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Abstract

Abstract in English:

This thesis is devoted to the study of finitely generated discrete subgroups Γ of the whole

group of isometries of the hyperbolic plane H including those which reverse the orientation

(reflections and glide reflections) as well as boundary transformations (parabolic and boundary

hyperbolic elements), such that the orbit space H{Γ is not compact.

Two special cases closely related to finitely generated non-cocompact NEC groups, the

finitely generated discrete subgroups of orientation-preserving isometries (fuchsian groups) and

the cocompact NEC groups have been extensively studied in the literature. This work presents

a fairly complete introduction of the non-cocompact NEC groups, providing with proof their

presentation, introducing their signatures and using them for studying their orbit spaces and

the necessary and sufficient conditions of isomorphism between these groups.

We present additionally a set of invariants that classify the non-compact Klein surfaces up

to homeomorphisms using the signature of the NEC group of which the Klein surface is the orbit

space. The Euler characteristic of the orbit space of an NEC group is calculated. Using this we

obtain the signature of the non-cocompact canonical fuchsian group linked to the signature of

a given NEC group. Finally, the concept of elementary NEC groups is introduced and all the

possible elementary groups deduced. Using the properties of their canonical fuchsian groups,

some results describing the limit sets of NEC groups are obtained. That leads us to introduce

a classification of NEC groups of first and second kind similarly as for fuchsian groups.
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Abstract en español:

Esta tesis está dedicada al estudio de grupos discretos de isometrías Γ del plano hiperbólico

H incluyendo transformaciones que revierten la orientación (reflexiones y reflexiones con des-

plazamiento) y elementos de contorno (parabólicos e hiperbólicos), de forma que el espacio de

órbitas H{Γ es no compacto.

Dos casos específicos relacionados con los grupos NEC no cocompactos finitimante generados,

los subgrupos de isometrías que preservan la orientación o grupos fuchsianos, y los grupos NEC

cocompactos han sido ampliamente estudiados en la bibliografía. Este trabajo cubre una laguna

que ha existido en la literatura por cierto tiempo introduciendo de forma razonablemente com-

pleta los grupos NEC finitamente generados no cocompactos. Se proporciona con demostración

la presentación en forma de generadores y relaciones de estos grupos, introduciendo su signatura

y usándola para estudiar sus espacios de órbitas y las condiciones necesarias y suficientes de

isomorfía entre grupos NEC.

Se introduce además un conjunto de invariantes que clasifica las superficies de Klein no

compactas salvo homeomorfismos a partir de la signatura del grupo NEC de la que es espacio

de órbitas. Obtenemos la característica de Euler del espacio de órbitas y se usa para deducir la

signatura del subgrupo fuchsiano canónico de un grupo NEC dada su signatura. Finalmente,

se introduce el concepto de grupo NEC elemental y se obtiene la presentación de todos los

grupos NEC elementales. Se presentan resultados relacionados con los conjuntos límite de los

grupos NEC y se aplican para su clasificación en primer y segundo tipo de forma similar a como

se hace con los grupos fuchsianos. Para ello se usan las propiedades del subgrupo fuchsiano

canónico del grupo NEC dado.

Keywords: Hyperbolic Plane, Non-euclidean Chrystallographic Groups, Finitely generated Groups of

Hyperbolic Isometries, Non-cocompact NEC Groups.
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Introduction

The main goal of this dissertation is to cover a gap in the literature providing a description

with proofs of the algebraic structure and classification of non-cocompact finitely generated

discrete groups of isometries of the hyperbolic plane.

The study of discrete cocompact groups of orientation preserving isometries of the hyperbolic

plane was initiated in the XIX century by Poincaré in [47]. The structure of these groups,

called by Poincaré fuchsian groups, was essentially solved by Fricke and Klein in [22] where the

canonical form of their presentation was obtained, and the signatures, now called Fricke-Klein

signatures, were introduced. The idea of this approach is to gather enough geometrical informa-

tion of a group Γ to be able to reconstruct Γ as an abstract group. For that, the side pairing

properties of a canonical fundamental region is used. The signature is then just a collection

of combinatorial data sufficient to provide the reconstruction of the group presentation and

the labelled polygon of the surface symbol. In addition, two discrete groups have the same

signature if and only if they are isomorphic. The properties of the fuchsian groups and their

applications have been extensively studied during the XX century turning out to be central in

the study of several topics as for example compact Riemann surfaces, algebraic compact curves

and many others. Several authors have contributed in this area and therefore we are going

here just to outline the most relevant papers for the topics related to this thesis: properties

of finitely generated fuchsian groups by Greenberg in [26], Maclachlan in [42] and Singerman
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CHAPTER 0. INTRODUCTION

in [53], hyperbolic polygons and fuchsian groups by Beardon in [4], group isomorphisms and

the geometric realization of isomorphisms by Fenchel and Nielsen in [21] and Zieschang in [61],

and the connection between fuchsian groups and compact Riemann surfaces started by the

uniformization theorem of Riemann surfaces in the XIX century by Poincaré and Klein and

followed by Hurwitz’s theorem on automorphisms of compact Riemann surfaces.

The discrete subgroups of isometries of the hyperbolic plane including orientation reversing

isometries with compact orbit space was worked out in the 1960s by Wilkie in [59] and Macbeath

in [40]. Wilkie and Macbeath followed Fricke-Klein’s idea of linking the geometry of a special

fundamental region, a polygon in the hyperbolic plane, to the presentation of the group. Based

on these articles, several authors have extended and applied the theory of cocompact NEC

groups. Just to mention few articles linked to the content of this thesis, Singerman in [54]

obtained the canonical fuchsian group and calculated the area of the compact fundamental

regions given an NEC group via its signature. In [52], he initiated the study of the role of these

groups in the analysis of Klein surfaces. Later on, Preston in [48] and May in [44] showed that

the Klein surfaces, introduced by Klein in 1897, can be represented by actions of NEC groups

similar to the uniformization of Riemann surfaces mentioned above. Finally, I would like to

highlight the impact that the UNED and the Universidad Complutense de Madrid have had

since the 1980s in the study of NEC groups and the groups of automorphisms of the Klein and

Riemann surfaces: for example, Bujalance studied the normal subgroups of NEC groups in [8]

and [9], the applications of the NEC groups to the study of Klein and Riemann surfaces have

been studied by Bujalance, Cirre, Costa, Gamboa, Gromadzki, Etayo, Martínez and others in

[10], [19], [12], [13] and [14]. Etayo and Martínez in [20] studied convex fundamental regions

defined as hyperbolic polygons with the minimum number of sides given the signature of an

NEC group, linked to the problem of obtaining the (geometric) rank of an NEC group (see for

example [33]).

For the non-cocompact case, though, only very few and partial results have been given

until now: Zieschang, Vogt and Coldeway in [60] provided an incomplete presentation of

finitely generated non-cocompact NEC groups, without proof, using a combinatorial approach.

Macbeath and Hoare in [41] gave a presentation of non-cocompact NEC groups (not necesarily

finitely generated) using a purely algebraic approach that cannot be exploited in an obvious

2



way to analyze further these groups (e.g. algebraic classification, geometric properties of the

orbit space, etc.).

The approach used in this thesis follows the classical approach from Wilkie and Macbeath (i.e.

Fricke-Klein’s approach) linking the presentation of the group to the geometry of a fundamental

domain. This opens the possiblity to use signatures and to explore the algebraic classification

(via type preserving isomorphisms) and the topological classification (via homeomorphisms and

diffeomorphisms) of the orbit spaces. The structure of the thesis is outlined below:

• Chapter 1 is dedicated to provide the conceptual background and motivation of this thesis.

In section 1.1, we start with a short introduction on groups of isometries of metric spaces.

In section 1.2, we introduce the classical Macbeath’s theorem of the group presentation

of groups of isometries of simply connected metric spaces. Finally, in the last section we

provide an overview of the main concepts and results related to fuchsian and NEC groups.

• In chapter 2, we obtain a presentation by generators and relations of finitely generated

discrete groups of hyperbolic isometries Γ with non-compact orbit space H{Γ. To this

end, we use the geometrical properties of a fundamental region with a canonical form,

and apply Macbeath’s classical theorem, see [39], on presentations of groups of isometries

of simply connected spaces. The main result in this chapter provides a presentation

by generators and relations which reflects the geometry underlying these groups. In

particular, we include those generators and relations missing in Zieschang, Vogt and

Coldeway [60, Theorem 4.11.5]. The chapter is organized as follows. Given a finitely

generated non-cocompact NEC group Γ, in Section 2.1 we construct a fundamental region

for Γ with a particular surface symbol that we call canonical fundamental region of Γ. We

proceed in a similar way as Wilkie did in [59] for cocompact NEC groups. This surface

symbol reflects geometric and topological properties of the fundamental region, and yields

a canonical presentation by generators and relations of Γ. This is obtained in Section 2.2.

The results of this chapter have been published in [16].

• In chapter 3, we introduce the notion of signature of non-cocompact NEC groups and

based on the signature we study group isomorphisms. The main results of this chapter

are the topological characterization of the orbit space H{Γ given the signature of the

3



CHAPTER 0. INTRODUCTION

group Γ and the identification of the necessary and sufficent conditions on the signatures

of two groups Γ and Γ1 for them to be isomorphic via a type-preserving isomorphism.

A key point in this thesis is related to the behaviour of the product of two reflections

in the non-cocompact NEC groups that, in addition to elliptic and hyperbolic, can also

be parabolic. This has a decisive impact on the group structure (far more complex

as previously proposed), form of the fundamental region (appearing the so-called semi-

parabolic vertices) and the orbit space (hyperbolic ends). In Section 3.1 we introduce

the signature of non-cocompact NEC groups and show how it is connected to the related

marked polygon and group presentation. In Section 3.2, we study the orbit space H{Γ.

In Section 3.3, the conditions for the existence of type-preserving isomorphisms between

NEC groups based on the signatures are given. In Section 3.4, we calculate the Euler

characteristic χpΓq of the orbit space of Γ and based on that we obtain the signature of

the canonical fuchsian group Γ`, namely the fuchsian subgroup of index 2 in Γ. Finally,

in Section 3.5 we classify non-compact Klein surfaces up to homeomorphism using a set of

invariants calculated from the signature of the NEC group Γ for which the Klein surface

is the orbit space. The Sections 3.1, 3.2 and 3.3 of this chapter belong to the paper [17]

that is being prepared for publication.

• Chapter 4 is dedicated to the study of additional properties of the NEC groups. We

introduce in section 4.1 the elementary NEC groups: similarly to the fuchsian groups, an

NEC group Γ is called elementary if there exists a finite Γ-orbit in H Y BH. We then

obtain all the elementary NEC groups by adding reflections and glide-reflections to the

elementary fuchsian groups. We deduce in section 4.2 the form of the limit set of an NEC

group, that is the same as the limit set of its canonical fuchsian group. Then, based on

this result, we justify and introduce the classification of NEC groups of first and second

kind as in the case of fuchsian groups and we prove different results related to finitely

generated NEC groups of first kind (e.g. its signature and the measure of the fundamental

region).

• Finally, in chapter 5 we discuss the main conclussions and possible further developments.

A similar description as the one developed in this thesis for non-cocompact NEC groups,

is well known in the case of non-cocompact fuchsian groups and cocompact NEC groups

and has been an extremely useful tool for the study of non-compact Riemann surfaces

4



and compact Klein surfaces. The results of this thesis may hopefully contribute to the

study of the non-compact Klein surfaces, a topic about which not much is known.
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Preliminaries

In this chapter we provide an account of the most important concepts that support

the results of the thesis. The aim is to show the beauty of the connections between

Algebra, Geometry and Topology materialized in the study of groups of isometries of

the hyperbolic plane, rather than to proceed with a formal encyclopaedic overview of the

several topics involved, that otherwise are extensively and nicely available in the literature.

The material in this chapter is standard and the references will be given along the way.

1.1 Motivation: groups of homeomorphisms of metric spaces

Let pX, dq be a metric space. The fact that we define a function d : XˆX ÝÑ R which is a

metric has deep consequences in the properties and mathematical tools that we can apply to

the study of the set X. First of all, the metric induces a topology τ , so that we can define the

topological space pX, τq where the topology τ is defined as usual by the basis of open balls

of X, Bpx, rq :“ ty P X|dpx, yq ă ru. This allows us to use topological tools in the study of

X and in analyzing its properties. A basic topologic notion that will be used throughout the

thesis is the notion of path, i.e. a continuos map γ : I “ ra, bs Ă R Ñ X. The following list

summarizes the most relevant properties used in this dissertation:

1. A metric space is said connected if it is not the union of two nonempty open sets. A

metric space is locally connected if for each point x P X and each neighborhood U of x,

7



CHAPTER 1. PRELIMINARIES

there is a conected open set V such that x P V Ď U.

2. A metric space is said path-connected if for every pair of points x, y P X there is a path

from x to y in X. A metric space is locally path-connected if for each point x P X and for

each neighborhood U of x, there is a path-conected open set V such that x P V Ď U.

3. A metric space is said simply connected if it is path connected and its fundamental group

is trivial. The space is locally simply connected if for each point x P X and for each

neighborhood U of x, there is a simply connected open set V such that x P V Ď U.

Secondly, the distance d enriches the algebraical properties of the set X. An isometry is a

map f : X ÝÑ X such that dpx, yq “ dpfpxq, fpyqq,@x, y P X; we define the group IsompXq of

isometries of the set X with the composition as a group operation. The elements of IsompXq

are called motions of the metric space. The following three definitions are central in this thesis:

Definition 1.1. Let Γ Ă IsompXq, a set R Ă X is called fundamental region for Γ if:

1. R is open in X,

2. SRX TR “ H for S, T P Γ, S ‰ T ,

3. X “ YtT R̄ : T P Γu, with R̄ “ RY BR.

If the set R only verifies the property 3, then we say that R is a Γ-covering.

Definition 1.2. Let Γ Ă IsompXq, a set D Ă X is called fundamental domain for Γ if D is a

connected fundamental region for Γ.

Definition 1.3. Let R be a fundamental region for Γ Ă IsompXq. R is called locally finite if

the family tT R̄ : T P Γu is locally finite, meaning that for every x P X, there is a neighborhood

U of x that intersects T R̄ only for finitely many T .

Of course, at this moment, the metric space is too general and we can ensure neither the

existence, nor specific nice properties of the fundamental regions and domains.

The metric allows us to introduce a natural classification of the elements of IsompXq by

means of the so-called displacement function, f : IsompX, dq Ñ R, such that for all T P IsompXq,

fpT q “ inf
xPX

dpTx, xq. Then, we classify the isometries as follows:

8



1.1. MOTIVATION: GROUPS OF HOMEOMORPHISMS OF METRIC SPACES

• elliptic, if the infimum is attained and is zero,

• hyperbolic, if the infimum is attained and greater than zero,

• parabolic, if the infimum is not attained.

Example 1.4. We apply the abstract classification of motions to the metric space pR, dRq, with

the usual euclidean distance in the line given by dRpx, yq “ |x ´ y|, x, y P R. The orthogonal

group Op1q is t˘1u and so the group of isometries of R is given by two motions of the form

Rpxq “ x`k, Spxq “ ´x`k, k P R´t0u. Now, S has a fixed point k2 and therefore the infimum

is attained and is zero, so S is an elliptic motion. In case of R, there is no fixed point and the

infimum is k ‰ 0 and attained and so the motion is abstract hyperbolic.

Example 1.5. The upper half-plane model of the hyperbolic geometry is the set H “ tz P C :

Impzq ą 0u, together with the hyperbolic distance dH given by

cosh dHpz, wq “ 1` |z ´ w|2

2 Impzq.Impwq .

The group IsompH, dHq of isometries of the hyperbolic plane is given by the orientation preserving

isometries, called Möbius transformations,

z ÞÑ
az ` b

cz ` d
,

with a, b, c, d P R and ad´ bc “ 1, together with the orientation reserving isometries:

z ÞÑ
az̄ ` b

cz̄ ` d
,

with a, b, c, d P R and ad´ bc “ ´1.

From the definition of the distance, it is clear that elliptic and reflections are classified as

elliptic motions, since in this case a fixed point in H means dHpz,Rzq “ 0, for R elliptic or a

reflection. Similarly, a parabolic transformation S has a unique fixed point in R and therefore

the infimum is 0 but not attained in H and, as expected, S is an abstract parabolic motion. The

hyperbolic motion T is conjugated to a transformation z ÞÑ λz, λ ą 1 and so the hyperbolic

9



CHAPTER 1. PRELIMINARIES

distance between z and λz is

cosh dHpz, Tzq “ 1` |z|2 p1´ λq
2

2λ Impzq2 .

The infimum is then attained as it happens when Repzq “ 0, Impzq ‰ 0 and so we deduce that

we have an abstract hyperbolic motion. Finally, for a glide-reflection D, the approach is similar

to the hyperbolic transformations: if D is a glide reflection, then D2 is hyperbolic and, if we

take the conjugate of D2 as λz, λ ą 1, then we can write Dpzq “ ´
?
λz̄ and so the distance

between z and Dz will be

cosh dHpz,Dzq “ 1` |z `
?
λz̄|2

2
?
λ Impzq2

,

again we get the condition Repzq “ 0, Impzq ‰ 0, so the glide-reflections are abstract hyperbolic

motions.

The action of a subgroup Γ of HomeopXq, in particular a subgroup of IsompXq, and its orbit

spaces X{Γ are also key concepts in this thesis. The main notions are introduced below:

Definition 1.6. Let Γ be a subgroup of HomeopXq. The action of Γ on X is the map

ΓˆXÑ X, pT, xq ÞÑ Tx.

We say that an action of Γ on X is free if Tx ‰ x for all x P X, T P Γ´ teu. We say that Γ

acts properly discontinuosuly on X if each x P X has a neighborhood U of x in X such that

TUXU ‰ H for only finitely many elements in Γ. The following definition introduces the key

notion of topological group:

Definition 1.7. Let Γ be a group. A topological group G “ pΓ, τq is a topological space, with

Γ a group and the topology defined such that the group operation Γ ˆ Γ Ñ Γ, pS, T q ÞÑ ST

and the inversion map Γ Ñ Γ, S ÞÑ S´1 are continuous.

Another basic algebraical notion used systematically in this work is the concept of orbit of

a point by a group:

10



1.1. MOTIVATION: GROUPS OF HOMEOMORPHISMS OF METRIC SPACES

Definition 1.8. Let pX, dq be a metric space and Γ a group acting on X. For each x P X we

say that

Γx “ tTx : T P Γu

is the Γ-orbit of x.

We define the relation x „ y if Γx “ Γy, which can be easily proved as an equivalence

relation in X. We will denote the quotient X{Γ to the orbit space of X by the equivalence

relation above and the elements of the quotient, the representative in the orbit of an element

x P X will be denoted either by x̄ or Γx depending on which notation suits better to the context.

Thirdly, the metric has obviously a geometrical meaning: with the help of the metric, we

can introduce in a set X the elementary geometric notions, namely length of a path, lines

(geodesic) and angles. First of all, the length of a path can be defined:

Definition 1.9. Let pX, dq be a metric space and γ : ra, bs Ă R Ñ X a path in X. We call

length of γ to

lpγq :“ supt
n
ÿ

i“0
dpcpti`1q, cptiqq : ti P R, t0 “ a, tn`1 “ b, ti ď ti`1, i “ 0, ..., n` 1u.

If lpγq is finite, the path γ is called rectificable. A general metric space even path-connected

may not admit rectificable paths between every pair of points.

An isometric embedding of ra, bs Ă R in a metric space pX, dq is a map c : I “ ra, bs Ď RÑ X

such that there exists x P R and dpcpxq, cpyqq “ λ|x ´ y|, where y, λ P R. The role of the

traditional geometrical concept of line is in the case of metric spaces played by the geodesic:

Definition 1.10. Let pX, dq be a metric space.

• a geodesic of length L P R, L ě 0 in X is an isometric embedding c : r0, Ls Ñ X and we

call the image cpr0, Lsq a geodesic segment in X between cp0q and cpLq. The isometric

embedding RÑ X is a geodesic line.

• a subset C Ă X is convex if for each pair x, y P C the geodesic segment joining x and y

is contained in C.

11



CHAPTER 1. PRELIMINARIES

In a metric space the geodesics do not always exist. If every pair x, y P X can be connected by

a geodesic, then the metric space is called geodesic space.

Example 1.11. In this example we show how the definition above can be applied in a general

metric space. Let us define the metric space pCr0, 1s, dq with Cr0, 1s the set of continuous

functions on r0, 1s taking values in R and d the supremum metric

dpf, gq “ sup
xPr0,1s

|fpxq ´ gpxq|.

The family of functions ftpxq “ p1 ´ tqx, gtpxq “ p1 ´ tqx ` t, t P r0, 1s are geodesics in

pCpr0, 1sq, dq, as it can be easily checked using directly the definition:

dpftpxq, ftpyqq “ sup
xPr0,1s

|ftpxq ´ ftpyq| “ sup
xPr0,1s

p1´ tq|x´ y| “ |x´ y|,

and similarly

dpgtpxq, gtpyqq “ sup
xPr0,1s

|gtpxq ´ gtpyq| “ sup
xPr0,1s

p1´ tq|x´ y| “ |x´ y|.

Finally, we introduce the abstract notion of angle in a metric space. Let v, x, y be three

distinct elements of X. We call comparison triangle of pv, x, yq to a triangle in R2 with vertices

v̄, x̄, ȳ such that |x̄´ ȳ| “ dpx, yq, |v̄ ´ x̄| “ dpv, xq and |v̄ ´ ȳ| “ dpv, yq. It can be proved that

such a triangle always exists. We denote this triangle ∆pv, x, yq. Applying the law of cosines to

the euclidean triangle with vertices v̄, x̄, ȳ, we see that the angle =v̄x̄ȳ between the segments

rv̄, x̄s and rv̄, ȳs is

=v̄x̄ȳ “ arccos
|v̄ ´ x̄|2 ` |v̄ ´ ȳ|2 ´ |x̄´ ȳ|2

2|v̄ ´ x̄||v̄ ´ ȳ| ,

and therefore the comparison angle between x and y at v is defined as

=vxy “ arccos
dpv, xq2 ` dpv, yq2 ´ dpx, yq2

2dpv, xqdpv, yq .

This leads us to define the abstract notion of angle between two geodesics of a metric space,

the Alexandrov angle:

Definition 1.12. Let pX, dq be a metric space and α : r0, as Ñ X and β : r0, bs Ñ X be two

geodesics. Given t P p0, as and s P p0, bs consider the comparisson triangle ∆pv, αptq, βpsqq and

12
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the comparisson angle =vαptqβpsq. The Alexandrov angle between α and β at v is the number

=vpαptqβpsqq P r0, πs defined by

=vpα, βq “ lim sup
s,tÑ0

=vαptqβpsq.

Example 1.13. Let us obtain the Alexandrov’s angle for the geodesics of the metric space

pCr0, 1s, dq as in the example 1.10. We start with the comparison triangle at ∆pf0pxq, ftpxq, gt1pxqq:

we have then a triangle of sides of length dpf0pxq, ftpxqq “ t, dpf0pxq, gt1pxqq “ t1 and

dpftpxq, gt1pxqq “ maxtt, t1u. A triangle with sides t, t1,maxtt, t1u can be transformed from

an equilateral one, and so the comparison angle is =f0pxqftpxqgt1pyq “ π{3 to a triangle where

t ąą t1 and so the triangle becomes an isosceles with one side much smaller than the other

two, so that the comparisson angles approaches to π{2. We conclude then that the possible

comparisson angles take any value in rπ3 ,
π
2 q. The Alexandrov´s angle is then by the definition

the lim sup of the possible values, namely

=f0pxqpftpxq, gt1pyqq “ lim sup
t,t1Ñ0

=f0pxqftpxqgt1pyq “ π{2.

As just seen, the algebraical, topological and geometric properties induced by the metric in

X are closely related. This explains the interrelations that arise in specific metric spaces that

at first glance might not be obvious. Of course, these are not only materialized in the groups of

isometries of the euclidean or hyperbolic spaces, Rn or Hn, but has consequences and provide

powerful mathematical insights in a broad collection of metric spaces.

1.2 Presentation of groups of isometries of simply connected

spaces

In this section, we show how these connections mentioned above emerge in a determining way in

simply connected spaces. Let X be such a space. Macbeath in [39] proved that the presentation

of a subgroup of the group IsompXq can be described in terms of fundamental regions R Ă X

of Γ. This reference together with Macbeath and Hoare [41] and Swan [57] are the main sources

used in this section.

