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“The key message is that EVT cannot do magic but it can do a whole lot better than 

empirical curve-fitting and guesswork. My answer to the skeptics is that if people 

aren’t given well-founded methods like EVT, they’ll just use dubious ones instead”  

Jonathan Tawn.Prof. of Statistics.  Lancaster University. 

 

 

“There is always going to be an element of doubt, as one is extrapolating into areas 

one doesn’t know about. But what EVT is doing is making the best use of whatever 

data you have about extreme phenomena” 

Richard Smiths, Prof. of Biostatistics.  Gillings School of Global Public Health.  
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Chapter I. Introduction. 

1. Summary and objectives. 

This Thesis presents an empirical analysis that employs the Extreme Value Theory 

(EVT) to examine different aspects related to quantifying market risk for an asset 

portfolio. We aim to explore the applicability of EVT in financial risk management and 

evaluate its effectiveness in measuring market risk through different approaches. 

Although the theoretical framework as well as the specific objectives and results 

of each Chapter that make up this Thesis will be expanded upon later in this introduction, 

the fundamental objectives of this research can be summarised in the following points:  

(i) Assessing to what extent the performance of the volatility model 

estimation under fat-tailed and skewed distributions let to improve market 

risk estimation in the framework of the Conditional Extreme Value Theory 

(Chapter II).  

(ii) Examining how the choice of threshold affects the Generalize Pareto 

Distribution (GPD) quantiles and market risk measures (such as Value at 

Risk and Expected Shortfall) using the Peaks over Threshold approach 

(Chapter III) 

(iii) Analyzing the sensitivity of Generalized Extreme Value Distribution 

(GEVD) parameters and market risk quantification to the choice of 

different block sizes with the Block Maxima approach (Chapter IV). 

Thus, this research seeks to contribute to the existing literature on market risk by 

providing new insights and empirical evidence through the application of the Extreme 

Value Theory (EVT). Specifically, we focus on the methodology proposed by McNeil 

and Frey (2000) for estimating the market risk that combines the unconditional Extreme 

Value Theory with models of volatility, i.e, the Conditional Extreme Value Theory. 

First, it is necessary to provide an overview of what Extreme Value Theory entails. 

This Theory is considered one of the most important statistical disciplines for estimating 

the likelihood of uncommon events based on observed outliers.
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More formally, EVT focuses on the limiting distribution of the extreme values 

observed over a long period, which is independent of the distribution of the values 

themselves. In other words, EVT relates to the asymptotic behavior of extreme 

observations of a random variable. 

 Although EVT is well-established in many sciences such as engineering, 

insurance, and meteorology among others (see e.g., Embrechts et al., 1999; Reiss and 

Thomas, 2007), its application in the financial sector has gained more relevance in recent 

years. It has demonstrated its effectiveness in a variety of fields, ranging from the analysis 

of material strength to the estimation of the likelihood of natural disasters such as 

earthquakes and floods.  

Specifically, regarding risk management, extreme value modeling has emerged 

recently as an important tool to quantify large financial losses from different sources of 

risk (see Cruz, 2002; Moscadelli, 2004; Fontnouvelle et al., 2007; Ergün and Jun, 2010; 

Žiković and Aktan, 2009; and Abad and Benito, 2013).  

In order to contextualize our research, it is important to understand that risk is a 

key concept in financial decision-making that relates to the uncertainty surrounding future 

investment outcomes. Financial risk is the risk associated with financial transactions and 

investments. It encompasses a wide range of risks such as market, credit, liquidity, 

operational, and legal risks. Particularly, market risk is the risk of loss due to changes in 

the value of financial assets and is of particular concern to investors and financial 

institutions. This kind of risk is an inherent characteristic of investments due to the 

unpredictable nature of market fluctuations. By accurately assessing the nature and 

magnitude of financial risk, investors can make informed decisions to optimize their 

portfolios. 

Thus, measuring financial risk is an essential component of effective risk 

management. Various measures of risk are used to quantify the potential loss of an 

investment, including Value at Risk (VaR) and Expected Shortfall (ES). These measures 

provide information on the potential size of losses that an investment could incur, 

allowing investors to assess the level of risk associated with different investment 

strategies.  
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Jorion (2001) defines the VaR measure as the maximum expected loss over a 

specified time horizon, under normal market conditions, at a given confidence level. The 

ES is defined as the average of all losses that are greater than or equal to VaR, i.e., the 

average loss in the worst 𝛼 % cases. In contrast to the VaR measure, ES is a coherent risk 

measure, and it does not present tail risk1. 

Although to date, the VaR measure has been the most used for quantifying market 

risk, ES is gaining ground in part due to the change in the regulation set by the Basel 

Committee on Banking Supervision (BCBS). Under the new regulation, financial 

institutions must calculate the market risk capital requirements’ risk based on the ES 

measure, replacing the VaR measure (BCBS, 2012, 2013, 2017). 

To estimate the VaR, various methodologies have been developed. One of the 

most commonly used approaches by financial institutions due to its simplicity is the 

parametric method. This method assumes that financial returns are characterized by a 

known distribution. Thus, the VaR of a portfolio at the  1 − 𝛼  confidence level is 

calculated by multiplying the conditional standard deviation of the portfolio returns by 

the 𝛼 quantile of the distribution. Typically, the normal distribution is assumed for this 

purpose by financial institutions, being this assumption the major limitation of the 

method. 

Empirical studies have demonstrated that financial returns do not adhere to a 

normal distribution. Most of the time, the skewness coefficient is negative and statistically 

significant, which indicates that the financial return distribution is skewed toward the left. 

Moreover, the empirical distribution of financial returns has been found to exhibit a 

considerable amount of excess kurtosis (fat tails and peakedness), as reported by 

Bollerslev (1987). Consequently, the actual losses tend to be much larger than what would 

be predicted by a normal distribution. 

Among the semi-parametric methods to estimate VaR, the EVT has been proven 

to be one of the most successful in VaR estimation (see Abad et al., 2014). This method, 

well-established in many sciences such as engineering, insurance, meteorology and 

recently in the financial field, focuses on limiting the distribution of extreme returns 

 
1 VaR is not a coherent market risk measure as it violates the subadditivity condition, which may discourage 

diversification (see Artzner et al., 1999). 
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observed over a long period, which is independent of the distribution of the returns 

themselves. 

Thus, the first goal of this Thesis (Chapter II) is to analyze if in the framework of 

the method based on the Conditional Extreme Value Theory, the estimation of the 

volatility model under a fat tail and skewness distribution contributes to improving the 

results in VaR estimation.  

For this purpose, two models to estimate volatility are used. The one proposed by 

Creal et al. (2008, 2011) and Harvey and Chakravarty (2008), called Beta-t-EGARCH, 

integrates three characteristics of financial returns as are volatility clustering, leverage 

effect and long memory. And the model proposed by Harvey and Sucarrat (2013) called 

Beta-skewness-t-EGARCH, which extends the Beta-t-EGARCH model, and also allows 

us to capture features such as skewness and fat-tailed distributions inherent in financial 

returns. We compared the VaR estimates obtained with both models, calculated one day 

ahead at a 1% probability. 

The study has been done for six assets bellowing to the telecommunication sector: 

ADP, Amazon, Cerner, Apple, Microsoft and Telefónica. The analysis period runs from 

January 1st, 2008 to the end of December 2013. 

The results obtained seem to indicate that the heavy tail and skewed distribution 

outperform the symmetric distribution both in terms of accuracy VaR estimations and in 

terms of the firm’s loss function but also regarding requirement capital.  

Continuing with Extreme Value Theory, the first step is to identify which 

observations are considered outliers. Two approaches are available for this purpose. The 

first approach involves dividing the sample of observations into blocks of equal size and 

selecting the maximum observation in each block (known as the Block Maxima Method). 

The other alternative is to set a threshold and select all observations above this threshold 

(Peaks over Threshold).  

Within the Peaks over Threshold (POT) approach, the extreme values above a 

high threshold are modeled using a generalized Pareto distribution (GPD). The main 

difficulty of this approach lies in the selection of the threshold, as different thresholds 

may provide different results. In the context of risk management, it is interesting to know 

to what extent the selection of the threshold impacts risk estimation. 
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From a theoretical point of view, threshold selection is a critical issue in the 

framework of the POT approach. This method establishes that excess returns over the 

threshold follow a GPD when the number of observations n tends to infinity The choice 

of threshold must be a balance between bias and variation. A threshold being too low is 

likely to violate the asymptotic basis of the model which leads to bias. However, a 

threshold being too high will generate few excesses leading to an increase in the variance 

of the estimators (Davison and Smith, 1990; Coles, 2001; MacDonald et al.,2011; 

Papalexiou et al.,2013; Wyncoll and Gouldby, 2013). 

That is why, within the framework of the POT method, different techniques have 

been developed recently for the selection of a suitable threshold, although none of them 

have been proven to provide better results than others. In Chapter III we review the State 

of the Art of methodologies used for this purpose. 

Our study is in accordance with Langousis et al. (2016) who remarked that “the 

variety of existing methods for the threshold chosen, the fundamental differences in their 

theoretical underpinnings, and their relative performance when dealing with different 

types of data, make threshold detection an open question that can be addressed solely on 

the basis of a specific application”.  With this in mind, the second purpose of the Thesis 

(Chapter III) has been to address whether there is an optimal threshold or, on the contrary, 

there is a range of thresholds that may be suitable for quantifying market risk. Iriondo 

(2017) offers preliminary evidence in favor of this last hypothesis. Following this author, 

we will analyze the impact of the threshold choice on the two risk measures: VaR and 

ES.  

As far as our knowledge goes, there have been no studies conducted on this 

particular subject in the financial field. To cover this gap, we perform an empirical 

analysis with a double aim. First, to examine the sensitivity of the GPD quantiles to the 

threshold choice and second, to study the sensitivity of the market risk measures to this 

choice. 

We analyze in detail the case of the S&P500 daily return from January 3rd, 2000, 

through December 30th, 2021, and later the study has been extended to a set of 14 assets 

from alternative markets: 7 stock indexes (CAC40, DAX30, FTSE100, HangSeng, 

IBEX35, Merval and Nikkei), four commodities (Copper, Gold, Crude Oil Brent and 

Silver) and three rates exchange (₤ /€, $/€ and ¥/€). To apply the POT method, different 
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thresholds have been considered from 80th to 99th. The daily forecasting is obtained one 

day ahead at the 95% and 99% confidence levels according to the Basel Committee on 

Banking Supervision’s standards. The accuracy of the risk estimates has been evaluated 

through backtesting. 

In our analysis, we first observe that the parameter estimations are highly sensitive 

to the selected threshold for estimating GPD, consistent with previous literature. 

However, we find that the quantiles of the GPD remain stable despite changes in the 

threshold, especially for high quantiles (95th, 96th, 97th, 98th and 99th), which are relevant 

for risk estimation. Secondly, for a large set of thresholds (from the 80th percentile to the 

96th percentile), the VaR and ES estimates are practically equivalent. Finally, we use the 

ES (99%) estimations to calculate the market risk capital requirements, and our results 

reveal that there is a range of thresholds that produce the same outcome, with some 

differences observed at the higher percentiles. 

Hence, the results suggest that when estimating market risk, researchers and 

practitioners should not place excessive emphasis on selecting a specific threshold, as a 

broad range of choices results in similar risk estimates. While the quantification of risk is 

not primarily dependent on threshold selection, minor differences are noticeable for 

certain thresholds. This may be of interest to financial institutions that may choose the 

threshold that minimizes the market risk capital requirement. 

In contrast with the POT method, the Block Maxima Method (BMM) is based on 

the idea of dividing the dataset into m blocks of size n and then fitting the Generalized 

Extreme Value (GEV) distribution to the maximum m-block data series. Selecting the 

block size may be not trivial. The fit of the GEV distribution will be inaccurate if the 

block size is too small, leading to biased estimates, while a block size too large will lead 

to a smaller number of extreme observations and consequently a higher variance (Coles 

et al., 2001).  

Thus, the aim of Chapter IV is two-fold. Firstly, it focuses on exploring the 

sensitivity of the parameters of the GEV distribution for different block sizes. We 

particularly examine the changes in the shape parameter, which determines the weight of 

the tail in the distribution. Additionally, we aim to investigate the impact of block size 

selection on the quantification of market risk. To achieve this goal, we assess the 
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sensitivity of risk measures such as VaR and ES to changes in block sizes. The objective 

is to identify if there exists an optimal block size that leads to precise risk estimates.  

Our analysis is performed for daily data on the S&P500 stock index from January 

3rd, 2000 to December 31st, 2019, and the results are later extended to a broad set of assets 

to verify the findings (the same used in Chapter III). For calculating risk, two confidence 

levels have been used: 97.5% and 99%. To apply BMM, nine different block sizes have 

been considered: 5, 10, 21, 31, 42, 63, 126, 189 and 252 observations. 

Our research indicates that the accuracy of the risk estimates through the risk 

measures mentioned above depends clearly on the block length chosen. Therefore, the 

block size may be a critical aspect that should not be chosen ad hoc. This leads us to think 

that, in line with the literature reviewed, BMM may not be the most reliable method for 

estimating market risk if the block size is selected arbitrarily. The use of this method 

could require further research on optimal block size selection techniques. 

Lastly, we conduct a comparison of VaR estimations between the POT and BM 

methods. The results of this comparison indicate, as expected, that the POT method is 

consistent across different threshold choices, while the BM method is highly dependent 

on the selected block size to achieve a level of exceptions close to the theoretical one.  

Finally, the Thesis ends with some concluding remarks shown in the Conclusions 

Section. 
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2. Methodology. 

The analysis has been performed using software tools such as R and Matlab 

mostly for the calculation of volatility models, market risk and backtesting. The most 

relevant R packages for the development of the study are referenced in the bibliography 

Section.  For the graphics, plots and tables mainly spreadsheet tools such as Excel have 

been used. The descriptive statistics have been calculated through SPSS. To optimize data 

processing when it required analyzing a large amount of data in R, it has been used 

Amazon Elastic Compute Cloud (EC2). 

The formulation and algorithms for the calculation of VaR and ES risk measures 

for POT and BMM approaches are detailed in the Appendix at the end of this Thesis. 

The databases consulted to obtain the data series used in this Thesis were mainly 

Thomson Reuters-Eikon and Yahoo Finance. 
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Chapter II* 

Analyzing the role of the skewed distributions in the 

framework of conditional extreme value theory 

 

 

 

 

Abstract 

In this paper, we analyze the role of the heavy tail and skewed distribution in market risk 

estimation (Value at Risk (VaR)). In particular, we are interested in knowing if, in the 

framework of the conditional Extreme Value Theory, the estimation of the volatility 

model below the heavy tail and skewed distribution contributes to improving the VaR 

estimation with respect to those obtained from a symmetric distribution. The study has 

been done for six individual assets bellowing to the telecommunication sector: ADP, 

Amazon, Cerner, Apple, Microsoft and Telefonica. The analysis period runs from January 

1st, 2008 to the end of December 2013. Although the evidence found is a little bit weak 

the results obtained seem to indicate that the heavy tail and skewed distribution 

outperform the symmetric distribution both in terms of accuracy VaR estimations and in 

terms of the firm’s loss function. Furthermore, the market risk capital requirement fixed 

on the base of the VaR estimations is also lowest under a skewed distribution.  
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1. Introduction 

A context of risk is one in which we do not know with certainty the consequences 

associated with a decision. The only thing that we know is the possible outcomes 

associated with it and the likelihood of achieving such results. In the financial field, the 

notion of risk implies that we know the various yields can potentially get to invest and 

also know the probability of achieving such results. This allows us to estimate the average 

expected yield and the possible diversion ‘above’ or ‘below’ the average value, that is, 

the risk. The most popular and traditional risk measure is volatility (variance). The 

traditional financial theory defines risk as the dispersion of returns due to movements in 

financial variables. 

Another way of measuring risk, which is the most commonly used at present, is 

to evaluate the losses that may occur when the price of the asset that makes up the 

portfolio goes down. This is what Value at Risk (VaR) does. The Value at Risk of a 

portfolio indicates the maximum amount that an investor may lose over a given time 

horizon and with a given probability. In this case, the concept of risk is associated with 

the danger of losses. 

According to Jorion (2001), “VaR measure is defined as the worst expected loss 

over a given horizon under normal market conditions at a given level of confidence”. For 

the estimation of the VaR measure, different methodologies have been developed which 

can be grouped into three groups: (i) parametric methods (as Riskmetrics); (ii) non-

parametric methods (as historical simulation) and (iii) semiparametric method (as 

Extreme Value Theory, filter historical simulation and CaViar Method)1.  

Among all of them, one of the most used by the financial institution is the 

parametric method. This method assumes that financial returns follow a known 

distribution. Thus, below this method, the VaR of a portfolio at 1 − 𝛼  confidence level 

is calculated as the product of the conditional standard deviation of the return portfolio 

by the 𝛼 (𝑘𝛼) quantile of the assumed distribution2. Mostly the assumed distribution is 

the normal one. Below this assumption 𝑘𝛼 is the 𝛼 quantile of the standard normal. 

 
1 See Abad et al. (2014) for a review of those methodologies.  
2 This is true when we assume that the portfolio return mean is zero.  
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The major drawbacks of this method are related to the normal distribution 

assumption for financial returns. Empirical evidence shows that financial returns do not 

follow a normal distribution. The skewness coefficient is in most cases negative and 

statistically significant, implying that the financial return distribution is skewed to the 

left. This result is not in accord with the properties of a normal distribution, which is 

symmetric. Also, the empirical distribution of financial return has been documented to 

exhibit significantly excessive kurtosis (fat tails and peakedness) (see Bollerslev, 1987). 

Consequently, the size of the actual losses is much higher than that predicted by a normal 

distribution. 

Taking this into account, the research in the framework of the parametric method 

has focused on investigating other density functions that capture the skew and kurtosis of 

financial returns. In this line, Abad et al (2016), Chen et al (2012), Polansky and Stoja 

(2010), Bali and Theodossiou (2008), Zhang and Cheng (2005), Ausin and Galeano 

(2007), etc., show that in the context of parametric method assuming fat tail and skewness 

distributions improve the performance of this model in VaR estimation. 

As we will see later, below the Conditional Extreme Value Theory (which is one 

of the most successful methods in estimating VaR) the VaR of a portfolio at (1 − 𝛼)%  

confidence level is calculated as the product of the conditional standard deviation of the 

return portfolio by the 𝛼 (𝑘𝛼) quantile of Generalized Pareto distribution. Traditionally, 

the conditional standard deviation of the return portfolio is estimated by assuming a 

symmetric distribution for the financial return. So, in the same line that the 

aforementioned paragraphs in this paper we analyze if in the framework of the method 

based on the Conditional Extreme Value Theory, the estimation of the volatility model 

below a fat tail and skewness distribution contributes to improving the results in VaR 

estimation.  

The rest of the paper is as follows. In Section 2 we present the volatility models 

used in the empirical application. In Section 3 we describe the Value at Risk measure and 

the methodology used in this paper to calculate this measure and the backtesting 

techniques. The results of the empirical application are presented in Section 4. Section 5 

includes the main conclusions.  
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2. Volatility models 

According to Bollerslev, Engle and Nelson (1994), financial returns are 

characterized by a variance changing over time, alternating periods of low volatility 

followed by high volatility. In other words, as noted by Mandelbrot (1963), “large 

changes tend to be followed by large changes, of either sign and small changes tend to be 

followed by small changes.” This effect, known as volatility clustering, indicates the 

presence of conditional heteroscedasticity in the return series and the need to model the 

behavior of the conditional variance. Furthermore, financial returns are subject to 

leverage effect (Black, 1976). This means that volatility tends to be higher after negative 

returns, this is typically attributed to leverage (hence the name).  

To capture cluster in volatility Engle (1982) proposed Autoregressive Conditional 

Heteroscedasticity (ARCH), which featured a variance that does not remain fixed but 

rather varies throughout a period. Bollerslev (1986) extended the ARCH model into the 

Generalized ARCH (GARCH). The GARCH model captures volatility clustering but 

does not capture the leverage effect. In this model, the positive surprises have the same 

effect on volatility as negative surprises. To capture the leverage effect have been 

developed asymmetric GARCH models for instance the APARCH model or the 

EGARCH model proposed by Nelson (1991).  

On the other hand, it is well known that long memory property is observed in the 

volatility of the financial series, which cannot be captured by traditional GARCH models, 

so it is necessary to model a long-term component. To capture this characteristic Engle 

and Lee (1999) proposed a model in which the variance is decomposed into long and 

short-term components. The main role of the short-term component is to capture the 

temporary increase in the variance after an impact on the price. While the persistence or 

long-term memory indicates how long the shock takes to be absorbed. 

Creal et al. (2008, 2011) and Harvey and Chakravarty (2008) proposed a model 

that integrates three characteristics aforementioned: cluster in volatility, leverage effect 

and long memory. The model proposed by these authors is known as Beta-t-EGARCH 

model. In this model, the short-term component responds in the same way as in the 

traditional GARCH. Nevertheless, the long-term component is not sensitive to extreme 

observations, as it does in the standard GARCH model. That is, in the standard GARCH, 
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the existence of an outlier in yields has a persistent effect on volatility, which increases 

the variance. In contrast, the Beta-t-EGARCH model corrects volatility in case of the 

existence of an outlier, absorbing the effect and returning to previous levels of volatility. 

Formally let 𝑟1, 𝑟2, … , 𝑟𝑛 be a sequence of independent and identically distributed 

random variables representing financial returns. Assume that {𝑟𝑡} follows a stochastic 

process: 

                                            𝑟𝑡 = 𝑒𝑥𝑝(𝜆𝑡|t−1)(휀𝑡), 휀𝑡~𝑡(0, 𝜎 , 𝜈)            𝜈 > 2     (1) 

Where the conditional error 휀𝑡  is distributed as a t-student with zero mean, 

unconditional standard deviation 𝜎  and degrees of freedom parameter 𝜈.  𝜆𝑡|t−1 is the 

conditional scale or volatility, that does not need to be equal to the conditional standard 

deviation. The conditional standard deviation is obtained as 𝜎  𝑒𝑥𝑝 (𝜆𝑡|t−1)3.         

In the Beta-t-EGARCH model, 𝜆𝑡|t−1 in     (1) is defined as: 

    𝜆𝑡|t−1 = 𝛿 + 𝜆1,𝑡|t−1
+ + 𝜆2,𝑡|t−1

+                                (2) 

Where the long-term component is 𝜆1,𝑡|t−1
+ = 𝜑1𝜆1,t−1|t−2

+ + 𝑘1𝑢𝑡−1  and the 

short-term component is 𝜆2,𝑡|t−1
+ = 𝜑2𝜆2,t−1|t−2

+ + 𝑘2𝑢𝑡−1. The leverage effect may be 

introduced into the model using the sign of the observations. Thus, the short component 

with leverage effect is as follows:  

𝜆2,𝑡|t−1
+ = 𝜑2𝜆2,t−1|t−2

+ + 𝑘2𝑢𝑡−1 + 𝑘
∗(−𝑟𝑡−1)(𝑢𝑡−1 + 1) 

Where 𝑢𝑡 is the score conditional which is given by:  

                                     𝑢𝑡 =
(𝜈+1)(𝑟𝑡)

2

𝜈𝑒𝑥𝑝(2𝜆𝑡|t−1)+(𝑟𝑡)
2 − 1  ,     −1 ≤ 𝑢𝑡 ≤ 𝜈, 𝜈 > 0 

 

 

 
3 The specification for the standard GARCH model is as follows: 𝑟𝑡 = 𝜎𝑡휀𝑡, 휀𝑡~IID (0,𝜎2), where 𝜎𝑡

2 is the 

scale o volatility, which is modeled 𝜎𝑡
2 =  𝛿 + 𝜑1𝜎𝑡−1

2 + 𝑘1휀𝑡−1
2  with 𝜎2 = 1. 
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Taking the signs of minus, 𝑟𝑡−1 means that the parameter of 𝑘∗ is normally non-

negative for stock returns as in the GARCH model, the long-term component 𝜆1,𝑡|t−1
+ , has 

𝜑1 close to one or even set equal to one, while the short-term component 𝜆2,𝑡|t−1
+ , will 

typically have a higher 𝑘 combined with a lower 𝜑. The model is not identifiable if the 

𝜑1 = 𝜑2. Imposing the constraint 0 < 𝜑2 < 𝜑1 < 1 ensures identifiability and 

stationarity. 

Finally, the empirical literature has shown that financial returns also exhibit 

skewness and fat-tailed distributions. To capture these features Harvey and Sucarrat 

(2013) extended the Beta-t-EGARCH model, combining the skewness of the conditional 

distribution with a leverage effect in the dynamic of the scale. This model is known as 

Beta-skewness-t-EGARCH.  

Skewness is introduced into the Beta-t-EGARCH model using the method proposed 

by Fernandez and Steel (1998) (see Harvey and Sucarrat (2013) for more details of this 

method). Thus, in Equation (1), they assume that the conditional error 휀𝑡 is distributed as 

a skewed t-student with mean 𝜇 , scale 𝜎 , degrees of freedom parameter 𝑣 and skewness 

parameter 𝛾4.  

                   𝑟𝑡 = 𝑒𝑥𝑝(𝜆𝑡|t−1)(휀𝑡 − 𝜇 ), 휀𝑡~𝑠𝑡(𝜇 , 𝜎 , 𝜈, 𝛾)      𝜈 > 2, 𝛾 𝜖(0,∞)      (3) 

Where  𝜆𝑡|t−1 is given by:   

 𝜆𝑡|t−1 = 𝛿 + 𝜆1,𝑡|t−1
+ + 𝜆2,𝑡|t−1

+                     (4) 

The long-term component is  𝜆1,𝑡|t−1
+ = 𝜑1𝜆1,t−1|t−2

+ + 𝑘1𝑢𝑡−1  and the short-term 

component is 𝜆2,𝑡|t−1
+ = 𝜑2𝜆1,t−1|t−2

+ + 𝑘2𝑢𝑡−1 + 𝑘
∗(−(𝑟𝑡−1))(𝑢𝑡−1 + 1). Again, only 

the short-term component has a leverage effect. In this model, the conditional score is 

given by:  

 
4 The conditional error 휀𝑡  is an uncentred (i.e., mean not necessarily equal to zero) skewed t variable with 𝑣 

degrees of freedom, skewness parameter 𝛾. A centered and symmetric t-distribution variable with mean 

zero is obtained when 𝛾 = 1, in which  𝜇 = 0, whereas a left-skewed (right-skewed) t-variable is obtained 

when 𝛾 < 1, (𝛾 > 1). More details on the distribution can be found in Harvey and Sucarrat (2013) and 

Sucarrat (2013). 
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                               𝑢𝑡 =
(𝜈+1)(𝑟𝑡+𝜇𝜀𝑒𝑥𝑝(𝜆𝑡|t−1))(𝑟𝑡)

𝜈𝛾
2(𝑟𝑡+𝜇𝜀𝑒𝑥𝑝(𝜆𝑡|t−1))𝑒𝑥𝑝(2𝜆𝑡|t−1)+(𝑟𝑡+𝜇𝜀𝑒𝑥𝑝(𝜆𝑡|t−1))

2
  

3. Risk Measure methodology 

Let 𝑟1, 𝑟2, ……𝑟𝑛 be identically distributed independent random variables 

representing the financial returns. Use 𝐹(𝑟) to denote the cumulative distribution function 

𝐹(𝑟) = 𝑃𝑟 (𝑟𝑡 < 𝑟|𝛺𝑡−1) conditioned to the information set, 𝛺𝑡−1, available at time 𝑡 −

1. Assume that {𝑟𝑡} follows the stochastic process: 

                       𝑟𝑡 = 𝜇 + 𝜎𝑡휀𝑡        휀𝑡~𝑖𝑖𝑑(0,1)                      (5) 

Where 𝜇 represents the mean of returns; 𝜎𝑡
2 = 𝐸(휀𝑡

2|𝛺𝑡−1) and 휀𝑡 has the 

conditional distribution function 𝐺(휀), 𝐺(휀) = 𝑃𝑟 (휀𝑡 < 휀 |𝛺𝑡−1).  

The Value at Risk with a given level of confidence 1 − 𝛼,  denoted by 𝑉𝑎𝑅 (𝛼), 

is defined as the 𝛼 quantile of the probability distribution of financial returns. 

                                           𝐹(𝑉𝑎𝑅(𝛼)) = 𝑃𝑟(𝑟𝑡 < 𝑉𝑎𝑅(𝛼)) = 𝛼                                (6) 

There are two ways to estimate this quantile: (1) inverting the distribution function 

of financial returns, 𝐹(𝑟), or (2) inverting the distribution function of innovations, 𝐺(휀). 

The latter case will also require estimating the standard deviation of returns. 

                  𝑉𝑎𝑅(𝛼) = 𝐹−1(𝛼) =  𝜇 + 𝜎𝑡𝐺
−1(𝛼)                                  (7) 

Thus, the VaR estimation involves the specifications of the distribution function 

of financial returns, 𝐹(𝑟), or the distribution function of innovations, 𝐺(휀), along with 

the standard deviation of returns, 𝜎𝑡 .  

The Historical simulation method, Monte Carlo simulation and Unconditional 

approach based on the Extreme Value Theory focus on the estimation of 𝐹(𝑟), while 

Parametric Method and the Conditional Extreme Value Theory estimate 𝐺(휀).  

Below, we will describe the Conditional Extreme Value Theory, which has been 

used in this study to compute VaR.   
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3.1 Conditional Extreme Value Theory 

The Extreme Value Theory (EVT) approach focuses on the limiting distribution 

of extreme returns observed over a long period, which is essentially independent of the 

distribution of the returns themselves. 

There are two methods based on EVT: a) Block Maxima Model (BMM) proposed 

by McNeil (1998) and b) Peaks Over Threshold (POT). This second model is generally 

considered to be the most useful for practical applications, due to the more efficient use 

of the data on extreme values. 

Within the POT models framework, we can distinguish two types of analysis: (i) 

the Semi-Parametric Model built around the Hill estimator and (ii) and the fully 

parametric models based on the Generalized Pareto distribution (GPD). The latter method 

is commonly used in practice. 

Below, the fundamental theory of this approach is described, considering both 

unconditional and conditional versions. 

Let 𝑟1, 𝑟2, …… 𝑟𝑛 be a random sequence of observations representing the financial 

returns, given a threshold denoted by 𝑢, we will be interested in excess losses over the 

threshold5 denoted by  𝑦1, 𝑦2, 𝑦3, … 𝑦𝑁𝑢, where 𝑦𝑖 = 𝑟𝑖 − 𝑢 and 𝑁𝑢 are the number of 

sample data greater than 𝑢.  

