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Abstract

Multi-agent robotic system (MARS) is an extensive field of research in different application
domains since they can perform complex tasks even if the behavior of each agent seems sim-
ple thanks to cooperation between them. The development of these systems involves several
decisions: the type of agents, the control and communication architecture, the operating envi-
ronment, the positioning system, the technology used in communication, or the control algorithm
to implement, among others.

Experimental platforms are essential tools to thoroughly evaluate and validate MARS de-
velopment in a controlled environment. The goal of this thesis is the development, control, and
evaluation of Robotic Park, a multi-agent indoor physical robotic platform for multi-robot sys-
tem research. Two of its main characteristics are heterogeneity at different levels and flexibility.

First, a detailed description of the overall design and operation of Robotic Park is provided.
Various work modes are available on the platform (in the physical environment, in the virtual
environment, or under a hybrid scheme) to carry out experiences.

Then the theoretical modelling of robots for both ground and aerial vehicles is presented in
detail. The effectiveness of event-based control techniques for reducing controller executions has
been demonstrated.

Finally, focusing on the problem of formation control in MARS, several experiences are pre-
sented to study the performance of Robotic Park in this context. Specifically, the scalability, the
use of digital twins in mixed reality experiences, the control architecture, and the communication
protocol are evaluated.
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Resumen

Los Sistemas Multi-Agente Robóticos (del inglés Multi-Agent Robotic System, MARS) confor-
man un extenso campo de investigación en diferentes dominios de aplicación ya que pueden
realizar tareas complejas, aunque cada agente lleva a cabo acciones simples gracias a la coop-
eración entre ellos. El desarrollo de estos sistemas implica varias decisiones: el tipo de agentes, la
arquitectura de control y comunicación, el entorno de operación, el sistema de posicionamiento,
la tecnología utilizada en la comunicación o el algoritmo de control a implementar, entre otros.

Las plataformas experimentales son herramientas esenciales para evaluar y validar en profun-
didad el desarrollo de MARS en un entorno controlado. El objetivo de esta tesis es el desarrollo,
control y evaluación de Robotic Park, una plataforma de interiores para sistemas multi-agente
enfocada a la investigación de sistemas multi-robot. Dos de sus características principales son
su heterogeneidad en diferentes niveles y su flexibilidad.

En primer lugar, se proporciona una descripción detallada del diseño general y funcionamiento
de Robotic Park. En la plataforma, se pueden utilizar diversos modos de trabajo (en el entorno
físico, en el entorno virtual o bajo un esquema híbrido) para llevar a cabo experiencias.

A continuación, se presenta en detalle el modelado teórico de los robots, tanto terrestres
como aéreos. Se ha demostrado la efectividad de las técnicas de control basadas en eventos para
reducir las ejecuciones del controlador.

Finalmente, en relación con el problema del control de formaciones en MARS, se presentan
varias experiencias con el fin de estudiar el rendimiento de Robotic Park en este contexto.
Específicamente, se evalúa la escalabilidad, el uso de gemelos digitales en experiencias de realidad
mixta, la arquitectura de control y el protocolo de comunicación.
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Chapter 1

Introduction

1.1 Multi-Agent Robotic Systems

The interest in process automation is not a recent technological trend. Early automated systems
were used in manufacturing/industrial processes to optimize the resource’s consumption and
improve performance. Currently, our society demands the progressive integration of automation
into work environments to enhance the efficiency, productivity, and quality of many industrial
processes. This fact requires active research in what is known as “robotics”, one of the fastest
growing technological fields in the last years.

Sometimes the terms “automation” and “robotics” are used interchangeably, but there are
differences between them. Automation is defined as the process of using technology to complete
human tasks. In contrast, robotics is the process of developing robots to carry out a particular
function. It involves the design, build, program, and use of robots. Automation and robotics
have areas where they cross, such as the use of robots to automate physical tasks. However,
neither all types of automation use robots (they are not required in virtual tasks and software-
based applications), nor all robots are designed for process automation. As technology continues
to advance, the capabilities of robots are expanding, enabling them to take on more complex
tasks and work alongside humans in increasingly sophisticated ways.

In any case, robotics has become an integral part of many industries, including manufactur-
ing, healthcare, agriculture, and logistics, among others. Applications of robotics in autonomous
vehicles, large factories or warehouses that use robots to move storage from one point to an-
other, or social and welfare robotics are found. Within the wide range of applications that can
be improved by robots, those related to mobile robotics stand out, being autonomous robots of
special interest. And this is the field in which this thesis is framed.

According to IEEE Std 1872-2015 - IEEE Standard Ontologies for Robotics and Automation,
a fully autonomous robot is a robot that can perform tasks without human control
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or intervention while adapting to operational and environmental conditions [1].For
instance, an autonomous robot vehicle capable of moving from one point to another without
requiring either a guide or teleoperator control can be considered as an autonomous robot,
although human presence is necessary for safety reasons. Another example are those robots
working in warehouses to load and move materials without the intervention of operators during
their operation.

Robots can be made in many ways. But most robots share a great deal in common, as some
parts are found in almost every robotic system. A description of the main characteristics and
components of an autonomous mobile robot is given in the following. It can help to identify the
possibilities and limitations of each one.

To carry out truly autonomous action, an autonomous robot must be equipped with sensors,
some form of actuation, a communication system and information-processing capabilities, see
Figure 1.1. The arrows in the figure represent the flow of information between the different
components.

Figure 1.1. Diagram of the different parts of an autonomous robot.

The sensing part is a set of measuring devices that allow the robot to acquire information
about its environment. With this information the robot adapts to the operating and environ-
mental conditions. Sensors can be classified into two types: internal or external. Internal sensors
are those that focus on measuring the robot’s variables/states (such as where the robot is, how
fast it is going, and how it accelerates, ...). Sensors that help the robot in measuring factors
that directly affect its operation such as pressure, current, temperature, acceleration, etc are
also considered internal. External sensors detect the effect of an object external to the robot.
They collect data from the outside world. Ultrasound sensors, lidar, or contact sensors are
some examples of widely used external sensors in obstacle detection tasks. Cameras are also
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commonly external sensors used for object recognition.

Sensors available on the robot will condition its potential applications. For example, a
robot without sensors for obstacle avoidance cannot work collaboratively safely in dynamic
environments with other robots, but it can navigate in isolation in structured environments.

The actuating part is a set of devices that allow the robot to move and act in the sur-
rounding environment. These devices are oriented toward the fulfillment of the robot’s goal.
According to the nature of the actuators, autonomous mobile robots can be classified as [2, 3]:

• Wheeled robots. They are robots that navigate around the ground using wheels to propel
themselves. They are one of the most widespread robots due to its simplicity and stability
during use. Environmental considerations such as the roughness of the terrain, stability,
irregularity, or continuity must be considered in their mechanical design.

• Based on chains or belts robots. They are a modification of wheeled systems designed to
operate on soft and uneven terrain, where wheels may slip and lack clearance for proper
robot operation.

• Robots with legs. This type of robot has the most complex locomotion system. Depending
on their design inspiration, they can be anthropomorphic if they replicate the human model
or zoomorphic. Their greatest advantage is their ability to operate in very irregular and
discontinuous terrain, where other terrestrial mobile robots have more limitations.

• Marine robots. This group of robots is made up of those whose environment of displacement
is aquatic. They can be classified into surface robots, such as those dedicated to coastal patrol
tasks, or underwater robots, which allow, among other uses, oceanographic exploration where
other devices cannot access due to the harsh conditions of pressure and risk.

• Aerial robots. They are capable of sustained flight with no direct human control. Aerial robots
provide unmatched maneuverability, making them the superior choice over ground robots.
For instance, they can access areas that are more difficult for ground robots to reach, such as
mountainous or rugged areas. Aerial robots can be classified attending to the position of their
engines (fixed-wing, multi-rotor, and the self-rotary-winged) or according to their size and
weight (Pico Aerial Vehicle (PAV), Nano Aerial Vehicle (NAV), Micro Aerial Vehicle (MAV),
Small Unmanned Aerial Vehicle (SUAV) and Unmanned Aerial Vehicle (UAV)) [4], as it is
shown in Figure 1.3.

The communicating part is a set of devices that serves as instruments in a robot-robot
communication process or in a human-robot communication process by allowing the robot to
send (or receive) information to (or from) a robot or a human. Mainly, two types of commu-
nication can be distinguished: wired and wireless. Each system should implement a solution
that offers a compromise between cost, complexity, and transmission efficiency. The choice
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(a) Wheeled robot. (b) Based on chains. (c) Robots with legs.

(d) Surface marine robot. (e) Underwater robot. (f) Multirotor UAV.

Figure 1.2. Classification of autonomous robots according to their method of locomotion.

Figure 1.3. Comparison of different types of UAV based on flight range, weight range and wing
size.
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of the technology, communication architecture, and protocol are relevant aspects that should
be considered in the system design. In this regard, three architectures can be distinguished:
centralized, descentralized and distributed. Centralized architectures are built around a single
network node known as the master that manages information flows. Among the advantages of
centralized architectures simple and fast implementation and maintenance are included. How-
ever, scalability is limited and generates a risk to security and continuity of service in the case of
failure. On the other hand, in decentralized architectures, it is the agents themselves who make
their decisions, but without communicating with each other. Finally, in a distributed network
computing resource and data are spread across multiple nodes. It provides greater flexibility and
scalability to extend the network. However, maintenance costs also increase, and coordination
problems can occur in large networks. They also present the challenge of distributing the load
evenly, which is not always possible.

The processing part is the set of devices that allows the robot to address the information
(from sensors or communication with other devices or users in the environment). The capacity of
this component determines the complexity of the task that the robot can perform. For instance,
systems with microcontrollers with few input and output channels and no wireless communica-
tion are an example of embedded systems with a simple architecture and reduced computational
capabilities and suitable for low-level control architecture implementation. A step forward in
terms of capacity are those systems based on, for example, Arduino or Raspberry Pi that main-
tain a reduced size but offer more sophisticated solution allowing sensor fusion algorithms and
communication with other devices; or Jetson Nano that presents and increased computational
capabilities thanks to the use of graphics cards that allows more complex algorithms such as neu-
ral networks, images, or point clouds. Finally, robots using more sophisticated systems such as
multiple cameras (monocular, RGB-D, stereoscopic) or lidars require more complex equipment,
i.e., computers with much higher processing capabilities than the embedded systems mentioned
before.

For the correct working of autonomous robots, there should exist a synergy between all the
aforementioned elements. In fact, in the last decades, the scientific community has required the
development of a new generation of devices that consider the importance of the interconnection
between hardware components, software, and communication with other devices in the network.
These new systems are known as Cyber-Physical System (CPS) [5]. CPSs integrate moni-
toring, communication, and computation of a process [6]. The use of CPSs aims to increase the
deployment of large-scale systems by improving the adaptability, autonomy, efficiency, function-
ality, reliability, and security of traditional implementations [7]. However, the achievement of
these improvements is associated with the emergence of new challenges that should be addressed
in their design, such as the emergence of new paradigms about the dispersion of systems [8],
the large volume of data that needs to be processed to obtain useful information [9], or the
vulnerabilities inherent in the increased exposure of systems through the network to a wide
variety of types of attacks [10]. The heterogeneous nature of CPS requires advanced knowledge
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in several disciplines for their design and construction. Among the sectors with the highest
impact of CPSs are the healthcare sector where the correct integration of devices with patients
and data confidentiality is crucial [11]; the automotive industry to improve the adaptation to
environmental changes, efficiency, and the safety of vehicles [12]; and smart-cities or energy grids
where robustness, efficiency, and security are fundamentals to reduce the entry gap to global
implementation [13,14].

The increasing capabilities of CPS has made possible the reduction of size and cost of au-
tonomous systems and hence, the use of more than one of these devices to work cooperatively
enhances the complexity of the achievable tasks and widens the fields of applications. Thus, a
set of CPS can perform as a Multi-Agent System (MAS) [15]. This concept refers to a sys-
tem composed of autonomous entities (or agents) set that cooperate to achieve a goal. “Agent”
means any element responsible for collecting information from the environment and that works
autonomously without direct or continuous supervision by a centralized controller [16]. In highly
complex tasks, compared to single-agent implementations, MASs offers advantages such as a
lower cost, more flexible configurations, and an increased robustness against failures. Indeed,
the overperformance of MASs results from breaking down complex tasks into smaller ones and
solving them in parallel with different agents [17]. Due to the wide range of applications in
which the implementation of a MAS is possible, the most relevant characteristics that allow
its classification are: leadership, decision function, heterogeneity, agreement parameters, delays,
topology, communication and mobility [15]. The most notable challenges need to be addressed
in the literature are coordination between agents [18], fault detection [19], and security issues
such as authentication or integrity and confidentiality of communications [20].

Robotics is one of the fields in which the concept of MASs can be applied. If all the agents
in the system are robots working cooperatively, the system is called Multi-Robot System
(MRS) [21]. The interaction between robots influences the collective behavior of the system,
and the following relationships between agents can be defined: Indifference, Cooperation and
Competition [22]. When the number of agents in an MRS is high, the system is known as a
swarm, since its design is inspired by associations of individuals observed in nature (e.g. flocks
of birds) [23]. The main characteristics of the agents of these systems are:

• Autonomy,

• Interaction with the environment,

• Local sensing and communication capabilities,

• Local control or unavailability of global knowledge to perform a given task [24].

However, experience shows that homogeneous systems have a limited scope of application
and flexibility than a MAS that joins a MRS with software agents [25]. This type of system has
the advantage of combining the ability to move and interact with the environment of MRSs [26]
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with a less restrictive computational capacity of software agents, and it is called Multi-Agent
Robotic System (MARS) [27]. Given their potential, they have been successfully applied to
a wide variety of areas [28]. For instance, in computer networks, cutting-edge technologies such
as cloud computing [29], the high service demands, and the complexity of social networks [30]
or routing services in smart grids are some cases where MAS can reduce the complexity of
tasks. Also, in Smart Grids (see Figure 1.4), the application of a MAS framework for the power
distribution control algorithm results in a better performance [31].

Figure 1.4. MARS applied to Smart grids. Construction of a microgrid bus system-based
communication network

In the robotics sector, one of the most prominent applications of MRS includes complex
military tasks in escort missions [32], where the tasks can be defined in such a way that enable the
robots to execute simple motions to achieve the desired formation behavior. Other applications
include localization and mapping of targets [33], security surveillance [34, 35], air-sea scenarios
surveillance [36], search and rescue operations [37], urban exploration [38], agriculture [39], space
exploration, and communications broadcast among others [40]. For example, in [41] the authors
present a detailed development of the design, architecture (both hardware and software), and
implementation of a MRS that is specifically designed to collect crop field data faster and in a
more efficient way (see Figure 1.5).

1.2 Control of MARS

The full control of MARS is a challenging problem. A MARS may contain a number and
type of components that can vary considerably over time, for instance, several heterogeneous
robots, diverse sensors, and a certain number of cooperating devices. This fact, together with
their wide range of applications, makes the design of its control architecture a very important
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Figure 1.5. MARS applied to Agriculture. Yellow: Smaller lightweight robots equipped with
low-resolution sensors that acquire frequent measurements, and infer changes that take place at
small-time scales. Red: A mobile platform carrying high-resolution sensors for accurate plant
disease detection and analysis of the spread of disease.

decision. A hierarchical control architecture built at different levels provides a good approach
as nonhierarchical architectures often face shortcomings in terms of a lack of modularity and
scalability. A generic diagram of the different layers into which a MARS control architecture can
be segmented and the flow of information between them is shown in Figure 1.6. The four upper
levels belong to the control software architecture, whereas the fifth corresponds to the physical
layer (hardware) of the system. Decisions about defining the constraints of the task are taken at
the higher level and navigation is below; the two intermediate levels are dedicated to the control
(individual or coordinated). The low-level deals with everything related to instrumentation,
such as multiple sensors/actuators existing on the robots. A description of each layer is given
next emphasizing each part in the MARS formation problem, as it is a central part of this thesis.

Task level. Current applications of MAS involve more complex tasks that may not be
cast as classic control objectives, but rather involve a higher level of specification definition and
planning. For instance, including logical, spatio-temporal specifications or the adaptation to a
dynamical environment are different aspects that can be handled at this level. As outputs, it
can generate a set of constraints that will be considered in the level below.

Path planning level. Once the constraints are mathematically defined by the upper level,
the path planning is in charge of generating the trajectory that the system as a whole should
follow. Usually, in multi-agent applications, this desired trajectory is only known by a subset of
the agents called leaders. Also, if agents perform perception tasks, changes in the environment
can be informed to the task level.

The first two layers, Task and Path planning levels, usually run on CPUs with medium/high
computational resources, since the volume of data they operate with (such as cost maps, point
clouds, images, etc.) is too large to run on simpler microcontrollers.
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Figure 1.6. Hierarchical control pyramid and information flow in MARS

Coordination level. This level will provide the control law for each agent so that the
overall control objective is achieved. Depending on the control architecture, the information at
this level can be global (centralized) or local (decentralized and distributed), and can run on a
central unit or onboard the agent’s microcontroller.

Individual position level. This level is in charge of the stabilization control of the agent.
Depending on the complexity of the agent’s dynamics, so will be the controller. It is generally
implemented onboard as it demands a high frequency execution, especially on agents with fast
and unstable dynamics.

Actuators and Sensors level. The lower layer is the MARS hardware level. The input
signals of this level are the operating commands of the actuators. These signals are transmitted
to the final devices through integrated circuits that adapt the setpoint to the corresponding
output, typically Pulse Width Modulation (PWM) signals for electric motors. The raw mea-
surements captured by sensors can have different natures depending on the sensor technology.
These measurements include analog voltage, resistance changes, electrical pulses, or PWM fre-
quency variations. Integrated circuits then convert these measurements into digital values for
transmission to higher levels.

The coordination layer, regardless of the control law used, allows for different architectures
as shown in Figure 1.7, such as centralized, decentralized, or distributed. Each of these im-
plementations has several benefits and drawbacks that make them more suitable for specific
applications [42]. All of them must ensure that the group’s objective is achieved, maintaining
the stability of the formation, and being able to be implemented in real-time in the different
agents of the system. In the case of centralized architectures, see Figure 1.7a, the advantages
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include the synchronous management of the control actions of all the MARS controllers and the
reduced number of messages transmitted on the network. Among its main drawbacks is the loss
of autonomy in the operation of the MARS, since a failure in the computer where the controller
is running would cause the whole MARS to stop working, the presence of dominant delays or
computational performance problems when the system increase its number of agents.

Decentralized architectures, see Figure 1.7b, are characterized by agents making control
decisions independently, without the need to communicate with other agents. This approach
is more robust to system failures than centralized architectures. In this case, each agent has
to communicate with the upper control layers to receive the path and constraint instructions.
With this data, at the local level, it generates the instructions for the “Individual position”
layer. This implementation is directly related to the sensory capacity of the agents and the way
the system’s formation is defined. For example, if the agents have equipment to detect obstacles
around them and the constraint is set to maintain a distance from the neighboring agents, each
robot can move around without the need to communicate with the other agents.

Distributed architectures, Figure 1.7c, address many drawbacks of centralized systems
by offering greater flexibility in the network, allowing each agent to implement its own control
strategy. In the same way, in case of failure in one controller, the operation of the rest of the
agents is not interrupted. On the other hand, the scalability of the system is much more efficient
and predictable because the consumption of each controller is the same regardless of number
of agents in the network. Whatever the delays introduced by the communication might be,
they are generally reduced compared to centralized communication, as the controller needs less
time to communicate with all its agents (which are not all the agents in the system as in the
centralized case).

Distributed controllers in MARS can be subdivided into two depending on where the con-
troller is implemented: on an external device that connects the robot to the system’s communi-
cation network, or onboard at the robot’s microcontroller. The main advantage of the onboard
implementations is the elimination of the delay in communication between the robot and the
external device.

Due to its importance in large-scale systems, the concept of scalability requires further
comment. Scalability refers to the system’s ability to add more agents without any negative
impact on performance. Adding more agents can improve performance by reducing completion
time and simplifying agents. It is essential to examine the following aspects to determine if
scaling the system is feasible:

• Computational cost. The computational cost of the system depends on the CPU usage of
each agent and node. In centralized architectures, all processes are on the same computer,
governed by its capacity. However, in distributed architectures, it is crucial to balance the
load across the computers involved to prevent bottlenecks that could harm the MARS’s
overall integrity. It requires avoiding exceeding the capacity of the computers and ensuring
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(a) Centralized architecture. (b) Decentralized architecture.

(c) Distributed architecture.

Figure 1.7. Communication architectures in MARS.

a homogeneous distribution of the load.

• Network bandwidth. As the number of agents increases, so does the amount of network
transmissions. To predict bandwidth occupancy when there are simultaneous transmissions,
it’s important to know the sampling and execution frequencies of different processes, as well as
the message size. Systems that operate at high frequencies periodically are more likely to have
all simultaneous transmissions, making them less favorable. However, event-driven sampling
and control strategies can decrease the frequency and number of transmitted messages, which
can reduce pressure on the system.

Formation control problem

Among the challenges to address in MARS, one of the most relevant is the control of formation.
A formation is understood as a predetermined spatial configuration for a set of agents. A
formation can be considered as the tern composed of a set of agents, the interactions between
them, and their positions [43]. In [44], the authors characterize the formation control schemes in
terms of the agents’ detection capacity and interaction topology. The study is carried out taking
into account the variables detected and those controlled to maintain the formation. According
to [45], they classify the formation control schemes as:
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• Position-based control. In this approach, agents detect their position in the global ref-
erence frame. The variables controlled are their position to achieve the desired formation,
which is prescribed by the desired positions in the global frame (either concerning the fixed
frame or other agents).

• Displacement-based control. In this approach, agents are not required to know their
global position, only the orientation of the global reference frame and the relative positions
of their neighbors. Each agent actively controls the relative displacements of its neighboring
agents to achieve the desired formation, which is specified by the desired displacements with
respect to a global coordinate system.

• Distance-based control. In this approach, the distances between agents are actively con-
trolled to achieve the desired formation which is given by the desired inter-agent distances. It
is assumed that individual agents can detect the relative positions of their neighboring agents
concerning their local coordinate systems. These problems can in turn be divided into two
approaches: regulation when they maintain the formation and tracking when the movement
of the formation along a trajectory is pursued.

When designing formations, there are three main issues that need to be addressed: generation
[46], reconfiguration [47], and tracking [48]. In terms of tracking, the agents in the system need
to coordinate their movements to achieve several objectives, such as maintaining and acquiring
formation, maneuvering the formation, and intercepting or flocking towards a target [49]. There
are various formation control strategies available in the literature that can adjust the system’s
behavior according to the task at hand. Some of the most common strategies include [50]:

• Behavior-based approach [51]. In this case, the behavior of each robot is set individually
by combining sub-behaviors such as moving towards the goal, avoiding obstacles, or main-
taining formation. The main advantage of this approach is that its architecture is parallel and
distributed, and the necessary communicated information is less between robots. The main
problem is that the mathematical analysis is difficult. In consequence, the convergence of the
formation to a desired configuration cannot be guaranteed. In [52], Figure 1.8 demonstrates
an example of how this approach is utilized. Each robot has certain predetermined areas
with particular behaviors assigned to them. Based on the location of the detected obstacles
or neighbor robots, robot “i” will present attraction, repulsion, or indifference behavior.

• Leader-follower approach [53–55]. he movement of the formation is determined entirely
by the leader’s trajectory, and the rest of the agents (the followers) preserve relative distance
or positions between them and/or the leaders. This fact implies a simpler individual control
based on following a reference with a predetermined margin. However, failures in the leaders
might comprise the achievement of the formation.

• Virtual structure approach [56,57]. In this approach, the whole formation is considered a
rigid body. The motion of the system sets out the overall formation. Then the corresponding
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Figure 1.8. Example of Behavior-based approach. Robot “i” with the areas for behavior reunir.

transformation is applied to each agent. The main advantage of this approach is that it
is easy to fix the coordinated behavior of the group (including in the maneuvers). The
main disadvantage is that the formation must be rigid and therefore loses flexibility and
adaptability, especially when the formation shape must change its configuration frequently.
In addition, it requires more use of the communication channel between agents. Figure 1.9
depicts the experimental validation of the performance of a formation with three mobile
robots for three different trajectories [58].

Figure 1.9. Example of virtual structure approach. Results for trajectory tracking (a) Circular,
(b) Square, and (c) Double frecuency.

• Artificial potential functions [59, 60]. In this approach, the control signal of the robot
is derived from a potential function that, on the one hand, drives the system to the desired
formation, and on the other hand, avoids collisions between agents. This method has the
advantage of requiring fewer calculations and simpler implementation. However, it only
ensures local stability.

• Graph theory based approach [61]. This approach considers the system as a graph
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where the nodes represent the agents or robots, and the edges represent the connections/re-
lationships between them. This approach studies the combined use of graph theory, control,
and dynamical systems to analyze formations and their stability. The main advantages of
this approach are its ability to model any system regardless of its complexity and the solid
theoretical development that exists.

Event-based control

Event-based sampling and control is an alternative to periodic sampling method that has been
shown to be effective in reducing the number of samples, updating the control signal, etc [62].
The main idea is that it is the state/the output of the system and not the time what determines
when to sample the system. The average rate of event-triggered transmissions is usually much
lower than the sampling frequency in sampled-data systems, which implies the superiority of
the event-based techniques in resource-constrained applications. However, the sampled-data
theory is no longer applicable for the event-triggered control since the fundamental assumption
of equidistant sampling is violated, and new theoretical developments have been necessary to
derive stability conditions (see [63] and references therein).

Its rise in the last twenty years has been motivated by the advantages it provides in CPS,
in which there is a strong coupling between control, computation, and communication. There-
fore, the design of strategies must be carried out in an integrated manner to obtain adequate
results. In the case of battery-powered systems, such as robots, the autonomy of the agents is a
bottleneck in their development. Efficient use of available resources has a particular impact as
it allows the extension of the system’s autonomy. In MARS, this strategy can improve compu-
tational efficiency by implementing it at the individual and coordination control layers, as well
as optimizing inter-layer transmissions at the hardware layer.

Given the large number of applications where these systems are implemented, different
schemes are required to suit the configuration of the work environment. Figure 1.10 shows
the most basic configuration where sampling is performed at the sensor’s output in MARS. In

Figure 1.10. Event-based sampling basic diagram.
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this case, event-based sampling applied to the position estimator of each agent reduces the use
of the communication channel. The event detector is implemented together with the estimator
in the hardware layer of the system. The coordination control layer includes a buffer that stores
the last position received from the associated neighbors. In this way, the controller can be exe-
cuted every time new data arrives with the stored values of the rest of the neighbors. Depending
on the location of the event detector and the signals involved, the event-based architecture is
adapted to the different application domains. In [64] the implementation of a system with an
event-based Proportional Integral Derivative (PID) control is describe where events are detected
and generated for each of the controller components (proportional, integral, and/or derivative).

Event generation

Usually, at the event-based sampling, a trigger function is defined based on an error signal and
a threshold, in such a way that an event (sampling) occurs when the signal reaches that defined
maximum value. For instance, if x(t) denotes the state of the system at time t, usually the error
is defined as e(t) = x(tk)−x(t), where tk represents the last sampling instant. These are defined
recursively as:

tk+1 = inf{t : t > tk, f(e(t), x(t)) > 0} (1.1)

where f(e(t), x(t)) is the trigger function. There exists in the literature several ways of defining
this trigger function. One of the first proposals is to consider a constant threshold, which
leads to send-on-delta strategies [65]. They present the advantage of an easy implementation
but cannot guarantee asymptotic stability. By contrast, relative threshold strategies [66, 67], in
which the bound depends on the state of the system, provide such desired property. However,
the trigger function has to be carefully designed because, in certain cases, a relative threshold
strategy can lead to what is called Zeno effect, that is, the occurrence of infinite events in a
finite time interval [68]. To avoid that, a combination of the two mentioned strategies has been
proposed [69] or a safety condition, such as a minimum time between events [70], can be used.

In the following, a summary of some of the relevant works in the field is provided:

• Level crossing or send-on-delta [71]. This implementation proposes a protocol whereby an
event is generated when the analyzed signal crosses a preset value/level. In this case, the
working range of the signal is split into equidistant levels. Additionally, hysteresis is im-
plemented so that successive crossings of the same level do not generate events. Another
equivalent interpretation that does not require predefining the working range levels is that
an event is generated when the difference between the current value of the signal and the last
event value exceeds a threshold. This reformulation already incorporates hysteresis. Modi-
fications have been developed over time to obtain more specific results. One example is the
Integrated Level Crossing [71], which gives a more useful measure of the quality of signal
tracking and guarantees the triggering of a future event.
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• Model-Based Triggering [72]. Classical systems consider the system response as a Zero Order
Holder. Significant improvement has been demonstrated by changing this approach to a
model-based prediction of the system to be controlled. This technique is especially useful in
multi-agent systems where using a prediction based on the neighbours’ model can provide a
smoother response [73].

• Sampled-Data-Based Event-Triggered [74]. The central idea of this strategy is that event
detection only occurs at sampling times rather than at continuous times. Furthermore, the
minimum number of times between events is inherently limited by a sampling period, which
implies that Zeno behavior is excluded. This improves computational efficiency and simplifies
the hardware required for continuous sampling.