13
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Let us start with a useful notion of group presentation introduced specifically for describing

the group of isometries of a metric space. Let Γ be a group and let us define a Γ-word as a finite

non-empty ordered set of elements of Γ. We denote the Γ-word tT1, ..., Tnu as T1 ¨T1 ¨ ... ¨Tn with

dots for distinguishing the Γ-word from the group element given by T1T1...Tn P Γ. We define

the concatenation operation for the Γ-words in the usual way, such that given two Γ-words

W1 “ T1 ¨T2 ¨ ... ¨Tn andW2 “ S1 ¨S2 ¨ ... ¨Sm by the relationW1 ¨W2 “ T1 ¨T2 ¨ ... ¨Tn ¨S1 ¨S2.... ¨Sm.

With such an operation, the set of Γ-words is a semigroup W pΓq, as the operation satisfies the

associative property.

We define a Γ-relation as an unordered pair of Γ-words that we denote pW1,W2q. Let RpΓq

be a set of Γ-relations. We say that the relation pS ¨W1 ¨T, S ¨W2 ¨T q with S, T PW pΓq is implied

by the relation pW1,W2q. A relation pW1,W2q should be seen here as the identification of the

Γ-words W1 and W2. Two words S, T PW pΓq are said to be RpΓq-equivalent (or R-equivalent)

and we write S „ T , if there is a finite sequence of Γ-words S “ W1, ...,Wn “ T such that

each of the relations pWi´1,Wiq is implied by a relation in RpΓq. It is clear then that being

R-equivalent is an equivalence relation:

1. @S P W pΓq, S „ S, inmediate just considering the meaning of the relation as an

identification,

2. @S, T PW pΓq, S „ T ñ T „ S, that again is trivially deduced from the understanding

of a relation as an identification of words,

3. @S, T, U P W pΓq, S „ T and T „ U , then S „ U . This means that there exist

two finite sequence of Γ-words W1i,W2j P RpΓq, i “ 1, ..., n, j “ 1, ...,m such that

S “ W11, ...,W1n “ T and T “ W21, ...,W2m “ U and pW1,i´1,W1iq, pW2,j´1,W2jq are

implied by relations in RpΓq, for i “ 2, ..., n, j “ 2, ...,m and therefore S “W11, ...,W1n “

T,W22, ...,W2m “ U is a finite sequence of words such that two consecutive relations is

implied by a relation in RpΓq, i.e. S „ U .

The R-relation defines then a congruence in the semigroup W pΓq and we can define in the set

of congruence classes the binary operation ˝ as S̄ ˝ T̄ “ S ¨ T , such that the R-equivalence

classes define a semigroup that we denote as W pΓq{RpΓq.

14



1.3. GROUPS OF HYPERBOLIC ISOMETRIES

Let φ : W pΓq Ñ Γ be a map such that for all relations rW1,W2s in RpΓq, φpW1q “ φpW2q.

Then, φ maps R-equivalent elements of W pΓq to the same element in Γ and it thus defines a

homomorphism of W pΓq{RpΓq into Γ. If this homomorphism is an isomorphism, then we call

xW pΓq, RpΓqy a presentation of Γ.

Let Γ be now a subgroup of IsompXq and let us associate to each word in W1 ¨W2 ¨ ... ¨Wn P

W pΓq a group element T “W1W2...Wn P Γ. Let F be a locally finite Γ-covering of X, G the

subset of Γ, G “ tT P Γ : FX TF ‰ Hu and R the set of G-relations R “ trS.T, ST s : S, T P

Γ,FX SFX STF ‰ Hu. Then, we have the following classical result due to Macbeath:

Theorem 1.14. Let pX, dq a metric space and let Γ and F as above.

1. If X is connected, then G generates Γ,

2. if F is path-connected and X is connected and simply connected, then xG,Ry is a presen-

tation for Γ.

1.3 Groups of hyperbolic isometries

The concepts and results presented in previous sections are applied in this thesis to the hyper-

bolic plane. For that, we mainly use the Poincaré upper half-plane model, which wass introduced

already in the example 1.5. However, sometimes the Poincaré disk model will also be considered.

In summary, in the upper half-plane model of the hyperbolic geometry the points of the

hyperbolic plane are the points H “ tz P C : Impzq ą 0u, together with the hyperbolic distance

dH given by

cosh dHpz, wq “ 1` |z ´ w|2

2 ImpzqImpwq ,

where the Riemann metric for the distance is pdsq2 “ pdxq2 ` pdyq2

y2 . The geodesic between

two points z, w P H is either the arc of an euclidean circle with center in R or a segment of

an euclidean line perpendicular to R. The set IsompHq as defined in the example above is

isomorphic to the projective linear group PGLp2,Rq and the related topology is given by the

numbers pa, b, c, dq linked to each transformation.
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The points of the hyperbolic plane in the Poincaré disk model are the points D “ tz P C :

|z| ă 1u with the hyperbolic distance given by

cosh dDpz, wq “ 1` 2 |z ´ w|2

p1´ |z|2qp1´ |w|2q ,

where the Riemann metric for the distance is pdsq2 “ pdxq
2 ` pdyq2

1´ px2 ` y2q
. The geodesics are again

arcs of euclidean circles orthogonal to the boundary circle or diameters of the boundary circle.

The set IsompDq consists of all maps of the form

z ÞÑ
az ` b

b̄z ` ā
, z ÞÑ

az̄ ` b

b̄z̄ ` ā
,

with aā´ bb̄ “ 1. There is a one-to-one correspondence between the upper half-plane and the

disk model via the Cayley transformation

C : HÑ D : z ÞÑ z ´ i

z ` i
,

which makes IsompDq isomorphic to IsompHq.

A non-Euclidean crystallographic (NEC) group is a discrete subgroup Γ of Isom(H). Being

discrete, Γ acts discontinuously on H. We say that Γ is cocompact if the orbit space H{Γ is

compact, otherwise we say that Γ is non-cocompact. In what follows, by an NEC group we

mean a finitely generated non-cocompact NEC group, unless otherwise stated. If Γ consists of

orientation preserving elements then Γ is a Fuchsian group. As stated, in this thesis we focus on

(non-cocompact) proper NEC groups, that is, groups containing orientation reversing elements.

Definition 1.15. Let Γ be an NEC group. A subset F Ă H is called a fundamental region of

Γ if it is closed, convex and satisfies:

1.
Ť

TPΓ
TF “ H,

2. F̊X T F̊ “ H, for all T P Γ´ tIu,

where F̊ is the interior of F in H. The closure of F in H “ HY RY t8u will be denoted by

F, and its boundary, with a slight abuse of notation, by BF “ F´ F̊. The family of images of
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F given by tTF : T P Γu is called a tessellation. The images of F by Γ are called faces of the

tessellation.

Let v P H be a point not fixed by any T P Γ´ tIu. The Dirichlet region of Γ with center v

is defined as DvpΓq “ tz P H | ρpz, vq ď ρpz, Tvq for all T P Γ´ tIuu, where ρ is the hyperbolic

distance. As shown in [41], any Dirichlet region of an NEC group Γ (cocompact or not) is a

closed and convex fundamental region whose associated tessellation is locally finite. Moreover

DvpΓq is compact in H if and only if the orbit space H{Γ is compact.

The boundary BDv of a Dirichlet region is a sequence of hyperbolic segments in H and

segments in BH “ R Y t8u called edges. The intersection between two consecutive edges is

called a vertex. If an edge contains a fixed point of an elliptic element of order two then we

also call such a point a vertex, and call edges the two hyperbolic segments of BDv (both in the

same H-line) which are permuted by the elliptic element. A free edge is an edge in BH, and a

vertex in BH is a vertex at infinity. A vertex at infinity is called improper if it belongs to a free

edge, and proper otherwise.

An NEC group is called geometrically finite if it admits a fundamental region F with finitely

many edges. By Proposition 4.11.2 in [60] the group Γ is finitely generated if and only if Γ has

a fundamental region with only a finite number of neighbours. A neighbour of F is another

fundamental region of the tessellation having at least one boundary edge in common with F.

Therefore, a fundamental region F with a finite number of neighbours can only have a finite

number of such boundary edges and so a finite number of edges. We deduce then that finitely

generated groups have fundamental regions with finitely many edges.

We follow the usual method for associating surface symbols to fundamental regions. The

edges of a fundamental region are paired by the elements of the NEC group, except for the

edges fixed by reflections and the free edges, which are paired with no other edge. If two edges

are paired by an orientation preserving element then they are labelled as p and p1, and if the

element reverses orientation then they are labelled as p and p˚. An edge will be labelled using

a lower case letter and a sequence of consecutive edges will be labelled with a capital letter.

The point of intersection of two consecutive edges a and b will be denoted by pa, bq.

Going through the boundary of a fundamental region counter-clockwise, we can associate

an initial and an end point to each edge. When an edge p is paired with a different edge p1

by an orientation preserving transformation then the initial point of p is mapped to the end

17
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point of p1 (and the end point of p to the initial point of p1). If the transformation reverses the

orientation then the initial point of p is mapped to the initial point of its paired edge p˚ (and

the end point of p to the end point of p˚q.

1.3.1 Cocompact NEC groups

In order to obtain the presentation of an NEC group Γ, we just need to apply Theorem 1.14

to a fundamental region of Γ. For doing that, Wilkie [59] built a fundamental region with a

canonical surface symbol from a Dirichlet region of Γ and transforming it by cutting and pasting

pieces. The detailed description of these transformations will be done for the non-cocompact

case in section 2.1 including sides and vertex at infinity and will not be done here for the

cocompact NEC groups. Labeling the edges of a fundamental region anticlockwise yields a

surface symbol. The main results obtained by Wilkie [59], Macbeath [40] and Singerman [54]

are summarized below.

Theorem 1.16. A finitely generated cocompact NEC group admits a fundamental region with

a surface symbol of one of the following forms:

p1q
r
ź

i“1
xix

1
i

g
ź

i“1
aib

1
ia
1
ibi

k
ź

i“1
eiCie

1
i,

p2q
r
ź

i“1
xix

1
i

g
ź

i“1
did

˚
i

k
ź

i“1
eiCie

1
i,

where each Ci is a sequence of edges fixed by reflections. Linked to this surface symbol, the

presentation of the group is defined by the following theorem:

Theorem 1.17. A finitely generated cocompact NEC group Γ admits the following presentation:

it has generators

paq Xi, i “ 1, ..., r (elliptic elements),

pcq Ai, Bi, i “ 1, ..., g (hyperbolic translations) if the orbit space H{Γ is orientable, or

Di, i “ 1, . . . , g (glide reflections) otherwise,

pdq Ei, i “ 1, . . . , k, (orientation preserving elements, usually hyperbolic elements),

peq Cij, i “ 1, ..., k, j “ 0, ..., ki, (reflections),
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and relations:

piq Xmi
i “ 1, for i “ 1, . . . , r,

piiq EiCiki
E´1
i Ci0 “ 1 for i “ 1, . . . , k,

piiiq C2
ij “ 1, for all the reflections,

pivq pCi,j´1Cijq
nij “ 1 for i “ 1, . . . , k, j “ 1, . . . , ki;

pvq
r
ź

i“1
Xi

g
ź

j“1
rAj , Bjs

k
ź

i“1
Ei “ 1, if the orbit space H{Γ is orientable, or

r
ź

i“1
Xi

g
ź

j“1
D2
j

k
ź

i“1
Ei “ 1, otherwise.

To the presentation above we can assign a signature which is an ordered set of integers and

symbols that identify the group up to isomorphisms. Macbeath introduced the signature spΓq

of a cocompact NEC group Γ as

spΓq “ pg;˘; rm1, , ...,mrs; tpn11, ..., n1k1q, ..., pnk1, ..., nkkk
quq,

where the integers mi ě 2 are called proper periods, nij ě 2 are the linked periods, pni1, ..., niki
q

are the period cycles and g is the orbit genus.

Two NEC groups are called geometrically isomorphic if there is a homeomorphism t : z Ñ z1

of H and a group isomorphism φ : Γ Ñ Γ1 such that φpT q “ tT t´1 for all T P Γ1. Macbeath [40,

Theorem 3] showed that geometrical isomorphism and algebraical isomorphism are equivalent

for cocompact NEC groups. Singerman [54] proved the following result that shows that an

algebraical isomorphism between cocompact NEC groups is always type-preserving.

Theorem 1.18. An isomorphism φ between two cocompact NEC groups Γ and Γ1 is type-

preserving, i.e. elliptics, hyperbolics, reflections and glide reflections in Γ are mapped respectively

to elliptics, hyperbolics, reflections and glide reflections in Γ1.

With the support of the signatures, Macbeath proved and presented the necessary and

sufficient conditions of two cocompact NEC groups for being algebraically isomorphic:
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Theorem 1.19. Let Γ be a cocompact NEC group with signature

s “ spΓq “ pg;˘; rm1, , ...,mrs; tC1, ..., Ckuq,

and Γ1 another cocompact NEC group with signature

s1 “ s1pΓ1q “ pg1;˘; rm11, , ...,m1r1s; tC 11, ..., C 1k1uq.

Then, Γ and Γ1 are isomorphic as abstracts groups if and only if

1. signpsq “ signps1q,

2. g “ g1, r “ r1, k “ k1 and ki “ k1i for i “ 1, ..., k,

3. mi “ m1πpiq for a permutation π of t1, ..., ru,

4. if signpsq “ “ ` ” then there exists a permutation π of t1, ..., ku such that either C 1i is

a cyclic permutation of Cπpiq for each i P t1, ..., ku or C 1i is a cyclic permutation of the

inverse of Cπpiq for each i P t1, ..., ku,

5. if signpsq “ “´ ” then there exists a permutation π of t1, ..., ku such that C 1i is a cyclic

permutation of either Cπpiq or of the inverse of Cπpiq, for each i P t1, ..., ku.

In addition to the algebraical (group presentation) and geometrical (surface symbol) informa-

tion, the signature carries also topological information of the canonical projection f : HÑ H{Γ.

For all z P H, the canonical projection f behaves locally z Ñ zm, m P N except for points fixed

by reflections. We call m the ramification index at z. If m ą 1, then we say that f is ramified

at z. Then, the orbit space H{Γ is classified topologically up to homeomorphisms as:

Theorem 1.20. Let Γ be an NEC group with signature

spΓq “ pg;˘; rm1, , ...,mrs; tpn11, ..., n1k1q, ..., pnk1, ..., nkkk
quq,

and let S “ H{Γ. Then,

1. signpsq “ “` ” if anf only if S is orientable,
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2. the integers m1, ...,mr are the ramification indices with respect to the canonical projection

H Ñ H{Γ of the r conic points lying in the interior of S,

3. the integers ni1, ..., nkki
are the ramification indices with respect to the canonical projection

H Ñ H{Γ of the ki corner points lying on the i-th connected component of the boundary

S.

An arbitrary set of numbers and symbols s defines the signature of an NEC group Γ if and

only if the rational number

µpΓq “ ηg ` k ´ 2`
r
ÿ

i“1
p1´ 1

mi
q `

1
2

k
ÿ

i“1

ki
ÿ

j“1
p1´ 1

nij
q,

is positive, where η “ 2, if signpsq“ ` ” and η “ 1 otherwise. The hyperbolic area of a

fundamental region of Γ is 2πµpΓq. Also, if Γ1 is a subgroup of Γ of finite index, then Γ1 is an

NEC group and

rΓ : Γ1s “ µpΓ1q{µpΓq,

which is the Riemann-Hurwitz formula associated to the covering H{Γ1 Ñ H{Γ.

If Γ is an NEC group that contains orientation reversing elements, then it is called a

proper NEC group. In a proper NEC group there is a fuchsian group Γ` of index two called

canonical fuchsian group, namely Γ` “ ΓX Isom`pHq, with Isom`pHq being the subgroup

of all orientation preserving isometries of IsompHq. We can also write Γ “ Γ` Y TΓ` where

T P Γ´ Γ`. The signature of the canonical fuchsian group Γ` of a proper NEC group Γ was

obtained by Singerman [54]:

Theorem 1.21. Let Γ be an NEC group with signature

s “ spΓq “ pg;˘; rm1, , ...,mrs; tpn11, ..., n1k1q, ..., pnk1, ..., nkkk
quq,

then Γ` has the fuchsian signature

spΓ`q “ pηg ` k ´ 1;m1,m1, ...,mr,mr, n11, ..., nkkk
q,

where, as before, η “ 2, if signpsq “ “` ” and η “ 1 otherwise.
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1.3.2 Non-cocompact NEC groups

This subsection presents the two main results published in the literature related to the topic

of this thesis. The first one, due to Macbeath and Hoare [41], is a theorem that provides the

algebraic structure of (not necessarily finitely generated) non-cocompact groups of hyperbolic

isometries.

Theorem 1.22. An NEC group with non-cocompact orbit space is the free product of cyclic

groups, groups of the forms

xC0, C1, ...;C2
0 “ C2

1 “ ... “ pC1C0q
n0 “ pC2C1q

n1 “ ... “ 1y,

where ni ą 1 and the number of generators and relators is finite or infinite, and groups of the

form

x...C´1, C0, C1, ...; ... “ C2
´1 “ C2

0 “ C2
1 “ ... “ pC´1C0q

n´1 “ pC1C0q
n0 “ pC2C1q

n1 “ ... “ 1y

and

xC1, ..., Cr, E;C2
1 “ ... “ C2

r “ pC1C2q
n0 “ ... “ pCr´1Crq

nr´1 “ 1y,

where r ě 1 and ni ą 1. A fuchsian group with non-cocompact orbit space is the free product of

cyclic groups.

As it can be seen in the theorem’s statement, it is not straightforward to recognize the link

between the generators and relations of this presentation and the geometry of the hyperbolic

plane (for example a marked polygon), or the properties of the related orbit space. This implies

that the usage of this algebraic result cannot be used easily to get further properties of these

groups (e.g. topology of the orbit space).

The second result existing in the literature is due to Zieschang, Vogt and Coldewey [60,

Theorem 4.11.5] and provides a presentation of finitely generated non-cocompact NEC groups.

While it can be easier linked to the geometry of the orbit space, the theorem as well as additional

properties were stated without proof and after the results presented in this work it turned that

the presentation is incomplete.
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Theorem 1.23. A finitely generated NEC group Γ admits the following presentation: it has

generators

paq Xi, i “ 1, ..., s (elliptic elements),

pbq Ai, Bi, i “ 1, ..., g (hyperbolic translations) if the orbit space H{Γ is orientable, or

Di, i “ 1, . . . , g (glide reflections) otherwise,

pcq Ei, i “ 1, . . . , r1 (parabolic elements),

Ei, i “ r1 ` 1, . . . , r2 (hyperbolic translations),

Ei, i “ r2 ` 1, . . . , r3 (hyperbolic translations),

Ei, i “ r3 ` 1, . . . , r (boundary hyperbolic translations),

peq Ci, i “ r1 ` 1, ..., r2 (reflections),

Cij , i “ r2 ` 1, ..., r3, j “ 1, . . . , ti (reflections),

Cijk, i “ r3 ` 1, ..., r, j “ 1, . . . , ui, k “ 1, . . . , ui,j (reflections),

and relations:

piq Xmi
i “ 1, for i “ 1, . . . , s,

piiq EiCiki
E´1
i Ci0 “ 1 for i “ 1, . . . , k,

piiiq C2
i “ C2

ij “ C2
ikj “ 1, for all the reflections,

pivq pCi,j,k´1Cijq
ňi,j,k “ 1 for i “ r1 ` 1, . . . , r1 ` r2 ` r3, j “ 2, . . . , ui;

pCi,j,k´1Cijkq
n̂ijk “ 1 for i “ r3 ` 1, . . . , r, j “ 1, . . . , ti, =̨2, . . . , tij

pvq
s
ź

i“1
Xi

r
ź

i“1
Ei

g
ź

i“1
rAi, Bis, if the orbit space H{Γ is orientable, or

s
ź

i“1
Xi

r
ź

i“1
Ei

g
ź

i“1
rD2

i s, otherwise.

However, the presentation is incomplete since the authors did not take into account products

of reflections with a common fixed point at infinity. In the orbit space these reflections yield

non-compact boundary components with semi-cusps, that is, boundary components with either
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just one point at infinity or with two points at infinity each of which belongs to another

boundary component. We will come to this point in Chapter 3. This changes totally the form

of the group presentation, symbol surface and orbit space, as well as the related properties

(signatures, group isomorphisms, etc.).
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Presentation of finitely generated non-cocompact NEC groups

This chapter is organized as follows. Given a generic finitely generated non-cocompact

NEC group Γ, in section 2.1 we construct a fundamental region for Γ with a particular

surface symbol. This surface symbol reflects geometric and topological properties of

the fundamental region, and provides a canonical presentation by generators and relations of Γ.

This is obtained in Section 2.2.

2.1 Surface symbols

A fundamental region of an NEC group can be transformed conveniently by cutting and pasting

pieces. This yields a new fundamental region with a new surface symbol. We follow James in

[30] and proceed in a similar way as Wilkie did in [59] for cocompact NEC groups to obtain a

fundamental region with a canonical surface symbol. We will follow the notation as explained

in section 1.3.

2.1.1 Transformation rules

Transformation rules I. Let x, x˚ be a pair of labels, and let us write x˚ “ T pxq with T an

orientation reversing element. Then a sequence Q of consecutive edges on one side of x can be

removed, provided T pQq is put on the same side of x˚. So if Q is on the right side of x then Q
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can be moved to the right side of x˚, and if Q is on the left side of x then Q can be moved to

the left side of x˚, see Figure 21.

x

Q R

x˚
y

T pyq

T pQq

;
x

Q
R

x˚

y
y˚
T pQq

xQRx˚ ; yRy˚T pQq

Q

x R

x˚
y

T pQq

T pyq

;
Q

x
R

x˚

y
T pQq

y˚

QxRx˚ ; yRT pQqy˚

Figure 21: Transformation rules Ia and Ib

Transformation rules II. Let x, x1 be a pair of labels, and let us write x1 “ T pxq with T

an orientation preserving element. Then a sequence Q of consecutive edges on one side of x

can be moved (without inversion) to the other side of x1. So if Q is on the right side of x then

Q can be moved to the left side of x1, and if Q is on the left side of x then Q can be moved to

the right side of x1, see Figure 22.

x

Q R

x1
y

T pQq

T pyq

;
x

Q
R

x1

y
T pQq

y1

xQRx1 ; yRT pQqy1

Q

x R

x1
y

T pyq

T pQq

;
Q

x
R

x1

y
y1
T pQq

QxRx1 ; yRy1T pQq

Figure 22: Transformation rules IIa and IIb

The inverse of transformation rules I and II also apply.

Remark 2.1. We observe that under transformation rules I and II, the initial and end points

of the original sequence coincide with the initial and end points respectively of the transformed

sequence.

The canonical surface symbol is obtained in a series of steps by applying the above transfor-

mation rules. Although the method is familiar, the existence of vertices and edges at infinity

makes it more cumbersome. We have to keep track of these vertices and edges.
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First step. Assemble all the pairs y, y1 with no other label between them and obtain a

surface symbol of the form
ź

i

xix
1
i

ź

i

pip
1
iL (1.1)

where pxi, x1iq and ppi, p1iq are elliptic and parabolic vertices respectively, and L contains no

sequence xx1 or pp1. The surface symbol may contain labels x, x1 with no other label between

them. We use transformation rule IIb (with R “ ∅) to move all such pairs to the front of the

symbol. Observe that the vertex px, x1q is fixed by the orientation preserving transformation X

which pairs x with x1. If px, x1q lies in H then X is elliptic; otherwise X is parabolic. In the

latter case we write such pair as pp1. We first move the pairs such that the vertex px, x1q lies in

H and then the pairs pp1, where the vertex pp, p1q is proper. This way we get (1.1).

Second step. Assemble all the pairs d, d˚ together and obtain a surface symbol of the form

ź

i

xix
1
i

ź

i

pip
1
i

ź

i

did
˚
i M (1.2)

where M contains no pair xx1, pp1 or dd˚. If L in (1.1) contains a pair of labels d, d˚ then

we assemble them together by using the transformation rule Ia (with R “ ∅q. Successive

applications of transformation rules Ia and Ib allow us to assemble together all pairs d, d˚ and

write them in the front of L.

