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Abstract

Abstract in English:

This thesis is devoted to the study of finitely generated discrete subgroups I' of the whole
group of isometries of the hyperbolic plane H including those which reverse the orientation
(reflections and glide reflections) as well as boundary transformations (parabolic and boundary

hyperbolic elements), such that the orbit space H/I" is not compact.

Two special cases closely related to finitely generated non-cocompact NEC groups, the
finitely generated discrete subgroups of orientation-preserving isometries (fuchsian groups) and
the cocompact NEC groups have been extensively studied in the literature. This work presents
a fairly complete introduction of the non-cocompact NEC groups, providing with proof their
presentation, introducing their signatures and using them for studying their orbit spaces and

the necessary and sufficient conditions of isomorphism between these groups.

We present additionally a set of invariants that classify the non-compact Klein surfaces up
to homeomorphisms using the signature of the NEC group of which the Klein surface is the orbit
space. The Euler characteristic of the orbit space of an NEC group is calculated. Using this we
obtain the signature of the non-cocompact canonical fuchsian group linked to the signature of
a given NEC group. Finally, the concept of elementary NEC groups is introduced and all the
possible elementary groups deduced. Using the properties of their canonical fuchsian groups,
some results describing the limit sets of NEC groups are obtained. That leads us to introduce

a classification of NEC groups of first and second kind similarly as for fuchsian groups.



Abstract en espanol:

Esta tesis esta dedicada al estudio de grupos discretos de isometrias I' del plano hiperbdlico
H incluyendo transformaciones que revierten la orientacién (reflexiones y reflexiones con des-
plazamiento) y elementos de contorno (parabdlicos e hiperbélicos), de forma que el espacio de

6rbitas H/T' es no compacto.

Dos casos especificos relacionados con los grupos NEC no cocompactos finitimante generados,
los subgrupos de isometrias que preservan la orientacién o grupos fuchsianos, y los grupos NEC
cocompactos han sido ampliamente estudiados en la bibliografia. Este trabajo cubre una laguna
que ha existido en la literatura por cierto tiempo introduciendo de forma razonablemente com-
pleta los grupos NEC finitamente generados no cocompactos. Se proporciona con demostracién
la presentacion en forma de generadores y relaciones de estos grupos, introduciendo su signatura
y usdndola para estudiar sus espacios de érbitas y las condiciones necesarias y suficientes de

isomorfia entre grupos NEC.

Se introduce ademas un conjunto de invariantes que clasifica las superficies de Klein no
compactas salvo homeomorfismos a partir de la signatura del grupo NEC de la que es espacio
de orbitas. Obtenemos la caracteristica de Euler del espacio de érbitas y se usa para deducir la
signatura del subgrupo fuchsiano canénico de un grupo NEC dada su signatura. Finalmente,
se introduce el concepto de grupo NEC elemental y se obtiene la presentaciéon de todos los
grupos NEC elementales. Se presentan resultados relacionados con los conjuntos limite de los
grupos NEC y se aplican para su clasificacién en primer y segundo tipo de forma similar a como
se hace con los grupos fuchsianos. Para ello se usan las propiedades del subgrupo fuchsiano

canénico del grupo NEC dado.

Keywords: Hyperbolic Plane, Non-euclidean Chrystallographic Groups, Finitely generated Groups of

Hyperbolic Isometries, Non-cocompact NEC Groups.
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CHAPTER

Introduction

The main goal of this dissertation is to cover a gap in the literature providing a description
with proofs of the algebraic structure and classification of non-cocompact finitely generated

discrete groups of isometries of the hyperbolic plane.

The study of discrete cocompact groups of orientation preserving isometries of the hyperbolic
plane was initiated in the XIX century by Poincaré in [47]. The structure of these groups,
called by Poincaré fuchsian groups, was essentially solved by Fricke and Klein in [22] where the
canonical form of their presentation was obtained, and the signatures, now called Fricke-Klein
signatures, were introduced. The idea of this approach is to gather enough geometrical informa-
tion of a group I' to be able to reconstruct I' as an abstract group. For that, the side pairing
properties of a canonical fundamental region is used. The signature is then just a collection
of combinatorial data sufficient to provide the reconstruction of the group presentation and
the labelled polygon of the surface symbol. In addition, two discrete groups have the same
signature if and only if they are isomorphic. The properties of the fuchsian groups and their
applications have been extensively studied during the XX century turning out to be central in
the study of several topics as for example compact Riemann surfaces, algebraic compact curves
and many others. Several authors have contributed in this area and therefore we are going
here just to outline the most relevant papers for the topics related to this thesis: properties

of finitely generated fuchsian groups by Greenberg in [26], Maclachlan in [42] and Singerman
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CHAPTER 0. INTRODUCTION

in [53], hyperbolic polygons and fuchsian groups by Beardon in [4], group isomorphisms and
the geometric realization of isomorphisms by Fenchel and Nielsen in [21] and Zieschang in [61],
and the connection between fuchsian groups and compact Riemann surfaces started by the
uniformization theorem of Riemann surfaces in the XIX century by Poincaré and Klein and

followed by Hurwitz’s theorem on automorphisms of compact Riemann surfaces.

