu − base1 in Tables 8364

and 9 and to Ubuntu − base1′ in Table 10.365

Finally, it is worth stressing that there is a delay when press-366

ing the ‘Next’ button in the window ‘Entity Matching’ of367

the schema-agnostic pipelines. For small datasets, the delay is368

hardly observable, but it increases for larger datasets, raising up369

to few minutes for D1M , D2M and Dc8. This delay is caused by370

a process that converts all entity profiles into the representation371

model of the selected Entity Matching method. This is included372

in the running times of Ubuntu − base1, where all experiments373

were run through script files, but is not considered by any other374

testing platform, where all experiments were executed through375

JedAI’s user interface. This is one of the reasons for the signif-376

icantly higher running times of Ubuntu − base1 even in com-377

parison to similar testing platforms, like Ubuntu − base2.378

3. Reconfiguring and Extending our Experiments379

3.1. Evaluating different experimental setups380

To test the robustness of our experimental study, the configu-381

ration of a particular experiment can be adjusted in two different382

ways as follows:383

1. by enriching or modifying the methods of at least one384

pipeline step, and/or385

2. by altering the value of at least one parameter in one of the386

selected methods.387

This is possible by repeating the procedure in Table 7 up to388

the first window of Step 10, namely ‘Data Reading’. Subse-389

quently, in the separate window of each step, the pre-selected390

options can be modified as described below, in Sections 3.1.1,391

3.1.2 and 3.1.3, for each type of experiments.392

Note that every method in every pipeline step is associated393

with three configuration approaches: ‘Default’, ‘Automatic’,394

‘Manual’. The ‘Default’ configuration is already widely used395

in the experimental analysis of [1]. The ‘Automatic’ config-396

uration applies grid or random search over numerous iterations397

10



Table 10: The results of the Budget-awareness Tests over all real datasets across all testing platforms. For each pipeline, effectiveness is measured through the
area under the curve of Progressive Recall, which is common among all testing platforms in each dataset only for the budget-aware pipeline. Its budget-agnostic
counterpart arranges all pairwise comparisons in a random order, thus yielding a Progressive Recall that differs in each run and, thus, among the testing platforms.
Note that Precision, Recall and F-Measure are rounded to three decimal places, memory requirements to two decimal places and running times to one decimal place.
Note also that Dc8 is omitted, as in [1], due to the excessively large running time and the very high memory requirements of the corresponding experiment.

Clean-Clean ER Dirty ER
Restau- Abt Amazon DBLP Walmart DBLP IMDB

Dcora Dcddbrants Buy GP ACM Amazon Scholar DBPedia
Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7

Progressive Recall 0.709 0.689 0.573 0.866 0.635 0.930 0.616 0.416 0.585
Memory (Gb) 0.06 0.08 0.30 0.16 0.65 4.00 6.00 0.30 3.50
Ubuntu − base1′ 0.5 sec 13.7 sec 1.8 min 32.9 sec 5.2 min 46.3 min 18.4 hrs 16.9 sec 79.3 sec
Ubuntu − base2 0.6 sec 19.0 sec 3.4 min 49.8 sec 7.8 min 68.2 min 20.1 hrs 15.8 sec 96.5 sec
Ubuntu − base3 0.4 sec 14.6 sec 2.2 min 48.5 sec 7.4 min 54.1 min 12.7 hrs 12.2 sec 73.5 sec
Ubuntu − base4 0.3 sec 12.5 sec 1.5 min 35.7 sec 6.1 min 40.7 min IM 9.9 sec 55.6 sec
Ubuntu − base5 0.6 sec 12.2 sec 2.0 min 31.5 sec 5.1 min 37.2 min 10.8 hrs 9.4 sec 49.9 sec
Ubuntu − base6 0.3 sec 11.9 sec 1.4 min 33.5 sec 4.9 min 34.5 min 9.6 hrs 10.1 sec 53.8 sec
Ubuntu − base7 0.4 sec 20.9 sec 2.7 min 63.1 sec 9.4 min 64.7 min 22.0 hrs 19.6 sec 107.8 sec
Ubuntu − base8 0.3 sec 10.2 sec 1.2 min 30.0 sec 4.2 min 28.7 min 9.5 hrs 8.8 sec 45.8 sec
Ubuntu − base9 0.8 sec 16.6 sec 2.2 min 48.8 sec 6.9 min 38.8 min 13.9 hrs 14.3 sec 66.9 sec
Windows − base1 0.5 sec 14.9 sec 1.9 min 20.4 sec 8.3 min 52.4 min 11.3 hrs 15.3 sec 80.0 sec

(a) Budget-aware, schema-agnostic pipeline
Memory (Gb) 0.09 0.20 0.20 0.35 0.65 4.00 6.00 0.30 3.50
Progressive Recall 0.489 0.418 0.337 0.491 0.386 0.478 0.435 0.661 0.451
Ubuntu − base1′ 1.6 sec 19.2 sec 2.4 min 34.4 sec 11.6 min 51.0 min 20.8 hrs 30.4 sec 13.5 min
Progressive Recall 0.491 0.400 0.341 0.489 0.383 0.479 0.436 0.665 0.446
Ubuntu − base2 0.5 sec 15.5 sec 2.6 min 40.4 sec 13.6 min 61.5 min 21.8 hrs 18.5 sec 13.6 min
Progressive Recall 0.481 0.403 0.328 0.488 0.397 0.474 0.437 0.659 0.466
Ubuntu − base3 0.4 sec 12.4 sec 1.9 min 31.4 sec 12.6 min 49.5 min 14.5 hrs 15.4 sec 11.9 min
Progressive Recall 0.521 0.405 0.335 0.495 0.371 0.488 IM 0.668 0.464
Ubuntu − base4 0.5 sec 10.2 sec 1.6 min 25.9 sec 9.7 min 36.7 min IM 10.4 sec 7.8 min
Progressive Recall 0.487 0.402 0.322 0.488 0.383 0.475 0.435 0.678 0.482
Ubuntu − base5 0.5 sec 11.1 sec 1.4 min 25.8 sec 8.8 min 37.3 min 12.2 hrs 10.8 sec 8.0 min
Progressive Recall 0.483 0.399 0.326 0.498 0.374 0.476 0.436 0.666 0.460
Ubuntu − base6 0.2 sec 10.7 sec 1.6 min 28.9 sec 9.0 min 35.6 min 11.1 hrs 10.6 sec 8.0 min
Progressive Recall 0.457 0.406 0.344 0.501 0.381 0.463 0.436 0.661 0.510
Ubuntu − base7 0.4 sec 21.9 sec 2.9 min 57.4 sec 19.0 min 72.7 min 23.3 hrs 21.8 sec 15.9 min
Progressive Recall 0.528 0.416 0.319 0.502 0.376 0.464 0.435 0.668 0.488
Ubuntu − base8 0.2 sec 9.0 sec 1.4 min 25.1 sec 7.5 min 29.8 min 10.8 hrs 9.9 sec 6.9 min
Progressive Recall 0.453 0.414 0.330 0.490 0.379 0.476 0.436 0.669 0.463
Ubuntu − base9 0.3 sec 14.4 sec 2.4 min 39.7 sec 12.4 min 46.4 min 14.5 hrs 18.0 sec 11.9 min
Progressive Recall 0.520 0.396 0.334 0.498 0.381 0.469 0.434 0.659 0.453
Windows − base1 0.7 sec 14.5 sec 2.2 min 37.9 sec 13.8 min 50.8 min 13.5 hrs 15.1 sec 24.3 min