Then, for instance, if the threshold is equal to 1.5 %, we are left with all returns 

lower to 1.5 %. 

The Extreme Value Theory assumes that the distribution of excess losses above 

the threshold is a Generalized Pareto distribution given for the following expression: 

                                            𝐺k,ξ(y) = 1 − [1 +
𝑘

𝜉
𝑦]−1/𝑘                      (8) 

Where 𝑘 y  𝜉 are the parameters of the distribution6  

It can be shown that under this assumption, the α percentile of the distribution, as 

the VaR can be estimated as: 

 
5 The most common is to use the 10% percentile as the threshold level.  
6 These parameters can be estimated by Maximum likelihood. 



Chapter II. Analyzing the role of the skewed distributions in the framework of conditional 

extreme value theory. 

 

 
17 

              𝑉𝑎𝑅(𝛼) = 𝐺𝑘,𝜉
−1(𝛼) = 𝑢 +

𝜉

𝑘
[[

𝑛

𝑁𝑢
(1 − 𝛼)]

−𝜉

− 1]  𝑟 < 𝑢      (9) 

Where 𝑛 represents the number of sample data. 

The extreme value method described in the preceding paragraphs does not 

consider the level of volatility. This method is known as Unconditional Extreme Value 

Theory. 

Since financial returns are variables that are characterized by heteroscedasticity, 

McNeil and Frey (2000) proposed a new methodology for estimating VaR that combines 

Extreme Value Theory with models of volatility, called Conditional Extreme Value 

Theory. 

According to this theory, the VaR of a portfolio at a confidence level of 1 − α  

can be calculated as: 

          𝑉𝑎𝑅(𝛼)𝑡 =  𝜇 + 𝜎𝑡𝐺𝑘,𝜉
−1(𝛼)         (10) 

Where σt
2  represents the conditional standard deviation of the financial returns 

and  Gk,ξ
−1 is the α quantile of the GPD. 

To estimate the conditional standard deviation of the returns in this paper we use 

the beta-t-EGARCH model and the beta-skewness-t-EGARCH models presented in 

Section 2.  

3.2 Backtesting 

To the adequacy of the VaR estimates we use two alternative approaches: 

statistical tests that evaluate the accuracy of the estimates and loss functions. 

To test the accuracy of the VaR estimates, we use some standard tests: (i) 

Unconditional Coverage test (Kupiec, 1995), (ii) Conditional Coverage test 

(Christoffersen, 1998) and (iii) Dynamic Quantile (Engle and Manganelli, 2004). 

To implement these tests, we must first define an exception indicator. This 

indicator is calculated as follows: 

𝐼𝑡+1 {
1   𝑠𝑖    𝑟𝑡+1 < 𝑉𝑎𝑅(𝛼)
0    𝑠𝑖    𝑟𝑡+1 > 𝑉𝑎𝑅(𝛼)

                                         (11)  
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Kupiec (1995) shows that if we assume that the probability of getting an exception 

is constant, then the number of exceptions 𝑥 = ∑ 𝐼𝑡+1 follows a binomial distribution 

𝐵(𝑁, 𝛼), where 𝑁 is the number of observations. An accurate VaR measure should 

produce Unconditional Coverage (�̂� =
∑𝐼𝑡+1

𝑁
) equal to 𝛼 percent. 

The Unconditional Coverage test has a null hypothesis �̂� = 𝛼, with a likelihood 

ratio statistic: 

𝐿𝑅𝑢𝑐 = 2[𝑙𝑜𝑔(�̂�𝑥(1 − �̂�)𝑁−𝑥) − 𝑙𝑜𝑔 (𝛼(1 − 𝛼)𝑁−𝑥)]           (12)  

Which follows an asymptotic  𝜒2(1) distribution. 

The Conditional Coverage test, developed by Christoffersen (1998), jointly 

examines whether the percentage of exceptions is statistically equal to the one expected 

(�̂� = 𝛼)  and the serial independence of the exception indicator. 

The likelihood ratio statistic of this test is given by 𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑 which 

is asymptotically distributed as 𝜒2(2) and the 𝐿𝑅𝑖𝑛𝑑 statistic is the likelihood ratio 

statistic for the hypothesis of serial independence against first-order Markov dependence. 

A similar test for the significance of the departure of  �̂� from 𝛼  is the backtesting  

criterion statistic (BTC): 

                                               𝑍 =  (𝑁�̂�  −  𝑁𝑎 ) /√ 𝑁𝑎 (1 − 𝑎 )         (13) 

which follows an asymptotic N(0,1) distribution. 

Finally, the Dynamic Quantile test proposed by Engle and Manganelli (2004) 

examines if the exception indicator is uncorrelated with any variable that belongs to the 

information set  𝛺𝑡−1 available when the VaR is calculated. This is a Wald test of the 

hypothesis that all slopes are zero in the regression model: 

𝐼𝑡 = 𝛽0 + ∑ 𝛽𝑖
𝑝
𝑖=1 𝐼𝑡−𝑖 + ∑ 𝜇𝑗

𝑞
𝑗=1 𝑋𝑡−𝑗                   (14)  

where 𝑋𝑡−𝑗  are explanatory variables contained in 𝛺𝑡−1 . 

This statistic introduced as explanatory variables lags of VaR. Under 𝐻0 the 

exception indicator cannot be explained by the level of VaR, i.e. 𝑉𝑎𝑅(𝛼) is usually an 
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explanatory variable to test if the probability of an exception depends on the level of the 

VaR. 

Additionally, we evaluate the magnitude of the losses experienced. For this 

purpose, we have considered two loss functions: the regulator’s loss function and the 

firm’s loss function. 

Lopez (1998, 1999) proposed a loss function that reflects the utility function of a 

regulator. This function assigns a quadratic specification when the observed portfolio 

losses exceed the VaR estimate. Thus, we penalize only when an exception occurs 

according to the following specification: 

      𝑅𝐿𝐹𝑡 ∶  {
  (𝑉𝑎𝑅𝑡 − 𝑟𝑡)

2 𝑖𝑓  𝑟𝑡 < 𝑉𝑎𝑅(𝛼)
0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                            (15)  

This loss function gives higher scores when failures take place and it considers 

the magnitude of these failures. In addition, the quadratic term ensures that large failures 

are penalized more than small failures. 

This could be optimal from the perspective of the regulator, but not from the point 

of view of the firm since a model that generates a VaR too high leads the firm to incur 

high capital costs. 

Taking this into account, Sarma et al. (2003) define the firm’s loss function as 

follows: 

                                           𝐹𝐿𝐹𝑡 ∶  {
(𝑉𝑎𝑅𝑡 − 𝑟𝑡)

2 𝑖𝑓  𝑟𝑡 < 𝑉𝑎𝑅(𝛼)
  −𝛽𝑉𝑎𝑅𝑡                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (16) 

where 𝛽 is the opportunity cost of capital. 

 This function penalizes the cases in which no exceptions are multiplying the VaR 

by a factor 𝛽. As Abad et al. (2014) indicate, this product does not capture the opportunity 

cost of capital precisely. Therefore, in line with Sarma, they propose a new firm’s loss 

function that is expressed as follows: 

      𝐹𝐴𝐵𝐿𝑡 ∶  {
   (𝑉𝑎𝑅𝑡 − 𝑟𝑡)

2 𝑖𝑓  𝑟𝑡 < 𝑉𝑎𝑅(𝛼)
    𝛽 (𝑟𝑡 − 𝑉𝑎𝑅𝑡)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (17) 
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As can be determined in this function, the exceptions are penalized as usual in the 

literature, following the instructions of the regulator. When there are no exceptions, the 

loss function penalizes the difference between the VaR and returns weighted by a factor 

that represents an interest rate. This product is exactly the opportunity cost of the capital, 

ie, the excess capital held by the firm. 

Finally, we evaluate the VaR estimate on the bases of daily capital requirement 

(see McAleer et al., 2013). These authors adapt to daily terms the function used by the 

financial institutions for calculating market risk capital requirement in a 10 days horizon 

(Basel II).  The daily capital requirement at time 𝑡 can be calculated as follow (BCBS, 

1996; 2006):  

          𝐷𝐶𝑅𝑡 = 𝑠𝑢𝑝{−𝑘 × 𝑉𝑎𝑅̅̅ ̅̅ ̅̅
60, −𝑉𝑎𝑅𝑡−1}       (18) 

where 𝐷𝐶𝑅𝑡 represents the daily market capital requirement at time 𝑡, which is the higher 

of 𝑘 × 𝑉𝑎𝑅̅̅ ̅̅ ̅̅
60 and −𝑉𝑎𝑅𝑡−1; 𝑉𝑎𝑅̅̅ ̅̅ ̅̅

60 is the mean VaR over the previous 60 working days; 

(3 ≤ 𝑘 ≤ 4) is the Basel II violation penalty (see Table 1).  

4. Empirical Application. 

4.1 Data analysis. 

The data set consists of the daily returns of six companies from 01/04/2000 to 

31/12/2013 (approximately 3520 observations). The companies are ADP, Amazon, 

Apple, Cerner, Microsoft and Telefonica. The computation of the returns (𝑟𝑡) is based on 

the formula 𝑟𝑡 = 𝑙𝑛(𝑃𝑡) − 𝑙𝑛(𝑃𝑡−1) where 𝑃𝑡 is the price at time 𝑡. The evolution of daily 

prices and yields is represented in Figure 1. 

Table 2 contains descriptive statistics of the return series. For each company, the 

unconditional mean is very close to zero. The highest unconditional standard deviations 

are 3.68 (Amazon) and 2.74 (Cerner) and the lowest is 1.66 (ADP). For the rest series of 

returns, the standard deviation moves between 2.08 and 2.73. The skewness statistic is 

negative for four of the series considered. This means that in most cases the distribution 

of those returns is skewed to the left. For all the series, the excess kurtosis statistics are 

above 3, implying that the distributions of those returns have much thicker tails than the 

normal distribution. 
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In Figure 1 we observe that the range of the fluctuation of the returns changes over 

time and they evolve according to the idea of a cluster in volatility (Mandelbrot, 1963). 

To capture this and other characteristics of the return as the leverage effect (Black, 1976) 

we use the beta-t-EGARCH model, proposed by Creal et al. (2008, 2011) and Harvey and 

Chakravarty (2008), and the beta-skewness-t-EGARCH proposed by and Harvey and 

Sucarrat (2013). In Table 3 we present the coefficient estimations of both models for each 

asset in the whole period.  

All the parameters estimated are positive and statistically significant. Just in the 

case of Amazon 𝑘2 is not significant. In addition, the estimations of 𝜑2 and 𝜑1 satisfy the 

identifiability and stationary conditions ( 𝜑2 < 𝜑1 ≤ 1). The parameter 𝑘∗, which captures 

the “leverage effect”, is positive in all cases, indicating that volatility tends to be higher 

after negative returns. The value of this parameter moves around 0.015 (Microsoft) and 

0.034 (Apple). To last, in the case of the beta-skewness-t-EGARCH model, the parameter  

𝛾 is inferior to one (𝛾 <1) in the case of ADP, Cerner, Apple and Telefónica. This means 

that the distributions of those assets are skewed to the left. For the case of Amazon and 

Microsoft, the distribution is skewed to the right (𝛾 >1).  

4.2 VaR applications 

In this Section, the beta-t-EGARCH model and the beta-skewness-t-EGARCH 

model presented in Section 2 are used to calculate the VaR one day ahead at 1% 

probability and then these estimations are compared. The analysis period ran from 

January 1st, 2008, to December 31st, 2013. The comparison of the VaR estimates has been 

conducted in terms of evaluating the accuracy of the VaR estimates and the loss function. 

In Figure 2 we present the returns and the VaR estimates obtained from both volatility 

models for all assets considered. As we can observe, the risk assumed by the companies 

varies along the sample being especially high in 2008-2009. From the naked eye, it seems 

that there are no significant differences between the VaR estimation from both models. 

To evaluate the accuracy of the VaR estimates, several standard tests are used. 

The results of these tests are presented in Table 4. For each index, it is presented the 

number and the percentage of exceptions obtained with each volatility model considered. 

The percentages of exceptions are marked in bold. Below the percentages, the statistics 

used to test the accuracy of the VaR estimates are presented. These statistics are as 
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follows: (i) the Unconditional Coverage test (LRuc); (ii) Backtesting Criterion; (iii) 

statistics for serial independence (LRind); (iv) the Conditional Coverage test (LRcc) and 

(v) the Dynamic Quantile test (DQ). When the null hypothesis that “the VaR estimate is 

accurate” has not been rejected by any test, we shaded the region of the figure that 

represents the number and percentage of the exceptions.  

The percentage of exceptions goes below 1% in almost all cases indicating that 

both models overestimate risk. Just in the case of Apple, the risk is underestimated.  

However, it is worth noting that the number and the percentage of exceptions are close to 

the expected one. The accuracy tests used to test formally the performance of the volatility 

models in terms of VaR corroborate this hypothesis. These results indicate that both 

models provide accurate VaR estimates in all cases. 

Additionally, intending to detect differences between both models (beta-t-

EGARCH and beta-skewness-t-EGARCH) we follow Gerlach et al. (2011) and focus on 

analyzing the ratio VRate/α and some statistics of it. This ratio is calculated as the quotient 

of percentage exception by the value of α, which is 1%. The beta-t-EGARCH model 

provides a VRate/α close to one for three assets (ADP, Cerner and Telefónica) the same 

as the beta-skewness-t-EGARCH (ADP, Cerner and Apple) (Table 5). Table 6 displays 

summary statistics for VRate/α for each model across the 6 assets. The Std(1) column 

shows the standard deviation from the expected ratio of 1 (not mean sample), while the 

1st column counts the assets where the model ranked had VRate/α closest to 1. According 

to these statistics, the beta-skewness-t-EGARCH model provides better results as the 

mean of the ratio is closer to one and the std(1) is lower than those provided by the beta-

t-EGARCH model.  

Thus, although the evidence is weak the results indicate that in terms of accuracy, 

the beta-skewness-t- EGARCH model may outperform the beta-t-EGARCH which has 

been estimated under a symmetric distribution.   

Another way to compare the VaR estimates that is often used in the VaR literature is 

through a loss function. The loss function measures the magnitude of the losses 

experienced. A model that minimizes the total loss is preferred to other models. For this 

purpose, we have considered two loss functions: the regulator’s loss function proposed 
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by Lopez (1998, 1999) and the firm’s loss function (Abad et al. (2015)). The results of 

these loss functions are presented in Table 77.  

According to the regulator´s loss function, there is no model superior to others. The 

beta-t-EGARCH model provides the lowest losses for ADP, Amazon and Telefónica 

while the beta-skewness-t-EGARCH model provides the lowest losses for Apple, Cerner 

and Microsoft. Thus, from the point of view of the regulator, both models seem to be 

equivalent. However, according to the firm´s loss function, which takes the opportunity 

cost of capital into account, the beta-skewness-t-EGARCH model outperforms the beta-

t-EGARCH model by providing the lowest losses for all assets considered. Although in 

daily terms these differences are reduced, in annual and monetary terms these differences 

are higher. For instance, for a portfolio value of 10 million dollars, the differences in 

annual capital opportunity cost provide for both models to move around 3500 dollars 

(ADP) and 92250 dollars (Telefónica). Moreover, for a portfolio value of 100 million 

dollars, these differences move around 350000 and 952500 dollars8. These data reflect 

that although the differences in daily capital opportunity cost are small, in annual and 

monetary terms become significant.  

To last, we compare VaR estimates in terms of daily capital requirement (DCR) 

which have been calculated according to Equation (18). The average of the DCR moves 

around 10% and 20% depending on the asset (Table 8).  For almost all assets considered 

the Beta-t-skewness-EGARCH model provides the lowest daily capital requirement. The 

difference between these models moves around 0.01%-0.24% depending on the asset.  

As a resume, we can conclude that in the framework of the Conditional Extreme 

Value Theory considering skewness t-student distributions for the returns may contribute 

to improving the accuracy of VaR estimations with respect to the symmetric student-t 

distribution. Furthermore, the results obtained by the loss function indicate that this kind 

of distribution may be preferred by financial companies, as they provide the opportunity 

 
7 In order to calculate the firm’s loss function, we proxy the price of capital with the interest rate of the 

Eurosystem monetary policy operations of the European Central Bank. 

 
8 The annual capital opportunity cost is calculated by multiplying the average of the daily opportunity cost 

by 250 days. And the average of the daily opportunity cost is calculated as the data included in Table 7 

(Panel b) divide by 100 times the portfolio value. 
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capital cost lowest. In addition, for banks, using a skewed student-t distribution enables 

them to maintain the lowest possible market risk capital requirements. 

5. Conclusions 

It is well documented in the literature that the financial return distribution is 

characterized as being skewed and exhibits an important excess of kurtosis. Thus, 

assuming a normal distribution for VaR estimation may take us to underestimate risk. 

Taking this into account, the research in the framework of a parametric method for VaR 

estimation has focused on investigating other density functions that capture the skew and 

kurtosis of financial returns. In this vein, recent papers show that in the context of this 

method assuming a fat tail and skewness distributions improve the results.  

In the same line, we evaluate the role of the heavy tail and skewed distribution in 

VaR estimation in the framework of the Conditional Extreme Value Theory. Below the 

conditional EVT, the Value at Risk of a portfolio at (1 − 𝛼)% confidence level is 

calculated as the product of the conditional standard deviation of the return portfolio by 

the 𝛼 (𝑘𝛼) quantile of Generalized Pareto distribution. Traditionally, the conditional 

standard deviation of the return portfolio is estimated by assuming a symmetric 

distribution for the financial return, such as normal or student-t distribution. Thus in this 

paper, we analyze if, in the framework of this method, the estimation of the volatility 

model below a fat tail and skewness distribution contributes to improving the results in 

VaR estimation. 

The study has been done for six individual assets bellowing to the 

telecommunication sector: ADP, Amazon, Cerner, Apple, Microsoft and Telefónica. The 

analysis period runs from January 1st, 2008 to the end of December 2013. Although the 

evidence found is a little bit weak the results obtained seem to indicate that the heavy tail 

and skewed distribution outperform the symmetric distribution both in terms of accuracy 

VaR estimations as in terms of the firm’s loss function and capital requirement. 



Chapter II. Analyzing the role of the skewed distributions in the framework of conditional 

extreme value theory. 

 

 
25 

Table 1. Basel Accord Penalty Zones 

 

 Zone  Number of exceptions  k  

  

Green 
  

0 to 4 
  

3 
 

  

 

Yellow 

  

5 

6 

7 

8 

9 

  

3.4 

3.5 

3.65 

3.75 

3.85 

 

 Red  10 or more  4 

 

 

 Note: The number of exceptions is given for 250 trading days 

 

 

Table 2. Descriptive Statistics  

Assets Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 
Jarque 

Bera 

ADP 
0.013 0.023 11.179 -26.892 1.665 -1.148* 26.678* 83004 

     (0.041) (0.083) (0.001) 

Amazon 
0.042 -0.004 29.618 -28.457 3.681 0.450* 13.170* 15289 

     (0.041) (0.083) (0.001) 

Apple 
0.066 0.077 12.239 -21.999 2.733 -0.446* 8.041* 3844 

     (0.041) (0.083) (0.001) 

Cerner 
0.066 0.063 22.063 -19.159 2.746 0.441* 11.995* 11981 

     (0.041) (0.083) (0.001) 

Microsoft 
-0.035 0.000 16.455 -18.623 2.081 -0.497* 12.480* 13327 

     (0.041) (0.083) (0.001) 

Telefónica 
0.029 0.000 20.096 -21.279 2.474 -0.011* 8.483* 4410 

     (0.041) (0.083) (0.001) 

Note: This table presents the descriptive statistics of the daily percentage returns of ADP, Amazon, Apple, Cerner, 

Microsoft and Telefónica. The sample period is from January 3rd, 2000 to December 31st, 2013. The returns are calculated 

as Rt=100.ln(Pt/Pt-1). The standard error of the skewness and kurtosis coefficients are calculated as √6 n⁄  and √12/n 

respectively. The JB statistic is distributed as the Chi-square with two degrees of freedom; in brackets is their p-value. 

* denotes significance at 1% level. 
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Table 3. Estimation of the parameters 

    
𝛿 ϕ1 ϕ2 k1 k2 κ*  

df γ 
LogL 

    
(se) (se) (se) (se) (se) (se) (se) (se) (BIC) 

ADP 

(T=1511) 
beta-t-EGARCH 

0.759 

(0.253) 

1.000 

(0.000) 

0.986 

(0.006) 

0.012 

(0.006) 

0.018 

(0.007) 

0.024 

(0,004) 

5.352 

(0.458) 
-- 

-5981.5 

(3.416) 

  

beta-skewness-t-

EGARCH 

0.357 

(0.143) 

0.988 

(0,009) 

0.997 

(0,001) 

0.024 

(0,011) 

0.008 

(0,011) 

0.022 

(0,003) 

5.386 

(0,464) 

0.953 

(0,020) 

-5982.1 

(3,418) 

Amazon 

(T=1511) 
beta-t-EGARCH 

1.587 

(0.234) 

1.000 

(0.000) 

0.922 

(0.051) 

0.022 

(0.006) 

0.011 

(0.009) 

0.024 

(0.007) 

4.179 

(0.269) 
-- 

-8522.3 

(4.860) 

 beta-skewness-t-

EGARCH 

1.592 

(0.236) 

1.000 

(0.000) 

0.899 

(0.052) 

0.023 

(0.005) 

0.010 

(0.009) 

0.023 

(0.007) 

4.202 

(0.270) 

1.065 

(0.023) 

-8518.17 

(4.860) 

Apple 

(T=1511) 
beta-t-EGARCH 

1.435 

(0,197) 

1.000 

(0.000) 

0.882 

(0.033) 

0.015 

(0.004) 

0.025 

(0.008) 

0.034 

(0.006) 

6.136 

(0.567) 
-- 

-8013.3 

(4.571) 

  

beta-skewness-t-

EGARCH 

1.432 

(0.196) 

1.000 

(0.000) 

0.885 

(0.032) 

0.015 

(0.004) 

0.026 

(0.008) 

0.034 

(0.006) 

6.115 

(0.0566) 

0.978 

(0.022) 

-8012.9 

(4.573) 

Cerner 

(T=1511) 
beta-t-EGARCH 

1.462 

(0.221) 

1.000 

(0.000) 

0.964 

(0.012) 

0.014 

(0.004) 

0.027 

(0.008) 

0.023 

(0.004) 

4.742 

(0.354) 
-- 

-7700.91 

(4.393) 

  

beta-skewness-t-

EGARCH 

1.465 

(0.221) 

1.000 

(0.000) 

0.964 

(0.012) 

0.014 

(0.004) 

0.027 

(0.008) 

0.024 

(0.005) 

4.726 

(0.354) 

0.989 

(0.021) 

-7700.8 

(4.395) 

Microsoft 

(T=1511) 
beta-t-EGARCH 

0.826 

(0.304) 

1.000 

(0.001) 

0.971 

(0.013) 

0.019 

(0.005) 

0.030 

(0.008) 

0.015 

(0.004) 

4.780 

(0.350) 
-- 

-6675.8 

(3.810) 

  

beta-skewness-t-

EGARCH 

0.319 

(0.121) 

0.943 

(0.023) 

0.996 

(0.002) 

0.032 

(0.008) 

0.020 

(0.006) 

0.015 

(0.004) 

4.830 

(0.356) 

1.004 

(0.022) 

-6672.8 

(3.811) 

Telefónica 

(T=1511) 
beta-t-EGARCH 

1.185 

(0.192) 

1.000 

(0.000) 

0.972 

(0.008) 

0.007 

(0.003) 

0.036 

(0.006) 

0.020 

(0.004) 

8.034 

(0.927) 
-- 

-7716.9 

(4.402) 

  

beta-skewness-t-

EGARCH 

1.193 

(0.191) 

1.000 

(0.000) 

0.973 

(0.008) 

0.007 

(0.003) 

0.037 

(0.006) 

0.021 

(0.004) 

8.084 

(0.945) 

0.973 

(0.022) 

-7716.2 

(4.404) 
Note: The table reports the parameter estimates of the beta-t-EGARCH model (Equation 2) and the beta-skewness-t-

EGARCH model (Equation 4). (se) denote the standard deviation (in parentheses). Log-L is the maximum likelihood 

value and BIC is the Bayesian Information Criterion. κ* is the parameter that captures the “leverage effect”.  γ   is the 

parameter that captures skewness in distribution. γ <1, (γ >1) denotes skewed to the left (right).  

(i) beta-t-EGARCH model 

                                            𝑟𝑡 = 𝑒𝑥𝑝(𝜆𝑡|t−1)(휀𝑡), 휀𝑡~𝑡(0, 𝜎 , 𝜈)            𝜈 > 2  

    𝜆𝑡|t−1 = 𝛿 + 𝜆1,𝑡|t−1
+ + 𝜆2,𝑡|t−1

+   

𝜆1,𝑡|t−1
+ = 𝜑1𝜆1,t−1|t−2

+ + 𝑘1𝑢𝑡−1 

𝜆2,𝑡|t−1
+ = 𝜑2𝜆2,t−1|t−2

+ + 𝑘2𝑢𝑡−1 + 𝑘
∗(−𝑟𝑡−1)(𝑢𝑡−1 + 1) 

(ii) beta-skewed-t-EGARCH model 

𝑟𝑡 = 𝑒𝑥𝑝(𝜆𝑡|t−1)(휀𝑡 − 𝜇 ), 휀𝑡~𝑠𝑡(𝜇 , 𝜎 , 𝜈, 𝛾)      𝜈 > 2, 𝛾 𝜖(0,∞) 

 

 

    𝜆𝑡|t−1 = 𝛿 + 𝜆1,𝑡|t−1
+ + 𝜆2,𝑡|t−1

+   

𝜆1,𝑡|t−1
+ = 𝜑1𝜆1,t−1|t−2

+ + 𝑘1𝑢𝑡−1 

𝜆2,𝑡|t−1
+ = 𝜑2𝜆1,t−1|t−2

+ + 𝑘2𝑢𝑡−1 + 𝑘
∗(−(𝑟𝑡−1))(𝑢𝑡−1 + 1) 
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Table 4. Accuracy test 

 Βeta-t-EGARCH Beta- skewness-t-EGARCH 

ADP     

Nº exceptions 11 11 

% exceptions 0.73 0.73 

LR uc 0.46 0.46 

BTC 0.23 0.23 

LR ind 0.79 0.79 

LR cc 0.74 0.74 

DQ 0.98 0.08 

Amazon     

Nº exceptions 10 10 

% exceptions 0.66 0.66 

LR uc 0.35 0.35 

BTC 0.17 0.17 

LR ind 0.81 0.81 

LR cc 0.63 0.63 

DQ 0.99 0.98 

Apple     

Nº exceptions 18 16 

% exceptions 1.19 1.06 

LR uc 0.63 0.88 

BTC 0.30 0.39 

LR ind 0.66 0.70 

LR cc 0.81 0.92 

DQ 0.53 0.98 

Cerner     

Nº exceptions 12 12 

% exceptions 0.79 0.79 

LR uc 0.58 0.58 

BTC 0.29 0.29 

LR ind 0.77 0.77 

LR cc 0.82 0.82 

DQ 0.14 0.14 

Microsoft     

Nº exceptions 12 12 

% exceptions 0.79 0.79 

LR uc 0.58 0.58 

BTC 0.29 0.29 

LR ind 0.77 0.77 

LR cc 0.82 0.82 

DQ 1.00 1.00 

Telefónica     

Nº exceptions 14 17 

% exceptions 0.93 1.13 

LR uc 0.85 0.75 

BTC 0.38 0.35 

LR ind 0.74 0.68 

LR cc 0.93 0.87 

DQ 0.84 0.89 
Note: VaR violation ratios of the daily returns (%) are boldfaced. The table reports the p-values of 

the following tests: (i) the unconditional coverage test (LRuc); (ii) the backtesting criterion (BTC); 

(iii) statistics for serial independence (LRind), (iv) the conditional coverage test (LRcc) and (v) 

Dynamic Quantile test (DQ). A p-value greater than 5% indicates that the forecasting ability of the 

VaR model is accurate. The shaded cells indicate that the null hypothesis that the VaR estimate is 

accurate is not rejected by any test. 
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Table 5. Ratio Vrate/alpha at alpha=1% for each VaR model  

  ADP Amazon Apple Cerner Microsoft Telefónica  

Beta-t-EGARCH 0.73 0.66 1.19 0.79 0.79 0.93 
  

Beta-skewness-t-EGARCH 0.73 0.66 1.06 0.79 0.79 1.13 
  

Note: Shaded cells indicate closest to 1 in that index.  

 

Table 6. Summary statistics for the ratio Vrate/alpha at alpha=1%  

  Mean  Median Std(1) 1st 

Beta-t-EGARCH 0.82 0.79 0.25 3 

Beta-skewness-t-EGARCH 0.84 0.79 0.23 3 

Note: Shaded cells indicate the most favored in each column. Std (1) is the standard deviation in ratios from an expected 

value of 1. 1st indicates the number of markets where that model’s VRate/α ratio ranked closest to 1.  

 

Table 7. Loss functions  

Panel (a): Lopez Loss Function (%) 

  ADP Amazon Apple Cerner Microsoft Telefónica 

Beta-t-EGARCH        0.0721 0.5856 3.1905 0.8017 1.3473 0.7175 

Beta-skewness-t-

EGARCH 
0.0793 0.6757 3.1416 0.8002 1.2492 0.7367 

Panel (b): ABL Loss Function (%) 

  ADP Amazon Apple Cerner Microsoft Telefónica 

Beta-t-EGARCH 
0.0708 0.1312 0.10218 0.09079 0.09398 0.10219 

Beta-skewness-t-

EGARCH 

0.07066 0.1301 0.102 0.09037 0.0938 0.09838 

Note:   The Table reports the values of the different loss functions of each VaR model at 99% confidence levels. In both cases, 

  the ta Table shows the average of the losses. The shaded cells denote the minimum value for the different loss functions. 

  

 

Table 8. Daily Requirement Capital  

  ADP Amazon Apple Cerner Microsoft Telefónica 

Beta-t-EGARCH 11.70% 20.98% 16.78% 15.92% 15.10% 16.69% 

Beta-skewness-t-

EGARCH 
11.82% 20.72% 16.57% 15.88% 15.11% 16.36% 

Note:    Note:  The table reports the average daily capital requirement  (DCR)  obtained according to Equation (18). For each  

asset the shaded cells denote the model that provides the lowest average of the DCR. 
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Figure 1. Evolution of daily prices and yields. 