The sequence M in (1.2) may contain a sequence of the form aBb1Ca1Db, where B, C and

D are labels of consecutive edges of the fundamental region. Such pair a, b is called a linked

pair. In the third step we deal with these pairs.

Third step. Assemble all the linked pairs and obtain a surface symbol of the form

ź

i

xix
1
i

ź

i

pip
1
i

ź

i

did
˚
i

ź

i

aib
1
ia
1
ibi N (1.3)

where N contains no pair xx1, pp1, dd˚ and no linked pair. Applying successively transformation

rule II (and its inverses) changes a sequence aBb1Ca1Db with a linked pair in the following way

aBb1Ca1Db; ab1Ca1DbB ; ab1a1DCbB ; DCab1a1bB,

where we first have moved B (from the left of b1 to the right of b), then C (from the right of b1
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to the left of b), and finally DC (from the right of a1 to the left of a). To lighten notation, we

have kept the letters a, b1, a1, b and also B,C,D since no confusion may arise. The same is done

in the following movements. Using again transformation rule II, the linked pair ab1a1b is moved

to the front:

Xab1a1b; ab1a1Xb; ab1Xa1b; aXb1a1b; ab1a1bX,

where we have moved X first from the left of a to the right of a1, then from the left of b to the

right of b1, then from the left of a1 to the right of a and finally from the left of b1 to the right

of b. Repeating this process we assemble all linked pairs together in the front of M to get a

surface symbol of the form (1.3).

It is well known that a pair d, d˚ together with a linked pair can be turned into three pairs

d1, d
˚
1 , d2, d

˚
2 , d3, d

˚
3 . Continuing this process we may eliminate the linked pairs. We do not

perform this transformation now but at the end, to avoid considering different cases.

Therefore, after step three we obtain a surface symbol of the form (1.3) where N contains

no pair xx1, pp1, dd˚ and no linked pair. The sequence N consists of edges paired with no other

edge and pairs e, e1 with at least one more label between them. We deal with these sequences

in step fourth.

Fourth step. Assemble the sequences eCe1 with C non-empty and obtain a surface symbol

of the form
ź

i

xix
1
i

ź

i

pip
1
i

ź

i

did
˚
i

ź

i

aib
1
ia
1
ibi

ź

i

eiCie
1
i. (1.4)

where each Ci is a sequence of labels representing free edges or edges fixed by reflections.

If the sequence N in (1.3) contains a pair of labels e, e1 then there exists at least one more

label between e and e1. Choose a label e such that there are as few labels between e and e1 as

for any other such paired symbol. Then each label between e and e1 is paired with no other

edge and so it represents either a free edge or an edge fixed by a reflection. We move such

a sequence eCe1 to the front of N by using transformation rule IIb. Repeating this process

transforms N into a sequence of the form
ś

i eiCie
1
i T, where each Ci is a sequence of labels

representing free edges and edges fixed by reflections. We get

ź

i

xix
1
i

ź

i

pip
1
i

ź

i

did
˚
i

ź

i

aib
1
ia
1
ibi

ź

i

eiCie
1
i T, (1.5)
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where the remaining sequence T has no pair of labels e, e1 and so it is also a sequence of labels

representing free edges or edges fixed by reflections. Lemma 2.2 below shows that this surface

symbol can be changed to another with empty T. Eliminating the sequence T makes it easier

to obtain in Section 2.2 a presentation of the NEC group Γ.

Lemma 2.2. The surface symbol (1.5) can be transformed into another of the same form with

one more sequence eCe1 and empty T .

Proof. Assume first that the surface symbol contains a sequence eCe1. To lighten notation, we

denote by eCe1 its last sequence and divide e into two edges e1e2. We can write the surface

symbol as Ae1e2Ce
1
2e
1
1T with A “

ś

xx1
ś

pp1
ś

dd˚
ś

ab1a1b
ś

eCe1, where in the last

product we have omitted the sequence e1e2Ce
1
2e
1
1. Using transformation rule IIb we move A

from the left of e1 to the right of e11 without inversion, and obtain ye2Ce
1
2y
1A1T. Observe that

A1 has the same form as A, that is,
ś

xx1
ś

pp1
ś

dd˚
ś

ab1a1b
ś

eCe1. We write this surface

symbol as e2Ce
1
2zA1Tz

1, which has one more sequence of the form eCe1 than (1.5). We now

repeat the same transformations as in the previous steps and move successively the pairs xx1,

pp1, dd˚ and ab1a1b in A1 to the front, obtaining therefore a surface symbol of the form

ź

i

xix
1
i

ź

i

pip
1
i

ź

i

did
˚
i

ź

i

aib
1
ia
1
ibi

ź

i

eiCie
1
i zTz

1.

This shows the Lemma in the case where the surface symbol contains a sequence eCe1.

We assume now that there is no sequence eCe1. If there exists a pair xx1 or pp1 then we

repeat movements similar to the above one. Let xx1 be the first pair in the above surface

symbol, and let us divide x into two parts x1 and x2 so that the above surface symbol can be

written as x1x2x
1
2x
1
1AT, or, starting at T, as Tx1x2x

1
2x
1
1A. Transformation rule IIb allows us to

move T from the left of x1 to the right of x11, obtaining yx2x
1
2y
1T 1A “ x2x

1
2zT

1Az1. The same

transformations as in the above steps move the sequence A frontwards, yielding therefore a

surface symbol of the form

ź

i

xix
1
i

ź

i

pip
1
i

ź

i

did
˚
i

ź

i

aib
1
ia
1
ibi zTz

1.

We assume now that there is no pair xx1 or pp1 but there is a pair dd˚. Let dd˚ be the

first such pair and divide d into two parts d1 and d2 so that the surface symbol (1.5) can be
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written as d1d2d
˚
1d
˚
2AT, or, starting at d˚2 , as d˚2ATd1d2d

˚
1 . Let us denote by D the orientation

reversing transformation such that Dpdq “ d˚, so Dpdiq “ d˚i for i “ 1, 2. Transformation rule

Ib allows us to move d˚2AT from the left of d1 to the left of d˚1 by means of D:

d˚2AT d1 d2 d
˚
1 ; y d2Dpd

˚
2AT q y

˚“yd2DpAT qDpd
˚
2qy

˚“yd2DpAT qD
2pd2qy

˚“

“ yd2DpAT qd
1
2y
˚,

where d12 :“ D2pd2q is the image of d2 under the orientation preserving element D2. Let G be

the orientation reversing transformation such that Gpyq “ y˚. Transformation rule Ib allows us

to use G to move d2DpAT qd
1
2 from the right of y to the right of y˚:

y d2DpAT qd
1
2 y

˚ ; zz˚Gpd2DpAT qd
1
2q “ zz˚Gpd12qGDpAT qGpd2q.

Since GD preserves orientation, the structure of GDpAT q is the same as that of AT. In addition,

if e :“ Gpd12q then Gpd2q “ GD´2pd12q “ GD´2G´1peq, which we may write as e1 because it is the

image of e under an orientation preserving element. So we may write zz˚Gpd12qGDpAT qGpd2q

as zz˚eATe1. We now move the sequence A frontwards, using the movements done in the above

steps, obtaining therefore a surface symbol of the form

ź

i

did
˚
i

ź

i

aib
1
ia
1
ibi eTe

1.

We finally consider the case of a surface symbol of the form
ś

i aib
1
ia
1
ibi T. Let ab1a1b be the first

linked period and let us divide a into two edges a1 and a2 so that the surface symbol can be

written as a1a2b
1a12a

1
1bAT or, starting at T, as Ta1a2b

1a12a
1
1bA. We first move T from the left

of a1 to the right of a11 to get a1a2b
1a12a

1
1TbA. We now move the sequence Q “ a11T (without

inversion) in the following way:

a1a2b
1a12 a

1
1T bA; a1a2b

1 a11T a12bA; a1a2 a
1
1T b1a12bA; a1a2b

1a12b a
1
1T A,

where we first have moved a11T from the left of b to the right of b1, then to the right of a2 and

finally to the right of b. Starting at a2 we may write this surface symbol as a2b
1a12b eT Ae

1,

where e :“ a11 and e1 is the image of e under an orientation preserving element. We finally move

A frontwards to obtain a surface symbol of the prescribed form
ś

ab1a1b eTe1.
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Summarizing, after the fourth step we obtain a surface symbol of the form (1.4) where each

Ci is a sequence of labels representing free edges or edges fixed by reflections. In the sixth and

final step we will arrange these sequences according to the types of vertices at infinity they

have. Before that, we eliminate some vertices at infinity. This is done in step five.

A vertex at infinity in the surface symbol (1.4) may be of different types, as parabolic, which

is the fixed point of a parabolic element, semi-parabolic, which is either the common vertex

of two consecutive edges fixed by reflections or a vertex at infinity of the form pei, cq or pc, e1iq

in a sequence eiCe1i, and improper, which is the initial or end point of a free edge. But there

may be other vertices at infinity, as Examples 2.3 and 2.4 show. In the next step we transform

the surface symbol to eliminate these other vertices, leaving the parabolic, semi-parabolic and

improper vertices as the unique types of vertices at infinity.

Example 2.3. Let Γ be the group generated by the glide reflection Dpzq “ ´2z. Clearly, Γ is

a finitely generated discrete NEC group with non-compact orbit space (an unbounded Möbius

band). A fundamental domain for Γ is the following. Let d be the hyperbolic line joining the

real points ´2 and 1, and let d˚ “ Dpdq be the hyperbolic line joining the real points ´2 and 4.

These two edges together with the free edge f joining 1 and 4 determine a fundamental domain

for Γ, with surface symbol dd˚f. It has two improper vertices p1 and 4q and one proper vertex,

v “ ´2, where the two consecutive edges d and d˚ meet. However, v is not a fixed point of D.

It is a proper vertex but it is neither parabolic, nor semi-parabolic, nor improper.

Example 2.4. Let C1, C2, C3 and C4 be the hyperbolic lines with endpoints p´2,´1q, p´1, 1q,

p1, 3q and p3,´3q respectively. It is easy to see that C2 and C4 are paired by the hyperbolic

transformation Ta : z ÞÑ 3z, whilst C1 and C3 are paired by the hyperbolic transformation

Tb : z ÞÑ p´3z` 5q{pz´ 4q. It follows that the interior of the region bounded by C1YC2YC3Y

C4 Y r´3,´2s is a fundamental domain for the action of the group xTa, Tby. We claim that this

is a discrete group. The axis of the hyperbolic transformation Ta, with endpoints FixpTaq “

t0,8u, intersects the axis of the hyperbolic transformation Tb, with endpoints FixpTbq “ tp1˘
?

41q{4u. Moreover, the commutator rTa, Tbs : z ÞÑ p´27z ´ 45q{p8z ` 13q is also a hyperbolic

transformation. It follows from the Discreteness Theorem [24, Thm. 3.1.1], that the group

xTa, Tby is discrete. A surface symbol for the above fundamental domain is ab1a1bf, where

a, b1, a1, b are the above hyperbolic lines C1, C2, C3, C4 and f is the free edge joining the improper
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vertices ´3 and ´2. We again have vertices at infinity which are neither parabolic, nor semi-

parabolic, nor improper.

Fifth step. Change the surface symbol (1.4) so that the unique vertices at infinity are

parabolic, semi-parabolic or improper vertices.

If this is not so then the initial point of an edge xi, pi, di, d˚i , ai, b1i, a1i, bi or ei lies at infinity.

Lemma 2.5 below shows that the initial points of all these edges are in the same Γ-orbit.

Lemma 2.5. Assume F has surface symbol
ś

i xix
1
i

ś

i pip
1
i

ś

i did
˚
i

ś

i aib
1
ia
1
ibi

ś

i eiCie
1
i as

in (1.4). Then the initial points of the edges xi, pi, di, d˚i , ai, b1i, a1i, bi and ei are all in the

same Γ-orbit. In particular all of them lie either in H or at infinity.

Proof. Let us use capital letters to denote the elements of Γ which pair edges of F, so we have

Xipx
1
iq “ xi, Pipp

1
iq “ pi, Dipd

˚
i q “ di, Aipa

1
iq “ ai, Bipb

1
iq “ bi and Eipe

1
iq “ ei. The initial

point of xi is mapped by the transformation X´1
i to the end point of x1i, which is the initial

point of xi`1. It follows that the initial points of all the edges xi are in the same Γ-orbit. The

initial point of the last edge xi is mapped to the end point of x1i, which is the initial point of p1.

Starting with p1, we repeat the same arguments changing xi and Xi by pi and Pi respectively,

to conclude that the initial points of all the edges pi are in the same Γ-orbit as the initial points

of the edges xi. The end point of the last edge p1i is the initial point of d1. This point is mapped

by D´1
1 to the initial point of d˚1 , which is mapped, again by D´1

1 , to the initial point of d2.

Continuing with this process we see that the initial points of the edges di and d˚i are in the

same Γ-orbit as the above initial points. The end point of the last edge d˚i is the initial point of

a1. This point is mapped by A´1
1 to the end point of a11. This is the initial point of b1, which is

mapped by B´1
1 to the end point of b11. This is the initial point of a11, which is mapped by A1

to the end point of a1. Finally, B1 maps this point, which is the initial point of b11, to the final

point of b1. So the five vertices of a1b
1
1a
1
1b1 are in the same Γ-orbit. The end point of b1 is the

initial point of the sequence a2b
1
2a
1
2b2. We repeat the argument to conclude that all the vertices

in the sequence
ś

i aib
1
ia
1
ibi are in the same Γ-orbit. The end point of the last edge bi is the

initial point of e1, which is mapped by E´1
1 to the end point of e11. This is the initial point of

e12. Repeating the above arguments we see that the initial points of all the edges ei are in the

same Γ-orbit as the above initial points. This shows the lemma. We also observe that the end

point of the last edge e1i is the initial point of the edge x1 that we started with.

32



2.1. SURFACE SYMBOLS

In order to show step five, assume first that the initial point of an edge xi or pi lies at

infinity. Then we may write the surface symbol (1.4) as zz1C where the initial point of z lies

at infinity and its end point pz, z1q is either elliptic or parabolic. If C is a free edge then the

initial point of z is an improper vertex and there is nothing to do. In this case the surface

symbol can be written as eCe1 where e :“ z1 and e1 :“ z are paired by an orientation preserving

element. This surface symbol has one of the two forms described in Theorem 2.9, where the

sequence eCe1 is called µ-sequence and denoted as ẽ rCẽ1. This corresponds to a cyclic NEC

group Γ generated either by an elliptic or by a parabolic transformation.

If C is not a free edge then we write C “ C1C2 with the vertex between C1 and C2 lying in

H, so the surface symbol can be written as C2zz
1C1. Applying transformation rule IIb with

R “ ∅ and Q “ C2 changes the surface symbol to yy1T pC2qC1, where T pairs z with z1. The

initial point of y is the initial point of C2, which lies in H. We repeat this transformation with

the next pair zz1, assembling the initial point of z with the end point of y1 which lies in H.

Continuing with this process we assemble all sequences zz1, dd˚, ab1a1b and eCe1 together as

done in previous steps. We end up with a sequence of the same form as (1.4) above, where all

its vertices lie in H except the parabolic, semi-parabolic or improper vertices.

Assume now that (1.4) contains no pair xx1 or pp1 but does contain some pair dd˚ with its

first vertex at infinity. To lighten notation, let dd˚ the first such pair, and let us divide d into

two parts δ1 and δ2 with the vertex pδ1, δ2q lying in H. So the surface symbol can be written

as δ1δ2δ
˚
1 δ
˚
2B. Applying transformation rule Ia with Q “ δ˚1 and R “ H we obtain a surface

symbol of the form δ1 yy
˚T pδ˚1 qB, where T is the orientation reversing transformation pairing

d and d˚. Since the end point of δ1 is finite, the same happens to the three vertices of the pair

yy˚. Starting with the edge y we may write this surface symbol as yy˚eBe1 where e1 :“ δ1 is

the image of e :“ T pδ˚1 q under an orientation preserving element. We next move frontwards all

the edges dd˚, ab1a1b and eCe1 occurring in the sequence B as done in previous steps. We again

end up with a sequence of the same form as (1.4) but with the initial vertex of y lying in H.

We now consider the case where (1.4) has no pair xx1, pp1 or dd˚ but has a linked pair with

its vertices at infinity. We deal with this case in Lemma 2.6.

Lemma 2.6. A surface symbol ab1a1bC where the vertices of the linked pair ab1a1b lie at infinity,

can be transformed into a surface symbol uv1u1v eCe1 where the linked pair uv1u1v has no vertex

at infinity.
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Proof. The proof consists of cutting and pasting the fundamental domain in an appropriate way,

keeping track of the vertices at infinity. Let us denote by A and B the orientation preserving

transformations such that Apaq “ a1 and Bpbq “ b1. We divide each edge a and b into two edges

a1, a2 and b1, b2 respectively, with the vertices pa1, a2q and pb1, b2q finite, so that the surface

symbol can be written as a1a2b
1
2b
1
1a
1
2a
1
1b1b2C or, starting at a2, as a2b

1
2b
1
1a
1
2a
1
1b1b2C a1. Here,

a1i “ Apaiq and b1i “ Bpbiq. We first apply twice transformation rule IIa, one with x “ a2,

Q “ b12 and R “ b11 (here x1 “ a11 “ Apa1qq, and another with x “ a11, Q “ b1 and R “ b2C

(here, x1 “ a1 “ A´1pxqq. We obtain

a2b
1
2b
1
1a
1
2 a

1
1b1b2Ca1

A
; yb11Apb

1
2qy

1 a11b1b2Ca1
A 1́
; yb11Apb

1
2qy

1 zb2CA
´1pb1qz

1.

Observe that the four edges y, y1, z and z1 lie in H. We now apply transformation rule IIb with

Q “ b11, x “ Apb12q and R “ y1z (here x1 “ b2 “ pABq
´1pxqq. We obtain

y b11Apb
1
2qy

1zb2 CA´1pb1qz
1 pABq

´1
; y vy1zv1pABq´1pb11q CA

´1pb1qz
1.

We now substitute each primed edge by its description as the image of the unprimed edge.

Namely, y1 “ Apyq, v1 “ pABq´1pvq, b11 “ Bpb1q and z1 “ A´1pzq. So the surface symbol,

starting with z1, is

A´1pzq y v Apyq z pABq´1pvq pABq´1pBpb1qqC A
´1pb1q.

The pair of consecutive edges A´1pzqy are mapped by A to Apyqz. So we may change the

surface symbol to

u v Apuq pABq´1pvq pABq´1pBpb1qqC A
´1pb1q.

Denoting the edge pABq´1pBpb1qq by e we have that A´1pb1q “ A´1B´1ABpeq is the image,

say e1, of e under an orientation preserving transformation. This shows that the surface symbol

can be written as uvu1v1 eCe1. Now, the initial vertex of u is the initial point of A´1pzq “ z1,

which lies in H as pointed out above. It follows that the vertices of the linked pair uvu1v1 lie in

H, and this concludes the proof.

Remark 2.7. Observe that the sequence C in Lemma 2.6 cannot be empty since otherwise

the fundamental domain would be a four sided polygon whose four vertices would be fixed by
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the commutator rA,Bs of the two transformations A and B pairing the edges. This would give

rA,Bs “ 1. But this is impossible because there is no Fuchsian group isomorphic to Zˆ Z, see,

for instance, [31, Thm 5.7.4].

We finally consider the case where the surface symbol (1.4) has no pair xx1, pp1, dd˚ and no

linked pair ab1a1b but has a sequence eCe1 with the initial point of e lying at infinity. We divide

e into two parts e1 and e2 with the vertex pe1, e2q lying in H. Starting with e2, the surface

symbol can be written as e2Ce
1
2 e
1
1Ae1 where A consists of sequences eCe1. We now move these

sequences frontwards as done above and assemble them to e2Ce
1
2. We obtain a surface symbol

of the same form as (1.4) where the initial point of e2 lies in H.

Summarizing, after the fifth step we obtain a surface symbol of the form (1.4) where the

unique vertices at infinity are parabolic, semi-parabolic or improper vertices. In the final step

we arrange the sequences eiCie1i according to the types of vertices at infinity they have.

Sixth step. Arrange the sequences eCe1 with C non-empty.

We first move to the front those sequences with no vertex at infinity. We call them o-

sequences, see Figure 23. In the orbit space H{Γ, an o-sequence corresponds to a compact

boundary component, which is usually known as oval.

e

c1

c2

e1

cm

cm´1

=

E

R Y t8u

Figure 23: An o-sequence: a compact boundary component.

The remaining sequences eCe1 contain vertices at infinity. Lemma 2.8 below shows that we

may assume that the end point of e lies at infinity.

Lemma 2.8. Let eCe1 be a sequence of edges such that C has a vertex at infinity. We may

change the sequence to another of the form yDy1 where the end point of y is a vertex at infinity.
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Proof. If the initial vertex of C does not lie at infinity (otherwise we are done) then we may write

C “ QR where the vertex between Q and R lies at infinity and Q is non-empty. Transformation

rule IIa changes eQRe1 into yREpQqy1 where E pairs e and e1. Since E preserves points at

infinity, the initial point of R, which is the final point of y, is a vertex at infinity.

The final point of y may be either proper or improper. If the first edge in R is free (so that

the last edge of Q is fixed by a reflection) then the final point of y is improper and the initial

point of y1 is proper. That is, the first edge of D is free and its last edge is fixed by a reflection.

We now arrange these sequences eCe1 with vertices at infinity. We first write those sequences

whose unique vertices at infinity are the end point of e and the initial point of e1. These vertices

are semi-parabolic. We call such C a ν-sequence and denote it by qC, see Figure 24. These

two vertices are in the same Γ-orbit, so in the orbit space H{Γ a ν-sequence gives rise to a

non-compact boundary component with just one point at infinity. This is a semi-cusp.

ě

č1 čm

ě1

�

qE

R Y t8u

Figure 24: A ν-sequence qC: a boundary component with one semi-cusp.

We then write those eCe1 such that C has more than two vertices at infinity but no free

edge. These proper vertices are semi-parabolic. We call such C an η-sequence and denote it by
pC, see Figure 31. In the orbit space H{Γ an η-sequence gives rise to (at least two) non-compact

boundary components, each of them having two points at infinity. These two points are also

semi-cusps but, unlike the case of ν-sequences, each such semi-cusp is a point at infinity of two

different non-compact boundary components.

We finally write those sequences eCe1 with improper vertices. We call such C a µ-sequence

and denote it by rC. If rC consists of a single free edge then in the orbit space H{Γ the µ-sequence

gives rise to a funnel with no boundary component. Assume rC has more than one edge. As
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ê

ĉ1 ĉi ĉi`1 ĉm

ê1

�

pE

R Y t8u

Figure 25: An η-sequence pC: each boundary component has two semi-cusps.

pointed out after Lemma 2.8 we may assume that the end point of ẽ is improper and the initial

point of ẽ1 is proper, see Figure 32. In the orbit space H{Γ such µ-sequence gives rise to a

funnel with non-compact boundary components. Each of these boundary components has two

points at infinity, which may be semi-cusps or not. A µ-sequence corresponds to a hyperbolic

end with infinite area.

ẽ

c̃1

c̃2 c̃i c̃i`1 c̃j´1

c̃j

c̃j`1 c̃m

ẽ1

�

rE

R Y t8u

Figure 26: A µ-sequence rC: a hyperbolic end with infinite area

We therefore get a surface symbol of the form

r
ź

i“1
xix

1
i

s
ź

i“1
pip

1
i

n
ź

i“1
did

˚
i

m
ź

i“1
aib

1
ia
1
ibi

k
ź

i“1
eiCie

1
i

l
ź

i“1
ěi qCiě

1
i

q
ź

i“1
êi pCiê

1
i

t
ź

i“1
ẽi rCiẽ

1
i,

where Ci, qCi, pCi and rCi are o-, ν-, η- and µ-sequences respectively.

Assume now that there exists a pair dd˚. It is well known that this pair together with

a linked pair can be turned into three pairs d1d
˚
1 , d2d

˚
2 , d3d

˚
3 . Continuing this process we

eliminate the linked pairs. This gives the two types of surface symbols collected in the following

Theorem 2.9.