The discrete subgroups of isometries of the hyperbolic plane including orientation reversing
isometries with compact orbit space was worked out in the 1960s by Wilkie in [59] and Macbeath
in [40]. Wilkie and Macbeath followed Fricke-Klein’s idea of linking the geometry of a special
fundamental region, a polygon in the hyperbolic plane, to the presentation of the group. Based
on these articles, several authors have extended and applied the theory of cocompact NEC
groups. Just to mention few articles linked to the content of this thesis, Singerman in [54]
obtained the canonical fuchsian group and calculated the area of the compact fundamental
regions given an NEC group via its signature. In [52], he initiated the study of the role of these
groups in the analysis of Klein surfaces. Later on, Preston in [48] and May in [44] showed that
the Klein surfaces, introduced by Klein in 1897, can be represented by actions of NEC groups
similar to the uniformization of Riemann surfaces mentioned above. Finally, I would like to
highlight the impact that the UNED and the Universidad Complutense de Madrid have had
since the 1980s in the study of NEC groups and the groups of automorphisms of the Klein and
Riemann surfaces: for example, Bujalance studied the normal subgroups of NEC groups in [8]
and [9], the applications of the NEC groups to the study of Klein and Riemann surfaces have
been studied by Bujalance, Cirre, Costa, Gamboa, Gromadzki, Etayo, Martinez and others in
[10], [19], [12], [13] and [14]. Etayo and Martinez in [20] studied convex fundamental regions
defined as hyperbolic polygons with the minimum number of sides given the signature of an
NEC group, linked to the problem of obtaining the (geometric) rank of an NEC group (see for
example [33]).

For the non-cocompact case, though, only very few and partial results have been given
until now: Zieschang, Vogt and Coldeway in [60] provided an incomplete presentation of
finitely generated non-cocompact NEC groups, without proof, using a combinatorial approach.
Macbeath and Hoare in [41] gave a presentation of non-cocompact NEC groups (not necesarily

finitely generated) using a purely algebraic approach that cannot be exploited in an obvious
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way to analyze further these groups (e.g. algebraic classification, geometric properties of the

orbit space, etc.).

The approach used in this thesis follows the classical approach from Wilkie and Macbeath (i.e.
Fricke-Klein’s approach) linking the presentation of the group to the geometry of a fundamental
domain. This opens the possiblity to use signatures and to explore the algebraic classification
(via type preserving isomorphisms) and the topological classification (via homeomorphisms and

diffeomorphisms) of the orbit spaces. The structure of the thesis is outlined below:

e Chapter 1 is dedicated to provide the conceptual background and motivation of this thesis.
In section 1.1, we start with a short introduction on groups of isometries of metric spaces.
In section 1.2, we introduce the classical Macbeath’s theorem of the group presentation
of groups of isometries of simply connected metric spaces. Finally, in the last section we

provide an overview of the main concepts and results related to fuchsian and NEC groups.

e In chapter 2, we obtain a presentation by generators and relations of finitely generated
discrete groups of hyperbolic isometries I" with non-compact orbit space H/T". To this
end, we use the geometrical properties of a fundamental region with a canonical form,
and apply Macbeath’s classical theorem, see [39], on presentations of groups of isometries
of simply connected spaces. The main result in this chapter provides a presentation
by generators and relations which reflects the geometry underlying these groups. In
particular, we include those generators and relations missing in Zieschang, Vogt and
Coldeway [60, Theorem 4.11.5]. The chapter is organized as follows. Given a finitely
generated non-cocompact NEC group I', in Section 2.1 we construct a fundamental region
for I" with a particular surface symbol that we call canonical fundamental region of I'. We
proceed in a similar way as Wilkie did in [59] for cocompact NEC groups. This surface
symbol reflects geometric and topological properties of the fundamental region, and yields
a canonical presentation by generators and relations of I'. This is obtained in Section 2.2.