Adaptive threshold

One of the problems that present event-based sampling is that, when the output of the system
is subject to noise, events can be generated even though the state might not have changed. To
deal with this, adaptive thresholds have been proposed [75] so that the parameters that define
the threshold change over time depending on the noise level. More specifically, let us consider
the following trigger function:

fi(ei(t), xi(t)) = |ei(t)| − (ci0 + ai|xi(t) − xiref | + cin(t)) (1.2)

where ci0 y ai are constant parameters, cin(t) is a parameter that adjusts to the noise level of the
signal and xiref is the reference to variable xi. Note that in this case the threshold consists of
three terms: a constant given by ci0 that will determine the maximum error around the reference,
one relative to the distance to the reference weighted by ai, and a third term given by cin(t)
that allows us to adapt the sampling to the presence of noise. This last term is calculated
based on the noise estimation, as detailed in [75]. In this way, when the system is far from
the reference state, higher values of ei are allowed. However, when the system approaches the
desired equilibrium, the threshold decreases, so that an adequate level of controller performance
is guaranteed but reducing the number of control signal updates.

Figure 1.11 shows how different trigger thresholds affect the generation of events (arrows) for
a system’s response. The red line represents the system response, while the blue line represents
different approximations of the trigger threshold. The dashed line shows the deviation of the
signal since the last event. Figure 1.11a demonstrates the use of a constant threshold, while
Figure 1.11b shows the use of an adaptive threshold. As seen in the second case, the adaptive
threshold leads to fewer events generated at the beginning of the event as it adjusts to the
system’s response.
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(a) Constant threshold. (b) Adaptive threshold.

Figure 1.11. Examples of Event Generation.

1.3 Validation of MARS

MARS is a technology that can be used in various applications where individual agent-based
systems are not performing well. It provides better scalability, reliability, and efficiency than
traditional systems. However, developers may address several design challenges, such as dis-
tributed computing, collaboration, coordination, and real-time integration of all components.
Moreover, the infrastructure that supports MARS needs to be designed and configured appro-
priately, which can be a complex and expensive task. Ensuring that all these aspects are well
incorporated can become unmanageable and costly in the long run, especially when it concerns
maintenance. These complexities can be reduced by a middleware layer. Middleware provides
programming abstractions for a developer so that they can focus on application logic instead of
low-level details [76]. Effective middleware for MARS must satisfy the following objectives [77]:

• Hardware and software abstractions. This implementation allows developers to focus on
high-level work and application requirements. In this way, they avoid dealing with low-level
hardware and network issues. It is a good policy to standardize these abstractions as much
as possible to enable their use in different applications.

• Interoperability. Heterogeneity in MARS can occur due to the difference in hardware (sensors
and actuators) or software (communication protocols, libraries, etc.) of multiple agents. Mid-
dleware should provide abstractions for developers to work in a homogeneous way ensuring
interoperability between heterogeneous agents. That is, it should allow agents to communi-
cate with each other effectively regardless of the platform on which they have been developed
or their components.

• Real-time support. In many aspects of the robot use, such as control for obstacle avoidance,
or teleoperation in medicine, execution time is critical, and real-time systems are required.
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• Elasticity. The MARS system is designed to be scalable, meaning that agents can be added
or removed, and their configurations can be changed as needed. Any growth in the number
of messages or entities at any given time should not affect the agents. Moreover, to improve
the system’s robustness, the middleware should enable autonomous detection and recovery
from any network or software failures.

• Flexibility and reusability of software. Middleware must allow services to be defined by their
functionalities and not according to the hardware, software, or applications for which they
are used. It means that a developer does not have to redevelop everything from scratch every
time there is a change in hardware or software (libraries, operating systems, languages, the
application itself, etc.).

• Integration with other technologies. If middleware is developed hermetically, it is hard for
it to be reusable when new technologies emerge. In this regard, the integration of standard
protocols will facilitate the inclusion of new technologies that allow these systems to be
updated. Examples of these recent technologies are the Internet of Things (IoT) or Cloud
Computing which use standard protocols such as MQTT or HTTP to facilitate their use.

• Effective management and monitoring tools are crucial for any middleware. They should
enable developers to monitor and view the entire system, component by component. It helps
to understand how the system operates and identify any potential issues. Additionally, such
functionality makes the system more user-friendly, allowing even non-expert users to use it.
This feature expands the scope of MARS and makes it more accessible to a wider range of
users.

All these requirements have been analyzed for as long as MARS has been in use, but the
trend in the last decades has been the development of specific systems. These systems show high
performance in the applications for which they are designed but fail in some requirements such as
integration with other systems, flexibility and reusability or interoperability for new components.
One of the most widely used middleware in MAS is JAVA Agent DEvelopment Framework
(JADE). It is the general-purpose framework developed by Italian Telecom and the University of
Parma. It is the de facto solution for the development of multi-agent systems. JADE implements
the FIPA standard [78], which promotes interoperability with other platforms. It currently has a
high level of maturity, and therefore, it serves a wide community and is well documented. In the
MRS case, the two of the middleware layers with the greatest impact have been Player/Stage
System and Robotic Operating System (ROS). On the one hand, Player/Stage System [79] is
a multi-threaded TCP socket server. It provides a transparently accessible network interface.
On the other hand, ROS is the middleware par excellence in robotics. Communication between
devices uses both publisher-subscriber and client-server modes. The system is distributed in
nodes but they are dependent on a central master node. It implies a significant risk when a
failure occurs.
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Robotic Operating System 2 (ROS 2)

ROS is a set of open-source software libraries and standard tools that help in building robot
applications. Its most recent generation, ROS 2, includes new features that make ROS easier
to learn, use and improve its suitability for MARS [80–82]. These improvements enable a
more efficient communication protocol with a better real-time performance than ROS, it allows
distributed architectures, an adaptation to the most recent language libraries, such as Python
3, and native multi-platform development. This last feature brings its use closer to Mac or
Windows users, two systems with a wide presence among non-professional users. The new
DDS-based network architecture [83] allows a network to be divided into different domains,
independent of each other. In this way, in conjunction with the use of standards in the topics,
interoperability between agents is guaranteed.

A network defined in this middleware is composed of nodes, topics, and services. Figure
1.12 shows a conceptual graph of a system based on ROS. Nodes (ellipses) are the processing
units of the network with specific purposes, such as reading sensors, controlling motors, etc.
Communication between nodes is carried out through topics and services (rectangles). Topics
are variables based on the publisher-subscriber model. When a call-and-response-based com-
munication is required, services are used. Complementary, when it is necessary long run a task,
the actions use is a better option. They start with a service. When they receive the response,
they provide steady feedback (as opposed to services that return a single response) and it is
possible to cancel them while executing. In the ROS 2 architecture, the network can be split
into separate groups known as namespaces (dashed rectangles). These subspaces allow users
to reuse the same nodes for different agents, supporting the same functionality across multiple
areas. It allows for easy scalability of the system without the need for manual adjustments to
node, topic, and service names. The RQT software framework, available in ROS/ROS 2, allows
for graphical monitoring and management of topics and services.

Figure 1.12. Example of ROS diagram.
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In recent years, there has been a high demand for ROS/ROS 2, resulting in the development
of a new version specific version for embedded systems. micro Robotic Operating System (uROS)
was developed in 2018 as a result of the rise of distributed systems [84]. This system arose in
response to the need to incorporate ROS in a Microcontroller Unit (MCU). These devices are
used in almost all robotic products because of their low cost, real-time, low latency, and energy
savings. Key features of uROS include seamless integration with ROS 2, resource-limited but
flexible middleware, multiple Real-Time Operating System (RTOS) support, and layered and
modular architecture. Due to resource constraints, devices that typically require centralized
communication architectures with base stations to connect with a ROS 2 network can now
function as independent agents.

Considering the features of ROS 2 and the objectives that MARS middleware must satisfy,
we can state that ROS 2 is the most complete middleware for heterogeneous distributed MARS
that offers the best long-term solution at the current time [85]. Additionally, the development
in ROS can benefit from the ROS community developers. This community provides different
working groups focusing on specific topics such as education, navigation, drivers, aerial vehicles,
etc. If you can spark community interest on your particular project, you can even engage
developers over time.

Simulators and physical platforms

Simulators are virtual experimental platforms that allow the emulation of the behavior of physi-
cal processes. These tools have proven to be extremely useful in both the academic and research
communities. They are highly economical and accessible platforms that do not require a physical
space. The only limitation they have is the computing capacity of the system. Due to their
delocalization, they are ideal for remote and collaborative work. Different users can work with
identical systems under the same conditions, without any time restrictions, and can repeat the
experiments as many times as they need without wearing out the system components. These
tools are also a fundamental factor in the development, verification, and evaluation of work
before it is executed on physical systems.

Like middleware, there is no single powerful tool. Current practice focuses on developing
simulators for specific processes (marine robotics, chemical processes, communication networks,
etc.). Systems that emulate physical environments have one common feature, the need to develop
a working world previously. This virtualization of the environment is essential for the correct
working of systems that use sensor data to feedback on their different levels of control. The
fidelity with which a physical environment is reproduced determines the quality of the simulator.
However, increasing the surface detail of an object improves sensor perception and accuracy,
but requires more computational resources to be rendered by the simulators’ physics engines.
Therefore, in choosing the better simulator, developers should find a compromise between the
available computational resources and the accuracy of the implemented model. This graphical
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visualization also provides important feedback to users, especially non-expert users. For them,
the visualization of final data can only be an excessive level of abstraction. Therefore, a correct
visualization in real-time of the experiences allows for maintaining the physical sense of the
processes, facilitating their comprehension and improving the user-friendliness of the system.

However, simulators are not a panacea for experimental research. When deciding to develop
a simulator, researchers and developers need to consider and tackle the following challenges [86]:

• Reality gap. This term refers to the difficulty of transferring simulated experiences into the
real world. When designing control software for MARS a difference between reality and
simulation models used is always present. There is a trade-off between the accuracy of the
models and the computational costs involved in the design process that should be considered

• Computation time and Scalability. Both parameters are closely related. The greater the
number of agents involved, the greater the computational time required to perform a simula-
tion step. If users set high specifications for both terms, it can be difficult to achieve without
compromising the stability of the physics engine. This problem can be addressed by choosing
resolution methods and the simulator step time.

• Users’ knowledge. Building models and worlds is often complex and requires a deep under-
standing of the software. This fact often makes it difficult to use the tools for those who lack
this knowledge, especially those who only need to validate their work on the simulator.

As an alternative to these challenges, physical experimental platforms provide a complete
and valuable complementary tool to simulators. With this type of platforms, users do not need
to develop models for all components of the environment and process under study, thus reducing
the initiation gap. Additionally, experimental problems cannot be simplified. A large number
of issues must be taken in account, such as irregularities in hardware components, uncertainties
in models, limitations in communication channels, interferences, environmental disturbances,
and others. Exposing the developed work to these conditions adds great value to the obtained
results.

Among the main challenges that developers of these platforms must face are the choice of
compatible hardware components and security. At the hardware level, elements from different
manufacturers may have different needs (power supply voltages, communication protocols, in-
terferences between systems, etc.). The structural aspects of the environment can impact the
functionality of systems. For instance, reflections, limitations in the placement of sensors due
to other elements such as electrical systems, heating, ventilation, communications, etc., interfer-
ence from external signals, legal restrictions, and so on, can all cause problems. From a security
perspective, in addition to cybersecurity against external attacks, the physical integrity of the
system is also relevant. The platform should guarantee the agents’ operation without risk of
physical damage. This applies both to the agents themselves (which would present an additional
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cost) and to the users who could be injured by a system failure or misuse. When operating re-
motely, the user’s risk is eliminated. However, restoring the system to its original state becomes
a challenge. If the experiment has been executed well, the system can be configured to return
to its initial state upon completion or specific conditions like low battery levels. But in case
of a critical failure, the system may not be able to restore itself automatically. It is important
to note that these issues are inherent to physical systems since simulators can fix any failure
without any consequences by restarting.

The synergy between physical systems and simulators is not new, but new terms have arisen
to delimit the different cases in which the two systems are used together. Two digital components
available to CPS that are experiencing a boom are DT and Digital Shadow (DS) [87, 88]. Both
DT and DS are technologies that enable the creation of accurate virtual models of robots or pro-
cesses in simulated environments. The data flow direction between physical and digital systems
distinguishes these components from classical Digital Models (DMs). A DM is a computerized
replica of a physical object. It is important to note that there is no real-time synchronization
between the physical system and the DM (see Figure 1.13a). It means that any changes made
to the physical system will not affect the DM once it has been created. In DT and DS, there is
real-time communication between the physical system and the digital counterpart. When this
communication is bidirectional, the concept that applies is DT (see Figure 1.13c), whereas DS
corresponds to the case where the communication is unidirectional from the physical system to
the digital system [89] (see Figure 1.13b). Both DT and DS allow the use of real-time data
to perform parameter estimation, predictive controllers, fault detection, etc. on the physical
system. The exploitation of twins, shadows, and DMs in the framework of CPS gives rise to a
wide range of challenges and cases in the field of robotics and control [90].

(a) Digital Model. (b) Digital Shadow. (c) Digital Twin.

Figure 1.13. Levels of integration according to data flow (arrow). Solid: Automatic; Dashed:
Manual.

Firstly, the DT models’ development requires a detailed knowledge of the physical system
and an infrastructure that supports the communication and integration needs between subsys-
tems. These two factors will determine the extent and features of the DT’s coverage. If highly
accurate models are available and computational and communication speeds are adequate, more
challenging tasks such as parameter estimation or controller add-ons may be used. However,
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for applications where accurate models are not necessary or where technical limitations are a
factor, supervisory applications such as preventive fault detection or safety backup in the event
of a system failure are more appropriate.

Another fundamental aspect directly related to the exposure of systems to a more connected
world is cyber security. The systems that use DTs and DSs require data that can be trusted from
the point of view of integrity and confidentiality. Data injection attacks can cause controllers to
become unstable or erratic, which can result in physical system damage and adverse economic
consequences.

Finally, one of the most recurrent problems hindering its implementation is the lack of
standards. As it is a technology developed from classical simulation tools and there is no
consensus on its definition, developers have opted for ad hoc designs for their applications. This
makes integration with other technologies difficult and forces own development, which leads to
an entry gap in terms of the required skills.

In the field of robotics, Augmented Reality (AR) is a relatively new technology that has
significantly contributed to the integration of physical and digital environments [91]. Unlike
Virtual Reality (VR) which generates representations of the physical world in the virtual world,
AR is focused on collaborative robotics that allows digital information to be displayed on physical
objects. Mixed Reality (MR) is a combination of VR and AR [92], widely used in collaborative
systems [93], which allows interaction and manipulation of both physical and digital elements
and environments. This interaction is completely bidirectional, meaning that the behavior of
DMs affects the behavior of physical systems and vice versa.

Among the most extended applications of this concept is the teleoperation of systems by
DT. In these cases, users operate a virtual environment (DT) that transmits the commands to
the physical system. The user receives feedback from the physical system via the DT through
periodic communication. MR provides greater flexibility to its systems, facilitating the combi-
nation of physical and virtual elements to perform new experiences. The challenge for systems
that incorporate this approach is the development of a software infrastructure to run the virtual
elements in real-time and to communicate seamlessly with the physical elements. This aspect is
covered by the middleware’s features. The main benefits of middleware include:

• Spatial flexibility. The integration of physical and virtual environments enables the remote
operation of robots. It is particularly useful in collaborative settings where the participants
are in different geographical locations. Two physical facilities can have simultaneous joint
experiences in a shared centralized virtual environment.

• Elimination of safety risks. One of the main aspects to be addressed in collaborative work is
physical safety between elements. In the case of human-robot interaction, the risk of damage
due to a malfunction of any part can have serious consequences. MR offers a safer, lower-risk
experimental space where pre-validations can be performed using virtual robots with physical
humans or real robots with virtual humans.
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• Simplified debugging. MR creates a rich environment where it is possible to monitor in detail
a virtual system in a physical environment to detect early failures.

• Sensory flexibility in the virtual environment. Sometimes, the characteristics of the experi-
mental agents do not allow having much equipment on-board (e.g. reduced size vehicles such
as MAV). In these cases, if a faithful virtual replica of the physical environment is available,
these agents can be equipped with additional virtual sensors such as lidars or cameras without
affecting the physical characteristics of the agent.

• Scalability. In cases where the physical space has limitations to operate a large numbers of
agents, the use of virtual spaces and agents allows increasing the size of the MARS.

1.4 Outlines and Contributions

The different contributions of this thesis are applications of advanced identification and control
techniques in Heterogeneous MARS. A summary of the most relevant ones and the thesis’
structure follows below:

• Chapter 2. Robotic Park (RP). Chapter 2 describes the developed physical experimental
platform for indoor MARS. The architecture and all the components are described, includ-
ing the different types of robots (aerial, mobile), positioning systems (MoCap, UltraWide
Band (UWB), Infrared, based on Vision), and communication architectures (centralized, dis-
tributed, or hybrid). The system is integrated in ROS 2 that interconnects all the elements.
Several simulators have been developed and are integrated in the platform. This work has
been published in part in the IEEE Access Journal (see [94]).

• Chapter 3 Differential Drive Mobile Robots. This chapter presents a detailed study of
the theoretical modeling of mobile robots. Then, these results are validated experimentally
on real robots. It also explains the individual control architectures of them.

• Chapter 4 Aerial Robots. This chapter focuses on the theoretical modeling of aerial. The
control architecture, consisting of several levels, is also explained. The effectiveness of using
event-based techniques for reducing controller executions in microcontrollers is demonstrated.
This work was presented in part in two conferences: the XLII Jornadas de Automática [95]
and the 13th IFAC Symposium on Advances in Control Education [96].

• Chapter 5 Formation Control: Experimental Evaluation. This chapter studies the
formation control problem, as it is one of the fundamentals of cooperative tasks in MARS.
First, a control law to drive the system to a formation in the 3D space but restricted to
constraints is presented. Then, different experiences are presented to study the performance
of Robotic Park in the context of multi-agent systems. More specifically, the scalability,
the control architecture, and the communication protocol are evaluated. With respect to
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scalability, different experiences are carried out to analyze the impact of an increasing number
of agents (both virtual and real) on CPU usage and system performance. The behavior
of two of the developed simulators is compared. After that, three different architectures
(centralized, distributed in ROS 2, and distributed onboard) are evaluated jointly with the
communication protocol. This latter case studies the impact of the communication frequency
and compares the results with an event-based protocol in which the position of the robots
is only broadcasted in the network when the trigger condition is satisfied. The study of the
scalability of the platform has been published in [97], whereas the impact of the architecture
and the protocol can be found in [98]. A Preliminary study that only evaluated the platform
with aerial robots was presented in the XLIV Jornadas de Automática [99].

• Chapter 6. Finally, the conclusions and future research steps related are given.
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Chapter 2

Robotic Park

2.1 Introduction

The growing interest in research communities and industries in MARS is largely due to its po-
tential real-world applications. However, one of the major problems of MARS lies in real-world
performance evaluation. That is, how to validate and evaluate different approaches comprehen-
sively. In this sense, the demand for flexible, robust, and precise MARS testbeds increases.

Depending on their nature, the experimental platforms or testbeds that do exit for testing
MARS developments can be classified into three types: physical, virtual (simulators), or hybrid.
On the one hand, physical platforms allow a real-world multi-robot system operation in a
physical environment for realistic performance evaluation. On the other hand, virtual platforms
allow for determining the experiment’s feasibility and to define the robustness of the novel
algorithms in a variety of complex interaction scenarios, although it often does not work under
real-world conditions. Finally, using hybrid platforms allows the use of Hardware-in-the-Loop,
Software-in-the-Loop, and Mixed Reality (MR) architectures [100] combining real and virtual
agents.

Currently, most of the distributed MARS results are still only validated in simulated en-
vironments and therefore it is unknown how these methods work in real-world scenarios. In
this way, it is essential to build new experimental platforms, or testbeds, to carry out MARS
development validations, beyond simulations, both from a research and teaching point of view.

Motivated by this need, the experimental platform Robotic Park (RP) has been developed
as a central part of the work of this thesis. The overall solution perfectly covers our research
interest for experimentation tasks with MARS, involving restrictions in the computation time
and data transmission, and also our teaching purposes in the Department of Computer Science
and Automatic Control of the Universidad Nacional de Educación a Distancia (UNED).

Building a MARS indoor experimental platform such as Robotic Park is more than chal-
lenging. It involves many different issues: the design and choice of hardware components of
the system, the robots’ selection, the system architecture and communication, the positioning
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systems, or the simulation software selection from those available. On one hand, at the hardware
level, a well-designed platform needs to include different components (PCs, switches, etc) that
ensure the overall operation of the system. Moreover, the choice of the agents directly affects
the types of experiences affordable, so it is important to consider features like their mechan-
ical, size, mass, or traction method. At the software level, the choice of the communication
architecture (see Figure 1.7) and the associated technologies are fundamental in enabling inter-
operability among heterogeneous agents in RP operations to ensure the achievement of shared
missions. Moreover, the selection of the proper simulation tools must be accomplished to get
the best seamless integration of simulation environments and the real-world platform. Finally,
the estimation of the position of the robots in the motion area is also an important question to
address in the design process of RP. How to achieve high indoor positioning accuracy [101] is
the premise in the development to ensure that the agents can complete the proposed task. The
decision about what IPS to use, either internal or external to the robot, and the mainstream
indoor positioning technologies applied (such as Wi-Fi, Radio Frequency Identification (RFID),
etc) will be defined. This decision will be largely determined by the type of robot and the
communication function available for each one. Anyway, to verify the feasibility of the position-
ing methods experiments in both the RP real environment and in simulation will be analyzed.
Throughout this chapter an insight into each of these aspects and how RP integrates all of them
will be provided.

In this regard, Robotic Park (RP), a heterogeneous experimental indoor platform for
control and robotics. It is designed to support MARS experiences combining different types of
vehicles: micro-aerial quadcopters and differential mobile robots. The architecture implemented
allows users to work in a virtual environment (simulation of the system), in a physical envi-
ronment (robots in a physical environment), or in a hybrid scheme. The virtual environment
includes different simulators, based on Gazebo [102], Webots [103], and Matlab. Gazebo is a
popular open-source 3D robotics simulator with broad compatibility with ROS 2 and supports
most sensors. However, its environment can be challenging for those unfamiliar with it. As a
solution, RP also includes Webots and Matlab, which are easier to use and have a friendly user
interface but with a tougher integration in ROS 2.

Furthermore in the physical environment of RP, three positioning systems based on different
technologies are available: Lighthouse Positioning System, LPS, and Vicon’s Motion Capture
(MoCap). All elements are connected through a ROS 2 network. This system is more suitable
when implementing decentralized architectures. Moreover, it also facilitates MR experiences.

RP is located in the 6.13 laboratory of the Escuela Técnica Superior de Ingeniería Informática
of the UNED in Madrid, Spain. Figure 2.1 shows the two versions that have been worked with
in RP. Initially, the laboratory working volume was of 2 × 2 × 2 m, and the only operational
positioning system was Vicon’s MoCap (see Figure 2.1a). Currently, the working volume has
been increased to 3.8 × 3.8 × 3 m, and the other positioning systems added (see Figure 2.1b).
In this new configuration, it is possible to work with a greater number of agents.
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(a) Initial version. (b) Current version.

Figure 2.1. Robotic Park laboratory.

The rest of the chapter is structured as follows. Section 2.2 overviews the most relevant
experimental platforms covering RP-like needs. Section 2.3 reflects the fundamental character-
istics that show the potential of RP versus other similar platforms. The technical description of
robots available in RP is available in section 2.4. In addition, the interest in its use is justified
compared to other alternatives. Section 2.5 is a detailed description of the RP architecture. The
section ends with a concise definition of experimental availability, definition of configuration files
and subsequent data processing. Section 2.6 details the communication infrastructure available
in RP and the use of ROS 2 as middleware. Section 2.7 shows the available positioning systems
in RP, with particular emphasis on their characteristics, infrastructure, and integration in RP.
Section 2.8 explains the main simulation tools available in RP, which are fully integrated and
justified for use in different areas of RP exploitation. Finally, section 2.9 outlines the key find-
ings from the development and implementation of RP and proposes future work to keep RP at
the forefront of experimental platforms.

2.2 Overview of platforms

This section shows a compilation of some of the most relevant experimental platforms that use
MARS and MRS.

• Robotarium [104–106], see Figure 2.2a. The Georgia Institute of Technology developed this
platform. It began operating publicly 2017. It is one of the most complete platforms available
today, focused on MRS applications using mobile robots like the GRITSBot [107]. The
platform has a 3.65 × 4.25 [m] arena equipped with a Vicon MoCap system, composed of 8
cameras. At the software level, it is designed using simulators for Matlab and Python, as
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well as a docker to help users become familiar with the environment. To allow external users
to run experiments, the developers provide configuration files and a web system to manage
submissions. This way, managers can run requested experiments and return logged results.

• Duckietown [108,109], see Figure 2.2b. This platform was created in 2016 by the Massachusetts
Institute of Technology (MIT) with the goal of making teaching and research more accessible
through simpler systems. The mobile robot equipment in this system relies solely on monoc-
ular cameras as feedback sensors. The goal is to find efficient solutions using simple robots,
which limits the types of tasks the system can performe. It mainly focuses on Artificial
Intelligence (AI) and vision tasks, such as image segmentation for recognizing traffic signs.

(a) Robotarium. (b) DuckieTown.

Figure 2.2. MARS testbeds (I).

• Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) [110], see
Figure 2.3a. It is a project developed at the MIT Space Systems Laboratory created to
provide support to institutions such as the National Aeronautics and Space Administration
(NASA). The platform has three operating environments, consisting of a simulation software,
a 2D ground laboratory, and a 3D laboratory on the International Space Station (ISS). The
objective of the platform is to investigate MRS satellite agent, with special emphasis on
formation flight and docking algorithms in microgravity. Since the beginning of the project
in 2006 several research groups have been working on the platform.

• SMARTmBOT [111], see Figure 2.3b. This testbed is a 2021 open-source project of the Smart
Machine and Assistive Robotics Technolog (SMART) Lab, at the Department of Computer
and Information Technology, Purdue University, Indiana, USA. This platform is focused on
low-cost MRS studies. The robots are developers’ designs and can be built with 3D printers.
It is implemented in ROS 2 to improve its flexibility, scalability, and modularity.

• Flying Machine Arena (FMA) [112, 113], see Figure 2.3c. From 2007 to 2020, ETH Zürich
developed and operated this experimental platform that was dedicated to aerial robotics. Its
main feature is its large working volume (10 × 10 × 10 m) with a high-precision and high-
frequency positioning system that allowed the analysis of the agents’ behavior of various sizes
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under aggressive dynamics (high velocities and accelerations).

• Sailboat Test Arena (STAr) [114,115], see Figure 2.3d. This testbed is a remotely accessible
indoor platform for sailing robot design verification, validation of autonomous algorithms,
and sailing control practices. It was launched in 2016 and developed by the State Joint
Engineering Lab on Robotics and Intelligent Manufacturing, at the Chinese University of
Hong Kong, Shenzhen. The arena is equipped with a fan system to generate stable wind
fields. The positioning system implemented for the agents is of the MoCap type. Among its
main strengths are that it is a compact platform with scalable results, low cost, free to use,
and remotely accessible.

(a) SPHERES. (b) SMARTmBOT.

(c) Flying Machine Arena. (d) Sailboat Test Arena diagram.

Figure 2.3. MARS testbeds (II).

• MRComm [116]. In 2019 the Department of Informatics at King’s College London, UK,
created a platform called MRComm. Its main objective is to analyze inter-robot communi-
cations, stability, consistency, and faults in MRSs. Despite its concise purpose, the proposed
architecture for analyzing these critical aspects has garnered significant interest.

• LOGISWARM [117]. This testbed is a low-cost platform developed at Sri Ramaswamy Memo-
rial Institute of Science and Technology (SRMIST), Kattankulathur, India, in 2022. Its work
focuses on the control of MRS in cooperative transportation tasks and analyzingits behavior
for different payload form factors, robot configurations, and applications.
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• Mini-sized Mobile Robots [58]. This platform was developed in 2020 by the Department of
Automation and Industrial Control at the Faculty of Electrical and Electronic Engineering
in Escuela Politécnica Nacional, located in Quito, Ecuador. Its main primary feature is its
ability to operate very small mobile robots using a vision-based positioning system. This
makes it a cost-effective solution compared to more advanced systems and easy to install
without requiring a large space.

• Urban Multi Wireless Broadband and IoT Testing for Local Authority and Industrial Ap-
plications (UMBRELLA) [118]. This testbed is part of a large-scale project related to IoT
and smart cities research. It is a real-world IoT testbed deployed in Bristol, UK, by Bristol
Research and Innovation lab. Toshiba Europe Ltd. It is located in the South Gloucestershire
region in the UK. The aim is to deepen the integration of multiple systems and sensors in
large-scale IoT systems in real environments. In the field of robotics, the application focuses
on industrial warehouse management and research into the booming DTs technology. In [119]
the authors show a study carried out on the platform.

In recent years, the number of testbeds dedicated to MRS has been increasing. Other ex-
amples of testbeds dedicated to MRS are the following: Simulating Collaborative Robots in a
Massive Multi-agent Game Environment (SCRIMMAGE) developed by Georgia Tech Research
Institute [120]; DOTS developed by Bristol Robotics Laboratory [121]; MARBLER (an improve-
ment of Robotarium) [122], and CrazyChoir from the OPT4SMART project [123]. Appendix A
summarize the main information of each platform with the URL addresses of those available.

2.3 Robotic Park. Main features

Robotic Park is an indoor platform that is highly flexible, easy to use, and heterogeneous. Its
development has a twofold motivation: the validation of research over an experimental system,
and its use as an automatic control lab in graduate and postgraduate courses. The selection
of components - both hardware and software - has been made to ensure the highest degree of
accessibility and compatibility. The main features of Robotic Park are summed up to:

• Heterogeneity. Whereas most existing testbeds usually work with homogeneous agents, RP
enables the use of heterogeneous agents. Experiences using different types of aerial and ground
vehicles equipped with sensors of different natures, types of locomotion and communication
modules are enabled. Additionally, several IPS, based on different technologies, are integrated
into RP. This allows a comparison of the performance provided by the different IPS, to adapt
to the robots or experience needs, or a combination of more than one to achieve improved
performances.