  
 

 
 

 

Note: This figure illustrates the daily evolution of price (red) and returns (blue) of six assets (ADP, Amazon, Apple, Cerner, Microsoft and Telefonica) from January 3rd, 2000 to December 31st, 2013.   
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Figure 2. Returns and VaR estimations 

   

   

Note: This figure illustrates the return (blue) and VaR estimations obtained from the beta-t-EGARCH model and the beta skewness-t- EGARCH model. The analysis period goes from January 1st 2008 to December 

31st, 2013. 
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Chapter III* 

Assessing the importance of the choice threshold in 

quantifying market risk under the POT approach 

(EVT)  

 

Abstract 

From a theoretical point of view, the selection of thresholds is a critical issue in the 

framework of the Peaks Over Threshold (POT) approach, which is why in the last decade 

numerous methodologies have been proposed for its selection. In this paper, we address 

this subject from an empirical point of view by assessing to what extent the selection of 

the threshold is decisive in quantifying the market risk. For measuring market risk, we 

use the Value at Risk (VaR) and the Expected Shortfall (ES) measures. The results 

obtained indicate that there is a large set of thresholds that provide similar Generalized 

Pareto Distribution (GPD) quantiles estimators and as a consequence similar market risk 

measures. Just only, for large thresholds, those corresponding to the 98th  and 99th 

percentile of the GPD some differences are found. It means that the choice of threshold 

in the framework of the POT method may not be relevant in quantifying market risk when 

we use the VaR and ES measures for this task.  
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1. Introduction  

Extreme value analysis has wide applications in many fields, such as civil 

engineering (Wu and Qiu, 2018), climatology (Davison and Smith, 1990; Kharin et al. 

2013), seismology (Beirlant et al. 2018), hydrology (Katz et al. 2002, Carreau et al. 2017, 

Bader et al. 2018), insurance (Reiss and Thomas, 2007) and finance (Embrechts et al., 

1997, Fontnouvelle et al., 2007 and Abad and Benito, 2013, among others). For instance, 

the extreme values of vehicle load play an important role in bridge design and risk 

assessment (Wu and Qiu, 2018). In seismology and climatology, extreme value analysis 

is used to study earthquakes (Beirlant et al. 2018) and extreme precipitation (Bader et al. 

2018). In hydrology, extreme value analysis is an important tool for studying coastal flood 

risk (Haigh et al. 2010; McMillan et al. 2011). In the field of finance, extreme value 

modeling is important to quantify large financial losses from different sources of risk: 

operational, credit and market risk (see Cruz, 2002; Moscadelli, 2004; Fontnouvelle et 

al., 2007; Ergün and Jun, 2010; Žiković and Aktan, 2009; and Abad and Benito, 2013). 

Traditionally, the study of the extreme values of fat tail distributions has been 

carried out through the Extreme Value Theory (EVT). EVT comprises mainly two 

approaches – the Block Maxima Method (BMM) and the Peaks over Threshold (POT) 

approach-. In the former, the data set is divided into blocks, and a Generalized Extreme 

Value (GEV) distribution is fitted to the sample of maximums or minimums extracted 

from these blocks. In the context of the POT method, a threshold is determined above 

which the excesses are fitted with the Generalized Pareto distribution (GPD) (Queensley 

et al. 2019). 

Although the BMM and POT approaches should lead asymptotically to the same 

results, in practice the POT provides more suitable extreme quantile estimations due to 

the more efficient use of the data for the extreme values, see Cunnane (1973) and Madsen 

et al. (1997a). These authors show that the POT approach performs better than BMM, 

independently of the estimation method used. Similar results have been reported by Wang 

(1991), Madsen et al. (1997b).  

From a theoretical point of view, threshold selection is a critical issue in the 

framework of the POT approach. The choice of threshold must be a balance between bias 

and variation. A threshold being too low is likely to violate the asymptotic basis of the 

model which leads to bias. However, a threshold being too high will generate few 
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excesses leading to an increase in the variance of the estimators (Davison and Smith, 

1990; Coles, 2001; MacDonald et al.,2011; Papalexiou et al.,2013;  Wyncoll and 

Gouldby, 2013). 

That is why, within the framework of the POT method, different methods have 

been developed for the selection of the suitable threshold. Those methods can be divided 

into two groups: (i) graphical approaches, based on a visual inspection of plots, such as 

the mean excess plot (Davison and Smith, 1990), stability parameters plot (Coles, 2001)  

and Hill plot (Drees et al., 2000) among others and (ii) numerical approaches (Ferreira et 

al. 2003; Thompson et al., 2009; Northrop and Coleman, 2014; Li et al., 2014, Wadsworth 

and Tawn, 2012, Naveau et al., 2016) which are more objective methods. Recently, new 

methods have been developed with the aim of automating some of the existing proposals, 

especially those based on visual data inspection, see for instance Wu and Qiu (2018), 

Bader et al. (2018), Caballero-Megido et al. (2017) and Queensley et al. (2019) among 

others.  

The aforementioned papers focus on studying new methods for the selection of 

the optimal threshold, assuming that the estimates of the quantiles of the Generalized 

Pareto distribution are highly sensitive to the threshold choice in which case such efforts 

would be fully justified (Langousis et al., 2016). In the field of finance, the existing 

literature on this issue is quite scarce, especially in the area of market risk management. 

As far as we know in this field there are no studies on this subject. To cover this gap, we 

carry out an empirical analysis with a double aim. First, to analyze the sensibility of the 

GPD quantiles to the threshold choice and second, to study the sensitivity of the market 

risk measure to this choice. For measuring market risk, we use the Value at Risk (VaR)1 

and the Expected Shortfall (ES)2 measures. To last, we calculate the market risk capital 

requirements and evaluate their sensitivity to the threshold choice.  

 
1 The VaR of a portfolio is defined as the worst expected loss over a given horizon under normal market 

conditions at a given level of confidence. Formally speaking, the VaR(α) of a portfolio at (1-α)% confidence 

level is the percentile α % of the return portfolio distribution. 

2 The ES is defined as the average of all losses that are greater than or equal to VaR, i.e., the average loss 

in the worst α % cases. In other words, this measure provides the expected value of an investment in the 

worst α % of the cases. 
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This study is in accordance with Langousis et al. (2016) who remarked that “the 

variety of existing methods for threshold chosen, the fundamental differences in their 

theoretical underpinnings, and their relative performance when dealing with different 

types of data, make threshold detection an open question that can be addressed solely on 

the basis of a specific application”.  With regard to this, we think, that the area of market 

risk management -where daily data and large samples are used- could give rise to different 

results from those obtained in other areas of science where the periodicity of the data is 

annual and consequently the size of the samples is reduced.  

Thus, in this paper we analyze in detail the case of the S&P500 and later extend 

that study to a set of 14 assets from alternative markets: seven stock indexes (CAC40, 

DAX30, FTSE100, HangSeng, IBEX35, Merval and Nikkei), four commodities (Copper, 

Gold, Crude Oil Brent and Silver) and three rates exchange (₤ /€, $/€ and ¥/€). The results 

obtained indicate that there is a large set of thresholds that provide similar GPD quantiles 

estimators and, as a consequence, similar market risk measures. Just only for large 

thresholds, those corresponding to the 98th and 99th percentile of the GPD some 

differences are found. It means that the choice of threshold in the framework of the POT 

method may not be relevant in quantifying market risk when we use the VaR and ES 

measures for this task. Regards to the market risk capital requirement, we find that these 

charges do not differ much among the thresholds. Nevertheless, if the objective of the 

financial institutions is to minimize these charges, they might be interested in the selection 

of a specific threshold. 

The remainder of the paper is organized as follows. In Section 2, we show the 

methodology used for the study. In Section 3, we submit the data and the results obtained 

for the particular case of the S&P500 index. Section 4 displays a robustness analysis. The 

main conclusions are presented in Section 5.  

2. Methodology 

2.1 Extreme Value Theory  

The Extreme Value Theory (EVT) studies the asymptotic behavior of extreme 

values of a random variable. This theory has wide applications in many fields, such as 

civil engineering (Wu and Qiu, 2018), climatology (Davison and Smith, 1990; Kharin et 

al. 2013), seismology (Beirlant et al. 2018), hydrology (Katz et al. 2002, Carreau et al. 
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2017, Bader et al. 2018), insurance (Reiss and Thomas, 2007) and finance (Embrechts et 

al., 1997), among others. 

Within the EVT context, there are two approaches that study extreme events. The 

first one, based on the Generalized Extreme Value (GEV) distribution, models the 

distribution of the minimum or maximum realizations and it is known as the Block 

Maxima (Minima) Method (BMM). The second one is the Peaks Over Threshold (POT) 

approach based on the Generalized Pareto distribution (GPD) (Pickans, 1975) which 

models the exceedances over a particular threshold. In the next lines, we introduce these 

approaches. 

  2.1.1 Fisher –Tippett theorem 

Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛 is a sequence of independently and identically 

distributed random variables with a distribution function  𝐹(𝑥) = Pr (𝑋𝑡 ≤ 𝑥) and denote 

𝑀𝒏 = max(𝑋1, 𝑋2, … , 𝑋𝑛) as a sample of maxima of this series, the distribution function 

(CDF) of 𝑀𝑛 is represented as:  

𝑃(𝑀𝑛 ≤ 𝑥) = 𝑃(𝑋1 ≤ 𝑥,… . , 𝑋𝑛 ≤ 𝑥) =∏𝐹(𝑥)

𝑛

𝑖=1

= 𝐹𝑛(𝑥)      (1) 

Although 𝐹(𝑥) is unknown, Fisher and Tippet's theorem establishes an asymptotic 

approach for 𝐹𝑛(𝑥). This theorem establishes that given a sequence of  𝑏𝑛 > 0, 𝑎𝑛 ∈ 𝑅,  

the maximum normalized value  𝑍𝑛 =
𝑀𝑛−𝑎𝑛

𝑏𝑛
 converges to a non-degenerated distribution 

𝐻, and this distribution is the Generalized Extreme Value (GEV) distribution, 

lim
𝑛→∞

Pr (
𝑀𝑛−𝑎𝑛

𝑏𝑛
≤ 𝑥) ⟶ 𝐻(𝑥). 

The algebraic expression for such generalized distribution is as follows:  

𝐺𝐸𝑉𝜉,𝜇, 𝜎(𝑥) = 𝑒
−[1+𝜉

(𝑥−𝜇)
𝜎

]
−
1
𝜉

 
    (2) 

defined on (1 +
𝜉(𝑥−𝜇)

𝜎
) > 0, where 𝜎 > 0 is the scale parameter, −∞ < µ<∞ is the 

location, and  −∞ <  < ∞ is known as the shape parameter of the GEV distribution 

and characterizes the tail behavior of the distribution. The prior distribution is a 

generalization of the three types of distributions, depending on the value taken by  :  
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• Gumbel ( =0) type I family. It has light extremes, not heavy extremes 

𝛬(𝑥) = 𝑒𝑒
−
𝑥−𝜇
𝜎   ∀𝑥 ∈ ℜ 

• Fréchet ( >0) type II family. This distribution is particularly useful for patterning 

financial returns as it has very heavy tails. 

𝛷𝜉,𝜇,𝜎(𝑥) = {
       0           𝑥 ≤ 𝜇

𝑒−(
𝑥−𝜇
𝜎
)
− 
1
𝜉

 𝑥 > 𝜇
 

• Weibull ( <0) type III family. This distribution is used when the extremes are 

lighter (softer) than those from the normal distribution, and thus, it is not 

particularly useful for applications related to financial yields (returns). 

𝛹𝜉,𝜇,𝜎(𝑥) = {𝑒
− (− 

𝑥−𝜇
𝜎
)

−1
𝜉

 𝑥 ≤ 𝜇
  1   𝑥 > 𝜇

 

  2.1.2 Peaks over Threshold Approach (POT) 

     In general, we are not only interested in the maxima of observations but also in 

the behavior of large observations which exceed a high threshold. One method of 

extracting extremes from a sample of observations, 𝑋𝑡, 𝑡 = 1, 2, … 𝑛 with a distribution 

function 𝐹(𝑥) = Pr (𝑋𝑡 ≤ 𝑥) is to take the exceedances over a predetermined high 

threshold 𝑢. An exceedance of a threshold 𝑢 occurs when 𝑋𝑡 > 𝑢 for any 𝑡 in 𝑡 =

1,2, … , 𝑛. Thus, an excess over 𝑢 is defined as 𝑦 = 𝑋𝑡 − 𝑢. This approach is known as 

POT.   

 Although the BMM and POT approaches should lead asymptotically to the same 

results, in practice the POT provides more suitable extreme quantile estimations due to 

the more efficient use of the data for the extreme values, see Cunnane (1973) and Madsen 

et al. (1997a). These studies show that the POT approach performs better than BMM, 

independently of the estimation method used. Similar results have been reported by Wang 

(1991), Madsen et al. (1997b), and Tanaka and Takara (2002) among others. 

 Let 𝑥0 be the finite or infinite right endpoint of the distribution 𝐹. That is to say, 

𝑥0 = sup {𝑥 ∈ 𝑅: 𝐹(𝑥) < 1} ≤ ∞. The distribution function of the excesses (𝑦) over the 

threshold, 𝑢 is given by 𝐹𝑢(𝑦) = 𝑃((𝑋 − 𝑢) ≤ 𝑦| 𝑋 > 𝑢)  for 0 ≤ 𝑥 ≤ 𝑥0 − 𝑢. Thus, 
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𝐹𝑢(𝑦) is the probability that the value of 𝑋 exceeds the threshold 𝑢 by no more than an 

amount 𝑦, given that the threshold is exceeded.  This probability can be written as:  

𝐹𝑢(𝑦) =
𝐹(𝑦 + 𝑢) − 𝐹(𝑢)

1 − 𝐹(𝑢)
 

   (3) 

 This distribution can be approximated by the Generalized Pareto distribution 

(GPD) which is usually expressed as a two-parameter distribution3: 

𝐺𝑘.𝜉(y) =  {
1 − (1 +

𝜉

𝜎
𝑦)

−
1

𝜉
   𝑖𝑓 𝜉 ≠ 0

1 − 𝑒𝑥𝑝 (−
𝑦

𝜎
)          𝑖𝑓   𝜉 = 0

       (4) 

where ξ and 𝜎 > 0 are the shape parameter and the scale parameter, respectively4. Note 

that if the distribution of 𝑀𝑛
∗  converges to a GEV distribution for block maxima with 

parameter ξ, then the distribution of exceedances over the threshold converges to the GPD 

with the same parameter ξ (Rodríguez G. 2017). 

 Using this approximation, the distribution function of 𝑋 will be given by 𝐹(𝑥) =

(1 − 𝐹(𝑢)) 𝐹𝑢(𝑦) + 𝐹(𝑢). Replacing  𝐹𝑢(y) by GPD and 𝐹(𝑢) by its empirical estimator 

(𝑛 − 𝑁𝑢)/𝑛, where 𝑛 is the total number of observations and 𝑁𝑢 the number of 

observations above the threshold 𝑢, we have 

𝐹(𝑥) = 1 − 
𝑁𝑢
𝑛
(1 +

𝜉

𝜎
(𝑥 − 𝑢))

−
1
𝜉

      (5) 

For a given probability 𝛼 > 𝐹(𝑢), the quantile 𝛼, which is denoted by 𝑞𝛼, is 

calculated by inverting the tail estimation formula to obtain 

 
3 The study of Jobst (2007) provides favorable evidence in favor of this approach. 

4 The traditional Extreme Value Theory (EVT) assumes that the data are stationarity. When stationarity is 

assumed, parameters that determine the distribution function (Generalized Pareto and Generalized Extreme 

Value distribution) are independent of time. However, in practice, it is often the case that stationarity 

assumptions (such as independence and identical distribution) for time series extremes are violated. If the 

process is non-stationary, the parameters of distributions are time-dependent, and the properties of the 

distribution vary with time. To capture the non-stationarity of extreme data, new approaches have been 

developed in the framework of the Extreme Value Theory. Some applications of these new approaches can 

be found in Cheng and AghaKouchak (2014), Cheng et al. (2014), Ruggiero et al. (2010), Chavez-Demoulin 

and Embrechts (2004) among others. 
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𝑞𝛼 = 𝑢 + 
𝜎

𝜉
((

𝑛

𝑁𝑢
(1 − 𝛼))

−𝜉

− 1)    (6) 

The distributional choice is motivated by a theorem (Balkema and de Haan, 1974; 

Pickands, 1975) which states that, for a certain class of distributions, the GPD is the 

limiting distribution for the distribution of the excesses, as the threshold tends to the right 

endpoint: 

lim
𝑢→𝑥0

𝑠𝑢𝑝|𝐹𝑛(𝑦) − 𝐺𝑃𝐷𝜉,𝜎(𝑦)| = 0 

This theorem is fulfilled if and only if 𝐹 is in the maximum domain of attraction 

(MDA) of the Generalized Extreme Value distribution 𝐻𝜉 , (𝐹 ∈ 𝑀𝐷𝐴(𝐻𝜉)). It means that 

if, for a given distribution 𝐹, an appropriately normalized maximum sample converges to 

a non-degenerated distribution 𝐻𝜉 , then this is equivalent to say 𝐻𝜉  is the MDA for 𝐹  for 

some value of 𝜉.  

The class of distribution 𝐹 for which the condition 𝐹 ∈ 𝑀𝐷𝐴(𝐻𝜉) holds is large; 

essentially all commonly encountered continuous distributions show the kind of regular 

behavior for sample maximum described by Equation (1).  

2.2 Threshold selection method  

The approaches developed for selecting the suitable threshold can be divided into 

two groups: (i) subjective approaches based on graphical analysis, such as the mean 

excess plot, stability parameters plot and Hill plot among others and (ii) numerical 

approaches. In its turn, the latter can be divided into various categories: (a) non-

parametric approach; (b) approaches based on goodness of fit test; (iii) mixture models; 

(iv) simple naïve methods; (v) computational approaches and (vi) other approaches. In 

the following lines, we describe briefly these methods (see Scarrot and McDonald, 2012 

and Langousis et al., 2016 for a more detailed review of these methods).  

  2.2.1 Graphical approaches. 

Due to its simplicity, the graphic method most commonly used for selecting 

threshold is the mean excess plot (MEP) also called mean residual life plot (MRLP) 

introduced by Davison and Smith (1990). This instrument is a graphical tool based on the 

sample means of the excesses function (SMEF), which is defined as: 
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𝑆𝑀𝐸𝐹(𝑢) =
∑ (𝑟𝑖 − 𝑢){𝑟𝑖>𝑢}
𝑁𝑢
𝑖

𝑁𝑢
 

The sample means excess function is an estimate of the excess mean function 

(MEF), 𝑒(𝑢) =  𝐸[(𝑋 − 𝑢)|𝑋 > 𝑢]. For the GPD, the excess mean function is given by 

a linear function in 𝑢5: 

𝑒(𝑢) =
𝜎

1 − 𝜉
+

𝜉

1 − 𝜉
𝑢      (7) 

This finding means that for 0 < 𝜉 < 1 and 𝜎 + 𝑢𝜉 > 0, the mean excess plot 

should resemble a straight line with a positive slope. Empirical estimates of the sample 

mean excesses are typically plotted against a range of thresholds. Thus, the general rule 

for the choice of the optimal threshold will be to choose a value of 𝑢 for which the 

resulting line has a positive slope. An application of this method can be found in Beirlant 

et al. (2004).  

The main problem associated with the sample mean excess plot is subjectivity. As 

Queensley et al. (2019) remark, “judging from where the graph is approximately linear 

using only the eyeball inspection approach, is a rather subjective choice so that different 

thresholds may be selected by different viewers of the plot”.  

The second type of plot is the parameter stability plot (Coles, 2001) (shape and 

scale) created by fitting the GPD using a range of thresholds. This method involves 

plotting �̂� and 𝜉 together with confidence intervals and selecting the value of 𝑢 from 

which the estimates are no longer stable (see Coles, 2001). This type of plot may present 

some inconsistencies, showing different flat sections for different ranges of threshold 

(Scarrot and McDonald, 2012).  

Other graphic approaches are these based on quantile plots and plots comparing 

the empirical cumulative distribution function and the cumulative GPD. According to 

quantile plots, the proper threshold is selected as the lowest threshold above which the 

plot shows a linear trend. When we compare the empirical with the theoretical distribution 

function the proper threshold is selected as the lowest threshold above which the 

 
5 If a distribution function is subexponential, the mean excess function tends to infinity, if it is an 

exponential distribution the mean excess function is a constant and for the normal distribution the mean 

excess function tends to zero. 
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differences between the empirical and the theoretical distribution function seem 

minimum. Hill plot, explored by Drees et al. (2000) can also be included in this group. 

The Hill plot plots the Hill estimator of the tail index for a set of thresholds. According 

to this plot, the optimal threshold is the lowest threshold at which the Hill estimator is 

stabilized. This tool suffers from many of the same benefits and drawbacks that the MEP, 

and has been referred to as the Hill horror plot by Resnick (1997).  

  2.2.2 Numerical approaches. 

The approaches aforementioned are based on judgment (Caballero-Megido, 2017) 

so they can be rather subjective and require substantial expertise to interpret these 

diagnostics as a method of threshold selection (Davison and Smith, 1990; Coles, 2001; 

Solari and Losada, 2012a). To overcome these limitations some numerical approaches 

have been developed which lead to a more objective decision.  

The numerical approaches are numerous and can be classified into different 

categories: (a) non-parametric approach; (b) approaches based on goodness of fit test; (c) 

simple naïve methods; (d) mixture models; (e) computational approaches and (e) other 

approaches. In the following lines, we resume each one of these categories.  

(a) Nonparametric methods that are intended to locate the changing point between 

extreme and nonextreme regions of the data (see e.g., Gerstengarbe and Werner, 

1989, 1991; Werner and Gerstengarbe, 1997; Domonkos and Piotrowicz, 1998; 

Lasch et al., 1999; Cebrián et al., 2003; Cebrián and Abaurrea, 2006; Karpouzos 

et al., 2010, among others). 

(b) Approaches based on the Goodness of fit test, where the threshold is selected 

as the lowest level above which the GPD provides an adequate fit to the 

exceedances. To analyze the goodness of fit of the GPD, Kolmogorov-Smirnov 

test and Anderson-Darling test can be used. Applications of this method can be 

found in Davison and Smith (1990), Dupuis (1999), Choulakian and Stephens 

(2001), Northrop and Coleman (2014), Langousis et al. (2016) among others.  

In this category, we also include the method based on the Root Mean Square Error 

(RMSE) proposed by Li et al.(2014). The RMSE measures the difference between 

analytical and observed CDFs of exceedances for different thresholds. The 

threshold with the lowest RMSE is considered the best one. 



Chapter III. Assessing the importance of the choice threshold in quantifying market risk 

under the POT approach (EVT). 

 

 
41 

(c) Simple naïve methods. Given the general order statistic convergence properties, 

various rules of thumb have been derived from the literature. Simple fixed 

quantile rules, like the upper 10% rule of  DuMouchel (1983). Ferreira et al. 

(2003) use the square root of the number of data (n) to specify the number of 

exceedances (𝑁𝑢). Ho and Wan (2002) and Omran and McKenzie (1999) use the 

rule 𝑁𝑢 =
𝑛2/3

log (log (𝑛)
 proposed by Loretan and Philips (1994) to determine the 

optimal number of exceedances. Neftci (2000), followed by Bekiros and 

Georgoutsos (2005), proposes the estimation of the threshold as 1.176 𝜎0, where 

𝜎0 is the standard deviation of the sample. In other studies, these methods are 

classified as ad-hoc methods or rules of thumb. 

(d) Methods in the other category are based on mixtures of a GPD for the tail and 

another distribution for the “bulk” joined at the threshold (e.g., MacDonald et al., 

2011; Wadsworth and Tawn, 2012; Naveau et al., 2016). Treating the threshold 

as a parameter to estimate, these methods can account for the uncertainty from 

threshold selection in inferences. The major drawback of such models is their ad-

hoc heuristic definitions, the asymptotic properties of which are still little 

understood. They have also not had time to be well used in practice and currently, 

there is no readily available software implementation to allow practitioners to gain 

wider experience (Scarrot and McDonald, 2012).  

(e) Computational approaches. Other researchers have suggested using techniques 

that provide an optimal trade-off between bias and variance. This method involves 

using bootstrap simulations to numerically calculate the optimal threshold 

considering the trade-off between bias and variance. Applications of this method 

can be found in Danielsson et al. (2001), Drees et al. (2000), Ferreira et al. (2003), 

Hall (1990) and Bairlant et al. (2004). In general, the restrictive assumptions 

underlying these approaches hinder their wide applicability. 

(f) Other approaches. Other approaches different from the aforementioned are 

proposed by Dupuis (2000), Thompson et al. (2009) and De Zea Bermudez et al. 

(2001). See Scarrot and McDonald (2012) for a detailed review of these methods.  

Recently, new methods have been developed to automate some of the existing 

proposals, especially those based on visual data inspection, see for instance Wu and Qiu 
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(2018), Bader et al. (2018), Caballero-Megido et al. (2017) and Queensley et al. (2019), 

Schneider et al. (2021) among others. Wu and Qiu (2018) propose a method to select the 

suitable threshold based on multiple criteria decision analysis (MCDA). In MCDA, Chi-

Square test, Kolmogorov Smirnov (K-S) test and Root Mean Square Error (RMSE) are 

combined as the test criteria and the weight of these criteria is calculated using the entropy 

method. Thus, the MCDA can integrate results obtained from the goodness-of-fit test 

under different criteria into a comprehensive one, which makes the selection more 

scientific and objective (Wang et al. 2009). Bader et al. (2018) develop an efficient 

technique to evaluate and apply the Anderson–Darling test to the sample of exceedances 

above a fixed threshold.  

In order to automate threshold selection, this test is used in conjunction with a 

recently developed stopping rule that controls the false discovery rate in ordered 

hypothesis testing. Caballero-Megido et al. (2017) propose a new automated method that 

mimics the enduringly popular visual inspection method. The purpose of the automated 

graphic threshold selection (AGTS) method, in absence of a priori threshold value, is to 

guide in the choice of the threshold which requires judgment and expertise, making the 

process simple and approachable, whilst being reproducible and less subjective. 

Queensley et al. (2019) propose an alternative way of selecting the threshold where, 

instead of choosing individual thresholds in isolation and testing their fit, they make use 

of the bootstrap aggregate of these individual thresholds which are formulated in terms 

of quantiles. The method incorporates the visual technique and is aimed at reducing the 

subjectivity associated with solely using the eye inspection approach (EIA). Schneider et 

al. (2021) suggest a couple of automated methods for threshold selection. The first one 

consists in estimating and minimizing the integrated square error (ISE) between the 

exponential density and its parametric estimator employing the Hill estimator. This is 

based on the null hypothesis that the log-spacings between a sample of thresholds are 

indeed exponentially distributed. The error function that obtains is called the inverse Hill 

statistic (IHS). This method exhibits high fluctuations for small thresholds, which might 

make the automated selection of the minimum highly variable. To control this problem 

the authors propose a smooth IHS. The second method consists in look for a sample 

fraction of optimal thresholds that minimize the asymptotic mean squared error (AMSE) 

of the Hill estimator. 
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2.3 Risk measure 

According to Jorion (2001), “VaR measure is defined as the worst expected loss 

over a given horizon under normal market conditions at a given level of confidence”. 

Thus, VaR is a conditional quantile of the asset return loss distribution.  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be identically distributed independent random variables 

representing the financial returns. Using 𝐹(𝑥) to denote the cumulative distribution 

function, 𝐹(𝑥) = Pr (𝑋𝑡 ≤ 𝑥|Ωt−1) conditioned to the information available at 𝑡 − 1 

(Ωt−1). Assume that {𝑋𝑡} follows the stochastic process given by 

𝑋𝑡 = 𝜇𝑡 + �̃�𝑡𝑧𝑡       𝑧𝑡~𝑖𝑖𝑑(0,1)             (8) 

where �̃�𝑡
2= 𝐸(𝑧𝑡

2|Ωt−1) and 𝑧𝑡 has the conditional distribution function 𝐺(𝑧), 𝐺(𝑧) =

 P(zt <  z|Ωt−1). The VaR with a given probability α ∈ (0, 1), denoted by 𝑉𝑎𝑅(𝛼), is 

defined as the α quantile of the probability distribution of financial returns F(VaR𝑡(α)) =

Pr(Xt < VaR𝑡(α)) = α. In this paper, we use the POT approach to estimate the tail of the 

distribution of the standardized residuals and thus later estimate the risks measure. As the 

GPD is only defined for positive values, we multiply our data by (-1) and thus move the 

left tail to the right side. Therefore, the VaR of a portfolio at 𝛼% probability will be 

calculated as:  

𝑉𝑎𝑅𝑡(𝛼) = 𝜇𝑡 + �̃�𝑡 𝑞1−𝛼       (9) 

where  𝜇𝑡 and �̃�𝑡 represent the conditional mean and the conditional standard deviation 

of the returns6 and  𝑞1−𝛼 is the quantile (1 − 𝛼) of the GPD (Equation 6).   

The Expected Shortfall (ES) with a given probability 𝛼 ∈ (0, 1), denoted by 

𝐸𝑆(𝛼), is defined as the average of all losses that are greater than or equal to VaR, i.e., 

the average loss in the worst 𝛼 % cases:  

𝐸𝑆𝑡(𝛼) = 𝐸[𝑋| 𝑋 ≥ 𝑉𝑎𝑅(𝛼)] = 𝜇𝑡 + �̃�𝑡𝐸[𝑧| 𝑧 ≥ 𝑞1−𝛼 ]   (10) 

 
6 For estimating the volatility of the return, we use an APARCH model, which is given by the next 

expression:  𝜎𝑡
𝛿 = 𝛼0 + 𝛼1 (|휀(𝑡−1) | − 𝛾휀(𝑡−1) )

𝛿 + 𝛽𝜎𝑡−1
𝛿 ,   𝛼0, 𝛽, 𝛿 > 0, 𝛼1 ≥ 0, −1 < 𝛾 < 1. In this 

model, the γ parameter captures the leverage effect (Black, 1976), which means that volatility tends to be 

higher after negative returns. 
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It can be demonstrated7 that the mean of the excess distribution 𝐹𝑞1−𝛼(𝑦) over the 

threshold 𝑞1−𝛼 is given by:  

𝐸(𝑧|𝑧 ≥ 𝑞1−𝛼 ) =  
 𝑞1−𝛼
1 − 𝜉

+
𝜎 − 𝜉𝑢

1 − 𝜉
 

       (11) 

 

Replacing (11) in (10) we obtain the ES measure under the conditional EVT.  