The results of this chapter have been published in [16].

e In chapter 3, we introduce the notion of signature of non-cocompact NEC groups and
based on the signature we study group isomorphisms. The main results of this chapter

are the topological characterization of the orbit space H/I" given the signature of the
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CHAPTER 0. INTRODUCTION

group I' and the identification of the necessary and sufficent conditions on the signatures
of two groups I' and I" for them to be isomorphic via a type-preserving isomorphism.
A key point in this thesis is related to the behaviour of the product of two reflections
in the non-cocompact NEC groups that, in addition to elliptic and hyperbolic, can also
be parabolic. This has a decisive impact on the group structure (far more complex
as previously proposed), form of the fundamental region (appearing the so-called semi-
parabolic vertices) and the orbit space (hyperbolic ends). In Section 3.1 we introduce
the signature of non-cocompact NEC groups and show how it is connected to the related
marked polygon and group presentation. In Section 3.2, we study the orbit space H/I.
In Section 3.3, the conditions for the existence of type-preserving isomorphisms between
NEC groups based on the signatures are given. In Section 3.4, we calculate the Euler
characteristic x(I') of the orbit space of I' and based on that we obtain the signature of
the canonical fuchsian group I't, namely the fuchsian subgroup of index 2 in I'. Finally,
in Section 3.5 we classify non-compact Klein surfaces up to homeomorphism using a set of
invariants calculated from the signature of the NEC group I' for which the Klein surface
is the orbit space. The Sections 3.1, 3.2 and 3.3 of this chapter belong to the paper [17]

that is being prepared for publication.

e Chapter 4 is dedicated to the study of additional properties of the NEC groups. We
introduce in section 4.1 the elementary NEC groups: similarly to the fuchsian groups, an
NEC group T is called elementary if there exists a finite I'-orbit in H U 0H. We then
obtain all the elementary NEC groups by adding reflections and glide-reflections to the
elementary fuchsian groups. We deduce in section 4.2 the form of the limit set of an NEC
group, that is the same as the limit set of its canonical fuchsian group. Then, based on
this result, we justify and introduce the classification of NEC groups of first and second
kind as in the case of fuchsian groups and we prove different results related to finitely
generated NEC groups of first kind (e.g. its signature and the measure of the fundamental

region).

e Finally, in chapter 5 we discuss the main conclussions and possible further developments.
A similar description as the one developed in this thesis for non-cocompact NEC groups,
is well known in the case of non-cocompact fuchsian groups and cocompact NEC groups

and has been an extremely useful tool for the study of non-compact Riemann surfaces
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and compact Klein surfaces. The results of this thesis may hopefully contribute to the

study of the non-compact Klein surfaces, a topic about which not much is known.






CHAPTER

Preliminaries

n this chapter we provide an account of the most important concepts that support
the results of the thesis. The aim is to show the beauty of the connections between
Algebra, Geometry and Topology materialized in the study of groups of isometries of
the hyperbolic plane, rather than to proceed with a formal encyclopaedic overview of the
several topics involved, that otherwise are extensively and nicely available in the literature.

The material in this chapter is standard and the references will be given along the way.

1.1 Motivation: groups of homeomorphisms of metric spaces

Let (X, d) be a metric space. The fact that we define a function d : X x X — R which is a
metric has deep consequences in the properties and mathematical tools that we can apply to

the study of the set X. First of all, the metric induces a topology 7, so that we can define the

topological space (X, 7) where the topology 7 is defined as usual by the basis of open balls
of X, B(z,r) := {y € X|d(z,y) < r}. This allows us to use topological tools in the study of
X and in analyzing its properties. A basic topologic notion that will be used throughout the
thesis is the notion of path, i.e. a continuos map 7 : I = [a,b] € R — X. The following list

summarizes the most relevant properties used in this dissertation:

1. A metric space is said connected if it is not the union of two nonempty open sets. A

metric space is locally connected if for each point x € X and each neighborhood U of z,
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CHAPTER 1. PRELIMINARIES

there is a conected open set V such that x e V <€ U.

2. A metric space is said path-connected if for every pair of points x,y € X there is a path
from x to y in X. A metric space is locally path-connected if for each point z € X and for

each neighborhood U of x, there is a path-conected open set V such that x € V <€ U.

3. A metric space is said simply connected if it is path connected and its fundamental group
is trivial. The space is locally simply connected if for each point x € X and for each

neighborhood U of x, there is a simply connected open set V such that x € V < U.