(b) Budget- and schema-agnostic pipeline
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(a)

(b)
Figure 3: (a) The screen showing the configuration for a particular pipeline
step. (b) The tooltip that explains the role of a particular parameter during the
manual configuration of a method.

so as to identify the settings that maximize F-Measure. The398

random search involves 100 iterations, while the grid search399

might yield an exponential number of iterations in case multi-400

ple parameters are simultaneously fine-tuned. As both options401

might lead to long running times, the preferred approach is the402

‘Manual’ configuration. After selecting it, JedAI presents all403

parameters of the current pipeline along with their default val-404

ues, as in Figure 3(a). The user can alter these values at will and405

store them by pressing ‘Next’ to proceed to the next window.406

Note also that every method in JedAI implements the407

IDocumentation interface, which conveys all necessary in-408

formation for its manual configuration. When configuring a409

specific parameter, the information image i is shown. When410

leaving the mouse cursor over it, a tooltip appears that describes411

the role of this parameter. An example is shown in Figure 3(b).412

Below, we explain the restrictions that apply to each pipeline413

step with respect to the methods that can be selected.414

3.1.1. Schema-Agnostic End-to-End Pipeline415

As explained above, this pipeline involves six steps:416

1. Schema Clustering. At most one method can be selected,417

but this step is not used in the considered experiments.418

2. Block Building. One or more of the nine available meth-419

ods can be selected. All experiments exclusively employ420

Token Blocking, which is a parameter-free approach.421

3. Block Cleaning. Any combination of the three available422

methods is possible. All experiments apply Comparison-423

based Block Purging and Block Filtering with their default424

parameter values.425

4. Comparison Cleaning. At most one of the nine available426

methods can be selected. In our experiments, we exclu-427

sively use Cardinality Node Pruning (CNP) with its de-428

fault configuration. All methods are configured simply by429

selecting one of the six weighting schemes.430

5. Entity Matching. One of the two available methods can431

be applied. All experiments employ the Profile Matcher.432

Both methods are configured by selecting a similarity mea-433

sure and a compatible representation model, which trans-434

forms the set of textual attribute values in each entity pro-435

file into a suitable format. These two parameters give rise436

to numerous configurations.437

6. Entity Clustering. At most one method can be selected438

in this step. There are three methods available for Clean-439

Clean ER, but all experiments employ the Unique Map-440

ping Clustering approach. For Dirty ER, there are seven441

methods for Dirty ER, but all experiments use the Con-442

nected Components Clustering. All methods are config-443

ured by setting their similarity threshold, below which all444

pairwise comparisons are discarded.445

3.1.2. Schema-Based End-to-End Pipeline446

This pipeline consists of two steps:447

1. The Similarity Join step offers five similarity join algo-448

rithms. Among them, PPJoin is used in all experiments.449

All methods are configured by setting their similarity450

threshold along with the attribute(s), to which they are ap-451

plied.452

2. The Entity Clustering step is the same as the schema-453

agnostic pipeline. In most cases, it uses the same similarity454

threshold as the previous step.455

3.1.3. Budget-Aware Schema-Agnostic Pipeline456

This pipeline differs from its budget-agnostic counterpart457

(see Section 3.1.1) only in the Prioritization step that intervenes458

between Comparison Cleaning and Entity Matching. There459

are different options for this step, depending on the preced-460

ing pipeline steps: if no Block Building method is employed,461

two methods are available, otherwise one of five different meth-462

ods can be used. The latter approach was used in all Budget-463

awareness tests. In both cases, at most one approach can be464

selected and it is configured by setting its budget (i.e., number465

of executed comparisons) and the weighting scheme that lies at466

its core.467

Note that for all tests, the next configuration experiment is468

performed by pressing the ‘Start Over’ button at the bottom469

right corner of Figure 2(f) to return to the Data Reading step of470

the current experiment.471

3.2. Extending our experiments472

Our experimental study can be extended in two ways. First,473

by adding new datasets through the ‘Data Reading’ step. The474

window of this step allows users to select any dataset in any of475

the supported formats (CSV, relational DB, XML or RDF) that476

is stored either locally or is available through a server with a477

public URL. Note that each dataset should be accompanied by478

the golden standard comprising all duplicates.479

Second, it is possible to extent our experimental analysis with480

new methods in any of the considered pipeline steps by lever-481

aging JedAI’s extensible architecture. The only requirement is482

that every new method is available through a Java class that im-483

plements the interface of the corresponding pipeline step - as484
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explained in [1], every step is associated with a simple Java in-485