   

 

2.4 Backtesting  

2.4.1 Backtesting VaR 

To evaluate the accuracy of the VaR estimates, several tests have been used. All 

of these tests are based on the indicator variable. We have an exception when 𝑟𝑡+1 <

𝑉𝑎𝑅𝛼; then, the exception indicator variable (It+1) is equal to one (zero in other cases).  

To check the accuracy of the VaR estimates, we have used four standard tests: 

unconditional (LRuc), independent and conditional coverage (LRind and LRcc) and 

dynamic quantile (DQ) tests.  

 Kupiec (1995) shows that if we assume that the probability of obtaining an 

exception is constant, the number of exceptions 𝑥 = ∑ 𝐼𝑡+1 follows a binomial 

distribution 𝐵(𝑁, 𝛼), where 𝑁 represents the number of observations. An accurate 

measure 𝑉𝑎𝑅𝛼 should produce an unconditional coverage (�̂� =
∑𝐼𝑡+1

𝑁
) equal to 𝛼 percent. 

The unconditional coverage test has a null hypothesis �̂� = 𝛼, with a likelihood ratio 

statistic: 

𝐿𝑅𝑢𝑐 = 2[𝑙𝑜𝑔(�̂�
𝑥(1 − �̂�)𝑁−𝑥) − 𝑙𝑜𝑔(𝛼𝑥(1 − 𝛼)𝑁−𝑥)]    (13) 

 

which follows an asymptotic  𝜒2(1) distribution. The conditional coverage test, 

developed by Christoffersen (1998), jointly examines whether the percentage of 

exceptions is statistically equal to the one expected (�̂� = 𝛼) and the serial independence 

 
7 A more detailed theoretical development can be found in McNeil et al. (2005), Chapter 7. 

𝐸𝑆𝑡(𝛼) = 𝐸[𝑋| 𝑋 ≥ 𝑉𝑎𝑅(𝛼)] = 𝜇𝑡 + �̃�𝑡 [
 𝑞1−𝛼
1 − 𝜉

+
𝜎 − 𝜉𝑢

1 − 𝜉
]   (12) 
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of the exception indicator. The likelihood ratio statistic of this test is given by 𝐿𝑅𝑐𝑐 =

𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑, which is asymptotically distributed as 𝜒2(2), and the 𝐿𝑅𝑖𝑛𝑑 statistic is the 

likelihood ratio statistic for the hypothesis of serial independence against first-order 

Markov dependence8. Finally, the DQ test proposed by Engle and Manganelli (2004) 

examines if the exception indicator is uncorrelated with any variable that belongs to the 

information set  Ω𝑡−1, available when the VaR is calculated. This test is a Wald test of 

the hypothesis that all slopes are zero in the regression: 

𝐼𝑡 = 𝛽0 +∑𝛽𝑖

𝑝

𝑖=1

𝐼𝑡−𝑖 +∑𝜇𝑗

𝑞

𝑗=1

𝑋𝑡−𝑗 
 

(14) 

 

where 𝑋𝑡−𝑗 are the explanatory variables contained in Ω𝑡−1. This statistic is introduced as 

five explanatory variable lags of VaR. Under the null hypothesis, the exception indicator 

cannot be explained by the level of VaR, i.e., 𝑉𝑎𝑅(𝛼) is usually an explanatory variable 

to test if the probability of an exception depends on the level of the VaR. 

2.4.2 Backtesting ES 

In this paper, we use McNeil and Frey (2000) test for the conditional expected 

shortfall. This test is likely the most successful in the literature. These authors develop a 

test to verify that a model provides much better estimates of the conditional expected 

shortfall than any other. The authors are interested in the size of the discrepancy between 

the return 𝑟𝑡+1 and the conditional Expected Shortfall forecast 𝐸𝑆𝑡(𝛼) in the event of 

quantile violation. The authors define the residuals as follows:   

𝑌𝑡+1 =
𝑟𝑡+1 − 𝐸𝑆𝑡+1(𝛼)

𝜎𝑡+1
 

     (15) 

 

 
8 The LRind statistic is  and has an asymptotic  distribution. The likelihood 

function under the alternative hypothesis is , where Nij denotes the 

number of observations in state j after having been in state i in the previous period,  

and .  

The likelihood function under the null hypothesis ( ) is

. 
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Replacing Equation (8) and Equation (12) in Equation (15), we have the next 

expression: 

𝑦𝑡+1 = 𝑧𝑡+1 − 𝐸(𝑧|𝑧 < 𝑞𝛼)      (16) 

 

It is clear that, under model (5), these residuals are i.i.d. and that, conditional on  

{𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)} or equivalent {𝑧𝑡+1 < 𝑞𝛼}, they have an expected value of zero. 

Suppose we again backtest on days in the set 𝑇. We can form empirical versions of these 

residuals on those specific days on which violations have occurred, i.e., days on which 

{𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)}. The authors call these residuals exceedances and denote them by 

{�̂�𝑡+1: 𝑡 𝜖 𝑇.   𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)}   where �̂�𝑡+1 = 
𝑟𝑡+1−𝐸�̂�𝑡+1(𝛼)

�̂�𝑡+1
 and  𝐸�̂�𝑡+1(𝛼)  is an 

estimation of the conditional expected shortfall.  

Under the null hypothesis, in which we correctly estimate the dynamic of the 

process 𝜇𝑡+1 and 𝜎𝑡+1 and the first moment of the truncated innovation distribution 

𝐸(𝑧|𝑧 < 𝑞𝛼), these residuals should behave such as an i.i.d sample with a mean of zero. 

Thus, for testing whether the estimates of the expected shortfall are correct, we must test 

if the sample mean of the residual is equal to zero against the alternative that the mean of 

𝑦 is negative. Indeed, given a sample {𝑦𝑡+1} of size 𝑁 (where 𝑁 is the number of 

violations in the 𝑇 period), the sample mean �̅� converges in distribution to standard 

normality, as 𝑁 tends to ∞ by the central limit theorem. In other words, given mean 𝜇𝑦 

and variance 𝜎𝑦 of population 

√𝑁(
�̅� − 𝜇𝑦

𝜎𝑦
) → 𝑁(0, 1) 

      (17) 

By applying the central limit theorem, the statistics for testing the null hypothesis are 

given by  

𝑡 =
�̅�

𝑆𝑦

√𝑁

~𝑡𝑁−1 
      (18) 

 where �̅� and 𝑆𝑦 are the sample mean and the sample standard deviation, 

respectively, of the exceedance residuals.  
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2.5 Forecasting daily market risk capital charges  

Basel II Accord required financial institutions to meet daily capital requirements 

based on VaR estimates (BCBS, 1996; 2006). The Basel II Accord specified that daily 

capital charges (DCC) must be set at the higher of the previous day’s VaR or the average 

VaR over the last 60 business days, multiplied by a value between 3 and 4 depending on 

the number of violations (see Table 1) that occurred in the 250 days prior to the estimation 

of capital charges 𝐷𝐶𝐶𝑡 = 𝑠𝑢𝑝{−𝑘 × 𝑉𝑎𝑅̅̅ ̅̅ ̅̅
60, −𝑉𝑎𝑅𝑡−1}.  

Recently, the Basel Committee for Banking Supervision (BCBS) has promoted a 

change in international financial regulation. Under the new regulation based on the Basel 

solvency framework (BCBS, 2012, 2016, 2017, 2019), known as Basel III, financial 

institutions must calculate the market risk capital requirements based on the Expected 

Shortfall (ES) measure, replacing the Value at Risk (VaR) measure. 

Following Chang et al. (2019), we evaluate the market risk capital requirement 

based on the ES measure, which is the market risk benchmark according to Basel III. 

Thus, the forecasting daily market risk capital requirement (DCR) at time t can be 

calculated as follow:   

𝐷𝐶𝑅𝑡 = 𝑠𝑢𝑝{−𝑘 × 𝐸𝑆̅̅̅̅ 60, −𝐸𝑆𝑡−1}     (19) 

3. Case of study 

3.1 Dataset overview  

The data consist of the S&P500 stock index extracted from the Thomson-Reuters-

Eikon database. The index is transformed into returns by taking the logarithmic 

differences of the closing daily price (in percentage). We use daily data for the period 

January 3rd, 2000, through December 30th, 2021. The sample size is 5534. Figure 1 shows 

the evolution of the daily index and returns of the S&P500. The index shows a sawtooth 

profile alternating periods with an upward slope with a period of sudden decreases.  

In addition, we can observe that the range fluctuation of daily returns is not 

constant, which means that the variance of the returns changes over time. The volatility 

of the S&P500 was particularly high from 2008 to 2009, coinciding with the period 

known as the Global Financial Crisis, and in the first quarter of 2020, coinciding with the 

beginning of the COVID-19 pandemic. The basic descriptive statistics are provided in 
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Table 2. The unconditional mean daily return is very close to zero (0.021%) which is 

typical of daily returns. The skewness statistic is negative, implying that the distribution 

of daily returns is skewed to the left. The kurtosis coefficient shows that the distribution 

has much thicker tails than the normal distribution. Similarly, the Jarque-Bera statistic is 

statistically significant, rejecting the assumption of normality. All this evidence shows 

that the empirical distribution of daily returns cannot be fit by a normal distribution, as it 

exhibits a significant excess of kurtosis and asymmetry (fat tails and peakness).  

Before continuing, we briefly summarize the steps performed in this study. For 

each of the thresholds selected, first of all, we evaluate the fit of the GPD, second, we 

analyzed the stability of the GPD parameters. In the third place, the sensitivity of the high 

quantiles of the GPD to the threshold choice is evaluated (Section 3.2). Later, we evaluate 

the sensitivity of the risk market measure to the threshold choice (Section 3.3). Fifth, we 

assess the accuracy of the estimated risk measures (Section 3.4). Finally, for each selected 

threshold we calculate the capital charges based on the ES measure (Section 3.5). The 

objective is to evaluate how sensitive the capital requirements are to the choice of the 

threshold. 

3.2 Fitting the GPD 

In this Section, we fit GPD to the data for a set of 20 thresholds. We aim to 

evaluate the sensitivity of the parameters and quantiles of the generalized Pareto 

distribution to changes in the threshold. The thresholds were chosen from a quantile range 

between the 80th to the 99th percentile at 1% increments. As the size of the sample is 5534 

daily returns, the percentile 80th gives 1107 exceedances while the 99th percentile gives 

56 exceedances. As the threshold increases by one unit, the number of exceedances 

decreases by 55 units. According to the theory, the distribution of the exceedances is 

defined as 𝐹𝑛(𝑋 − 𝑢) for 𝑋 ≥ 𝑢 may be approximated by the GPD denoted by 𝐺𝜉,𝜎(𝑦). 

Thus, for each threshold, we fit a GPD and check that the sample of the excesses above 

the threshold follows a 𝐺𝜉,𝜎(𝑦). Examples of this fit can be seen in Figure 2 for the 5534 

returns with thresholds set at 0.74% and 2.76%. These thresholds give 1107 and 56 

exceedances respectively. Parameters are estimated by maximum likelihood and the 

resulting GPD curves are superimposed on the empirical estimate of the distribution 

function of the exceedances. As we can see, GPD seems to fit pretty well the exceedances 
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samples. In concordance with this, the Kolmogorov-Smirnov test used to test if the sample 

of exceedances follows a GPD, can not be rejected in any case (see Table 3).  

Let 𝑢1, 𝑢2, …, 𝑢𝑛 be the set of thresholds selected (𝑛 = 20). For 𝑗 = 1,… , 𝑛, let 

𝜉𝑢𝑗  and �̂�𝑢𝑗 be the estimators of the shape and scale parameters based on the exceedances 

over the threshold 𝑢𝑗 . Figure 3 displays the estimation of 𝜉 and 𝜎, respectively, as a 

function of the threshold 𝑢.  

We observe that as the threshold increases, the value of 𝜉 increases. In the case of 

the scale parameter, the opposite occurs; as the threshold increases, the value of 𝜎 is 

reduced. As we expected, in both cases, the accuracy of the estimations decreases as the 

threshold increases.  

The estimation of the shape parameter, which determines the weight of the tail in 

the distribution, is very sensitive to changes in the threshold. For instance, the value of 𝜉 

increases by 2233% when the threshold moves from the 80th percentile to the 90th 

percentile. From the 90th percentile to the 99th percentile, the increase is equal to 227%. 

The value of the scale parameter is also sensitive to changes in the threshold; however, in 

this case, the changes are not that striking.  

Thus, in accordance with the literature, we find that the parameter estimations are 

very sensitive to the threshold selected for estimating GPD.  But, what about the GPD 

quantiles? Do they depend on the threshold choice? To answer this question, we analyze 

the sensitivity of the high GPD quantiles to changes in the threshold. For this analysis, 

we just only focus on the high quantiles (95%, 96%, 97%, 98% and 99%) as they are the 

only relevant quantiles in quantifying market risk. The quantile of the GPD is calculated 

using Equation (6).  

Figure 4 displays these quantiles as a function of the threshold 𝑢. What draws our 

attention is that the line representing the quantiles as a function of the threshold is 

completely flat, which means that the high quantile of the GPD does not depend on the 

threshold choice, at least in the range of threshold considered in this paper. This result is 

pretty striking. Table 4 displays the differences in 𝛼 quantiles obtained for all thresholds 

considered against the threshold benchmark. Panel (a) displays these differences regard 

to the threshold corresponding to the percentile 90th, which is in the middle point of the 
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considered range vector and has been used successfully in many empirical papers in VaR 

estimate (see Abad and Benito, 2013; Benito et al., 2017).  

Panel (b) displays these differences with regard to the threshold corresponding to 

percentile 97th, which is the optimal threshold according to the Mean Excess Plot (See 

Figure 5). In Panel (a) we observe that for a large set of thresholds, from a return 

corresponding to the 81st percentile to a return corresponding to the 97th percentile, the 

differences in quantile estimation do not exceed the 7 basis points. Even more, from a 

return corresponding to the 85th percentile to a return corresponding to the 94th percentile, 

the differences in quantile estimation {95th to 98th} do not exceed the 2 basis points. As 

regards Panel (b), although the differences in quantile estimation {95th to 98th} are larger 

compared with Panel (a), they do not exceed 8 basis points from a return corresponding 

to the 80th percentile to a return corresponding to the 99th percentile. Just only in the case 

of the 99th quantile, the differences are somewhat higher.  

As the estimation of the market risk depends on the quantile of the GPD, this 

preliminary analysis may suggest that the choice of the threshold in the framework of the 

POT method may not be very relevant in quantifying market risk. 

3.3 Sensitivity of the risk measures to changes in the threshold  

We can say that the analysis presented in the previous section is in accordance 

with the literature; we observe that the estimates of the parameters that describe the 

Generalized Pareto distribution depend significantly on the threshold selected for the 

estimation. However, surprisingly the high quantiles of the GPD keep approximately 

constant. In this Section, we want to go a step further by assessing to what extent the 

selection of the threshold affects the quantification of financial risk. With this objective, 

a set of 20 thresholds has been selected. The parametric estimates corresponding to these 

thresholds were presented in the previous section.  

To quantify the risk, we use VaR and ES measures, which were presented in 

Section 2.3. The expression for these measures is given by:  

𝑉𝑎𝑅𝑡(𝛼) = 𝜇𝑡 + �̃�𝑡 𝑞1−𝛼                         𝐸𝑆𝑡(𝛼) = 𝜇𝑡 + �̃�𝑡 [
 𝑞1−𝛼

1−𝜉
+
𝜎+𝜉𝑢

1−𝜉
]     

where 𝜇𝑡 is the conditional mean return that is assumed constant (𝜇𝑡 = 𝜇), �̃�𝑡 represents 

the conditional standard deviation of the return; 𝑞1−𝛼 is the percentile 1 − 𝛼 of the GPD 
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and  𝜉 and 𝜎  are the shape and scale parameters of the GPD. For the estimation of the 

conditional standard deviation of the returns, we use an APARCH model. 

The sample period is divided into a learning sample from January 3rd, 2000, to 

December 30th, 2016, and a forecast sample from January 3rd, 2017, to the end of 

December 2021. For each day of the forecast period, we will generate estimations of VaR 

and ES measures. These forecasting measures are obtained one day ahead at the 95% and 

99% confidence levels.  

Table 5 presents the descriptive statistics of the differences between the market 

risk estimates obtained from the threshold corresponding to the 90th percentile and the 

market risk estimates obtained from the remaining selected thresholds. For VaR estimates 

at the 95% confidence level, from a return corresponding to the 80th percentile to a return 

corresponding to the 96th percentile, the mean of the differences does not exceed the 3 

basis points with a standard deviation between 1 and 3 basis points. For the thresholds 

corresponding to the 97th and 99th percentiles the mean of the differences in the VaR 

estimate at a 95% confidence level, increases moving between 6 and 9 basis points. 

  The standard deviation of these differences also increases, moving between 4 and 

28 basis points. For these thresholds, the minimum difference becomes 45 basis points 

(99th percentile), while the maximum difference becomes 229 basis points (99th 

percentile). For VaR estimates at the 99% confidence level, we find similar results. For a 

large set of thresholds (from the 82nd percentile to the 96th percentile), the mean and 

standard deviation of the differences are very small, not exceeding 5 basis points. Only 

in the case of the threshold corresponding to 99th percentiles, the differences are higher. 

In summary, we find that for a large set of thresholds (the return corresponding to the 80th 

percentile to the 96th percentile) the quantification of risk that we obtain from VaR 

measures is similar. The same conclusion can be drawn from the ES measure. At the 95% 

confidence level and from the 82nd percentile to the 98th percentile, the mean and standard 

deviation of the differences do not exceed 3 basis points. At the 99% confidence level, 

the differences are even smaller and do not exceed 1 basis point (from the 80th percentile 

to the 99th percentile).  

Thus, we can conclude that in the selected range, the choice of threshold in the 

framework of the POT method may not be very relevant in quantifying market risk. 
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3.4 Analyzing the quality of the risk estimates 

In this section, we are interested in analyzing the accuracy of the risk measures 

(VaR and ES) obtained from the conditional EVT. In addition, we will analyze if the 

quality of these measures depends on the threshold selected for applying EVT. Therefore, 

we will use the backtesting techniques presented in Section 2.4. 

To evaluate the accuracy of the VaR estimates, we have used four standard tests: 

unconditional (LRuc), independent (LRind), conditional coverage (LRcc) and dynamic 

quantile (DQ) tests.  

The results of these tests are presented in Table 6. In this table, we also present 

the number and the percentage of exceptions. The first thing that draws our attention when 

viewing Table 6 is that for a large set of thresholds (from the 82nd percentile to the 93rd 

percentile), the number of exceptions is very close to the expected one9. In the cases in 

which the number of exceptions differs from the theoretical one, the differences are very 

small. Thus, at the 95% confidence level, the percentage of exceptions ranges from 4.61% 

to 5.56%, corresponding to the 80th percentile and the 99th percentile. At the 99% 

confidence level, the percentage of exceptions ranges from 1.43% to 1.59%, also very 

similar to the expected one (1%). To test statistically whether the number of exceptions 

is equal to the theoretical one, we use the aforementioned test. We cannot reject the null 

hypothesis “that the VaR estimates are accurate” for any of the thresholds selected. To 

test whether the ES estimations are correct, we use the procedure proposed by McNeil 

and Frey's (2000) test. The results of these tests are displayed in Table 6. The null 

hypothesis, which states that the ES (95%) estimates are correct, is rejected for all 

thresholds at both 5% and 1% probability. However, the hypothesis that the ES (99%) 

estimates are correct is rejected at 5% for all thresholds, but not at 1%. 

The results presented in this section indicate that the choice of threshold in the 

framework of the POT method may not be relevant in quantifying market risk when we 

use the VaR and ES measures for this task.  

 

 
9 For the forecasting period considered in this study, which has 1258 observations, the expected number of 

exceptions is 63 at a 95% confidence level and 13 at a 99% confidence level. 
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3.5 Analysing the sensitivity of forecasting daily capital charges to the selected 

threshold 

In this section, we carry out an empirical application in which we evaluate the 

sensitivity of the daily market risk capital requirement (DCR) to the threshold choice. For 

this proposal, we follow Chang et al. (2019) and calculate the DCR according to Equation 

(19). Figure 6 shows the mean of the DRC calculated on the base of the ES measure at a 

99% confidence level for each of the thresholds selected.  

The visual inspection of this Figure suggests that there is a large set of thresholds 

(85th to 95th) that provide similar results, observing some differences in the lowest (80th 

to 84th) and highest (96th to 99th) thresholds. Table 7 which shows the mean, standard 

deviation and range of daily capital requirements, confirms these previous results. For a 

large set of thresholds (80th to 95th proxy) the differences in DRC are under 5 basis points. 

This implies that for investment portfolios worth 1 million euros, the differences do not 

exceed 50 thousand euros. However, for thresholds outside this range, the differences are 

somewhat greater.  

4. Robustness Analysis   

In the above section, we show that in the framework of the POT approach, there 

is a set of thresholds that provides a similar market risk estimate. It is due to the fact that 

the GPD quantiles are not sensitive to the threshold choice. Just only for the threshold 

99th, some differences are found. To corroborate the validity of this result, in this section, 

we extend the study to a set of 14 assets. In accordance with the performed study for the 

S&P500, for each of these assets, we select a set of 20 thresholds, from the 80th percentile 

to 99th percentile. For each threshold selected, first, we apply the conditional POT 

approach to analyze the sensitivity of the GPD quantiles to the threshold choice. Second, 

we obtain forecast VaR and ES measures 1 day ahead and analyze the differences among 

them for the set of thresholds selected. To last, we study the sensitivity of the market risk 

capital charges to the threshold choice.  

Before analyzing the accuracy of the market risk measure, we evaluate the 

sensitivity of high quantiles from Generalized Pareto distribution to changes in the 

threshold. As in the case of S&P500, for this analysis, we just only focus on the high 

quantiles (95%, 96%, 97%, 98% and 99%) as they are the only relevant quantiles in 
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quantifying market risk. The quantile of the GPD is calculated using Equation (6). Figure 

7 displays the GPD quantiles as a function of the threshold for all assets considered. 

Again, what draws our attention is that the line representing the quantiles as a function of 

the threshold is relatively flat in the threshold range (80th to 96th). Just in the case of the 

high threshold, corresponding to the 97th to 99th percentiles, some differences are 

observed, especially for the threshold corresponding to the 99th percentile. For this 

threshold, the differences are around 25 basis points becoming 50 basis points for some 

assets as the Merval index.  

After checking that the GPD fits well the upper tail of the distribution of the assets 

for the set of thresholds considered, we calculate the market risk measure at the 95% and 

99% confidence levels. For evaluating the accuracy of the VaR estimates, we use the 

standard tests that we presented in Section 2.4: LRuc, LRind, LRcc and DQ. For each asset, 

Table 8 displays the number of times that each of these tests is rejected for the 20 

thresholds selected.  

In the footnote in Table 8, we indicate the set of thresholds for which the null 

hypothesis is rejected. For instance, for CAC40 at a 95% confidence level, LRuc test is 

rejected once for the threshold corresponding to the 99th percentile. The results obtained 

for VaR are as follows. According to LRuc tests, in 7 of the 15 considered assets, we do 

not find evidence against the null hypothesis that the “VaR(5%) estimate is accurate”. 

This result is independent of the selected threshold, although, for certain indexes, this 

hypothesis is rejected for some tests performed over the threshold corresponding to the 

99th percentile. The results found for VaR at the 99% confidence level are even more 

conclusive than those for VaR at the 95% confidence level. According to LRuc tests, in 

14 of the 15 considered assets, we do not find evidence against the null hypothesis that 

the “VaR (1%) estimate is accurate”. In certain cases, the accuracy tests provide evidence 

against the null hypothesis; however, in these cases, the rejection does not depend on the 

threshold selected. For instance, for the Cooper commodity, the DQ test rejects the null 

hypothesis for all thresholds. These results suggest that the quantification of the risk 

through the VaR measure does not depend on the threshold selected for this objective.  

To test whether the ES estimations are correct, we use the procedure proposed by 

McNeil and Frey (2000) test. Overall, we do not find evidence against the null hypothesis 
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that the average of the discrepancy measure is equal to zero indicating that all the 

thresholds provide correct ES estimations for both 95% and 99% confidence levels. 

The results presented in this section corroborate those obtained for S&P500, 

indicating that the quantification of market risk through the VaR and ES measures does 

not depend on the threshold selected for applying the POT method.  

To last, for all assets, we calculate the market risk capital requirement on the base 

of the ES at 99%. Table 9 shows the mean of these requirements.  Again we find that in 

general for all assets there is a wide set of thresholds that give similar results. Just only 

the extreme thresholds provide capital requirements something different. If the aim of a 

financial institution is to minimize the market risk capital charges, the optimal threshold 

is the threshold corresponding to 90th percentile for six of the 14 assets considered. For 

three indexes (IBEX35, Merval and Nikkei) the highest thresholds (98th and 99th) are the 

best, while for the commodities, the thresholds that minimize market risk capital 

requirement are the lowest(80th). 

5. Conclusions 

The conditional Extreme Value Theory has been proven to be one of the most 

successful in estimating market risk. The implementation of this method in the framework 

of the POT model requires choosing a threshold return for fitting the Generalized Pareto 

distribution. Threshold choice involves balancing bias and variance. To determine the 

optimal threshold, several techniques have been proposed such as graphic methods, ad 

hoc methods, or methods based on goodness-of-fit contrasts. However, none of these 

techniques have been proven to provide better results than others. 

In this paper, we ask if the threshold choice is relevant in measuring market risk. 

In other words, in this study, we assess to what extent the selection of the threshold is 

decisive in quantifying the market risk. To measure market risk, we have used the Value 

at Risk (VaR) and Expected Shortfall (ES) measures. The study has been done for the 

S&P500 index.  

Previously, we analyse both, the sensitivity of the parameter estimates and GPD 

quantiles to the threshold choice. The results obtained are as follows. First, we find that 

following the literature, the parameter estimations are very sensitive to the selected 

threshold for estimating GPD. However, the quantiles of the GPD do not change much 
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when the threshold changes, particularly for high quantiles (95th, 96th, 97th, 98th and 99th), 

which are relevant in risk estimation. Second, for a large set of thresholds (from the 80th 

percentile to the 96th percentile), the VaR estimations are practically equivalent. A similar 

finding occurs for the ES measure. In the last application, we calculate the market risk 

capital requirements on the basis of the ES(99%) estimations. The results reveal that there 

is a set of thresholds that provides the same results finding some differences for the higher 

percentiles.  

The results obtained indicate that from the market risk management point of view, 

there is not an optimal threshold but that there is a set of optimal thresholds which provide 

similar market risk measures. Thus, we can conclude that in market risk estimation the 

researchers and practitioners should not focus excessively on the threshold choice, as a 

wide range of them produce the same risk estimates.  

To corroborate these results, we have extended the S&P500 index study to a set 

of 14 assets (stock market indexes, commodities and exchange rates). The results obtained 

for these assets corroborate the results obtained for S&P500.  

To last, although overall the quantification of the risk does not depend on the 

threshold choice, for a certain threshold some differences are found therefore, the 

financial institution may be interested in choosing the threshold that minimizes the market 

risk capital requirement.   
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Figure 1. S&P500 
 

 

 

Figure 2.  GPD 

  

Note: In the left plot, GPD is fitted to 1107 exceedances over the threshold of 0.74%. In the right plot, GPD is fitted to 

56 exceedances over the threshold of 2.76%.  

 

 

 

𝐾𝑆_𝑡𝑒𝑠𝑡 = 0.047 

 

𝐾𝑆_𝑡𝑒𝑠𝑡 = 0.071 
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Figure 3. Maximum Likelihood Estimations GPD parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4. GPD quantiles S&P500

 

Note: GPD quantiles at 95%, 96% 97%, 98%, and 99% probability are displayed as a function 

of the thresholds. 
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Figure 5. Mean Excess Plot 

 

 

Figure 6. Mean Market Risk Capital Requirement calculated on the ES measure 
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Figure 7. GPD quantiles all assets. 
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                                              Table 1. Basel Accord Penalty Zones 

 Zone  Number of exceptions  k  

 Green  0 to 4  3  

 

Yellow  

5 

6 

7 

8 

9 

 

3.4 

3.5 

3.65 

3.75 

3.85 

 

 Red  10 or more  4  

       Note: The number of exceptions is given for 250 trading days. 

 

Table 2. Descriptive Statistics  

 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 
Jarque 

Bera 

S&P 500 0.0214 0.0639 10.957 -12.765 1.2391 
-0.401* 

(0.033) 

11.067* 

(0.066) 

28334 

(0.000) 

Note: This table presents the descriptive statistics of the daily returns of S&P500. The sample period is from January 3rd, 2000 

to December 30th, 2021. The index return is calculated as Rt=100(ln(Pt)-ln(Pt-1)) where Pt is the index level for period t. Standard 

errors of the skewness and excess kurtosis are calculated as n/6  and n24  respectively. The JB statistic is distributed 

as the Chi-square with two degrees of freedom. (*) denotes significance at the 5% level.  