• Flexibility. It supports virtual, physical, or hybrid scheme experiences. Most of MARS
algorithms are only validated through simulations. RP offers the possibility of performing
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these experiments in physical or hybrid environments, which allows a higher number of agents
in the system. This feature also opens the possibility of collaboration with users in different
geographical locations, and to parallelize the realization of experiences.

• Interoperability. RP includes two hybrid frameworks (Gazebo and Webots) that enable com-
bining real and virtual agents in MR experiences, as the DT are indistinguishable from the
real agents. The architecture implemented in the simulators is perfectly compatible and repli-
cable in the physical environment, with a seamless integration of simulation environment and
real-world platform. This fact allows MARS MR experiences regardless of the agents’ nature
(virtual or real).

• Elasticity. All components are integrated through ROS 2 which allows centralized, decentral-
ized, or distributed control and communication architectures for MARS, since ROS 2 allows
running distributed systems more easily. Additionally, because each agent is an encapsulated
entity, they can be added or deleted (with no changes in the existing infrastructure), i.e., the
size of the MARS can be dynamic.

• Facilitates Experimental Design. The use of ROS 2 in RP also allows experiment designs to
be identical for simulation and real experimentation on hardware. The use of the physical
or virtual environment only depends on the nodes or parameters that are executed, whereas
the nomenclature and typology of the variables are the same in both environments.

• Modularity. The design of control strategies for MARS involves different aspects. Firstly, the
local control that allows the maneuvering of the agent. Secondly, the cooperative control that
requires collaboration between agents. And finally, a high-level task planning. Thanks to the
RP architecture, the validations of one of these techniques do not interfere with the others.
Additionally, the transmission of information from one control level to the others as well
as between different nodes is implemented in such a way that changing the communication
policy (periodic or based on events) is simple and transparent to the user.

A detailed description of the different parts that make up Robotic Park is given in the follow-
ing sections. Figure 2.4 schematically summarizes the different components that integrate the
platform and how they are related to each other. It reflects the role of ROS 2 as a link between
all components despite its heterogeneity: physical robots, data storage systems, simulation soft-
ware, etc. All code developed for the testbed’s implementation is hosted in repositories under
an organization on GitHub 1.

2.4 Robots in Robotic Park

Robotic Park operates indoors, meaning agents must have architectures that allow them to work
together effectively in small spaces. It has been considered that small-sized differential mobile

1Github: https://github.com/Robotic-Park-Lab
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Figure 2.4. Components of Robotic Park.

robots and MAVs are suitable to carry out experiences in RP, as they are the most widespread
robots in indoor workspaces for research and teaching. Currently, two types of aerial vehicles
(Crazyflie 2.1 and DJI Tello) and two types of differential mobile robots (Turtlebot3 and Khepera
IV) are available. The Crazyflie 2.1 and the Turtlebot3 are open-source platforms with official
documentation available on their official websites and a partial development of ROS 2 drivers
have been developed using their Software Development Kit (SDK). In the following, the main
features of the robots’ hardware are presented.

2.4.1 Crazyflie 2.1

Crazyflie is a versatile open-source flight development platform from Bitcraze AB [124]. In 2009
the Crazyflie project was part of the Swedish consulting company Epsilon AB. In 2011, the
project grew to launch Bitcraze AB. Crazyflie is a four-propeller aerial vehicle (quadcopter) of
small size. Two generations of the Crazyflie are available, Crazyflie v 1.0 and Crazyflie v2.X
(see Figure 2.5). Crazyflie 2.1 is the latest version. The most significant hardware change
between both generations is the position of the rotors, using a “+” configuration in the first,
see Figure 2.5a, and a “×” configuration in the second, see Figure 2.5b. At the sensory level,
the first generation is based on 6 degrees of freedom (DOF) Inertial Measurement Unit (IMU),
MPU-6050 which provides acceleration data and orientation and angular velocity. The second
generation, is based on 6 DOF IMU, BMI088, in combination with a high-precision pressure
sensor (BMP388).
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(a) Crazyflie v1.0, “+”. (b) Crazyflie v2.X, “×”.

Figure 2.5. 1st and 2nd generations of the quadcopter Crazyflie.

Regarding its physical characteristics, it is a MAV with dimensions 92 × 92 × 29 [mm] and
weight 27 [g]. Its flight time is about 7 [min]. It has a STM32F405 microcontroller (Cortex-M4,
168MHz, 192kb SRAM, 1Mb flash) and communication can be carried out via Bluetooth and
radio with nRF51822 (Cortex-M0, 32Mhz, 16kb SRAM, 128kb flash). Its basic configuration
incorporates the minimum sensors for its correct operation. To increase its sensory capacity,
expansion decks are used to attach to its connection pins. The most relevant are the multi-ranger
deck that equips five VL53L1x ToF that is capable of measuring distances up to 4 [m] and the AI
deck that increases the computational and integration capabilities of the Crazyflie through the
ultra-low power 8+1-core GAP8 RISC-V IoT application processor, a ultra-low-power 320×320
grayscale camera (Himax HM01B0) and an ESP32 module to add WiFi connection (NINA-
W102). A prototyping deck to include proprietary sensors is available to allow circuit design
by users. It is worth noting that in addition to the software available to control the Crazyflie
individually and with open Python-based tools, it has support to operate as MRS through
Crazyswarm [125] and its Crazyswarm2 version integrated into ROS 2. All these features make
it a robot with great success among researchers.

2.4.2 DJI Tello

The DJI Tello quadcopters are a commercial proposal more focused on entertainment than on
research [126]. It is a closed commercial platform with limited programming capacity through an
SDK that allows the control of the robot. Due to its great boom in recent years, different versions
have been launched, and without leaving the entertainment objective, they have expanded their
functionalities for research, such as swarm control (Tello EDU) or programming through the
Python language (RoboMaster Tello Talent), see Figure 2.6. Among its main advantages are
its robustness in navigation and the quality of its cameras. However, its main drawback is the
latency in communication and the impossibility of modifying its firmware.
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Regarding its physical characteristics, it is a MAV with dimensions 98 × 92.5 × 41 [mm] and
a weight 87 [g]. Its flight time ranges from 13 to 30[min]. The drone equipment includes a
rangefinder, a barometer, a LED, a vision system, a 2.4 GHz 802.11n Wi-Fi, and live camera
display with 720p resolution.

(a) Tello. (b) Tello EDU. (c) RoboMaster Tello Talent.

Figure 2.6. quadcopters DJI Tello.

2.4.3 Khepera IV

This robot is a commercial differential-drive robot developed by K-Team and launched in Jan-
uary 2015 [127]. It is the fourth generation of this robot model, see Figure 2.7. It also incorpo-
rates an 800 MHz ARM Cortex-A8 processor with C64x fixed-point DSP core and an additional
microcontroller for peripheral management. Moreover, it includes a Yocto 1.8 Linux kernel that
prevents the installation in the repositories of packages not previously compiled for this system.

(a) Khepera II. (b) Khepera III. (c) Khepera IV.

Figure 2.7. Generations of Khepera robots.

Regarding its physical characteristics, it is a cylindrical robot 140 [mm] in diameter and
58 [mm] in height, with a weight of 540 [g] and a maximum capacity of 2000 [g]. The battery life
for average resource use is 7 [h]. In terms of equipment, in addition to the KB-250 expansion bus
to include external equipment, it has 8 infrared proximity and ambient light sensors with a range
of up to 25 [cm] (TCRT5000, Vishay Telefunken), 4 infrared ground proximity sensors for line
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tracking and fall prevention applications (TCRT5000, Vishay Telefunken), 3-axis accelerometer
and 3-axis gyroscope (LSM330DLC, STMicroelectronics), Built-in microphone (100−10000 [Hz]
PU0414HR5H-SB, Knowles), 0.7 [W ] speaker (400-20 000 [Hz]), Built-in color camera (752×480
pixels, 30FPS, Focal length of 2.1 [mm], Field of view: 131º horizontal, 101º vertical) and 2
Faulhaber 1717 DC brushed motors with incremental encoders (approximately 147 pulses per
mm of robot motion). As communication channels, it has 1 USB 2.0 host (500 [mA]), 1 USB 2.0
device, Wi-Fi 802.11 b/g, and Bluetooth 2.0 EDR. These features make it a very useful robot
for indoor research.

However, being a 2016 model without significant updates, it does not offer the versatility
and compatibility that would be desired in multi-agent environments. For integration into the
ROS 2-based laboratory system, we have performed a WiFi communication using User Datagram
Protocol (UDP) with a client-server protocol with an intermediary node in one of the laboratory’s
operational base stations.

2.4.4 Turtlebot3 Burger

The Turtlebot series of robot emerged in Willow Garage in parallel to other open-source plat-
forms such as ROS and OpenCV. TurtleBot1 was developed in 2010 by Tully (Platform Manager
at Open Robotics) and Melonee (Fetch Robotics CEO) of Willow Garage on iRobot’s Roomba-
based robot, although commercialization begins in 2011. In 2012, the TurtleBot2 developed by
Yujin Robot appeared based on the iClebo Kobuki research robot, see Figure 2.8a. In 2017,
the TurtleBot3 developed by ROBOTIS’ Co [128] emerged with new features to complement
functions not included in previous versions and user demands, see Figure 2.8b. In May 2022
TurtleBot4 developed by Clearpath was released with an exterior design more similar to Turtle-
Bot1, as shown in Figure 2.8c. The goal of TurtleBot3 is to drastically reduce the size of the

(a) Tutlebot 2. (b) Tutlebot 3 Burger. (c) Tutlebot 4.

Figure 2.8. Generations of Turtlebot robots.
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platform and lower the price without having to sacrifice functionality and quality while offering
expandability. As it is an open-source platform, all the code and design are available on the web
and the manufacturer opens the possibility of making designs and programming modifications
to the developer community. RP has opted for this robot because it has a flexible open-source
proposal on which to test your own software and hardware configurations.

It is one of the most used open-source wheeled mobile robot for robotics teaching specifically
designed to operate in indoor environments with ROS/ROS 2. Its main advantage over the
Khepera IV is its greater configuration flexibility. Its main CPU is a Raspberry Pi 4 with 2Gb
of RAM, and this allows it to operate as an independent agent within the ROS 2 network. Its
dimensions are 138 × 178 × 192 [mm] . Its weight including sensors is 1 [kg] and its maximum
payload is 15 [kg]. Its sensors in the basic configuration are a 360 Laser Distance Sensor LDS-
01 or LDS-02 (Detection distance 0.12 [m] to 3.5 [m]) and an IMU with 3 axis gyroscope and
accelerometer. The battery life for average resource use is 2.5 [h].

2.5 Robotic Park. System Architecture

RP is a versatile platform that is designed to be flexible and modular throughout its lifetime.
The core of its architecture is based on these principles. The platform’s architecture is highly
flexible, enabling it to be easily and seamlessly switched between a centralized or distributed
topology at both the hardware and software levels. At the hardware level, the user can set the
architecture by selecting the physical computing platform on which each component runs. For
example, a centralized hardware architecture is used when everything runs on a single main PC
in the lab, as shown in Figure 2.9. However, when the computational load of the experiments
needs to be distributed, the user can run different components on different PCs or Raspberry
Pi. These units just need to be ROS 2 compatible and connected to the same network. This
allows users to run lower levels of control on the fixed infrastructure of the platform, while
higher levels such as task resolution or coordination can be run on their own PCs. Figure 2.10
shows an example where the global positioning system runs on the host computer, the individual
communication and control of a set of robots on a Raspberry Pi 4, and the graphical interface
and coordination control of the MARS on the user computer.

The fundamental idea behind modularity is that changing a system component can be done
via software without modifying the configuration of the rest of the components. In this way, the
user can replace default system components (parameter estimators, controllers, drivers, agents,
etc.) with his developments without breaking the rest of the elements as long as he complies with
the platform’s rules. These rules are established to ensure that all users maintain a standard,
that there are no conflicts between components, and that the monitoring and automatic data
processing tools are compatible with all experiences.

As part of this modularity, RP has three operation modes: virtual, physical, or hybrid. These
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Figure 2.9. Example of centralized architecture in Robotic Park.

Figure 2.10. Example of distributed architecture in Robotic Park.
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three modes are compatible with each other, i.e. developments carried out in simulation do not
need additional configurations to perform the same work in the physical environment. This is
thanks to the level of abstraction provided by ROS 2 as system middleware. The virtual mode
is characterized by the fact that it does not use physical agents. The behaviour of these virtual
agents must be generated by digital environments such as simulators. The simulators replicate
the physical agents’ components defined internally in the firmware. Among them, the most
relevant are the internal position controllers and sensors. The system’s software architecture is
designed for the simultaneous execution of the simulator and the rest of the platform’s software
modules. The most relevant factor in this mode of operation is the consumption of computational
resources by the simulation tool. The main parameter that allows adjusting this term is the
simulation step time. If its value is increased, the required resources are reduced but the accuracy
of the generated behaviour worsens. To ensure synchronism of all software modules, all share the
simulated clock generated by the simulation tool. Figure 2.11 shows an example of a formation
experience that only uses a virtual environment. Specifically, a single crazyflie and two kheperas
IV are running in Webots. They establish communication between the simulator and ROS 2
driver node of each robot using the “webots_ros2_driver” library of Cybernetics.

Figure 2.11. Example of virtual operation mode in Robotic Park.

In the case of the physical mode of operation, all agents are physical. This implies the need
for specific modules, such as positioning systems, and taking into account the embedded systems
of each agent as extensions of the software structure. Among the main challenges to be addressed
in this mode are the battery duration of aerial robots (much shorter than mobile robots) and
the resetting of the physical setting of the agents. On the one hand, the duration of the robots’
energy conditions the maximum duration of the experiences. In RP, this duration is conditioned
by the Crazyflie 2.1, therefore experiences can last up to 7 [min]. On the other hand, if the
experience is successful, in RP the agents can return to their initial positions autonomously and
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turn off. However, if a failure occurs that avoids the autonomous system reset, an operator
intervention is required to reset the system. The examples shown in Figures 2.9 and 2.10 are
cases of this operation mode that combine aerial robots, mobile robots, and the Vicon MoCap
positioning system.

Finally, the third mode of operation, hybrid, allows virtual and physical agents to be com-
bined in the same experience. Through the middleware abstraction of ROS 2, an agent is not
able to distinguish whether its neighbors are virtual or physical. The main challenge of this
mode of operation is the clock synchronization between the two types of agents. Physical agents
have their internal clock. Virtual agents use the simulator clock. These tools, when faced with
saturation in the use of computational resources, slow down this clock, which implies a time lag
between the agents in the system. The consequence of this phenomenon is erratic behavior. The
main uses of this mode are:

• Scale the number of agents in the system without the constraint of physical space.

• Test the integration of new robots in combination with those already available.

• Integrate additional virtual sensors into the physical robots (cameras, lidars, etc.).

• Real robots on RP can be remotely teleoperated with a virtual backup on the user’s computer,
ensuring stability in case of connection loss.

Incorporating DTs is crucial for the last two points mentioned above. DTs are virtual agents
that can communicate in real-time bidirectionally with physical agents. In the context of RP,
Digital Twins are used to provide sensor feedback for the physical agent and represent it in
the virtual environment. Sensor feedback from the agent allows for the incorporation of new
sensors such as cameras or lidars in the case of the Crazyflie, without computational or energy
implications. In addition, it allows behaviors such as obstacle avoidance in front of objects
defined only in the virtual environment. On the other hand, representing the physical agent in
the virtual environment allows other virtual agents to perceive it. Figure 2.12 shows an example
diagram of MARS formation control experience using hybrid mode with virtual, physical, and
DTs robots.

The precise definition of the structure of experiments is a fundamental factor in accelerating
the realization of experiences by users without programming knowledge. Therefore, in RP a
global launch file has been defined that receives as an attribute a configuration file (yaml format).
In this file, using a specific dictionary to RP, the user can define the mode of operation of the
platform, data logging, CPU monitoring, robots, etc. The user can include the developments
carried out in this configuration file (nodes and their parameters and attributes), through the
entry “Others” available in this file, reserved for that purpose. Below are the descriptions of the
parameters that define all possible experiences.

Development, control and evaluation of a heterogeneous multi-agent robotic platform 45



2. Robotic Park

Figure 2.12. Example of hybrid operation mode in Robotic Park.

• Operation mode. The user can choose between “physical”, “virtual”, or “hybrid”. In
case of choosing between the last two options, the user must select the simulation tool
(Gazebo or Webots), if it runs a graphical interface and the name of the world file to be
uploaded by the environment.

• Type of experience. This parameter determines which nodes should be executed exter-
nally to robots. The user can specify between “navigation”, “formation” or “identification”.
The user must specify the node or launch defined in RP and its parameters within each
option.

• Control architecture. The user sets MARS formation control as “centralized”, “dis-
tributed_ros” or “distributed_onboard”.

• CPU monitoring. If this option is enabled, the user specifies the name of the processes
to be monitored and the sampling period.

• Interface. Depending on the objective of the experience, the user can choose the inter-
faces enabled between “rqt”, “rviz2” and “rp_default”. The first two are standard ROS 2
interfaces. The last one is the interface developed in RP. Its goal is to hide all interactions
with the code while using the platform.

• Data logging. Using this option, the user defines the registration enablement, destination
file name, desired topics and a small description. If the name field value is “date”, it sets
the dataset’s name according to the date and time of the trial. The description will be
recorded in a .txt file on the same path as the data files.
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• Robots. In this entry, the types of robots used in the MARS are defined by a list
of sub-entries. The most relevant parameters that must be indicated for each robot to
determine the corresponding nodes are the nature of the robot (physical, virtual or DT),
the positioning system (internal or external), its addresses (IP, URI and port) and the link
it has with its neighbours (role, type, relationships, controller location, etc).

In RP, the user can log data using ros2 bag command line tool. This tool records system
topics in .db3 files and a .yaml file that stores their information. It also allows the playback
of datasets registered previously. However, using this tool to work with the topics’ values is
impractical. Therefore, we have developed a Python script that reads all the topics in a record
and exports them individually to .csv files.

2.6 Robotic Park. System Communication

The communication system is a crucial component in systems that involve multiple elements
working together to achieve a common goal. It is responsible for ensuring that all system
components can effectively transmit, receive, and comprehend information shared between them.
This is achieved through the establishment of a common communication channel and a set of
message standards. In RP, this task is performed and masked from users by the middleware. To
develop RP, ROS 2 as middleware has been used due to its characteristics and wide application in
robot systems. Figure 2.13 shows the hardware infrastructure implemented in RP, illustrating
the flow of information from each component to the stations responsible for publishing the
information in ROS 2 domain, as well as the technology employed. Next to each communication
channel (arrows) the technology it uses is indicated. Furthermore, in the case of positioning
systems, it is shown how the external systems (Vicon and Marvelmind) communicate with
the base station that publishes their estimates. Moreover, internal systems such as LPS or
Lighthouse transmit information directly to the Crazyflies. The Crazyflies then communicate
with the base station to publish the estimate to the network, which is fused with its internal
sensors.

In our system, a ROS 2 layer above the hardware layer has been developed to improve the
effective exchange of information between different components. Each component has its node
within the ROS 2 domain that can generate or require information. The goal of these nodes is
to communicate with devices using the provided libraries, Application Programming Interface
(API), or SDK and convert useful data into ROS 2 messages using standard types. Modifications
have been made to the existing nodes built by other developers to eliminate dependencies during
installation and data processing. Table 2.1 describes the main nodes developed that compose
the system.

One of the main interests of ROS 2 in MARS is the namespaces’ use. This technique allows
splitting the ROS 2 domain into subspaces. With its use, it is possible to reuse sets of nodes
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Table 2.1. Nodes in Robotic Park ROS 2 network.
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Figure 2.13. Hardware communication in Robotic Park.

and topics with only the addition of a prefix to their IDs. Furthermore, it allows the nodes and
topics’ clustering in data logging and feature extraction. The namespaces allow RP to exploit
the scalability of MARS more efficiently. Figure 2.14 shows the diagram of a basic example of
formation control using namespaces to replicate the space of the same type of robot. In this
experiment, it is tested the formation control of four aerial robots. Two of the robots are only
virtual in Webots. The other two robots are real. One of them uses the Vicon positioning
system. The other uses the Lighthouse system. In addition, both use their DTs to obtain
sensory information from the virtual environment to be perceived by the virtual robots. Figure
2.14 shows an example of a ROS topics and nodes diagram, which uses namespaces to collect
topics and nodes of each robot in the MARS formation experience. This diagram corresponds
to the scenario depicted in Figure 2.12, where the robot “khepera01” has a DT (“khepera
driver” node). To make it easier to understand, different colors have been used to highlight the
namespaces in the diagram. The light orange color is used for real robots, while the light blue
color represents virtual robots. Similarly, nodes that communicate with physical robots follow
the same rule. The arrows of topics (rectangles) that link nodes indicate the flow of information
during the experience.

After analyzing the different options available for monitoring the system in real-time by
the user, it has been considered that the best tools for their versatility and efficiency are RQT
and RVIZ2. Both tools are native to ROS and allow 3D representations and 2D graphs of
all the topics of the ROS 2 domain. Also, they will enable us to create in a simple way ad
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Figure 2.14. Example of a ROS diagram in MARS formation control using Mixed Reality.

hoc “perspectives” that can later be loaded from the configuration file of the experience. As
mentioned above, an interface has been developed, which allows the user to generate and launch
the configuration files graphically and interactively. It has limited functionalities for real-time
monitoring using RQT-based tools and integrating the RVIZ2 terminal into the interface itself.

2.7 Indoor Positioning System (IPS)

As an indoor testbed, Robotic Park focuses on IPS [129, 130]. These positioning systems for
robots can be classified as internal or external, depending on their configuration. In internal
systems, the robot acquires and processes the information from the sensors, while in external
systems the sensing and positioning steps are performed outside the robot.

The most basic internal positioning systems generate positions relative to an initial value
defined by the user or consider that the robot starts from the coordinate origin. Typical sensors
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in these systems are encoders in odometry cases, cameras in optical flow sensors, or IMUs. An
absolute internal positioning system uses static beacons and receivers on the robots. Initially,
the beacons’ positions must be known. The position of the robots can be estimated by mea-
suring the delay of the signals, Time Difference of Arrival (TDoA). Some systems that require
more processing power use Simultaneous Localization And Mapping (SLAM), either by scan-
ners/lidars or vision. In this case, if the robot loads a previous map of the environment into
its memory or there are predefined points that the robot can detect (i.e. QR patterns), it is
possible that the positioning is obtained in absolute coordinates. External systems estimate the
absolute position of robots, and the most typical ones are those that use vision or MoCap (i.e.
Vicon Tracker or Optitrack).

Combinations of these systems are often used through data fusion algorithms, also called
collaborative indoor positioning systems [131]. There are many algorithms available in the
literature. The choice of the most appropiate will depend on the system, on the requirements
(precision, accuracy, frequency, etc.), and the specific applications. The most common due to its
versatility, performance, and implementation is the Kalman filter and its extended version [132].

RP’s current systems are described in detail below, including their features, ROS 2 integra-
tion, and comparison.

2.7.1 Vicon Positioning System

The first external positioning system available at RP, is a Vicon’s MoCap system2. Other rel-
evant companies providing MoCap-based solutions include Qualisys3 and Optitrack4. All these
systems are based on cameras that emit infrared light and detect the reflection on spherical pearl
markers. With the detection from multiple cameras, the software can triangulate the precise
position of the marker in the measurement volume. If the user defines the markers’ distribu-
tion on each robot on the tracker, the software can determine and track the robot’s position in
real-time. Ensuring each robot has a unique and asymmetrical distribution of pearl markers is
crucial when designing a system. Figure 2.15 shows an example of this necessary asymmetry
used in three Crazyflies. This aspect is necessary to prevent any estimation failures like instant
changes of orientation or swap estimations. When implementing the MARS’s controllers, it is
important to consider that the cameras have a latency of 3.6 [ms]. For this reason, it has been
decided to set the software frequency to 100 [Hz] to guarantee a conservative response in the
feedback of the position and velocity controllers.

At the hardware level, the Vicon Tracker System consists of six Vero v2.2 cameras, see Figure
2.16a, with Power over Ethernet (PoE) technology. Highlights include a resolution of 2.2 Mega
Píxel (MP), a maximum frame rate of 300 [Hz], a maximum power consumption of 12 [W ],

2Official Vicon web: https://www.vicon.com/
3Qualisys Track Manager: https://www.qualisys.com/software/qualisys-track-manager/
4Motive: https://optitrack.com/software/motive/
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Figure 2.15. Pearl marker distribution for three Crazyflies 2.1.

and a weight of 0.57 [kg]. These devices come equipped with an accelerometer that can detect
any shifts or vibrations in the cameras, indicating the need for recalibration. The six available
cameras are connected to an Ethernet switch that connects them to the PC, where the software
processes the data. The Tracker 3.9 software tool is installed on this PC. Figure 2.16b shows the
main dashboard. This tool is responsible for estimating the position of a robot with an accuracy
of more than 1mm based on the detection of the markers defined by the system. This software
has to run on a Windows operating system. For the integration of ROS 2 for communication
between MARS agents, Vicon’s Python SDK has been used. For this purpose, a ROS 2 node
has been developed that reads the instant agent’s position from the tracker, converts them into
standard messages, and publishes them on the ROS 2 network.

(a) Cámara Vero v2.2. (b) Software Tracker 3.9.

Figure 2.16. Vicon’s Motion Capture components.

2.7.2 Lighthouse Positioning System

Lighthouse Positioning System is an indoor optical-based positioning system developed by
Bitcraze5. The system provides tracking accuracy close to that achievable with a MoCap system

5Lighthouse: https://www.bitcraze.io/.../positioning/ligthouse-positioning-system/
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but at a much lower cost. Its main advantage is the onboard acquisition of the tracked device
position. Therefore, it reduces transmission delays and network saturation. The system uses
HTC Vive Station 2.0 base stations as optical beacons. The receiver (a photodiode) can esti-
mate its position with a relative accuracy of better than a millimeter and an absolute accuracy
of better than a decimetre. This feature means that you can return to a starting point with
millimeter accuracy. However, reaching a target point in absolute coordinates may be off by
centimeters (less than a decimetre).

Base stations perform laser scanning in the workspace. It is possible to determine the position
and orientation of an object relative to a base station using multiple receivers on a single deck,
see Figure 2.17b. There are two generations of base stations, and both are compatible: V1
(Figure 2.17a) and V2 (Figure 2.17c). The Lighthouse V1 has two rotating drums, while the
Lighthouse has two inclined light planes on its only drum. Lighthouse V1 systems can use up
to 2 base stations, while Lighthouse V2 systems are designed for up to 16, allowing for a much
more extended working volume. It has a range of 6 [m], an operating frequency of 50 [Hz], a
horizontal viewing angle of 150o, and a vertical viewing angle of 110o. To accurately determine
the position and orientation of each robot, it is essential to have prior knowledge of the position
and orientation of the base stations. This process, known as System Geometry, can be obtained
automatically by the Crazyflie client and saved in the robot, or it can be kept in a file that can
be used to write the same geometry information to multiple robots. It enables multiple robots
to operate in the same workspace with distributed architectures.

(a) Lighthouse base station V1. (b) Lighthouse Positioning deck. (c) Lighthouse base station V2.

Figure 2.17. Lighthouse Positioning System components.

RP offers a system with four base stations placed in the working volume’s upper corners,
allowing the space to be maximized and pushed toward the edges. To ensure accurate capture
of the ground area, it is recommended to space the two beacons 0.5 [m] apart. However, this
spacing will cause the corner opposite the beacon to be outside its nominal range by some
distance. The 4-base station configuration provides the most optimal solution to avoid this
issue. Being a technology based on infrared emissions, it is incompatible with MoCap systems
as the camera’s signal interferes with the robots’ photodiodes. Active markers must replace
the pearl markers, and the cameras must be set to passive mode to allow the combined use of
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these systems. Other systems based on UWB or ultrasonic technologies are compatible. The
developers’ detailed analysis of this positioning system can be found in [133].

2.7.3 Loco Positioning System (LPS)

Another positioning system available on RP platform is Loco Positioning System. It is an inter-
nal positioning system developed by Bitcraze6, and it is based on UWB technology. The system
consists of multiple anchors (see Figure 2.18b) placed around the work area and tags attached
to the agent (see Figure 2.18a). The system can accurately estimate the agent’s global position
by analyzing the timing of transmissions between the targets and anchors. Its performance is
comparable to that of the Lighthouse Positioning System.

(a) Loco Positioning deck/tag. (b) Anchors.

Figure 2.18. Loco Positioning System components.

This system has three modes of operation that determine the performance and range of the
system:

• Two Way Ranging (TWR). When operating in this mode, the robot’s tag pings the anchors
in a sequence, which enables to measure the distance between itself and each anchor. With
this information, it requires a minimum of four anchors to calculate the 3D position of a
receiver. It is advisable to have six anchors to improve accuracy and reliability, although the
maximum allowable is 8. This last configuration is the most precise mode, and it is effective
even when the receiver has left the area enclosed by the anchors.

• TDoA 2. In this mode, the anchor continuously sends synchronization packets. The on-
board deck receives these packets and determines the relative distance to three anchors by
measuring the difference in arrival time of the packets. This information is used to estimate
the 3D position of the robot. The passive operation of the receivers allows for the system’s
scalability and enables the use of more robots in the arena. For optimal TDoA performance,
the recommendation is to use eight anchors placed at the corners of the workspace.
6LPS: https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
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• TDoA 3. The main difference with TDoA 2 is that the random transmission schedule replaces
the time interval scheme. This improvement allows the addition of more anchors. It will
enable the platform to scale to larger spaces or span multiple rooms with no line of sight
between all the anchors at the cost of adding some noise to the measurement. It also makes
it more robust and can dynamically handle the loss or addition of anchors.