Theorem 2.9. A finitely generated NEC group admits a fundamental region with a surface

symbol of one of the following forms:
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p1q
r
ź

i“1
xix

1
i

s
ź

i“1
pip

1
i

g
ź

i“1
aib

1
ia
1
ibi

k
ź

i“1
eiCie

1
i

l
ź

i“1
ěi qCiě

1
i

q
ź

i“1
êi pCiê

1
i

t
ź

i“1
ẽi rCiẽ

1
i,

p2q
r
ź

i“1
xix

1
i

s
ź

i“1
pip

1
i

g
ź

i“1
did

˚
i

k
ź

i“1
eiCie

1
i

l
ź

i“1
ěi qCiě

1
i

q
ź

i“1
êi pCiê

1
i

t
ź

i“1
ẽi rCiẽ

1
i,

where Ci, qCi, pCi and rCi are o-, ν-, η- and µ-sequences respectively, and the unique vertices at

infinity are parabolic, semi-parabolic or improper vertices.

2.2 Generators and relations of non-cocompact NEC groups

In this section we obtain a presentation by generators and relations of a finitely generated

non-cocompact NEC group Γ. We follow Wilkie in [59] where the analogous result for cocompact

groups is done.

Let F be a fundamental region for Γ. It follows from [39, Theorem 2 and Corollary] that a

set of generators of Γ is the set tT P Γ : FX TF ‰ Hu. Moreover, it is shown in [59, Theorem

2] (see also Lemma 13 in [41]) that the above set can be restricted to the set

E “ tT P Γ : FX TF is an edgeu.

Each finite vertex v of a fundamental domain F has N faces meeting at v, say F “ T0F,

T1F, . . . , TN´1F. Then the elements Gi :“ T´1
i´1Ti 1 ď i ď N ´ 1 and GN “ T´1

N´1 satisfy

T1 ¨ ¨ ¨TN “ 1. This is called the canonical relation associated to v. It can be expressed in terms

of the elements in E.

The following Theorem 2.10 gives a presentation of Γ in terms of the elements of E. It is

the non-compact version of [59, Theorem 2], and it follows from [39] and [41].

Theorem 2.10. Let R1 be the set of relations C2“1 where C runs over the reflections fixing an

edge of F. Let R2 be the set of canonical relations which includes one for each set of congruent

finite vertices of F. Then R1YR2 is a complete set of defining relations in terms of the elements

in E.

Observe that proper and improper vertices do not contribute to the set R2 with any relation.

Our goal now is to analyze the canonical relation associated to each type of vertex. Since

proper and improper vertices do not contribute, the canonical relations are the same as in the
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cocompact case. However, the different ways in which vertices at infinity occur in the surface

symbol lead to different ways in which products of consecutive reflections are described.

We first consider vertices of the form v “ px, x1q. Let X be the elliptic element pairing the

edges x and x1. Then the canonical relation of the vertex px, x1q is

Xm “ 1,

where m equals the number of faces meeting at px, x1q.

We next consider vertices of the form v “ pci, ci`1q where ci and ci`1 are consecutive

edges fixed by the reflections Ci and Ci`1 respectively. These vertices occur in o-, ν-, η- and

µ-sequences. Then the canonical relation of the vertex pci, ci`1q is

pCiCi`1q
n “ 1,

where 2n equals the number of faces meeting at pci, ci`1q.

We next consider vertices of the form pe, c1q, which is congruent to a vertex pck, e1q, where c1

and ck are edges fixed by the reflections C1 and Ck respectively, and e and e1 are edges paired

by a hyperbolic transformation E. The canonical relation of this congruent pair of vertices is

pECkE
´1C1q

n “ 1,

where 4n is the number of faces meeting at pe, c1q. By Lemma 2.8, we are assuming that these

vertices lie in H only in o-sequences. So for ν-, η- and µ-sequences we do not have this relation.

Before dealing with the canonical relation corresponding to the set of congruent vertices

which have not been considered yet, we examine the set of canonical relations of the vertices of

the different types of sequences eCe1.

If C is an o-sequence with m edges c1, . . . , cm fixed by the reflections C1, . . . , Cm, then its

m´ 1 vertices pci, ci`1q for i “ 1, . . . ,m´ 1 are all in H, see Figure 23. The canonical relations

of these vertices are pCiCi`1q
ni`1 “ 1 for i “ 1, . . . ,m´ 1. In addition, the canonical relation

of the vertex pe, c1q (or its congruent vertex pcm, e1q) is pC0C1q
n1 “ 1, where C0 “ ECmE

´1.
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So an o-sequence provides the following relations:

C2
i “1 for i “ 0, . . . ,m, pCi´1Ciq

ni“1 for i “ 1, . . . ,m, and ECmE
´1C0“1.

If qC is a ν-sequence with m edges č1, . . . , čm fixed by the reflections qC1, . . . , qCm, then it has

one proper vertex, which we may assume is the final point of e, see Figure 24. The vertex pě, č1q

(and its congruent vertex pčm, ě1q) lies at infinity and hence provides no canonical relation. So

a ν-sequence provides the following relations:

qC2
i “ 1 for i “ 1, . . . ,m, and p qCi´1 qCiq

ňi “ 1 for i “ 2, . . . ,m.

If pC is an η-sequence with m edges ĉ1 . . . , ĉm fixed by the reflections pC1, . . . , pCm, then it

has more than one proper vertex, see Figure 31. Write

pV “ ti P t2, . . . ,mu : the vertex pĉi´1, ĉiq is properu.

The vertices which lie in H are pĉi´1, ĉiq for i R pV , and their corresponding canonical relations

are therefore p pCi´1 pCiq
n̂i “ 1 for i R pV . By Lemma 2.8, we may assume that the vertices pê, ĉ1q

and pĉm, ê1q lie at infinity. So they provide no canonical relation. Therefore an η-sequence

provides the following relations:

pC2
i “ 1 for i “ 1, . . . ,m, and p pCi´1 pCiq

n̂i “ 1 for i P t2, . . . ,mu ´ pV .

If rC is a µ-sequence with m edges c̃1, . . . , c̃m then some of them are free edges. If m“ 1

(hence rC consists of a single free edge) then the only generator associated to a µ-sequence is the

hyperbolic transformation rE pairing ẽ and ẽ1 (there is no reflection) and there is no canonical

relation because there is no vertex in H. Assume rC has more than one edge. As pointed out

after Lemma 2.8, we may assume that the vertex pẽ, c̃1q is improper (so c̃1 is a free edge) and

that pc̃m, ẽ1q is proper (so c̃m is fixed by a reflection), see Figure 32. Let U be the set of indices

of free edges:

U “ ti P t1, . . . ,mu : c̃i is a free edgeu.

The canonical reflections associated to a µ-sequence are therefore rCi for i P t1, . . . ,mu ´ U.
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Observe that 1 P U and that it contains no pair of consecutive indices (so 2 R Uq. In addition,

if m ą 1 then m R U by our assumption based on Lemma 2.8. Let rV “ ti P t3, . . . ,mu :

the vertex pc̃i´1, c̃iq is properu be the set of indices of proper vertices. Then a µ-sequence

provides the following relations:

rC2
i “ 1 for i P t1, . . . ,mu ´ U, and

p rCi´1 rCiq
ñi “ 1 for i P t2, . . . ,mu ´ rV and ti´1, iu X U “ H.

It remains to deal with the canonical relation corresponding to the set of congruent vertices

which have not been considered yet. As usual, we will use capital letters to denote the elements

of Γ which pair edges of F, so we have Xipx
1
iq “ xi, Pipp

1
iq “ pi, Dipd

˚
i q “ di, Aipa

1
iq “ ai,

Bipb
1
iq “ bi, Eipe1iq “ ei, qEipě

1
iq “ ěi, pEipê

1
iq “ êi, rEipẽ

1
iq “ ẽi.

Assume first that F has a surface symbol of the form

r
ź

i“1
xix

1
i

s
ź

i“1
pip

1
i

g
ź

i“1
aib

1
ia
1
ibi

k
ź

i“1
eiCie

1
i

l
ź

i“1
ěi qCiě

1
i

q
ź

i“1
êi pCiê

1
i

t
ź

i“1
ẽi rCiẽ

1
i.

In this case, the set of vertices which have not been considered yet are the initial points of

the edges xi, pi, ai, b1i, a1i, bi, ei, ěi, êi and ẽi. These points are all congruent, as shown in

Lemma 2.5. Moreover, it follows from the proof of this lemma that applying successively the

letters of the word

W :“
˜

r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

i“1
rAi, Bis

k
ź

i“1
Ei

l
ź

i“1

qEi

q
ź

i“1

pEi

t
ź

i“1

rEi

¸´1

we go through all these points, starting and ending at the initial point of the edge x1. Therefore

W is an orientation preserving transformation which fixes this point. So W is either the identity

or a non-trivial elliptic element. In the first case the canonical relation associated to this set of

congruent vertices is

r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

i“1
rAi, Bis

k
ź

i“1
Ei

l
ź

i“1

qEi

q
ź

i“1

pEi

t
ź

i“1

rEi “ 1.

This is called the “long relation”. If W has order m0 ‰ 1 then we take it as a new elliptic
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generator X0 “W and obtain the relations

Xm0
0 “ 1 and X0 ¨

r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

i“1
rAi, Bis

k
ź

i“1
Ei

l
ź

i“1

qEi

q
ź

i“1

pEi

t
ź

i“1

rEi “ 1.

Observe that the presentations in both cases (W “ 1 or not) just differ in the number of elliptic

generators: they are X1, . . . , Xr, in the first case, and X0, . . . , Xr in the second.

Assume now that the surface symbol is of the form

r
ź

i“1
xix

1
i

s
ź

i“1
pip

1
i

g
ź

i“1
did

˚
i

k
ź

i“1
eiCie

1
i

l
ź

i“1
ěi qCiě

1
i

q
ź

i“1
êi pCiê

1
i

t
ź

i“1
ẽi rCiẽ

1
i.

In this case, the set of vertices which have not been considered yet are the initial points of the

edges xi, pi, di, d˚i , ei, ěi, êi and ẽi, which are all congruent. Here we consider the word

W :“
˜

r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

i“1
D2
i

k
ź

i“1
Ei

l
ź

i“1

qEi

q
ź

i“1

pEi

t
ź

i“1

rEi

¸´1

to go through all these points, starting and ending at the initial point of the edge x1. Again,

W preserves orientation, so it is either the identity or a non-trivial elliptic element. If W is the

identity then the canonical relation associated to these vertices is

r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

i“1
D2
i

k
ź

i“1
Ei

l
ź

i“1

qEi

q
ź

i“1

pEi

t
ź

i“1

rEi “ 1.

If W has order m0 ‰ 1 then we take W as a new elliptic generator X0 “ W and obtain the

relations

Xm0
0 “ 1 and X0 ¨

r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

i“1
D2
i

k
ź

i“1
Ei

l
ź

i“1

qEi

q
ź

i“1

pEi

t
ź

i“1

rEi “ 1.

Again, the presentations just differ in the number of elliptic generators.

There are no more sets of congruent vertices lying in H. So there are no more relations. We

summarize the results obtained in this section in the following theorem.

Theorem 2.11. A finitely generated NEC group Γ admits the following presentation: it has

generators
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paq Xi, i “ 1, ..., r (elliptic elements),

pbq Pi, i “ 1, ..., s (parabolic elements),

pcq Ai, Bi, i “ 1, ..., g (hyperbolic translations) if the orbit space H{Γ is orientable, or

Di, i “ 1, . . . , g (glide reflections) otherwise,

pdq Ei, i “ 1, . . . , k, qEi, i “ 1, . . . , l, pEi, i “ 1, . . . , q, rEi, i “ 1, . . . , t (orientation

preserving elements, usually hyperbolic elements),

peq Cij, i “ 1, ..., k, j “ 0, ..., ki, (reflections)

qCij , i “ 1, . . . , l, j “ 1, . . . , li, (reflections)

pCij , i “ 1, . . . , q, j “ 1, . . . , qi, (reflections)

rCij , i “ 1, . . . , t, j P t1, . . . , tiu ´ Ui for some Ui with 1 P Ui, ti R Ui (if ti ą 1q and

containing no pair j, j ` 1 of consecutive elements, (these rCij are reflections),

and relations:

piq Xmi
i “ 1, for i “ 1, . . . , r,

piiq EiCiki
E´1
i Ci0 “ 1 for i “ 1, . . . , k,

piiiq C2
ij “

qC2
ij “

pC2
ij “

rC2
ij “ 1, for all the reflections,

pivq pCi,j´1Cijq
nij “ 1 for i “ 1, . . . , k, j “ 1, . . . , ki;

p qCi,j´1 qCijq
ňi,j “ 1 for i “ 1, . . . , l, j “ 2, . . . , li;

p pCi,j´1 pCijq
n̂ij “ 1 for i “ 1, . . . , q, j P t2, . . . , qiu´ pVi for some non-empty pVi Ă t2, . . . , qiu;

p rCi,j´1 rCijq
ñij “ 1 for i “ 1, . . . , t, j P t2, . . . , tiu ´ rVi for some rVi Ă t2, . . . , tiu (maybe

empty) whenever the reflections rCi,j´1 and rCij exist, that is, whenever tj´1, juXUi “ H.

pvq
r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

j“1
rAj , Bjs

k
ź

i“1
Ei

l
ź

i“1

qEi

q
ź

i“1

pEi

t
ź

i“1

rEi “ 1, if the orbit space H{Γ is orientable,

or
r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

j“1
D2
j

k
ź

i“1
Ei

l
ź

i“1

qEi

q
ź

i“1

pEi

t
ź

i“1

rEi “ 1, otherwise.
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Signature of finitely generated non-cocompact NEC groups

In this chapter we introduce the notion of the signature of a finitely generated non-

cocompact NEC group Γ. The signature provides more than just a symbolic structure

for defining the presentation of a group: with the help of the signature we can assign

additionally a marked polygon to a canonical fundamental region and describe the geometric

structure of the orbit space H{Γ. Additionally, it is a highly efficient approach to deal with

isomorphic groups as well as to represent a broad set of properties linked to the group. This

chapter is organized in the following way. We introduce the signature in Section 3.1. In Section

3.2, we study the orbit space of an NEC group. In Section 3.3, we provide the necessary and

sufficient conditions for the existence of a type-preserving isomorphism between two NEC

groups. In Section 3.4 we obtain the signature of the canonical fuchsian subgroup of an NEC

group given its signature. Finally, in Section 3.5, we present a topological classification of the

orbit space of H under the action of an NEC group.

3.1 Signature of finitely generated NEC groups

Let Γ be an NEC group and F a fundamental region of Γ. As shown in Chapter 2, the vertices

of an η-sequence pĉ1, . . . , ĉqq can be labelled with integers starting from one from left to right,

where the first and last vertices of the sequence are proper vertices in the same orbit and the

sequence might include additional proper vertices, see Figure 31.
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ê

ĉ1 ĉi ĉi`1 ĉq

ê1

�

pE

R Y t8u

Figure 31: An η-sequence pC: in the orbit space each boundary component has two semi-cusps.

Given the group presentation, we define the signature of the η´sequence as the ordered set

N̂ consisting of the orders of the products of two consecutive canonical reflections such that in

case of elliptic products we have integers n̂j ě 2, or the symbol “8”, in case the product is

parabolic. We define the parabolic data of the η-sequence as V̂ “ tv̂2, ..., v̂v̂u, i.e. the set of

integers j such that the product of reflections Ĉj´1Ĉj is parabolic. The parabolic data V̂ gives

the position of the symbols “8” in the signature N̂ of the η´sequence, N̂ .

We may also write the signature of the η-sequence in the following way:

pI1, ..., I|V̂ |q “ ppn̂2, ..., n̂v̂2´1q, pn̂v̂2`1, ..., n̂v̂3´1q, ..., pn̂v̂v̂`1, ..., n̂qqq,

we call each Ij a component of the signature of the η-sequence, where the symbols “8” are

removed. If N̂ has two consecutive symbols “8”, which happens when the η-sequence includes

an edge whose initial and end points are both proper vertices, then we write Ij “ p´q and say

that the component is empty.

A µ-sequence pc̃1, . . . , c̃tq is a sequence of t edges where, as shown in Chapter 2, we may

assume that the first one is a free-side and, if t ą 1, the last one is an edge fixed by a reflection,

see Figure 32.

Given the group presentation of Γ, we define the signature of a µ´sequence as the set Ñ ,

which is an ordered set of integers and the symbol “8”, such that in the j-th position we

have either the order of the elliptic product of the reflections C̃j´1C̃j , or the symbol “8” if

the product C̃j´1C̃j is parabolic, or the number 0, if tj ´ 1, ju X U ‰ H, i.e. if the product

C̃j´1C̃j`1 is hyperbolic and the edge c̃j is free. In summary, the set Ñ has as many elements

as vertices are in the µ-sequence (considering the first and last one as paired), with as many
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ẽ

c̃1

c̃2 c̃i c̃i`1 c̃j´1

c̃j

c̃j`1 c̃t

ẽ1

�

rE

R Y t8u

Figure 32: A µ-sequence rC: a hyperbolic end with infinite area.

“0”s as improper vertices, as many times times the symbol “8” as proper vertices, and as many

integers as the number of elliptic products C̃j´1C̃j .

We define the sets: U , the hyperbolic data of the µ´sequence, as the set of integers

t1, u2, ..., uuu consisting of the labels of the free-sides, Ṽ , the parabolic data of the µ´sequence,

as the set of integers tṽ1, ..., ṽṽu consisting of the number j if the product of reflections C̃j´1C̃j

is parabolic, and the set L, as the set of j P t1, ..., tu of the µ-sequence such that C̃j´1C̃j is

elliptic. Then we have the following equality:

t “ |L| ` |Ṽ | ` 2|U | “ |L| ` ṽ ` 2u.

The expanded form of the signature of the µ-cycle is:

pI1, ..., I|U |q “ ppñ3, ..., ñu2´1q, pñu2`2, ..., ñu3´1q, ..., pñuu`2, ..., ñtqq,

where we call each Ij a component of the signature of the µ-sequence, which is delimited by the

0s removed from Ñ . If a component is empty, namely Ñ has four consecutive 0s, then we will

write Ij “ p´q.

We are now in a position to introduce the signature of an NEC group:

Definition 3.1. The signature of a non-cocompact NEC group Γ with presentation as in

Theorem 2.9 is a collection of symbols and non-negative integers of the form:

sgpΓq “ pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqqu; tC̃1, ..., C̃tuq,
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where we write, with a slight abuse of notation, the signatures and the sequences with the same

symbols Ci, Či, Ĉi and C̃i. Additionally,

1. g is a non-negative integer called orbit genus of sg,

2. the signs “` ”, “´ ”, that we write signpsgq, where signpsgq “ “` ” if the orbit space

H{Γ is orientable and “´ ” otherwise,

3. s is a non-negative integer,

4. m1, ...,mr are non-negative integers ě 2 called proper periods of sg,

5. each symbol Ci, that we call o-cycle is an ordered set of integers pni2, ni3, ..., niki
q, called

linked periods of the o-cycle or o-periods,

6. each symbol Či, that we call ν-cycle, is an ordered set of integers pňi2, ňi3, ..., ňiqiq, that

we call linked periods of the ν-cycle or ν-periods,

7. each symbol Ĉi, that we call η-cycle, is the expanded form of the signature of an η-sequence,

i.e. an ordered set of integers ppn̂i2, ..., n̂v̂i2´1q, pn̂v̂i2`1, ..., n̂v̂i3´1q, ..., pn̂v̂iv̂i
`1, ..., n̂iqiqq.

We call its elements linked periods of the η-cycle or η-periods,

8. each symbol C̃i, that we call µ-cycle, is the expanded form of the signature of a µ-sequence,

i.e. an ordered set of integers ppñi3, ..., ñui2´1q, pñui2`2, ..., ñui3´1q, ..., pñuiui
`2, ..., ñtiqqWe

call its elements linked periods of the µ-cycle or µ-periods.

Remarks

1. The signature can be represented in the following ways:

• short form:

sg “ pg;˘; s; rm1, ...,mrs;

tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

• expanded form, that is used for the theorems 3.4 and 3.9:

sg “ pg;˘; s; rm1, ...,mrs;

tpn11, ..., n1k1q, ..., pnk1, ..., nkkk
qu; tpň12, ..., ň1l1q, ..., pňl2, ..., ňlllqu;

tppn̂12, ..., n̂1,v̂12´1q, pn̂1,v̂12`1, ..., n̂1,v̂13´1q, ..., pn̂1,v̂1,v̂1`1, ..., n̂1q1qq, ...,

ppn̂q2, ..., n̂q,v̂q2´1q, pn̂q,v̂q2`1, ..., n̂q,v̂q3´1q, ..., pn̂q,v̂q,v̂q`1, ..., n̂qqqqqu;
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tppñ13, ..., ñ1,u12´1q, pñ1,u11`2, ..., ñ1,u11´1q, ..., pñ1,u1u1`2, ..., ñ1t1qq, ...,

ppñt3, ..., ñt,ut1´1q, pñt,ut1`2, ..., ñt,ut2´1q, ..., pñt,utut`2, ..., ñtttqquq

2. The sets of o-, ν-, η- and µ-cycles may be empty, that is r “ 0, k “ 0, l “ 0, q “ 0 and/or

t “ 0. In such a case we write r´s, t´u, t´u and t´u respectively. As usual, we can have

a finite number n of empty cycles, and in such case we write tp´q, n , p´qu.

3. Additionally, the sets Ñi, Ṽi may be empty and in case that a µ-sequence rCi is such that

Ñi “ H, Ui “ t1u, Ṽi “ H, we write the signature of the µ-sequence just as p´q. If there

are t of such µ-sequences, then we write tp´q, t , p´qu.

4. The signature of a cocompact Fuchsian group can be represented in the following way,

pg;`; 0; rm1, ...,mrs; t´u; t´u; t´u; t´uq

which is equivalent to the classical Fuchsian signature pg;m1, ...,mrq.

5. The signature of a cocompact NEC group can be represented in the following way

pg;˘; 0; rm1, ...,mrs; tpn11, ..., n1k1q, ..., pnk1, ..., nkkk
qu; t´u; t´u; t´uq

which is equivalent to Wilkie’s signature

pg;˘; rm1, ...,mrs; tpn11, ..., n1k1q, ..., pnk1, ..., nkkk
quq.

6. The signature of a non-cocompact Fuchsian group can be represented in the following way

pg;`; s; rm1, ...,mrs; t´u; t´u; t´u; tp´q, t , p´quq

which is equivalent to the Fuchsian signature pg;m1, ...,mr; s; tq.

3.2 Orbit space of non-cocompact NEC groups

The orbit-space H{Γ of H under the action of an NEC group Γ can be obtained in the usual

way by identifying the paired edges of a fundamental region. For the NEC groups considered in

this paper (finitely generated), the orbit space is a non-compact surface of finite genus and with

finitely many boundary components compact or not. In this section we describe the topological

and geometrical properties of the orbit space H{Γ and the canonical projection H ÝÑ H{Γ in

terms of the signature of the group Γ defined above.

In the orbit space H{Γ there exist finitely many simple closed curves l1, ..., ln which decom-

pose H{Γ into connected surfaces S0, S1, ..., Sn where S0 is a compact surface called compact
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core. The topological and geometrical properties of S0 are well-known and described for

example in [59]. The surfaces S1, ..., Sn are non-compact and satisfy S0XSi “ li, 1 ď i ď n and

Si X Sj “ H, 1 ď i ‰ j ď n. Each Si is topologically an unbounded cylinder with one compact

boundary component (the curve li) and a hyperbolic end. This can be easily seen by means

of a fundamental region whose surface symbol is canonical as the ones described in Section 2.

For instance, a geodesic joining the initial point of an edge pi with the end point of p1i, both

paired by a parabolic element, yields a simple closed curve li in the orbit space H{Γ. This

curve separates S0 from a non-compact surface Si which is topologically a cylinder with one

compact boundary component (the curve li) and a cusp. A geodesic joining the initial point

of an edge ěi with the end point of ě1i of a ν´sequence, now paired by a boundary hyperbolic

element, yields a simple closed curve li in the orbit space H{Γ. This curve separates S0 from

a non-compact surface Si which, in this case, is topologically a cylinder with one compact

boundary component and a hyperbolic end which we call of type ν. Similar descriptions can be

done with η- and µ-sequences, with the corresponding cylinders having different hyperbolic

ends. In summary, each parabolic generator corresponds to a hyperbolic end called cusp, each

hyperbolic boundary generator to a funnel, each ν´sequence to a hyperbolic end of type ν,

each η´sequence to a hyperbolic end of type η and each µ´sequence to a hyperbolic end of

type µ .