 

Table 3. Maximum Likelihood Estimations (GPD) 

Percentiles 
Threshold 

return 
Exceedances 𝜉 𝜎 KS test  

Critical  
Value 

80
th

 0.74 1107 0.003 (0.024)  0.722 (0.028)  0.047  0.041* 

81
th

 0.78 1052 0.006 (0.025) 0.718 (0.028) 0.048 0.042* 

82
th

 0.82 996 0.009 (0.025) 0.714 (0.029) 0.050 0.043* 

83
th

 0.87 941 0.013 (0.026) 0.706 (0.029) 0.051 0.044* 

84
th

 0.92 886 0.020 (0.028) 0.695 (0.030) 0.048 0.046* 

85
th

 0.98 830 0.042 (0.031) 0.660 (0.030) 0.033 0.047 

86
th

 1.04 775 0.063 (0.034) 0.633 (0.031) 0.019 0.049 

87
th

 1.10 720 0.079 (0.037) 0.614 (0.032) 0.023 0.051 

88
th

 1.15 664 0.075 (0.038) 0.623 (0.033) 0.024 0.053 

89
th

 1.20 609 0.080 (0.040) 0.621 (0.035) 0.026 0.055 

90
th

 1.26 554 0.070 (0.040) 0.639 (0.037) 0.030 0.058 

91
th

 1.32 498 0.073 (0.042) 0.641 (0.039) 0.034 0.061 

92
th

 1.41 443 0.087 (0.046) 0.626 (0.041) 0.031 0.065 

93
th

 1.51 388 0.105 (0.051) 0.611 (0.043) 0.028 0.070 

94
th

 1.62 332 0.135 (0.058) 0.585 (0.046) 0.039 0.075 

95
th

 1.72 277 0.124 (0.061) 0.613 (0.052) 0.046 0.082 

96
th

 1.88 222 0.173 (0.075) 0.572 (0.057) 0.058 0.091 

97
th

 2.07 166 0.206 (0.091) 0.567 (0.067) 0.072 0.106 

98
th

 2.28 111 0.207 (0.115) 0.628 (0.093) 0.045 0.129 

99
th

 2.76 56 0.229 (0.171) 0.696 (0.149) 0.071 0.182 

Note: 𝜉: Shape parameter; 𝜎: scale parameter. The standard deviation is given in parentheses. KS test 

is the Kolmogorov-Smirnov test. The critical value at a 95 % of confidence level is calculated as 

1.36/√(n). In the cases denoted with (*), we can not reject the null hypothesis at 1%. The critical value 

at a 99% of confidence level is calculated as 1.63/√(n).  
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Table 4: Differences in quantiles 

                             Panel (a)                    Panel (b) 

 Differences in quantiles 

𝒖 95% 96% 97% 98% 99% 

80
th

 3 4 6 6 6 

81
st

 3 4 5 6 6 

82
nd

 3 4 5 6 6 

83
rd

 3 4 5 5 5 

84
th

 2 3 4 5 4 

85
th

 1 2 2 2 2 

86
th

 0 1 1 1 0 

87
th

 0 0 -1 -1 -1 

88
th

 0 0 0 0 0 

89
th

 0 0 -1 -1 -1 

90
th

 0 0 0 0 0 

91
st

 0 0 0 0 0 

92
nd

 0 0 0 0 0 

93
rd

 0 0 -1 -1 -1 

94
th

 0 0 -1 -2 -3 

95
th

 1 0 -2 -4 -5 

96
th

 1 0 -2 -3 -4 

97
th

 5 2 -1 -4 -7 

98
th

 8 4 0 -4 -9 

99
th

 5 2 -2 -6 -10 
 

 Differences in quantiles 

𝒖 95% 96% 97% 98% 99% 

80
th

 -5 0 5 11 15 

81
st

 -5 0 5 10 15 

82
nd

 -5 0 5 10 15 

83
rd

 -5 -1 4 9 14 

84
th

 -6 -1 3 9 13 

85
th

 -7 -3 2 7 11 

86
th

 -7 -4 0 5 9 

87
th

 -8 -5 -1 3 8 

88
th

 -8 -5 -1 4 9 

89
th

 -8 -5 -1 3 8 

90
th

 -8 -4 0 4 9 

91
st

 -8 -5 -1 4 9 

92
nd

 -8 -5 -1 3 8 

93
rd

 -7 -5 -2 2 6 

94
th

 -7 -5 -2 1 4 

95
th

 -7 -5 -2 1 5 

96
th

 -3 -2 -1 0 2 

97
th

 0 0 0 0 0 

98
th

 -3 -3 -2 -2 -1 

99
th

 4 3 3 2 0 
 

 

  

Note: In the left plot the GPD quantiles at 95%, 96% 97%, 98%, and 99% probability are displayed as a function 

of the thresholds. The tables capture the differences in quantiles related to the 90th (Panel (a)) and 97th percentile 

(Panel (b)). We shaded the differences that oscillate between 3 and 4 basis points in light gray. Differences greater 

than 4 basis points are shaded in dark gray.  

 

Table 5. Differences between VaR and ES estimates. Descriptive statistics. Optimal threshold 90% 

 
95% confidence level 99% confidence level 

Threshold 

(u) 

VaR ES VaR ES 

Mean S.D. Max Min Mean S.D. Max Min Mean S.D. Max Min Mean S.D. Max Min 

80% -3 2 -1 -23 -4 3 -1 -24 -5 4 -2 -33 1 1 8 -1 
81% -3 2 -1 -22 -3 2 -1 -23 -5 3 -1 -32 1 1 8 0 
82% -3 2 -1 -19 -3 2 -1 -20 -4 3 -1 -27 1 1 8 0 
83% -2 2 -1 -18 -3 2 -1 -18 -4 3 -1 -25 1 1 9 0 
84% -2 2 -1 -16 -2 2 -1 -15 -3 2 -1 -21 1 1 9 0 
85% -1 1 0 -8 -1 1 0 -5 -2 1 0 -6 1 1 8 0 
86% 0 0 0 -2 0 0 2 -1 0 1 6 -1 0 0 3 0 
87% 0 0 1 0 0 0 5 0 1 1 10 0 0 0 0 -2 
88% 0 0 0 0 0 0 4 0 0 1 8 -1 0 0 0 -1 
89% 0 0 2 0 0 1 7 -1 0 2 15 -2 0 0 1 -3 
90% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

91% 0 0 1 0 0 0 4 0 1 1 9 -1 0 0 0 0 
92% 0 0 0 0 0 1 6 0 1 1 13 -1 0 0 0 0 
93% -1 0 0 -3 1 1 8 0 3 2 21 1 0 0 1 -1 
94% -1 1 0 -7 1 1 10 0 4 3 31 1 0 0 1 -1 
95% 0 0 2 -1 1 1 9 0 3 2 20 0 0 0 1 -2 
96% -3 3 0 -28 1 1 5 0 5 4 40 1 0 1 6 0 
97% -6 4 -2 -38 0 1 3 -2 6 5 45 2 1 1 7 0 
98% -8 4 0 -27 -1 2 14 -5 7 5 50 2 1 1 5 -1 
99% 9 28 229 -45 7 16 140 -19 8 9 84 2 0 1 2 -3 

Note: This table shows some descriptive statistics of the differences between the VaR and ES estimations obtained under 

the threshold uj (j=1, …, 20) and the VaR and ES estimates obtained under the optimal threshold. The optimal threshold is 

given by the 90th percentile. We shaded in light gray the differences that oscillate between 3 and 4 basis points. Differences 

greater than 4 basis points are shaded in dark gray. 

 

  



Chapter III. Assessing the importance of the choice threshold in quantifying market risk 

under POT approach (EVT). 

 

 
63 

Table 6: Backtesting VaR and ES for S&P500 (2017-2021) 

 95 % confidence level 99% confidence level 

 Exceptions VaR ES Exceptions VaR ES 

Threshold Nº % LRuc LRind LRcc DQ MF Nº  % LRuc LRind LRcc DQ MF 

80
th

 58 4.61 0.67 0.38 0.62 0.01 0.01 18 1.43 0.34 0.45 0.48 0.18 0.03 

81
st 58 4.61 0.67 0.38 0.62 0.01 0.01 18 1.43 0.34 0.45 0.48 0.18 0.03 

82
nd 58 4.61 0.67 0.38 0.62 0.01 0.01 18 1.43 0.34 0.45 0.48 0.18 0.03 

83
rd 58 4.61 0.67 0.38 0.62 0.01 0.01 18 1.43 0.34 0.45 0.48 0.18 0.03 

84
th

 58 4.61 0.67 0.38 0.62 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03 

85
th

 58 4.61 0.67 0.38 0.62 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03 

86
th

 58 4.61 0.67 0.38 0.62 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03 

87
th

 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.04 

88
th

 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03 

89
th

 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.04 

90
th

 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03 

91
st

 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03 

92
nd 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03 

93
rd

 58 4.61 0.67 0.38 0.62 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.03 

94
th

 58 4.61 0.67 0.38 0.62 0.01 0.00 19 1.51 0.26 0.48 0.42 0.23 0.05 

95
th

 59 4.69 0.74 0.24 0.47 0.01 0.00 18 1.43 0.34 0.45 0.48 0.18 0.04 

96
th

 58 4.61 0.67 0.38 0.62 0.01 0.00 19 1.51 0.26 0.48 0.42 0.23 0.05 

97
th

 56 4.45 0.55 0.54 0.69 0.01 0.00 19 1.51 0.26 0.48 0.42 0.23 0.05 

98
th

 55 4.37 0.49 0.51 0.64 0.00 0.00 19 1.51 0.26 0.48 0.42 0.23 0.05 

99
th

 70 5.56 0.55 0.32 0.51 0.00 0.07 20 1.59 0.20 0.52 0.36 0.28 0.08 

Note: The table shows the p-value for the following statistics: the unconditional coverage test (LRuc), statistics for serial 

independence (LRind), the Conditional Coverage test (LRcc), the Dynamic Quantile test (DQ) and McNeil and Frey test (MF).  

 

                       Table 7. Statistics of the daily capital requirement (ES 99%) 

 Mean S.D. Range 

80% 11,09 6,07 31,11 
81% 11,09 6,07 31,12 
82% 11,09 6,07 31,11 
83% 11,09 6,07 31,11 
84% 11,09 6,07 31,11 
85% 11,09 6,07 31,13 
86% 11,12 6,08 31,19 
87% 11,14 6,09 31,23 
88% 11,13 6,09 31,22 
89% 11,14 6,10 31,26 
90% 11,13 6,09 31,22 
91% 11,13 6,09 31,23 
92% 11,13 6,09 31,22 
93% 11,13 6,09 31,23 
94% 11,25 6,05 31,23 
95% 11,14 6,10 31,24 
96% 11,23 6,04 31,17 
97% 11,22 6,02 31,16 
98% 11,22 6,01 31,17 
99% 11,45 6,50 33,96 

Note: The table shows the mean of forecasting DCR for the S&P500. The shaded cells report the mean DCR 

with a difference of less than 5 basis points. 
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Table 8.  Backtesting VaR and ES all assets. 

 95% confidence level 99% confidence level 

 VaR ES VaR ES 

  LRuc LRind LRcc DQ MF LRuc LRind LRcc DQ MF 

CAC40 1(1) 0 0 1(1) 1(3) 0 0 0 0 0 

DAX30 0 0 0 0 2(4) 0 0 0 0 0 

FTSE100 0 0 0 0 19(9) 0 0 0 0 0 

HANG SENG 0 0 0 1(1) 0 0 0 0 0 0 

IBEX35 1(1) 0 1(1) 0 1(1) 0 0 0 0 0 

MERVAL 0 0 0 0 0 0 0 0 0 0 

NIKKEI 2(2) 0 1(1) 0 1(1) 0 0 0 0 0 

S&P500 0 0 0 20(10) 15(5) 0 0 0 0 0 

COPPER 0 0 0 0 0 0 0 0 20(10) 0 

GOLD 1(1) 0 0 0 0 0 0 0 0 0 

OIL BRENT 2(2) 0 1(1) 1(1) 4(8) 17(6) 0 4(7) 0 0 

SILVER 1(1) 0 1(1) 0 1(1) 0 0 0 0 0 

$/€ 1(1) 0 1(1) 0 0 0 0 0 0 0 

₤/€ 2(2) 0 2(2) 0 0 0 0 0 2(2) 0 

¥/€ 0 0 0 0 0 0 0 0 1(1) 0 

Note: The table counts the number of rejections for the 20 thresholds considered. Reject for: (1) threshold 

corresponding to 99th percentile (u=99%); (2) thresholds corresponding to 98th and 99th percentiles; (3) threshold 

corresponding to 97th percentile; (4) thresholds corresponding to 96th and 97th percentiles; (5) thresholds 

corresponding to the interval [84th, 98th]; (6) thresholds 81st  and the interval [84th, 99th]; (7) thresholds in the 

percentiles range [95th, 98th]; (8) thresholds corresponding to the interval  [93rd, 96th]; (9) All thresholds except for 

that corresponding to 99th percentile; (10) All thresholds. For the case of ES backtesting, the acceptance level of the 

null hypothesis is set at 1%. 
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Table 9. Forecasting daily capital charges based on ES measure (99% confidence level) 

Threshold CAC40 DAX FTSIE 100 HANG SENG IBEX 35 MERVAL NIKKEI COPPER GOLD BRENT SILVER $/€ ₤/€ ¥/€ 

80th 11.48 12.24 10.18 12.22 12.67 27.36 12.20 14.82 9.76 26.27 20.95 4.57 4.23 5.88 

81th 11.46 12.23 10.18 12.22 12.67 27.35 12.20 14.82 9.76 26.44 21.03 4.57 4.23 5.89 

82th 11.46 12.19 10.18 12.20 12.65 27.35 12.21 14.82 9.77 26.28 21.14 4.57 4.23 5.89 

83th 11.46 12.20 10.18 12.59 12.65 27.34 12.19 14.87 9.77 26.29 21.23 4.58 4.23 5.89 

84th 11.45 12.20 10.18 12.21 12.64 27.35 12.15 14.91 9.77 26.49 21.11 4.58 4.23 5.90 

85th 11.46 12.19 10.18 12.59 12.64 27.34 12.13 14.95 9.77 26.50 21.14 4.59 4.23 5.89 

86th 11.46 12.19 10.19 12.59 12.64 27.35 12.13 14.96 9.77 26.49 21.15 4.59 4.23 5.89 

87th 11.46 12.17 10.19 12.59 12.63 27.31 12.12 14.97 9.77 26.50 21.27 4.60 4.23 5.89 

88th 11.43 12.17 10.18 12.58 12.62 27.28 12.12 14.98 9.88 26.49 21.26 4.61 4.22 5.89 

89th 11.43 12.16 10.16 12.58 12.61 27.28 12.11 14.98 9.89 26.50 21.23 4.63 4.21 5.88 

90th 11.43 12.32 10.16 12.58 12.60 27.27 12.11 14.97 9.91 26.51 21.26 4.64 4.24 5.88 

91th 11.41 12.31 10.17 12.58 12.58 27.21 12.11 14.96 9.92 26.76 21.19 4.67 4.23 5.88 

92th 11.42 12.32 10.13 12.70 12.59 27.09 12.11 14.98 9.93 26.80 21.15 4.70 4.22 5.90 

93th 11.42 12.32 10.12 12.69 12.54 27.05 12.11 14.98 9.94 27.14 21.69 4.71 4.22 5.93 

94th 11.42 12.32 10.22 12.68 12.52 26.99 12.12 15.12 9.94 27.18 21.24 4.76 4.22 5.96 

95th 11.42 12.35 10.22 12.70 12.49 26.96 12.14 15.12 9.93 27.45 21.72 4.88 4.24 6.05 

96th 11.42 12.36 10.20 12.68 12.46 26.90 12.08 15.19 9.93 28.03 21.79 4.94 4.23 6.18 

97th 11.61 12.40 10.19 12.63 12.50 26.88 11.99 15.16 9.95 27.65 21.73 5.10 4.23 6.24 

98th 11.60 12.38 10.21 12.62 12.40 26.85 11.92 15.13 9.94 27.46 21.75 4.95 4.23 6.58 

99th 11.62 12.45 10.20 12.61 12.32 27.26 11.94 15.15 9.90 27.37 22.06 5.62 4.27 7.40 

Note: The table shows the mean of forecasting DCR for all the assets considered. We remark in bold the minimum mean daily capital requirement and shadow the cases in which the 

differences regarding the 90th percentile are less than 5 basis points. 

 



 

 

66 

Chapter IV 

Assessing the selection of block size in the 

quantification of market risk under the Block Maxima 

approach (EVT) 

 

Abstract 

The conditional Extreme Value Theory (EVT) has been proven to be the most successful 

performing market risk estimation. This study focuses on the classical EVT, i.e Block 

Maxima Method (BMM). One key issue in implementing this approach requires the 

choice of block size for fitting the Generalized Extreme Value (GEV) distribution. The 

aim of the present study is two-fold. Firstly, we investigate the sensitivity of the 

parameters of the GEV distribution for different block lengths, especially we pay attention 

to the changes in the estimation of the shape parameter, which determines the weight of 

the tail in the distribution. Secondly, we also want to find out whether the selection of 

block size is significant in the quantification of market risk. For this latter purpose, we 

assess the sensitivity of risk measures such as Value at Risk and Expected Shortfall to 

changes in block sizes. With this in mind, we attempt to identify whether there is an 

optimal block size that leads to accurate risk estimates. The study has been done for a 

daily S&P500 stock index and later extended to a large set of assets to corroborate the 

results obtained. The findings indicate that the BBM does not provide satisfactory results 

in estimating market risk, as the results are highly sensitive to the block size selected. 

  

 

 

 

 

 

Keywords: Extreme Value Theory, Block Maxima Method, Value at Risk, Expected 

Shortfall, Generalized  Extreme Value Distribution. 
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1. Introduction  

Extreme Value Theory (EVT) has emerged as one of the most important statistical 

disciplines for predicting the probability of unusual events from observed outliers. More 

formally, EVT focuses on the limiting distribution of the extreme values observed over a 

long period, which is independent of the distribution of the values themselves. Extreme 

Value Theory is well-established for many sciences such as engineering, insurance, and 

meteorology among others (see e.g., Embrechts et al., 1999; Reiss and Thomas, 2007). In 

this sense, it has been proven to be very useful in applications as disparate as the analysis 

of the strength of materials or the probability of recurrence of natural disasters such as 

earthquakes or floods. 

More recently, EVT has been gaining ground in the financial field. This increased 

popularity is due to the interest shown by the financial community in analyzing the impact 

of extreme variations, such as stock market crashes. Since the seminal work of Longin 

(1998), there have been several studies in the literature where the empirical applicability 

of EVT has been used to estimate extreme risks of the financial market (see, among 

others, Novales and Garcia-Jorcano, 2019; Mögel and Auer, 2018; Abad and Benito, 

2013, Brooks et al., 2005). Also, an interesting discussion about the potential of extreme 

value theory in risk management is given in Diebold et al. (1998). 

In the EVT context, there are two approaches. One of them, the Block Maxima 

Method (BMM), models directly the distribution of minimum or maximum realizations. 

The other one, Peaks over Threshold (POT), models the exceedances above a particular 

threshold.  

Within the POT model, the extreme values above a high threshold are modeled 

using a generalized Pareto distribution (GPD). The main difficulty of this approach lies 

in the selection of the threshold, as different thresholds may provide different results. In 

the context of risk management, it is interesting to know to what extent the selection of 

the threshold impacts risk estimation. This issue has been largely studied and discussed 

in Chapter III1 of the present Thesis.  

 
1 Chapter III has been published in the Journal Risk Management. The complete reference is Benito Muela, 

S., López-Martín, C. and Navarro Cervantes, M. Á. (2023). “Assessing the importance of the choice 

threshold in quantifying market risk under the POT approach (EVT)”. Risk Management 25, 6. DOI: 

10.1057/s41283-022-00106-w (Available online 6th January 2023). 
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In contrast, with the POT method, BMM is based on the idea of dividing the 

dataset into m blocks of size n and then fitting the Generalized Extreme Value distribution 

(GEV) to the maximum m-block data series. As in the case of the POT method, selecting 

the block size is not trivial. The fit of the GEV distribution will be inaccurate if the block 

size is too small, leading to biased estimates, while a block size too large will lead to a 

smaller number of extreme observations and consequently a higher variance (Coles et al., 

2001).  

When we examined the literature on the use of the BMM, we find few recent 

papers that propose techniques for the selection of optimal block size (Dkengne et al., 

2020; Özari et al., 2019; Wang et al., 2016). But, in general, the choice is done without 

making any assumptions (Santinelli et. al., 2014; Singh et al., 2013) or according to a 

natural time division (Engeland et. al., 2004; Gilli et. al., 2006).  

In the same spirit as Chapter III, in this study, we first investigate the sensitivity 

of the parameters of the GEV distribution for different block lengths, and second, we 

attempt to answer the question of whether block size selection is a determinant in the 

accurate estimation of market risk. Specifically, in this Chapter, we want to find out 

whether the block size choice is important in quantifying market risk and assess the 

sensitivity of the risk measures to changes in block sizes. As in the previous Chapter, the 

risk measures used in this analysis are Value at Risk (VaR) and Expected Shortfall (ES).  

Finally, a third contribution emerges from this work. As in this study, we use 

similar data to those used in Chapter III we compare the performance of the BM method 

with the POT method in estimating market risk2. Regarding the performance of the BM 

method in comparison to the POT method, the literature is somewhat ambiguous in the 

area of finance. For instance, Flugentiusson (2012) indicates the BMM as inferior to the 

POT method. Similar results are presented by Marinelli et al. (2007), Caires (2009) and 

Coles (2001). This last author says that “modeling only block maxima is a wasteful 

approach to extreme value analysis if other data on extremes are available”. The work of 

Jobst (2007) also favors the use of POT, giving less effectiveness to BMM. His 

justification is based on the fact that the instability of the parameters at high percentile 

levels is largely caused by the lack of sufficient empirical data, which permits only simple 

parametric models of asymptotic tail behavior. In this case, the POT method seems to be 

 
2 Initially we present an exhaustive analysis for the S&P500 and later we extend the work to a set of 14 

assets, the same as in the previous Chapter. 
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the most useful to derive out-of-sample estimates of asymptotic tail behavior. Carvalhal 

and Mendes (2003), however, obtain satisfactory results for Asian financial markets. 

They show that the market risk estimations obtained over a one-month under the BM 

method, are all accurate.  Szubzda (2019), compares VaR estimates obtained through POT 

and BMM taking two block sizes (monthly and bimonthly). VaR estimates based on the 

BM method make the estimation more conservative than those obtained through the POT 

method, providing more efficient results during crisis periods, but it may, in exchange, be 

more costly for financial institutions during calm periods. Also, Qian Yiping et. al. (2010) 

conducted empirical research on loss data of the operational risk from Chinese 

commercial banks and pointed out that the BMM could obtain a more accurate result with 

fewer data. Cunnane (1973) states that for ξ = 0 and maximum Likelihood estimators, the 

POT estimate for a high quantile is better only if the number of exceedances is larger than 

1.65 times the number of blocks. Similar conclusions are found in Wang (1991) who 

shows that POT is as efficient as BMM for high quantiles, based on the Probability-

weighted moments (PWM) estimator. Madsen et al. (1997) suggest that POT is preferable 

for ξ > 0 again, only with the number of exceedances larger than the number of blocks. 

In this context, this study contributes to the existing literature by shedding some 

light on the performance of the Maximum Block model concerning the POT method in 

the area of risk management, and more specifically with regard to estimating market risk. 

The remainder of the paper is organized as follows. In Section 2, we show the 

methodology used for the study. In Section 3, we submit the data and the results obtained 

for the particular case of the S&P500 index. Section 4 displays a robustness analysis. 

Section 5 shows the comparison between POT and BMM VaR results. The main 

conclusions are presented in Section 6.  
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2. Theoretical Framework 

2.1 Extreme Value Theory 

Extreme Value Theory (EVT) relates to the asymptotic behavior of extreme 

observations of a random variable. Many researchers have contributed to the theoretical 

discussion on EVT, see for instance, Embrechts et al. (1997), Reiss and Thomas (1997), 

and Coles (2001) among others. Even though EVT has previously found large 

applicability in climatology and hydrology, there also are some applications of this theory 

in finance literature in recent years, see for instance, Novales and Garcia-Jorcano, (2019), 

Mögel and Auer (2018), Louzis et al. (2012), Brooks et al. (2005) and Abad and Benito 

(2013).  

Within the EVT context, two approaches let to capture the extreme value of the 

tails distribution: the first one is based on Generalized Extreme Value Distribution 

(GEVD), which models the distribution of minimum or maximum realizations. This 

approach is known as the Block Maxima (Minima) Method (BMM). The second one is 

the Peak Over Threshold (POT) approach, based on the Generalized Pareto Distribution 

(GPD) (Pickands 1975), which models the exceedances of a particular threshold. As it 

was said in the introduction, this Chapter, focused on the study of extremes in financial 

markets using BMM.  

The Block Maxima Method consists in dividing the dataset into m blocks of size 

n. Let be 𝑋1𝑚, . . . , 𝑋𝑛𝑚 a series of independent and identically distributed random 

variables from a time interval m, then the maximum values can be defined as 𝑀𝑚  =

 𝑚𝑎𝑥(𝑋1𝑚, . . . , 𝑋𝑛𝑚). The CDF of  𝑀𝑚 is represented as: 

𝑃(𝑀𝑚 ≤ 𝑥) = 𝑃(𝑋1𝑚 ≤ 𝑥,… . , 𝑋𝑛𝑚 ≤ 𝑥) =∏𝐹(𝑥)

𝑛

𝑖=1

= 𝐹𝑛(𝑥)        (1) 

Since 𝐹(𝑥) is unknown, an approach is to look for an asymptotical distribution 

for a large value of maxima that can be estimated based on extreme data. This is analogous 

to approximating the distributions of sample means by the normal distribution based on 

the central limit theory. 
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Theorem 1. (Fisher and Tippet, 1928; Gnedenko, 1943). 

Given 𝐹𝑛(𝑥) < 1, ∀ 𝑥 < ∞, 𝑀𝑚 converges in probability to 0 for any 𝑥 < 𝑥+, 

where 𝑥+is the upper end-point of F, i.e, the smallest value of x such that 𝐹(𝑥) = 1 or it 

converges to 1 for any 𝑥 ≥ 𝑥+. Thus, to achieve a non-degenerate behavior limit when 

𝑛 ⟶ ∞, 𝑀𝑚 has to be standardized. 

Fisher and Tippet's Theorem states that given a sequence of  𝑏𝑚 > 0, 𝑎𝑚 ∈ 𝑅,  the 

maximum normalized value  𝑀𝑚
∗ =

𝑀𝑚−𝑎𝑚

𝑏𝑚
 converges to a non-degenerated distribution 

𝐻, being this distribution the Generalized Extreme Value distribution (GEVD),  

𝑙𝑖𝑚
𝑚→∞

𝑃𝑟 (
𝑀𝑚−𝑎𝑚

𝑏𝑚
≤ 𝑥) ⟶ 𝐻(𝑥).       (2) 

 2.1.1 Generalized Extreme Value Distribution. 

The algebraic expression for such generalized distribution is as follows:  

𝐻𝜉,𝜇, 𝜎(𝑥) = 𝑒
−[1+𝜉

(𝑥−𝜇)
𝜎

]
−
1
𝜉

 
      (3) 

defined on (1 +
𝜉(𝑥−𝜇)

𝜎
) > 0, where 𝜎 > 0 is the scale parameter, −∞ < µ<∞ is the 

mean, and  −∞ <  < ∞ is known as the shape parameter of the GEV distribution 

and characterizes the tail behavior of the distribution, i.e. the limiting distribution of 

the normalized maximum. Feller (1971, p.279) proves that the shape parameter is 

invariant under time aggregation3.  

The prior distribution is a generalization of the three types of distributions, 

depending on the value taken by  :  

 

 
3 The traditional Extreme Value Theory (EVT) assumes that data is stationarity. When stationarity is 

assumed, parameters that determine the distribution function (Generalized Pareto and Generalized Extreme 

Value distributions) are independent of time. However, in practice, it is often the case that stationarity 

assumptions (such as independence and identical distribution) for financial time series are violated (because 

of clustering property). If the process is non-stationary, the parameters of distributions are time-dependent, 

and the properties of the distribution vary with time. To capture the non-stationarity of extreme data, new 

approaches have been developed in the framework of the extreme value theory. Some applications of these 

new approaches can be found in Cheng and AghaKouchak (2014), Cheng et al. (2014), Ruggiero et al. 

(2010), Chavez-Demoulin and Embrechts (2004) among others. 
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• Gumbel ( =0) type I family.  

𝛬(𝑥) = 𝑒𝑒
−
𝑥−𝜇
𝜎   ∀𝑥 ∈ ℜ       (4) 

• Fréchet ( >0) type II family. 

𝛷𝜉,𝜇,𝜎(𝑥) = {
       0           𝑥 ≤ 𝜇

𝑒−(
𝑥−𝜇
𝜎
)
− 
1
𝜉

 𝑥 > 𝜇
       (5) 

Gumbel and Fréchet's distributions have infinite right endpoints. The main difference 

between them is in the decay of the tail. 

• Weibull ( <0) type III family. This distribution is a short-tailed distribution with 

a finite right endpoint. 

𝛹𝜉,𝜇,𝜎(𝑥) = {𝑒
− (− 

𝑥−𝜇
𝜎
)

−1
𝜉

 𝑥 ≤ 𝜇
  1    𝑥 > 𝜇

       (6) 

Note that the generalized expression of the distribution, 𝐻𝜉,𝜇, 𝜎, is continuous in 

the parameter ξ. Since the shape parameter is related to the decay of the tail of the 

distribution, an important characteristic is that if the distribution of 𝑀𝑚
∗  converges to a 

GEV distribution for block maxima with parameter ξ, then the distribution of exceedances 

over the threshold converges to the GPD with the same parameter ξ (Rodriguez G. 2017). 

2.1.2 Maximum Domains of Attraction 

If  Equation (2) holds for some non-degenerate distribution function H, then F is 

said to be in the maximum domain of attraction of H, written 𝐹 ∈ 𝑀𝐷𝐴(𝐻).  

If the tail of F declines exponentially, then 𝐻𝜉  is of the Gumbel type and ξ=0. 

When it comes to financial modeling, it is often erroneously assumed that the only 

interesting models are the power-tailed distributions of the Fréchet type. Nevertheless, 

the Gumbel type is also interesting because it includes many distributions with much 

heavier tails than normal (McNeil et al. 2005). In this case, some underlying distributions 

in the domain of attraction of 𝐻𝜉  are normal, log-normal, exponential, gamma, and chi-

squared. 

If the tail of F decays by a power function, being the rate of decay 𝛼 = 1/𝜉 also 

known as the tail index of the distribution, then 𝐻𝜉  is of the Fréchet class and 𝜉 > 0. 
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Distributions in its domain of attraction are called fat-tailed distributions (e.g., Pareto, 

Cauchy, Student-t, log gamma, F, and Burr) which are of particular interest in financial 

applications and the most studied in the context of EVT. 

Finally, if the tail of F is finite then 𝐻𝜉  is of the Weibull type and ξ < 0. 

Distributions in the domain of attraction are those with bounded support such as uniform 

and beta distributions. This is the least relevant class for market risk analysis since it 

refers to distributions with finite right endpoints. However, it still could be useful in 

financial modeling in the area of credit risk (McNeil et al., 2005). 

2.2 Block Maxima Method and block size selection. 

The Block Maxima approach has its origin in the field of hydrology, where the 

existence of seasonal periodicity of the observations suggests the application of this 

method. 4 5 We also find its application in the field of finance in studies such as Bekiros 

et al. (2005) in which they compare the predictive ability of Value at Risk (VaR) estimates 

obtained from different techniques, including POT and BMM. 

As discussed in the previous section, BMM is based on the idea of fitting the GEV 

distribution function to the maximum data series. The parameters of GEV distribution 

can be estimated using different techniques, including the Maximum Likelihood 

Estimation (MLE), which is the one we will use later in the empirical study6. In the 

implementation of MLE, it is assumed that the block size is sufficiently large so that 

regardless of whether the observations are dependent or not, the block maxima 

observations can be taken as independent7.  