RP, implements this system in a TDoA 3 configuration with eight anchors. This choice is
based on the platform’s flexibility and to facilitate its scalability. Therefore, if the developers
want to expand the workspace to different building rooms, no modifications will be necessary
to the basic configuration of the platform. In this way, experimental availability will not be
interrupted.

2.7.4 Marvelmind Indoor Positioning System

Marvelmind has an IPS called Marvelmind IPS, Marvelmind Indoor Global Positioning System
(GPS), or Marvelmind RTLS. Its main elements are the beacons (see Figure 2.19b), the modem
(see Figure 2.19c), and the Marvelmind Dashboard software (see Figure 2.19a). In addition to
the ultrasonic transducers, all beacons include a 6D IMU (3D accelerometer + 3D gyroscope).
The beacons are interconnected by a radio interface in a license-free band (915/868 [MHz]).
This system triangulates the positions of the moving beacons with the measure of the delay
of an ultrasonic signal (Time Of Flight (ToF)) between a set of beacons. It can improve the
accuracy of the UWB systems by a factor of 10 and Bluetooth-based systems by a factor of 100.
Typically, this system has an error of ±2 [cm]. The maximum range in industrial settings is
30 [m], but it can potentially reach up to 50 [m] in laboratory environments. There are three
different architectures available in the system that are based on the agents and the application
field:

• Inverse Architecture (IA). In this setup, each fixed beacon should operate on a unique fre-
quency of 19, 25, 31 & 37 [kHz]. The mobile beacons act as receivers. Although there is
no limit to the number of mobile beacons used, this configuration is not recommended for
drones. The rate of position estimation is 40 [Hz].

• Non-Inverse Architecture (NIA). In this configuration all stationary beacons are receivers
and can operate on any frequency. The mobile beacons act as transmitters and can work
at any frequency. The position estimation rate depends on the number of moving beacons
(n) according to f = 40 [Hz/n]. This configuration is suitable for use with drones, but the
mobile beacon limit is four.

• Multi-Frequency NIA (MF NIA) is an implementation similar to NIA. However, it allows
up to eight mobile beacons by operating twice as many frequencies (19, 22, 25, 28, 31,
34, 37 & 45 [kHz]).
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(a) Marvelmind Dashboard.

(b) Beacon.

(c) Modem.

Figure 2.19. Marvelmind Positioning System components.

RP implements an inverse architecture to maximize the number of mobile robots and main-
tain the position estimation rate. The fixed beacons have been positioned at a height of 0.5m
to prevent any ’shadows’ between agents, which is the minimum drone altitude. This system
has an API that allows the development of programs in C and Python. In this case, for its
integration in ROS 2, RP uses its official repository on GitHub7.

2.7.5 Vision-based Positioning System

At RP,an easy-to-use positioning system that processes images from RGB cameras has been
developed. These systems are commonly used for experimental platforms that use only mobile
robots with patterns placed on top. A zenithal camera estimates their position by identifying
the tags. However, this approach is not feasible in the case of RP because drones can cause
visual occlusions.

Regarding aerial robots, a single camera provides a solution with one degree of freedom.
Therefore, a minimum of two cameras are necessary. By pre-calibrating the positions of these
two cameras and understanding their location within the workspace, the system can accurately
determine the absolute position of any robot by calculating the intersection of the two straight
lines detected by both cameras.

This system presents several challenges, e.g. lighting conditions. The accuracy of the system
is affected by the precision of the cameras and the calibration of their characteristic parameters.
Its advantages include the fact that it does not require any communication or intervention

7Marvelmind ROS 2 Upstream: https://github.com/MarvelmindRobotics/marvelmind_ros2_upstream
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from robots in the system. Currently, its offline operation has been implemented in Matlab,
using functions available in OpenCV to ease its subsequent integration into a ROS 2 node for
its execution from the launch file. The system comprises two cameras: iPhone XR (see Figure
2.20a) and GoPro HERO 9 Black (see Figure 2.20b). Appendix C details the process carried out
for both cameras’ calibration. Once the intrinsic parameters were obtained, the cameras were
mounted in their respective locations and the extrinsic parameters of each camera were obtained.
These parameters generate the homogeneous transformation matrix between the cameras and
the reference frame of the workspace. To achieve this, a calibration pattern was placed at the
origin of the system coordinates and an image of the final positions of the cameras was captured,
as shown in Figure 2.20c. At this point, the system is ready to work.

(a) Cam.1: iPhone XR. (b) Cam.2: GoPro HERO 9 Black. (c) Pattern in Robotic Park arena.

Figure 2.20. Vision-based System cameras.

Figure 2.21 illustrates the steps involved in the system’s workflow during experiences. After
the system is ready, it determines the reference frame (undistorted). This frame must represent
all the static objects in the scene. The first step of the cycle is to read the frames of each camera,
which undergoes a correction process to remove any distortion from the camera lens.

Next, the current frames are compared with their references to detect any changes. We
apply an erosion to the binary image obtained and extract the centroids from the resulting
closed areas. The pairing of these areas in both cameras is done by optimizing the minimum
distance between them. This minimum distance should not exceed a certain threshold. If it
does, the physical sense determines they are two objects. If a pairing of detections works, it is
optimized to the last position value of the available robots. This pairing considers that a robot
between two frames has not moved over a certain threshold. If the pairing is done successfully,
the algorithm updates the position of the paired robot and repeats this process for all centroids.

To avoid constant track changes regarding the initial reference frame (green arrows), an
option to update the reference frame with the last frame read (yellow arrows) is proposed. In
this implementation, the system would only detect those objects that move between frames.
This technique helps to reduce the detection and pairing of robots that remain immobile for
periods (computational efficiency).

Development, control and evaluation of a heterogeneous multi-agent robotic platform 57



2. Robotic Park

Figure 2.21. Workflow of Vision-based Positioning System.

An experience with five Crazyflie 2.1 has been carried out to validate this system. Figure
2.22 shows the undistorted instant frames of both cameras. Figures 2.23a, 2.23b, and 2.23c show
the results obtained on the X, Y, and Z axes. In them, each colour represents a drone. The
continuous line represents their ground truth, while the dotted line is the position determined
by the developed system. Figure 2.23d shows the 3D results where the red dots represent the
ground truth and the blue dots represent the estimation of this positioning system. The results
show an average precision of 3 [cm] (maximum distance between the projections of the detections
of each camera) and an accuracy of 1.62 ± 2.78 [cm] (difference concerning the signal measured
with other positioning systems). Therefore, the proposed algorithm shows enough performance
for tracking robots, but the accuracy and rate are not suitable for position control.

2.7.6 Comparison

After the overview of the positioning systems available at RP, two experiences are shown in
which the difference in results of each system is observable. First, experience evaluate the
systems available for the Khepera IV mobile robots. Figure 2.24 shows the result obtained in
the X-Y plane during a trajectory along a hexagon of 1 [m] side for two laps. In this case,
odometry from the encoders of the robot’s wheels (black markers), Vicon’s MoCap at 100 [Hz]

(a) iPhone frame. (b) GoPro frame.

Figure 2.22. Vision-based positioning system instant undistort frames.
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(a) Temporal response in X axis.
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(b) Temporal response in Y axis.
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(c) Temporal response in Z axis. (d) Temporal response in 3D.

Figure 2.23. Temporal response of MARS (first-second-third-fourth-fifth) using Vision-based
Positioning System (continuous line: ground truth. dotted line: estimation).

(blue markers) and the Marvelmind GPS with four static beacons (red markers) have been
evaluated simultaneously. For position control, odometry has been used, which justifies that the
drawn path coincides with a perfect hexagon. The characteristics of the Vicon system allow it
to be used as ground truth. Therefore, it is observed that the odometry does not have an exact
result in turns since the observed trajectory is outdated with the original but mantains the size
of the hexagon. Finally, the marvelmind system demonstrates significant correlation and limited
error within the manufacturer’s stated thresholds. It is observed that their frequency makes fine
and high tracking difficult. However, to control the position of these robots it is sufficient in
combination with another system, such as odometry, given their operating speed.

Secondly, we carried out an experience where we evaluated the systems available for Crazyflie
2.1. The small size of the Crazyflie drone and the interference caused by the Vicon camera
emitters on the Lighthouse deck make it impossible to use all systems at once. Moreover,
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Figure 2.24. Comparison between odometry (black), Vicon’s MoCap (blue) and Marvelmind
GPS (red) as positioning systems.

because of the firmware configuration, extracting individual measurements from the positioning
system is difficult without combining them with data from other sensors like IMU and flow deck.
This measure is what the drone uses as feedback in the individual control, which implies that
the results will not show the accuracy of the positioning systems but their effect on the drone
position control.

Therefore, there have been three identical experiences where a drone performs a trajectory
along a hexagon of 0.5 [m] on the side for two laps. Figure 2.25 shows the results obtained
of the systems evaluated: Vicon’s MoCap at 100 [Hz] (black markers), Lighthouse Positioning
System (blue markers) and LPS (red markers). These results reflect that all three systems

(a) Temporal response in XY plane. (b) Temporal response in 3D.

Figure 2.25. Comparison between Vicon’s MoCap (black), Lighthouse Positioning System (blue)
and Loco Positioning System (red).
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adequately support Crazyflie position control. There is a smooth performance from the Vicon
MoCap. It is due to its high accuracy and refresh rate, which causes a smooth signal in feedback.
The system addresses challenges in generating asymmetric distributions for many drones and
efficiently using communication channels to transmit position. In contrast, the Lighthouse and
LPS systems exhibit similar performance with slightly more noise than the first case. However,
the controllers effectively compensate for these minor differences, resulting in no significant
variations. The main advantage of these systems is that they are not affected by the system’s
scalability, and the position estimation is performed onboard, leading to savings in the use of
communication channels.

2.8 Simulators

2.8.1 Tools overview

As mentioned previously in this thesis, simulators are a type of virtual experimental platform.
They allow us to analyze a wide variety of current problems in our society in a repeatable, fast,
and completely configurable way [134–136]. One of the benefits of using simulators is that they
do not require physical space and can be accessed anytime and anywhere. That makes them
ideal for displaying demos at conferences and exhibitions. However, it is challenging to discover
new problems based solely on system analytical models that are observable in real systems [137].
Many simulation tools focus on specific cases to provide accuracy and high performance in their
answers. An example is [138], which uses the Unreal Engine 4 environment for designing a
precise underwater robotics tool. In [139], a specific review of tools focused on autonomous
vehicle simulators is available. Due to the possibility of automating simulations and configuring
their parameters, it is especially useful in initial tasks of Reinforcement Learning systems [140].
More focused on MAS, a recent review of swarm robotics, both at the hardware level and its main
simulators, is available at [141]. These tools are not only useful for research. Their increasing
realism and accuracy have also made them popular for professional training. Adding the AR and
VR techniques has further improved user engagement. A notable example of their application
in recent years is in medicine and surgeon training [142,143].

When introducing a new experimental platform to the community, it is essential to use
technologies that are widely accepted within the industry. It creates a positive impression and
encourages people to use the platform. In this thesis, an analysis of the main tools that impact
work with MRS in ROS 2 has been carried out following the open-source philosophy to achieve
this objective. Below is a brief review of the tools analyzed.

• Matlab/Simulink. It is one of the most widespread programming and numerical calculation
platforms in the world for teaching and research. Its programming language is based on C and
has many resources in the form of toolboxes that make it a very versatile and easy-to-learn
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tool with a widespread support community behind it. Since its 2019b version, ROS Toolbox
has been available, which includes all the necessary functionalities to be able to communicate
within any network where ROS or ROS 2 is being used.

• Gazebo [102]. It is one of the most widely used open-source simulators currently in use [144].
It is developed by Open Robotics, the same organization in charge of the development of
ROS and ROS 2, so it has a native integration, favoring its joint use. Its extensive library of
sensors and joints, and its fine reproduction of the dynamic properties of the models make it
the simulator par excellence in mobile robotics and one of the top three in manipulation and
aerial robotics. Specialized tools dominate the marine robotics sector.

• Gazebo Ignition. This is a component of Ignition Robotics, a set of libraries designed to
fast develop simulation and robot applications. It is the project proposed as the successor
of Gazebo, including improvements in simulation time and some dynamics such as friction,
achieving smoother and more realistic results. Upon succesion, Gazebo will be renamed
Gazebo Classic, and the term “Ignition” will disappear from this version to preserve termi-
nology.

• Webots [103]. It is a professional-grade, open-source tool developed by Cyberbotics Ltd. that
can simulate robots and multi-agent systems across different platforms. The development
environment comes equipped with a variety of useful tools such as modeling, programming,
and simulation. It is considered the first alternative to Gazebo and is widely used in various
sectors like industry, education, and research.

• CoppeliaSim (old V-REP [145]). It is a multiplatform commercial software tool. It allows
working with the most common programming languages (C/C++, Java, Python, etc.) and
has APIs to integrate with ROS. It allows the export of models in the most used formats
(URDF, COLLADA, DXF, OBJ, STL, glTF, etc). Its learning curve is much faster than
other tools.

• Pybullet [146]. This software is a Python module for robot simulation due to the advantage
of the properties of this language for machine learning tasks. PyBullet can be easily used
with TensorFlow and OpenAI Gym. It is used in labs such as Google Brain [147], Stanford
AI Lab [148], or OpenAI.

At RP, simulation tools play a crucial role. As commented in section 1.3, they provide
students with a safe and instructive environment to develop their skills before they work in a
physical environment. Researchers can use these tools to familiarize themselves with the platform
and validate their developments before spending time and resources on the physical system.
Simulation tools are also essential to create experiences that blend virtual and real environments,
expanding the platform’s capabilities to Mixed Reality (MR) and Digital Twin (DT). Figure 2.26
shows a general diagram of the elements that a simulator must have to integrate into Robotic
Park.
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Figure 2.26. Basic diagram of ROS 2 simulator.

On the one hand, one of the key features of each simulator is its physics engine. It determines
the power and realism of simulations. On the other hand, the libraries and plugins available are
a critical factor that determines the degree of “plug and play” of the tool. For inexperienced
users, such as students, the learning and start-up curve must quickly focus on their development.
There are two ways to integrate robots in ROS 2 through a node. On the one hand, the node can
be configured from the robot model using plugins (as in the Gazebo case). In this case, the node
runs inside the simulator, and its parameters can only be configured from the plugin attributes.
On the other hand, if access to the virtual robot is done through a set of libraries, the user
can design and execute the driver node from outside the simulator (as in the case of Webots).
The three simulation tools in RP are Matlab/Simulink, Gazebo and Webots. The main reasons
they have been selected are their widespread use in the community and their compatibility with
ROS 2. Below is detailed coverage of its use and integration into RP.

2.8.2 Matlab

The first tool developed in this work for modeling and simulation is based on Matlab and
Simulink. One of the main benefits of this tool is that it can be used on multiple platforms, and
it offers versatility by allowing users to build models using block diagrams. Hence, users can carry
out simulations regardless of their operating system or programming knowledge. However, this
tool has some disadvantages. For instance, it is a paid tool, and there can be serious compatibility
issues when using newer versions of Simulink toolboxes with files from older versions. It means
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that, to maintain compatibility, models must be developed using older versions of the tool, which
may not allow users to exploit the latest developments. The oldest version of the tool that is
currently compatible with ROS 2 is 2019b.

In RP, the tool is primarily used to introduce students to the control architecture of quad-
copters and differential robots. A comprehensive model and corresponding control architectures
for both types of robots have been developed to this end. Scaling up these models can be difficult
due to variable nomenclature and resource consumption. For these reasons, these use cases are
focused on one agent. Figure 2.27 shows an overview of the development of the Crazyflie 2.1
script.

Figure 2.27. Model and controllers of Crazyflie 2.X in Simulink.

This file integrates the generated path (green area), the position and speed control (light
blue area), the orientation and attitude controller (orange area), and the physical model of the
robot (blue area). This architecture is a replica of the architecture that exists in the robot
firmware. Therefore, this modular implementation has been made to simplify the change of
control architectures. The physical model implemented is Non-Linear to have maximum realism
at this level, see Figure 2.28. This model provides an option to introduce disturbances by adding
a vector of forces directly into the model equations after calculating the forces introduced by
each quadcopter rotor. The disturbance signal can emulate the presence of air currents or other
agents flying nearby, allowing to simulation of various scenarios. The modeling of this robot
is covered in-depth in section 4.2. The controllers currently available are continuous, discrete,
event-based PIDs with fixed thresholds and event-based PIDs with adaptive thresholds.
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Figure 2.28. Physical model of Crazyflie 2.X in Simulink.

In the case of the differential robots, a structure similar to that described for the quadcopters
has been developed. Figure 2.29 shows the simulation script in Simulink.

The control structure is much simpler since it only requires a position control composed
of two velocity and rotation controllers. Figure 2.30 shows the implementation of the model
described in section 3.2. Dynamic robot and motors models have been incorporated to improve
accuracy compared to the classic kinematic model.

Once the user gets used to the robots and has overcome their architecture, integration
with ROS 2 is done through the toolbox “ROS Toolbox” components. This toolbox allows
communication directly with the rest of the nodes and topics in the network by creating a
default node for the entire script. Figure 2.31 shows an example of its use.

In this case, the control architecture is implemented for Crazyflie 2.1, but instead of simulat-
ing the dynamic of the robot, it communicates with the real robot. To do this, it publishes the
control signal of each rotor using a topic of the type “Float64MultiArray” called “/cmd_motor”

Figure 2.29. Model and controllers of Khepera IV in Simulink.
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Figure 2.30. Physical model of Khepera IV in Simulink.

using the “Publish” block. For feedback to the controllers, the script subscribed to the topics
“pose” and “twist”, which are the position and velocity of the robot. Other useful blocks, such
as “Read Data”, allow the reading of raw recordings. Using standard message types in these
cases is important since using custom messages is not very successful in Matlab/Simulink and
uses old versions of Python and Visual Studio libraries. This system is suitable for small-scale
testing and for those users who do not have programming knowledge in ROS 2.

Figure 2.31. Example of using the Simulink script with ROS 2.
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2.8.3 Gazebo

As already mentioned, Gazebo is the most widespread simulation tool in robotics. The current
version will be the last of this tool, continuing in Gazebo Ignition. The first ROS 2 developments
in Robotic Park have used this simulator for its integration into the community. However,
the unavailability of plugins in ROS 2 to simulate drones without dependencies on third-party
packages such as PX4 has limited its use. This fact has led to more frequent use of other
platforms where the robots available in Robotic Park are officially and natively available in the
most recent versions. However, it remains an useful tool for differential robot experiences due
to its ease of use and scalability from ROS 2. In the following, the current use cases of Gazebo
and the contributions made for each robot are detailed.

For the Crazyflie, it has been necessary to update the plugin from CrazyS project [149]
(currently in ROS Melodic) to ROS Noetic. That project is an adaption to Crazyflie from
RotorS project [150]. The libraries’ dependencies have also been updated to the most recent
version of Python, improving the execution of swarms, and a communication system for using
DT with real robots has been developed. As it is shown in Figure 2.32,

Figure 2.32. CrazyS project communication with ROS 2 domain.

Crazyflie runs on a ROS Noetic and uses a bridge for communication with the rest of the
network in ROS 2. This bridge was designed for users who are migrating between systems or
systems with components that cannot be updated. Figure 2.33 shows the result of running this
implementation for the case of five agents. This implementation has certain factors that must
be taken into account for proper operation. The most important is the ratio between real-time
and simulated time. A swarm run, with all sensors active, can slow down the system. Therefore,
it is important to use the “use_sim_time” parameter on the active nodes. In this way, all nodes
will use the simulated clock for their operating frequency. On more recent implementations or

Development, control and evaluation of a heterogeneous multi-agent robotic platform 67



2. Robotic Park

more powerful computers, this ratio is more robust and allows for real-time-like execution. For
this reason, adapting the system to other tools that offer equal results using fewer resources is
necessary.

Figure 2.33. Swarm of five Crazyflies 2.1 in Gazebo.

Khepera IV robots have traditionally used CoppeliaSim software (old V-REP), so to in-
tegrate them into RP and ROS 2, its complete model has been developed in SDF and URDF
format with standard plugins and a driver node that includes the communication with the real
robot. In this case, the necessary plugins for the simulation of the differential dynamic robots
and their infrared, ultrasound, and camera sensors are supported by ROS 2. The main problem
with Gazebo is the limitation of the number of sensors using the PC GPU. This issue translates
into a maximum of four robots with all functional sensors. To overcome this limitation, it is
important to ensure that only the necessary sensors for each experience are properly configured.
Figure 2.34 shows a case where three virtual Khepera IV robots are combined with physical
aerial robots to maintain a formation based on positions relative to each other [151].

2.8.4 Webots

As an alternative to the difficulties encountered in Gazebo, the Webots platform has been chosen
as appropiarte to carry out MARS experiences. Despite having a much smaller impact on the
developer community, in recent years, a great effort has been made to improve its positioning,
adding many robots to its official libraries and developing the necessary plugins for its direct
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Figure 2.34. MRS of three Khepera IV in Gazebo.

compatibility with ROS 2. In addition, it has a user interface and a system that allows the use
of programs developed in Python. These are very useful features to encourage experimentation
in research teams with heterogeneous areas of knowledge. In this way, researchers who want
to carry out tests on the platform’s robots can previously validate them in simulation without
needing specific knowledge of ROS 2.

In RP this simulator is used as the primary tool since it currently contains the models of
all operating robots. The main contributions made in this simulator have been related to the
ROS 2 node that connects the simulator with the rest of the network. It has been necessary
to develop specific drivers for each robot with the same features as their firmware. Likewise,
the necessary functions have been developed to establish real-time communication with real
robots, allowing the carry-out experiences of MR to use virtual robots as DTs of the physical
system. This simulator has proven to be an efficient tool in Mixed Reality experiments with
greater efficiency and computational robustness compared to Gazebo [97]. Figure 2.35 shows
the Webots simulation environment during a formation control experience applied to a MARS
with Crazyflies 2.1 and Kheperas IV. Figure 2.36 shows the perspective of the RVIZ2 tool for
the same experiment, where it is possible to visualize the distance specifications between robots
(green lines), the trajectories followed by each robot (blue path), their current position (red
arrows) and their desired positions (orange arrows).
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Figure 2.35. Robotic Park virtual environment at Webots in MARS experience.

Figure 2.36. RVIZ2 visualization in a MARS experience.

2.9 Conclusions

This chapter presents the heterogeneous experimental indoor platform for control and robotics
Robotic Park to support MARS experiences. The hardware and software infrastructure of the
system has been analyzed in detail, including the different types of robots (aerial, mobile), po-
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sitioning systems (MoCap, UWB, Infrared, based on Vision), and communication architectures
(centralized, distributed, or hybrid). The system is integrated in ROS 2 that interconnects all
the elements. Several simulators have been developed and are integrated into the platform. The
main highlights of the platform are its modularity and flexibility. Moreover, the system has
been proven to offer a high degree of equipment and a wide range of control and robotics expe-
riences. However, the goal is to establish the Kaizen philosophy in the platform development.
This implies a commitment to continuous improvement while the platform is active. These im-
provements involve maintaining Robotic Park as an experimental platform at the forefront of
MARS research.

To achieve this, some lines of future work concerning both hardware and software are pro-
posed. On the one hand, including new robots with different locomotion systems could be an
interesting topic that will open new research lines and the application of new cooperative tasks.
On the other hand, at the software level, providing more autonomous navigation to the robots by
making use of SLAM techniques under limited computation capabilities will be addressed. Addi-
tionally, studying some security aspects such as confidentiality and integrity of the experimental
infrastructure when, for instance, the platform is operated remotely, will be considered.
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Chapter 3

Differential Drive Mobile Robots

3.1 Introduction

Most of the available mobile robots in experimental platforms are wheel-based structures because
of their efficiency and simple mechanical implementation. Particularly, the Differential Drive
Wheeled Mobile Robot (DDWMR) is widely used.

A DDWMR is a mobile robot with movement usually based on two (four or six in some
cases) separately driven wheels mounted on a common axis placed on either side of the robot
body. They are non-holonomic robots, allowing only to move back and front yet not sideways.
This is the main difference with omnidirectional robots which can drive in any direction, as the
omni drive enables the robot to change direction instantly without having to turn the wheels.
In this way, omnidirectional robots are beneficial when maneuvering in narrow spaces, which is
not the case in our experimental platform. In addition, robots with differential drive are a good
choice for thrust power as the wheels have individual motors with controlled speeds in each one.
All these characteristics of the DDWMRs, along with their simpler motion programming and
the fact that they are more easily controllable than other robots, make them appropriate for
experiences in Robotic Park (RP).

Regarding modeling for DDWMRs different works are found in the literature [152]. However,
most of them make only use of the robot’s kinematic model when designing their motion con-
trollers. Thus, the mathematical model used in RP’s simulators consists of the kinematic model,
the dynamic model which includes the mass and moment of inertia for each part of the robot and
the DC motors. This complete model has been implemented in the Matlab simulator to allow
evaluating changes in dynamics in possible experiences in which the physical characteristics of
the robot change, for example, during a test with loads. In the case Gazebo and Webots tools,
these modifications are solved by the physical engines. A complete knowledge of the robot model
is also relevant to perform advanced tasks with Digital Twin (DT) and Digital Shadow (DS),
such as preventive detection of hardware failures by detecting anomalous consumption in the
actuators. In this thesis, as experiences are primarily focused on formation control and do not
have access to the hardware drivers of the engines, the isolated kinematic model will be good
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enough to design the control structure.

Concerning the control, the number of control algorithms that have been used in the robot
is equally extensive. Position control is usually performed using PID controllers due to its
good performance and simplicity [153] Despite the good results obtained with this controller,
more complex control techniques such as Linear-Quadratic Regulator (LQR) [154], nonlinear
PID [155], robust control [156,157], event-based control [158], predictive control [159], intelligent
control through neural networks [160], genetic algorithms [161], fuzzy logic [162], or combinations
of them [163] have been applied. Such a variety of control algorithms allows the designer to make
comparisons and determine the most appropriate architecture for each implementation.

Thus, this chapter mainly focuses on the modeling and local controllers implemented in
Robotic Park for the DDWMR. Section 3.2 presents a detailed analysis of their modeling, first
presenting the theoretical models (kinematic and dynamic) of the robots and then the external
and internal parameterized representation of the robots. In Section 3.3, the process of identifying
the theoretical parameters of the robots is carried out based on experimental data from real
robots. Section 3.4 presents the proposed control strategies for the position and orientation
control of the robot. Section 3.5 presents the experimental validation of the operating robots in
Robotic Park. Finally, a summary of the main results obtained is presented.

3.2 Theoretical model

3.2.1 Kinematic Model

The kinematic model determines the motion of the robot from its geometrical characteristics
and constraints. The main parameters of these robots are shown in Figure 3.1, where (lw) and
(rw) are the left and right wheels respectively separated a distance d, Q represents the center
of gravity, vQ is the linear velocity, and θ̇ the wheels’ angular velocities. The Y X coordinate
system is a fixed global reference system. (xQ, yQ) and φ represent the position and orientation
respectively in the global coordinate system. The YRXR coordinate system is a local coordinate
system of the robot with origin at Q. The following hypotheses are established for the modeling
of the system:

• The wheels rotate on the surface without sliding effects.

• The axis of rotation of the robot is perpendicular to the X-Y plane.

• The center of gravity is located at point Q (see Figure 3.1).

Assuming the absence of wheel slip, the velocities of each wheel are the following:(
vr

vl

)
= r ·

(
θ̇r

θ̇l

)
(3.1)
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where r is the wheel’s radius. From these values, the forward velocity, vQ, and the angular
velocity, φ̇ of the center of gravity of the robot are determined according to (3.2).(

vQ

φ̇

)
=
(
r
2

r
2

r
d − r

d

)(
θ̇r

θ̇l

)
(3.2)

The global velocities of the robot in the X-Y plane and the angular velocity is calculated as
follows: 

ẋQ

ẏQ

φ̇

 =


cosφ 0
sinφ 0

0 1


(
vQ

φ̇

)
=


r·cosφ

2
r·cosφ

2
r·sinφ

2
r·sinφ

2
r
d − r

d


(
θ̇r

θ̇l

)
(3.3)

These equations are known as the Forward Kinematics Model for Differential Drive
Robots and are expressed in simplified form as

ṗ = Jq̇ (3.4)

where ṗ =


ẋQ

ẏQ

φ̇

, q̇ =
(
θ̇r

θ̇l

)
and J is the Jacobian matrix of differential drive robot.