Secondly, the distance d enriches the algebraical properties of the set X. An isometry is a

map f: X — X such that d(x,y) = d(f(x), f(y)),Vz,y € X; we define the group Isom(X) of
isometries of the set X with the composition as a group operation. The elements of Isom(X)

are called motions of the metric space. The following three definitions are central in this thesis:
Definition 1.1. Let I' < Isom(X), a set R < X is called fundamental region for I' if:

1. R is open in X,

2. SRNnTR =g for S, Tel', S#T,

3. X = U{TR : Tel}, with R=R U dR.
If the set R only verifies the property 3, then we say that R is a I'-covering.

Definition 1.2. Let I' c Isom(X), a set D < X is called fundamental domain for I' if D is a

connected fundamental region for I'.

Definition 1.3. Let R be a fundamental region for I' = Isom(X). R is called locally finite if
the family {Tf{ : T € T'} is locally finite, meaning that for every = € X, there is a neighborhood

U of x that intersects TR only for finitely many 7.

Of course, at this moment, the metric space is too general and we can ensure neither the

existence, nor specific nice properties of the fundamental regions and domains.

The metric allows us to introduce a natural classification of the elements of Isom(X) by
means of the so-called displacement function, f : Isom(X,d) — R, such that for all T' € Isom(X),

f(T) =inf d(Tx,z). Then, we classify the isometries as follows:
zeX

8



1.1. MOTIVATION: GROUPS OF HOMEOMORPHISMS OF METRIC SPACES

e clliptic, if the infimum is attained and is zero,
e hyperbolic, if the infimum is attained and greater than zero,

e parabolic, if the infimum is not attained.

Example 1.4. We apply the abstract classification of motions to the metric space (R, dg), with
the usual euclidean distance in the line given by dgr(z,y) = | — y|,x,y € R. The orthogonal
group O(1) is {£1} and so the group of isometries of R is given by two motions of the form
R(z) =x+k,S(x) = —x+k, k€ R—{0}. Now, S has a fived point & and therefore the infimum
1s attained and is zero, so S is an elliptic motion. In case of R, there is no fized point and the

infimum is k # 0 and attained and so the motion is abstract hyperbolic.

Example 1.5. The upper half-plane model of the hyperbolic geometry is the set H= {z € C :
Im(z) > 0}, together with the hyperbolic distance dg given by

|z — wl?

=1+-—.
cosh dg(z,w) + 2Im(z).Im(w)

The group Isom(H, dg) of isometries of the hyperbolic plane is given by the orientation preserving

isometries, called Mobius transformations,

az+b
cz+d’

Z >

with a,b,c,d € R and ad — bc = 1, together with the orientation reserving isometries:

az+b
cz+d’

Z >

with a,b,c,d € R and ad — bc = —1.

From the definition of the distance, it is clear that elliptic and reflections are classified as
elliptic motions, since in this case a fixed point in H means dg(z, Rz) = 0, for R elliptic or a
reflection. Similarly, a parabolic transformation S has a unique fized point in R and therefore
the infimum is O but not attained in H and, as expected, S is an abstract parabolic motion. The

hyperbolic motion T is conjugated to a transformation z — Az, A\ > 1 and so the hyperbolic

9



CHAPTER 1. PRELIMINARIES

distance between z and \z is

(1- )

coshdg(z,Tz) =1+ \Z\ZW

The infimum is then attained as it happens when Re(z) = 0,Im(z) # 0 and so we deduce that
we have an abstract hyperbolic motion. Finally, for a glide-reflection D, the approach is similar
to the hyperbolic transformations: if D is a glide reflection, then D? is hyperbolic and, if we
take the conjugate of D? as Az, \ > 1, then we can write D(z) = —V/AZ and so the distance

between z and Dz will be

|z + VAz[?

coshdg(z,Dz) =14+ ————

2V A Im(2)?’

again we get the condition Re(z) = 0,Im(z) # 0, so the glide-reflections are abstract hyperbolic

motions.

The action of a subgroup I' of Homeo(X), in particular a subgroup of Isom(X), and its orbit

spaces X/I" are also key concepts in this thesis. The main notions are introduced below:

Definition 1.6. Let I' be a subgroup of Homeo(X). The action of I' on X is the map
'xX->X, (T,z) — Tx.

We say that an action of T on X is free if Tz # x for all x € X, T € ' — {e}. We say that T
acts properly discontinuosuly on X if each x € X has a neighborhood U of x in X such that
TU n U # & for only finitely many elements in I'. The following definition introduces the key

notion of topological group:

Definition 1.7. Let I" be a group. A topological group G = (I', 7) is a topological space, with
I' a group and the topology defined such that the group operation I' x I' — I", (S,T) — ST

and the inversion map I' —» I', S — S~ are continuous.