terface that determines its input and output. In this way, new486

methods can be seamlessly integrated into JedAI’s code and487

be treated like the already available methods. Ideally, the new488

methods should also implement the IDocumentation inter-489

face, which exposes the following functions that return textual490

descriptions about the core characteristics of an algorithm:491

• getMethodName() returns the name of the method.492

• getParameterName(int parameterId) returns the493

name of a particular configuration parameter.494

• getParameterDescription(int parameterId)495

returns a short description for a particular configuration496

parameter.497

• getMethodParameters() returns a description for all498

configuration parameters of the method, using the above499

functions.500

• getMethodInfo() returns a short description of the501

method’s internal functionality.502

• getMethodConfiguration() returns the parameter con-503

figuration of the current instance of a method. It is called504

by logger.505

• getParameterConfiguration() returns a JsonArray506

object with a JsonObject for every configuration pa-507

rameter that comprises the following information: the508

class of the parameter (e.g., java.lang.Integer), its509

name, determined by the function getParameterName,510

its default, minimum and maximum values along with the511

step one, and its description, determined by the function512

getParameterDescription. This information is used513

for the manual configuration through JedAI’s interface.514

This documentation, which is also leveraged by JedAI’s user515

interface, ensures that new methods can be easily employed by516

users other than their creators. For more details on extending517

JedAI please refer to [1].518

4. Conclusions519

We have presented an analytical user guide for JedAI’s Web520

application, which is available through a Docker image. Our521

instructions allow a user with limited or no familiarity with En-522

tity Resolution to repeat all single-core experiments in [1] so523

as to evaluate the relative performance of the main end-to-end524

pipelines. Our instructions also facilitate the reconfiguration of525

these experiments, by constructing and evaluating pipelines of526

arbitrary complexity.527

All these experiments involve learning-free methods. In the528

future, we plan to extend JedAI with learning-based methods,529

paying particular attention to the integration of Deep Learning530

technologies.531

5. Revision Comments532

This reproducibility manuscript is a valuable complement to533

the parent paper [1], where the last release of JedAI software534

was presented. JedAI includes a web-based user interface and a535

complete library of techniques needed to create end-to-end En-536

tity Resolution (ER) pipelines. The authors compared different537

ER techniques by considering three different dimensions that538

included: (a) Schema-awareness, (b) Budget-awareness, and539

(c) Execution mode. The wide set of experiments provided in-540

cluded the evaluation of 17 datasets and considered the perfor-541

mance, scalability, and budget awareness of the ER pipelines.542

This paper provides the actual configuration used for those ER543

pipelines, and gives some ideas regarding how they can be per-544

sonalized. Furthermore, some guidelines showing how JedAI545

can be extended are also devised.546

Apart from creating a permanent repository in Mendeley547

with the necessary software and datasets, the authors provide548

a Docker-based system to reproduce those experiments. Using549

the web-based interface of JedAI, any researcher can easily use550

the default configuration parameters provided for each exper-551

iment, execute it, and finally see the results of that execution.552

Besides, JedAI also allows to configure and personalize those553

default parameters, as well as the addition of new methods for554

the comparison with existing methods, adding extra value to the555

current work.556

While reviewing this manuscript, a few issues around repro-557

ducibility were brought into the discussion, which show how558

difficult it can be to provide a complete reproducible frame-559

work. We dealt with some experiments where the provided560

default parameters were wrong, which led to unexpected re-561

sults. Another minor issue was related to yielding slightly dif-562

ferent values than those reported in the parent paper or figures563

showing the results in a rather different shape. We also found564

some mismatches concerning the memory requirements needed565

to run some experiments, which would not end or report higher566

execution times than expected. All those issues were success-567

fully fixed during the revision process. The authors satisfac-568

torily took all our comments into account and improved their569

software library and web application. Finally, the JedAI repro-570

duction framework does not provide a mechanism to automat-571

ically run all the experiments, gather all the results, and create572

the same tables and figures of the parent paper, which would573

be extremely interesting to reproduce the original work easily.574

However, the workflow included in JedAI still allows any re-575

searcher to effortlessly reproduce each experiment. The process576

consists of choosing the experiment to perform, going through577

the screens that display the default parameters, starting the ex-578

ecution, waiting for it to complete, and finally gathering the579

results.580

We would like to thank the authors for their considerable ef-581

fort to provide a valuable software library to the research com-582

munity. This library allows new researchers to understand and583

reproduce state-of-the-art experiments with minimal effort and584

guarantees long-term software support, following a sequence of585

precise and straightforward instructions.586
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Abstract. In this work, we describe a Few-Shot Learning approach for
Named Entity Recognition (NER) in eHealth documents to identify and
classify key phrases in a document (subtask A in the IberLEF eHealth-
KD 2019 competition [10]). The architecture is an hybrid Bi-LSTM and
CNN model with four input layers that can recognize multi-word enti-
ties using the BIO encoding format for the labels. The system obtained
a F-score of 73.15% (baseline is 54,66%), with a 78,17% of precision,
according to the eHealth-KD evaluation procedure. This improvement
is reached mainly because (a) the correct selection of the hybrid model
for NER that obtains better results using a POS tagger and (2) the ad-
dition of Wikidata entities to extend the vocabulary that improves the
precision by nearly 10%.

Keywords: NER · Knowledge Discovery · Bi-LSTM · CNN · wikipedia2vec

1 Introduction

Currently, the number of medical data is growing at an exponential rate. Liter-
ature in the medical domain, moreover, is often found as unstructured or semi-
structured data. In these cases, it is necessary to find methods to automatically
extract and categorize the data contained in them, using different techniques
as, for example, Named Entity Recognition (NER). NER aim is to recognize,
identify and categorize pieces of information that refers to different entities of
interest, i.e. a disease, a treatment or a patient name. First NER systems relied
heavily on heuristic, hand-crafted features and language-specific knowledge as
in the work presented by Rau[11] to extract and recognize company names.

In any research domain approximations based on the integration of different
approaches or the integration of external resources are commonly used in order
to improve the outcome of the research goal ([2], [3]). This is the case of neural

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). IberLEF 2019, 24 Septem-
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networks that are especially successful in complex NLP tasks [17], as for exam-
ple, G. Fabregat et al. [5] work that use a deep learning model for disabilities and
diseases recognition using Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN). Also research work with word embedding based tech-
niques is frequently used, for example to simplify drug package leaflets written
in Spanish [13] or to define reproducible experiments and replication datasets
[8].

The aim of Few-shot Learning is to extract complex statistics and learn high
level features using a very small set of training data. This problem has been
addressed in several domains, such as [6] with one-shot learning, or [15] using
zero-shot learning. M. Hofer et al.[7] demonstrate the effect of five sequential
improvements on the learning capabilities of a neural network when having very
few annotated examples, using as baseline the state-of-the-art NER architecture
[4].

In this paper, we propose a hybrid Bi-LSTM CNN model following the work
presented at [7]. Specifically, we have extended the model by adding a Part-of-
speech (POS) tagging layer and information about multi-word entities. More-
over, in this work, we use wikipedia2vec [16], a pre-trained word embedding
model from Wikipedia, and we extend the vocabulary by adding wikidata enti-
ties such diseases, health problems, etc. The results obtained in the eHealth-KD
evaluation, improves the baseline by 18,5%.

The rest of the paper is organized as follows. In section 2, we describe the
architecture of the system. Section 3 describes the evaluation process and results
obtained. Finally, section 4 outlines the conclusions and future work.

2 System description

The system process is divided into two steps. First, it is necessary to pre-process
the data and prepare it to be the input of the neural network and secondly after
to process the data using the implemented neural network it is needed a post-
proccess of the output to be evaluated in the tasks of the IberLEF eHealth-KD
2019 competition [10]. In the next sub-sections both descriptions are included.