The idea is therefore to divide the dataset into m blocks of size n. Denote the 

maxima observations per block as 𝑋1𝑚, . . . , 𝑋𝑛𝑚 and the density of the GEV distribution 

as  ℎ𝜉,𝜇,𝜎, the algebraic expression for the log-likelihood is as follows: 

 
4 According to Ferreira and de Haan (2015) the Block Maxima approach may be preferable to POT when 

(i) the observations are not exactly independent and identically distributed (i.i.d.), for example when it 

exists a seasonal periodicity or there is a natural way of blocking the data; or (ii) when they have a short 

dependence that plays a role within blocks but not between them (Katz et al., 2002 and Madsen et al., 1997). 
5 BMM is more often and more effectively used in hydrology (Abad et al., 2013). 
6 These estimates are consistent and asymptotically efficient in the case of 𝜉 > −1/2 as shown in Smith 

(1985). 
7According to McNeil et al (2005) dependence leads generally to a slower convergence to the GEV 

distribution. In this case, may be advisable larger block sizes than are used in the iid case. 
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𝑙(𝜉, 𝜇, 𝜎;𝑋1𝑚, . . . , 𝑋𝑛𝑚) =∑𝑙𝑛 ℎ𝜉,𝜇,𝜎

𝑛

𝑖=1

= 

= −𝑚 𝑙𝑛 𝜎 − (1 +
1

𝜉
)∑𝑙𝑛 (1 + 𝜉

𝑀𝑚𝑖 − 𝜇

𝜎
)

𝑚

𝑖=1

−∑𝑙𝑛

𝑚

𝑖=1

(1 + 𝜉
𝑀𝑚𝑖 − 𝜇

𝜎
)
−1/𝜉

 (7) 

which must be maximized subject to the constraints: 𝜎 > 0 and 1 + 𝜉
𝑀𝑚𝑖−𝜇

𝜎
> 0.  

In the selection of block size, a trade-off arises: the fitting to the GEV distribution 

will be inaccurate if the block size, n, is too small, leading to biased estimates, while a 

block size that is too large will lead to a smaller number of extreme observations per block 

and consequently a higher variance (Coles et al., 2001). 

When we examined the literature on the use of the BMM, we did not find an 

agreed method that allows the selection of the block size. This choice is done either ad-

hoc (Santinelli et. al., 2014; Singh et. al., 2013) or according to a natural time division 

(Engeland et. al.; 2004, Gilli et. al., 2006). Bystörm (2004) already defined the difficulty 

of making the right choice as the “optimal block size problem”.  

Specifically, in the context of financial market data, we find some examples of 

block selection. Christoffersen et al. (1998) suggest a block size of 10 to 15 days to 

adequately model the S&P500 series. Longin (2000) proposes in his paper a block size of 

21 days. McNeil et al. (2005) consider quarterly, semi-annual and annual blocks. 

Lindholm (2015) applies the maximum block method with block sizes 𝑛 = 21, 63, 126, 

and 252, but after an analysis only considers continuing with 𝑛 = 63 (quarterly) to avoid 

the bias-variance problem. Allen et al. (2011) apply BMM on ASX and S&P500 returns 

with quarterly and annual block sizes. Carvalhal and Mendes (2003) apply blocks length 

of one month (𝑛 = 21), two months (𝑛 = 42), three months (𝑛 = 63), and six months 

(𝑛 = 126) to Asian stock markets.  

In most papers, the selection of block size is an ad-hoc decision. However, some 

works search for the most appropriate block selection using different techniques. Tsay 

(2010) suggests choosing a block size by evaluating the model fit based on procedures 

such as parameter evaluation and distribution fit plots. Recent works such as Özari et. al., 

(2019); Wang et. al., (2016), and Dkengne et al., (2020) perform several methods that 

might be used for selecting the optimal block size. The first one puts the spotlight on the 

need to select an appropriate block size and proposes a simple computational method to 
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specify the optimal block size. The second paper, applied to the engineering field, 

proposes a comprehensive evaluation based on multiple-criteria decision-making, 

dividing the data into blocks and analyzing the fit results graphically and quantitatively 

using goodness-of-fit tests of the GEV distribution function. The third paper proposes an 

automatic method to identify the block size. The proposed scheme is illustrated on two 

datasets, applied to engineering and meteorology fields. 

Following the references aforementioned, in this study, the GEV distribution is 

fitted to the data of maximums that we get from 9 different block sizes corresponding to 

an approximate trading week (5), two weeks (10), a month (21), six weeks (31), two 

months (42), a quarter (63), a semester (126), nine months (189) and a year (252). Then 

we check if they are consistent with the theory. It is to say, we check if the maximum 

sample we get from these block sizes follows a GEV distribution. To do that, we use 

several procedures: (i) graphical methods such as QQ-plot and (ii) computational methods 

such as the Kolmogorov-Smirnov (K-S test), Anderson-Darling test, and Cramer-von 

Mises test. 

 The K-S test quantifies the distance between the theoretical and the empirical 

distribution function. The test statistic is as follows: 

𝐾 =𝑀𝑎𝑥|𝐹(𝑥𝑖) − 𝐹𝑡(𝑥𝑖)| (8) 

where 𝐹(𝑥𝑖) is the observed distribution function of a random sample of n observations 

and is the 𝐹𝑡(𝑥𝑖) is the theoretical distribution. The smaller K the better the goodness of 

fit. The null hypothesis states that there is no difference between the two distributions.  

The Anderson-Darling test is a modification of the KS test and evaluates whether 

a set of data came from a specific distribution population. It is characterized by being 

more sensitive to the tails of the distribution, i.e. it assigns more weight to the tails than 

the K-S test and therefore has better power against fatter tails. The null hypothesis 

assumes that the data follow a certain distribution. The test statistic is as follows: 

𝐴𝐷 = −𝑛
1

𝑛
∑ (2𝑖 − 1)[𝐹(𝑛
𝑖=1 𝑥𝑖) + 𝑙𝑛 (1 − 𝐹(𝑥𝑛−𝑖+1))] (9) 

where i is the ith sample, calculated when the data is sorted in ascending order and n is 

the sample size. 
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Finally, the Cramer-von-Mises test looks at the sum of squares of the differences 

and tests the null hypothesis that a sample comes from a pre-specified population 

distribution. The statistic test is as follows: 

 

𝐶𝑉𝑀 =
1

12𝑛
+∑(𝐹(𝑥𝑖) −

2𝑖 − 1

2𝑛
)
2𝑛

𝑖=1

 
(10) 

2.3 Risk measure. 

The Basel Committee on Banking Supervision (BCBS) introduced the first 

framework for minimum capital requirements for market risk in January 1996. The main 

purpose was to ensure that financial institutions could hold minimum levels of capital that 

would reduce their exposure to market risk by absorbing potential losses arising from 

extreme movements in market prices in times of financial turbulence. 

The subsequent global financial crisis (2008) exposed the weaknesses in the 

design of the market risk requirements, especially revealing the fact that it did not exist 

an adequate capitalization of the financial institutions to cover potential shortfalls. 

In 2017 the Basel Committee on Banking Supervision published a reform with 

standards for minimum capital requirements for market risk, which were later revised in 

2019. These revisions were expected to come into effect in 2022. 

One of the aspects that have been the subject of attention and review in the 

regulatory framework concerns the internal models approach for measuring market risk. 

These internal models are based on risk measures such as Value at Risk (VaR) and 

Expected Shortfall (ES). 

2.3.1 Value at Risk (VaR). 

Among the market risk measures, the one most widely used by regulators to date 

is the Value at Risk measure (VaR) (Morgan, 1996). Jorion (2001) defined VaR as “the 

worst expected loss over a given horizon under normal market conditions at a given level 

of confidence”. Thus, VaR is a conditional quantile of the asset return loss distribution.  

More formally, let 𝑋1, 𝑋2, 𝑋𝑛 be identically distributed independent random 

variables representing the financial returns. Using 𝐹(𝑥) to denote the cumulative 

distribution function, 𝐹(𝑥) = Pr (𝑋𝑡 ≤ 𝑥|Ωt−1) conditioned to the information available 

at 𝑡 − 1 (Ωt−1). Assume that {𝑋𝑡} follows the stochastic process given by 
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𝑋𝑡 = 𝜇𝑡 + �̃�𝑡𝑧𝑡       𝑧𝑡~𝑖𝑖𝑑(0,1) (11) 

where �̃�𝑡
2= 𝐸(𝑧𝑡

2|Ωt−1) and 𝑧𝑡 has the conditional distribution function G(z), G(z) =

 P(zt <  z|Ωt−1).  

The VaR with a given probability α ∈ (0, 1), denoted by 𝑉𝑎𝑅(𝛼), is defined as the 

α quantile of the probability distribution of financial returns 𝐹(𝑉𝑎𝑅𝑡(𝛼)) =

𝑃𝑟(𝑋𝑡 < 𝑉𝑎𝑅𝑡(𝛼)) = α, i.e, at a given confidence level α, 𝑉𝑎𝑅𝛼 can be defined as the α-

th quantile of the distribution F:  

𝑉𝑎𝑅𝛼 = 𝐹
−1 (12) 

where 𝐹−1 is the quantile function defined as the inverse of the distribution F. Assuming 

that the extreme observations follow a GEV distribution, then unconditional VaR is 

represented by the quantile function from the GEV, 𝑞𝛼, which is obtained by inverting 

such distribution. Substituting the parameters for the estimated parameters obtained from 

MLE and assuming a short position the expressions of 𝑞𝛼 is as follows: 

𝑞𝛼={
�̂� +

�̂�

�̂�
[1 − {−𝑛𝑙𝑛(1 − 𝛼)}−�̂�], 𝑓𝑜𝑟 𝜉 ≠ 0

�̂� + �̂�{−𝑛𝑙𝑛(1 − 𝛼)}             , 𝑓𝑜𝑟 𝜉 = 0
 (13) 

where n is the block size from which the maximum observed returns are obtained and 

�̂�, �̂�, 𝜉 are the location, scale, and shape estimated parameters.  

McNeil and Frey (2000) proposed an approach that combines the EVT and 

GARCH models and that leads to a more accurate estimation of VaR in comparison with 

simple EVT methods, especially as GARCH models take into account the volatility 

clustering or conditional heteroscedasticity feature of financial returns. The application 

of this approach is most often found in the estimation of VaR using POT. However, it is 

also found in works such as Ghorbel and Trabelsi (2008) that consider a conditional GEV 

distribution and conclude that, although the conditional EVT is more accurate with POT 

than with the BMM, the conditional Block Maxima method for the CAC 40 index at high 

confidence level produce acceptable VaR forecasts. 
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This study extends McNeil and Frey’s approach to the BMM and creates 

conditional VaR forecasts with the maxima following an autoregressive process with an 

APARCH conditional variance structure8. 

Therefore, for a one-day horizon, estimates of the dynamic VaR will be calculated 

as:  

𝑉𝑎𝑅𝑡(𝛼) = 𝜇𝑡 + 𝜎𝑡 𝑞𝛼 (14) 

where  𝜇𝑡 and 𝜎𝑡9 represent the conditional mean and the forecasted volatility of the 

returns respectively and  𝑞𝛼 is the quantile function of the GEVD. (See Appendix A). 

2.3.2 Expected Shortfall (ES) 

An alternative developed by Artzner et al., (1997; 1999) that measures excess 

losses above VaR, i.e, that incorporates both the frequency and the size of extreme events, 

is the Expected Shortfall (ES) or Conditional Value at Risk.  

The ES with a given probability 𝛼 ∈ (0, 1), denoted by 𝐸𝑆(𝛼), is defined as the 

expected size of a loss that exceeds 𝑉𝑎𝑅𝛼, i.e., the average loss in the worst 𝛼 % cases: 

𝐸𝑆𝑡(𝛼) = 𝐸[𝑋| 𝑋 < 𝑉𝑎𝑅(𝛼)] = 𝜇𝑡 + 𝜎𝑡 𝐸[𝑧| 𝑧 < 𝑞𝑛 ] (15) 

This measure was proposed to satisfy some statistical properties of extreme losses 

that are violated by VaR, such as the principle of subadditivity, making ES a more 

consistent risk measure than VaR10. Nevertheless, it is not free from some shortcomings, 

such as its non-elicitable nature, which will make backtesting difficult to assess the 

accuracy of risk estimates. 

 
8  APARCH model is given by the expression:  σt

δ = α0 + α1(|εt−1| − γεt−1)
δ + βσt−1

δ , α0, β, 𝛿 > 0,    α1 ≥

0,−1 < 𝛾 < 1. In this model, the γ parameter captures the asymmetric effects on volatility (Black, 1976), if 

volatility tends to be higher after negative returns, then occurs the so-called leverage effect. 

9 Do not get confused this parameter with the scale parameter of GEV distribution (𝜎). 

10 In 2011, the Basel Committee on Banking Supervision acknowledged the failure of VaR to satisfy 

coherence (BCBS 2011b, pp. 17–20). In 2012, it proposed phasing out VaR (BCBS 2012, p. 20). In 2013, 

the Committee recognized numerous “weaknesses … in using Value-at-Risk (VaR) for determining 

regulatory capital requirements, including its inability to capture tail risk” (BCBS 2013, p. 3). It adopted 

the Expected Shortfall at a confidence level of 97.5 %, “a broadly similar level of risk capture as the 99th 

percentile VaR threshold” (BCBS 2014, pp. 14, 19)”. Chen (2018). 

https://www.mdpi.com/2227-9091/6/2/61/htm#B16-risks-06-00061
https://www.mdpi.com/2227-9091/6/2/61/htm#B17-risks-06-00061
https://www.mdpi.com/2227-9091/6/2/61/htm#B18-risks-06-00061
https://www.mdpi.com/2227-9091/6/2/61/htm#B19-risks-06-00061
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We can define the algorithm of Expected Shortfall (ES) based on the Block 

Maxima Method as follows: 

Let 𝑞𝛼 be the α-th lower quantile for the logarithm returns, thus 𝑞𝛼 = 𝑉𝑎𝑅(𝛼). 

Let 𝑧𝑡 be the standardized maximum returns and 𝑓(𝑧𝑡) be the density function of 

standardized maximum returns 

𝐸𝑆(𝛼) =  −
1

𝛼
∫ 𝑧𝑡𝑓(𝑧𝑡)𝑑𝑧
−𝑞𝑛

−∞

 (16) 

If the standardized logarithm returns follow the extreme-value distribution then, 

𝐸𝑆𝛼(𝛼) = −
𝜎𝑡
𝑛𝛼

∫ 𝑧𝑡(1 + 𝜉𝑧𝑡)
1
𝜉
−1
𝑒𝑥𝑝 [−

1

𝑛
(1 + 𝜉𝑧𝑡)

1/𝜉] 𝑑𝑧 − 𝜇𝑡

−𝑞𝑛

−∞

 (17) 

where n is the block size, 𝑧𝑡 are the standardized maximum returns, 𝜎 is the scale 

parameter of GEV distribution, 𝜉 is the shape parameter and 𝜇 is the location. (See 

Appendix B). 

2.4 Backtesting  

2.4.1 Backtesting VaR 

To evaluate the accuracy of the VaR estimates, we have used five standard tests: 

unconditional (LRuc), independent and conditional coverage (LRind and LRcc), 

Backtesting Criterion (BTC) and dynamic quantile (DQ) tests.  All of these tests are based 

on an indicator variable. We have an exception when 𝑟𝑡+1 < 𝑉𝑎𝑅𝛼; then, the exception 

indicator variable (It+1) is equal to one otherwise its value is zero. 

𝐼𝑡={
1 𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡(𝛼)
0 𝑖𝑓 𝑟𝑡 ≥ 𝑉𝑎𝑅𝑡(𝛼)

 (18) 

Kupiec (1995) shows that if we assume that the probability of obtaining an exception is 

constant, the number of exceptions 𝑥 = ∑ 𝐼𝑡+1 follows a binomial distribution 𝐵(𝑁, 𝛼), 

where 𝑁 represents the number of observations. An accurate measure 𝑉𝑎𝑅𝛼 should 

produce an unconditional coverage (�̂� =
∑𝐼𝑡+1

𝑁
) equal to 𝛼 percent. The unconditional 

coverage test has a null hypothesis �̂� = 𝛼, The rejection or non-rejection of the null 

hypothesis is verified through the maximum likelihood ratio: 

𝐿𝑅𝑢𝑐 = 2[𝑙𝑜𝑔(�̂�
𝑥(1 − �̂�)𝑁−𝑥) − 𝑙𝑜𝑔(𝛼𝑥(1 − 𝛼)𝑁−𝑥)] (19) 
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which follows an asymptotic  𝜒2(1) distribution. 

The LRcc test, developed by Christoffersen (1998), jointly examines whether the 

percentage of exceptions is statistically equal to the one expected (�̂� = 𝛼) and the serial 

independence of the exception indicator. The likelihood ratio statistic of this test is given 

by 𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑, which is asymptotically distributed as 𝜒2(2), and the 𝐿𝑅𝑖𝑛𝑑 

statistic is the likelihood ratio statistic for the hypothesis of serial independence against 

first-order Markov dependence11. 

This test has some drawbacks: (i) the use of the Markov chain only allows the 

influence of past violations to be measured and does not allow for the influence of other 

exogenous variables; (ii) the way of verifying independence does not take into 

consideration other alternatives that take into account the independence of orders higher 

than one. 

A similar test for the significance of the departure of  �̂� from 𝛼  is the backtesting  

criterion statistic (BTC): 

                                               𝑍 =  (𝑁�̂�  −  𝑁𝑎 ) /√ 𝑁𝑎 (1 − 𝑎 )         (20) 

which follows an asymptotic N(0,1) distribution. 

 Finally, the DQ test, proposed by Engle and Manganelli (2004), overcomes the 

two drawbacks of Christofersen's conditional coverage test and examines if the exception 

indicator is uncorrelated with any variable that belongs to the information set  Ω𝑡−1, 

available when the VaR is calculated. This test is a Wald test of the hypothesis that all 

slopes are zero in the regression: 

𝐼𝑡 = 𝛽0 +∑𝛽𝑖

𝑝

𝑖=1

𝐼𝑡−𝑖 +∑𝜇𝑗

𝑞

𝑗=1

𝑋𝑡−𝑗 (21) 

where 𝑋𝑡−𝑗 are the explanatory variables contained in Ω𝑡−1. This statistic is introduced as 

five explanatory variable lags of VaR. Under the null hypothesis, the exception indicator 

 
11 The LRind statistic is  and has an asymptotic  distribution. The likelihood 

function under the alternative hypothesis is , where Nij denotes the 

number of observations in state j after having been in state i in the previous period,  

and . The likelihood function under the null hypothesis  

( ) is . 
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cannot be explained by the level of VaR, i.e., 𝑉𝑎𝑅(𝛼) is usually an explanatory variable 

to test if the probability of an exception depends on the level of the VaR. 

2.4.2 Backtesting ES 

The main issue with the ES is its difficulty to be backtested because it is not an 

elicitable measure (Gneiting, 2011; Heinrich, 2014; Weber 2006). A non-elicitable 

measure may present difficulties with robust estimation and backtesting. The elicitability 

is an important mathematical property for evaluating the interpretation of a forecast, 

especially in the context of risk measurement. An elicitable risk measure can be defined 

as the minimizer of a loss function or scoring function. However, recent papers have 

supported measures where ES is jointly elicitable with VaR (Fissler and Ziegel, 2016). 

Thus, in this paper, we use Righi and Ceretta (2013), McNeil and Frey (2000), Nolde and 

Ziegel (2017) and Bayer and Dimitriadis (2022). These last three tests are specified in the 

R package 'Esback' (Bayer and Dimitriadis, 2020) which we will use in the development 

of the backtesting in this paper. 

McNeil and Frey (2000) test is likely the most successful in the literature. These 

authors develop a test to verify that a model provides much better estimates of the 

conditional expected shortfall than any other. The authors are interested in the size of the 

discrepancy between the return 𝑟𝑡+1 and the conditional expected shortfall 

forecast 𝐸𝑆𝑡(𝛼) in the event of quantile violation. The authors define the residuals as 

follows:   

𝑌𝑡+1 =
𝑟𝑡+1 − 𝐸𝑆𝑡+1(𝛼)

𝜎𝑡+1
 (22) 

Replacing Equation (11) and Equation (15) in Equation (22), we have the next 

expression: 

𝑦𝑡+1 = 𝑧𝑡+1 − 𝐸(𝑧|𝑧 < 𝑞𝛼) (23) 

These residuals are i.i.d. and conditional on  {𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)} or equivalent 

{𝑧𝑡+1 < 𝑞𝛼}, they have an expected value of zero. Suppose we again backtest on days in 

the set 𝑇. We can form empirical versions of these residuals on those specific days on 

which violations have occurred, i.e., days on which {𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)}. The authors call 

these residuals exceedances and denote them by {�̂�𝑡+1: 𝑡 𝜖 𝑇.   𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)}   
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where �̂�𝑡+1 = 
𝑟𝑡+1−𝐸�̂�𝑡+1(𝛼)

�̂�𝑡+1
 and  𝐸�̂�𝑡+1(𝛼)  is an estimation of the conditional expected 

shortfall.  

Under the null hypothesis, in which we correctly estimate the dynamic of the 

process 𝜇𝑡+1 and 𝜎𝑡+1 and the first moment of the truncated innovation distribution 

𝐸(𝑧|𝑧 < 𝑞𝛼), these residuals should behave such as an i.i.d sample with a mean of zero. 

Thus, for testing whether the estimates of the Expected Shortfall are correct, we must test 

if the sample mean of the residual is equal to zero against the alternative that the mean of 

𝑦 is negative. Indeed, given a sample {𝑦𝑡+1} of size 𝑁 (where 𝑁 is the number of 

violations in the 𝑇 period), the sample mean �̅� converges in distribution to standard 

normality, as 𝑁 tends to ∞ by the central limit theorem. In other words, given mean 𝜇𝑦 

and variance 𝜎𝑦 of population 

√𝑁(
�̅� − 𝜇𝑦

𝜎𝑦
) → 𝑁(0, 1) (24) 

By applying the Central Limit Theorem, the statistics for testing the null 

hypothesis are given by  

𝑡 =
�̅�

𝑆𝑦

√𝑁

~𝑡𝑁−1 
(25) 

 where �̅� and 𝑆𝑦 are the sample mean and the sample standard deviation, 

respectively, of the exceedance residuals.  

 We use Bootstrap to test the hypothesis, which does not assume the underlying 

distribution of the residuals. 

Righi and Ceretta (2013) propose a test based on the dispersion of the truncated 

distribution of returns beyond VaR instead of the whole probability function. They do not 

limit the approach to the Gaussian case, unlike McNeil and Frey, allowing for other 

distribution functions. Righi & Ceretta's approach is based on the 𝐵𝑇𝑡 series which 

represents the standardized VaR violations with respect to the ES and the standard 

deviation truncated by VaR (𝑆𝐷𝑡). 

𝐵𝑇𝑡={

𝑟𝑡−𝐸𝑆𝑡

𝑆𝐷𝑡
 𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡(𝛼)

0          𝑖𝑓 𝑟𝑡 ≥ 𝑉𝑎𝑅𝑡(𝛼)
 (26) 
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𝑆𝐷𝑡 = (𝜎2𝑉𝑎𝑅[𝑧𝑡|𝑧𝑡 < 𝐹−1(𝛼)])1/2 (27) 

This test verifies whether the average observed deviation from ES is zero, 

𝐻0: 𝐸[𝐵𝑇𝑡] = 0, 𝐻1: 𝐸[𝐵𝑇𝑡] < 0, i.e in case of a violation 𝑟𝑡 < 𝑉𝑎𝑅𝑡(𝛼), this test allows 

us to know how far the occurred loss is from the ES, computed in units of the dispersion 

measure.  This test also requires simulation analysis to compute the p-value. 

 Nolde and Ziegel (2017) propose a two-stage backtest. The first stage is based on 

a traditional backtest. Following Fissler, Ziegel, and Gneiting (2015), traditional backtests 

are those with a null hypothesis of the type “The risk measurement procedure is correct” 

which is rejected if the risk measurement under consideration is making inaccurate 

predictions. Nevertheless, these kinds of tests present mainly two drawbacks: They are 

not suited to compare different risk estimation procedures and they may be insensitive 

when increasing the information set (Holzmann and Eulert 2014, Davis 2016). According 

to Nolde and Ziegel (2017), traditional backtesting can be formalized in the form of 

conditional calibration tests. In the case of ES, the conditional calibration test is related 

to the backtest for ES of McNeil and Frey (2000) based on exceedance residuals.  

To avoid the above-mentioned limitations of traditional backtests, the authors 

suggest that regulators may additionally apply a comparative backtest, based on a 

consistent scoring function, in the second stage in cases where a traditional backtest is 

passed12. This requires a standard model against which the bank’s internal model is to be 

tested. However, comparative backtests need an elicitable risk measure. As we 

highlighted at the beginning of this section, ES is a non-elicitable ES measure, but it turns 

out to be jointly elicitable with VaR. 

To sum up, this two-stage procedure lets to test that conditional VaR and ES 

predictions are at least as large as their optimal conditional predictors and that the internal 

model predicts at least as well as the standard model. 

Finally, Bayer and Dimitriadis (2022) introduce a regression-based backtest for 

ES forecast13, which extends the classical Mincer and Zarnowitz (1969) test to ES. They 

propose to estimate a regression that models the conditional ES at level α as a linear 

 
12 Bank for International Settlements (2014) and Fissler, Ziegel and Gneiting (2015) have recently proposed 

to replace traditional backtests by comparative backtests based on strictly consistent scoring functions. 

 
13 We can find recent literature using a regression procedure to backtest ES in Bayer and Dimitriadis (2022), 

Barendse et. al., (2018) and Patton et al., (2019). 

 



Chapter IV. Assessing the selection of block size in the quantification of market risk under 

Block Maxima approach (EVT). 

 

 

84 

function 𝐸𝑠𝛼 = 𝑌𝑡|ℱ𝑡−1 = 𝛾1 + 𝛾2�̂�𝑡, where 𝑌𝑡 represents the daily log-returns of a 

financial asset and it is the response variable, ES forecasts �̂�𝑡 is the explanatory variable 

and ℱ𝑡−1 is the given information set. For correctly specified ES forecasts, the intercept 

and slope parameters equal to zero and one are tested by using a Wald statistic. 

Because of the non-elicitable character of ES, it is not feasible to estimate the 

regression parameters for the ES stand-alone. Thus, the authors propose to build a test 

based on a joint VaR and ES regression, by specifying an auxiliary quantile regression 

equation that allows for different specifications: Auxiliary, Strict, and Intercept Expected 

Shortfall (ESR) backtests (Bayer and Dimitriadis, 2022). First, using auxiliary VaR 

forecasts 𝑣𝑡 as the explanatory variable in the quantile equation, but only test the ES 

specific parameters, they refer to this test as the Auxiliary ESR backtest. Second, using 

the ES forecasts �̂�𝑡 as the explanatory variable in both, the quantile and the ES equation 

and again only test on the ES pecific parameters. The authors refer to this test as the Strict 

ESR backtest. And finally, they introduce an intercept variant of the Strict ESR backtest 

by fixing the slope parameter in the regression to one, and by only estimating and testing 

the intercept term. They refer to this backtest as the Intercept ESR backtest. 

3.  Case of study 

3.1 Dataset Overview   

The data used throughout this study consist of daily prices of the S&P500 stock 

index extracted from the Yahoo Finance database. We use daily data for the period of 

January 3, 2000, through December 31, 2019. The index is transformed into returns by 

taking the logarithmic differences of the closing daily price in percentage. The number of 

data in the sample is 5029.  

Figure 1 displays the evolution of the daily index and returns of the S&P 500 

during the sample length. The plotted returns over time show heteroskedasticity and 

clustered volatility, i.e variance changes over time, alternating periods of low volatility 

followed by high volatility, being a distinctive feature of financial returns (Bollerslev et 

al.,1994). The volatility of the index was particularly high from 2008 to 2009 coinciding 

with the global financial crisis. Table 1 provides basic descriptive statistics of data. 

The unconditional mean and median are about zero as expected and while the 

standard deviation is around 1.19. Evidence of non-normality can be found by looking at 
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the negative skewness statistic and excess kurtosis (above 3) that imply a high peaked 

distribution, with a thicker tail that is skewed to the left, i.e the losses are somewhat larger 

than the profits. Similarly, the p-value for the Jarque-Bera test tells us that we can strongly 

reject the normality assumption. 

All this evidence suggests that the empirical distribution of daily returns cannot 

be fit by a normal distribution. 

3.2 Fitting the GEV distribution. 

Before we apply the block maxima method we must first choose the block size, n. 

As we highlighted in Section 2.2, the main problem in selecting block size is the trade-

off between bias and variance.  In the aforementioned section, different references were 

extracted from the literature about the selection of the block in the field of financial 

returns. Following these references, in this section, the GEV distribution is fitted to the 

data of maximums we get from 9 different block sizes corresponding to an approximate 

trading week (5), two weeks (10), a month (21), six weeks (31), two months (42), a quarter 

(63), a semester (126), nine months (189) and a year (252) respectively.  

After estimating the parameters of GEVD (μ,σ,ξ) using Maximum Likelihood14, 

one can assess the model fit based on procedures such as parameter evaluation and 

distribution fit plots. Regarding this, various diagnostic plots are shown in Figure 2. In 

this Figure, we display for each block size the QQ-plot and a plot with the density function 

theoretical (GEVD) and the histogram.  

As we can see, for each block size the corresponding density seems consistent 

with the histogram. In the QQ-plot, we can observe that the points are near-linear, 

although this precision is lost as we use a larger block size and therefore, we have a lower 

number of maximums. 

Figure 3 displays the plots with the fitted GEV distribution and the empirical 

cumulative distribution. GEV distribution seems to fit quite well the distributions of 

maximums for each block size and in concordance with this, the null hypothesis for the 

Kolmogorov-Smirnov test cannot be rejected in any case (see Table 2). 

 
14 We find Maximum Likelihood estimation as the most appropriate technique according to Gaines and 

Denny (1993) and Leder et. al. (1998). 
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Similar tests but more sensitive to the extremes of the distribution, such as 

Anderson-Darling and Cramer-von Mises, have been applied and the results show that in 

the case of the weekly block, we reject the null hypothesis that the empirical estimate 

distribution function comes from the underlying theoretical distribution (see Table 2).15 

All these graphical and test diagnostics lend support to the fitted GEVD model for 

blocks larger than 5. Therefore, we will not proceed with the quantification of risk 

measures for the weekly block. 