Another basic algebraical notion used systematically in this work is the concept of orbit of

a point by a group:

10



1.1. MOTIVATION: GROUPS OF HOMEOMORPHISMS OF METRIC SPACES

Definition 1.8. Let (X, d) be a metric space and I" a group acting on X. For each x € X we
say that
e ={Tz : Tel}

is the I'-orbit of x.

We define the relation x ~ y if I'e = 'y, which can be easily proved as an equivalence
relation in X. We will denote the quotient X/T" to the orbit space of X by the equivalence
relation above and the elements of the quotient, the representative in the orbit of an element

z € X will be denoted either by z or I'z depending on which notation suits better to the context.

Thirdly, the metric has obviously a geometrical meaning: with the help of the metric, we

can introduce in a set X the elementary geometric notions, namely length of a path, lines

(geodesic) and angles. First of all, the length of a path can be defined:

Definition 1.9. Let (X, d) be a metric space and 7 : [a,b] € R — X a path in X. We call

length of v to
n
l(f)/) = Sup{z d(c(ti-‘rl)?C(ti)) Dt € ]R7t0 = a7tn+1 = bvtl < ti+17i = 07 U 1}
i=0

If I(7) is finite, the path ~ is called rectificable. A general metric space even path-connected

may not admit rectificable paths between every pair of points.

An isometric embedding of [a,b] < R in a metric space (X,d)isamapc:I=[a, )] SR —> X
such that there exists x € R and d(c¢(z),c(y)) = Al — y|, where y, A € R. The role of the

traditional geometrical concept of line is in the case of metric spaces played by the geodesic:
Definition 1.10. Let (X, d) be a metric space.

e a geodesic of length L € R, L > 0 in X is an isometric embedding ¢ : [0, L] — X and we
call the image ¢([0, L]) a geodesic segment in X between ¢(0) and ¢(L). The isometric

embedding R — X is a geodesic line.

e a subset C < X is conver if for each pair z,y € C the geodesic segment joining x and y

is contained in C.

11



CHAPTER 1. PRELIMINARIES

In a metric space the geodesics do not always exist. If every pair x,y € X can be connected by

a geodesic, then the metric space is called geodesic space.

Example 1.11. In this example we show how the definition above can be applied in a general
metric space. Let us define the metric space (C|0,1],d) with C[0,1] the set of continuous

functions on [0, 1] taking values in R and d the supremum metric

d(f,g) = sup |f(z) —g(x)|

z€[0,1]

The family of functions fi(x) = (1 — t)z,g:(x) = (1 — t)z + t,t € [0,1] are geodesics in
(C([0,1]),d), as it can be easily checked using directly the definition:

d(fi(z), fr(y)) = sup [fi(z) = fi(y)| = sup (1 —t)|z —y| = |z —y],

z€[0,1] z€[0,1]

and similarly

d(ge(x), ge(y)) = sup |gi(x) — ge(y)| = sup (1 —1t)|z —y| = |z —y|.
z€[0,1] z€[0,1]

Finally, we introduce the abstract notion of angle in a metric space. Let v, z,y be three
distinct elements of X. We call comparison triangle of (v, ,y) to a triangle in R? with vertices
v,z,y such that |z — y| = d(x,y), |v — Z| = d(v,x) and |v — y| = d(v,y). It can be proved that
such a triangle always exists. We denote this triangle A(v, z,y). Applying the law of cosines to
the euclidean triangle with vertices v, Z, 7y, we see that the angle /;xy between the segments
[v,z] and [v,y] is
o —2* + o —g* — |z — y?

2o —z||v - 9

/Xy = arccos ,

and therefore the comparison angle between = and y at v is defined as

d(U7 .CE)2 + d('l), y)2 — d(IL’, y)2
2d(v,z)d(v,y) )

Zyxy = arccos

This leads us to define the abstract notion of angle between two geodesics of a metric space,

the Alexandrov angle:

Definition 1.12. Let (X, d) be a metric space and « : [0,a] — X and 3 : [0,b] — X be two

geodesics. Given t € (0,a] and s € (0,b] consider the comparisson triangle A(v, a(t), 5(s)) and

12



1.2. PRESENTATION OF GROUPS OF ISOMETRIES OF SIMPLY CONNECTED
SPACES

the comparisson angle Z,a(t) f(s). The Alexandrov angle between o and 8 at v is the number

Ly(a(t) B(s)) € [0, 7] defined by

Ly(a, B) = lim supZ,a(t) B(s).