2.1 Pre and Post processing of the data

All documents are pre-processed following the next steps. First, sentences are
splitted and tokenized using the Stanford CoreNLP natural language processing
toolkit [9], ignoring all non-alphanumeric symbols. Then, each token is annotated
using the BIO scheme, to preserve the multi-word entities. After that, we get
the POS tag of each token (using the Stanford Core-NLP POS tagger). After
the proccessing of the input data, the output data has to be converted into the
BRAT format [14]. The BRAT format allows to include some aspects of the
data original file, because it store all the information together with the labels of
each category and the positions of the tokens in the text. Given this difference
between data formats the final step is to process the documents as shown in the
Table 1: concept, POS tags and BIO-label.
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Word POS tag BIO-label

No ADV O

existe VERB B-Action

un NUM O

tratamiento NOUN B-Concept

que CONJ O

restablezca NOUN B-Action

la DET O

funcion NOUN B-Concept

ovarica ADJ I-Concept

normal ADJ B-Concept
Table 1. Structure of processed data in this work

2.2 Network architecture

The network architecture used in this work is shown in Figure 1. It has four
input layers, named as character level, word level, casing input and POS tag
level, described in the following:

Fig. 1. Network architecture used in this work

– The first input layer corresponds to the character level. It starts with a
character embedding that maps a vocabulary of 120 possible characters to
an embedding initialized randomly. The maximum number of character per
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word is 52. It has a dropout layer (with drop rate 0.5) used to avoid the risk
of overfitting. Finally, it has a convolutional layer to process the 1-dimension
character layer.

– The second input layer uses the wikipedia2vec pretrained embeddings in
Spanish language of 300 dimensions 3, mapping the existing vocabulary from
the dataset.

– The third layer maps a vocabulary of eight casing types: numeric, allLower,
allUpper, mainly numeric, initialUpper, contains digit, padding and other.

– The fourth layer maps into a one-hot embedding the POS tags existing in
the vocabulary.

The architecture starts processing these four inputs independently, to finally
merge them into the last process. The bidirectional LSTM layer Bi-LSTM [12]
transforms the input data into two vectors of 200 dimensions. In the last step,
the softmax function is used to obtain a prediction for locating and classifying
sequences of words in the input text.

3 Evaluation

The evaluation of the proposed model is carried out using the annotated cor-
pus delivered in the 2019 competition that was extracted from the available
MedlinePlus resources 4.

The IberLEF eHealth-KD 2019 corpus is divided in three sections: training,
development and test. The training set contains a total of 600 sentences manually
annotated in Brat and post-processed to match the input format. The develop-
ment set has 100 annotated sentences, and the test data has 8800 non-annotated
sentences for competition purposes.

Entity Tags

Concept B/I/O-Concept

Action B/I/O-Action

Predicate B/I/O-Predicate

Reference B/I/O-Reference

Others O
Table 2. Tokens labeled in this work

There are four categories or classes for key phrases:

1. Concept, a general category that indicates the key phrase is a relevant term,
concept, idea, in the knowledge domain of the sentence.

2. Action, a concept that indicates a process or modification of other concepts.

3 https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
4 https://medlineplus.gov/
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3. Predicate, used to represent a function or filter of another set of elements,
which has a semantic label in the text

4. Reference, a textual element that refers to a concept of the same sentence
or of different one, which can be indicated by textual clues.

In this work, tokens are annotated with the previous categories using the
different labels (see Table 2) following the BIO encoding format.

Then the scores are computed (correct, partial, missing, incorrect and spuri-
ous matches). The expected and actual output files do not need to agree on the
ID for each phrase, nor on their order. The detailed information of the evaluation
is in the eHealth KD competition website 5.

3.1 Results

In this work has been carried out a series of experiments on the development
corpus delivered by eHealth-KD 2019. The most interesting results are briefly
described below, and they can be seen in Table 3.

Method Recall Precision F1

wikipedia2vec
(300) + wikidata entities + POStags

0,6796 0,8429 0,7525

wikipedia2vec (300) + wikidata entities 0,6887 0,8109 0,7449

wikipedia2vec
(300 dim)

0,6788 0,8151 0,7407

wikipedia2vec
(100 dim) + POStags

0.6515 0.7918 0.7148

wikipedia2vec
(100 dim)

0,6432 0,7864 0,7077

fastext (300 dim) 0,6184 0,7638 0,6834

SBWC glove 0,5828 0,6998 0,636

SBWC fastext 0,5728 0,6906 0,6262

fastext (300 dim) + POStags 0.5646 0.6973 0.624

baseline 0,6358 0,5416 0,5849
Table 3. Results of experiments in this work

The experiments have been focused on the embeddings model used, and in
the impact of the POS tagging in the neural network results. We used four
embedding models Fastext 6, FastText and GloVe embeddings from SBWC 7

and wikipedia2vec 8. The first experimental conclusions achieved are:

5 https://knowledge-learning.github.io/ehealthkd-2019/evaluation
6 https://github.com/facebookresearch/fastText/blob/master/docs/pretrained-

vectors.md
7 https://github.com/dccuchile/spanish-word-embeddings
8 https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
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1. The use of wikipedia2vec improves the performance and maintains the results
from FasText in Spanish language.

2. Adding Wikidata entities improve the precision by approximate 10%.
3. POS tags do not improve results significantly in this task.
4. Adding fastext embeddings decreases system efficiency and does not improve

results over wikipedia2vec.
5. Other embeddings in Spanish language are worse in terms of efficiency and

accuracy.

4 Conclusions and Future Work

In this work, we propose a hybrid Bi-LSTM and CNN model with four input
layers that can recognize multi-word entities using the BIO encoding format
for the labels. The vocabulary is improved using Wikidata entities such as dis-
eases, health problems, treatments, etc. This entities are labeled as BIO-concepts
and added in the corpus data as sentences. Our system can achieve satisfactory
performance without requiring hand-crafted features. Our results demonstrated
that in Spanish language, the wikipedia2vec pretrained embedding vectors has
better performance in this task than other embeddings such as Fastext or Glove.

We plan to experiment with other BIO-based formats to detect discontinuous,
overlapped or nested entities, such as BMEWO-V [18]. Moreover, we will extend
the annotation using domain-specific formats and using external sources (such
as Wikipedia with cui2vec format [1]).
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Abstract. In this work, we describe a statistical graph matching method
for semantic indexing of documents from large-scale biomedical reposi-
tories in Spanish language provided at the MESINESP 2020 task (8th
BioASQ Workshop [15]). The results obtained show enough accurate be-
havior, especially with respect to the rest of the results in the task. The
execution time and computational requirements have been a priority in
our approximation, which has proved to be efficient and robust for tackle
further improvements.

Keywords: Biomedical semantic indexing ·Knowledge Discovery ·Graph
matching

1 Introduction

Although the number of medical data is growing at an exponential rate, literature
in the medical domain is often found as unstructured or semi-structured data.
In these cases, it is necessary to find methods to automatically extract and
categorize the data contained in them, using different techniques as, for example,
biomedical semantic indexing.