Finally, we can check the sensitivity of the parameters of the GEVD for different 

block lengths. In Table 2 we observe that the estimation of the shape parameter, which 

determines the weight of the tail in the distribution, increases by 678% when the block 

size moves from 5 to 252.   

As we can observe, the scale and location parameters are statistically significant 

at 5%. This is not the case for the shape parameter. The fact that the shape parameter is 

not statistically significant for any block size implies that ξ =0, which determines that the 

non-degenerate distribution function is of Gumbel type and not Frechet. According to 

McNeil et al. (2005), although power-tailed distributions, and therefore of the Frechet 

class, are interesting when working with financial returns, this class is not the only 

interesting one, since the Gumbel class also contains many distributions with heavier tails 

than normal. 

In line with these results, we can see graphically in Figure 4 the plot for the 

estimated parameters as a function of the block size. We observe that there are different 

changes in the trend of the shape parameter, however, from block 42 onwards, its value 

tends to concentrate and stabilize around 0.10. 

The accuracy of the estimations also decreases considerably as the block length 

increases, as we can see with the band of the confidence interval in the dashed line, 

implying considerable uncertainty about the value of ξ. According to the asymptotic 

distribution theory, there is less accuracy in the standard error of the parameter estimates 

as the block size increase, i.e, decrease the number of maxima (Coles, 2001). 

We can highlight some aspects of the behavior of the estimated parameters. First, 

we can observe the stability of the tail index around a particular value since it is an 

 
15 The calculations were performed with the ‘gnfit’ R package (Saeb, 2018). 
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intrinsic parameter of the process of returns (see Figure 5). Second, there is an increase 

in the location parameter, with values that go from 0.8082 to 3.2388. Third,  it is known 

that the behavior of the scale parameter is not specified a priori as the distribution of 

extremes may contract or expand16. In this study, the scale parameter goes around 0.6 up 

to block 63 from which the parameter increases. 

We can find similar results in Tsay (2005) who performs the estimation for 

different sample sizes (monthly, quarterly, weekly, and yearly) and concludes that the 

estimation of the scale and location parameters increase when the sample size increases. 

Also, he determines that the shape parameter is stable for extreme values when the sample 

size is around 63. Again the same conclusion is obtained in Longin (1996) about the 

stability of the tail index, especially for periods longer than a semester or block size 126. 

From this analysis, we can conclude that the estimation of the parameters of the GEV 

distribution is sensitive to changes in block sizes.   

3.3 Market risk estimation. 

In this section, we analyze the market risk estimation (Value at Risk and Expected 

Shortfall) that we get from the Block Maximum Method17 and the sensitivity of these risk 

measures to changes in block sizes. These estimations are obtained by applying Equations 

(14) and (17).  

 To estimate the risk measures, we divided the sample period into a learning sample 

from January 3, 2000, to December 31, 2010, and a forecast sample from January 3, 2011, 

to December 31, 2019. The daily forecasting is obtained one day ahead at the 97.5% and 

99% confidence levels according to the Basel Committee on Banking Supervision’s 

standards. In particular, we report the forecasts based on a series of rolling time windows, 

instead of recursive estimation (see Elliott and Timmermann, 2013). The use of rolling 

time windows or non-overlapping estimation windows (in line with the current market 

risk regulations introduced by Basel III in 201418) not only avoids the dependence on the 

 
16 Gumbel (1958). 

17 From losses previously multiplied by (-1) and therefore in the right tail (short position), we obtain the 

maxima per block and estimate the parameters to obtain the percentile. This percentile will be therefore of 

positive sign. We will multiply again by (-1) to move to the left tail of the losses. 

18 The Basel Committee on Banking Supervision (BSBC) was keen on the overlapping approach in the 

version of the Basel III Proposals in 2013, but not in the subsequent revised version in 2014. 
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underlying time series, which may lead to biased estimations but also prevents anomalous 

events will be repeated in the sample.  

 Figure 6 displays the VaR estimates we get from different block sizes at a 2.5% 

probability. At first glance, it can be seen that the VaR estimates with a block size equal 

to 10 underestimate risk while block sizes above 42 tend to overestimate risk. In the case 

of ES, the overestimation of risk is even more obvious (see Figure 7). Only block 10 

seems to capture somewhat better the risk. We get similar results for VaR and ES 

estimates at a 1% probability. 

The graphical analysis presented above suggests that the risk estimates obtained 

through VaR or ES measures are very sensitive to the selected block size. To corroborate 

this result, we compute some descriptive statistics of these estimations by block size (see 

Table 3). As can be seen, there are significant differences in the mean and variance of 

these estimates, depending on the block size. Overall, we find that the larger the block 

size, the higher the estimated mean loss and variance. For example, with a probability of 

2.5%, the average loss goes from -0.43 with a block size of 10 to -3.63 with a block size 

of 252. The minimum of the VaR estimations is also very different, going from -1.52 with 

a block size of 10 to -13.75 with a block size of 252. Similar results are obtained for the 

ES at 2.5% and 1% probability. 

Although it seems very clear that there are important differences in market risk 

estimations depending on the block size selected we check statistically if there is any 

significant difference between the means of these estimates to which we can use a one-

way ANOVA test19, see Table 4.  

As the p-value is less than the significance level of 0.05, we can conclude that 

there are significant differences between the means of the estimates generated for all the 

block sizes. 

To determine if the difference between means of specific pairs of block sizes is 

statistically significant, it is possible to perform multiple pairwise-comparison through a 

 
19 This test compares means between groups of data. In our case, these groups are the risk estimates obtained 

for each block size, which is the factor variable. In a one-way ANOVA test, the null hypothesis states that 

the differences between means equal zero, i.e, a significant p-value determines that some of the groups are 

different. 
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Tukey HSD test (Tukey Honest Significant Differences). The null hypothesis states that 

the difference between the means of a pair of block sizes equals zero. 

Table 5 shows p-values for this pairwise test. Panel A displays the test for VaR 

estimates at 1% and 2.5% probability and Panel B does the same for ES estimates at 1% 

and 2.5% probability. As we can see in Panel A, any pair of block sizes provide similar 

mean estimates as the p-value is less than 0.05 and we reject the null hypothesis. Panel B 

shows the comparison for ES estimates. In this case, for some pairs of blocks, we accept 

the null hypothesis. Thus, at a 1% probability, we find that ES estimates are similar to 

blocks 31-63, 42-189 and 126-252. At a 2.5% probability, we find that there is not much 

difference in the ES estimates in pairs 21-31, 21-63, 31-63, 42-189 and 126-252. 

   To sum up, the analysis presented in this section suggests that the risk estimates 

obtained by the Maximum Block method, via VaR or ES, are highly sensitive to the 

selected block size, being very different from each other depending on the size chosen. 

In order to see the quality of these risk estimates, we will analyze the results using 

backtesting. 

3.4. Backtesting. 

In this section, we analyze the accuracy of the market risk estimations obtained 

from the BM method. We also analyze if the quality of these measures is related to the 

block size. The results are displayed in Table 6.  

Column three of  Table 6, reports the percentage of times that the S&P500 returns 

go below VaR at a 2.5% probability level. Consistent with what we observed in Figure 6, 

the percentage of exceptions obtained by the smallest block sizes, 10 and 21, is too high, 

indicating that these blocks underestimate the risk. On the contrary, the higher blocks size 

(126, 189 and 252) clearly overestimate risk, as they provide a reduced number of 

exceptions. Thus, at first glance, it seems that the lowest and highest block sizes 

considered provide inaccurate VaR estimation. Just only the intermediate block sizes, 31, 

42 and 63, provide an exception percentage around to the theoretical one. 

To test formally the accuracy of the VaR estimate we use several standard tests: 

unconditional (𝐿𝑅𝑢𝑐), independent (𝐿𝑅𝑖𝑛𝑑), conditional coverage (𝐿𝑅𝑐𝑐), the backtesting 

criterion (BTC), and dynamic quantile (DQ) tests.  We consider that a VaR measure is 
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accurate if it passes at least 4 of the 5 tests20. According to this criterium, only block size 

42 yields accurate VaR estimates at a 97.5% confidence level. The lower blocks such as 

10 or 21 only pass one test. In contrast, higher blocks, 126, 189 and 252 only pass 2 or 3 

out of the 5 tests considered, indicating that these estimations are inaccurate.  On the other 

hand, at a 99% confidence level, only blocks 126 and 189 pass at least 4 out of 5 tests. 

The rest of the blocks considered just only pass one or two tests.  

Regarding the Expected Shortfall measure, the results are even more discouraging. 

To test whether the ES estimations should be accepted we have used the procedure 

proposed by McNeil and Frey (2000), Righi and Ceretta (2013), Nolde and Ziegel (2007), 

and Bayer and Dimitriadis (2022)21. We consider that ES measure is accurate if it passes 

at least 3 of the 4 tests. No block passes 3 of the 4 proposed tests. At 97.5% confidence 

level, blocks 10, 21, 31, 42, and 126 pass just one of the 4 tests. The remaining blocks 

(63,189,252) pass 2 tests. At a 99% confidence level, the results are also very poor as 

most blocks pass just two of the 4 tests.  

To sum up, the results obtained in this analysis are sensible to the confidence level, 

the block size, and the market risk measure considered VaR or ES. In the case of VaR, 

just only block size 42 provide accurate estimates at a 97.5% confidence level. However, 

at a 99% confidence level, block size 126 and 189 seems to be optimal. In the case of the 

ES measure any block size yield appropriate estimates.  

Given the results presented and in line with the previously mentioned literature in 

Section 1, we can conclude that the BMM is not the most appropriate when it comes to 

market risk estimation under the EVT framework. The accuracy of the risk estimates 

seems to be very sensitive to the chosen block size. Thus, the block size may be a critical 

aspect that should not be chosen ad hoc. The use of this method could require further 

research on optimal block size selection techniques. 

4. Robustness analysis. 

To corroborate the validity of the results reported in the previous section -which 

are a few discouraging- we extend the study to a set of 14 assets: 7 stock market indexes 

 
20 Following the criteria in Campbell (2005), only sequences that satisfy unconditional coverage and 

independence properties can be described as evidence of an accurate VaR model. 

21 The calculations were performed with the ‘esback’ package in R, Bayer and Dimitriadis (2020). 
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(CAC40, DAX30, FTSE100, Hang Seng, IBEX35, Merval, and Nikkei), 4 commodities 

(Copper, Gold, Crude Oil Brent, and Silver) and 3 exchange rates (₤ /€, $/€ and ¥/€).22  

Table 7 shows the percentage of exceptions for each block size. Panel A displays 

the results obtained for a confidence level of 97.5% and Panel B displays the results at a 

99% confidence level. In this table, blocks that pass at least 4 out of 5 tests are highlighted 

in light grey.  

 At a 97.5% confidence level (Panel A), block size 31 provides accurate VaR 

estimates in 9 out of the 14 assets considered while block size 42 provides accurate VaR 

estimates in 5 out of the 14 assets. As in the case of the S&P500, it seems that at this 

confidence level, the intermediate block sizes provide the best VaR estimates. Again, we 

find that the lowest block sizes, 10 and 21, provide very poor VaR estimations as they 

clearly underestimate risk. Along the same line, the highest blocks overestimate risk.  

For a confidence level of 99% (Panel B), block 63 provides accurate VaR 

estimates in 7 out of 14 assets (5 of which are indexes). Block 126 passes the tests for 4 

out of 14 assets and block 189 for 4 out of 14 assets. Taking into account the percentage 

of exceptions closest to the theoretical one, as well as the tests, the block size that seems 

to have the best performance for the calculation of estimates in the quantification of risk 

is 63. 

This analysis helps us to corroborate that risk estimates are indeed sensitive to the 

choice of block size when applying the Block Maxima Method in the EVT framework. 

Very small block sizes, which result in too many observations and being included as 

extremes, lead to underestimates of risk, with very high exception rates. Conversely, large 

block sizes, such as the annual block, result in the inclusion of too few observations and 

therefore very low exception rates and an overestimated VaR. 

 Table 8 displays the results obtained for the backtesting of the ES measure. In this 

table, we report the number of tests that do not reject the null hypothesis (the average 

observed deviation from ES, in case of a violation r < VaR, equals zero). For the stock 

indexes, no block size provides good results as in the case of the S&P500 index. For the 

exchange rates and the commodities, some block sizes provide good results but again they 

are not consistent. For instance, at a 99% confidence level, block size 126 provides 

 
22 The daily data has been extracted from the Yahoo Finance database. 



Chapter IV. Assessing the selection of block size in the quantification of market risk under 

Block Maxima approach (EVT). 

 

 

92 

adequate ES estimates for 4 out of the 7 assets, and block size 31 does so in 2 out of the 

7 cases. The rest of the blocks perform well just in one case or no one. At a 97.5% 

confidence, we find similar results although somewhat worse.  

5. Comparison of POT and BMM VaR for market risk. 

As we know, the main difference between the two methods lies in the way they 

handle extreme events. While the BMM groups data into fixed-length blocks and uses the 

maximum value within each block to estimate the parameters of the Generalized Extreme 

Value (GEV) distribution, in the case of the POT method, on the other hand, the extreme 

values above a particular threshold are modeled using a Generalized Pareto distribution 

(GPD). Both methods could have their advantages and limitations, and the choice 

between the two methods will depend on the specific characteristics of the data being 

analyzed. Regarding the performance of the BM method in comparison to the POT 

method in the area of finance, the literature is somewhat ambiguous (see for instance 

Szubzda and Chlebus, 2019). 

With the aim of contrasting the performance of the Maximum Block model 

concerning the POT method in estimating market risk, we present in this section a 

comparison of the VaR estimates obtained under the POT method and the Block Maxima 

method for the set of assets analyzed in this study (7 indexes, 4 commodities and 3 

exchanges rates). 

As in the present study, to estimate the VaR measure under the POT method, we 

take the forecast period from January 3, 2011, to the end of  December 2019. For each 

day of the forecast period, we will generate estimations of VaR. These forecasting 

measures are obtained one day ahead at the 97.5% and 99% confidence levels. Assuming 

that for a certain threshold u the distribution of observations above the threshold is the 

GPD, we get the quantile: 

𝑞1−𝛼 = 𝑢 + 
𝜎

𝜉
((

𝑛

𝑁𝑢
(1 − 𝛼))

−𝜉

− 1) 

where 𝑛 is the total number of observations and 𝑁𝑢 the number of observations above the 

threshold 𝑢 and, 𝜎 and 𝜉 are the scale and shape parameters, respectively, of the GPD.  

From this quantile we can get the VaR measure as follows: 
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  𝑉𝑎𝑅𝑡(𝛼) = 𝜇𝑡 + 𝜎𝑡  𝑞1−𝛼  

being  𝜇𝑡 and 𝜎𝑡  represent the conditional mean and the conditional standard deviation 

of the returns (calculated through an APARCH conditional variance structure) and  𝑞1−𝛼 

is the quantile (1 − 𝛼) of the GPD. 

Table 9 shows the percentage of exceptions obtained for the VaR estimates at a 

probability level of 2.5% for block sizes 10 to 252 and thresholds 87 to 94. Table 10 

shows the same for a 1% probability level.  By analyzing these Tables, we can draw the 

following conclusions. 

In the case of BMM, the percentage of exceptions varies greatly depending on the 

block size chosen. Thus, for smaller blocks, we found a strong underestimation of the 

VaR measure. The opposite is true for larger blocks. Only in some cases (blocks 63 and 

126 for a probability level of 1% and blocks 31 and 42 for a probability level of 2.5%), 

the exception percentage is close to the expected one. 

This leads us to think that obtaining accurate market risk estimates through this 

method may depend on the selected block size and probability level, making necessary 

some computational method to determine the optimal block size for a given sample (see 

for instance Özari et al., 2019). Therefore the BMM may not be the most reliable approach 

to estimating market risk if an ad hoc block size is selected. 

In the case of the POT method, its greater consistency can be observed. For most 

assets (with some exceptions such as the CAC40 and Merval) the percentage of 

exceptions obtained from the VaR estimates is close to the expected probability level 

regardless of the threshold chosen, i.e, no matter what threshold we choose, the VaR 

estimates could be accurate. The selection of the threshold in the POT method may not 

be so critical when estimating market risk (see Benito et al., 2023) and this makes it the 

most convenient method for estimating market risk under the EVT framework. 

This comparison shows the superiority of the POT method over the BBM in 

estimating market risk. 
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6.  Conclusions.  

This study is framed within the Extreme Value Theory (EVT) and more 

specifically within the Block Maxima Method (BMM).  

The Extreme Value Theory focuses on the limiting distribution of the extreme 

values observed over a long period, which is independent of the distribution of the values 

themselves. In the EVT context, there are two approaches. One of them is the BMM 

which models directly the distribution of minimum or maximum realizations. The other 

one, Peaks over Threshold (POT), models the exceedances above a particular threshold.  

Extreme Value Theory has been widely used in many sciences such as 

engineering, insurance, meteorology and more recently finance. In this last area, the POT 

method has reaped very good results, especially in quantifying market risk. The 

performance of the BMM in this field has been scarcely studied. Thus, the study carried 

out in this paper contributes to three aspects. First, it analyses the performance of the 

BMM in estimating the market risk of a portfolio. As we have said before, few studies 

have analyzed this issue. Second, we assess to what extent the selection of the block size 

is significant in quantifying market risk. And finally, a third contribution emerges from 

this work. As in this study, we use similar datasets to those used in Chapter III23 we can 

compare the performance of the BMM with the POT method in estimating market risk. 

For this study daily data of the S&P500 returns have been used from January 3rd, 

2000 to December 31st, 2019. To quantify market risk two measures have been 

considered: Value at Risk (VaR) and Expected Shortfall (ES). For calculating risk, two 

confidence levels have been used: 97.5% and 99%. To apply BMM, nine different block 

sizes have been considered: 5, 10, 21, 31, 42, 63, 126, 189 and 252 observations. 

The results obtained are as follows. First, we detect that the VaR estimations are 

highly sensitive to the block size selected for fitting GEVD. Both, the lowest block size 

and the higher block size provide inaccurate market risk estimations. Just only the 

intermediate block size 42 at 97.5% confidence level and 126 and 189 at 99% confidence 

level provide reasonable VaR estimations. The remaining blocks provide imprecise 

 
23 Chapter III has been published in the Journal Risk Management. The complete reference is Benito Muela, 

S., López-Martín, C. and Navarro Cervantes, M. Á. (2023). “Assessing the importance of the choice 

threshold in quantifying market risk under the POT approach (EVT)”. Risk Management 25, 6. DOI: 

10.1057/s41283-022-00106-w (Available online 6th January 2023). 
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estimates of VaR. Second, in the case of Expected Shortfall, we found a strong risk 

overestimation. Any block size provides appropriate risk estimations.  

To corroborate these results, we have extended the S&P 500 index study to a set 

of 14 assets (stock market indexes, commodities, and rate exchanges). The results go in 

the same direction, indicating that the Block Maxima Method does not provide 

appropriate market risk estimations and then fundamentally depends on the block size 

selected. Just only the intermediate block size seems to perform well although the results 

are not robust, in the sense that no one block size performs well for all assets considered.  

Finally, a comparison of the VaR estimates obtained under the POT method and 

the BM method is carried out, through the percentages of exceptions. This comparison 

shows the consistency of the POT method regardless of the chosen threshold compared 

to the BM method, in which obtaining a level of exceptions close to the theoretical one 

depends on the chosen block size. This leads us to conclude the need to determine an 

optimal block size selection method in case of using this method in the estimation of 

market risk. 

Furthermore, one aspect to bear in mind when considering the results obtained and 

which could be of interest to future research is the stationarity of the data. We have only 

considered the case of stationary and independently distributed random variables instead 

of non-iid variables which are supposed to hold in most financial markets because of 

clustering property.  
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Note. Daily closing prices, percentage, and log-returns of the S&P 500 Index from January 03rd, 2000, through 

December 31st, 2019. 

 

 

Figure 1. S&P500 

 Figure. 2. Quantile and density plots 
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Figure 3. GEV Distribution. 

 

         Figure 4. Maximum Likelihood Estimations (GEVD) 

 

Figure 5. Tail Index (GEVD) 
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Figure 6. S&P500 Value at Risk estimates 

  

  

    Figure 7. S&P500 Expected Shortfall estimates 
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Table 1. Descriptive Statistics 

 Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 
Jarque 

Bera 

S&P 500 0.0158 0.0543 10.957 -9.469 1.1899 
-0.230 

(0.035) 

8.652* 

(0.069) 

15695 

(0.00) 

Note: This Table presents the descriptive statistics of the daily returns of the S&P500. The sample period is from 

January 3rd, 2000 to December 31st, 2019. The index return is calculated as Rt=100(ln(Pt)-ln(Pt-1)) where Pt is the 

index level for period t. Standard errors of the skewness and excess kurtosis are calculated as n/6  and n24  

respectively. The JB statistic is distributed as the Chi-square with two degrees of freedom. (*) denotes significance 

at the 5% level.  

 

Table 2. Maximum Likelihood Estimations (GEVD) 

 

 

 

Block size 

Number 

of 

Maximum 

𝜉 �̂� �̂� 
KS  

p-value 

AD  

p-value 

CvM  

p-value 

5 1006 
0.0147 

(0.0227) 

0.6594* 

(0.0171) 

0.8082* 

(0.0233) 
0.5393 0.01186 0.0122 

10 503 
0.0018 

(0.0286) 

0.6603* 

(0.0234) 

1.2956* 

(0.0327) 
0.9785 0.1692 0.1427 

21 239 
0.0388 

(0.0409) 

0.6298* 

(0.0326) 

1.7241* 

(0.0450) 
0.9993 0.7419 0.4948 

31 162 
0.0588 

(0.0543) 

0.6260* 

(0.0403) 

2.0159* 

(0.0549) 
0.9999 0.9506 0.92912 

42 120 
0.0989 

(0.0699) 

0.6128* 

(0.0473) 

2.1587* 

(0.0634) 
0.9999 0.9231 0.9369 

63 80 
0.0681 

(0.0752) 

0.6472* 

(0.0593) 

2.4760* 

(0.0808) 
0.9999 0.7096 0.6818 

126 40 
0.0897 

(0.1346) 

0.7164* 

(0.0999) 

2.9132* 

(0.1313) 
0.9999 0.8488 0.8939 

189 27 
0.1304 

(0.1908) 

0.7458* 

(0.1337) 

3.1036* 

(0.1715) 
0.9999 0.9914 0.9777 

252 20 
0.1144 

(0.2158) 

0.7856* 

(0.1621) 

3.2388* 

(0.2099) 
0.978 0.7168 0.6757 

Note: We shade in light grey the cases where the p-value is under 5% and thus the null hypothesis is rejected. We 

mark with an asterisk the statistically significant parameters at the significance level of 5%. The standard error of 

the estimated parameters appears in parentheses. 
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Note: This Table presents the descriptive statistics for VaR estimates (Panel A) and ES estimates (Panel B) at 

99% and 97.5% confidence levels for every block size. 

                                            

            Table 4. ANOVA test 
 

F value Pr(<F) 
 

VaR 99% 3111 0.00 *** 

VaR 97.5% 2123 0.00 *** 

ES 99% 1068 0.00 *** 

ES 97.5% 793.6 0.00 *** 

Note: Significance codes 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1‘ ’. A 

significant p-value indicates that some of the estimated means are different 

from the other. 

 

 

 

 

 

 

 

Table 3. Descriptive Statistics of market risk estimations 

Panel A. VaR 

Confidence level 97.5% Confidence level 99% 

Block size Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min. 

10 -0.43 -0.37 0.19 -0.16 -1.52 0.04 0.03 0.03 0.24 0.01 

21 -1.16 -1.00 0.54 -0.43 -4.29 -0.70 -0.60 0.33 -0.26 -2.57 

31 -1.58 -1.35 0.74 -0.58 -5.88 -1.12 -0.97 0.53 -0.41 -4.21 

42 -1.86 -1.59 0.87 -0.69 -6.90 -1.43 -1.23 0.67 -0.53 -5.33 

63 -2.14 -1.84 1.01 -0.80 -7.90 -1.77 -1.52 0.83 -0.66 -6.52 

126 -2.71 -2.33 1.28 -1.00 -10.09 -2.32 -1.99 1.10 -0.86 -8.68 

189 -3.15 -2.72 1.51 -1.11 -12.12 -2.73 -2.35 1.30 -0.99 -10.36 

252 -3.63 -3.13 1.72 -1.29 -13.75 -3.15 -2.70 1.49 -1.14 -11.83 

Panel B. ES 

 Confidence level 97.5% Confidence level 99% 

Block size Mean Median Std. Dev. Max. Min. Mean Median Std. Dev. Max. Min. 

10 -1.22 -1.04 0.59 -0.42 -4.74 -0.71 -0.62 0.36 -0.22 -2.95 

21 -3.12 -2.69 1.50 -1.10 -11.96 -3.31 -2.86 1.59 -1.16 -12.74 

31 -3.16 -2.69 1.49 -1.20 -11.65 -3.16 -2.71 1.50 -1.15 -11.73 

42 -4.00 -3.42 1.89 -1.48 -14.86 -3.88 -3.31 1.84 -1.45 -14.45 

63 -3.17 -2.71 1.50 -1.16 -11.83 -3.16 -2.70 1.50 -1.15 -11.72 

126 -4.24 -3.48 2.13 -1.79 -16.58 -4.17 -3.43 2.09 -1.77 -16.17 

189 -3.86 -3.27 1.80 -1.59 -13.47 -3.80 -3.31 1.73 -1.40 -13.45 

252 -4.16 -3.52 1.95 -1.74 -14.24 -4.18 -3.64 1.89 -1.62 -13.98 
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Table 5. Tukey HSD test VaR and ES estimates. 

 
Panel A. Tukey Test. Differences between mean VaR estimates. 

 
VaR 99% VaR 97.5% 

 
10 21 31 42 63 126 189 

 
10 21 31 42 63 126 189 

 
21 0.000        0.000        

31 0.000 0.000       0.000 0.000       

42 0.000 0.000 0.000      0.000 0.000 0.000      

63 0.000 0.000 0.000 0.000     0.000 0.000 0.000 0.000     

126 0.000 0.000 0.000 0.000 0.000    0.000 0.000 0.000 0.000 0.000    

189 0.000 0.000 0.000 0.000 0.000 0.000   0.000 0.000 0.000 0.000 0.000 0.000   

252 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000  

 

 
Panel A. Tukey Test. Differences between mean ES estimates. 

 
ES 99% ES 97.5% 

 
10 21 31 42 63 126 189 

 
10 21 31 42 63 126 189 

 
21 0.001        0.000        

31 0.001 0.033       0.000 0.995       

42 0.001 0.001 0.001      0.000 0.000 0.000      

63 0.001 0.035 1.000 0.001     0.000 0.977 0.999 0.000     

126 0.001 0.001 0.001 0.001 0.001    0.000 0.000 0.000 0.000 0.000    

189 0.001 0.001 0.001 0.677 0.001 0.001   0.000 0.000 0.000 0.089 0.000 0.000   

252 0.001 0.001 0.001 0.001 0.001 1.000 0.001  0.000 0.000 0.000 0.029 0.000 0.697 0.000  

Note: This table presents the p-value of the statistics. We highlight in light grey the cases in which the null hypothesis 

is rejected and thus the pairs of block sizes provide a similar mean of the estimates. 
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Table 6. Backtesting VaR and ES S&P500 

Panel A: 97.5% confidence level 

  Exceptions VaR ES 

BLOCK SIZE Nº % LRuc LRind LRcc BTC DQ MF RC NZ BD 

10 531 23.46% 0.0000 0.0000 0.0000 0.0000 0.1811 0.0000 0.3285 0.0000 0.0000 

21 171 7.56% 0.0000 0.6221 0.0000 0.0000 0.0454 0.0000 0.1243 0.0000 0.0011 

31 75 3.31% 0.1191 0.5456 0.2473 0.0065 0.0151 0.0020 0.0737 0.0000 0.0004 

42 54 2.39% 0.8179 0.3820 0.6645 0.6355 0.0024 0.0013 0.0591 0.0000 0.0000 

63 34 1.50% 0.0306 0.2865 0.0548 0.9988 0.0080 0.0705 0.0305 0.0140 0.0004 

126 14 0.62% 0.0000 0.2393 0.0000 1.0000 0.0016 0.1912 0.0132 0.0040 0.0000 

189 8 0.35% 0.0000 0.1244 0.0000 1.0000 0.0000 0.5858 0.0074 0.3388 0.0000 

252 4 0.18% 0.0000 0.9374 0.0000 1.0000 0.9895 0.9999 0.0039 0.6817 0.0000 

 

  

Panel B: 99%  confidence level 

BLOCK SIZE Nº % LRuc LRind LRcc BTC DQ MF RC NZ BD 

10 1098 48.52% 0.0000 0.0000 0.0000 0.0000 0.1306 0.0000 0.6618 0.0000 0.3101 

21 344 15.20% 0.0000 0.0000 0.0000 0.0000 0.0975 0,0000 0.2264 0.0000 0.3813 

31 184 8.13% 0.0000 0.0000 0.0000 0.0000 0.2545 0.0000 0.1279 0.0000 0.3040 

42 100 4.42% 0.0000 0.6217 0,0000 0,0000 0.0190 0.0000 0.0960 0.0000 0.0081 

63 64 2.83% 0.0000 0.5821 0.0000 0.0000 0.0162 0.0039 0.0541 0.0000 0.2757 

126 26 1.15% 0.6467 0.4990 0.7164 0.2382 0.1192 0.0042 0.0239 0.0000 0.0032 

189 15 0.66% 0.2577 0.2596 0.2792 0.9465 0.0062 0.1243 0.0147 0.0358 0.0153 

252 7 0.31% 0.0108 0.8907 0.0386 0.9995 0.7923 0.3009 0.0090 0.2424 0.0040 

Note: The table shows the p-value for the following statistics: (i) the unconditional coverage test (LRuc); (ii) statistics for serial 

independence (LRind); (iii) the Conditional Coverage test (LRcc); ); (iv) the backtesting criterion (BTC) and (v) the Dynamic 

Quantile test (DQ). For ES estimates the table shows the p-value for the following tests: McNeil and Frey (2000) (MF), Righi 

and Ceretta (2013) (RC), Nolde and Ziegel (2007) (NZ), and Bayer and Dimitriadis (2022) (DB). We highlight in bold the p-

value in the cases where we cannot reject the null hypothesis at 5%. 
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Table 7. Backtesting VaR 99% and 97.5% all assets.  