s,t—0

Example 1.13. Let us obtain the Alexandrov’s angle for the geodesics of the metric space
(C[0,1],d) as in the ezample 1.10. We start with the comparison triangle at A( fo(x), fi(z), gy (x)):
we have then a triangle of sides of length d(fo(x), fr(x)) = t, d(fo(z),g9¢(x)) = t' and
d(fe(x),gv(x)) = maz{t,t'}. A triangle with sides t,t',mazx{t,t'} can be transformed from
an equilateral one, and so the comparison angle is Lfo(w)ft(a?)gt/(y) = m/3 to a triangle where
t >> t' and so the triangle becomes an isosceles with one side much smaller than the other
two, so that the comparisson angles approaches to ©/2. We conclude then that the possible

™ 71')

comparisson angles take any value in [5, 7). The Alexandrov’s angle is then by the definition

the lim sup of the possible values, namely

£ fofe) (o), 90 (y)) = lim supZ o) fu(@)ge (y) = /2.

As just seen, the algebraical, topological and geometric properties induced by the metric in
X are closely related. This explains the interrelations that arise in specific metric spaces that
at first glance might not be obvious. Of course, these are not only materialized in the groups of
isometries of the euclidean or hyperbolic spaces, R” or H", but has consequences and provide

powerful mathematical insights in a broad collection of metric spaces.

1.2 Presentation of groups of isometries of simply connected

spaces

In this section, we show how these connections mentioned above emerge in a determining way in
simply connected spaces. Let X be such a space. Macbeath in [39] proved that the presentation
of a subgroup of the group Isom(X) can be described in terms of fundamental regions R ¢ X
of I'. This reference together with Macbeath and Hoare [41] and Swan [57] are the main sources

used in this section.

13
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Let us start with a useful notion of group presentation introduced specifically for describing
the group of isometries of a metric space. Let I be a group and let us define a I'-word as a finite
non-empty ordered set of elements of I'. We denote the I'-word {14, ..., T,,} as Ty - T} - ... - T,, with
dots for distinguishing the I'-word from the group element given by 717}...T;, € I'. We define
the concatenation operation for the I'-words in the usual way, such that given two I'-words
Wy =T1-Ts-...- T, and Wy = S1-55-...- S, by the relation Wy-Wo =T -T5-...- T, - 51+ S5.... - Sp,.
With such an operation, the set of I'-words is a semigroup W (T'), as the operation satisfies the

associative property.

We define a I'-relation as an unordered pair of I'-words that we denote (W7, Ws). Let R(T")
be a set of I'-relations. We say that the relation (S-W;-T,S-Wy-T') with S, T € W(I') is implied
by the relation (W7, Ws). A relation (W;, Wa) should be seen here as the identification of the
I-words Wy and Wy. Two words S, T € W (T') are said to be R(T")-equivalent (or R-equivalent)
and we write S ~ T, if there is a finite sequence of I'-words S = Wy, ..., W,, = T such that
each of the relations (W;_1, W;) is implied by a relation in R(I'). It is clear then that being

R-equivalent is an equivalence relation:

1. vS € W(I'), S ~ S, inmediate just considering the meaning of the relation as an

identification,

2.V8,TeW([), S~T =T ~ S, that again is trivially deduced from the understanding

of a relation as an identification of words,

3. V8, T,U ¢ W(I'), S ~ T and T ~ U, then S ~ U. This means that there exist
two finite sequence of I'-words Why;, Wy € R(I'),i = 1,...,n,5 = 1,...,m such that
S =Wit,..Wip =T and T = Wy, ..., Wop, = U and (W ;—1, W,), (W —1, Wa;) are
implied by relations in R(I"), for i = 2,...,n,j = 2, ...,m and therefore S = Wiy, ..., Wy, =
T, Wag, ..., Wa,, = U is a finite sequence of words such that two consecutive relations is

implied by a relation in R(T'), i.e. S ~U.

The R-relation defines then a congruence in the semigroup W (I') and we can define in the set
of congruence classes the binary operation o as S oT = §-T, such that the R-equivalence

classes define a semigroup that we denote as W(I")/R(T).

14



1.3. GROUPS OF HYPERBOLIC ISOMETRIES

Let ¢ : W(I') —» I be a map such that for all relations [Wy, Wa] in R(T"), ¢(W7) = ¢(Wa).
Then, ¢ maps R-equivalent elements of W (I") to the same element in I and it thus defines a

homomorphism of W (T')/R(T") into T'. If this homomorphism is an isomorphism, then we call

(W(T), R(T")) a presentation of T".