A non-compact boundary component of H{Γ corresponds, in the canonical surface symbol

of the group, to a sequence of edges fixed by reflections whose unique vertices at infinity are

its initial and end points. The types of vertices at infinity (proper or improper) classify the

non-compact boundary components into four types as follows, see Figure 33:

• Type I: non-compact boundary components with a unique point at infinity, which we call

semi-cusp of type I. This occurs just in ν´sequences.

• Type II: non-compact boundary components with two points at infinity (both correspond-

ing to proper vertices) each of which is also a point at infinity of another non-compact

boundary component. We call them semi-cusps of type II.

• Type III: non-compact boundary components with two points at infinity and just one of

them is a semi-cusp (corresponding to a proper vertex), that is, just one of them is the
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point at infinity of another non-compact boundary component.

• Type IV: non-compact boundary components with two points at infinity (both corre-

sponding to improper vertices) none of which is a semi-cusp. For convenience, this is also

the case of an η´sequence with only one free-side (fuchsian case).

A µ´sequence may provide non-compact boundary components of types II, III and IV. We

claim that the total number of them is |U | ` |Ṽ |, where U :“ ti P t1, ..., tu : c̃i is a free edgeu is

the hyperbolic data of the µ-sequence and Ṽ is the parabolic data defined above. In fact, there

are 2|U | improper vertices - the last vertex pc̃m, ẽ1q is in the same orbit as the first vertex pẽ, c̃1q

- and |Ṽ | proper vertices. Each improper vertex belongs to a unique boundary component,

whilst each proper vertex belongs to two. So the total number of boundary components is

|U | ` |Ṽ | as claimed. We call the boundary components associated to a µ´sequence cuts. Two

cuts sharing a proper vertex are called parallel cuts. Finally, two consecutive cuts not sharing a

proper vertex will be called ultraparallel cuts.

In order to count the number of components of type II, III and IV in a µ´sequence, we

use the concept of c-decomposition of a finite subset A of natural numbers. The ordered set

of non-empty subsets of A, pM1, ...,Mnq such that its elements are the biggest subsets of A

consisting of consecutive numbers is called c´decomposition of A, see Examples 3.3.

Let us define Fi “ t1, 2, ..., tiu ´ Ui, i “ 1, ..., t for each µ´sequence of the fundamental

region, Mi “
|Ui|
Ť

j“1
Mij be the c´decomposition of Fi and let us define the sets Λij “Mij X Ṽi,

for i “ 1, ..., t, j “ 1, ..., |Ui|.

Now, it is easy to count the specific number of boundary components associated to a

µ-sequence. We have two main cases, when ti “ 1, that we discuss in Example 3.2 below, and

the general case with ti ą 1 as shown below:

• The number IVi of components of type IV associated to the µ-sequence i equals the number

of elements of the c-decompositionMi such that Λij “ H, that is IVi “ cardtj : |Λij | “ 0u.

• The number IIIi of components of type III of the µ-sequence i is the same as the number

of improper vertices not corresponding to IV-components, that is IIIi “ 2p|Ui| ´ IViq.
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• Finally, the number IIi of components of type II associated to the µ-sequence i is

the total number of its boundary components minus the components IIIi and IVi, i.e.

IIi “ |Ui| ` |Ṽi| ´ IIIi ´ IVi “ |Ṽi| ´ |Ui| ` IVi.

Example 3.2. We call a µ´sequence with a unique edge, simple-funnel, i.e. the fuchsian

funnel. In this case we have ti “ 1, so F “ H and therefore the c-decomposition is empty.

This means that there are no sets Λ. As stated above in the classification of the non-compact

boundaries, the number of components of type IV in this case is 1 by definition, and for the

types II and II we have, III “ 2p1´ 1q “ 0 and II “ 0´ 1` 1 “ 0.

Examples 3.3.

(1) For the µ´sequence c̃1, c̃2, ..., c̃9 with U “ t1, 3, 5u and V “ t7, 8, 9u, we have F “ t1, ..., 9u´

t1, 3, 5u “ t2, 4, 6, 7, 8, 9u with the c´decomposition given by pI1, I2, I3q with

I1 “ t2u, I2 “ t4u, I3 “ t6, 7, 8, 9u,

such that

Λ1 “ I1 X Ṽ “ H, Λ2 “ I2 X Ṽ “ H, Λ3 “ I3 X Ṽ “ t7, 8, 9u.

So the number of components of type II, III and IV equal

IV “ 2, III “ 2p3´ 2q “ 2, II “ 3´ 3` 2 “ 2.

(2) For a µ´sequence c̃1, c̃2, ..., c̃9 with U “ t1, 4, 7u and V “ t3, 6, 9u we get F “ t1, ..., 9u ´

t1, 4, 7u “ t2, 3, 5, 6, 8, 9u with the c´decomposition given by pI1, I2, I3q with

I1 “ t2, 3u, I2 “ t5, 6u, I3 “ t8, 9u,

such that

Λ1 “ I1 X Ṽ “ t3u, Λ2 “ I2 X Ṽ “ t6u, Λ3 “ I3 X Ṽ “ t9u.

So the number of components of type II, III and IV equal

IV “ 0, III “ 2p3´ 0q “ 6, II “ 3´ 3` 0 “ 0.

These examples show that the number of proper and improper vertices is not enough for

determining the types of the components. For that we need additionally to know their distribution,

an information that as seen above can be traslated into an algorithm which computes the number

of empty Λij.
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Before describing the form of the orbit space of a finitely generated non-cocompact NEC

group, we summarize briefly the idea of a covering which is both branched and folded: let

S denote the unit disc |z| ă 1 and let n be a positive integer. Let S˚ be the subset of

S consisting of those reiθ such that 0 ă r ă 1 and 0 ď θ ď
π

n
. We define the mapping

ϕ : S Ñ S˚ by ϕpreiθq “ rei|θ
˚|, where |θ˚| satisfies ´π

n
ă θ˚ ď

π

n
, θ ” θ˚pmod 2π{nq. The

mapping f : X Ñ Y is said to be folded and branched to order n at a point x P X if x has a

neighbourhood V and there exist homeomorphisms h1 : V Ñ S˚, h2 : S˚ Ñ fpV q satisfying

f “ h2 ˝ ϕ ˝ h1. Finally we have:

Theorem 3.4. Let Γ be a finitely generated non-cocompact NEC group with the signature as in

Definition 3.1 and let the numbers IIi, IIIi, IVi of components of the different types as defined

above. Then the orbit space S “ H{Γ is a surface:

1. of topological genus g, the genus of the compact core of S,

2. orientable if the signature of Γ has sign “` ”, and non-orientable otherwise,

3. with s cusps,

4. with r conic points lying in the interior of the compact core of S with the branching orders

of the projection H ÝÑ H{Γ given by the integers m1, ...,mr,

5. with k boundary components on the compact core of S,

6. with ki corner points lying on the i-th boundary component of the compact core of S,

where the canonical projection Γ ÝÑ H{Γ is branched and folded with branching orders

nij,

7. with l hyperbolic ends of type ν each one consisting of one boundary component of type I,

8. with li corner points lying on the i-th boundary component of type I, where the canonical

projection Γ ÝÑ H{Γ is branched and folded with branching orders ňij,

9. with q hyperbolic ends of type η each one consisting of |Vi| ` 1 boundary components of

type II,

10. with qi corner points lying on the i-th non-compact boundary component of type II, where

the canonical projection Γ ÝÑ H{Γ is branched and folded with branching orders n̂ij,
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11. with t hyperbolic ends of funnel type each one consisting of IIi, IIIi and IVi boundary

components of type II, III and IV respectively,

12. with ti corner points lying on the i-th hyperbolic end of type funnel, where the canonical

projection Γ ÝÑ H{Γ is branched and folded with branching orders ñij ă 8.

In the example below we describe the orbit-space of H under the action of a non-cocompact

NEC group in terms of its signature.

Example 3.5. Let Γ be an NEC group with signature

p3;`; 1; rm1,m2,m3s; tpn11, n12qu; tpň12, ň13, ň14qu; t´u; tp´q, ppñ23, ñ24qq, ppñ33, ñ34q, pñ36qquq.

Theorem 3.4 above shows that the orbit space H{Γ has the following data:

1. it has topological genus g “ 3,

2. is orientable,

3. with s “ 1 cusps,

4. with r “ 3 conic points lying in the interior of the compact core of S with the branching

orders given by the integers m1,m2,m3,

5. with k “ 1 boundary component on the compact core of S,

6. with k1 “ 2 semi-conic points lying on the boundary component of the compact core of S,

where the canonical projection Γ ÝÑ H{Γ is branched with branching orders n11 and n12,

7. with l “ 1 boundary components of type I, that is, one non-compact boundary component

with one point at infinity,

8. with li “ 3 corner points lying on the component of type I, where the canonical projection

Γ ÝÑ H{Γ is branched with branching orders ň12, ň13 and ň14,

9. with t “ 3 funnels,

54



3.3. ALGEBRAIC CLASSIFICATION: TYPE-PRESERVING ISOMORPHISMS

10. with 0, 2 and 3 corner points lying on the 3 funnels C̃1, C̃2, C̃3 respectively, where the canon-

ical projection Γ ÝÑ H{Γ is branched and folded with branching orders ñ23, ñ24, ñ33, ñ34

and ñ36.

Finally, we calculate explicitely the numbers IIi, IIIi, IVi of components of type II, III and IV

in each funnel i “ 1, 2, 3. We have then,

F1 “ t1u ´ U1 “ H, F2 “ t1, 2, 3, 4u ´ U2 “ t2, 3, 4u, F3 “ t1, 2, 3, 4, 5, 6u ´ U3 “ t2, 3, 4, 5, 6u,

I1 “ H, I2 “ I21 “ t2, 3, 4u, I3 “ I31 “ t2, 3, 4, 5, 6u,Λ11 “ H,Λ21 “ I21 X Ṽ2 “ H,Λ31 “

I31 X Ṽ3 “ t4u.

For the first case, we have obviously II1 “ III1 “ IV1 “ 0 as we have a funnel without cuts.

For the other cases:

IV2 “ 1, III2 “ 2p|U2| ´ IV2q “ 2p1´ 1q “ 0 and II2 “ |Ṽ2| ´ |U2| ` IV2 “ 0´ 1` 1 “ 0,

IV3 “ 1, III3 “ 2p|U3| ´ IV3q “ 2p1´ 1q “ 0 and II3 “ |Ṽ3| ´ |U3| ` IV3 “ 1´ 1` 1 “ 1.

Example 3.6. Figure 33 illustrates the non-compact orbit-space of an NEC group of signature

p3;`; 1; rm1,m2,m3s; tpn11, n12qu; tpň12, ň13, ň14qu; tppn̂12q, pn̂14qqu;

tp´q, ppñ23, ñ24q, pñ26qq, ppñ33, ñ34,8, ñ36qquq.

of genus 3 with three funnels including one with two cuts and other with two parallel cuts, one

cusp, one hole with a semi-cusp, one hole with two semi-cusps, an additional compact boundary

and conic points lying in the surface and in its different borders, corresponding to the NEC

group of the example.

3.3 Algebraic classification: type-preserving isomorphisms

In this section, we determine necessary and sufficient conditions for two non-cocompact NEC

groups to be isomorphic via a type-preserving isomorphism. In case of cocompact NEC groups,

the concept of algebraic isomorphism and type-preserving isomorphism are equivalent, as shown

by Macbeth in [40]. However, this property cannot be extended to the non-cocompact case as

the example below shows:

Example 3.7. Let Γ and Γ1 be two NEC groups with signatures p1;`; 0; r´s; t´u; t´u; tpp´q, p´qqu; t´uq

and p1;`; 0; r´s; t´u; t´u; t´u; tpp´q, p´qquq, respectively. Let us define the assignment φ : Γ Ñ
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Figure 33: Non-compact orbit-space.

Γ1, by:

A1 Ñ A11,

B1 Ñ B11,

C1 Ñ C 11,

C2 Ñ C 12,

E Ñ H.

It is clear that φ defines a group isomorphism. Let us suppose it is type-preserving. Then, the

parabolic element C1C2 is transformed into the element φpC1qφpC2q, which is by the definition

of φ the product of two reflections, that should be parabolic. However, from the signature above

this product is hyperbolic and therefore the isomorphism assigns a parabolic transformation into

a hyperbolic transformation which is a contradiction.

We extend now Macbeath’s definition of directly and inversely equivalence of period-cycles in

the compact case to ν-, η-, µ-cycles in the non-compact case. For the period-cycles, Macbeath’s

definition says that the period-cycle C 1 “ pn11, ..., n1k1q is directly equivalent to the period-cycle

C “ pn1, ..., nkq if k “ k1 and pn11, ..., n1kq is a cyclic permutation of pn1, ..., nkq. Analogously

C 1 is inversely equivalent to C if k “ k1 and pn11, ..., n1kq is a cyclic permutation of pn1, ..., nkq

reversed, i.e. pnk, ..., n1q. Similarly, we introduce the following definitions:
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Definition 3.8. Directly and reversely equivalence of ν-, η-, µ-cycles:

1. The ν-cycle Č 1 “ pň11, ..., ň1l1q is directly equivalent to the ν-cycle Č “ pň1, ..., ňlq if they

are identical, that is l “ l1 and ňi “ ň1i for i “ 1, ..., l. They are reversely equivalent if

l “ l1 and Č 1 is the same as Č reversed.

2. The η-cycle Ĉ 1 that we write using the expanded form pI 11, ..., I
1

|V̂ 1|
q “ ppn̂12, ..., n̂

1
v̂12´1q, ...,

pn̂1
|V̂ 1|`1, ..., n̂

1
q1qq is directly equivalent to the η-cycle Ĉ “ pI1, ..., I|V̂ |q “ ppn̂2, ..., n̂v̂2´1q, ...,

pn̂
|V̂ |`1, ..., n̂qqq, if q “ q1, |V̂ | “ |V̂ 1| and the components pI 11, ..., I 1|V̂ |q of Ĉ

1 are a cyclic

permutation of the components pI1, ..., I|V̂ |q of Ĉ. We say that Ĉ 1 is reversely equivalent

to Ĉ if the components of Ĉ 1 are a cyclic permutation of the reversed components of Ĉ,

reversed, i.e. if pI 11, ..., I 1|V̂ |q is a cyclic permutation of pI˚
|V̂ |
, ..., I˚1 q, where we define I˚i

such that for a given component Ii “ pn̂v̂i`1, ..., n̂v̂i`1´1q, I˚i “ pn̂v̂i`1´1, ..., n̂v̂i`1q.

3. The µ-cycle C̃ 1 that we write using the components ppñ12, ..., ñ1ũ12´1q; ...; pñ
1

|Ũ 1|`2, ..., ñ
1
t1qq “

pI 11, ..., I
1

|Ũ 1|
q is directly equivalent to the µ-cycle C̃ “ ppñ2, ..., ñũ2´1q; ...; pñ|Ũ |`2, ..., ñtqq “

pI1, ..., I|Ũ |q if t “ t1, |Ũ | “ |Ũ 1| and the components pI 11, ..., I 1|Ũ |q of C̃ 1 are a cyclic

permutation of the components pI1, ..., I|Ũ |q of C̃. We say that C̃ 1 is reversely equivalent

to C̃ if the components of C̃ 1 are a cyclic permutation of the reversed components of

C̃, reversed, i.e. if pI 11, ..., I 1|Ũ |q is a cyclic permutation of pI˚
|Ũ |
, ..., I˚1 q, where as defined

previously, if Ii “ pñũi`2, ..., ñũi`1´1q, then I˚i “ pñũi`1´1, ..., ñũi`2q.

Theorem 3.9. An NEC group Γ with signature

sg “ pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

is isomorphic to an NEC group Γ1 with signature

sg1 “ pg1;˘; s1; rm11, ...,m1r1s; tC 11, ..., C 1k1u; tČ 11, ..., Č 1l1u; tĈ 11, ..., Ĉ 1q1u; tC̃ 11, ..., C̃ 1t1uq,

via a type-preserving isomorphism if and only if g “ g1, sign(sgq “ signpsg’), s “ s1, r “ r1,

k “ k1, l “ l1, q “ q1, t “ t1, the proper periods rm11, ...,m1r1s are a permutation of the proper

periods rm1, ...,mrs and there exist permutations π of t1, ..., ku, π̌ of t1, ..., lu, π̂ of t1, ..., qu

and π̃ of t1, ..., tu such that:

1. in the orientable case, all the cycles C 1i, Č 1i, Ĉ 1i and C̃ 1i are either directly equivalent to

the corresponding cycles Cπi, Čπ̌piq, Ĉπ̂piq and C̃π̃piq or all are reversely equivalent.

2. in the non-orientable case, each cycle C 1i, Č 1i, Ĉ 1i and C̃ 1i is either directly equivalent to

the corresponding cycles Cπpiq, Čπ̌piq, Ĉπ̂piq and C̃π̃piq or reversely equivalent.

57



CHAPTER 3. SIGNATURE OF FINITELY GENERATED NON-COCOMPACT NEC
GROUPS

Similarly to the cocompact case, we see that in the orientable case, corresponding pairs of

cycles are all paired in the same way -either all directly or all inversely. In the non-orientable

case, some may be paired directly and some inversely.

Proof of neccesary conditions. Associated to the presentation of Γ as in Theorem 2.11 we have

a marked polygon F with a canonical surface symbol as described in Section 2. As we are

assuming that Γ and Γ1 are isomorphic via a type preserving isomorphism, Γ1 admits exactly

the same presentation as Γ, its associated marked polygon F1 has the same amount of edges

and vertices, and it can be built such that they are written in the same order. Moreover, the

side-pairing is carried out by the same type of transformations as in F.

More specifically, for the orientable case the marked polygon of Γ can be defined as:

F “
r
ź

i“1
xix

1
i

s
ź

i“1
pip

1
i

g
ź

i“1
aib

1
ia
1
ibi

k
ź

i“1
eiCie

1
i

l
ź

i“1
ěiČiě

1
i

q
ź

i“1
êiĈiê

1
i

t
ź

i“1
ẽiC̃iẽ

1
i,

and in the way we have defined the isomorphic presentation, we can build a fundamental

region of Γ1 so that the labelled polygon has the form:

F1 “
r
ź

i“1
x2i x

3
i

s
ź

i“1
p2i p

3
i

g
ź

i“1
a2i b

3
i a
3
i b
2
i

k
ź

i“1
e2iCie

3
i

l
ź

i“1
ě2i Č

1
iě
3
i

q
ź

i“1
ê2i Ĉ

1
iê
3
i

t
ź

i“1
ẽ2i C̃

1
iẽ
3
i ,

with the same amount of edges, free-sides, vertices in H and at infinity, of the same type

and order. The same construction above as well as the discussion in the coming paragraphs can

be done for the non-orientable case without changes in the argument. As mentioned above, the

labelled polygons F and F1 can be built such that the paired edges xix1i, pip1i, aib1ia1ibi, eiCie1i,

ěiČiě
1
i, êiĈiê1i and ẽiC̃iẽ1i of F and x2i x3i , p2i p3i , a2i b3i a3i b2i , e2iC 1ie3i , ě1iČ 1iě3i , ê2i Ĉ 1iê3i and ẽ2i C̃ 1iẽ3i

of F1 follow the same order in both labelled polygons with ν-, η-, µ-sequences including the

same free-edges, edges and vertices in HY BH in the same order. This is so due to the fact

that the group Γ and the presentation of Γ1 injected by the type-preserving isomorphism have

identical number, type and order of transformations, fact that cannot be stated in general for

the given presentation of the group Γ1 as Example 3.7 shows. Two hyperbolic polygons with the

same amount and order of edges and vertices in HY BH are homeomorphic. If we identify the

corresponding points on the paired edges, we obtain F{Γ and F1{Γ1, two non-compact surfaces

with boundaries and in the way we have defined F,F1, it follows then that F{Γ and F1{Γ1 are
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homemeomorphic.

In the diagram below, we represent the different marked polygons and surfaces described up to

now, where i, i1 are inclusion maps, j1, j2, j11, j12 are natural projections, r, r1 the homeomorphisms

mentioned above and θ, θ1 are the maps which make the squares I and III below commutative.

H

j2

��

I

Fioo

j1

��

r //

II

F1

j11

��

i1 //

III

H

j12

��
H{Γ F{Γθoo r1 // F1{Γ1 θ1 // H{Γ1

Figure 34: Homeomorphism between H{Γ and H{Γ1

It is well known that the maps θ, θ1 are homeomorphisms, as described for example in [23,

Th. 5.9.6 ], where the proof is done for Fuchsian groups though, but it can be extended to

NEC groups without changes. Therefore, the map defined by r˚ “ θ1r1θ´1 : H{Γ Ñ H{Γ1 is

also a homeomorphism. Additionally, if rCis, rČis, rĈis and rC̃is denote the image in H{Γ of

an o-, ν-, η- or an µ-sequence respectively, then r˚prCisq “ rC
1
js, r

˚prČisq “ rČ
1
js, r

˚prĈisq “

rĈ 1js, r
˚prC̃isq “ rC̃ 1js are respectively the corresponding images in H{Γ1 of an o-, ν-, η- or

an µ-sequence of Γ1 of the same type, due to the fact that Γ and Γ1 are isomorphic via a

type-preserving assignation. Taking into consideration that r˚ is a homeomorphism, we have

the following cases:

piq rCs Ñ rC 1s:

this is the compact case and we have a homeomorphism r˚ : S1 Ñ S1 that has either

degree `1 or ´1. In the orientable case, all the boundaries are mapped with the same

degree and so the sets of period-cycles are transformed either all to a cyclic permutation,

or all to a cyclic permutation of the other reversed. In the non-orientable case, each

boundary can be mapped with either degree `1 or ´1 and so each period cycles can be

permuted cyclically or cyclically reversed.

piiq rČs Ñ rČ 1s:

in this case the boundaries are homeomorphic to S1 minus one point and so we can

59



CHAPTER 3. SIGNATURE OF FINITELY GENERATED NON-COCOMPACT NEC
GROUPS

write r˚ : S1 ´ tau Ñ S1 ´ ta1u. The extension of r˚ to the compactification, which

we still denote r˚, has degree `1 or ´1. However, as rČs, rČ 1s have one point removed,

the homeomorphism leaves the ν-periods as they are or reversed. This situation is ex-

plained in Figure 35, where the ovals are the non-compact borders, and N1, N2, ..., Nl

are distinguished points on the border related to the ν-periods. Let γ be a path on

the border from the distinguished point N1 related to the ν-period n1 to the point Nl

related to the ν-period nl and let γ1 be the image by r˚ of γ. As we have removed

one point on the borders, there is just a unique continuous path possible between N1

and Nl and the same happens between r˚pN1q and r˚pNlq. But if there were cyclic

permutations of the periods, then both paths γ and γ1 would be homeomorphic, which is

not possible because the path γ contains all the other distinguished points N2, ..., Nl´1

and the path γ1 contains none of their images. We conclude then, that the ν-periods in

the case of type-preserving isomorphisms can only be either the same or the same reversed.

r*rČs rČ 1s

˝ ˝

*

*
*

*N1

N2

Nl1´1

Nl1

*

*

*

*
N 11

N 12

N 1l1´1

N 1l1

γ

γ1

a a’

Figure 35: Paths γ and γ1 on non-compact borders cannot be homeomorphic

piiiq rĈs Ñ rĈ 1s:

in this case the boundaries are homeomorphic to S1 minus n points and so we can

write r˚ : S1 ´ ta1, ..., anu Ñ S1 ´ ta11, ..., a
1
nu. Again, the extension of r˚ to the com-

pactification has degree `1 or ´1. The η-cycle can be written in the expanded form

ppn̂2, ..., n̂v2´1q, pn̂v2`1, ..., n̂v3´1q, ..., pn̂v̂v̂`1, ..., n̂qqq. Let us denote Ij “ pn̂vj´1`1, ..., n̂vj´1q.