Since the Jacobian matrix is not invertible, to obtain q̇ in the forward kinematics model for
differential drive robots, the pseudoinverse (Moore-Penrose) matrix is used, which establishes
its value according to the following expression:

J+ =
(
JTJ

)−1
JT (3.5)

where J+ represents the pseudoinverse matrix. Another way to calculate J+ is from the equations
that link the linear velocity of each wheel to the velocity of the center of gravity, resulting,

Figure 3.1. Diagram of a generic differential drive robot.
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rθ̇r = ẋQ cos (φ) + ẏQ sin (φ) + d
2 φ̇

rθ̇l = ẋQ cos (φ) + ẏQ sin (φ) − d
2 φ̇

(3.6)

Thus, the Inverse Kinematics Model for Differential Drive Robots method is ob-
tained as

q̇ = J+ṗ →
(
θ̇r

θ̇l

)
= 1
r

(
cos (φ) sin (φ) d

2
cos (φ) sin (φ) −d

2

)
ẋQ

ẏQ

φ̇

 (3.7)

And the instantaneous radius of curvature of the robot can be calculated as

R = vQ
φ̇

= d

2
vr + vl
vr − vl

(3.8)

3.2.2 Dynamic Model

Most applications involving differential drive mobile robots perform the control on the kinematic
model, as it provides good results using the linear and angular velocities of the robot as control
signals. However, if more accurate results are required, it is necessary to include the dynamic
model of the system. The dynamic model studies the effect of the forces to which the robot is
subjected in its motion. The model obtained is of interest for the analysis of both longitudinal
and lateral sliding. Dynamic modeling makes use the Newton-Euler method. The translational
motion of the robot is given by

m · ˙vQ = F (3.9)

where F is the force applied at the center of gravity Q, vQ is the linear velocity, and m is the
mass of the robot. The rotation of the robot is defined by the expression

I · ω̇Q = M (3.10)

where M is the angular momentum with respect to the center of gravity, ωQ is the angular
velocity, and I is the moment of inertia of the robot. The forces and moments generated by the
wheels are related to each other according to the following expression

F = Fr + Fl

τr,l = r · Fr,l
(3.11)

where Fr,l and τr,l represent the forces and moments generated in each wheel by the action of
the motors attached to it. Linking the forces and moments to the geometrical components of
the robot we obtain the following expressions

F = 1
r

(τr + τl) (3.12)
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M = (Fr + Fl) · d = d

r
(τr − τl) (3.13)

Finally, by replacing these F and M values in the equations of motion the Dynamic Model
of the Differential Drive Robot is obtained as follows:(

v̇

ω̇

)
=
(

1
m·r

1
m·r

d
I·r

−d
I·r

)(
τr

τl

)
(3.14)

3.2.3 Direct current motor

The lowest level of the differential drive robot model studies the dynamics of the DC motors.
These systems have as input signal the control voltage and their output is the torque that is
generated in the motor. In a DC motor, the torque is produced by the existence of an electric
current because there is no balance between its electromotive forces. The mechanical equation
of the motor is given by

Jmθ̈ = τ − θ̇ (3.15)

where Jm is the motor inertia, θ is the motor shaft rotation angle, and τ is the rotor mechanical
torque. The mechanical torque has a proportional relationship with the motor armature current
i, the characteristic torque constant of the motor kt, and the gear ratio N according to

τ = i ·N · kt (3.16)

Therefore,
Jmθ̈ = N · kt · i− θ̇ (3.17)

Applying Kirchoff’s law to the motor in Figure 3.2 gives the differential equation of the
system

R · i+ L · i̇ = v − ec = v − kb · θ̇ (3.18)

where v is the motor control voltage, i is the armature current, R is its characteristic resistance,

Figure 3.2. Electrical diagram of DC motor.
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L is the rotor inductance, and ec is the counter-electromotive force produced in the motor
by its instantaneous rotational speed. This last force depends on the rotational speed and a
characteristic constant of the motor, kb.

3.2.4 State space model

Once the individual models of the different parts that make up the system from the control signal
received by the actuators to the overall response of the system position have been obtained, the
global model based on the internal description is developed. To this end, the state vector of the
DDWMR, is defined as

x =
[
xQ yQ φ vQ ωQ θ̇r ir θ̇l il

]T
(3.19)

and the signals received by the actuators are selected as control signals as follows

u =
[
vl vr

]T
(3.20)

where vr is the input voltage of the right motor and vl is the input voltage of the left motor.

In this way, the direct kinematic model governing the dynamics of the system is nonlinear
and can be represented as

ẋ (t) = f (x (t) ,u (t))
y (t) = g (x (t) ,u (t))

(3.21)

The Taylor serie linearizes the system’s response as (3.22) shows by deleting second and
higher-order terms.

f (x,u) ≈ f (xeq,ueq) +
(
∂f (x,u)

∂x

∣∣∣∣
(xeq ,ueq)

(x − xeq) + ∂f (x,u)
∂u

∣∣∣∣
(xeq ,ueq)

(u − ueq)
)

(3.22)

The linearization the equations of the forward kinematics model is shown below, where the
rotational speeds of each motor in a steady state,

(
θ̇r,eq, θ̇l,eq

)
, are considered zero.

ẋQ =r

2 cosφeq
(
θ̇r,eq + θ̇l,eq − sinφeq

cosφeq

(
θ̇r,eq + θ̇l,eq

)
(φ− φeq) + θ̇r − θ̇r,eq + θ̇l − θ̇l,eq

)
ẋQ =r

2 cosφeq θ̇r + r

2 cosφeq θ̇l
(3.23)

ẏQ =r

2 sinφeq
(
θ̇r,eq + θ̇l,eq + cosφeq

sinφeq

(
θ̇r,eq + θ̇l,eq

)
(φ− φeq) + θ̇r − θ̇r,eq + θ̇l − θ̇l,eq

)
ẏQ =r

2 sinφeq θ̇r + r

2 sinφeq θ̇l
(3.24)
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φ̇ = r

d
θ̇r − r

d
θ̇l (3.25)

After the linearization of this system, its state space model can be represented as follows:

ẋ (t) = Ax (t) + Bu (t)
y (t) = Cx (t) + Du (t)

(3.26)

where x (t) : Rn is the state vector, y (t) : Rm is the output vector, u (t) : Rr is the input vector,
A : Rn×n is the state matrix, B : Rn×r is the input matrix, C : Rm×n is the output matrix,
and D : Rm×r is the direct transmission matrix. Replacing (3.3), (3.14), (3.17), and (3.18), the
global model is built as follows

ẋQ

ẏQ

φ̇

v̇Q

ω̇Q

θ̈r

i̇r

θ̈l

i̇l



=



0 0 0 0 0 r
2 cosφeq 0 r

2 cosφeq 0
0 0 0 0 0 r

2 sinφeq 0 r
2 sinφeq 0

0 0 0 0 0 r
d 0 r

d 0
0 0 0 0 0 0 Nkt

mr 0 Nkt
mr

0 0 0 0 0 0 Nktd
Ir 0 −Nktd

Ir

0 0 0 0 0 − 1
Jm

Nkt
Jm

0 0
0 0 0 0 0 −kb

L −R
L 0 0

0 0 0 0 0 0 0 − 1
Jm

Nkt
Jm

0 0 0 0 0 0 0 −kb
L −R

L





xQ

yQ

φ

vQ

ωQ

θ̇r

ir

θ̇l

il



+



0 0
0 0
0 0
0 0
0 0
0 0
1
L 0
0 0
0 1

L



(
vr

vl

)


xQ,k

yQ,k

φk

 =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0





xQ

yQ

φ

vQ

ωQ

θ̇r

ir

θ̇l

il


(3.27)

The model described in (3.27) defines the complete behavior of the system around an oper-
ating point. However, in most cases, when controlling real robots, the control of DC motors is
done through the firmware, hiding this stage of the process through an API that only receives as
setpoints the linear and angular target speeds. As already mentioned, this means that in practice
we only work with the approximation of the kinematic model taking the mentioned velocities as
control signals, (3.28) and (3.29). This approximation is suitable because the system’s dynamic
and the motor are sufficiently fast concerning the kinematic model. Furthermore, in many com-
mercial applications, the physical parameters of the motors are not available to protect design

Development, control and evaluation of a heterogeneous multi-agent robotic platform 79



3. Differential Drive Mobile Robots

patents.


ẋQ

ẏQ

φ̇

 =


0 0 0
0 0 0
0 0 0



xQ

yQ

φ

+


r·cosφeq

2
r·cosφeq

2
r·sinφeq

2
r·sinφeq

2
r
d − r

d


(
θ̇r

θ̇l

)
(3.28)


xQ

yQ

φ

 =


1 0 0
0 1 0
0 0 1



xQ

yQ

φ

 (3.29)

Once the internal representation has been defined in non-linear and linear form, the external
representation of the simplified model of the system is extracted using transfer functions, what
result as follows:

G(s) = C[sI −A]−1B +D (3.30)
GxQ (s)
GyQ (s)
Gφ (s)

 =


r·cosφeq

2s
r·cosφeq

2s
r·sinφeq

2s
r·sinφeq

2s
r
ds − r

ds

 (3.31)

3.2.5 Motion Model

In order to obtain the robot’s motion model it is considered the Y X inertial reference frame and
the YRXR reference frame located at the center of gravity of the robot Q, ṗ = (ẋQ, ẏQ, φ̇Q)T

defines the velocities concerning the inertial frame and ṗl = (ẋl, ẏl, φ̇l)T the velocities of the
robot in the local frame. The relationship between the two frames is defined by the homogeneous
transformation matrix R(φ) given by (3.32).

ṗl = R(φ)ṗ =


cosφ sinφ 0

− sinφ cosφ 0
0 0 1

 ṗ (3.32)

As there is no lateral displacement in the robot, there is a non-holonomic constrain given by
(3.33).

ẋQ sinφ− ẏQ cosφ = 0 (3.33)

If the robot goes from an initial position A (xA, yA, φA) to a target position B (xB, yB, φB),
see Figure 3.3, and the parameters considered to govern the motion of the robot are the angular
velocities of the motor wheels, θ̇r,l, the dynamic equations of motion can be written in polar
form as:

ρ =
√

(yB − yA)2 + (xB − xA)2 (3.34)

α = atan2 (yB − yA, xB − xA) − φA (3.35)
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Figure 3.3. Diagram of the motion of a differential drive robot.

where ρ is the distance between the goal point and the initial position and α is the error in the
orientation.

These equations imply that

yB − yA = ρ sin (α+ φA)
xB − xA = ρ cos (α+ φA)

(3.36)

Therefore, the equations modeling the dynamic behavior of the robot’s movement can be
expressed as follows

ρ̇ = 1
2

−2ẏA(yB−yA)−2ẋA(xB−xA)
ρ = −v sin(φ)ρ sin(α+φA)+v cos(φ)ρ cos(α+φA)

ρ

ρ̇ = −v cos (α) = − r
2

(
θ̇r + θ̇l

)
cos (α)

(3.37)

α̇ = −(xB−xA)ẏ+(yB−yA)ẋ
(yB−yA)2+(xB−xA)2 − φ̇A = −ρ cos(α+φA)v sin(φ)+ρ sin(α+φA)v cos(φ)

ρ2 − ω

α̇ = r
2

(
θ̇r + θ̇l

)
sin(α)
ρ − r

d

(
θ̇r − θ̇l

) (3.38)

3.3 Parameters identification

Once the model of the robot has been determined, a set of experimental tests is carried out to
verify the correspondence between the theoretical and empirical parameters. To estimate the
parameters of the motion model, i.e. the radius of the wheels and the distance between them,
an experience, shown in Figure 3.4, is performed. The robot moves along the path shown in the
figure, starting at the red dot and ending at the green dot. First, the speed profiles from the
odometry and the Vicon positioning system are extracted. Figure 3.5a shows the linear velocity
profile of the robot measured with the Vicon system. Figure 3.5b shows the angular speed of
the robot according to the Vicon system and the angular velocity of both wheels.
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Figure 3.4. Trajectory followed by DDWMR for its characteristic parameters estimation.
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Figure 3.5. Velocity profiles for identification experiment.

The radius of the wheels, r, is determined by (3.37) using the linear velocity of the robot, ρ̇,
and the angular velocity of each wheel, θ̇r,l. Similarly, the distance between wheels d is calculated
by (3.38) using the angular velocity of the robot, α̇, the turning speed of each wheel, θ̇r,l, and
the radius previously calculated. Figure 3.6 shows the results obtained. It is observed that the
estimates (r = 0.027 [m] and d = 0.1019 [m]) are close to the ground truth (r = 0.021 [m] and
d = 0.105 [m]) at the times when the speed of each wheel is higher. The reason is that, in
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Figure 3.6. Wheels’ radious ,r, and distance between them, d.

those moments, the signal-to-noise ratio is higher and, therefore, the results are more accurate.
When the velocities are minimal, the signal-to-noise ratio increases, affecting the value of the
estimate. Thus, the estimated final values have been extracted from the median values of the
records during the 4 [s] in which the robot’s speed approaches 0.2 [m/s].

In addition, a new test to determine the transfer function in a closed loop of linear and
angular velocity has been carried out. In this case, an amplitude and random period signal for
the robot’s speed commands have been generated. Figure 3.7 shows the path described in the
XY plane in blue, starting at the red dot and ending at the green dot.In this case, an amplitude
and random period signal for the robot’s speed commands have been generated. The recursive
least square technique for a first-order model to estimate both models have been used. This
technique has been implemented in a ROS 2 node that allows developing online identification
techniques.

Figure 3.8 shows the results obtained in the case of linear velocity. Figure 3.8a shows the
temporal response to the input signal and the estimation of the response at each instant. Figure
3.8b shows the evolution of the characteristic parameters of a first-order function in discrete
time. The results obtained in discrete time are a = 0.3882 and b = 0.6162. In the Laplace
domain, these results involve a stationary gain of k = 1.0071 and a time constant τ = 0.0217 [s].

The same process is repeated in the case of angular velocity, see Figure 3.9. Figure 3.9a
shows the temporal evolution of the response for the input signal and the estimation of the
response at each instant. Figure 3.9b shows the evolution of the characteristic parameters of
the first-order function in discrete time. The results obtained in discrete time are a = 0.3600
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Figure 3.7. Trajectory followed by DDWMR for identification process.

and b = 0.192. In the Laplace domain, these results involve a stationary gain of k = 0.9675 and
a time constant τ = 0.0201 [s].

According to the results obtained and considering that the sampling time is T = 0.02 [s], the
kinematic model approximation is good enough when the robot is in movement without load.
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Figure 3.8. Linear velocity model identification.
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Figure 3.9. Angular velocity model identification.

3.4 Control architecture

A typical motion control architecture of these robots to implement (3.37) and (3.38) is made up
of a single level with two controllers: a position controller, responsible of the translation control,
and an orientation controller, as shown in Figure 3.10. The feedback signal of this control level
is the position of the robot, pi, and its control signal is the linear, vi, and angular, ωi, velocity
commands. It is necessary a first function to transform the pose value from global to local
frame. The outputs of this function are the distance error, edistance, and the yaw angle error,
Eyaw. Obstacle avoidance is also implemented at this level. All robots on the platform have
obstacle avoidance implemented by artificial potentials [164].

Figure 3.10. Diagram of the typical control architecture of a differential drive robot.

If the motion control problem is considered as a regulation problem for a Multiple-Input
Multiple-Output (MIMO) system, the transfer functions governing the behavior of the ρ and α

in (3.37) and (3.38) can be obtained using the robot velocities as control signals. Taking into
account (3.30), these functions are defined by[

Gρ (s)
Gα (s)

]
=
[− cosα

s 0
sin(α)
ρs −1

s

]
(3.39)
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Controller design

As it is an integral type process (see (3.39)), the best controller is one of proportional type due
to its simplicity, ensuring zero error against step signals and a closed-loop first-order response.
The resulting control law is as follows

v = Kρρ cos (α)
ω = Kρ sin (α) cos (α) +Kαα

(3.40)

where Kρ is the gain of control over the forward velocity, and Kα is the gain of control over the
angular velocity concerning the error of α.

In [165], improvements to this control law (IPC) are proposed that establish a maximum
speed of motion when the Euclidean distance error is above a threshold and an integral compo-
nent in the angular velocity control that overcomes limits of the previous law when the target
position is at the rear of the robot. If the target position is 180◦ to the robot’s current orienta-
tion, and the robot cannot move backward or does not have sensors to avoid collisions in that
direction, the robot may be “locked”. The law proposed, in this case, responds to

v = min {K1dp (α) , vmax}
ω (t) = Kp sin (α(t)) +Ki

∫ t
0 α(s)ds

(3.41)

where
p(x) =

(
π − |x|
π

)
(3.42)

and the parameters K1,Kp, and Ki > 0 are chosen to satisfy the following constraints

0 < K1 < Kp (3.43)

Kp +
√
Kiπ < ωmax (3.44)

The detailed analysis demonstrating the asymptotic stability of the process and its corre-
sponding validation in simulation can be found in [166]. Given the improvement in robustness
that this implementation allows against the base controller, this controller is chosen to be im-
plemented in Robotic Park’s real robots.

3.5 Experimental evaluation and discussion

Once the theoretical and experimental models and the control architecture of DDWMR have
been described, in this section the experimental validation on real robots is carried out. To
this end, a scenario is proposed in which the robot follows a pseudo-random trajectory that
generates random target points within the platform arena. The IPC control strategy [165] will
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be compared with a classical PID controller to evaluate its effectiveness. Figure 3.11 shows
the obtained trajectories with both controllers. Figure 3.12 shows the path-tracking errors over
time, where the better performance obtained with the IPC controller can be observed. The
exponential dynamics of the PID response causes a faster response when the error is greater.
However, when the error is small, the response slows down significantly compared to the IPC.
Therefore, to integrate these robots into RP a suitable low-level control implementation is IPC.
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Figure 3.11. Trajectory followed by Khepera IV with different controllers.

3.6 Conclusions

This chapter describes the complete mathematical model of the differential drive mobile robot,
the ground robots included in RP. The kinematic and the dynamic models have been presented,
both the theoretical models and the external and internal parameterized representation. The
parameters of the motion model have been validated from the real robots’ experimental data.
The inclusion of this model in RP ensures that it is prepared to carry out experiences in a wide
spectrum of tasks.

A typical control architecture has been presented and a low-level controller for DDWMR has
been experimentally evaluated. This evaluation has been carried out on real robots showing a
proper integration of DDWMR in RP.
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Figure 3.12. Trajectory tracking errors.
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Chapter 4

Aerial Robots

4.1 Introduction

A common type of robot used in experimental platforms, both indoor and outdoor, are the aerial
robot. These systems, unlike terrestrial mobile robots, are a challenge in the implementation of
their control loops as they have faster and less stable dynamics. The most commonly accepted
way to classify these robots is by their number of propellers. The most frequently used are those
with four propellers, quadcopters, for small and medium-sized, and the ones with six and eight
propellers, hexacopters and octocopters, respectively, used for big size systems. This chapter
analyzes the case of quadcopters because they are the ones that will be used in the experimental
work developed in this thesis.

A wide variety of controllers evaluated on these systems can be found in the literature
[167,168]. From the point of view of its dynamic modeling, a quadcopter is essentially a nonlin-
ear multivariable system, which increases the interest in evaluating control strategies and com-
binations to obtain optimal systems. As usual, the controller that has been more extensively
used and evaluated is the the PID controller [169–171]. Despite the generally good performance
of this type of controller, the nonlinearity of the system opens the door to performance improve-
ments with the use of more advanced control strategies. A good example of this is the use of
genetic algorithms or fuzzy logic for the adaptive tuning of PID controllers for system dynam-
ics [172,173]. Other controllers that can be found in the literature include robust control [174],
sliding control mode [175], event-based control [176], and neural networks controllers [177].

The control architecture follows a hierarchical structure. The lower level provides the po-
sition and orientation control of the quadcopter, whereas the upper level is responsible for
controlling the trajectory followed by the quadcopter. The parameters that define the tuning
of the controller are the closed-loop dynamics of the bottom layer, and there, a great variety of
controllers can be found. For instance, there exist in the literature works with the most basic
ones such as the PID controller, with acceptable performance [178, 179], but also one can find
more complex controllers which use different techniques, such as sliding mode control [180], ge-
netic algorithms [181], or neural networks [182]. For the specific case of planned navigation, one
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of the most widely used controllers is the Model Predictive Control (MPC), where the adjust-
ment of the observation window is a key factor for the trajectory optimization and the obstacle
avoidance problem [183–185].

Throughout this chapter, a detailed analysis of the case of the quadcopter will be carried
out. In section 4.2 the model of this type of robot is studied. Since it is a nonlinear model,
it is linearized to obtain the transfer functions that govern the robot’s behavior around the
equilibrium. Section 4.3 develops some of the most frequently used control strategies for the
different levels of quadcopters. The analysis is focused on the Crazyflie 2.X drone. In section
4.4 the validation of the calculated models with experimental data will be performed. Finally,
it will be shown experimental results carried out on the Crazyfly 2.1. The chapter ends with
some brief conclusions that summarize the current status of the work.

4.2 Theoretical model

The physical modeling of quadcopters is widely studied in the literature [186–188]. Most of
this models come from the academic world [189–191]. Quadcopters are underactuated systems
since they have six degrees of freedom and only four actuators. For fully actuated systems it
is necessary to work with hexarotors or specific modifications of the quadcopters as presented
in [192–194]. In this section the modeling will be done in a parameterized way for an “X”
configuration. This configuration is the most common for robots that incorporate sensors, such
as cameras.

Dynamic model

To obtain the dynamic model of the system, first of all, three initial hypotheses are assumed
about the robot that simplifies the model while maintaining a good approximation of reality.

• It behaves as a rigid body without deformations, i.e. the relative distance between all its
points is constant. This implies that the arms supporting the rotors do not suffer bending
deformations due to the forces to which it is subjected.

• It is symmetrical, both in mass and in rotor properties.

• The mass is constant over time.

To locate the drone reference frame, the extrinsic Tait-Bryan [195] representation is used.
This implementation is not an efficient solution when real-time implementations are desired. In
such cases, a model based on the Newton-Euler equations with quaternions is a better choice.
In this situation, the transformation from the inertial frame, XY Z (see Figure 4.1) to the drone
frame is determined by three successive rotations: yaw (ψ) → pitch (θ) → roll (ϕ). The rotations
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on the X and Z axes are taken clockwise while the Y rotation is taken counterclockwise [189].
The resulting rotation matrix is given in (4.2). Moreover, since it is an orthonormal matrix,
equation (4.3) is satisfied.

Rx (−ϕ) =


1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 Ry (θ) =


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


Rz (−ψ) =


cosψ sinψ 0

− sinψ cosψ 0
0 0 1


(4.1)

Rb
o =


cos θ cosψ cos θ sinψ − sin θ

sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

 (4.2)

(
Rb
o

)−1
=
(
Rb
o

)T
= Ro

b (4.3)

The modeling uses an internal representation based on state space. The state vector is
composed of four components associated with the 6 degrees of freedom of the drone and their
respective velocities, x [p,Φ,v,ω] ∈ R12 where p ∈ R3 [m] denotes the center of mass in the
inertial frame, Φ ∈ R3 [rad] denotes the extrinsic ZYX Tait-Bryan angles of the rigid-body
rotation in the inertial frame, v ∈ R3 [m/s] denotes the linear velocities of the center of mass
in the inertial frame, and ω ∈ R3 [rad/s] denotes the angular velocity in the local frame to
the inertial frame. Furthermore, Ω ∈ R4 [rad/s] represents the rotational velocities of the four
rotors of the system.

Figure 4.1. Forces and moments diagram in the Crazyflie 2.X.

Development, control and evaluation of a heterogeneous multi-agent robotic platform 91



4. Aerial Robots

Force Equations

To determine the equations related to the linear parameters of the drone, Newton’s second law
is applied, determining the derivative of the velocity according to the Coriolis equation [196]

ΣF = m · v̇ = m ·
(
v̇b + ω × vb

)
(4.4)

where F is the global force of the drone, m is the mass, and v̇b is the velocity of the center of mass
in the local frame. If it is considered that in the stationary state (the drone is oriented parallel
to the ground) both roll and pitch are zero, the force balance allows to isolate the derivative of
the linear velocity of the drone:


0
0
Fz

−Rbo


0
0
mg

 = m ·
(
v̇b + ω × vb

)
→ v̇b =


0
0
Fz
m

−Rbo


0
0
g

− ω × vb (4.5)

To determine the derivatives of the state spaces referring to the position in the inertial
frame, the linear velocities of the drone in the local frame are projected using the corresponding
transformation matrix (4.2).

ṗ = Rob · v̇b (4.6)

The following equation is used to determine the force generated by the drone rotors:

F bi =


0
0
Ti

 → Ti = CTΩ2
i → ΣF bi =


0
0

CT
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4
)
 (4.7)

where F bi [N ] is the local force generated by rotor i, Ti [N ] is the vertical thrust, Ωi [rad/s] is
the rotational speed of rotor i, and CT

[
N/rpm2] is the thrust coefficient determined by (4.8).

CT = kTρ
(2r)4

3600 (4.8)

where ρ
[
Kg/m3] is the density of air, r [m] and kT are the rotors’ radius and thrust coefficient.

Momentum Equations

To determine the elements associated with the angular components of the system states, momen-
tum balance is used. Applying the summation of moments equivalent to the angular momentum
of the drone using the equivalence of the Coriolis equation, it is obtained (4.9).

ΣMo = oḣ → ΣMo = bḣ+ ω × h (4.9)
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where h represents the angular momentum of the center of mass in the global frame. Applied to
the local frame, the equations of the quantity of motion are more easily calculated, as explained
in [197,198],

ΣM b = J bω̇ + ω × Jω (4.10)

where J represents the inertia matrix of the drone. Assuming the assumption of drone symmetry,
the estimation of the inertia matrix is simplified according to (4.11) and (4.12).

J =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz
−Izx −Izy Izz

 → J =


Ixx 0 0
0 Iyy 0
0 0 Izz

 (4.11)

(J)−1 =

adj


Ixx 0 0
0 Iyy 0
0 0 Izz


∣∣∣∣∣∣∣∣
Ixx 0 0
0 Iyy 0
0 0 Izz

∣∣∣∣∣∣∣∣
=


IyyIzz 0 0

0 IxxIzz 0
0 0 IxxIyy


IxxIyyIzz

=


1
Ixx

0 0
0 1

Iyy
0

0 0 1
Izz

 (4.12)

Therefore, it can be estimated the term bω̇ as follows:

bω̇ = (J)−1



Mx

My

Mz

− ω × Jω

 (4.13)

The last equation of state determines the relationship between the ω vector and the derivative
of Φ.

ω =


1 0 − sin θ
0 cosϕ sinϕ cos θ
0 − sinϕ cosϕ cos θ

 Φ̇ → Φ̇ =


1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ/ cos θ

ω (4.14)

The procedure to determine the correlation between the velocity of rotation of the propellers
and the resulting momentum is the following:

M = ΣPi × Fi + Στi (4.15)

where Pi represents the distance from each motor to the center of gravity, Fi is the force generated
by each rotor, and τi represents the momentum induced in the drone by each rotor. This moment
is a consequence of Newton’s third law applied to the propeller rotation. By using an “X”
configuration, the position of each rotor is defined by
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P1 =


d√
2

− d√
2

0

 ;P2 =


− d√

2
− d√

2
0

 ;P3 =


− d√

2
d√
2

0

 ;P4 =


d√
2
d√
2

0

 (4.16)

where d represents the distance from each rotor to the center of gravity of the drone.

Knowing the force generated by each motor from (4.7), the moment product of that force
can be determined as follows:

P1 × F1 =


−
(
CTΩ2

1
)
d/

√
2

−
(
CTΩ2

1
)
d/

√
2

0

 P2 × F2 =


−
(
CTΩ2

2
)
d/

√
2(

CTΩ2
2
)
d/

√
2

0


P3 × F3 =


(
CTΩ2

3
)
d/

√
2(

CTΩ2
3
)
d/

√
2

0

 P4 × F4 =


(
CTΩ2

4
)
d/

√
2

−
(
CTΩ2

4
)
d/

√
2

0


(4.17)

Applying conservation of angular momentum:

Στ bi =


0
0

CD
(
−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4
)
 (4.18)

where CD represents the torque coefficient [199], which depends on the dimensionless coefficient
kD, the air density ρo, and the rotor radius r according to the following expression

CD = kDρ (2r)5 /3600 (4.19)

Therefore, in the calculation of the moments, the result would be:

M b =


Mx

My

Mz

 =


dCT /

√
2
(
−Ω2

1 − Ω2
2 + Ω2

3 + Ω2
4
)

dCT /
√

2
(
−Ω2

1 + Ω2
2 + Ω2

3 − Ω2
4
)

CD
(
−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4
)

 (4.20)

In the total quantity of motion equation, there are certain terms including angular accelerations
that have been omitted, as they tend to be small compared to the other terms in the equation.
The gyroscope moments have also been omitted because the moment of inertia of each motor
tends to be small, so their contribution to the total momentum is also negligible [200,201].