The BioASQ [15] is an EU-funded support action [1] to set up a challenge on
biomedical semantic indexing and question answering (QA). The MESINESP
task is based on the use of resources such as a structured medical vocabu-
lary DeCS [2] used in two databases for Spanish health content: IBECS [3]
and LILACS [7]. The main objective of this task is the development of a se-
mantic indexing tool for Spanish content. Other objectives are: (a) determining
the current-state-of-the art, (b) identifying challenges, and (c) comparing the
strategies and results to those published for English data1.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2020, 22-25 Septem-
ber 2020, Thessaloniki, Greece.
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In this paper, we propose a statistical graph matching method implemented
as a module into the HESML framework [9–11]. This method obtains informa-
tion on the frequency with which DeCS codes are annotated to rank the list
of candidates that are extracted from the text following two different methods
described in Section 2.1.

The results are encouraging enough, especially when compared to the rest
of the experiments and knowing the main difficulties. We will continue working
in this task with mixed approaches ([6]), looking forward to obtaining a robust
and efficient method capable of correctly indexing DeCS codes. An important
feature of this approach is its independence of the language.

The rest of the paper is organized as follows. In section 2, we describe the
architecture of the system. Section 3 describes the evaluation process and the
results obtained. Finally, section 4 outlines the conclusions and future work.

2 System description

The MESINESP task, is the first task on semantic indexing of Spanish medical
texts, provides a dataset divided in training (318.658 documents), development
(750 documents) and test (23.509 documents) sets. The average of DeCS codes
per document is 8.12, and the document with the maximum number of codes
has a total of 53 different ones. At a glance, the training set give us the idea of
a scattered distribution of the codes annotated in the documents, as described
in Table 1. Our proposed method try to overcome this problem using statistical
information about the frequency of a DeCS code annotated in a document.

Total codes that appear more than 10 of documents% 6

Total codes that appear more than 1 of documents% 48

Total codes that appear less than 1 of documents% 33654

Total codes that never appear 22523

Total codes 33702

Table 1. Frequencies of the codes in the training set2

2.1 Proposed method

The method proposed herein is a first approximation focused on the efficiency
and robustness of the system. Figure 1 represents the information flow to anno-
tate the test set.

The process stages are the following:

1. Creation of the frequencies graph from the training and development data.
In this step, a directed graph is developed, where each DeCS code represent
a node, and the edges are the number of times the codes co-occur in each
document.



Fig. 1. Information resources.

2. Parse the DeCS ontology and the list of codes and descriptors provided for
the competition 3.

3. Split the sentences and identification of the chunks for each sentence using
the Stanford CoreNLP library [12].

Once the test dataset is processed, the next step is the alignment of the
documents with a list of DeCS code candidates. In this work, there has been
carried out using two different methods, (a) exact matching and (b) graph-
based matching. In the first one, every possible descriptor is matched with each
document. If the descriptor exists in the text, it is selected as a candidate. In the
second method, every chunk is compared with the list of possible descriptors,
aligning as much DeCS codes as possible.

Other experiments have been planned but could not be carried out due to
time constraints. The first one is the alignment of chunks with DeCS codes
using a semantic sentence similarity measure, as for example, the Jaccard simi-
larity [13, 4]. The HESML framework provides a set of semantic similarity mea-
sures that allows the comparison between every descriptor with all the available
chunks. The problem of this approximation is that the annotation of each doc-
ument takes about 30 seconds, so the method would take more than a week to
annotate all the documents.

3 Evaluation and results

MESINESP task has been evaluated using the following measures: (a) Accuracy
(Acc.), (b) Example Based Precision (EBP), (c) Example Based Recall (EBR),
(d) Example Based F-Measure (EBF), (e) Macro Precision (MaP), (f) Macro
Recall (MaR), (g) Macro F-Measure (MaF), (h) Micro Precision (MiP), (i) Micro

3 Downloaded from https://temu.bsc.es/mesinesp/index.php/resources/



Recall (MiR) and (j) Micro F-Measure (MiF), but we only include in this section
the Micro F-measure, since it is the official evaluation measure for this task.

Our results are shown in Table 2 including the first position and the baseline
results of the task.

System MiF EBF MaF Acc Position (MiF)

X-BERT BioASQ F1 0,1071 0,1051 0,0008 0,0575 1

Graph matching (ours) 0,0836 0,0846 0,001 0,0451 15

Exact matching (ours) 0,0826 0,0829 0,001 0,0442 18

BioASQ Baseline 0,0161 0,0217 0,0022 0,0116 22

Table 2. This table shows the results or the two methods (Graph matching and Exact
matching), as well as the best and the baseline ones

A total of 25 methods have been submitted to the MESINESP competition.
Our work has focused on the efficiency and robustness of the method and ex-
ecutes the whole process in less than 30 minutes without requiring a training
process. We have used the DeCS ontology and our new hypothesis is that the
results will improve using another ontology-based similarity measure to the con-
cept alignment without losing efficiency of the system.

The main difficulty in this task is derived from the use of a purely statisti-
cal method that prioritizes the most frequent terms and considers neither the
ontology hierarchy for avoiding the annotation of redundant child-parent terms
nor the less frequent codes that the experts annotate in the gold standard. For
example, the terms ”tumor de mediastino” and ”mediastino” are annotated us-
ing our approximation for the document ID ”biblio-1000005”, but the experts
only annotate the terms ”mediastino” and ”neoplasias del timo”. But, it hap-
pens that the term ”tumor de mediastino” is explicitly written in the title of
the document and, for this reason, it is considered as relevant for our algorithm.
On the other hand, the term ”pesar” is wrongly considered as relevant for our
algorithm in most of the documents, because no semantics is considered in the
selection of candidates.

4 Conclusions and Future Work

In this work, we describe a statistical graph matching method for semantically
index documents from large-scale biomedical repositories in Spanish language
provided at the MESINESP 2020 task [15]). The execution time and computa-
tional requirements have been priority factors in our approximation, giving us a
first approach that is efficient and sufficiently robust to improve the results in
the future.

Addressing the task, we understand that the Spanish language has not been
thoroughly studied in a semantic indexing task, and there are only a few available
tools. For example, there are some Name Entity Recognizers (NER) that find



UMLS concepts in Spanish biomedical documents, such as QuickUMLS [14] or
IXAMedTagger [8]. But, as far as we know, there is not a NER tool for aligning
DeCS codes with texts. Even more, the code sets tend to follow biased, unbal-
anced, and scattered distributions, as shown in a similar task of indexing CIE-10
codes for Spanish clinical documents [5].