In this way the η-cycle can be represented in the form pI1, ..., I|V̂ |q. Using exactly the

same argument as the discussion about paths on the border in the case of ν-cycles,

we conclude that the η-periods cannot be exchanged between components or permuted

cyclically within the components. Only cyclic permutations of the components or cyclic
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permutations of the reversed cycles I˚j are possible, i.e. only the cyclic permutations

pI2, ..., I|V̂ |, I1q, pI3, ..., Iv̂
|V̂ |
, I1, I2q, etc. and cyclic permutations of the reversed peri-

ods pI˚
|V̂ |
, I˚
|V̂ |´1, ..., I

˚
1 q,pI˚|V̂ |´1, ..., I

˚
1 , I

˚

|V̂ |
q, etc. are compatible with the homeomorphism

induced by the type-preserving isomorphism.

pivq rC̃s Ñ rC̃ 1s:

in this case the boundaries are homeomorphic to S1 minus n points and minus m closed

arcs and so we can write r˚ : S1´ta1, ..., anu´
řm
i“1rbi, cis Ñ S1´ta11, ..., a

1
nu´

řm
i“1rb

1
i, c
1
is,

where rbi, cis, rb1i, c1is stand for closed arcs removed on the borders. Removing a closed arc

from S1 yields a homeomorphic space as removing a point from S1. Then, we can compact-

ify adding m` n points and we get that r˚ has degree `1 or ´1. Now, the boundary by

the µ-cycle can be written in the form ppñ3, ..., ñu2´1q, pñu2`2, ..., ñu3´1q, ..., pñuu`2, ..., ñtq.

Let us denote Ij “ pñuj`2, ..., ñuj`1´1q. In this way the µ-cycle can be represented in

the form pI1, ..., I|U |q. Using exactly the same argument as the discussion about paths

on the border as in the case of η- and ν-cycles, we conclude that the µ-periods cannot

be exchanged between components or permuted cyclically within the components and

only cyclic permutations of the components or cyclic permutations of the reversed cy-

cles I˚j are possible, i.e. only the cyclic permutations pI2, ..., I|U |, I1q, pI3, ..., I|U |, I1, I2q,

etc. and cyclic permutations of the reversed cycles pI˚
|U |, ..., I

˚
1 q, pI˚|U |´1, ..., I

˚
1 , I

˚
|U |q,

pI˚
|U |´2, ..., I

˚
1 , I

˚
|U |, I

˚
|U |´1q, etc. are compatible with the homeomorphism induced by the

type-preserving isomorphism.

Before dealing with the proof of the sufficient conditions we show in the following lemmas

that some basic transformations between the signatures of the groups Γ and Γ1 can be repre-

sented as type-preserving isomorphisms between them. We will apply these lemmas to finalize

the proof of the Theorem 3.9.

Lemma 3.10. An NEC group Γ with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature
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pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČπ̌p1q, ..., Čπ̌plqu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

where π̃ is a permutation of t1, ..., lu.

Proof. It is enough to prove that two consecutive ν-cycles can be permuted, as any other

permutation is a finite composite of this basic one. To lighten notation, we show that Č1 and

Č2 can be permuted. Then, the presentation of Γ includes the relations:

piq Č2
1j “ Č2

2j “ 1, for all the reflections,

piiq pČ1,j´1Č1jq
ň1j “ 1 for j “ 2, . . . , l1; pČ2,j´1Č2,jq

ň2j “ 1 for j “ 2, . . . , l2;

piiiq
r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

j“1
rAj , Bjs

k
ź

i“1
EiĚ1Ě2...Ěl

q
ź

i“1
Êi

t
ź

i“1
Ẽi “ 1.

where we are assuming that the orbit space H{Γ is orientable. In the non-orientable case the

proof is the same and will not be repeated. The presentation of Γ1 includes:

pi1q Č 1
2
1j “ Č 1

2
2j “ 1, for all the reflections,

pii1q pČ 11,j´1Č 11jq
ň11j “ 1 for j “ 2, . . . , l1; pČ 12,j´1Č 12jq

ň12j “ 1 for j “ 2, . . . , l2;

piii1q
r
ź

i“1
X 1i

s
ź

i“1
P 1i

g
ź

j“1
rA1j , B

1
js

k
ź

i“1
E1iĚ

11Ě12...Ě1l

q
ź

i“1
Ê1i

t
ź

i“1
Ẽ1i “ 1,

where we assume that ň11j “ ň2j and ň12j “ ň1j . It is easy to show that the isomorphism

φ : Γ Ñ Γ1 defined by:

1. φ : Ě1 Ñ Ě11Ě
1
2Ě

1´1
1 ,

2. φ : Ě2 Ñ Ě11,

3. φ : Č1j Ñ Ě11Č
1
2jĚ

1´1
1 ,

4. φ : Č2j Ñ Č 11j ,

5. all the other generators of Γ correspond in the same manner to those in Γ1,

is a type-preserving isomorphism. It is relevant to remark that the parabolic elements

Ě1Č1l1Ě
´1
1 Č11 and Ě2Č2l2Ě

´1
2 Č21 are transformed into parabolic elements.

The proof is similar for the η- and µ-cycles and will not be repeated. In these cases we just

need to consider that there are more parabolic and/or hyperbolic products of reflections. The

corresponding lemmas are:
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Lemma 3.11. An NEC group Γ with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈπ̂p1q, ..., Ĉπ̂pqqu; tC̃1, ..., C̃tuq,

where π̂ is a permutation of t1, ..., qu.

Lemma 3.12. An NEC group Γ with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃π̃p1q, ..., C̃π̃ptquq,

where π̃ is a permutation of t1, ..., tu.

Recall that two ν-cycles are directly equivalent if they are the same and therefore there

is nothing to prove for them in the case of direct equivalence. We now deal with cyclic

permutations of the components of an η- or a µ-cycle, see Lemmas 3.13 and 3.14 below:

Lemma 3.13. The group Γ with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉi, ...., Ĉqu; tC̃1, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉ
1
i, ..., Ĉqu; tC̃1, ..., C̃tuq,

where the η-cycle Ĉ 1i is directly equivalent to the cycle Ĉi, i.e. the components of Ĉ 1i are a cyclic

permutation of the components of Ĉi.

Proof. Let us assume that Γ and Γ1 have all the same relations except for the i-th η-cycle,

and let us use the component representation of the η-cycles, so that the i-th η-cycle has

the form pIi1, ..., Ii|V̂i|
q. To lighten notation we drop the first subscript “i”, where the con-

text makes it obvious the distinction between the cycles and the reflections. We write

ppn̂2, ..., n̂v̂2´1q, pn̂v̂2`1, ..., n̂v̂3´1q, ..., pn̂v̂v̂i
`1, ..., n̂qiqq, the j-th component being Ij “ pn̂v̂j`1, ..., n̂v̂j`1´1q,

where by convention we write v̂1 “ 1. The corresponding relations, either in the orientable or

in the non-orientable case, can be written:

piq pĈj´1Ĉjq
n̂j “ 1 for j P t2, . . . , qiu ´ V̂i and a non-empty V̂i “ tv̂2, ..., v̂v̂iu Ă t2 . . . , qiu,

piiq the product Ĉj´1Ĉj is parabolic for j P V̂i,

piiiq the product ÊĈqiÊ
´1Ĉ1 is parabolic.
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The i-th η-cycle of Γ1 is assumed by hypothesis to be a cyclic permutation of pI1, ..., I|V̂i|
q,

that we may take pI2, ..., I|V̂i|
, I1q, as any other cyclic permutation is the succesive application

of this one. The corresponding relations include then:

pi1q pĈ 1j´1Ĉ 1jq
n̂1j “ 1 for j P t2, . . . , qiu ´ V̂ 1i for some non-empty V̂ 1i Ă t2, . . . , qiu,

pii1q the product Ĉ 1j´1Ĉ 1j is parabolic for j P V̂ 1i,

piii1q the product Ê1Ĉ 1qi
Ê
1´1Ĉ 11 is parabolic.

As defined before, the components of the i-th η-cycle of Γ1 are the cyclic permutation of the

components of the i-th η-cycle of Γ such that the v̂2-th reflection in Γ is transformed into the

first reflection in Γ1, and therefore the j-th reflection in Γ is transformed in the pj ´ v̂2 ` 1q-th

reflection in Γ1, taking the indexes modulo qi. Similarly, the set t1u Y V̂i “ t1, v̂2, ..., v̂v̂iu

is transformed after the cyclic permutation in the set t1u Y V̂ 1i “ t1, v̂12, ..., v̂1v̂i
u “ tp1 ´

v̂2 ` 1q, 1, ..., pv̂v̂i ´ v̂2 ` 1qu with the integers read module qi. Reordering, we finally get

t1u Y V̂ 1i “ t1, v̂3 ´ v̂2 ` 1, ..., v̂v̂i ´ v̂2 ` 1, qi ´ v̂2 ` 2u. The isomorphism φ : Γ Ñ Γ1 is defined

by:

1. φ : Ĉj Ñ Ĉ 1j´v̂2`1, j ´ v̂2 ` 1 ą 0,

2. φ : Ĉj Ñ Ê1Ĉ 1j´v̂2`1Ê
1´1, otherwise,

3. all the other generators of Γ correspond in the same manner to those in Γ1.

Now, it is clear that φ is an isomorphism, it is type-preserving and pi1q, pii1q, piii1q are the images

of piq, piiq, piiiq via φ:

• Let us assume first that j R t1u Y V̂i. For j ą v2 ´ 1, we have φppĈj´1Ĉjq
n̂j q “

pĈ 1j´v̂2
Ĉ 1j´v̂2`1q

n̂j “ 1. The periods verify then n̂1j “ n̂j´v̂2`1 and we finally get

pĈ 1j´1Ĉ
1
jq
n̂1j “ 1. In the case j ď v̂2´1, we have φppĈj´1Ĉjq

n̂j q “ pÊ
1´1Ĉ 1j´v̂2

Ĉ 1j´v̂2`1Ê
1qn̂j “

1 and pĈ 1j´1Ĉ
1
jq
n̂1j “ 1 with n̂1j “ n̂j´v̂2`1.

• Let us assume that j P t1u Y V̂i. Then, for j ą v2 ´ 1 the image Ĉ 1j´v̂2Ĉ
1
j´v̂2`1 of the

parabolic element Ĉj´1Ĉj is parabolic. For j ă v2 ´ 1, the image E1Ĉ 1j´v̂2Ĉ
1
j´v̂2`1E

1´1

of the parabolic element Ĉj´1Ĉj is parabolic and so is the product Ĉ 1j´v̂2Ĉ
1
j´v̂2`1. The

image Ê1Ĉ 1qi´v̂2`1Ĉ 1qi´v̂2`2Ê
´1 of the parabolic element ÊĈqiÊ

´1Ĉ1 is parabolic and
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so must be Ĉ 1qi´v̂2`1Ĉ 1qi´v̂2`2. Finally, the image Ê1Ĉ 1qi
Ê
1´1Ĉ 11 of the parabolic element

Ĉv̂2´1Ĉv̂2 is again parabolic. The index calculations are done module qi.

Lemma 3.14. An NEC group Γ with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃i, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature

pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃
1
i, ..., C̃tuq,

where the µ-cycle C̃ 1i is directly equivalent to the cycle C̃i, i.e. the components of C̃ 1i are a cyclic

permutation of the components of C̃i.

Proof. The proof of this lemma is very similar to the lemma before with the following difference:

the components in the previous case of η-cycles are delimited by the parabolic product of

reflections. Now the hyperbolic products of reflections delimit the components of the µ-cycles.

Let us assume that Γ and Γ1 have the same relations except for the i-th µ-cycle, and let us use

the component representation of the µ-cycles, so that the i-th µ-cycle has the form pI1, ..., I|Ui|
q,

where we have dropped again the first subscript “i”. The corresponding relations either in the

orientable or the non-orientable case can be written:

piq pC̃j´1C̃jq
ñj “ 1 whenever the reflections C̃j´1 and C̃j exist, that is, whenever tj´1, ju X

Ui “ H, where for simplifying the proof, the parabolic products C̃j´1C̃j where j P Ṽi are

assumed with period infinite,

piiq the product C̃j´1C̃j`1 is hyperbolic for j P Ui,

piiiq the product ẼC̃tiẼ´1C̃2 is hyperbolic.

The i-th µ-cycle of Γ1 is assumed by hypothesis to be a cyclic permutation of pI1, ..., I|Ui|
q,

that we may take pI2, ..., I|Ui|
, I1q, as any other cyclic permutation is the succesive application

of this one. The corresponding relations include then:

pi1q pC̃ 1j´1C̃
1
jq
ñ1j “ 1 whenever the reflections C̃ 1j´1 and C̃ 1j exist, that is, whenever tj´1, ju X

U 1i “ H, where we use again infinite periods for parabolic products,

pii1q the product C̃ 1j´1C̃
1
j`1 is hyperbolic for j P U 1i ,
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piii1q the product Ẽ1C̃ 1tiẼ
1´1C̃ 12 is hyperbolic.

As defined before, the components of the i-th µ-cycle of Γ1 are the cyclic permutation of

the components of the i-th µ-cycle of Γ such that the free-side at the u2-th position is

transformed into the first free-side of the i-th µ-cycle of Γ1, and therefore the j-th reflection

in Γ is transformed in the pj ´ u2 ` 1q-th reflection in Γ1, taking the indexes modulo ti.

Similarly, the set Ui “ t1, u2, ..., uuiu is transformed after the cyclic permutation in the set

U 1i “ t1, u12, ..., u1u1iu “ t1 ´ u2 ` 1, 1, ..., uui ´ u2 ` 1u and reordering we finally get U 1i “

t1, u3 ´ u2 ` 1..., uui ´ u2 ` 1, ti ´ u2 ` 2u. The isomorphism φ : Γ Ñ Γ1 is defined by:

1. φ : C̃j Ñ C̃ 1j´u2`1, j ´ u2 ` 1 ą 0,

2. φ : C̃j Ñ Ẽ1C̃ 1j´u2`1Ẽ
1´1, otherwise,

3. all the other generators of Γ correspond in the same manner to those in Γ1.

It is clear that φ is an isomorphism, it is type-preserving and pi1q, pii1q, piii1q are the images of

piq, piiq, piiiq via φ. For the elliptic and parabolic products of reflections, the proof is exactly

the same as in the lemma before and will not be repeated here. Let us assume then that

j ą u2 ´ 1, j P Ũi. We see that the image C̃ 1j´u2C̃
1
j´u2`2 “ C̃ 1j1´1C̃

1
j1`1 of the hyperbolic

element C̃j´1C̃j`1 is hyperbolic. If j ď u2 ´ 1, j P Ũi, the image Ẽ1C̃ 1j´u2C̃
1
j´u2`2Ẽ

1´1 of the

hyperbolic element C̃j´1C̃j`1 is hyperbolic and so is the product C̃ 1j´u2C̃
1
j´u2`2 “ C̃ 1j1´1C̃ 1j1`1.

The image Ẽ1C̃ 1ti´u2`1C̃ 1ti´u2`3Ẽ
1´1 of the hyperbolic element ẼC̃tiẼ´1C̃2 is hyperbolic and

so is C̃ 1ti´u2`1C̃ 1ti´u2`3. Finally, the image Ẽ1C̃ 1tiẼ
1´1C̃ 12 of the hyperbolic element C̃ṽ2´1C̃ṽ2`1

is also hyperbolic. The index calculations are done module ti.

We now deal with reverse equivalence of cycles. In the next lemma we show that an NEC

group with a signature with sign “ “` ”, where all the periods and components of the η- and

ν-cycles, are the same reversed as the ones of another NEC group with the same sign in the

signature, is isomorphic via a type-preserving isomorphism:

Lemma 3.15. An NEC group Γ with signature

pg;`; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature
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pg;`; s; rm1, ...,mrs; tC˚1 , ..., C˚k u; tČ˚1 , ..., Č˚l u; tĈ˚1 , ..., Ĉ˚q u; tC̃˚1 , ..., C̃˚t uq,

where the cycles C˚i , Č˚i , Ĉ˚i , C̃˚i are inversely equivalent to the cycles Ci, Či, Ĉi, C̃i respectively,

i.e. the periods of C˚i are a cyclic permutation of the periods of C˚i reversed, the periods of Č˚i
are the periods of Či reversed and the components of Ĉ˚i , C̃˚i are a cyclic permutation of the

reversed components of Ĉi, C̃i, reversed.

Proof. Using the properties of the proper periods (cocompact NEC case) and the lemmas above,

we may assume Γ1 to have the signature:

pg;`; s; rmr, ...,m1s; tC˚k , ..., C˚1 u; tČ˚l , ..., Č˚1 u; tĈ˚q , ..., Ĉ˚1 u; tC̃˚t , ..., C̃˚1 uq.

Therefore, we have to prove that the group Γ is isomorphic to a group which includes the

relations:

pi1q X
1mr´i`1
i “ 1 for i “ 1, . . . , r,

pii1q E1iC
1
iki
E
1´1
i C 1i0 “ 1 for i “ 1, . . . , k,

piii1q C
12
ij “ Č

12
ij “ Ĉ

12
ij “ C̃

12
ij “ 1, for all the reflections,

piv1q pC 1i,j´1C
1
ijq

ni,ki´j`1 “ 1 for i “ 1, . . . , k, j “ 1, . . . , ki;

pČ 1i,j´1Č
1
ijq

ňi,li´j`2 “ 1 for i “ 1, . . . , l, j “ 2, . . . , li;

pĈ 1i,j´1Ĉ
1
ijq

n̂i,qi´j`2 “ 1 for i “ 1, . . . , q, j P t2, . . . , qiu ´ V̂ 1i for some non-empty V̂ 1i Ă

t1, . . . , qiu;

pC̃ 1i,j´1C̃
1
ijq

ñi,ti´j`3 “ 1 for i “ 1, . . . , t, j P t3, . . . , tiu ´ Ṽ 1i for some Ṽ 1i Ă t3, . . . , tiu

(maybe empty) whenever the reflections C̃ 1i,j´1 and C̃ 1ij exist, that is, whenever tj´1, juX

U 1i “ H.

pv1q
r
ź

i“1
X 1r´i`1

s
ź

i“1
P 1i

g
ź

j“1
rA1j , B

1
js

k
ź

i“1
E1k´i`1

l
ź

i“1
Ě1l´i`1

q
ź

i“1
Ê1q´i`1

t
ź

i“1
Ẽ1t´i`1 “ 1.

The isomorphism φ : Γ Ñ Γ1 is defined by:

1. φ : Ai Ñ B
1

g´i`1,

2. φ : Bi Ñ A
1

g´i`1,

3. φ : Xi Ñ FX
1´1
r´i`1F

´1,

4. φ : Pi Ñ F
śr
i“1pX

1
iqP

1´1
s´i`1

śr
i“1pX

1´1
r´i`1qF

´1,
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5. φ : Ei Ñ E
1´1
i ,

6. φ : Ěi Ñ F̌ Ě
1´1
i F̌´1,

7. φ : Êi Ñ F̂ Ê
1´1
i F̂´1,

8. φ : Ẽi Ñ F̃ Ẽ
1´1
i F̃´1,

9. φ : Cij Ñ C 1i,ki´j
, φ : Čij Ñ F̌ Č 1i,li´j`1F̌

´1, φ : Ĉij Ñ F̂ Ĉ 1i,qi´j`1F̂
´1, φ : C̃ij Ñ

F̃ C̃ 1i,ti´j`2F̃
´1,

where F “
śk
i“1E

1
k´i`1

śl
i“1 Ě

1
l´i`1

śq
i“1 Ê

1
q´i`1

śt
i“1 Ẽ

1
t´i`1, F̌ “

śk
i“1E

1

k´i`1, F̂ “

śk
i“1E

1

k´i`1
śl
i“1 Ě

1

l´i`1 and F̃ “
śk
i“1E

1

k´i`1
śl
i“1 Ě

1

l´i`1
śq
i“1 Ê

1

q´i`1. It is clear that φ is

an isomorphism. Additionally, the relations in Γ are transformed into:

1. φpEiCiki
E´1
i Ci0q “ E

1´1
i C 1i0E

1
iC
1
iki
“ 1, so E 1iC 1iki

E
1´1
i C 1i0 “ 1.

2. The image of the parabolic element Ě1iČ 1iliĚ
1´1
i Č 1i1 is φpĚiČiliĚ

´1
i Či1q “ F̌ Ě

1´1
i Č 1i1Ě

1
iČ
1
ili
F̌´1,

which is also parabolic and therefore Ě1iČ 1iliĚ
1´1
i Č 1i1 is parabolic too. The same happens

to the image of ÊiĈiqiÊ
´1
i Ĉi1.

3. Similarly, the image of the hyperbolic element ẼiC̃itiẼ´1
i C̃i2 is πpẼiC̃itiẼ´1

i C̃i2q “

F̃ Ẽ
1´1
i C̃ 1i2Ẽ

1
iC̃
1
iti
F̃´1, which is also hyperbolic and so Ẽ1iC̃ 1itiẼ

1´1
i C̃ 1i1 is hyperbolic too.

4. Lengthy but easy computations show that the image of
r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

j“1
rAj , Bjs

k
ź

i“1
Ei

l
ź

i“1
Ěi

q
ź

i“1
Êi

t
ź

i“1
Ẽi

is F
s
ź

i“1
P
1´1
i

r
ź

i“1
X
1´1
i F´1

g
ź

j“1
rB1g´j`1, A

1
g´j`1sF

´1, whose inverse is

r
ź

i“1
X 1i

s
ź

i“1
P 1i

g
ź

j“1
rA1j , B

1
js

k
ź

i“1
E1k´i`1

l
ź

i“1
Ě1l´i`1

q
ź

i“1
Ê1q´i`1

t
ź

i“1
Ẽ1t´i`1,

which is the identity.

The following last three lemmas deal with groups with non-orientable orbit space and show

that ν-, η- and µ-cycles can be reversed individually. The lemmas are the non-cocompact

equivalent to Macbeath’s [40, Lemma 5]. We prove all of them in the same way at the end.
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Lemma 3.16. An NEC group Γ with signature

pg;´; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Či, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature

pg;´; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Č
˚
i , ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

where the cycle Č˚i is inversely equivalent to the cycle Či, i.e. the periods of Č˚i are the periods

of Či reversed.

Lemma 3.17. An NEC group Γ with signature

pg;´; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉi, ..., Ĉqu; tC̃1, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature

pg;´; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉ
˚
i , ..., Ĉqu; tC̃1, ..., C̃tuq,

where the cycle Ĉ˚i is inversely equivalent to the cycle Ĉi, i.e. the components of Ĉ˚i are a

cyclic permutation of the components of Ĉi reversed.

Lemma 3.18. An NEC group Γ with signature

pg;´; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃i, ..., C̃tuq,

is isomorphic via a type-preserving isomorphism to an NEC group Γ1 with signature

pg;´; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃
˚
i , ..., C̃tuq,

where the cycle C̃˚i is inversely equivalent to the cycle C̃i, i.e. the components of C̃˚i are a

cyclic permutation of the components of C̃i reversed.

Proof. Let us assume that Γ and Γ1 have the same relations except for one of the i-th cycle,

where in Γ1 the components and periods are as in Γ but reversed. Then, the presentation of Γ

includes:

piq C
2
ij “ 1, for all the reflections, pCi,j´1Cijq

nij “ 1,

piiq
r
ź

i“1
Xi

s
ź

i“1
Pi

g
ź

j“1
D2
iE1...Ei´1EiEi`1...Ek`l`q`t,

where we use now the notation Ei for all the hyperbolic elements Ei, Ěi, Êi, Ẽi and Ci for all the

reflections Ci, Či, Ĉi, C̃i with the aim to unify the proof of the lemmas above. The presentation

of Γ1 includes:

pi1q C
12
ij “ 1, for all the reflections, pC 1i,j´1C

1

ijq
n1ij “ 1,

piii1q
r
ź

i“1
X 1i

s
ź

i“1
P 1i

g
ź

j“1
D
12
i E

1

1...E
1

i´1E
1

iE
1

i`1...E
1

k`l`q`t,
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where the components and periods of the i-th boundary component are reversed and n1i,j “

ni,oi`1´j where oi is ki, li, qi or ti depending on the type of the i-th boundary component. The

isomorphism φ : Γ Ñ Γ1 is defined by:

1. φ : Ei Ñ FE
1´1
i F´1,

2. φ : Dg Ñ D1gE
1

i,

3. φ : Ej Ñ E
1´1
i E

1

jE
1

i, j “ 1, ..., i´ 1,

4. φ : Ci,j Ñ FC
1

i,oi`1´jF
´1, F “ pE11...E

1

iq
´1D

1´1
g ,

5. all the other generators of Γ correspond in the same manner to those in Γ1.