Linear state space model

The development of a nonlinear model of the system is important for the construction of highly
accurate simulators or predictors. However, sometimes a simplified model around the operating
point where the system works is more valuable. To obtain it, the use of a Taylor series lineariza-
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tion process of the system is a good option. In this way, it is possible to obtain the characteristic
matrices A, B, C, and D of the model in the state space as follows:

∆ẋ = A∆X +B∆U
∆y = C∆X +D∆U

(4.21)

At the equilibrium point around which the system is linearized, condition Ẋe = 0 is satisfied.
In this point, the velocity components and the pitch and roll angles are zero. It means that the
drone remains suspended in the air. Therefore the state vector can be expressed as follows:

Xe = [xe ye ze 0 0 ψe 0 0 0 0 0 0]T (4.22)

Similarly, in the ideal case, at the equilibrium point, the rotational speed of the rotors must
be the same, Ωe. This value is determined by applying the balance of forces on the Z-axis:

CT (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) = mg → Ωe =
√
mg

4CT
(4.23)

Applying the first term of the Taylor series to (4.5), (4.7), (4.13), and (4.20) it is obtained
the new equations governing the linear behavior of the system:{

∆Fx = m∆u̇−mg∆θ ∆Fy = m∆v̇ −mg∆ϕ ∆Fz = m∆ẇ
∆Mx = Ixx∆ṗ ∆My = Iyy∆q̇ ∆Mz = Izz∆ṙ

(4.24)

[
∆F b

∆M b

]
=



∆Fx
∆Fy
∆Fz
∆Mx

∆My

∆Mz


=



0
0

2CTΩe(∆Ω1 + ∆Ω2 + ∆Ω3 + ∆Ω4)√
2dCTΩe(−∆Ω1 − ∆Ω2 + ∆Ω3 + ∆Ω4)√
2dCTΩe(−∆Ω1 + ∆Ω2 + ∆Ω3 − ∆Ω4)
2CDΩe(−∆Ω1 + ∆Ω2 − ∆Ω3 + ∆Ω4)


(4.25)

In the stationary flight position, the fixed frame of the body coincides with the inertial frame,
which implies the equalities shown in the following equation:

∆ẋ = ∆u ∆ϕ̇ = ∆p
∆ẏ = ∆y ∆θ̇ = ∆q
∆ż = ∆z ∆ψ̇ = ∆r

(4.26)

Therefore, the linear representation of the system using the state space representation has
the following state vectors, control, and characteristic matrices:

∆X = [∆x ∆y ∆z ∆ψ ∆θ ∆ϕ ∆u ∆v ∆w ∆r ∆q ∆p]T (4.27)
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∆U = [∆Ω1 ∆Ω2 ∆Ω3 ∆Ω4]T (4.28)

∆Y = [∆x ∆y ∆z ∆ψ]T (4.29)

A =



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 g 0 0 0 0 0 0 0
0 0 0 0 0 −g 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2CT
m

2CT
m

2CT
m

2CT
m

−2CD
Izz

2CD
Izz

−2CD
Izz

2CD
Izz

−
√

2dCT
Iyy

√
2dCT
Iyy

√
2dCT
Iyy

−
√

2dCT
Iyy

−
√

2dCT
Ixx

−
√

2dCT
Ixx

√
2dCT
Ixx

√
2dCT
Ixx



C =


1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

 D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(4.30)

Once the internal representation has been defined (both nonlinear and linear), it can be
calculated the external representation of the system using transfer functions as follows:

G(s) = Y (s)
U(s) = Ωe



−
√

2dCT g
Iyys4

√
2dCT g
Iyys4

√
2dCT g
Iyys4 −

√
2dCT g
Iyys4√

2dCT g
Ixxs4

√
2dCT g
Ixxs4 −

√
2dCT g
Ixxs4 −

√
2dCT g
Ixxs4

2CT
ms2

2CT
ms2

2CT
ms2

2CT
ms2

− 2CD
Izzs2

2CD
Izzs2 − 2CD

Izzs2
2CD
Izzs2

−
√

2dCT
Iyys2

√
2dCT
Iyys2

√
2dCT
Iyys2 −

√
2dCT
Iyys2

−
√

2dCT
Ixxs2 −

√
2dCT
Ixxs2

√
2dCT
Ixxs2

√
2dCT
Ixxs2

−
√

2dCT g
Iyys3

√
2dCT g
Iyys3

√
2dCT g
Iyys3 −

√
2dCT g
Iyys3√

2dCT g
Ixxs3

√
2dCT g
Ixxs3 −

√
2dCT g
Ixxs3 −

√
2dCT g
Ixxs3

2CT
ms

2CT
ms

2CT
ms

2CT
ms

−2CD
Izzs

2CD
Izzs

−2CD
Izzs

2CD
Izzs

−
√

2dCT
Iyys

√
2dCT
Iyys

√
2dCT
Iyys

−
√

2dCT
Iyys

−
√

2dCT
Ixxs

−
√

2dCT
Ixxs

√
2dCT
Ixxs

√
2dCT
Ixxs



(4.31)

The results obtained are equivalent to other works that can be found in the literature [202],
thus verifying the process followed both in modeling and linearization. It is important to note
that in this representation the pure integrative nature of the system and the cascading relation-
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ship between the position and velocity parameters is more clearly seen. A direct implication of
this phenomenon in the control and stability of these systems is that the open-loop instability
is verified.

4.3 Multivariable control architecture

As described in the previous section, the quadcopter model is a MIMO system. The control
architecture of this type of agent usually has two levels made up of a cascade system each one,
as shown in Figure 4.2. The upper level is in charge of controlling the position and speed of the
robot. This level usually runs at 100 Hz. Its input signal is the target position and its outputs
are the thrust and the pitch and roll angles. The next level is the stability control and it is
defined by the Attitude and Rate controllers. It requires a higher operating frequency, 500 Hz,
and its output signals are the commands that each robot’s rotors must receive. In the following
it is shown some control architectures applicable to this type of multivariable system to decouple
their control levels and conventional PID-based implementations.

Figure 4.2. Block diagram of the quadcopters’ control architecture.

4.3.1 Preliminary considerations

With the current selection of input and output variables, it is complex to determine the variable
pairings to determine the control loops. In the majority of the developed projects with quad-
copters, a previous stage is added to the process called “power distribution”. This distribution
stage establishes a correlation between the rotational speeds of the motors and four new input
signals. It simplifies the matching of the multivariable system. The manipulated variables of the
quadcopter become the thrust (Ωf ) and the(∆θ), roll (∆ϕ), and yaw (∆ψ) angle increments.
The correlation between these new variables and the rotational speeds of the different rotors
(Ωi) is not the same for all implementations. In the proposed structure, the angular variation is
distributed among the four rotors. If the increases in the quadcopter angles were not distributed
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in this ratio of ±0.5 among the four motors, any angles’ variation would lead to increases or
decreases in the thrust signal and it would have to be compensated by the control loop of the
thrust signal because only two rotors were actuated with unity gain. In the same way, the re-
sulting variable switching matrix is designed for an “X” configuration. For a “+” configuration,
the association of motors with the different angles varies. The following equation shows the
D(s) matrix that establishes the relationship between the newly manipulated variables and the
rotational speeds of each rotor:

Ω1

Ω2

Ω3

Ω4

 = D(s)


Ωf

∆θ
∆ϕ
∆ψ

 =


1 −0.5 −0.5 −1
1 0.5 −0.5 1
1 0.5 0.5 −1
1 −0.5 0.5 1




Ωf

∆θ
∆ϕ
∆ψ

 (4.32)

With this change, the transfer function matrix of the MIMO system that determines the
behavior of a generic quadcopter as follows

G′(s) = G(s) ·D(s) = Ωe



0 2
√

2dCT g
Iyys4 0 0

0 0 −2
√

2dCT g
Ixxs4 0

8CT
ms2 0 0 0
0 0 0 8CD

Izzs2

0 2
√

2dCT
Iyys2 0 0

0 0 2
√

2dCT
Ixxs2 0

0 2
√

2dCT g
Iyys3 0 0

0 0 −2
√

2dCT g
Ixxs3 0

8CT
ms 0 0 0
0 0 0 8CD

Izzs

0 2
√

2dCT
Iyys

0 0
0 0 2

√
2dCT
Ixxs

0



(4.33)

It is observed that the new process structure is a fully decoupled system. So, from (4.33), it can
be concluded that the power distribution stage involves a perfect decoupling in the multivariable
system comprising the operation of a quadcopter. This decoupling network involves a form of
compensation known as direct decoupling since the new control signals go to the direct process
inputs through the D(s) terms. In this case, the transfer function matrix that enables decoupling
is composed of static gains but achieves decoupling in both steady and transient regimes.

4.3.2 Centralized control by decoupling

As shown in Figure 4.2, the complete system is composed of 6 loops, each of which is a cascade
system containing the position and velocity of each parameter. This would imply that the design
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of a complete control system requires the design of 12 controllers simultaneously. Given the order
of the processes, it was decided to narrow down the control problem for the study of this type
of controller. For this purpose, the proposed implementation for the controller of this first level
includes the elevation speed control and the angles roll, pitch, and yaw speed control, also called
“Rate Controller”. If the state vector is defined as

[
ż θ̇ ϕ̇ ψ̇

]T
, the transfer function matrices

of these processes are defined as follows:

G(s) = Ωe


2CT
ms

2CT
ms

2CT
ms

2CT
ms

−
√

2dCT
Iyys

√
2dCT
Iyys

√
2dCT
Iyys

−
√

2dCT
Iyys

−
√

2dCT
Ixxs

−
√

2dCT
Ixxs

√
2dCT
Ixxs

√
2dCT
Ixxs

−2CD
Izzs

2CD
Izzs

−2CD
Izzs

2CD
Izzs

 (4.34)

The techniques used to design a centralized decoupling controller are similar to those used
to design decoupling networks [203]. Therefore, the designed network (4.32) will be used.

Design by explicit decoupling

The equivalent multivariable controller for direct decoupling is expressed as follows:

K(s) = D(s)Kd(s) = D(s)


k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

 =


k1 −0.5k2 −0.5k3 −k4

k1 0.5k2 −0.5k3 k4

k1 0.5k2 0.5k3 −k4

k1 −0.5k2 0.5k3 k4

 (4.35)

where k1, k2, k3, and k4 are controllers that are designed using single-variable techniques ac-
cording to the apparent processes resulting from direct decoupling.

First, since the four processes to be controlled are first-order systems with a pole at the origin,
the design of the controller is carried out generically. In this case, to maintain the first-order
closed loop and establish a unity gain, a proportional controller will be used:

GCL(s) = C(s)G(s)
1 + C(s)G(s) =

Kp · ks
1 +Kp · ks

= 1
1

Kpk
s+ 1

→ τCL = 1
Kpk

→ Kp = 1
τCLk

(4.36)

With this design condition, valid for the four controllers to be implemented, the next action is
to establish the desired time constant for the closed-loop systems. In the case of the stability
control, θ̇ and ϕ̇, it is considered appropriate to set its time constant to 0.05[s]. This criterion
is adopted to avoid excessively high values in the proportional term that may cause undesired
behaviors in the system dynamics. In the case of ψ control, the most frequently used solution is
to adopt a common value. According to this criterion, the time constant τCL for this loop is set
at 0.015[s]. Finally, for the speed control, following the same criterion, the time constant is set
to 0.04[s]. As a result, the control parameters for the UAV Crazyflie are shown in Table 4.1.
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Loop τCL[s] Kp

ż 0.04 27.38
θ̇ 0.05 55.55
ϕ̇ 0.05 529.10
ψ̇ 0.015 116.22

Table 4.1. Parameters for a centralized controller for explicit decoupling.

Therefore, the obtained centralized controller by explicit decoupling is defined as follows:

K(s) = D(s)Kd(s) =


27.38 −277.7778 −264.5503 −116.22
27.38 277.7778 −264.5503 116.22
27.38 277.7778 264.5503 −116.22
27.38 −277.7778 264.5503 116.22

 (4.37)

The results of this implementation will be reflected after the development of the implicit method
to perform a joint comparison of all the decoupling control data.

Design by implicit decoupling

In the case of centralized control by implicit decoupling, the general expression for the calculation
of the corresponding controller is defined in (37) of [203]:

K(s) = adj(G(s))
det(G(s))L(s) (4.38)

Considering again the practical case of the Crazyflie, the resulting matrix from the coefficient
between the adjoint and the determinant of G(s) is given by

adj(G(s))
det(G(s)) =


1.0955s −13.8889s −13.2275s −1.7434s
1.0955s 13.8889s −13.2275s 1.7434s
1.0955s 13.8889s 13.2275s −1.7434s
1.0955s −13.8889s 13.2275s 1.7434s

 (4.39)

The next step is to determine the four open-loop transfer functions to be imposed on the
system. Their definition must take into account that the controllers are achievable and the
closed-loop specifications are attainable. Normally, for the response to be stable in the closed
loop, following references and rejecting disturbances, an integrator is added to the open-loop
transfer functions. In this case, this is necessary because the process includes a pure integrator
that fulfills this condition. Since the system is a minimum phase and has no delay, no relative
stability specifications can be used for the controller. The same design criteria will be used as in
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the case of the explicit controller. The closed-loop transfer function GCL(s) is defined as follows:

GCL(s) = C(s)G(s)
1 + C(s)G(s) =

ki
s

1 + ki
s

= 1
1
ki
s+ 1

→ τCL = 1
ki

→ li(s) = ki
s

(4.40)

K(s) = adj(G(s))
det(G(s))


k1
s 0 0 0
0 k2

s 0 0
0 0 k3

s 0
0 0 0 k4

s

 =


1.0955
τCL,1

−13.8889
τCL,2

−13.2275
τCL,3

−1.7434
τCL,4

1.0955
τCL,1

13.8889
τCL,2

−13.2275
τCL,3

1.7434
τCL,4

1.0955
τCL,1

13.8889
τCL,2

13.2275
τCL,3

−1.7434
τCL,4

1.0955
τCL,1

−13.8889
τCL,2

13.2275
τCL,3

1.7434
τCL,4

 (4.41)

To make a comparison between controllers, the same temporal specifications are established
for the closed loops as in the explicit case. Therefore, the resulting control matrix is given by:

K(s) = adj(G(s))
det(G(s))L(s) =


27.38 −277.78 −264.55 −116.22
27.38 277.78 −264.55 116.22
27.38 277.78 264.55 −116.22
27.38 −277.78 264.55 116.22

 (4.42)

It is important to note that the numerical results obtained by both procedures are identical
despite having followed two different calculation procedures. This is logical since the same time
conditions have been imposed to verify the validity of the obtained results. Table 4.2 compares
the performance of the designed controllers with a conventional Proportional control with direct
decoupling [186]. The parameters studied to analyze the performance of the controllers are IAE,
ITAE, and Root Mean Square Error (RMSE). The results of Table 4.2 show how the designed
decouplings, both explicitly and implicitly, improve the quality of the response, being more
significant in the implicit case. In contrast, the ψ̇ case does not improve the PID implementation.
However, this worsening is compensated by the improvement of the proposed implementations
with respect to pitch and roll velocity. In the case of Z-motion, the variation is much less
noticeable but still, there exists a slight improvement over the reference case.

4.3.3 PID Controller

The most frequent implementation due to its simplicity and robustness is the use of PID con-
trollers in each of the controllers in Figure 4.2 with direct decoupling (4.32). The mathematical

Loop z θ̇ ϕ̇ ψ̇

Case PID Expli. Impli. PID Expli. Impli. PID Expli. Impli. PID Expli. Impli.
IAE 1.01 1.00 0.99 20.07 7.04 5.41 22.08 8.54 7.03 1.16 3.10 9.14

ITAE 6.79 5.25 5.07 350.1 110.9 81.19 307.5 125.5 105.9 18.45 50.58 154.7
RMSE 0.11 0.11 0.11 2.69 1.25 0.95 2.78 1.28 1.01 0.09 0.15 0.48

Table 4.2. Analytical results for decoupling control.
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development that establishes the closed-loop behavior for the position control of the quadcopter
Crazyflie is presented next. The same selection of controller type as implemented by the devel-
oper in the official firmware will be maintained. However, it will be parameterized to visualize
in the final result the effect introduced by each controller.

Rate Controller

At this level, the velocity control of the angles associated with the three degrees of freedom
linked to the orientation is implemented. The reference signals are angular velocity setpoints
[rad/s] and the control signals are ∆θ, ∆ϕ, and ∆ψ. The three loops involved have the same
structure, the processes are pure integrators and the controllers used are PID controllers in
their parallel algorithm. The subindexs θ̇, ϕ̇, y ψ̇ are used to identify the loops associated with
each angle. For the theoretical development of the closed loop controller, (4.45) and (4.46), the
generic form (4.43) for the process and (4.44) for the controller will be considered.

Gθ̇,ϕ̇,ψ̇ (s) =
kθ̇,ϕ̇,ψ̇
s

(4.43)

Cθ̇,ϕ̇,ψ̇ (s) = KP,θ̇,ϕ̇,ψ̇ +KI,θ̇,ϕ̇,ψ̇

1
s

+KD,θ̇,ϕ̇,ψ̇s (4.44)

GCL,θ̇,ϕ̇,ψ̇ (s) =
k
s

(
KP +KI

1
s +KDs

)
1 + k

s

(
KP +KI

1
s +KDs

) = kKDs
2 + kKP s+ kKI

(1 + kKD) s2 + kKP s+ kKI
(4.45)

GCL,θ̇,ϕ̇,ψ̇ (s) =
kKD

1+kKD s
2 + kKP

1+kKD s+ kKI
1+kKD

s2 + kKP
1+kKD s+ kKI

1+kKD

=
kKD

1+kKD

(
s2 + KP

KD
s+ KI

KD

)
s2 + kKP

1+kKD s+ kKI
1+kKD

(4.46)

As it can be seen in (4.47), a second-order response with two poles and two zeros is obtained.
To work with lower-order models in the higher levels of control, it is possible to adopt order
reduction solutions or filters in the reference that eliminate the zeros and one pole of the system.

GCL,θ̇,ϕ̇,ψ̇ (s) = kr
(
s2 + br,1s+ br,2

)
s2 + ar,1s+ ar,2



kr = kθ̇,ϕ̇,ψ̇KD,θ̇,ϕ̇,ψ̇
1+kθ̇,ϕ̇,ψ̇KD,θ̇,ϕ̇,ψ̇

br,1 = KP,θ̇,ϕ̇,ψ̇
KD,θ̇,ϕ̇,ψ̇

br,2 = KI,θ̇,ϕ̇,ψ̇
KD,θ̇,ϕ̇,ψ̇

aa,1 = kθ̇,ϕ̇,ψ̇KP,θ̇,ϕ̇,ψ̇
1+kθ̇,ϕ̇,ψ̇KD,θ̇,ϕ̇,ψ̇

aa,2 = kθ̇,ϕ̇,ψ̇KI,θ̇,ϕ̇,ψ̇
1+kθ̇,ϕ̇,ψ̇KD,θ̇,ϕ̇,ψ̇

(4.47)
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Attitude Controller and Yaw Controller

The next level up is responsible for position control of the angles associated with the three degrees
of freedom linked to the orientation. The reference signals are setpoints of the orientation angles
[rad] and the control signals are θ̇, ϕ̇, and ψ̇. The three loops involved have the same structure, a
series combination of (4.47) and pure integrators. The controllers used are Proportional-Integral
(PI) controllers in their parallel algorithm. The subindexs θ, ϕ, y ψ are used to identify the
loops associated with each angle. For the theoretical development of the closed loop controller,
(4.50) and (4.51), the generic form (4.48) for the process and (4.49) for the controller will be
considered.

Gθ,ϕ,ψ (s) = kr
(
s2 + br,1s+ br,2

)
s3 + ar,1s2 + ar,2s

(4.48)

Cθ,ϕ,ψ (s) = KP,θ,ϕ,ψ +KI,θ,ϕ,ψ
1
s

= KP,θ,ϕ,ψs+KI,θ,ϕ,ψ

s
(4.49)

GCL,θ,ϕ,ψ (s) = k (KP s+KI)
(
b0s

2 + b1s+ b2
)

s4 + a1s3 + a2s2 + k (KP s+KI) (b0s2 + b1s+ b2) (4.50)

GCL,θ,ϕ,ψ (s) = ka
(
s3 + ba,1s

2 + ba,2s+ ba,3
)

s4 + aa,1s3 + aa,2s2 + aa,3s+ aa,4



ka = krKP,θ,ϕ,ψ

ba,1 = krKP,θ,ϕ,ψbr,1+krKI,θ,ϕ,ψ
krKP,θ,ϕ,ψ

ba,2 = krKP,θ,ϕ,ψbr,2+krKI,θ,ϕ,ψbr,1
krKP,θ,ϕ,ψ

ba,3 = krKI,θ,ϕ,ψbr,2
krKP,θ,ϕ,ψ

aa,1 = krKP,θ,ϕ,ψ + ar,1

aa,2 = krKP b1 + krKIb0 + ar,2

aa,3 = krKP b2 + krKIbr,1

aa,4 = krKI

(4.51)

As can be seen in (4.51), a high-order model with four poles and three zeros is obtained. At
this point, the entire drone orientation control loop, ψ, is covered. The θ angle control loop will
continue to be linked to the Y -axis motion since its variation translates into a linear acceleration
in the Y-axis. Similarly, the ψ angle control loop will continue to be linked to the X-axis motion.

X − Y Controller

The X−Y plane motion control level consists of a cascade control where the inner level controls
the linear velocity and the outer level controls the position in the X-Y plane. The output signals
of this system are the reference angles θ and ϕ generated by the X and Y loops respectively
received by the Attitude Controller.

Velocity Controller The two loops involved in this level of control have the same struc-
ture, a series combination of (4.51) and pure integrators with gain g = 9.81

[
m/s2]. The con-
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trollers used are PI controllers in their parallel algorithm. For the theoretical development of
the closed-loop controller, (4.54) and (4.55), the generic form (4.52) for the process and (4.53)
for the controller will be considered. The parameterized closed-loop response is shown in (4.56).

Gẋ,ẏ (s) = gka
(
ba,0s

3 + ba,1s
2 + ba,2s+ ba,3

)
s5 + aa,1s4 + aa,2s3 + aa,3s2 + aa,4s

(4.52)

Cẋ,ẏ (s) = KP,ẋ,ẏ +KI,ẋ,ẏ
1
s

= KP,ẋ,ẏs+KI,ẋ,ẏ

s
(4.53)

GCL,ẋ,ẏ (s) = k (KP s+KI)
(
b0s

3 + b1s
2 + b2s+ b3

)
s6 + a1s5 + a2s4 + a3s3 + a4s2 + k (KP s+KI) (b0s3 + b1s2 + b2s+ b3) (4.54)

GCL,ẋ,ẏ (s) = kẋẏ
(
s4 + bẋẏ,1s

3 + bẋẏ,2s
2 + bẋẏ,3s+ bẋẏ,4

)
s6 + aẋẏ,1s5 + aẋẏ,2s4 + aẋẏ,3s3 + aẋẏ,4s2 + aẋẏ,5s+ aẋẏ,6

(4.55)

GCL,ẋ,ẏ (s) =



kẋẏ = kagKP,ẋ,ẏba,0

bẋẏ,1 = KP,ẋ,ẏba,1+KI,ẋ,ẏba,0
KP,ẋ,ẏba,0

bẋẏ,2 = KP,ẋ,ẏba,2+KI,ẋ,ẏba,1
KP,ẋ,ẏba,0

bẋẏ,3 = KP,ẋ,ẏba,3+KI,ẋ,ẏba,2
KP,ẋ,ẏba,0

bẋẏ,4 = KI,ẋ,ẏb3
KP,ẋ,ẏba,0

aẋẏ,1 = aa,1

aẋẏ,2 = aa,2 + kagKP,ẋ,ẏba,0

aẋẏ,3 = aa,3 + kagKP,ẋ,ẏba,1 + kagKI,ẋ,ẏba,0

aẋẏ,4 = aa,4 + kagKP,ẋ,ẏba,2 + kagKI,ẋ,ẏba,1

aẋẏ,5 = kagKP,ẋ,ẏba,3 + kagKI,ẋ,ẏba,2

aẋẏ,6 = kagKI,ẋ,ẏba,3

(4.56)

Position Controller The two loops involved in this level of control have the same struc-
ture, a series combination of (4.55) and pure integrators. The controllers used are P controllers.
For the theoretical development of the closed loop controller, (4.59), the generic form (4.57)
for the process and (4.58) for the controller will be considered. The parameterized closed-loop
response is shown in (4.60).

Gx,y (s) = kẋẏ
(
s4 + bẋẏ,1s

3 + bẋẏ,2s
2 + bẋẏ,3s+ bẋẏ,4

)
s7 + aẋẏ,1s6 + aẋẏ,2s5 + aẋẏ,3s4 + aẋẏ,4s3 + aẋẏ,4s2 + aẋẏ,4s

(4.57)

Cx,y (s) = KP,x,y (4.58)
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GCL,x,y (s) = kxy
(
s4 + bxy,1s

3 + bxy,2s
2 + bxy,3s+ bxy,4

)
s7 + axy,1s6 + axy,2s5 + axy,3s4 + axy,4s3 + axy,5s2 + axy,6s+ axy,7

(4.59)

GCL,x,y (s) =



kxy = KP,x,ykẋẏ

bxy,1 = bẋẏ,1

bxy,2 = bẋẏ,2

bxy,3 = bẋẏ,3

bxy,4 = bẋẏ,4

axy,1 = aẋẏ,1

axy,2 = aẋẏ,2

axy,3 = aẋẏ,3 +KP,x,ykẋẏ

axy,4 = aẋẏ,4 +KP,x,ykẋẏbẋẏ,1

axy,5 = aẋẏ,4 +KP,x,ykẋẏbẋẏ,2

axy,6 = aẋẏ,4 +KP,x,ykẋẏbẋẏ,3

axy,7 = KP,x,ykẋẏbẋẏ,4

(4.60)

Altitude Controller

This control level is responsible for the vertical movement of the drone. It is a cascade control
where the inner level is responsible for velocity control and the outer level is responsible for
position control. In this case, the output is the thrust signal Ωf [rad/s].

Velocity Controller The process that regulates this controller is a pure integrator system
with a gain of value Ωf8CT /m. The controller that is usually implemented in these systems to
obtain a closed-loop first-order response is a proportional gain. However, it has been experimen-
tally verified that this causes a very slow response in the outer loop if an overdamped system
is desired. While this theoretical response is acceptable, in practice it causes the drone to take
a long time to move away from the ground surface. This produces the ground effect to act
more prominently on the drone and can make the drone’s operation unstable. A PI controller
is implemented in its parallel algorithm. For the theoretical development of the closed loop
controller, (4.63), the generic form (4.61) for the process and (4.62) for the controller will be
considered. The parameterized closed-loop response is shown in (4.63).

Gż (s) = Ωe
8CT
ms

= k

s
(4.61)

Cż (s) = KP,ż +KI,ż
1
s

= KP,żs+KI,ż

s
(4.62)

Development, control and evaluation of a heterogeneous multi-agent robotic platform 105



4. Aerial Robots

GCL,ż (s) =
KP,żs+KI,ż

s
8CT
ms

1 + KP,żs+KI,ż
s

8CT
ms

= kKP,żs+ kKI,ż

ms2 + kKP,żs+ kKI,ż
=

kKP,ż
m

(
s+ KI,ż

KP,ż

)
s2 + kKP,ż

m s+ kKI,ż
m

(4.63)

Position Controller This process controls the vertical position of the drone. It receives
as input signal the position reference in the Z axis and generates as response the vertical ve-
locity setpoint to be reached by the drone. The process to be controlled responds to the series
combination of (4.63) and a pure integrator. The controller implemented at this level is a PI
controller. For the theoretical development of the closed loop controller, (4.66), the generic
form (4.64) for the process and (4.65) for the controller will be considered. The parameterized
closed-loop response is shown in (4.67).

Gz (s) =
kKP,ż
m

(
s+ KI,ż

KP,ż

)
s3 + kKP,ż

m s2 + kKI,ż
m s

(4.64)

Cz (s) = KP,z +KI,z
1
s

= KP,zs+KI,z

s
(4.65)

GCL,z (s) =
kKP,ż
m

(
s+ KI,ż

KP,ż

)
(KP,zs+KI,z)

s4 + kKP,ż
m s3 + kKI,ż

m s2 + kKP,ż
m

(
s+ KI,ż

KP,ż

)
(KP,zs+KI,z)

(4.66)

GCL,z (s) = kz
(
s2 + bz,1s+ bz,2

)
s4 + az,1s3 + az,2s2 + az,3s+ az,4



kz = kKP,żKP,z
m

bz,1 = KI,ż
KP,ż

+ KI,z
KP,z

bz,2 = KI,żKI,z
KP,żKP,z

az,1 = kKP,ż
m

az,2 = kKI,ż
m + kKP,żKP,z

m

az,3 = kKP,żKP,z
m

(
KI,ż
KP,ż

+ KI,z
KP,z

)
az,4 = kKI,żKI,z

m

(4.67)

Throughout this section, all the theoretical closed-loop models involved in drone position
control have been obtained. It can be noted that, in all cases, high-order models have been
obtained. It is possible to work with these models or to reduce their order by including filters
between controllers. However, it should be kept in mind that filters can slow down the dynamics
of the system too much. An alternative solution with better results is to use lower-order approx-
imations. These approximations can be performed using specific techniques for order reduction
or by estimating low-order models from experimental data.
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4.4 Parameters identification

After determining the theoretical linear model of quadcopters, in this section, the real model
of the Crazyflie 2.X robot will be identified using the Matlab System Identification toolbox. In
this process, the identification will be performed in a closed loop by using the target position
as an input signal and, as output, the instant robot position. The process will be carried out
individually for the movement in each axis to avoid the coupling effects in the data used to
identify each model. The identification process is performed for the basic configuration of the
Crazyflie 2.1 sensor (flow deck and Lighthouse deck, total weight 31.3 [g]) and for the case in
which it includes the multiranger deck (weight 2.3 [g]). In this way, the results will show the
robustness of the drone’s internal control architecture versus a mass variation of 7.34 %. All
data used have been linearized to the initial state of the experience.

4.4.1 X axis

Figure 4.3a shows the input and output data used to estimate the transfer function to the basic
sensor setup. The optimal balance between the accuracy and order of the transfer function is
analyzed using different transfer functions through cross-validation. The first option checked is
the theoretical model (4.60), which provided an accuracy of 87.48%. To reduce the order of the
model, the new transfer functions have one pole, two poles, and two poles with a zero. The
results obtained provide an accuracy of 79.14%, 91.57%, and 92.2%, respectively. Figure 4.3b
shows the graphical results of the validation process. Therefore, it can be concluded that the
model that offers greater accuracy with a reduced order corresponds to the transfer function
with two poles (4.68). This model has a gain k = 1.014, natural frequency ωn = 2.005 [rad/s],
and dumping factor ζ = 0.677.
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(a) Data used to estimation.
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(b) Cross-validation.

Figure 4.3. Crazyflie X-axis model estimation. Basic setup.
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GCL,B,x = 4.0479
s2 + 2.714s+ 4.019 (4.68)

The process is repeated for the setup with the multiranger deck. Figure 4.4a, shows the
input and output data used in the estimation process. Different transfer functions are evaluated
by cross-validation. The first option checked is the theoretical model (4.60), which provided an
accuracy of 96.24%. Again, the reduced order models considered are transfer functions with one
pole, two poles, and two poles with a zero. The results obtained provide an accuracy of 87.04%,
95.05%, and 95.64%, respectively. Figure 4.4b shows the graphical results of the validation
process. Therefore, it can be concluded that the model that offers greater accuracy with a
reduced order corresponds to the transfer function with two poles (4.69). This model has a gain
k = 1.012, natural frequency ωn = 2.270 [rad/s], and dumping factor ζ = 0.661. The results
show a better estimation of the model and similar parameters in both cases, except for a small
increase in the natural frequency. It indicates that the control architecture is robust enough to
assimilate small changes in the drone equipment.
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(b) Cross-validation.