Let T be now a subgroup of Isom(X) and let us associate to each word in Wy - Wy -...- W, €
W(T') a group element 7' = W Ws..W,, e I'. Let F be a locally finite I'-covering of X, G the
subset of I', G = {T' e : F nTF # &} and R the set of G-relations R = {[S.T,ST] : S,T €
['F n SF n STF # J}. Then, we have the following classical result due to Macbeath:

Theorem 1.14. Let (X, d) a metric space and let I and F as above.
1. If X is connected, then G generates T',

2. if F is path-connected and X is connected and simply connected, then (G, R) is a presen-
tation for I'.
1.3 Groups of hyperbolic isometries

The concepts and results presented in previous sections are applied in this thesis to the hyper-
bolic plane. For that, we mainly use the Poincaré upper half-plane model, which wass introduced

already in the example 1.5. However, sometimes the Poincaré disk model will also be considered.

In summary, in the upper half-plane model of the hyperbolic geometry the points of the

hyperbolic plane are the points H = {z € C : Im(z) > 0}, together with the hyperbolic distance

dg given by
|2 — w|?

=1 o7 NT /N
cosh dgz(z, w) T T Im(w)’

where the Riemann metric for the distance is (ds)? = M The geodesic between
two points z,w € H is either the arc of an euclidean circle Wzith center in R or a segment of
an euclidean line perpendicular to R. The set Isom(H) as defined in the example above is
isomorphic to the projective linear group PGL(2,R) and the related topology is given by the

numbers (a, b, ¢, d) linked to each transformation.
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The points of the hyperbolic plane in the Poincaré disk model are the points D = {z € C :

|z| < 1} with the hyperbolic distance given by

|z —wf?

coshdp(z,w) =1+ 2 )
(1 =[z»)A = |wf?)

(dz)* + (dy)?
1— (22 +¢?)
arcs of euclidean circles orthogonal to the boundary circle or diameters of the boundary circle.

where the Riemann metric for the distance is (ds)? = . The geodesics are again

The set Isom(D) consists of all maps of the form

az+b az+b

2

bz+a’ bz +a’

2 >

with aa — bb = 1. There is a one-to-one correspondence between the upper half-plane and the
disk model via the Cayley transformation

zZ—1

C:H-D: 2z~ )
zZ+1

which makes Isom(D) isomorphic to Isom(H).

A non-Euclidean crystallographic (NEC) group is a discrete subgroup I' of Isom(H). Being
discrete, I' acts discontinuously on H. We say that I" is cocompact if the orbit space H/T" is
compact, otherwise we say that I' is non-cocompact. In what follows, by an NEC group we
mean a finitely generated non-cocompact NEC group, unless otherwise stated. If I' consists of
orientation preserving elements then I' is a Fuchsian group. As stated, in this thesis we focus on

(non-cocompact) proper NEC groups, that is, groups containing orientation reversing elements.

Definition 1.15. Let I' be an NEC group. A subset F < H is called a fundamental region of

I' if it is closed, convex and satisfies:

1. U TF=H,
Tel'

2. FATF =, forall TeT —{I},

where F is the interior of F in H. The closure of F in H=H U R U {oo} will be denoted by

F, and its boundary, with a slight abuse of notation, by 0F = F — F. The family of images of
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F given by {TF : T € I'} is called a tessellation. The images of F by I' are called faces of the

tessellation.

Let v € H be a point not fixed by any T'e I' — {I}. The Dirichlet region of I" with center v
is defined as D, (I') = {z e H | p(z,v) < p(z,Tv) for all T € T' — {I}}, where p is the hyperbolic
distance. As shown in [41], any Dirichlet region of an NEC group I' (cocompact or not) is a
closed and convex fundamental region whose associated tessellation is locally finite. Moreover
D,(T") is compact in H if and only if the orbit space H/I" is compact.

The boundary ¢D,, of a Dirichlet region is a sequence of hyperbolic segments in H and
segments in 0H = R U {0} called edges. The intersection between two consecutive edges is
called a vertex. If an edge contains a fixed point of an elliptic element of order two then we
also call such a point a vertex, and call edges the two hyperbolic segments of D, (both in the
same H-line) which are permuted by the elliptic element. A free edge is an edge in 0H, and a
vertex in 0H is a vertex at infinity. A vertex at infinity is called improper if it belongs to a free
edge, and proper otherwise.

An NEC group is called geometrically finite if it admits a fundamental region F with finitely
many edges. By Proposition 4.11.2 in [60] the group T' is finitely generated if and only if I" has
a fundamental region with only a finite number of neighbours. A neighbour of F is another
fundamental region of the tessellation having at least one boundary edge in common with F'.
Therefore, a fundamental region F with a finite number of neighbours can only have a finite
number of such boundary edges and so a finite number of edges. We deduce then that finitely
generated groups have fundamental regions with finitely many edges.