It is clear that φ is an isomorphism, however in order to show that it is type-preserving, we

have to prove that D1gE
1

i is a glide reflection. In the cocompact case, this is an indirect result of

[40, Lemma 5]: as an isomorphism between cocompact NEC groups is necessarily a type preserv-

ing isomorphism, the products D1gE
1

i in these isomorphisms are glide reflections. As the type of

transformation resulting of the product depends only on the relative positions of the axis of the

translation E1i, the axis of the glide reflection D1g and its line of reflection, then we just need to

build a compact fundamental region from the non-compact one where the edges paired byD1g pre-

ceed in the surface symbol to the sides paired by E1i. By just leaving all the sides identic except

for the edges between the paired by hyperbolic elements that are removed, and joining them via

a new side in H fixed by a reflection we get the needed compact fundamental region. In this way

we prove that the products D1gE
1

i are glide-reflections and so the isomorphism is type-preserving.

Now, we prove that pi1q, pii1q, piii1q are the images of piq, piiq, piiiq via φ:

piq φpC
2
ijq “ FC

1

i,oi`1´jF
´1FC

1

i,oi`1´jF
´1 “ 1 and this implies C

12
i,oi`1´j “ 1,

piiq φppCi,j´1Cijq
ni,j q “ pFC

1

i,oi`1´jF
´1FC

1

i,oi`1´jF
´1qni,j “ 1 so pC 1i,oi`1´jC

1

i,oi`1´jq
ni,j “

1 and pC 1i,jC
1

i,jq
ni,oi`1´j “ 1,

piiiq φp
śr
i“1Xi

śs
i“1 Pi

śg
j“1D

2
iE1...Ei´1EiEi`1...Ek`l`q`tq “

“
śr
i“1X

1
i

śs
i“1 P

1
i

śg´1
j“1 D

12
i D

1
gE

1

iD
1
gE

1

iE
1´1
i E

1

1E
1

i...E
1´1
i E

1

i´1E
1

iFE
1´1
i F´1E1i`1...E1k`l`q`t “

“
śr
i“1X

1
i

śs
i“1 P

1
i

śg
j“1D

12
i E

1

1...E
1

i´1E
1

iE
1
i`1...E1k`l`q`t “ 1.

Finally, depending on the type of the i-th boundary, we can have in Γ:
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1. an additional relation in case of compact boundaries: EiCi,ki
E
´1
i Ci,0 “ 1,

2. in the case of a ν- or a η-cycle, the product EiCi,oiE
´1
i Ci,1 is parabolic,

3. in the case of a µ-cycle, the product EiCi,oiE
´1
i Ci,1 is hyperbolic,

that should be verified in Γ1 by the corresponding relations. The first case is the cocompact case

and will not be discussed here. In the second and third cases, if the product EiCi,oiE
´1
i Ci,1 is

parabolic (hyperbolic), then so will be φpEiCi,oiE
´1
i Ci,1q “ FE

1´1
i C

1

i,1E
1

iC
1

i,oi
F´1 and therefore

E
1´1
i C

1

i,1E
1

iC
1

i,oi
is parabolic (hyperbolic), and so is its conjugate C 1i,1E

1

iC
1

i,oi
E
1´1
i and finally

the inverse E1iC
1

i,oi
E
1´1
i C

1

i,1 is then also parabolic (hyperbolic).

Proof of the sufficient conditions of Theorem 3.9. Let us assume that we have an NEC group Γ

with signature sg “ pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq and

that Γ1 has a signature sg’ “ pg;˘; s; rm11, ...,m1rs; tC 11, ..., C 1ku; tČ 11, ..., Č 1lu; tĈ 11, ..., Ĉ 1qu; tC̃ 11, ..., C̃ 1tuq,

with sign(sg)=sign(sg’), the proper periods rm11, ...,m1rs are a permutation of the proper periods

rm1, ...,mrs and there exist permutations φ of t1, ..., ku, φ̌ of t1, ..., lu, φ̂ of t1, ..., qu and φ̃ of

t1, ..., tu such that in the orientable case, all the cycles C 1i, Č 1i, Ĉ 1i and C̃ 1i are either directly

equivalent to the corresponding cycles Cφpiq, Čφ̌piq, Ĉφ̂piq and C̃φ̃piq or all are reversely equivalent.

In the non-orientable case, each cycle C 1i, Č 1i, Ĉ 1i and C̃ 1i is either directly equivalent to the

corresponding cycles Cφpiq, Čφ̌piq, Ĉφ̂piq and C̃φ̃piq or reversely equivalent.

The general sufficient conditions stated in the theorem are then the concatenation of the

following basic operations applied in the signatures:

1. permuting the ν-, η- and µ-cycles (Lemmas 3.10, 3.11 and 3.12),

2. cyclically permuting the components of the η- and µ-cycles (Lemmas 3.13 and 3.14),

3. cyclically permuting the reversed components of all the η- and µ-cycles reversed (Lemma

3.15),

4. cyclically permuting the reversed components of a ν, an η- and a µ-cycle in the non-

orientable case (Lemmas 3.16, 3.17 and 3.18),
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plus the well known conditions on the proper- and cycle-periods corresponding to the cocompact

part already proved by Wilkie [59] and Macbeath [40].

Then, Lemmas 3.10 to 3.18 prove finally that the conditions in Theorem 3.9 are sufficient.

3.4 Canonical fuchsian subgroup

Given the signature of a finitely generated NEC group in this section we compute the signature

of its canonical fuchsian subgroup. A non-cocompact fuchsian group has signature of the form

pg;m1,m2, ...,mr; s; tq, where s is the number of cusps and t the number of funnels of the

corresponding orbit space.

In a finitely generated fuchsian group each conjugacy class of maximal finite cyclic subgroups

gives rise to a period, the number of conjugacy classes of maximal parabolic cyclic subgroups

gives rise to the parabolic part of the signature (number of cusps) and the number of conjugacy

classes of maximal boundary hyperbolic cyclic subgroups gives rise to the hyperbolic part of

the signature (number of funnels). A boundary hyperbolic element is characterized by the

fact that it leaves a unique interval of discontinuity σ in R invariant such that two boundary

elements with the same interval of discontinuity σ are powers of a unique boundary element

that stabilizes σ, see [5, pag. 262 and 266].

We are now in the situation of characterizing the canonical fuchsian group of an NEC group:

Theorem 3.19. Let Γ be a finitely generated NEC group with signature:

sg “ pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqu; tC̃1, ..., C̃tuq,

in full

sg “ pg;˘; s; rm1, ...,mrs; tpn11, ..., n1k1q, ..., pnk1, ..., nkkk
qu; tpň12, ..., ň1l1q, ..., pňl2, ..., ňlllqu;

tppn̂12, ..., n̂1,v̂12´1q, ..., pn̂1,v̂1,v̂1`1, ..., n̂1,q1qq, ..., ppn̂q2, ..., n̂q,v̂q2´1q, ..., pn̂q,v̂q,v̂q`1, ..., n̂q,qqqqu;

tppñ13, ..., ñ1,u12´1q, ..., pñ1,u1u1`1, ..., ñ1,t1qq, ..., ppñt3, ..., ñt,ut1´1q, ..., pñt,utut`1, ..., ñt,ttqquq.
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Then the canonical Fuchsian subgroup of Γ has signature

sgpΓ`q “ pηg ` k ` l ` q ´ 1;m1,m1,m2,m2, ...,mr,mr, n11, ..., nkkk
, ň12, ..., ňlll ,

n̂12, ..., n̂qqq , ñ13, ..., ñttt ; 2s` l `
q
ÿ

i“1
v̂i `

t
ÿ

i“1
ṽi; 2t`

t
ÿ

i“1
|Ui|q,

where η “ 2 for sign “` ” and η “ 1 for sign “´ ”.

Proof. We first look for conjugacy classes in Γ` of elliptic, parabolic and boundary hyperbolic

elements of Γ. By [54, Lemma 4], for an elliptic generator X P Γ, the groups conjugate to

xXy in Γ fall into two conjugacy classes inside Γ`. For a parabolic generator P P Γ, following

the proof of this lemma, we show that for any G P Γ ´ Γ`, the group GxP yG´1, which is

conjugate in Γ to xP y is not conjugate in Γ` to xP y. Otherwise, there would exist G1 P Γ`

such that G1GxP yG´1G
1´1 “ xP y. As xP y is the stabilzer of a unique point p P BH, we deduce

GG1ppq “ p and therefore G1G P stabppq, which is a contradiction as P P Γ`.

For a boundary hyperbolic element H, if the groups xHy and GxHyG´1 with G P Γ´ Γ`,

were conjugate in Γ` by G1, then if σ is the unique interval of discontinuity of H, the ele-

ments of GxHyG´1 and G1GxHyG´1G´1 would have the same interval of discontinuity, i.e.

Gσ “ G1Gσ “ σ.

Claim G and G1G are reflections.

Proof. Let us assume that G is a glide reflection such that G2 is a boundary element that

stabilizes σ and therefore the boudary elements G2 and in xHy are powers of a unique boundary

element that stabilizes σ. This means that there exists a canonical fundamental region where

the glide reflection G links two edges with at least a vertex at infinity. However, as the edges

linked by a glide reflection have the orientation reversed, G can only link edges with both

vertices in BH. Otherwise when applying it to the vetex at infinity, it will be mapped into a

vertex in H. Now, this means that the edges linked by such glide reflection has a common vertex

at infinity that is neither parabolic, semi-parabolic or improper (as in the unbounded moebius

band in the example 2.3) which is a contradiction, as a canonical fundamental region can only

include parabolic, semiparabolic and improper vertices at infinity. Then G is a reflection and

for the same reason G1G also. This shows the claim.
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As G and G1G are both reflections and both have to fix the same axis, namely the axis

of H, we conclude that G “ G1, which is a contradiction as we have supposed that xHy and

GxHyG´1 are conjugate by G1 P Γ`.

In the same lemma, Singerman showed that any group conjugate in Γ to xCi,j´1Cijy is

conjugate in Γ` to xCi,j´1Cijy. In our case, this applies to the elliptic products Či,j´1Čij ,

Ĉi,j´1Ĉij and C̃i,j´1C̃ij , too.

In the same way, any group conjugated in Γ to the group generated by the parabolic

elements Či1Čili , Ĉi,j´1Ĉij with n̂ij “ 8 or C̃i,j´1C̃ij with ñij “ 8, is conjugated in

Γ` respectively to Či1Čili , Ĉi,j´1Ĉij with n̂ij “ 8 or C̃i,j´1C̃ij with ñij “ 8. Indeed,

if G P Γ ´ Γ`, then the conjugate GxČi1ČiliyG
´1 in Γ of the group xČi1Čiliy, verifies

GxČi1ČiliyG
´1 “ GxČiliČi1ČiliČiliyG

´1 “ GČilixČi1ČiliypGČiliq
´1, so that they are also

conjugated in Γ`. The same can be done for the groups xĈi,j´1Ĉijy with n̂ij “ 8 and

xC̃i,j´1C̃ijy with ñij “ 8 in Γ`. The total number of parabolic conjugacy classes in Γ` is then

2s` l` q`
řq
i“1 v̂i `

řt
i“1 ṽi, where as before v̂i is the number of parabolic products Ĉi,j´1Ĉij

and ṽi the number of parabolic products C̃i,j´1C̃ij .

Similarly, a group conjugated to the group generated by the boundary hyperbolic elements

C̃i2C̃iti or by the hyperbolic products C̃i,j´2C̃ij are conjugate in Γ` to C̃i1C̃iti or C̃i,j´2C̃ij

respectively, where j ´ 1 P Ui, namely the linked side is a free-edge and there is no reflection

C̃i,j´1 in the presentation. The proof of this fact is exactly the same as the parabolic and

elliptic cases. Finally, the total number of hyperbolic conjugacy classes is 2t`
řt
i“1 |Ui|, where

|Ui| is the number of boundary hyperbolic products in the i-th µ-sequence.

For calculating the genus, we take into account that if Γ is a group acting properly

discontinuously on a manifold H, then the orbit space H{Γ has the structure of an orbifold.

It is also well known that if there is a cover f : H{Γ1 Ñ H{Γ of degree d of H{Γ, then the

Riemann-Hurwitz formula reads d “ χpH{Γ1q{χpH{Γq, where χ is the Euler-characteristic of

the corresponding orbifold. Now, as Γ` is a subgroup of index 2 in Γ, it can be defined an orbit

space cover f : H{Γ` Ñ H{Γ of degree 2. Therefore, χpH{Γ`q “ 2χpH{Γq. It is well known
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(see [35, Section 1]) that the Euler-characteristic of an orbifold H{∆ where ∆ is a fuchsian

group of signature pg;m1, ...,mr; s; tq is

χpH{∆q “ 2´ 2g ´
r
ÿ

i“1
p1´ 1

mi
q ´ s´ t.

For the canonical fuchsian group Γ` of the NEC group Γ, we have shown that the signature is

sgpΓ`q “ pg1;m1,m1,m2,m2, ...,mr,mr, n11, ..., nkkk
, ň12, ..., ňlll , n̂12...n̂qqq , ñ13, ..., ñttt ;

2s` l ` q `
q
ÿ

i“1
v̂i `

t
ÿ

i“1
ṽi; 2t`

t
ÿ

i“1
|Ui|q,

where the proper periods include only the subindices i, j where nij , n̂ij , ňij , ñij are finite and

v̂i, ṽi are the number of semi-parabolic vertices in the i-th η- and µ-sequences. Then, the

Euler-characteristic of the orbit space H{Γ` is

χpH{Γ`q “ 2´ 2g1 ´ 2
r
ÿ

i“1
p1´ 1

mi
q ´

k
ÿ

i“1

ki
ÿ

j“1
p1´ 1

nij
q ´

l
ÿ

i“1

li
ÿ

j“1
p1´ 1

ňij
q´

q
ÿ

i“1

qi
ÿ

j“1
p1´ 1

n̂ij
q ´

t
ÿ

i“1

ÿ

jPLi

p1´ 1
ñij
q ´

t
ÿ

i“1
ṽi ´ 2s´ 2t´

t
ÿ

i“1
|Ui|,

where we have called Li the set of j P t1, ..., tiu such that C̃i,j´1C̃ij is elliptic and we have added

the parabolic term ´l, for adding the indices j “ 1 with ňi1 “ 8 to the sum
řl
i“1

řli
j“2p1´

1
ňij
q,

and the parabolic terms ´q and ´
řq
i“1 v̂i, for adding to the sum

řq
i“1

řqi

j“2,jPV̂i
p1´ 1

n̂ij
q the

indices j “ 1, j P V̂i with n̂ij “ 8.

In the case of the non-cocompact NEC group Γ, the orbifold Euler-characteristic of H{Γ can be

calculated directly via the usual definition χpH{Γq “ F ´E`V , where F,E, V are respectively

the number of faces, edges and vertices of a triangulation of H{Γ, where each vertex and edge

weighs 1{k, with k the order of its stabilizer, see [58, Def 13.3.3, Prop. 13.3.4 and Examples].

We use the canonical form of the fundamental region and the equivalence of the pairing edges

and related vertices for calculating it. First of all, we have necessarily only one face, so F “ 1.

The number of edges of the fundamental region is one per paired ones and half for mirror edges.

The free-sides do not belong to the fundamental region (non-compact part) and actually count

as 0. We have then

E “ E1 ` E2,
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with

E1 “ s` r ` ηg ` k ` l ` q ` t,

where η “ 1, 2 depending on the sign of the non-cocompact NEC signature and for mirror edges

E2 “
1
2

k
ÿ

i“1
pki ` 1q ` 1

2

l
ÿ

i“1
li `

1
2

q
ÿ

i“1
qi `

1
2

t
ÿ

i“1
pti ´ |Ui|q.

As mentioned above, if o is the order of the stabilizer of a vertex, then 1
o is the weight at

counting them. The parabolic, semiparabolic and improper vertices are counted as 0. Then,

the total number of weighted vertices is

V “ 1`
r
ÿ

i“1

1
mi
`

k
ÿ

i“1

ki
ÿ

j“1

1
2

1
nij

`

l
ÿ

i“1

li
ÿ

j“2

1
2

1
ňij

`

q
ÿ

i“1

qi
ÿ

j“2

1
2

1
n̂ij

`

t
ÿ

i“1

ÿ

jPLi

1
2

1
ñij

`
1
2k,

where as before we call Li the set of j P t1, ..., tiu such that C̃i,j´1C̃i,j is elliptic. The conic

vertices count 1
mi

and the corner vertices count 1
2

1
nij

, 1
2

1
ňij

, 1
2

1
n̂ij

and 1
2

1
ñij

. The vertices of the

fundamental region paired respectively by the hyperbolic transformations Ei are of order 2 and

count 1
2k and all other vertices are conjugated and count 1. We can then conclude

χpH{Γq “ F ´ E ` V “ 1´ s´ r ´ ηg ´ k ´ l ´ q ´ t´ 1
2

k
ÿ

i“1
ki ´

1
2k ´

1
2

l
ÿ

i“1
li´

´
1
2

q
ÿ

i“1
qi ´

1
2

t
ÿ

i“1
pti ´ |Ui|q ` 1`

r
ÿ

i“1

1
mi
`

k
ÿ

i“1

ki
ÿ

j“1

1
2

1
nij

`

l
ÿ

i“1

li
ÿ

j“2

1
2

1
ňij
`

`

q
ÿ

i“1

qi
ÿ

j“1

1
2

1
n̂ij

`

r
ÿ

i“1
p

1
mi
´ 1q `

t
ÿ

i“1

ÿ

jPLi

1
2

1
ñij

`
1
2k “

“ 2´ s´ ηg ´ k ´ l ´ q ´ t`
k
ÿ

i“1

ki
ÿ

j“1

1
2p

1
nij

´ 1q `
l
ÿ

i“1

li
ÿ

j“1

1
2p

1
ňij

´ 1q `
q
ÿ

i“1

qi
ÿ

j“1

1
2p

1
n̂ij

´ 1q`

`

t
ÿ

i“1

ÿ

jPLi

1
2p

1
ñij

´ 1q ´ 1
2

t
ÿ

i“1
|Ui| ´

1
2

t
ÿ

i“1
ṽi,

where we have used the fact that ti “ 2|Ui| ` |Li| ` ṽi, i.e. the total number of edges in the i-th

µ-sequence is the same as the total number of vertices (considering the first and last vertices

the same as they are paired). In turn the total number of vertices is the number of improper

vertices (2|Ui|) plus the number of proper vertices (ṽi) plus the number of vertices in H (|Ei|).
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Using the Riemann-Hurwitz formula χpH{Γ`q “ 2χpH{Γq, we get

2´ 2g1 ´ 2
r
ÿ

i“1
p1´ 1

mi
q ´

k
ÿ

i“1

ki
ÿ

j“1
p1´ 1

nij
q ´

l
ÿ

i“1

li
ÿ

j“1
p1´ 1

ňij
q ´

q
ÿ

i“1

qi
ÿ

j“1
p1´ 1

n̂ij
q

´

t
ÿ

i“1

ÿ

jPEi

p1´ 1
ñij
q ´ 2s´ 2t´

t
ÿ

i“1
|Ui| ´

t
ÿ

i“1
ṽi “

“ 4´ 2s´ 2ηg ´ 2k ´ 2l ´ 2q ´ 2t` 2
r
ÿ

i“1
p

1
mi
´ 1q `

k
ÿ

i“1

ki
ÿ

j“1
p

1
nij

´ 1q`

`

l
ÿ

i“1

li
ÿ

j“1
p

1
ňij

´ 1q `
q
ÿ

i“1

qi
ÿ

j“1
p

1
n̂ij

´ 1q `
t
ÿ

i“1

ti
ÿ

jPŨi

p
1
ñij

´ 1q ´
t
ÿ

i“1
|Ui| ´

t
ÿ

i“1
ṽi.

Rearranging the terms and simplifying, we finally obtain

2g1 “ ´2` 2ηg ` 2k ` 2l ` 2q and so g1 “ ηg ` k ` l ` q ´ 1.

3.5 Topological classification of the orbit space

The main goal of this section is to classify topologically the (non-compact) orbit space from

the signature of the group. In the case of cocompact fuchsian groups, given a signature

pg;m1,m2, ...,mrq, the related orientable orbit space is classified up to homeomorphism by the

genus g. Similarly, the orbit space of a cocompact NEC group is identified up to homeomorphism

by the invariants g,˘, k, i.e. genus, orientability and the number of boundary components of

the space. As a surface with a closed disc removed is topologically equivalent to a surface with

a point removed, the orientable orbit space of a non-cocompact fuchsian group of signature

pg;m1,m2, ...,mr; s; tq, where s is the number of punctures and t the number of funnels, is then

defined by the invariants g, s` t.

In order to obtain the invariants classifying topologically the orbit space corresponding to a

non-cocompact NEC group in terms of its signature, we introduce the basic classification of

non-cocompact surfaces following the classical results of Richards [50], Brown and Messer [7]

and Konya [34].

Let P1 Ą P2 Ą ... be a nested sequence of unbounded connected regions of a surface S such

that:
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(1) the boundary of Pn in S is compact for all n,

(2) for any bounded subset A of S, Pn XA “ H for n sufficiently large.

We say that two sequences P1 Ą P2 Ą ... and Q1 Ą Q2 Ą ... are equivalent if, for any n

there is an integer N such that Pn Ă QN and vice versa. We denote by p˚ the equivalence class

of sequences containing p “ P1 Ą P2 Ą ... that we call an end of S. The set BpSq of all ends

of S is a topological space having as elements the ends of S and endowed with the following

topology: for any set U in S whose boundary in S is compact, we define U˚ to be the set of

all ends p˚ represented by some p “ P1 Ą P2 Ą ... , such that Pn Ą U for n sufficiently large.

A bordered surface is said to be planar if every compact subsurface in it is of genus zero. A

surface without borders is planar if and only if every Jordan curve separates it. We say that the

end p˚ is planar and/or orientable if the sets Pn are planar and/or orientable for all sufficiently

large n.

A surface S with non-empty boundary is of infinite genus and/or infinitely nonorientable

if there is no bounded subset A of S such that S ´ A has genus 0 and/or is orientable. A

non-compact surface S can be classified attending to its orientability in four types, namely

orientable, infinitely nonorientable, nonorientable with an odd number of “cross cups” or with

an even number of “cross cups”. The spaces of ends BpSq is then defined as a nested triple of

the sets BpSq Ą B1pSq Ą B2pSq where B1pSq, B2pSq are the parts of BpSq which are not planar

and infinitely nonorientable respectively. Richards proved in [50] that two surfaces without

boundaries of the same genus and orientability class are homeomorphic if and only if their

spaces of ends considered as triple of spaces are topologically equivalent.

In case of surfaces with boundaries we have to consider additionally the ends contained on

the boundaries: we define similarly the triple of spaces CpSq, C 1pSq, C2pSq corresponding to all

the ends on the boundary, and the subsets of non planar ends on the boundary and infinitely

nonorientable ends on the boundary. Additionally, we say that two ends are adjacent if there

exists a boundary component for which they are the end of it. Two boundary ends are said to

be equivalent if they belong to the same sequence of adjacent ends. We finally define the set D

as the quotient of C by the equivalence relation above. Equipped with the boundary space of

ends and D, Prishlyak and Mischenko [49] proved that two surfaces S1 and S2 with the same
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genus, orientability class and same number of compact boundaries are homeomorphic if and

only if there is a homeomorphism which maps BpS1q onto BpS2q, B1pS1q onto B1pS2q, B2pS1q

onto B2pS2q, CpS1q onto CpS2q, C 1pS1q onto C 1pS2q, C2pS1q onto C2pS2q andDpS1q ontoDpS2q.

For a surface S that is an orbit space generated by a finitely generated non-cocompact NEC

group, we know that S has finite genus, and therefore by definition B1pSq “ C 1pSq “ H, and S

has finite orientability class, also by definition B2pSq “ C2pSq “ H. So we have proved:

Lemma 3.20. Let Γ be a finitely generated non-cocompact NEC group and S “ H{Γ, then

B1pSq “ B2pSq “ C 1pSq “ C2pSq “ H.

Let Γ be an NEC group of signature:

sg “ pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqqu; tC̃1, ..., C̃tuq.

For classifying the compact core of the orbit space we have the genus g, orientability ˘ and the

number k of compact borders.

Now, for the non-cocompact part, the space of ends BpSq corresponds to points and closed

disks removed on the surface, i.e. punctures and simple funnels. As a surface with a puncture

removed is topologically (but not conformally) equivalent to a surface with a simple funnel,

their total number is an invariant, that we write s`n0, where n0 is the total number of µ-cycles

that are simple funnels. In other words n0 is the number of funnels with 0 cuts.