In the future work, we are going to focus on the integration of the parser for
the DeCS ontology in HESML. We will try to prove that our proposal will over-
come the problems with the running time of the experiments based on sentence
similarity measures by allowing the use of different ontology-based measures.
Finally, we want also to test a new model that recognizes co-occurrence patterns
beyond the basic measure of the frequency of occurrence of terms.
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ABSTRACT

This protocol introduces a set of reproducibility resources with the aim of allowing 
the exact replication of the experiments introduced by our main paper [1], which 
introduces the largest and for the first time reproducible experimental survey on 
biomedical sentence similarity. HESML V2R1 [2] is the sixth release of our Half-Edge 
Semantic Measures Library (HESML), which is a linearly scalable and efficient Java 
software library of ontology-based semantic similarity measures and Information 
Content (IC) models for ontologies like WordNet, SNOMED-CT, MeSH and GO. 
This protocol sets a self-contained reproducibility platform which contains the Java 
source code and binaries of our main benchmark program, as well as a Docker image 
which allows the exact replication of our experiments in any software platform 
supported by Docker, such as all Linux-based operating systems, Windows or 
MacOS. All the necessary resources for executing the experiments are published in 
the permanent repository [3]

Our benchmark program is distributed with the UMLS SNOMED-CT and MeSH 
ontologies by courtesy of the US National Library of Medicine (NLM), as well as all 
needed software components with the aim of making the setup process easier. Our 
Docker image provides an exact virtual replica of the machine in which we ran our 
experiments, thus removing the need to carry-out any tedious setup process, such as 
the setup of the Named Entity Recognizer tools and other software components. 
(2022-02-20)

[1] Lara-Clares A, Lastra-Díaz JJ, Garcia-Serrano A. A reproducible experimental 
survey on biomedical sentence similarity: a string-based method sets the state of the 
art. Submitted to PLoS One. 2022.

[2] Lara-Clares A, Lastra-Díaz JJ, Garcia-Serrano A. HESML V2R1 Java software 
library of semantic similarity measures for the biomedical domain. e-cienciaDatos; 
2022. doi:10.21950/DOI

[3] Lara-Clares, Alicia; Lastra-Díaz, Juan J.; Garcia-Serrano, Ana, 2021, "Reproducible 
experiments on word and sentence similarity measures for the biomedical 
domain",https://doi.org/10.21950/EPNXTR, e-cienciaDatos, V2

GUIDELINES

The Docker image provides all software pre-installed, which means that it is not 
necessary to install them to reproduce the results of this paper. 
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MATERIALS

All the required materials to reproduce the experiments in this protocol are published 
in our reproducibility dataset

CITATION

Lara-Clares, Alicia; Lastra-Díaz, Juan J.; Garcia-Serrano, Ana (2022). Reproducible 

experiments on word and sentence similarity measures for the biomedical domain. e-

cienciaDatos, V2.
LINK

https://doi.org/10.21950/EPNXTR

BEFORE START INSTRUCTIONS

Our benchmarks can be reproduced in any Docker-complaint platform, such as 
Windows, MacOS or any Linux-based system by following a similar setup to that 
introduced herein. 

In order to obtain a decrypt password for downloading the required files, you should 
sign and obtain a license for the National Library of Medicine (NLM) of the United 
States to use the UMLS Metathesaurus databases, as well as SNOMED-CT and 
MeSH ontologies included in this Docker image. For this purpose, you should go top 
the NLM license page, https://uts.nlm.nih.gov//license.html. After that, you could 
write to eciencia@consorciomadrono.es to obtain the password to decrypt the file. 
Likewise, you should obtain and sign a Data User Agreement from the Mayo Clinic to 
use the MedSTS dataset by sending the authors the Data User Agreement form, 
https://n2c2.dbmi.hms.harvard.edu/data-use-agreement.

1 If Docker is not installed in your machine, instructions below install latest version of Docker CE. 
For further details, we refer the reader to the official Docker setup page 
https://docs.docker.com/install/linux/docker-ce/ubuntu/

First, we update the system:

5m

Installing Docker on Ubuntu
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We install the dependencies:

We set stable Docker release

We install Docker engine

Command

sudo apt-get update

Command

sudo apt-get install ca-certificates curl gnupg lsb-release && curl -fsSL 
https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o 
/usr/share/keyrings/docker-archive-keyring.gpg

Command

echo  "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-
keyring.gpg] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee 
/etc/apt/sources.list.d/docker.list > /dev/null

Command

sudo apt-get update && sudo apt-get install docker-ce docker-ce-cli containerd.io
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Note

If the installation detailed below fails, you can install Docker for Ubuntu:

Command

sudo apt  install docker.io

2 Now, we download and decrypt the external resources such as pre-trained models and 
dependencies.

First, we create a data directory which will contain all the datasets, pre-trained models and 
dependencies for executing the experiments

Now, we download extract the BERT pretrained models compressed file (20,2 GB) to the 
HESML_DATA

We also download and extract the pre-trained character and sentence embeddings models 
(20GB) in the same directory

Command

cd /home/[user]/Desktop && mkdir HESML_DATA && cd HESML_DATA

Command

wget https://doi.org/10.21950/BERTExperiments.tar.gz && tar xvf BERTExperiments.tar.gz

10h

Downloading resources from the repository
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We download and extract the pre-trained word embedding models (40GB) in the same directory

And finally, we download, decrypt and extract the rest of dependencies (10GB), such as datasets, 
UMLS, Java libraries, cTAKES, Metamap and MetamapLite.

Safety information

Command

wget https://doi.org/10.21950/CharacterAndSentenceEmbeddings.tar.gz && tar xvf 
CharacterAndSentenceEmbeddings.tar.gz

Command

wget https://doi.org/10.21950/WordEmbeddings.tar.gz && tar xvf WordEmbeddings.tar.gz

Command

sudo apt install -y ccrypt && wget https://doi.org/10.21950/Dependencies.tar.gz.cpt && 
ccrypt -d Dependencies.tar.gz.cpt

In order to obtain a decrypt password for the Dependencies.tar.gz file, you should sign and 
obtain a license for the National Library of Medicine (NLM) of the United States to use the 
UMLS Metathesaurus databases, as well as SNOMED-CT and MeSH ontologies included in 
this Docker image. For this purpose, you should go top the NLM license page, 
https://uts.nlm.nih.gov//license.html. After that, you could write to 
eciencia@consorciomadrono.es to obtain the password to decrypt the file. Likewise, you 
should obtain and sign a Data User Agreement from the Mayo Clinic to use the MedSTS 
dataset by sending the authors the Data User Agreement form, 
https://n2c2.dbmi.hms.harvard.edu/data-use-agreement
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Now, we can remove all the compressed files

Expected result

Command

tar xvf Dependencies.tar.gz

Command

rm -r *.tar.gz

At the end of this section, you should have a directory named HESML_DATA on your local 
machine with this file structure:

.