Figure 4.4. Crazyflie X-axis model estimation. Multiranger setup.

GCL,M,x = 5.219
s2 + 2.998s+ 5.154 (4.69)

4.4.2 Y axis

Figure 4.5a shows the input and output data used to estimate the transfer function to the basic
sensor setup. The optimal balance between the accuracy and order of the transfer function is
analyzed using different transfer functions by cross-validation. The first option checked is the
theoretical model (4.60), which provided an accuracy of 89.73%. To reduce the model order,
the new transfer functions have one pole, two poles, and two poles with a zero. The results
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obtained provide an accuracy of 77.03%, 88.31%, and 89.07%, respectively. Figure 4.5b shows
the graphical results of the validation process. Therefore, it can be concluded that the model
that offers greater accuracy with a reduced order corresponds to the transfer function with two
poles (4.70). This model has a gain k = 1.017, natural frequency ωn = 2.017 [rad/s], and
dumping factor ζ = 0.685.
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Figure 4.5. Crazyflie Y-axis model estimation. Basic setup.

GCL,B,y = 4.136
s2 + 2.763s+ 4.068 (4.70)

The process is repeated for the setup with the multiranger deck. Figure 4.6a, shows the
input and output data used in the estimation process. Different transfer functions are evaluated
by cross-validation. The first option checked is the theoretical model (4.60), which provide an
accuracy of 90.63%. Again, the reduced order models considered are transfer functions with
one pole, two poles, and two poles with a zero. The results obtained provided an accuracy
of 79.21%, 87.89%, and 88.31%, respectively. Figure 4.6b shows the graphical results of the
validation process. Therefore, it can be concluded that the model that offers greater accuracy
with a reduced order corresponds to the transfer function with two poles (4.71). This model
has a gain k = 1.022, natural frequency ωn = 1.719 [rad/s], and dumping factor ζ = 0.692. The
results show a better estimation of the model and similar parameters in both cases, except for
a small decrease in the natural frequency. It indicates that the control architecture is robust
enough to assimilate small changes in drone equipment. In addition, the results obtained on the
Y-axis closely correspond to those obtained on the X-axis, as expected due to the symmetry of
the robots.

GCL,M,y = 3.022
s2 + 2.384s+ 2.957 (4.71)
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Figure 4.6. Crazyflie Y-axis model estimation. Multiranger setup.

4.4.3 Z axis

Figure 4.7a shows the input and output data used to estimate the transfer function to the basic
sensor setup. The optimal balance between the accuracy and order of the transfer function is
analyzed using different transfer functions by cross-validation. The first option checked is the
theoretical model (4.67), which provided an accuracy of 94.26%. To reduce the model order,
the new transfer functions have one pole, two poles, and two poles with a zero. The results
obtained provided an accuracy of 77.07%, 91.06%, and 91.54%, respectively. Figure 4.7b shows
the graphical results of the validation process. Therefore, it can be concluded that the model
that offers greater accuracy with a reduced order corresponds to the transfer function with two
poles (4.72). This model has a gain k = 1.094, natural frequency ωn = 3.326 [rad/s], and
dumping factor ζ = 0.734.

GCL,B,z = 12.1
s2 + 4.883s+ 11.06 (4.72)

The process is repeated for the setup with the multiranger deck. Figure 4.8a, shows the
input and output data used in the estimation process. Different transfer functions are evaluated
by cross-validation. The first option checked is the theoretical model (4.67), which provided
an accuracy of 93.25%. The reduced order models considered again are transfer functions with
one pole, two poles, and two poles with a zero. The results obtained provided an accuracy
of 83.14%, 92.71%, and 93.68%, respectively. Figure 4.8b shows the graphical results of the
validation process. Therefore, it can be concluded that the model that offers greater accuracy
with a reduced order corresponds to the transfer function with two poles (4.73). This model has
a gain k = 1.073, natural frequency ωn = 3.739 [rad/s], and dumping factor ζ = 0.6836. The
results show a better estimate, but a system with lower damping due to the greater inertia in
the robot is more significant on the Z-axis due to the effect of gravity.
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Figure 4.7. Crazyflie Z-axis model estimation. Basic setup.
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Figure 4.8. Crazyflie Z-axis model estimation. Multiranger setup.

GCL,M,y = 12.25
s2 + 4.62s+ 11.42 (4.73)

4.5 Experimental evaluation and discussion

Once the robot model has been established, its experimental validation is carried out on real
and simulated robots. To this end, a case study focused on drone altitude control is presented
next. The position and trajectory control algorithm for a Crazyflie is then designed. For this, a
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control structure of the parallel PID type is implemented according to [204]:

uk = Pk + Ik +Dk (4.74)
Pk = Kp · ek (4.75)
Ik = Ik−1 +Ki · Tk · ek−1 (4.76)

Dk = Kd

Kd +Nd · Tk ·Kd
Dk−1 + Kd ·Nd

Kd
Kp

+Nd · Tk
· (ek − ek−1) (4.77)

where Pk, Ik y Dk are the proportional, integral and derivative actions, respectively, Tk is the
time since last controller execution and Nd is the characteristic parameter of the derivative filter
whose value is 20. In this analysis, three cases were studied. The first case involved periodic
control with a period of 10 [ms]. The second case adopted an event-based controller with a
constant threshold of 1 [cm]. The third case also uses an event-based controller but with an
adaptive trigger threshold based on a minimum threshold (cio = 1 [cm]), setpoints parameter
(ai = 1.5), and noise rejection (see (1.2) for the definition of these parameters). The PID control
gains are kept the same in all three cases.

Figure 4.9 shows the path followed by the drone during the experiences. This path consists
of a trajectory along a square of 1 [m] on the XY plane. On the Z-axis, there is a 20% reduction
in the setpoint during t : 10 [s] < tk < 20 [s]. Figure 4.10a shows the behaviour of the robot on
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Figure 4.9. Trajectory followed.
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the Z-axis. Figure 4.10b shows the evolution of the control signal applied to the rotors.

(a) Z-Axis. (b) Control signal.

Figure 4.10. Graph.

After analyzing the controllers, it was found that there are no significant differences in the
time frame. Hence, the event-based proposal allows the utilization of the same controller pa-
rameters. To perform a deeper analysis of the results, IAE, ITAE, and the number of controller
executions N are evaluated. Table 4.3 shows the results obtained. In this scenario, the dif-

Index Case 1 Case 2 Case 3
N 3000 1027 207

IAE [m] 2.2568 2.6417 2.1825
ITAE [m · s] 12.485 21.224 14.989

Table 4.3. Analytical results for square trajectory.

ferences are highlighted. As expected, the use of event-based strategies results in a significant
reduction in the number of controller executions. For case 2, the reduction is 65.77%, while for
case 3, a decrease of 93.0% is achieved. In addition, this third case represents an improvement
in the IAE of 3.29%. However, the ITAE represents a worsening of 20.06% (below that achieved
in case 2). Therefore, by adopting a compromise solution, it is demonstrated that event-based
implementation with an adaptive threshold substantially improves over periodic performances.
For a deeper understanding of the event generation triggering, Figure 4.11 illustrates the per-
formance of the error over two different time periods. Upon comparing the results, it becomes
evident that the noise-related term has greater significance during the steady regime as opposed
to the transient regime.
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Figure 4.11. Events generation.

4.6 Conclusions

This chapter presents the physical modeling of quadcopters, as they are the air vehicles included
in RP. An internal representation based on state space has been used, which includes force and
momentum equations. A linear state space model is also derived, resulting in a MIMO system.
A common two-level control architecture for this type of vehicle has been presented made up of
a cascade system for each one. The upper level, which includes the altitude controller, the X-Y
controller, and the Yaw controller, is responsible for controlling the position and speed of the
robot. The other level manages the stability control, and it is defined by the attitude and rate
controllers. Several control decoupling architectures and conventional PID-based implementa-
tions are analyzed for the different controllers of the system.

Parameters identification of the theoretical model has been performed from the real Crazyflie
2.X robot experimental data. This identification has been carried out independently for each axis
to avoid coupling effects. Finally, an experimental evaluation focused on drone altitude control
has been presented. The performed experiences demonstrate the potential of event-based control
strategies to improve the efficiency of systems with computational constraints.
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Chapter 5

Formation control: Experimental
evaluation

5.1 Introduction

Among the cooperative tasks that a multi-agent system can perform, achieving a formation is
used, for instance, in sampling, monitoring, or surveillance tasks [205–207]. A formation aims
to drive multiple agents to achieve prescribed constraints on their states.

In general, the interaction between agents is modeled in terms of a graph, in such a way that
two agents are connected in the graph if they need to interact with each other to achieve the
control objective. There are different ways to characterize a formation that leads to different
formation control strategies. If we focus on this characterization in terms of the sensing capa-
bility and the topology of agents, the natural question is what variables are sensed and what
variables are controlled by the multi-agent systems to achieve the formation, and this yields the
categorization introduced in Chapter 1 for the existing control strategies [44], that is recalled
next:

• Position-based control: Agents can sense their own positions with respect to a global coordi-
nate system, and they can actively control them to achieve the desired formation so that the
agents can move without interacting with each other. Thus, this type of strategy will not be
considered in this chapter.

• Displacement-based control: Agents can sense and control relative positions to their neighbors
to achieve the desired formation. Since this is defined in terms of desired displacements with
respect to a global coordinate system, the orientation of the global coordinate systems is
required.

• Distance-based control: Agents measure the relative positions to their neighbors, but the
variables that are controlled are the inter-agent distances. Thus, the orientation of local
coordinate systems is not necessarily aligned with each other. However, the existing control
laws are non-linear so that the analysis is more challenging.
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Regarding the topology, the first classifications yield to directed or undirected formations. In the
first case, the flow of information between some pairs of agents is unidirectional. For instance,
if at least one agent moves freely and others control relative positions/distances to it, then the
graph is directed and this is usually known as a leader-follower approach, and the formation
will move according to the leader trajectory. By contrast, if the communication between agents
is bidirectional, the movement of the formation will depend on the dynamics and the initial
conditions of the agents.

Despite the directionality of the existing links between agents, these graph interconnections
can have different meanings and this generally depends on the measurement capabilities. For
instance, if the agents are equipped with instrumentation that allows the measurement of the
variables that need to be sensed, then communication might not be required [208]. However,
if these variables cannot be directly accessed by the sensors, then the agents would need to
transmit the measurements to other nodes in the network, and then the topology is interpreted
as a communication graph [209]. In this case, aspects that concern the communication such
as the protocol or the network structure can affect the control performance, and thus, this is
an issue that should handled with care. Moreover, the frequency of the communication has a
direct impact on the control performance but also on the battery life in autonomous devices.
Enlarging the intervals of communication can result in a degradation of the control. However,
the use of protocols based on events [62], which consider the state of the system to decide
when to transmit information, provides a better trade-off between performance and average
communication frequency.

Moreover, when the number of agents in the system is large, it is usually referred to as a
swarm. A major challenge in controlling multi-agent swarms is the synthesis of controllers in
a scalable manner, i.e., the control design cannot become more complex for a large number of
robots. In this regard, a decentralization of the control architecture is always preferred. In
the context of swarm robotics, decentralization usually means that the computation is executed
onboard. However, in some devices the computation capacity is limited, and sometimes, there
exist tasks that require a central unit, for example, in some indoor positioning systems. Ad-
ditionally, when the system includes some virtual agents or digital twins, then the concern is
on the computational resources that the simulation tools require. Therefore, we can assert that
scalability is sometimes not trivial, and the study of how much impact have the increase in the
number of agents over the control is an interesting aspect.

This chapter will focus on the performance evaluation of the developed experimental plat-
form, Robotic Park (RP). For that purpose, several experiences have been performed for different
setups in the context of formation control of MAS. More specifically, we study the formation
control of MARS in the 3D space but imposing geometric constraints, such as placing the for-
mation over virtual lines or surfaces. The features that have been covered in such systematic
evaluation are:
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• Scalability: The impact over the control performance and other parameters that have the
increase in the number of agents. Since the number of physical agents is limited by the
available robots and other constraints imposed, for example, by the positioning system,
we enlarge the swarm with virtual agents. Then, different aspects such as the CPU usage,
the Real-Time Factor (RTF), and the system performance have been studied.

• Control architecture: The control architecture (see Section 2.5) follows a hierarchical struc-
ture, in which some of the layers allow different implementations: centralized in a central
unit, decentralized in different ROS 2 nodes, or onboard. Therefore, the control perfor-
mance for these cases and also in connection with the previous feature will be examined.

• Communication protocol: First, the impact of the frequency of communication over the
control performance is studied in the case of periodic transmissions. After that, an event-
based protocol is implemented and the impact of the parameters of the trigger function is
covered.

The focus is put on undirected topologies and distance-based controllers, although the platform
allows the implementation of directed graphs and other control approaches (see for instance
[151]).

The rest of the chapter is organized as follows. Section 5.2 provides some background for
formation control. Then, the control law for the coordination between agents that has been
implemented is presented in Section 5.3, as well as some details about the event-based commu-
nication protocol and Mixed Reality (MR) implementation. The analysis of the performance of
the platform concerning the different features that have been covered is given in Sections 5.4
(scalability) and 5.5 (control architecture). Finally, Section 5.6 presents the conclusions of the
chapter.

5.2 Preliminaries

5.2.1 Graph theory

Consider a set N of N agents. The topology of the MAS can be modeled as a static undirected
graph G. This section reviews some facts from algebraic graph theory [210]. The graph G is
described by the set of agent-nodes V and the set of edges E .

For each agent i, Ni represents the neighborhood of i, i.e., Ni = {j ∈ V : (i, j) ∈ E}. Note
that |Ni| = deg vi, where | · | represents the cardinality of the set Ni and deg is the degree of
the vertex vi associated to the node i.

Assume that the edges have been labeled as ek and arbitrarily oriented, and its cardinality
is labeled as Ne. Then the incidence matrix H(G) = [hik] ∈ RN×Ne is defined as hik = −1
if vi is the tail of the edge ek, hik = 1 if vi is the head of ek, and hik = 0 otherwise. The
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Laplacian matrix L(G) ∈ RN×N of a network of agents is defined as L(G) = H(G)H⊤(G).
The Laplacian matrix L(G) is positive semidefinite, and if G is connected and undirected, then
0 = λ1(G) < λ2(G) ≤ · · · ≤ λN (G), where {λj(G)} are the eigenvalues of L(G). The adjacency
matrix of G is A(G) = [aij ], where aij = 1 if there is an edge between two vertices vi and vj , and
0 otherwise. Matrices H(G), L(G) and A(G) can be simply denoted by H, L and A, respectively,
when it is clear from the context.

5.2.2 Graph rigidity

A framework is a realization of a graph at given points in Euclidean space. We consider an
undirected graph G = (V, E) with N vertices embedded in Rm, with m = 2 or m = 3 by assigning
to each vertex i a location pi ∈ Rm. Define the composite vector p = (p1, ..., pn) ∈ Rmn. A
framework is a pair (G, p).

For every framework (G, p), we define the rigidity function fG(p) : R2N → RNe given by

fG(p) = (. . . , ∥zk∥2, . . . ),

where ∥zk∥2 = ∥pi − pj∥2, corresponds to the edge k in E that connects two vertices i and j.
Note that this function is not unique and depends on the ordering given to the edges.

The formal definition of rigidity and global rigidity can be found in [211]. But roughly
speaking, a framework (G, p) is rigid if it is not possible to smoothly move some vertices of the
framework without moving the rest while maintaining the edge lengths specified by fG(p).

Let us take the following approximation of fG(p):

fG(p+ δp) = fG(p) +R(p)δp+O(δp2),

where R(p) = JfG (p) denotes the Jacobian matrix of fG(p), and δp is an infinitesimal displace-
ment of p. The matrix R(p) is called the rigidity matrix of the framework (G, p). Analyzing the
properties of R(p) allows to infer further properties of the framework. Next we present some
existing results:

Definition 1. [211]. A framekwork (G, p) is infinitesimally rigid if rank(R(p)) = 2N − 3 in R2

or rank(R(p)) = 3N − 6 in R3.

Therefore, the kernel of R(p) has dimension 3 and 6 in R2 and R3, respectively, which
corresponds to the rigid body motions that make that R(p)δp = 0 with δp ̸= 0. In R2, this
corresponds to translation along x, translation along y, and the rotation about z. Similary, in
R3 the rigid body motions are translations along x, y, z and rotations about x, y, z.

Finally, the concept of minimum rigidity is introduced.

Definition 2. [212]. A graph is minimally rigid if it is rigid and the removal of a single edge
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causes it to lose rigidity. Mathematically, this condition can be checked by the number of edges
Ne, so that if Ne = 2N − 3 in R2 or Ne = 3N − 6 in R3 the graph is minimally rigid.

5.3 Formation control

The control architecture follows a hierarchical structure, where different control levels are de-
fined, as shown in Figure 5.1. The controllers defined at the bottom levels are in charge of
the positioning of the robots. These controllers have been presented in the previous chapters.
Therefore, this chapter will focus on the coordination level, and more specifically on coordination
controllers that allow the achievement of a formation.

Figure 5.1. Multi-Robot hierarchical control.

Since the stabilization controllers are designed and implemented separately, this allows us to
consider simplified models of the robots for the upper control levels. Indeed, single integrator
models will be used for the target positions.

5.3.1 Control law

In [213], a distributed control law is proposed for formation control, where the control law is
derived from a potential function based on an undirected and infinitesimally rigid graph. More
specifically, the potential function has the form

W1 = 1
4
∑

(i,j)∈E
(d2
ij − d∗

ij
2)2, (5.1)
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where dij = ∥pi − pj∥ and d∗
ij is the prescribed distance for the edge (i, j) ∈ E . The gradient

descent control law for each agent i derived from the potential function (5.1) is then

ui = −∇piW1 = −
∑
j∈Ni

(d2
ij − d∗

ij
2)(pi − pj). (5.2)

The control system ṗi = ui with ui (5.2) can be studied using the infinitesimal distance rigidity
property as follows [214]:

Theorem 1. All agents close to a target infinitesimally distance rigid formation with the con-
troller (5.2) exponentially converge to a formation consistent with desired distances.

Note that even though W1 = 0 in (5.1) only at the desired formation, i.e., when dij = d∗
ij ,

there exist other equilibria sets that correspond to ∇piW1 = 0, including collinearity (in R2)
and collinearity and coplanarity (in R3) of the agents.

5.3.2 Virtual constraints

In this thesis, we focus on the deployment of the formation restricted to subspaces, that in R3

are surfaces or lines. This provides an alternative formalism to the definition of rigid formation
in R3 that would require a number of links between agents of 3N − 6 [214].

To this end, we define an optimization problem subject to constraints and Lagrange mul-
tipliers are used. Let us define a function f that measures the distance of an agent i to the
subspace as

f (x, y, z, pi) = (x− pi,x)2 + (y − pi,y)2 + (z − pi,z)2 (5.3)

where pi = (pi,x, pi,y, pi,z)⊤ are the coordinates in R3 of the robot i.

The constraints given by the subspace are represented by a set of functions

g(x, y, z) = {gℓ(x, y, z) = 0, ℓ = 1, . . . , nc},

where the value of the number of constraints nc depends on the dimension of the subspace.
Then, the optimization problem is

min
p∈R3

f(p, pi) (5.4)

subject to gℓ(p) = 0, ℓ = 1, . . . , nc. (5.5)

Let us consider the Lagrangian for each agent i

L(p, pi, λ) = f(p, pi) +
nc∑
ℓ=1

λℓcℓ(p),
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where λℓ are the Lagrange multipliers. Then, p∗
i = (x∗

i , y
∗
i , z

∗
i )⊤ is a minimum of the optimization

problem (5.4)-(5.5) for agent i if

∇f (p∗
i , pi) + ∇g (p∗

i ) · λ = 0, (5.6)

and gℓ(p∗
i ) = 0, ∀ℓ = 1, . . . , nc. This point p∗

i represents the point of the subspace with a
minimum value of (5.3) for the agent i.

Then, we can define a potential function

W2 = 1
2

N∑
i=1

f(p∗
i , pi), (5.7)

and the control action derived from it as

ui = ∇piW2 = −(pi − p∗
i ). (5.8)

Thus, considering both the term for the formation control (5.2) and the term to of the virtual
constraints (5.8), we obtain the following control law for the coordination controller:

ui = −κ1
∑
j∈Ni

(d2
ij − d∗

ij
2)(pi − pj) − κ2(pi − p∗

i ), (5.9)

where κ1, κ2 ∈ R>0.

Note the potential function W = W1 + W2, where W1 is (5.1) and W2 is (5.7), is positive
definite and W = 0 when the system achieves the formation and satisfies the constraints of the
subspace defined by g(x, y, z) = 0. Then, the control law (5.9) allows the local satisfaction of
the control objective asymptotically. The result follows from Theorem 1.

Next, we present some examples of virtual constraints which provide an analytical expression
for p∗

i .

Lines

Let us consider the case of a straight line with parametric equations:
gx (x, y, z, γ) = x− p0,x −mxγ

gy (x, y, z, γ) = y − p0,y −myγ

gz (x, y, z, γ) = z − p0,z −mzγ

(5.10)

where p0 = (p0,x, p0,y, p0,z)⊤ is a point of the straight line and m = (mx,my,mz)⊤ represents
the direction.
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If the optimization problem (5.4)-(5.5) is solved, this provides an analytical value for p∗
i as:

p∗
i = p0 −m

(p0 − pi)⊤ ·m
∥m∥2 (5.11)

Plane

In the case of a plane, the constraint is given by a single equation

g(x, y, z) = ax+ by + cz − d.

If we denote by v = (a, b, c)⊤, which represents the normal vector to the plane, the solution of
the optimization problem (5.4)-(5.5) provides the following value for p∗

i :

p∗
i = v⊤pi − d

v⊤v
v + pi.

Sphere

A sphere is characterized by the following constraint:

g(x, y, z) = x2 + y2 + z2 −R2. (5.12)

The optimization problem in this case provides a value for p∗
i given by

p∗
i = pi

∥pi∥2 .

5.3.3 Obstacle avoidance

Another aspect that should be handled in a MAS is the collision avoidance between robots.
Although the obstacle avoidance is not a coordination control law strictly speaking, we consider
it here since it requires the measurement of relative distances between robots.

Thus, an additional control term is derived from repulsive potential fields as follows:

Uk =


1
2η( 1

dk
− 1

d0
)2 if dk ≤ d0

0 if dk > d0
(5.13)

where Uk denotes the repulsive potential of sensor k, d0 is a threshold that activates the repulsive
potential, dk is the value of the distance between the sensor and the obstacle, and η is a constant
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that characterizes the field. Then, the resulting repulsive force Fk is defined by:

Fk = −∇Uk =

 η( 1
dk

− 1
d0

) 1
d2
k

pk−po
dk

if dk ≤ d0

0 if dk > d0
(5.14)

where pk − po is the relative position between the robot and the obstacle. Hence, the sum of
all repulsive forces is F = ∑

k
Fk, which has an impact on the goal position according to the

following expression:
uoa = h · v · F

∥F∥
(5.15)

where uoa is the deviation of the goal position signal received from the coordination level, h is
the period of the controller, and v is a constant velocity.

5.3.4 Event-based sampling and control

The fundamentals of event-based control were introduced in Chapter 1. Instead of considering
the periodic sampling, the sampling instances are defined recursively as

tk+1 = inf{t : t > tk, f(e(t), x(t)) > 0} (5.16)

where f(e(t), x(t)) is the trigger function. In this case, we define the error function ei(t) =
pi(t) − p̂i(t) for each robot i, where p̂i is the last transmitted measurement. The bound for the
error is defined as constant value ci so that the robot will transmit its updated position to its
neighbors whenever

fi(ei) = ∥ei(t)∥ − c > 0. (5.17)

5.3.5 Mixed Reality and Digital Twins

The concept of MR has been handled throughout the manuscript. In the MARS experiments
that will be presented in the following section, the joint use of virtual and real agents is a
must for several reasons, including limited availability of the physical robots, constraints on the
physical space for experimentation, or limitations imposed by the positioning systems.

As explained in Chapter 2, the ROS 2 architecture does not differentiate between virtual
or real robots, and therefore, from the point of view of the controller all the positions of the
robots are treated in the same way. However, from the point of view of the computational load,
physical agents will demand more resources, since two nodes will be running in ROS 2: the DT
driver and the physical robot driver itself.
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5.4 Analysis of scalability

The main goal of this section is to explore the limit in the number of agents supported by two
of the main simulators used in the Robotic Park environment and detailed in Section 2.8. For
that purpose, we consider a formation control problem in which the complexity of the formation
basically depends on the number of agents, N . Specifically, the desired formation is defined in
such a way that the agents should be uniformly distributed over a semi-spherical virtual surface.
The ground level of the dome (z = 0) is composed of mobile robots, and the rest of the robots
are drones. The uniform distribution of points over a sphere is a classical mathematical problem
that is difficult to solve analytically, and recent approximate solutions have been proposed [215].
Then, we assume that the target distances d∗

ij are given, and that the constraints given by
the virtual surface are (5.12) but restricting z coordinate to be positive. Figure 5.2 shows an
example of the desired 3D formation and the projection over the XY plane for N = 50 and a
semi-sphere centered at (0,0,0) and a radius R = 2 m.

(a)
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Figure 5.2. Example of formation with N = 50 agents and R = 2 m. (a) Desired 3D formation.
(b) Projection over the XY plane.

5.4.1 Experiment description

The proposed experiments to study the scalability are characterized by an increasing number of
agents located along the surface of a hemisphere. A sweep is made from the simplest case with 5
agents to the limits that the simulation tools are able to support, 40 agents. In the hemisphere,
the agents are placed at different levels. The level of height z = 0 consists of the Khepera IV
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ground robots moving in the XY plane. The rest of the agents are of the Crazyflie type and can
move in three-dimensional space. Next, we briefly describe the developed experiments:

• The MARS of experiment A (see figures 5.3a and 5.3d) consists of a total of 5 agents, 4 of
which are Khepera IV and 1 Crazyflie. In this case, all the robots are real and only their
corresponding digital twins are running in the virtual environment.

• In experiment B (see figures 5.3b and 5.3e), the MRS is composed of 10 agents: 4 Crazyflies,
and 6 Khepera. In this case, 4 real Crazyflies and 4 real Kheperas are used. In the virtual
environment, 2 Kheperas run in addition to the virtual twins of the real robots.

• In experiment C (see figures 5.3c and 5.3f), the MRS is composed of 15 agents: 7 Crazyflies,
and 8 Khepera. In this case, 5 real Crazyflies and 4 real Kheperas are used. The rest of
the agents up to 15 are completely digital.

• The fourth experiment, D (see figures 5.3g and 5.3j), employs a total of 20 agents, 11 of
which are Kheperas and 9 are Crazyflies. In this experience, 6 Crazyflies and 4 Kheperas
are real. The rest of the agents up to 20 are completely digital.

• The acMARS in experiment E (see figures 5.3h and 5.3k) is composed by 30 agents. In
this case, the distribution of agents is 18 Crazyflies and 12 Khepera.

• For the last experiment, F, depicted in figures 5.3i and 5.3l, the number of robots is 40
(26 Crazyflies and 14 Khepera).

From experiences A to C the proportion of real robots is more than 50% (reached in D). From
D to F, the number of real robots is maintained at 6 Crazyflies and 4 Kheperas, increasing in
this way the proportion of digital agents in these experiences progressively. This information
is summarized in Table 5.1 and the final spatial distribution is shown in Figure 5.3. The video
showing the real and virtual environment for the experiment E is available online: https:
//youtu.be/4H3YZ-sr2mw.

Table 5.1. Number of agents for each experiment. The DTs of real robots are included in the
virtual robots column.

Real Robots Virtual Robots
Experiment Figure N Crazyflie Khepera Crazyflie Khepera

A 5.3a, 5.3d 5 1 4 1 4
B 5.3b, 5.3e 10 4 4 4 6
C 5.3c, 5.3f 15 5 4 7 8
D 5.3g, 5.3j 20 6 4 11 9
E 5.3h, 5.3k 30 6 4 18 12
F 5.3i, 5.3l 40 6 4 26 14
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Figure 5.3. MARS formation experiment representations. A: (a) 3D, (b) 2D agents distribution;
B: (c) 3D, (d) 2D agents distribution; C: (e) 3D, (f) 2D agents distribution; D: (g) 3D, (h) 2D
agents distribution; E: (i) 3D, (j) 2D agents distribution; F: (k) 3D, (l) 2D agents distribution.
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To quantitatively evaluate the experiments, several parameters have been considered. On
the one hand, we try to measure how computationally demanding are these experiments when
the number of agents increases, and on the other hand, the impact on the performance of the
system. These are the performance indices analyzed:

• Global CPU percentage. This value represents the current system-wide CPU utilization
as a percentage.

• CPU percentage. It represents the individual process CPU utilization as a percentage. It
can be > 100.0 in case of a process running multiple threads on different CPUs.

• Real-Time Factor (RTF). It shows a ratio of calculation time within a simulation (simu-
lation time) to execution time (real-time).

• Integral Absolute Error (IAE). This index weights all errors equally over time. It gives
global information about the agents.

• Integral of Time-weighted Absolute Error (ITAE). In systems that use step inputs, the
initial error is always high. Consequently, to make a fair comparison between systems,
errors maintained over time should have a greater weight than the initial errors. In this
way, ITAE emphasizes reducing the error during the initial transient response and penalizes
larger errors for longer.