Similarly, the space of ends on the boundary CpSq corresponds to boundaries on which we

remove points and closed segments, so that each border with only one semi-puncture (total

number l) is topologically equivalent to a funnel with one (non-compact) cut (total number

n1). Let us call nk, k ě 2, the number of η-cycles Ĉi, such that |V̂i| “ v̂i “ k, i.e. boundary

components with exactly k semi-punctures. And we call nk the number of µ-cycles C̃i with a

total number of k cuts. As before, semi-punctures (points removed on a border) and cuts on

the funnels (closed segments removed on the border) are topologically, but not conformally

equivalent.
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Let us define Nk “ nk ` n
k, k ě 2, N0 “ s` n0 and N1 “ l` n1. Let us define the number

N “

M
ź

k“0
pNk
k`1,

with M the maximum k such that Nk ‰ 0 and pk the k-th prime number. We call N the

diagram invariant (motivated by the definition of diagram and the homeomorphism theorem of

non-cocompact 2-manifolds [7, Theorem 2.2]). It identifies from a topological point of view

the space of ends BpSq (N0) and CpSq (Nk, k ě 1) of the surface S “ H{Γ. Finally, we have

proved the following theorem:

Theorem 3.21. The orbit space H{Γ of a finitely generated non-cocompact NEC group Γ with

signature:

sg “ pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tČ1, ..., Člu; tĈ1, ..., Ĉqqu; tC̃1, ..., C̃tuq

is a non-compact surface topologically classified by the invariants pg,˘, k,Nq, where g is the

genus of H{Γ, “˘” stands for its orientability, k is the number of compact boundary components

and N is the diagram invariant defined above.

Example 3.22. Let us consider the surface of the example 3.5. According to the Theorem 3.21,

we have the following invariants that classify topologically (up to homeomorphism) the surface:

• Invariants of the compact core: the genus g “ 3, orientability “`” and number k “ 1 of

compact borders,

• N0: one puncture, s “ 1 and one simple funnel n0 “ 1, N0 “ 2,

• N1: one ν´cycle, l “ 1 and no funnel with only one cut, n1 “ 0, such that N1 “ 1,

• N2: one η´cycle with n2 “ 1 and two µ-cycles with two cuts, N2 “ 3,

Finally, M “ 2 and the diagram invariant N “ 2N03N15N2 “ 223153 “ 1500 and therefore the

list of invariants is p3,`, 1, 1500q.
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Other results on NEC groups

In this chapter, we study additional properties of not necessarily non-cocompact NEC

groups, namely the elementary NEC groups and the limit set. In Section 4.1 we describe

all the elementary NEC groups, including those with orientation reversing isometries. In

Section 4.2, we prove that an NEC group and its canonical fuchsian subgroup have the same

limit set, and then introduce the classification of NEC groups of first and second kind, similarly

to the classification of fuchsian groups.

4.1 Elementary NEC groups

In this section we describe a class of subgroups of isometries of the hyperbolic plane called

elementary groups, which have a particularly simple structure.

Definition 4.1. An NEC group Γ is elementary if there is a finite Γ-orbit in BHYH.

The elementary fuchsian groups are of one of the following types (see Katok [32, Theorem

2.4.3]):

1. Γ » Cm, a finite cyclic group generated by an elliptic element of order m,

2. Γ » C8 is an infinite cyclic group generated by either a parabolic or a hyperbolic element,

3. Γ » C8 ‘ C2, conjugated in IsompHq to xS, T y where Spzq “ kz, k ą 1 and T pzq “ ´1
z .
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For proper elementary NEC groups, we have the following classification.

Theorem 4.2. A proper elementary NEC group Γ is a group of one of the following types:

1. Γ » C2, generated by a reflection,

2. Γ » C8, generated by a glide reflection,

3. Γ » Dm, dihedral generated by an elliptic element of order m and a reflection fixing the

elliptic fixed point,

4. Γ » D8, generated by a parabolic element and a reflection fixing the parabolic fixed point,

or by a reflection fixing a and b in BH and an elliptic involution swapping a with b, or by

a glide reflection and an elliptic involution swapping the fixed points of the glide reflection,

or by a hyperbolic element and a reflection swapping the fixed points of the hyperbolic

element,

5. Γ » C2 ‘ C2, generated by either a reflection fixing a, b P BH, or a reflection swapping a

and b, or a glide reflection fixing a, b, and an elliptic element swapping a with b,

6. Γ » C8‘C2, generated by a hyperbolic element and either a reflection or a glide reflection

both fixing the same points in BH,

7. Γ » D8 ‘ C2, generated by a hyperbolic element fixing a and b, an elliptic involution

swapping a with b and a reflection preserving ta, bu,

8. Γ » D8 ¸ C2, generated by a hyperbolic element fixing a and b, an elliptic involution

swapping a with b and a reflection swapping a with b,

9. Γ » C8 ‘ C2 or pC8 ‘ C2q ¸ C2, generated by a hyperbolic element fixing a and b, an

elliptic involution swapping a with b and a glide reflection fixing a and b.

Proof. Attending to the number of points of the finite orbit and whether this orbit is in H or

BH we have the following possibilities:

Case 1: Γ has an orbit consisting of one point a P H. We can write then Γ “ stabtau. As

no glide reflection, hyperbolic or parabolic element fixes any point in H, then the group can

only contain reflections and elliptic elements. We deduce then Γ is
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p1.1q a group generated by a unique reflection R as generator, Γ “ xRy » C2.

p1.2q a group generated by an elliptic element E and a reflection R both fixing a, Γ “ xE,Ry »

Dm.

Observe that we have Γ` “ tIdu or xellipticy.

Case 2: Γ has an orbit consisting of one point a P BH. Again, we write Γ “ stabtau. We

have the following cases:

p2.1q a group generated by a unique element S, Γ “ xSy. We have the following possibilities:

p2.1.1q S “ R is a reflection, Γ “ xRy » C2, or

p2.1.2q S “ D is a glide reflection, Γ “ xDy » C8.

We have Γ` “ xIdy or xhyperbolicy.

p2.2q A group generated by a parabolic element P and an orientation reversing element S, both

fixing a P BH, Γ “ xP, Sy, so that we get:

p2.2.1q Γ “ xP,R reflection fixing a P BHy “ xR,PR|R2 “ pPRq2 “ 1y » C2 ˚ C2 » D8.

In this case, S cannot be a glide reflection fixing a since otherwise Γ` would contain a

parabolic element and the hyperbolic element S2, which is impossible as a fuchsian group

cannot contain a parabolic element and a hyperbolic element fixing the same point, see

for example see Katok [32, proof of Theorem 2.4.3]. Additionally, we have Γ` “ xIdy or

xParabolicy.

p2.3q A group generated by a hyperbolic element H and an orientation reversing element S,

both fixing a P BH, Γ “ xH,Sy. Let b P BH be the other fixed point of H. Then, we have

two possibilities:

p2.3.1q Γ “ xH,R reflection fixing a P BHy.

Claim Rpbq “ b.

Proof. Suppose Rpbq ‰ b. Then, R ‰ HRH´1 since otherwise Rpbq “ HRH´1pbq “

HRpbq ñ Rpbq P FixpHq “ ta, bu which is a contradiction. So RHRH´1 is parabolic

fixing a, which is impossible as mentioned above. So we deduce Rpbq “ b, this shows
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our claim.

Choosing ta, bu “ t0,8u we conclude then Γ “ xz ÞÑ λz,R ÞÑ ´z̄y “ C8 ‘ C2.

p2.3.2q Γ “ xH,D glide reflection fixing a P BHy.

Claim Dpbq “ b.

Proof. Suppose Dpbq ‰ b. Then, D2pbq ‰ b, because the xDy´orbit of b is infinite.

Therefore, Γ` contains the hyperbolic elements H and D2 with different fixed point

sets. This is impossible, see [32, proof of Theorem 2.4.3]. So, Dpbq “ b, showing our

claim.

Again, choosing ta, bu “ t0,8u we conclude Γ “ xH : z ÞÑ λz,D : z ÞÑ ´µz̄ pµ ą

1qy. Since xH,D2y is cyclic, see [32, Theorem 2.3.5], we may write xH,D2y “

xhyperbolic F y. So Γ “ xF : z ÞÑ αz,D : z ÞÑ ´µz̄ pµ ą 1qy “ xF,D|FD “

DF,D2 “ Fm for some my »

»

$

&

%

xDF ky “ C8 if m “ 2k ` 1,

xF y ‘ xDF´ky “ C8 ‘ C2 if m “ 2k.

Case 3: Γ has an orbit consisting of two points a, b P BH. Again, we write Γ “ stabta, bu.

In this case, Γ` cannot contain parabolic elements, since the orbit of a point under a parabolic

element is infinite, unless the point if the fixed point of the parabolic element. We have the

following cases:

p3.1q a group generated by a unique element S, Γ “ xS preserving ta, bu Ă BHy. We have the

following possibilities, where we may assume ta, bu “ t0,8u:

p3.1.1q Γ “ xR reflection fixing a, b P BHy “ xz ÞÑ ´z̄y » C2,

p3.1.2q Γ “ xR reflection swapping a with by “ xz ÞÑ
µ

z̄
, µ ą 0y » C2,

p3.1.3q Γ “ xD glide reflection fixing a, by “ xz ÞÑ ´λz̄, λ ą 0y » C8.

p3.2q A group generated by two elements E and S, with E an elliptic involution swapping a

with b in BH, and S an orientation reversing isometry preserving ta, bu, Γ “ xE,Sy. We

have the following possibilities, where again ta, bu “ t0,8u:

p3.2.1q Γ “ xE,R reflection z ÞÑ ´z̄ f ixing a, by “ xz ÞÑ ´
1
z
, z ÞÑ ´z̄y » C2 ‘ C2,
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p3.2.2q Γ “ xE,R reflection z ÞÑ
µ

z̄
swapping a with by »

»

$

&

%

C2 ‘ C2 if µ “ 1, this is the case p3.2.1q,

C2 ˚ C2 “ D8 otherwise.

Observe that ER is such z ÞÑ ´
z̄

µ
and so ER is a glide reflection fixing a, b.

p3.2.3q Γ “ xE,D glide reflection fixing a, b P BHy. This is the case p3.2.2q with the

product ER a glide reflection.

p3.3q A group generated by two elements H and S, with H a hyperbolic element Hpzq “ λz

pλ ą 1q fixing a “ 0 and b “ 8, and S an orientation reversing element preserving

ta, bu “ t0,8u, Γ “ xH,Sy. We have the following possibilities:

p3.3.1q Γ “ xH,R reflection z ÞÑ ´z̄ f ixing a, by » C8 ‘ C2, which is the case p2.3.1q

above.

p3.3.2q Γ “ xH,R reflection z ÞÑ
µ

z̄
swapping a with by “ xRH,Ry » C2 ˚ C2 “ D8,

because RH : z ÞÑ µλ

z̄
, is a reflection.

p3.3.3q Γ “ xH,D glide reflection fixing a, by » C8 or C8 ‘ C2. This is the case p2.3.2q.

p3.4q A group generated by three elements H, E and S, with H a hyperbolic element Hpzq “ λz

fixing a “ 0 and b “ 8, E an elliptic involution Epzq “ ´
1
z

swapping 0 and 8

and S an orientation reversing element preserving t0,8u. In this case, we can write

Γ` Ś xEH,Ey “ C2 ˚ C2 “ D8, as EHpzq “ ´
1
λz

has order 2.

We have the following possibilities:

p3.4.1q Γ “ xH,E,R reflection z ÞÑ ´z̄ f ixing a, b P BHy » Γ` ‘ C2 » pC2 ˚ C2q ‘ C2 “

D8 ‘ C2.

p3.4.2q Γ “ xH,E,R reflection z ÞÑ
µ

z̄
swapping a with by »

»

$

&

%

D8 ‘ C2 if µ “ 1, this is the case 3.4.1,

D8 ¸ C2 “ otherwise.
For the case µ ‰ 1, we have considered first that pREq2 is an orientation preserving

element fixing two points in BH and therefore is hyperbolic and so xH, pREq2y is

a cyclic group as both are hyperbolic groups fixing the same points. Then there

exists a hyperbolic element F such that pREq2 “ Fn for some n. We can then write

xH,E,Ry “ xF,E,R|pEF q2 “ E2 “ R2 “ 1, RER “ EFny. Now, it is clear that
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Γ` “ xF,E|pEF q2 “ E2 “ 1y » C2 ˚C2 » D8 is normal in Γ, Γ`XxR|R2 “ 1y “ H

and any element of Γ can be written in the form TR with T P Γ`, i.e. Γ is the

semidirect product of Γ` and xR|R2 “ 1y.

p3.4.3q Γ “ xH,E,D glide reflection z ÞÑ ´µz̄ fixing a, by » xH,Dy ¸ C2.

In this case, the semidirect product of xH,Dy and xE|E2 “ 1y is straightforward

considering that EHE “ H´1 and EDE “ D´1 and as seen in p2.3.2q, xH,Dy »
$

’

’

’

&

’

’

’

%

C8

or

C8 ‘ C2.

Case 4: Γ has an orbit consisting of k ě 2 points in H or k ě 3 points in BH. First of all, Γ`

cannot contain elements of infinite order since the parabolic and hyperbolic elements can have

only either fixed points at infinity or infinite orbits (see [32, pg. 39]). In fact, Γ` “ tidu or

xelliptic of order ny. We have the following cases:

p4.1q Γ` “ tIdu and so Γ “ xreflectiony » C2,

p4.2q Γ` “ xE elliptic order m fixing py and so Γ “ xE,R reflection; fixing py » Dm.

Remark 4.3. From the theorem is clear that the elementary NEC groups are finitely generated.

Additionally, an elementary group is non-cocompact.

4.2 Limit orbits and the classification of NEC groups

Let z P H and tTnu a sequence of distinct elements of an NEC group Γ. If the sequence tTnzu

has a limit, then this is a limit point of Γ.

Definition 4.4. The limit set of an NEC group Γ is the set of all limit points of Γ-orbits

Γz, z P H and is denoted by ΛpΓq.

For fuchsian groups the limit set can be one of the following (see Katok [32, Theorem 3.4.6]):

1. a set consisting of 0, 1, 2 points in BH,

2. a perfect nowhere dense subset of BH,
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3. BH.

We have the following results:

Theorem 4.5. Let Γ be an NEC group and let ΛpΓq, ΛpΓ`q be the limit sets of the NEC group

and of its canonical fuchsian subgroup. Then ΛpΓq “ ΛpΓ`q.

Proof. First of all, it is clear that ΛpΓ`q Ď ΛpΓq. Conversely, for each a P ΛpΓq, there exists

a sequence tTnu in Γ with Tnz Ñ a. We can ensure that there exists an infinite subsequence

of tTnu such that either all the elements belong to Γ` or to Γ ´ Γ`. If the elements belong

to Γ`, then a P ΛpΓ`q. If they belong to Γ ´ Γ`, then as Γ` is a subgroup of index two of

Γ, we can decompose the group into a union of two disjoint sets Γ` Y TΓ` with T P Γ´ Γ`

and therefore we have a sequence Sn “ T´1Tn in Γ` such that Snz Ñ T´1a P ΛpΓ`q. But

TSnz “ TSnT
´1Tz Ñ a, so we have a sequence of elements of Rn “ TSnT

´1 P Γ` and a

w “ Tz P H such that Rnw Ñ a and therefore a P ΛpΓ`q.

The following corollary is immediate:

Corollary 4.6. The limit set of an NEC group is one of the following:

1. a set consisting of 0, 1, 2 points in BH,

2. a perfect nowhere dense subset of BH,

3. BH.

A fuchsian group Λ is said to be of the first kind if its limit set is BH, otherwise is of the

second kind. Specifically, elementary fuchsian groups are of the second kind. Fuchsian groups

of the first kind are finitely generated and have finite covolume. Based on the Theorem 4.5 we

can introduce the same classification of NEC groups and obtain similar results:

Definition 4.7. An NEC group Γ is called of the first kind if its limit set is BH. Otherwise it

is called of the second kind.

Corollary 4.8. Let Γ be an NEC group and Γ` its fuchsian canonical subgroup. Then Γ is of

the first kind if and only if Γ` is of the first kind.

Proof. The proof is a direct consequence of ΛpΓq “ ΛpΓ`q.
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Corollary 4.9. Let Γ be a finitely generated non elementary NEC group. Then Γ is of the

first kind if and only if it has a fundamental region of finite area.

Proof. Γ is of the first kind if and only if Γ` is of the first kind and this happens in case of

non-elementary finitely generated fuchsian groups if and only if there is a fundamental region

of Γ` of finite area (for example applying Beardon [5, Theorem 10.1.2]). Now, as Γ` is a

subgroup of index two of Γ, there is a fundamental region of Γ whose area is half the area of a

fundamental region of Γ` and therefore finite.

Finally we can easily derive the following corollaries:

Corollary 4.10. Let Γ be a finitely generated non elementary NEC group of first kind. Then

the signature of Γ does not include any C̃ cycles

sg “ pg;˘; s; rm1, ...,mrs; tC1, ..., Cku; tĈ1, ..., Ĉlqu; tČ1, ..., Čqqu; t´uq.

Proof. By Theorem 3.19, the signature of the canonical fuchsian group Γ` is

sgpΓ`q “ pηg ` k ` l ` q ´ 1;m1,m1,m2,m2, ...,mr,mr, n11, ..., nkkk
, ň12, ..., ňlll ,

n̂1,2...n̂q,qq , ñ1,3...ñt,tt ; 2s` l `
q
ÿ

i“1
v̂i `

t
ÿ

i“1

ti
ÿ

j“1
ñi,j ; 2t`

t
ÿ

i“1
|Ui|q,

where η “ 2 for sign “` ” and η “ 1 for sign “´ ”. As the fuchsian group is finitely generated

of first kind, then 2t`
řt
i“1 |Ui| “ 0. This means that t “ 0 and therefore the signature of the

canonical group is reduced to

sgpΓ`q “ pηg ` k ` l ` q ´ 1;m1,m1, ...,mr,mr, n11, ..., nkkk
, ň12, ..., ňlll ,

n̂1,2...n̂q,qq ; 2s` l `
q
ÿ

i“1
v̂i; 0q,

in other words, there is no µ-sequence in the fundamental region, i.e. the related data in the

signature is empty.

Corollary 4.11. Let Γ be a finitely generated non elementary NEC group of first kind of
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signature as in corollary 4.10. Then, the measure of any fundamental region is

µpΓq “ 2πrηg ` k ` l ` q ´ 2` s`
r
ÿ

i“1
p1´ 1

mi
q`

`
1
2

k
ÿ

i“1

ki
ÿ

j“1
p1´ 1

nij
q `

1
2

l
ÿ

i“1

li
ÿ

j“1
p1´ 1

ňij
q `

1
2

q
ÿ

i“1

qi
ÿ

j“1
p1´ 1

n̂ij
qs,

where η “ 2 for sign “` ” and η “ 1 for sign “´ ”.

Proof. The area of a non elementary finitely generated fuchsian group Λ of signature pg;m1, ...,mr; s; 0q

is

µpΛq “ 2πr2g ´ 2` s`
r
ÿ

i“1
p1´ 1

mi
qs.

By corollary 4.10, the signature of the canonical fuchsian group Γ` is

sgpΓ`q “ pηg ` k ` l ` q ´ 1;m1,m1,m2,m2, ...,mr,mr, n11, ..., nkkk
, ň12, ..., ňlll ,

n̂1,2, ..., n̂q,qq ; 2s` l `
q
ÿ

i“1
v̂i; 0q,

where η “ 2 for sign “ ` ” and η “ 1 for sign “ ´ ”. As Γ` has index two in Γ, we have

µpΓ`q “ 2µpΓq. So we get

µpΓq “ 2πrηg ` k ` l ` q ´ 2` s` 1
2 l `

1
2

q
ÿ

i“1
v̂i `

r
ÿ

i“1
p1´ 1

mi
q`

`
1
2

k
ÿ

i“1

ki
ÿ

j“1
p1´ 1

nij
q `

1
2

l
ÿ

i“1

li
ÿ

j“2
p1´ 1

ňij
q `

1
2

q
ÿ

i“1

ÿ

jPV̂i

p1´ 1
n̂ij
qs “

“ 2πrηg ` k ` l ` q ´ 2` s`
r
ÿ

i“1
p1´ 1

mi
q`

`
1
2

k
ÿ

i“1

ki
ÿ

j“1
p1´ 1

nij
q `

1
2

l
ÿ

i“1

li
ÿ

j“1
p1´ 1

ňij
q `

1
2

q
ÿ

i“1

qi
ÿ

j“1
p1´ 1

n̂ij
qs.
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Conclusions

The focus of this thesis has been oriented to understand the structure and classification,

from an algebraic, geometrical and topological point of view, of finitely generated

non-cocompact NEC groups.

The main original results obtained are summarized below:

1. We have defined a canonical fundamental polygon of an NEC group Γ, providing details of

the structure of its fundamental region, specifically studying the properties of edges and

vertices at infinity for which the notions of ν-, η- and µ-sequences have been introduced.

2. We have obtained the presentation of these groups via generators and relations closely

linked to the geometry of the canonical fundamental region, including orientation preserv-

ing, reversing isometries and hyperbolic boundary and parabolic elements.

3. We have defined a signature for non-cocompact groups that collects the algebraical

(presentation), geometrical (marked polygon) and topological (identification of the orbit

space H{Γ) data of the groups.

4. We have described the non-compact orbit space (non compact Klein surfaces) and defined

topological invariants that classify them up to homeomorphism.
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5. We have identified the necessary and sufficient conditions for the existence of type-

preserving isomorphisms between two groups given their signatures.

6. We have obtained the signature of the (non-cocompact) canonical fuchsian subgroup of a

proper NEC group given its signature.

7. We have presented the form of all elementary NEC groups and the structure of the limit

set of an NEC group Γ. Due to the fact that the canonical fuchsian group is a normal

subgroup of index two, we also proved that the limit sets of Γ and Γ` are the same.

8. Using the fact that the limit sets ΛpΓq and ΛpΓ`q are the same, we have applied directly

results and concepts of the theory of fuchsian groups for studying properties of NEC

groups (e.g. classification of NEC groups in first and second kind, signature of finitely

generated NEC groups of first kind, finite measure of first kind NEC groups finitely

generated and their value in terms of the signature).

5.1 Future work

The introduction in this thesis of basic results of non-cocompact finitely generated NEC groups

as stated above can be immediately applied in three directions:

1. Study of algebraic properties of NEC groups, including for example the study

of the signatures of their (normal) subgroups, finitely maximal NEC groups, the rank

of finitely generated NEC groups, etc. Linked to the concepts of measure and Euler-

characteristic of a fundamental region is the problem of showing that given an abstract

signature, there exists an NEC group with this signature if and only if

ηg ` k ` l ` q ` t` s´ 2`
r
ÿ

i“1
p1´ 1

mi
q `

1
2

k
ÿ

i“1

ki
ÿ

j“1
p1´ 1

nij
q `

1
2

l
ÿ

i“1

li
ÿ

j“2
p1´ 1

ňij
q`

`
1
2

q
ÿ

i“1

qi
ÿ

j“2
p1´ 1

n̂ij
q `

1
2

t
ÿ

i“1
pṽi ` |Ui| `

ÿ

jPEi

p1´ 1
ñij
qq ą 0,

where η “ 2, if signpsq “ ”` ” and η “ 1.

2. Study of non-compact Klein surfaces: Prove a uniformization theorem for non-

compact Klein surfaces, namely under which conditions a non-compact Klein surface of
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finite genus is an orbit space of the form H{Γ, with Γ a finitely generated NEC group.

In general, the study of the properties of the symetries and moduli spaces linked to

non-compact Klein surfaces.

3. Properties of the groups of automorphisms of non-compact Klein surfaces:

The study of the automorphism groups of non-compact Klein surfaces is a topic about

which not much is known and where the results of this thesis might contribute. For

instance, the automorphism groups of non-compact Riemann surfaces with a finitely

generated fundamental group are finite, as shown by Greenberg in [25] and this work

might help to understand under which conditions a Klein surface which is the orbit space

of a finitely generated non-cocompact NEC group has a finite group of automorphisms.

Also the study of the structure of the automorphism groups for different non-compact

Klein surfaces (surfaces with punctures, funnels with or without cuts, etc.) or the

existence of surfaces with automorphism groups in a prescribed class are topics for a

future development of the results in this thesis.
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