./ImportedLibs

./WordEmbeddings

./UMLS

./SentenceEmbeddings

./ReproducibleResults

./SentenceSimDatasets

./FlairEmbeddings

./public_mm_lite

./apache-ctakes-4.0.0.1-src

./BERTExperiments

./dist

./public_mm

3 In this step, we create and run a Docker container which have pre-installed all the necessary 15m

Create and run a Docker container with HESML and depend…

protocols.io |
https://dx.doi.org/10.17504/protocols.io.36wgq429xvk5/v4 7



software for executing the experiments. 

Note

Now, we create, run and attach to the Docker container named "HESMLV2R1" which will share a 
volume with the HESML_DATA directory. 

Command

We pull the HESML docker image from DockerHub, which contains all the pre-
installed software for executing the experiments.

docker pull alicialara/hesml_v2r1:latest

NOTE: Alternatively, the docker image can also be downloaded and extracted from our 
permanent repository:

CITATION

Lara-Clares, Alicia; Lastra-Díaz, Juan J.; Garcia-Serrano, Ana (2022). Reproducible experiments on 

word and sentence similarity measures for the biomedical domain. e-cienciaDatos, V2.
LINK

https://doi.org/10.21950/EPNXTR

In this case, you can import the Docker file by following the next command

Command

wget https://doi.org/10.21950/hesml_STS_dockerRelease.tar.gz && tar xvf 
hesml_STS_dockerRelease.tar.gz && docker load --input hesml_STS_dockerRelease.tar.gz
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Note

In the following, we will be working on the Docker container, which has been attached in the 
previous step.

Now, we clone the HESML repository from Github

And we copy the external libraries and dependencies into the HESMLSTSclient directory and we 
copy the last HESML core jar file into the client directory

NOTE: you have to modify the variable [PATH_TO_HESML_DATA_DIRECTORY]NOTE: you have to modify the variable [PATH_TO_HESML_DATA_DIRECTORY]  
using the path from your local machine.using the path from your local machine.

Command

docker run --name=HESMLV2R1 -it -v 
[PATH_TO_HESML_DATA_DIRECTORY]/HESML_DATA/:/home/user/HESML_DATA 
alicialara/hesml_v2r1:latest /bin/bash

Command

cd /home/user && git clone --branch HESML_STS_paper_experiments 
https://github.com/jjlastra/HESML.git

Command

cd /home/user/HESML_DATA/ && cp -r dist/lib 
/home/user/HESML/HESML_Library/HESMLSTSclient/dist && cd 
/home/user/HESML/HESML_Library && cp HESML/dist/HESML-V2R1.0.1.jar 
HESMLSTSclient/dist/lib
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Expected result

At the end of this section, you should have the following directories in the /home/user 
directory of the Docker container:

.

./HESML

./HESML_DATA

The HESML directory contains the sources from Github with all the necessary 
dependencies and libraries for executing the experiments.
The HESML_DATA directory contains the pre-trained models, python virtual environments 
and the NER tools for executing the experiments

4 The experiments evaluated herein use the Metamap [4], MetamapLite [5] and cTAKES [6] 
external NER tools to annotate CUI codes on the sentences. Thus, we have to launch the NER 
tools services following the next steps.

Note

First, we open the Metamap directory

[4] Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and recent 
advances. J Am Med Inform Assoc. 2010;17: 229–236. doi:10.1136/jamia.2009.002733

[5] Demner-Fushman D, Rogers WJ, Aronson AR. MetaMap Lite: an evaluation of a new Java 
implementation of MetaMap. J Am Med Inform Assoc. 2017;24: 841–844. 
doi:10.1093/jamia/ocw177

[6] Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical 
Text Analysis and Knowledge Extraction System (cTAKES): architecture, component 
evaluation and applications. J Am Med Inform Assoc. 2010;17: 507–513. 
doi:10.1136/jamia.2009.001560

5m

Launch the Metamap and cTAKES services
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We start the Metamap dependency services 

Note

Now, we start the Metamap service

Then, press "Enter" key and execute the next step using your UMLS KEY.

Command

cd /home/user/HESML_DATA/public_mm

Command

We start the Metamap services. (Docker version 20.10.12)

./bin/skrmedpostctl start && ./bin/wsdserverctl start

Note: Before executing the next step, wait until the following message appears (2-Note: Before executing the next step, wait until the following message appears (2-
3 minutes): "WSD Server databases and disambiguation methods have been3 minutes): "WSD Server databases and disambiguation methods have been  
initialized." and press the "Enter" key.initialized." and press the "Enter" key.

Command

./bin/mmserver &

Command

export ctakes_umls_apikey=[ENTER YOUR UMLS API KEY]
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Safety information

Expected result

In order to obtain a UMLS KEY, you should sign and obtain a license for the National Library of 
Medicine (NLM) of the United States to use the UMLS Metathesaurus databases, as well as 
SNOMED-CT and MeSH ontologies included in this Docker image. For this purpose, you 
should go top the NLM license page, https://uts.nlm.nih.gov//license.html.

At the end of this section, you should have initialized the NER tools services, and you can 
execute all the experiments evaluated in our primary paper:

CITATION

Lara-Clares A, Lastra-Díaz JJ, Garcia-Serrano A. (2022). A reproducible experimental survey on 

biomedical sentence similarity: a string-based method sets the state of the art. Submitted to PLoS 

One.

5 The final step is the execution of the experiments evaluated in out primary paper. 

CITATION

Lara-Clares A, Lastra-Díaz JJ, Garcia-Serrano A. (2022). A reproducible experimental survey on 

biomedical sentence similarity: a string-based method sets the state of the art. Submitted to PLoS One.

To run the experiments, first step into the HESMLSTSclient directory

1d

UBUNTU-based instructions to run our benchmarks on a Do…
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Before running the experiments, remove previous results and temporal files:

Now, execute the HESMLSTSclient with the default options

 

Note

Command

cd /home/user/HESML/HESML_Library/HESMLSTSclient/

Command

rm -r 
../ReproducibleExperiments/BioSentenceSimilarity_paper/BioSentenceSimFinalRawOutputFiles/* 
&& rm -r 
../ReproducibleExperiments/BioSentenceSimilarity_paper/BioSentenceSimFinalProcessedOutput
Files/* && rm Execution_times_* && rm -r tmp* && rm -r /tmp/tmp*

Command

java -jar -Xms30g dist/HESMLSTSclient.jar

Note that this experiment take more than 24 hours of execution time in a desktop computer 
with an AMD Ryzen 7 5800x CPU (16 cores) with 64 Gb RAM and 2TB Gb SSD disk
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Expected result

At the end of this section, you should find all the raw output files in your HESML_DATA 
directory