Panel A: VaR 97.5% 

Indexes 10 21 31 42 63 126 189 252 

CAC40 25.43% 5.17% 1.74% 0.83% 0.30% 0.04% 0.04% 0.04% 

DAX-30 27.02% 4.06% 1.56% 0.73% 0.22% 0.00% 0.00% 0.00% 

FTSE100 26.88% 4.19% 1.60% 0.43% 0.09% 0.00% 0.00% 0.00% 

HSI 27.05% 5.87% 2.55% 1.03% 0.27% 0.09% 0.00% 0.00% 

IBEX35 35.24% 6.97% 2.37% 0.90% 0.13% 0.04% 0.04% 0.04% 

Merval 31.40% 6.48% 1.60% 0.18% 0.05% 0.00% 0.00% 0.00% 

Nikkei 23.72% 5.63% 2.37% 0.64% 0.23% 0.05% 0.00% 0.00% 

Exchange Rates 
        

₤ /€ 23,12% 7,64% 4,22% 2,43% 1,24% 0,43% 0,09% 0,00% 

¥/€ 28,50% 7,25% 2,30% 0,51% 0,21% 0,04% 0,00% 0,00% 

$/€ 26,81% 8,27% 4,30% 2,08% 0,87% 0,34% 0,34% 0,34% 

Commodities 
        

Brent 30.48% 7.06% 2.94% 1.27% 0.45% 0.09% 0.14% 0.05% 

Cooper 33.18% 9.05% 3.70% 1.56% 0.67% 0.00% 0.00% 0.00% 

Gold 38.05% 9.55% 4.68% 2.59% 1.34% 0.31% 0.31% 0.45% 

Silver 40.64% 9.44% 4.70% 2.44% 0.96% 0.30% 0.17% 0.09% 

Panel B: VaR 99% 

Indexes 10 21 31 42 63 126 189 252 

CAC40 47.57% 14.17% 6.00% 2.74% 0.91% 0.22% 0.04% 0.04% 

DAX-30 50.02% 11.59% 6.01% 3.29% 0.86% 0.04% 0.00% 0.00% 

FTSE100 50.00% 12.10% 5.75% 2.46% 0.43% 0.04% 0.00% 0.00% 

HSI 52.13% 15.54% 7.61% 3.72% 1.21% 0.13% 0.04% 0.00% 

IBEX35 62.52% 20.22% 9.98% 3.87% 0.90% 0.09% 0.04% 0.04% 

Merval 60.79% 19.99% 8.44% 2.10% 0.37% 0.05% 0.00% 0.00% 

Nikkei 46.44% 15.66% 6.84% 3.47% 0.90% 0.14% 0.05% 0.00% 

Exchange Rates        

₤ /€ 39.42% 14.51% 8.53% 4.78% 3.24% 1.41% 0.68% 0.34% 

¥/€ 65.78% 19.50% 8.11% 3.46% 0.90% 0.09% 0.04% 0.04% 

$/€ 52.39% 15.27% 9.60% 5.46% 2.47% 0.43% 0.26% 0.21% 

Commodities         

Brent 59.11% 16.28% 7.91% 4.34% 1.36% 0.23% 0.14% 0.09% 

Cooper 65.21% 26.90% 14.27% 6.20% 2.45% 0.13% 0.04% 0.00% 

Gold 70.87% 24.49% 11.91% 7.14% 2.85% 0.89% 0.49% 0.54% 

Silver 79.33% 27.33% 13.27% 7.40% 3.35% 0.91% 0.74% 0.35% 

Note: We shade in light grey the cases where we cannot reject the null hypothesis for at least 4 out of 5 tests at 5%. 

The number indicates the percentage of exceptions. 
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Table 8. Backtesting ES 99% and 97.5% all assets. 

 ES 99% ES 97,5% 

Block size 10 21 31 42 63 126 189 252 10 21 31 42 63 126 189 252 

Indexes 

CAC40 1 1 1 1 0 2 1 1 1 1 0 0 1 1 1 1 

DAX30 1 1 0 0 0 1 1 1 1 1 0 0 2 0 0 0 

FTSE100 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 

HSI 0 0 0 0 0 2 1 1 0 0 0 0 1 1 0 0 

Nikkei 0 0 0 0 0 2 1 1 1 0 0 0 1 1 0 1 

Merval 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 

IBEX35 2 2 1 0 1 1 1 1 1 1 0 0 2 1 1 1 

Exchange rates 

GBP 3 1 1 1 1 3 2 0 1 1 3 4 3 2 0 0 

JPY 1 3 1 2 2 3 1 0 1 1 1 3 3 1 0 0 

USD 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 

Commodities 

Brent 1 1 0 0 0 1 2 1 1 0 0 0 0 1 2 1 

Cobre 1 1 3 0 0 2 1 1 0 1 0 0 0 0 0 0 

Gold 1 1 3 2 0 3 2 3 1 1 0 3 2 2 2 2 

Silver 0 0 0 2 0 3 1 2 1 0 0 0 1 1 2 1 

Note: The table shows the number of tests where we cannot reject the null hypothesis at 5%. The tests are McNeil and 

Frey (2000), Righi and Ceretta (2013), Nolde and Ziegel (2007), and Bayer and Dimitriadis (2022). 
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           Table 9. Percentage of exceptions VaR estimates BMM 

                                           VaR estimates at 2.5% probability 

Assets/Block size 10 21 31 42 63 126 189 252 

Brent 30,48% 7.06% 2.94% 1.27% 0,45% 0,09% 0,14% 0,05% 

Cooper 33,18% 9,05% 3,70% 1,56% 0,67% 0,00% 0,00% 0,00% 

Gold 38,05% 9,55% 4,68% 2,59% 1,34% 0,31% 0,31% 0,45% 

Silver 40,64% 9,44% 4,70% 2,44% 0,96% 0,30% 0,17% 0,09% 

         

S&P500 23,46% 7,56% 3,31% 2,39% 1,50% 0,62% 0,35% 0,18% 

CAC40 25,43% 5,17% 1,74% 0,83% 0,30% 0,04% 0,04% 0,04% 

DAX30 27,02% 4,06% 1,56% 0,73% 0,22% 0,00% 0,00% 0,00% 

FTSE100 26,88% 4,19% 1,60% 0,43% 0,09% 0,00% 0,00% 0,00% 

HSI 27,05% 5,87% 2,55% 1,03% 0,27% 0,09% 0,00% 0,00% 

IBEX35 35,24% 6,97% 2,37% 0,90% 0,13% 0,04% 0,04% 0,04% 

Merval 31,40% 6,48% 1,60% 0,18% 0,05% 0,00% 0,00% 0,00% 

NIKKEI 23,72% 5,63% 2,34% 0,63% 0,23% 0,05% 0,00% 0,00% 

         

GBP 23,12% 7,64% 4,22% 2,43% 1,24% 0,43% 0,09% 0,00% 

JPY 28,50% 7,25% 2,30% 0,51% 0,21% 0,04% 0,00% 0,00% 

USD 26,81% 8,27% 4,30% 2,08% 0,87% 0,34% 0,34% 0,34% 

                                             VaR estimates at 1% probability 

Assets/Threshold 10 21 31 42 63 126 189 252 

Brent 59,11% 16,28% 7,91% 4,34% 1,36% 0,23% 0,14% 0,09% 

Cooper 65,21% 26,90% 14,27% 6,20% 2,45% 0,13% 0,04% 0,00% 

Gold 70,87% 24,49% 11,91% 7,14% 2,85% 0,89% 0,49% 0,54% 

Silver 79,20% 27,28% 13,27% 7,40% 3,31% 0,91% 0,74% 0,35% 
 

        

S&P500 48,52% 15,20% 8,13% 4,42% 2,83% 1,15% 0,66% 0,31% 

CAC40 47,57% 14,17% 6,00% 2,74% 0,91% 0,22% 0,04% 0,04% 

DAX30 50,02% 11,59% 6,01% 3,29% 0,86% 0,04% 0,00% 0,00% 

FTSE100 50,00% 12,10% 5,75% 2,46% 0,43% 0,04% 0,00% 0,00% 

HSI 52,13% 15,54% 7,61% 3,72% 1,21% 0,13% 0,04% 0,00% 

IBEX35 62,52% 20,22% 9,98% 3,87% 0,90% 0,09% 0,04% 0,04% 

Merval 60,79% 19,99% 8,44% 2,10% 0,37% 0,05% 0,00% 0,00% 

NIKKEI 46,44% 15,66% 6,84% 3,47% 0,90% 0,14% 0,05% 0,00% 
 

        

GBP 39,42% 14,51% 8,53% 4,78% 3,24% 1,41% 0,68% 0,34% 

JPY 65,78% 19,50% 8,11% 3,46% 0,90% 0,09% 0,04% 0,04% 

USD 52,39% 15,27% 9,60% 5,46% 2,47% 0,43% 0,26% 0,21% 

Note: The Table presents the percentage of exceptions for a 2.5% level of probability. An exception occurs when 𝑟𝑡+1 <

𝑉𝑎𝑅𝛼. Cases in which the percentage of exceptions is close to the theoretical percentage in BMM are marked in bold. 
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           Table 10. Percentage of exceptions VaR estimates POT 

                                           VaR estimates at 2.5% probability 

Assets/Block size 87 88 89 90 91 92 93 94 

Brent 2,53% 2,49% 2,49% 2,49% 2,58% 2,58% 2,58% 2,58% 

Cooper 2,45% 2,45% 2,50% 2,45% 2,45% 2,50% 2,50% 2,50% 

Gold 2,85% 2,85% 2,85% 2,90% 2,90% 2,90% 2,90% 2,90% 

Silver 2,65% 2,65% 2,61% 2,61% 2,57% 2,61% 2,65% 2,61% 

         

S&P500 2,61% 2,61% 2,65% 2,61% 2,61% 2,61% 2,61% 2,70% 

CAC40 1,17% 1,17% 1,17% 1,26% 1,30% 1,39% 1,35% 1,39% 

DAX30 2,55% 2,59% 2,68% 2,68% 2,72% 2,77% 2,77% 2,81% 

FTSE100 2,64% 2,68% 2,72% 2,72% 2,72% 2,81% 2,81% 2,81% 

HSI 2,10% 2,24% 2,19% 2,24% 2,24% 2,24% 2,24% 2,24% 

IBEX35 2,02% 2,07% 2,07% 2,07% 2,07% 2,02% 2,11% 2,11% 

Merval 1,19% 1,19% 1,19% 1,19% 1,19% 1,19% 1,19% 1,19% 

NIKKEI 2,12% 2,12% 2,16% 2,16% 2,21% 2,21% 2,21% 2,21% 

         

GBP 2,69% 2,73% 2,73% 2,82% 3,03% 3,07% 3,07% 3,07% 

JPY 3,33% 3,28% 3,33% 3,41% 3,41% 3,54% 3,67% 3,71% 

USD 3,03% 3,03% 3,07% 3,07% 3,11% 3,24% 3,24% 3,28% 

                                             VaR estimates at 1% probability 

Assets/Threshold 87 88 89 90 91 92 93 94 

Brent 1,40% 1,45% 1,45% 1,45% 1,45% 1,49% 1,58% 1,58% 

Cooper 0,67% 0,67% 0,67% 0,67% 0,67% 0,71% 0,71% 0,71% 

Gold 1,07% 1,12% 1,12% 1,12% 1,12% 1,12% 1,12% 1,12% 

Silver 0,74% 0,74% 0,74% 0,74% 0,74% 0,74% 0,74% 0,74% 
 

        

S&P500 1,15% 1,15% 1,15% 1,15% 1,15% 1,15% 1,15% 1,19% 

CAC40 0,39% 0,39% 0,39% 0,39% 0,43% 0,43% 0,43% 0,43% 

DAX30 1,04% 1,08% 1,08% 1,12% 1,12% 1,12% 1,12% 1,21% 

FTSE100 1,30% 1,34% 1,43% 1,38% 1,43% 1,47% 1,47% 1,47% 

HSI 0,45% 0,45% 0,45% 0,49% 0,45% 0,49% 0,49% 0,49% 

IBEX35 0,65% 0,65% 0,65% 0,65% 0,73% 0,73% 0,73% 0,73% 

Merval 0,18% 0,18% 0,18% 0,18% 0,18% 0,18% 0,18% 0,18% 

NIKKEI 0,90% 0,90% 0,90% 0,90% 0,99% 1,04% 1,04% 0,99% 
 

        

GBP 1,49% 1,49% 1,53% 1,53% 1,53% 1,58% 1,58% 1,62% 

JPY 1,31% 1,31% 1,31% 1,31% 1,40% 1,40% 1,44% 1,40% 

USD 1,08% 1,08% 1,08% 1,13% 1,13% 1,17% 1,22% 1,31% 

Note: The Table presents the percentage of exceptions for a 1% level of probability. An exception occurs when 𝑟𝑡+1 <

𝑉𝑎𝑅𝛼. 
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Chapter V. Conclusions. 

This dissertation aimed to address three areas within the Extreme Value Theory 

(EVT) framework: (i) evaluating the performance of the volatility model estimation under 

distribution with fat tails and skewness in improving VaR estimation results in the 

framework of the Conditional EVT, (ii) investigating the sensitivity of GPD quantiles and 

market risk measures (Value at Risk and Expected Shortfall) to threshold selection under 

the POT method, and (iii) analyzing the sensitivity of GEVD parameters and market risk 

quantification to the choice of different block sizes with BMM. 

The present Chapter aims to conclude with the main findings and contributions of 

each section.  

The study conducted in Chapter II of this Thesis revealed some evidence that the 

use of a heavy-tailed and skewed distribution yields better results in terms of VaR 

estimation accuracy, firm's loss function, and capital requirement compared to a 

symmetric distribution.  

Nevertheless, the findings align with recent research suggesting that VaR 

estimation can be improved by assuming fat tail and skewed distributions, or, in other 

words, assuming a normal distribution for VaR estimation may underestimate risk, as 

financial return distribution is skewed and exhibits excess kurtosis. 

Chapter III examines the relevance of threshold choice in measuring market risk 

using the conditional EVT and the Generalized Pareto distribution. Results show that 

parameter estimates are sensitive to the selected threshold, but GPD quantiles do not 

change much, especially for high quantiles (95th, 96th, 97th, 98th and 99th), which are 

relevant in risk estimation. VaR and ES estimations are practically equivalent for a large 

set of thresholds, and there is not one optimal threshold, but rather a set of optimal 

thresholds that provide similar market risk measures. 

What stands out the most is that the findings indicate that in estimating market 

risk, researchers and practitioners do not need to prioritize the selection of a particular 

threshold, as a wide range of options produces comparable risk estimations. The study 

has been extended to a set of 14 assets from alternative markets: 7 stock indexes (CAC40, 

DAX30, FTSE100, HangSeng, IBEX35, Merval and Nikkei), four commodities (Copper, 
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Gold, Crude Oil Brent and Silver) and three rates exchange (₤/€, $/€ and ¥/€), and it 

corroborates the results obtained for the S&P500 stock index.  

However, while the quantification of risk is not primarily dependent on threshold 

selection, it is worth mentioning that for certain thresholds, small differences are found 

for the highest percentiles. This could be a valuable resource for financial institutions that 

may be interested in choosing the threshold that minimizes the capital requirements for 

market risk.  

As an additional analysis, we calculate the minimum capital requirements for 

market risk based on the ES (99%) estimations. The results reveal that there is a set of 

thresholds that provides the same results, finding only minor differences for the highest 

percentiles.  

Although this result opens up an opportunity for further investigation, this Chapter 

represents a novelty and thus, potentially the main contribution of this Thesis in the use 

of the POT method in the area of market risk measures. 

Finally, Chapter IV focuses on the use of EVT and specifically the Block Maxima 

Method for estimating market risk. The study finds that the BMM does not provide 

accurate market risk estimates as is highly dependent on the block size selected.  

We detect that the VaR estimations are highly sensitive to the block size selected 

for fitting GEV distribution. Both the smallest and the largest block sizes lead to 

inaccurate estimations of market risk. Only intermediate block sizes, among the selected 

in this study, seem to provide reasonable VaR estimations, although we must be cautious 

as the results are not robust, in the sense that no one block size performs well for the 

whole set of assets considered. In the case of Expected Shortfall, we found a strong risk 

overestimation and any block size provides appropriate risk estimations. 

Therefore, the block size may be a critical aspect that should not be chosen 

arbitrarily. Consequently, and in line with the literature reviewed, BMM may not be the 

most reliable method among the EVT approaches for estimating market risk. The use of 

this method could require further research on optimal block size selection techniques. 

Also, we consider it could be worthwhile to explore deeper into this topic considering the 

stationarity of data under the BM method. 
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We end Chapter IV with a comparison of VaR estimations between the BM and 

POT methods and conclude, as expected, that the POT method provides more consistent 

results across different thresholds, while the BM method is highly dependent on the 

selected block size to achieve a level of exceptions close to the theoretical one.  

Based on the findings of our analysis, we can conclude that the POT method 

represents a robust and effective approach for estimating extreme events and measuring 

financial risk. This method allows for the accurate estimation of tail probabilities and can 

provide a valuable understanding of extreme events that other methods as BM may miss. 
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APPENDIX 

Appendix A: Algorithm of VaR estimation using Block Maxima Method 

We divide the period into m sub-periods with n observations on each period (i.e 

the block size). 

Let 𝛼∗ be a small upper tail probability showing a potential loss, and 𝑞𝛼
∗  be the 

(1 − 𝛼∗)𝑡ℎ quantile of the sub-period maxima under the limiting GEV distribution, then  

(1 − 𝛼∗) =

{
 

       𝑒𝑥𝑝 {− [1 +
𝜉𝑛(𝑞𝛼

∗−𝜇𝑛)

𝜎𝑛
]
−
1

𝜉𝑛} , 𝑓𝑜𝑟 𝜉 ≠ 0

𝑒𝑥𝑝[−exp (−
𝑞𝛼
∗−𝜇𝑛

𝜎𝑛
), 𝑓𝑜𝑟 𝜉 = 0

    (A1) 

 

Where 1 +
𝜉𝑛(𝑞𝛼

∗−𝜇𝑛)

𝜎𝑛
> 0 𝑖𝑓 𝜉 ≠ 0. By logarithmic transformation, we have: 

𝑙𝑛(1 − 𝛼∗) = {
− [1 +

𝜉𝑛(𝑞𝛼
∗−𝜇𝑛)

𝜎𝑛
]
−
1

𝜉𝑛 , 𝑓𝑜𝑟 𝜉 ≠ 0

−𝑒𝑥𝑝(−
𝑞𝛼
∗−𝜇𝑛

𝜎𝑛
), 𝑓𝑜𝑟 𝜉 = 0

     (A2) 

And the quantile is  

𝑞𝛼
∗={

𝜇𝑛 +
𝜎𝑛

𝜉𝑛
[1 − {−𝑙𝑛(1 − 𝛼∗)}−𝜉𝑛], 𝑓𝑜𝑟 𝜉 ≠ 0

𝜇𝑛 + 𝜎𝑛{−𝑙𝑛(1 − 𝛼
∗)}             , 𝑓𝑜𝑟 𝜉 = 0

     (A3) 

The quantile 𝑞𝑛
∗  for a given probability 𝛼∗ is the VaR for the sub-period maximum. 

Knowing that most asset returns have either weak serial correlations or no correlations at 

all, the relation between sub-period maxima and the observed return series 𝑟𝑖 is as follows 

1 − 𝛼∗ = [1 − 𝑃(𝑟𝑖 ≤ 𝑞𝛼
∗ )]𝑛        (A4) 

Let 𝛼 = 𝑃(𝑟𝑖 ≤ 𝑞𝑛
∗), thus 1 − 𝛼∗ = (1 − 𝛼)𝑛  

From (A3) and (A4), we have  

𝑞𝛼
∗={

𝜇𝑛 +
𝜎𝑛

𝜉𝑛
[1 − {−𝑛𝑙𝑛(1 − 𝛼)}−𝜉𝑛], 𝑓𝑜𝑟 𝜉 ≠ 0

𝜇𝑛 + 𝜎𝑛{−𝑛𝑙𝑛(1 − 𝛼)}             , 𝑓𝑜𝑟 𝜉 = 0
     (A5) 
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Using maximum likelihood estimation, we can estimate the parameters 𝜇, 𝜎 and 

𝜉 in (A5) under i.i.d. By the definition of VaR and (A5), we have  

𝑞𝛼 = {
�̂� +

�̂�

�̂�
[1 − {−𝑛𝑙𝑛(1 − 𝛼)}−�̂�], 𝑓𝑜𝑟 𝜉 ≠ 0

�̂� + �̂�{−𝑛𝑙𝑛(1 − 𝛼)}             , 𝑓𝑜𝑟 𝜉 = 0
               (A6) 

From (A5), we know that VaR is related to the period length n. 

The estimation of the dynamic VaR will be calculated as:  

𝑉𝑎𝑅𝑡(𝛼) = 𝜇𝑡 + 𝜎𝑡  𝑞𝛼                                     (A7)                                  

where  𝜇𝑡 and 𝜎𝑡 represent the conditional mean and the forecasted volatility of the returns 

respectively and  𝑞𝛼 is the quantile function of the GEVD. 

Appendix B: Algorithm of Expected Shortfall using Block Maxima Method 

Definition 1. For a random variable x with continuous distribution function, Expected 

Shortfall or conditional Value at Risk equals the conditional expectation of x given that 

𝑥 <  𝑉𝑎𝑅𝛼 (x), that is,   

𝐸𝑆𝛼(𝛼) = 𝔼[𝑋| 𝑋 < 𝑉𝑎𝑅𝛼]            (A8) 

To obtain a dynamic ES, following the Equation (A7), then 

𝐸𝑆𝛼(𝛼) = 𝜇𝑡 + 𝜎𝑡𝔼[𝑧𝑡| 𝑧𝑡 < 𝑞𝛼 ]           (A9) 

Definition 2. According to Nadarajah & Kotz (2008), the moments of a truncated 

distribution with upper bound B can be obtained via the integral 

𝔼[𝑥| 𝑥 < 𝐵 ] =
1

𝐹(𝐵)
∫ 𝑥𝑓(𝑥)𝑑𝑥
𝐵

−∞
         (A10) 

where F is the cumulative distribution function (CDF), f  is the density function of x (in 

our case x is the 𝑧𝑡, i.e.the standardized maximum returns) and B would be the quantile 

function 𝑞𝛼. Thus, 

𝔼[𝒛𝒕| 𝒛𝒕 < 𝒒𝒏] = −
𝟏

𝜶
∫ 𝒛𝒕𝒇(𝒛𝒕)𝒅𝒛
−𝑞𝛼
−∞

        (A11) 

Where 𝑓(𝑧𝑡) is the density function of standardized maximum returns. 
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Illustration of the concepts of VaR and CvaR (right tail) from C. Filippi et al. / Intl. 

Trans. in Op. Res. 27 (2020) 1277–1319. 

Definition 3. CDF and pdf of standardized returns. 

 Let y be the standardized returns, 𝑦 =
𝑟−𝜇

𝜎
 we have the cumulative distribution 

function, 𝐹𝑛,𝑡(𝑦) = 1 − [1 − 𝐹(𝑧𝑡)]
1

𝑛  and density function  

𝑓𝑛,𝑡(𝑦) =
1

𝑛
[1 − 𝐹(𝑧𝑡)]

1

𝑛
−1𝑓𝑛,𝑡(𝑧𝑡)       (A12) 

Where 𝐹𝑛,𝑡(𝑦) is the distribution function of standardized maximum returns 𝑟𝑛,𝑡 , 𝑧𝑡 =

𝑟𝑛,𝑡−𝜇𝑛

𝜎𝑛
  presented by Jenkinson (1955) for the i.i.d case, 

𝐹(𝑧𝑡) = {
1 − 𝑒𝑥𝑝[−(1 + 𝜉𝑧𝑡)

1/𝜉], 𝑓𝑜𝑟 𝜉 ≠ 0

1 − 𝑒𝑥𝑝[− 𝑒𝑥𝑝(𝑧𝑡)] ,             , 𝑓𝑜𝑟 𝜉 = 0
     (A13) 

From (A13) we can obtain the derivative to get the probability density function 

of the standardized returns, 

𝑓𝑛,𝑡(𝑧𝑡) = {(1 + 𝜉𝑧𝑡)
1

𝜉
−1
𝑒𝑥𝑝[−(1 + 𝜉𝑧𝑡)

1/𝜉], 𝑓𝑜𝑟 𝜉 ≠ 0

𝑒𝑥𝑝[𝑧𝑡 − exp(𝑧𝑡)] ,             , 𝑓𝑜𝑟 𝜉 = 0
    (A14) 

Substituting expressions (A13) and (A14) into (A12) we have 

𝑓(𝑧𝑡) =
1

𝑛
𝑒𝑥𝑝 [−(1 + 𝜉𝑧𝑡)

1

𝜉  (
1

𝑛
− 1)] (1 + 𝜉𝑧𝑡)

1

𝜉
−1
𝑒𝑥𝑝[−(1 + 𝜉𝑧𝑡)

1/𝜉]   (A15) 

Substituting (A15) in (A11) we have 

𝔼[𝑧𝑡| 𝑧𝑡 < 𝑞𝑛] = −
1

𝑛𝛼
∫ 𝑧𝑡(1 + 𝜉𝑧𝑡)

1

𝜉
−1
𝑒𝑥𝑝 [−(

1

𝑛
(1 + 𝜉𝑧𝑡)

1/𝜉] 𝑑𝑧
−𝑞𝑛
−∞

  (A16) 
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By Corollary of Definition 1 and substituting (A16) in (A9) we have 

𝐸𝑆𝛼(𝛼) = −
𝜎𝑡

𝑛𝛼
∫ 𝑧𝑡(1 + 𝜉𝑧𝑡)

1

𝜉
−1
𝑒𝑥𝑝 [−

1

𝑛
(1 + 𝜉𝑧𝑡)

1/𝜉] 𝑑𝑧 − 𝜇𝑡
−𝑞𝑛
−∞

     (A17) 

Appendix C: Algorithm of VaR estimation using Peaks over Threshold 

Definition 4. CDF of excesses. 

Given a variable X of randomly distributed observations X1, ..., Xn we define an 

exceedance as Xi > u where u is the threshold. 

The distribution function 𝐹𝑢 also called the conditional excess distribution function is 

defined as 

𝐹𝑢(𝑦)  =  𝑃(𝑋 −  𝑢 ≤  𝑦|  𝑋 >  𝑢);         (A18)  

Where 𝑦 = 𝑥 − 𝑢  are the excesses. 

The values taken by the random variable X are mostly between 0 and u, hence 

estimating F within this range usually presents no challenges. However, estimating the 

𝐹𝑢(𝑦)  can be problematic, as there are typically very few observations in this area. In 

such cases, the EVT can be highly useful, as it offers a robust solution for the conditional 

excess distribution function, as described in the following theorem. 

𝐹𝑜𝑟 𝑥 ≥ 𝑢  

 𝐹(𝑥) = 𝑃{𝑋 ≤ 𝑥} = 𝑃{𝑢 ≤ 𝑋 ≤ 𝑥} + 𝑃{𝑋 ≤ 𝑢} = 

= (1 − 𝑃{𝑋 ≤ 𝑢}𝐹𝑢(𝑦) + 𝑃{𝑋 ≤ 𝑢}         (A19) 

Theorem 1. (Pickands (1975), Balkema and de Haan (1974)) For a large class of 

underlying distribution functions F the conditional excess distribution function Fu(y), for 

u large, is well approximated by: 

𝐹𝑢(𝑦) ≈ 𝐺𝜎𝜉 , 𝑢 → ∞  

Where,  𝐺𝜎𝜉(𝑦) = {
1 − (1 +

𝜉

𝜎
𝑦)

−
1

𝜉
, 𝑓𝑜𝑟 𝜉 ≠ 0

1 − 𝑒−𝑦/𝜎 ,             , 𝑓𝑜𝑟 𝜉 = 0

     (A20) 

𝐺𝜎𝜉(𝑦) is the so-called generalized Pareto distribution (GPD), 𝜉 is the shape parameter 

and 𝜎 is the scale. 
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If x is defined as x = u + y, the GPD can also be expressed as a function of x 

𝐺𝜎𝜉(𝑥) = 1 − (1 +
𝜉(𝑥−𝑢)

𝜎
)
−
1

𝜉                   (A21) 

From (A19) we have  𝐹(𝑥) = [1 − 𝐹(𝑢)]𝐺𝜎𝜉 + 𝐹(𝑢)     (A22) 

And then,  𝐹𝑢(𝑦) =
𝐹(𝑥)−𝐹(𝑢)

1−𝐹(𝑢)
         (A23) 

Assuming a GPD function for the tail distribution, we can derive mathematical 

formulas for the Value at Risk (VaR) and Expected Shortfall by expressing them as 

functions of the GPD parameters. 

Replacing in (A22) 𝐺𝜎𝜉  by the GPD and 𝐹(𝑢) by the estimate (𝑛 − 𝑁𝑢)/𝑛, where 

n is the total number of observations and Nu is the number of observations above the 

threshold u, we get: 

�̂�(𝑥) = 1 −
𝑁𝑢

𝑛
1 − (1 +

𝜉

𝜎
𝑦)

−
1

𝜉
         (A24) 

Inverting (A24) for a given probability α gives, 

𝑉𝑎�̂�(α) = 𝑢 +
�̂�

�̂�
((

𝑛

𝑁𝑢
α)

−�̂�

− 1)         (A25) 

Appendix D: Algorithm of ES estimation using Peaks over Threshold 

From the definition of Expected Shortfall, 𝐸𝑆α =  𝐸(𝑋  |  𝑋 >  𝑉𝑎𝑅α)    (A26) 

We get, 𝐸�̂�α = 𝑉𝑎�̂�(α) +  𝐸(𝑋 − 𝑉𝑎�̂�(α)  | 𝑋 > 𝑉𝑎�̂�(α))                (A27) 

where the second term on the right is the expected value of the exceedances over 𝑉𝑎𝑅(α). 

It is known that the mean excess function for the GPD with parameter 𝜉 < 1 is: 

𝑒(𝑧) =  𝐸(𝑋 − 𝑧  |  𝑋 >  𝑧) =
𝜎+𝜉𝑧

1−𝜉
, 𝜎 + 𝜉𝑧 > 0       (A28) 

Similarly, given the definition (A26) and using expression (A27), for 𝑧 =  𝑉𝑎𝑅(𝛼)  −  𝑢 

and X representing the excesses y over u we get 

 𝐸�̂�α = 𝑉𝑎�̂�(α) + 
�̂�+�̂�(𝑉𝑎�̂�(α)−𝑢)

1−�̂�
=

𝑉𝑎�̂�(α)

1−�̂�
+
�̂�+�̂�𝑢

1−�̂�
       (A29) 
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