5.4.2 Results

CPU usage, RTF, and formation error (IAE and ITAE) are used as criteria to compare and
assess the simulation performance of Gazebo and Webots for all experiments described in Table
5.1. In each experiment, the number of agents increases and goes from 5 (experiment A) to 40
(experiment F).

CPU consumption

Results about CPU consumption are presented in Figure 5.4. Figure 5.4a shows the global CPU
usage of the system. Note that this parameter increases with the number of robots for both
simulators. However, Gazebo CPU consumption is higher than Webots in all experiments and
reaches 100% for N = 40 (Experiment F). Indeed, for this later case, Gazebo was unable to run
correctly as the timeout of the tool is exceeded when loading the robots at the beginning of the
simulation. None of the simulators was able to carry out an experiment with 50 agents. Further-
more, from a performance perspective, a significant difference is observed between the two tools
in terms of resource consumption. Figure 5.4b shows the specific CPU usage for the processes
running in each simulation tool, since Gazebo is split into two processes: Gzclient, responsible
for running the GUI, and Gzserver, responsible for the physics engine and sensors. The results
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show that in all cases recorded, the resource consumption of Gazebo (Gzclient+Gzserver) is
more than double that of Webots. It is a clear indicator that Webots is a more efficient tool in
terms of CPU usage management. Note that for experiments C, D and E the threshold of 100%
is exceeded for Gazebo’s processes. This just indicates that these processes have more than one
thread running.
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Figure 5.4. (a) General CPU % usage. (b) Simulation tools CPU % usage.

Real-Time Factor

The Real-Time Factor (RTF) is the ratio between the real execution time and the simulation
time. This factor is easily accessible in the simulators. If it reaches the unit value, the simulation
is running in real-time, and when RTF>1 it means that the process is running at an accelerated
rate. Since we are performing experiments with real and virtual robots, even if all nodes are
running in simulated time, this index should be as close to 1 as possible.

Table 5.2 shows the RTF obtained for each experience. Results are similar for both simulators
when the number of agents is under 15. Gazebo achieves good performance in experiment C
with 15 agents but when increasing the number up to 20 the RTF drops below 0.75. In this case,
experiment D (N = 20), Webots still maintains a high performance. Experiment E increases
the number of agents up to 30, and Webots performance is slightly lower but maintains a value
above 0.8 while Gazebo falls below 0.5. Finally, in experiment F, Webots’ RTF drops to a value
of 0.56. There is a clear decrease in RTF when the number of robots increases. As Gazebo runs
in two processes when the physics simulation in the successive experiments struggles, Gazebo
decreases the RTF sooner, scaling worse than Webots to a large number of robots. Anyway,
maintaining a high RTF allows running models in real time while using hardware-in-the-loop
simulation to test controllers. In this sense, for experiences as presented in this paper, where
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batteries in real agents are a limiting factor, the highest RTF is the best. In fact, batteries for
Crazyflies can only support 3-5 min flight time so allowing RTF under 0.75 is not possible.

Table 5.2. Real-Time Factor results in Gazebo and Webots.

Experiment Size Gazebo Webots

A 5 agents 0.995 0.977
B 10 agents 0.967 0.977
C 15 agents 0.866 0.962
D 20 agents 0.716 0.941
E 30 agents 0.477 0.831
F 40 agents − 0.563

System performance

Once metrics related to simulator computational efficiency have been examined, an analysis
of convergence times to achieve the desired formation for both simulators is carried out. For
this goal, first, the time evolution of the total error weighted by the number of agents for the
different experiences is depicted in Figure 5.5. In a qualitative way, results are consistent for
both simulators as similar behaviors are found among different tests in all cases. To obtain a
quantitative analysis, we compute the IAE and ITAE weighted by the total number of agents
and the experiment duration time. The results are shown in Table 5.3.
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Figure 5.5. Instant total errors weighted by the total number of agents: (a) Gazebo. (b) Webots.

Data show that both tools scale well with the number of agents up to the limit supported by
each simulator. Indeed, most of the values in Table 5.3 are in the same range. However, many
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Table 5.3. IAE and ITAE in Gazebo and Webots experiences weighted by the total number of
agents and experiments duration time.

IAE (m/s) ITAE (m)
Experiment Gazebo Webots Gazebo Webots

A 0.4485 0.3879 6.8471 3.5558
B 0.3421 0.2481 4.2980 2.5427
C 0.4293 0.3062 5.0444 1.9985
D 0.4619 0.3182 5.0498 2.4613
E 0.5404 0.3108 5.7722 3.5415
F − 0.6511 − 8.3456

factors might influence this result such as the number of digital and real agents, the number of
connectivity links, the initial conditions, etc.

5.5 Architecture and protocol analysis

5.5.1 Experiment description

In this section, we try to determine the maximum sampling period that allows to maintain an
adequate performance in the formation control problem. Moreover, we study a comparative with
event-based sampling and we try to determine the maximum threshold of the trigger function
with an equivalent performance to the periodic sampling. Finally, the number of transmitted
messages for both cases is compared.

The MARS is composed in this case of five aerial robots (Crazyflie 2.1) and four ground
robots (Khepera IV). The graph G = (V, E) is undirected and the following set of nodes is
defined:

V = {O,KH01, . . . ,KH04, CF01, . . . , CF05}, (5.18)

where O represents the origin in R3, “KH” represents the Khepera IV robots, and “CF” repre-
sents the Crazyflie 2.1. The three-dimensional representation of a target formation is depicted
in Figure 5.6. The desired formation is defined as follows:

• The robots of the same type connected through the graph should maintain an inter-distance
d∗
ij = 0.7071 m.

• The distance between the ground and the aerial robots should be d∗
ij = 0.9468 m.

• Finally, the ground robots should maintain a distance to O of d∗
i0 = 0.5 m, the aerial

robots CF02, · · · , CF04 a distance of d∗
i0 = 1.0 m and the robot CF01 d∗

i0 = 1.36 m.
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Figure 5.6. Three-dimensional representation of the target formation.

We analyze three different communication architectures for the coordination control:

1. Centralized. In this scenario, the coordination controllers are executed in a single ROS 2
node. This node subscribes to all the positions of the robots, executes the controllers for
each one, and provides the tracking reference for the corresponding position controllers for
each robot. These target positions are published in the network as topics and are read by
each robot.

2. Distributed in ROS 2. In this case, each robot has its own coordination controller,
which is executed in a different node. In our implementation, this node is the same used
for the communication with the rest of the ROS 2 network, which results in a more efficient
implementation.

3. Distributed on board. In this latter case, the coordination controller is executed in the
micro-controller onboard each robot, and therefore ROS 2 is only used as a communication
channel between robots.

For each of these scenarios, an interval for the sampling parameters has been evaluated for the
periodic and event-based sampling. For the period sampling, the maximum frequency is 50 [Hz],
which is the limit value that the Phyton API admits for the internal positioning of the aerial
robots. The minimum frequency is 0.5 [Hz], which is the frequency at which the performance
has been observed to degrade considerably. The rest of the studied frequency values are 20 [Hz],
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10 [Hz], 5 [Hz], and 1 [Hz]. For the evaluation of the event-based protocol, the threshold values
that have been studied are 1 [cm], 2 [cm], 4 [cm], 6 [cm] and 8 [cm]. Overall, eleven protocols
have been evaluated (including both time-triggered and event-triggered). Each case has been
repeated seven times, and a statistical study has been performed for the results.

The indices used to provide a quantitative evaluation of the performance are the following:

• Settling time, ts. The time required for the formation to reach and stay within a range of
the 5% of the error for the target formation with respect to the initial conditions.

• Average sampling period, T . It represents the average time between transmitted messages
for the robots along the experiment duration.

• IAE It integrates the absolute error of the overall system over time.

• ITAE. It integrates the absolute error of the overall system multiplied by the time over
time.

• % CPU percentage, η. As in the previous section, the % of CPU (including all the kernels)
usage has been registered as well as the % usage of the kernel in which the node responsible
for the communication is executed.

5.5.2 Results

All the experiments have been performed following the same sequence of instructions, initial
positions, and duration for a fair comparison. Initially, all the aerial robots receive a take-off
order and they are commanded to the plane z = 0.7 [m]. After that, the formation control
experiment starts and the next 18 [s] are registered. Figure 5.7 shows the trajectories followed
by the system (red lines) and the final formation (black dashed lines) for one of the experiments.
Figure 5.8 shows the formation error over time for the most representative experiments. The
error in each case has been computed as an average for the seven performed experiences.

A qualitative analysis of the results shows that the system converges to the desired formation
and that the distributed onboard implementation (green line) has the fastest response. The
behavior remains similar for the different sampling conditions. For the centralized and the
distributed in ROS 2 cases, some differences can be appreciated, especially for the periodic
sampling examples.

For a sampling frequency of 50 [Hz] (see Figure 5.8a), the centralized control presents a faster
response than the distributed implementation. This difference is not appreciated at 10 [Hz],
where almost identical responses are obtained (see Figure 5.8b). When the sampling frequency
continues to decrease, the degradation of the performance is more significant in the centralized
architecture. For the event-based sampling, we observe that independently of the threshold
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Figure 5.7. Trajectories followed by the robots for the centralized architecture and 10 [Hz]
sampling frequency experiment.

value, the distributed onboard implementation gets the best performance, and the centralized
the slowest response.

If the settling time is analyzed, the average and standard deviation for the two sampling
methods are shown in Figure 5.9. In the periodic case, the system performance worsens for
sampling frequencies < 5 [Hz], and there exists a significant dispersion of the results (higher
standard deviation). For the event-based protocols, thresholds of 1 [cm] and 2 [cm] get similar
values to the periodic case with frequencies higher than 5 [Hz]. When the threshold is enlarged,
the slowing down of the response is similar in the three analyzed architectures.

To complete the quantitative analysis, Figure 5.10 shows the results for the IAE and ITAE
indices. For both parameters, similar conclusions can be inferred than for the settling time. In
general, the distributed onboard architecture offers the best behavior.

Regarding CPU usage, Figure 5.11 shows the % of usage including all the kernels in the sys-
tem. As expected, higher values for the sampling frequencies demand a more intensive use of the
CPU resources, and better results are obtained with the distributed onboard architecture. The
centralized and distributed in ROS 2 obtain a similar behavior. For the event-based sampling,
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Figure 5.8. A comparative for the time response. Blue: Centralized; Red: Distributed in ROS 2;
Green: Distributed onboard. Periodic sampling frequency: (a) 50 [Hz], (b) 10 [Hz], (c) 1 [Hz];
Event-based sampling with threshold: (d) 1 [cm], (e) 2 [cm], (f) 4 [cm]
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Figure 5.9. Settling time for the formation error. Blue: Centralized; Red: Distributed in ROS 2;
Black: Distributed onboard.

the value of the threshold does not have much impact on this index, and the obtained values
are similar to the 5 [Hz] case.
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Figure 5.10. Results for IAE and ITAE. Blue: Centralized; Red: Distributed in ROS 2; Black:
Distributed onboard.
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Figure 5.11. Percentage of used CPU.

If we analyze separately the consumed resources by the control node, in the centralized
architecture, (see Figure 5.12a), there exists a correlation between CPU consumption and the
frequency of the controller, whereas there are no big differences in the event-triggered case.

The % of CPU usage by the nodes handling the communication with the aerial robots and
the ground robots are shown in Figures 5.12b and 5.12c, respectively. In general terms, the
higher the frequency, the more intensive the use of the CPU. However, as in the previous case,
the threshold does not have much effect on this parameter. For the distributed architectures
(red and black lines), the fact that agents’ poses need to be broadcasted to the neighbors causes
a more intensive use of the communication nodes and channel.
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(a) Centralized controller.
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(b) Crazyflies 2.1.
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(c) Kheperas IV.

Figure 5.12. CPU usage percentage for the nodes in charge of the centralized controller, the
communication with the Crazyflies 2.1, and the Khepera IV. Blue: Centralized; Red: Distributed
in ROS 2; Black: Distributed onboard.

Finally, the average sampling period Ts for the different scenarios is shown in Figure 5.13.
This parameter has only relevance in the event-triggered case, but we show the results for the
periodic sampling to establish a comparison. Separate values of Ts are computed for the aerial
and the ground robots. The Crazyflies (dashed lines) obtain similar results independently of the
architecture. However, the Khepera robots (solid lines) present different behaviors, especially
for small values of the threshold. In this case, the centralized architecture offers larger average
sampling periods and small values for the standard deviation. Moreover, in all cases, the dis-
tributed onboard architecture outperforms the distributed in ROS 2 implementation. However,
the standard deviation increases considerably for thresholds over the 4 [cm].
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Figure 5.13. Average sampling period. “−”: Khepera IV; “−−”: Crazyflie 2.1; Blue: Central-
ized; Red: Distributed in ROS 2; Black: Distributed on board.
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5.6 Conclusions

In this chapter, the formation control problem has been studied, since it is one of the fundamen-
tals of cooperative tasks in MARS. First, an approach for the extension of rigid formations to
virtual spatial constraints is provided. Then, a set of experiments has been presented to evaluate
the performance of Robotic Park for MARS experiences. Aspects such as the scalability, the
control architecture, and the communication protocol have been evaluated. The results show
that the platform obtains good results up to N = 40 robots when real and virtual agents are
combined. Regarding the architecture, the distributed onboard implementation obtains the best
trade-off between system performance and resource usage, though it requires more intensive use
of communication resources than a centralized implementation. This communication load can
be alleviated by means of event-based protocols. The results show that an adequate choice of the
event threshold can provide similar performances than the periodic transmission of messages,
but reducing considerably the average sampling period.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has addressed the development from scratch of a multi-agent robotic platform,
Robotic Park. Consequently, a set of challenges intrinsic to the deployment of the physical
systems have been tackled.

Specifically, Chapter 2 focuses on implementing Robotic Park, and then all the hardware
and software components that make it up have been detailed. Based on a middleware layer
developed in ROS 2, the designed architecture allows the support of real, virtual, and hybrid
experiences, offers flexibility to define the control and communication architecture, and eases the
replacement and addition of elements without reconfiguring the rest of the system. Moreover,
other relevant strengths of the platform are the heterogeneity and interoperability of agents.

As a prerequisite to perform MARS experiences, a deep knowledge of the agents’ modeling
and control is essential. In RP, ground and aerial robots for indoor environments have been
used. All aspects regarding the modeling, and the control architecture up to the positioning
controller have been addressed in Chapters 3 and 4, respectively. Whereas the model for the
differential robots is relatively simple, the high-order model for quadcopters makes suitable a
model identification of the closed-loop system. This task was accomplished and resulted in
a second-order model with no zeros in the system. Additionally, the study of these robots
concluded by implementing event-based control techniques in their position control. Results
have demonstrated a 50% reduction of the transmissions in velocity control and a 90% reduction
in position control. This represents a key factor in freeing up communication and computational
resources, which also increases the battery life of the devices.

Once the individual control of the agents was completed and the experimental platform was
operational (both physically and virtually), MARS experiences were developed from different
approaches in Chapter 5. Regarding the control architecture, this represents an upper-level
respect to the positioning controller, and then, cooperative strategies can be designed with-
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out interfering with the other control layers. In this sense, three main contributions of this
dissertation regarding MARS control can be highlighted.

Firstly, the Robotic Park architecture allows different levels of controller decentralization,
and hence, three different configurations have been evaluated. The results show that, in gen-
eral, the implementation of distributed controllers onboard robots is preferred. Secondly, it has
been shown that a proper tuning of event-triggering rules applied to inter-agent communica-
tions improves transmission efficiency and computational resource consumption. This not only
enhances the individual performance of each agent but also allows scaling of the system size.
Formation control experiments have been carried out with up to 30 agents without performance
degradation.

And finally, a line of great interest in current research, present throughout the development
of this thesis, is the work combining virtual and physical agents. This is known as Mixed
Reality experiences and enables experiments that cannot be performed exclusively in the physical
environment. Examples include equipping simple robots with complex sensors such as lidars
without additional weight or energy consumption but at the expense of highly accurate virtual
environments. If the virtual element represents an active physical agent and there is bidirectional
communication in real-time, the virtual element becomes a Digital Twin (DT). This thesis has
developed drivers that enable communication between DT of RP agents. These twins have been
used to increase the sensing capabilities of real robots and as a safety backup in case of critical
failures of real robots.

6.2 Future works

This work can be extended in several directions. Some suggestions are listed below.

• In the Robotic Park hardware layer, the incorporation of new robots with different locomotion
systems (such as omnidirectional, Ackermann, with legs, or spherical) would increase the
range of experiences that could be carried out on the platform. These new additions imply
new challenges in the designs of the control layer.

• The low-cost vision-based positioning system that is already operational has the potential
to detect and track objects within the platform environment. However, the first experiences
show that the error obtained is not negligible if it is used as the only positioning system.
In this way, some improvements are necessary in the resolution of the optical sensors, the
optimization of the field of view, and the fine-tuning of the algorithm for pairing detections
between cameras.

• At Robotic Park software level, it is important to provide more autonomous navigation to the
robots by making use of SLAM techniques under limited computation capabilities. Addition-
ally, studying some security aspects such as confidentiality and integrity of the experimental
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infrastructure when, for instance, the platform is operated remotely, will be considered.

• The upper levels of the control architecture in Robotic Park have not been explored in the
experiences. Then, more complex tasks that include perception, planning, localization, and
much more will be accomplished. In this sense, it is interesting to address dynamic task
planning. To this end, the modularity of the platform allows easy incorporation of new
software tools such as Nav2 [216] or Mobile Robot Programming Toolkit (MRPT) [217].

• An interesting line of research is the application of intelligent control techniques, such as fuzzy
logic, machine learning, and deep learning. In the formation control of heterogeneous multi-
robot systems, these techniques are appropriated for intelligent coordination and adaptation
to dynamic and changing environments.
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Appendix A

Experimetal Platforms overview

This appendix compiles in two tables the most relevant information about the experimental
platforms studied in section 2.1. Table A.1 shows administrative information, such as reference
publications, developers, publications where it is used, and website if available. Table A.2 details
technical information, such as the type of robots, positioning system, or use of ROS/ROS 2.

Platform Reference Developer Uses Web
Robotic Park [94] UNED - Yes1

Robotarium [104–106,137] Georgia Institute of Technology [218,219] Yes2

Duckietown [108,109] MIT [220–222] Yes3

SPHERES [110] MIT [223,224] Yes4

SMARTmBOT [111] SMART Lab, Purdue University - Yes5

FMA [112] ETH Zürich [113,225,226] Yes6

STAr [114] Chinese University of Hong Kong [115,227,228] No
MRComm [116] King’s College London, UK - No
LOGISWARM [117] SRMIST, Kattankulathur, India - No
M-sMR [58] Escuela Politécnica Nacional, Quito - No
UMBRELLA [118] Bristol Research and Innovation lab. [119] Yes7

CrazyChoir [123] OPT4SMART Project - Yes8

SCRIMMAGE [120] Georgia Tech Research Institute - Yes9

Table A.1. Experimentals Platforms Avaible (I)

1Robotic Park: https://blogs.uned.es/roboticpark/
2Robotarium: https://www.robotarium.gatech.edu/
3Duckietown: https://www.duckietown.org/
4SPHERES: https://www.nasa.gov/spheres/home
5SMARTmBOT: https://github.com/SMARTlab-Purdue/SMARTmBOT
6FMA: https://www.flyingmachinearena.ethz.ch/
7UMBRELLA: https://www.umbrellaiot.com/about/umbrella-testbed/
8CrazyChoir: https://opt4smart.github.io/crazychoir/
9SCRIMMAGE: http://www.scrimmagesim.org/
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Appendix B

Performance Index

B.1 Temporal criteria

• Integral Square Error (ISE). This index reflects the square of the overall system error over
time. In this index, the error is treated non-linearly and weights all errors equally over time.

ISE =
∫ T

0
e2(t)dt (B.1)

• Integral Absolute Error (IAE). This index represents the overall absolute error by weighting
all errors equivalently over time. In this index, errors are treated linearly.

IAE =
∫ T

0
∥e(t)∥dt (B.2)

• Integral of Time-weighted Square Error (ITSE). This index is a modification of the ISE in
such a way that the quadratic errors are weighted by the time elapsed since the beginning of
the experience. This index assigns more weight to errors that persist over time.

ITSE =
∫ T

0
t · e2(t)dt (B.3)

• Integral of Time-weighted Absolute Error (ITAE). This index weights the overall absolute
error by the time elapsed since the start of the experience. In systems that use step inputs, as
in the case of MRSs at the start of formation, the initial error is always high. For comparisons,
it is more relevant that the errors that are maintained over time have a greater weight than
the initial errors.

ITAE =
∫ T

0
t · ∥e(t)∥dt (B.4)

• Root Mean Square Error (RMSE). It summarizes the error over time.
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• Overshoot (OS (%)). It represents the system over-peak or over-elongation in %, which is
the difference between the maximum peak value of the response and the steady-state value,
relative to the steady-state value.

• Rise time (tr). In the underdamped case, it is the time from when the output starts to evolve
until it first reaches its steady state value.

• Peak time (tp). The time taken for the system response to reach its peak value is measured
from the instant the step is introduced.

• Settling time (ts). In formation movement of MARS, time neccesary for formation to remain
within a 5% error limit on the desired formation relative to the initial error.

B.2 Computational criteria

• Average frequency (f (samples/s)). With this parameter we analyze the number of trans-
missions carried out by the MARS’ agents over the time of the experiment. This index shows
the flow of information through the communication channel.

• CPU percentaje (CPUnode (%)). This represents the individual process CPU utilization as a
percentage. It can be >100.0 in case of a process running multiple threads on different CPUs.

• Global CPU percentage (CPUg (%)). This value represents the current system-wide CPU
utilization as a percentage.

• Real-Time Factor (RTF). This shows a ratio of calculation time within a simulation (simu-
lation time) to execution time (real time).
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Appendix C

Camera Calibration

C.1 Introduction

For the use of images in real environment applications it is essential to know the characteristic
parameters of the sensors used, in this case, the cameras and their lenses. In digital cameras
or Charge-Coupled Device (CCD), the intrinsic parameters define the relationship between the
measurements in the reference system of the real environment with the position of the pixels in
the image (focal length f , field of view, aperture, scale factor, etc.). The extrinsic parameters
define the position and orientation of the camera concerning the real environment using the
Camera Extrinsic Matrix as follows

pc,x

pc,y

pc,z

1

 =
(
R3×3 t3×1

01×3 11×1

)
pw (C.1)

where pc represents the coordinates in the camera system, pw are the coordinates in the global
reference frame, R is the transformation matrix related to the orientation and t is the transla-
tion vector. In positioning system applications, it is important to define this parameter with
the camera fixed to be able to estimate the real position of the objects to be detected. In
Visual Simultaneous Localization And Mapping (VSLAM) applications, this estimation allows
the reconstruction of the trajectory performed by the sensor.

However, the information in an image is 2D, so the camera model must include the trans-
formation from the 3D environment to the image plane. In this case, we work with the pinhole
model, which considers that the rays from one point in space pass through the center of the cam-
era aperture and are projected onto the 2D (image) plane at the other end of the camera. This
transformation is with loss as it cannot be undone (depth information is lost). The projection

Development, control and evaluation of a heterogeneous multi-agent robotic platform 165



Appendix C. Camera calibration

of the new point pi can be determined by triangle similarity as

pi = f
pc
pc,z

(C.2)

Therefore, in matrix form, we have the following transformation matrix from the camera
coordinate system to the image coordinate system.


pi,x

pi,y

pc,z

 =


f 0 0 0
0 f 0 0
0 0 1 0



pc,x

pc,y

pc,z

1

 (C.3)

The next step to obtain the final pixel representation requires discretizing the previously
obtained points. A parameter specific to cameras is the dimension of each pixel (ρu × ρv).
Therefore, the coordinates in pixels are expressed as

(xi, yi) =
(
f
pc,x
ρupc,z

, f
pc,y
ρvpc,z

)
(C.4)

Additionally, the standard sets the origin of the image coordinates in the upper left corner
so that a translational movement in the pixels (cx, cy) is required. So, the final coordinates can
be expressed as

(u, v) =
(
f
pc,x
ρupc,z

+ cy, f
pc,y
ρvpc,z

+ cx

)
(C.5)

Therefore, the complete conversion from image to pixel coordinates can be expressed in
matrix form as (C.6) and is known as the Camera Intrinsic Matrix.


u

v

w

 =


f
ρu

0 cx 0
0 f

ρv
cy 0

0 0 1 0



pc,x

pc,y

pc,z

1

 (C.6)

It is also important to determine the image distortion parameters produced by the lens.
For correct processing of the coordinates of the image points, the images have to be subjected
to a correction process beforehand. There are two types of distortion: radial and tangential.
Radial distortions are deformations produced by the lens geometry in the image captured on
the sensor. This can be seen in the fact that straight lines degenerate into more pronounced
curves as they move away from the center of the image. Mathematically it is expressed by the
parameters k1,2,3 and can be represented as
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xdistorted = x
(
1 + k1r

2 + k2r
4 + k3r

6
)

ydistorted = y
(
1 + k1r

2 + k2r
4 + k3r

6
) (C.7)

Tangential distortion occurs when the lens is not perfectly aligned with the plane of the
sensor. This causes areas of the image to appear closer than expected. Mathematically it is
expressed by the parameters p1,2 and can be represented as

xdistorted = x+
(
2p1xy + p2

(
r2 + 2x2

))
ydistorted = y +

(
p1
(
r2 + 2y2

)
+ 2p2xy

) (C.8)

In-depth coverage of the characteristics of the different camera models and their calibration
can be found in [229–231]

C.2 Calibration

The calibration process of the cameras used in Robotic Park has been carried out using the
OpenCV library, the library par excellence in artificial vision works. A calibration pattern of
the type 11x8 A0 Checkerboards 90mm squares - 10x7 vertices, 11x8 squares has been used. The
code used is shown in Code C.1, where the variable “mtx” is the Camera Intrinsic Matrix, “dist”
is the vector containing the distortion parameters in the order (k1, k2, p1, p2, k3) and the extrinsic
parameters are defined by the rotation matrix “rvecs” and the translation vector “tvecs”.

1 import numpy as np
2 import cv2 as cv
3 import glob
4 # termination criteria
5 criteria = (cv. TERM_CRITERIA_EPS + cv. TERM_CRITERIA_MAX_ITER , 90, 0.001)
6 # prepare object points , like (0 ,0 ,0) , (1 ,0 ,0) , (2 ,0 ,0) .... ,
7 objp = np.zeros ((7*10 ,3) , np. float32 )
8 objp [: ,:2] = np.mgrid [0:7 ,0:10]. T. reshape (-1,2)
9 # Arrays to store object points and image points from all the images .

10 objpoints = [] # 3d point in real world space
11 imgpoints = [] # 2d points in image plane.
12 images = glob.glob(’*. png ’)
13 for fname in images :
14 img = cv. imread (fname)
15 gray = cv. cvtColor (img , cv. COLOR_BGR2GRAY )
16 # Find the chess board corners
17 ret , corners = cv. findChessboardCorners (gray , (7 ,10) , None)
18 # If found , add object points , image points (after refining them)
19 if ret == True:
20 objpoints . append (objp)
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21 corners2 = cv. cornerSubPix (gray ,corners , (90 ,90) , (-1,-1), criteria )
22 imgpoints . append ( corners )
23 # Draw and display the corners
24 cv. drawChessboardCorners (img , (7 ,10) , corners2 , ret)
25 cv. imshow (’img ’, img)
26 # cv. imwrite (" calib.jpg", img)
27 cv. waitKey (500)
28 ret , mtx , dist , rvecs , tvecs = cv. calibrateCamera (objpoints , imgpoints , gray.

shape [:: -1] , None , None)
29 print("M:",mtx)
30 print("D:",dist)
31 print("R:",rvecs)
32 print("T:",tvecs)
33 cv. destroyAllWindows ()

Code C.1. Camera calibration code.

C.3 Results

The execution of Code C.1 has been performed on 20 images capturing the pattern used from
different angles and positions, the last one being the final position occupied by the cameras in
Robotic Park. Figure C.1 shows the results obtained on the iPhone XR camera, where Figure
C.1a shows the original image and Figure C.1b the distortion-corrected image. The results
obtained for the intrinsic parameters are shown in (C.9), the extrinsic parameters in (C.10), and
the distortion parameters in (C.11).

(a) Original frame. (b) Distortion-corrected frame.

Figure C.1. iPhone XR calibration.

MiPhone =


1649.69 0.00 960.36 0.00

0.00 1654.98 542.08 0.00
0.00 0.00 1.00 0.00

 (C.9)

168 Development, control and evaluation of a heterogeneous multi-agent robotic platform



Appendix C. Camera calibration

RiPhone =


−0.0438 −0.5909 0.8056 −4.2080
−0.9975 0.0699 −0.0030 −0.4917
−0.0546 −0.8037 −0.5925 2.8478
0.0000 0.0000 0.0000 1.0000

 (C.10)

DiPhone =
(
0.2098 −0.6622 0.0000 0.0000 0.0000

)
(C.11)

Figure C.2 shows the results obtained on the GoPro HERO 9 Black camera, where Figure
C.2a shows the original image and Figure C.2b the distortion-corrected image. The results
obtained for the intrinsic parameters are shown in (C.12), the extrinsic parameters in (C.13),
and the distortion parameters in (C.14).

MgoPro =


882.09 0.00 964.22 0.00
0.00 881.21 532.84 0.00
0.00 0.00 1.00 0.00

 (C.12)

RgoPro =


0.9776 −0.0465 0.2051 −0.9831

−0.1847 −0.6560 0.7318 −2.7041
0.1005 −0.7533 −0.6500 2.3478
0.0000 0.0000 0.0000 1.0000

 (C.13)

DgoPro =
(
−0.2803 0.1403 0.0000 0.0000 −0.0475

)
(C.14)

(a) Original frame. (b) Distortion-corrected frame.

Figure C.2. GoPro HERO 9 Black calibration.
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