[PATH_TO_HESML_DATA_DIRECTORY]/HESML_DATA/ReproducibleResults/BioSentenceSi
milarity_paper/BioSentenceSimFinalRawOutputFiles
.
├── raw_similarity_BIOSSES_BESTCOMBS.csv
├── raw_similarity_BIOSSES_COMBestWorst.csv
├── raw_similarity_BIOSSES_LiBlockNER.csv
├── raw_similarity_BIOSSES_NERexperiment.csv
├── raw_similarity_CTR_BESTCOMBS.csv
├── raw_similarity_CTR_COMBestWorst.csv
├── raw_similarity_CTR_LiBlockNER.csv
├── raw_similarity_CTR_NERexperiment.csv
├── raw_similarity_MedSTSFull_BESTCOMBS.csv
├── raw_similarity_MedSTSFull_COMBestWorst.csv
├── raw_similarity_MedSTSFull_LiBlockNER.csv
└── raw_similarity_MedSTSFull_NERexperiment.csv

These raw output files will be used in the post-processing stage to create the tables 8, 10-17, 
figure 5 and appendix A detailed in our primary paper [1].

5.1 [OPTIONAL] Running the pre-processing experiments

In our primary paper [1], we also evaluate the pre-processing configurations of each method, 
which are detailed in tables 7 and 9, as well as the appendix B of the same paper. This pre-
processing experiments are evaluated using the HESMLSTSImpactEvaluationclient software 
included in the HESML V2R1 software release [6].

[6] Lara-Clares A, Lastra-Díaz JJ, Garcia-Serrano A. HESML V2R1 Java software library of 
semantic similarity measures for the biomedical domain. e-cienciaDatos; 2022. 
doi:10.21950/DOI

Safety information

It is important to note that the execution of the pre-processing experiments requires high 
computational requirements and running times (more than 2 weeks), since they perform 
more than 1100 pre-processing combinations in total.

2w
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To execute the pre-processing experiments, run the following commands

Command

cd /home/user/HESML_DATA/ && cp -r dist/lib 
/home/user/HESML/HESML_Library/HESMLSTSImpactEvaluationclient/dist && cd 
/home/user/HESML/HESML_Library && cp HESML/dist/HESML-V2R1.0.1.jar 
HESMLSTSImpactEvaluationclient/dist/lib

Command

cd /home/user/HESML/HESML_Library/HESMLSTSImpactEvaluationclient/ && java -jar -
Xms30g dist/HESMLSTSImpactEvaluationclient.jar

6 The post-processing stage use the RStudio software installed in the local machine to create the 
final latex tables and CSV files.

Note

In our experiments, we use the last release of RStudio software (Version 1.4) with R version 4.1.2 
(2021-11-01). We also install the following packages for executing the post-processing scripts:

collections

NOTE: Now, the post-processing experiments are evaluated in the local machine, under the 
HESML_DATA directory. You can detach the HESMLV2R1 docker container by clicking the 
key sequence: CTRL+p, CTRL+q

20m

Post-processing the experiments 20m
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kableExtra
knitr
readr
stringr
xtable
dplyr
ggpubr
ggqqplot
ggpubr
ggplot2

After executing the experiments, the raw output files, as well as the R post-processing scripts are 
automatically copied into the HESML_DATA directory, in a new directory named 
"ReproducibleResults". Before executing the post-processing scripts, it is necessary to modify the 
file permissions following the next step:

The tables 8, 10-17, figure 5 and appendices A and B are created executing the following R scripts 
marked in bold bold as follows:

.[PATH_TO_HESML_DATA_DIRECTORY]/HESML_DATA/ReproducibleResults/Post-scripts
├── bio_sentence_sim_tables.R bio_sentence_sim_tables.R  
├── bio_analytics_biosses.R bio_analytics_biosses.R
├── bio_analytics_ctr.R bio_analytics_ctr.R
├── bio_analytics_medsts.R bio_analytics_medsts.R
├── bio_sentence_sim_allExperiments_analyzingtablesPreprocessing.Rbio_sentence_sim_allExperiments_analyzingtablesPreprocessing.R
├── bio_sentence_sim_pvaluesLiBlock.R bio_sentence_sim_pvaluesLiBlock.R
├── bio_sentence_sim_pvaluesNER.R bio_sentence_sim_pvaluesNER.R
├── bio_sentence_sim_pvalues.R bio_sentence_sim_pvalues.R
├── bio_sentence_sim_scripts
│   ├── readBERT.R
│   ├── readBESTCOMBS.R
│   ├── readFlair.R
│   ├── readLiBlockNERexperiment.R

Command

cd [PATH_TO_HESML_DATA_DIRECTORY]/HESML_DATA && sudo chmod -R 777 
ReproducibleResults/
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│   ├── readNERexperiment.R
│   ├── readOurWE.R
│   ├── readSent2Vec.R
│   ├── readString.R
│   ├── readSWEM.R
│   ├── readTest.R
│   ├── readUBSM.R
│   ├── readUSE.R
│   └── readWBSM.R

bio_sentence_sim_tables.Rbio_sentence_sim_tables.R  : Creates the tables 8,10,11 and 12 in our primary paper [1] as 
well as all the tables from appendix B. It is also used to extract the best and worst pre-
processing configuration in the table 9 of the same paper
bio_sentence_sim_pvalues.Rbio_sentence_sim_pvalues.R  : Creates the tables of the appendix A in our primary paper 
[1].
bio_sentence_sim_allExperiments_analyzingtablesPreprocessing.Rbio_sentence_sim_allExperiments_analyzingtablesPreprocessing.R  : Creates the 
tables with all the p-values of the pre-processing experiments using the 
HESMLSTSImpactEvaluationclient, which are used in the table 9 of our main paper.
bio_sentence_sim_pvaluesLiBlock.Rbio_sentence_sim_pvaluesLiBlock.R  : Creates a table with the LiBlock NER experiments 
which is used to detail the p-values in table 12 of the main paper [1].
bio_sentence_sim_pvaluesNER.Rbio_sentence_sim_pvaluesNER.R  : Creates a table with the NER experiments which is 
used to detail the p-values in table 11 of the main paper [1].
bio_analytics_biosses.R, bio_analytics_medsts.R and bio_analytics_ctr.Rbio_analytics_biosses.R, bio_analytics_medsts.R and bio_analytics_ctr.R : Creates 
the figure 5 and is used to create the tables 13-17 of our primary paper [1].

Note

Expected result

The "bio_sentence_sim_scripts" directory contains a set of R scripts to parse the output raw 
files created by the execution of HESMLSTSclient and HESMLSTSImpactEvaluationclient. 

The execution of all the R scripts listed below produces a ser of TXT and CSV files containing 
all the post-processed results, which are used to create tables 8, 10-17, figure 5 and 
appendices A and B of our primary paper [1]. 
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