We follow the usual method for associating surface symbols to fundamental regions. The
edges of a fundamental region are paired by the elements of the NEC group, except for the
edges fixed by reflections and the free edges, which are paired with no other edge. If two edges
are paired by an orientation preserving element then they are labelled as p and p/, and if the
element reverses orientation then they are labelled as p and p*. An edge will be labelled using
a lower case letter and a sequence of consecutive edges will be labelled with a capital letter.
The point of intersection of two consecutive edges a and b will be denoted by (a, b).

Going through the boundary of a fundamental region counter-clockwise, we can associate
an initial and an end point to each edge. When an edge p is paired with a different edge p’

by an orientation preserving transformation then the initial point of p is mapped to the end

17
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point of p’ (and the end point of p to the initial point of p’). If the transformation reverses the
orientation then the initial point of p is mapped to the initial point of its paired edge p* (and

the end point of p to the end point of p*).

1.3.1 Cocompact NEC groups

In order to obtain the presentation of an NEC group I', we just need to apply Theorem 1.14
to a fundamental region of I'. For doing that, Wilkie [59] built a fundamental region with a
canonical surface symbol from a Dirichlet region of I" and transforming it by cutting and pasting
pieces. The detailed description of these transformations will be done for the non-cocompact
case in section 2.1 including sides and vertex at infinity and will not be done here for the
cocompact NEC groups. Labeling the edges of a fundamental region anticlockwise yields a
surface symbol. The main results obtained by Wilkie [59], Macbeath [40] and Singerman [54]

are summarized below.

Theorem 1.16. A finitely generated cocompact NEC group admits a fundamental region with

a surface symbol of one of the following forms:

r g k
/ / ! /
(1) H X H a;bya;b; H eiCie;,
i=1 i=1 i=1
g k

=1 7 =1

i=1
where each C; is a sequence of edges fixed by reflections. Linked to this surface symbol, the

presentation of the group is defined by the following theorem:

Theorem 1.17. A finitely generated cocompact NEC group T admits the following presentation:

it has generators
(a) X;,i=1,..,7 (elliptic elements),
(¢) Ai, B, i =1,...,g (hyperbolic translations) if the orbit space H/T" is orientable, or

D, i=1,...,9 (glide reflections) otherwise,

(d) E;,i=1,...,k, (orientation preserving elements, usually hyperbolic elements),

(e) Cij, i =1,....,k,j=0,..., ki, (reflections),

18
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and relations:

(1) X" =1, fori=1,...,r,

(i1) BiCip, B Cio =1 fori=1,...,k,
(7i7) C’fj =1, for all the reflections,

(iv) (C@jflcij)nij =1 fO?“i = 1, . .,/{, j = 1, ce ,ki;

r g k
(v) HX" H[Aj, Bj] HEZ =1, if the orbit space H/T" is orientable, or
i=1 =1 i=1

H X; H ]_)]2. H E; =1, otherwise.

T k
i=1 =1 =1

To the presentation above we can assign a signature which is an ordered set of integers and
symbols that identify the group up to isomorphisms. Macbeath introduced the signature s(I")
of a cocompact NEC group I as

S(F) = (g? i? [mb 5 "'>m7’]; {(n117 ceey nl/ﬂ)’ ey (nklv ceey nkkk)})a

where the integers m; > 2 are called proper periods, n;; > 2 are the linked periods, (n;1, ..., n,)

are the period cycles and g is the orbit genus.

Two NEC groups are called geometrically isomorphic if there is a homeomorphism ¢ : 2z — 2/
of H and a group isomorphism ¢ : I' — T such that ¢(T) = tTt~! for all T € I'". Macbeath [40,
Theorem 3] showed that geometrical isomorphism and algebraical isomorphism are equivalent
for cocompact NEC groups. Singerman [54] proved the following result that shows that an

algebraical isomorphism between cocompact NEC groups is always type-preserving.

Theorem 1.18. An isomorphism ¢ between two cocompact NEC groups T' and T is type-
preserving, i.e. elliptics, hyperbolics, reflections and glide reflections in I' are mapped respectively

to elliptics, hyperbolics, reflections and glide reflections in I".

With the support of the signatures, Macbeath proved and presented the necessary and

sufficient conditions of two cocompact NEC groups for being algebraically isomorphic:
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Theorem 1.19. Let I' be a cocompact NEC group with signature
s =s(I) = (g +5[ma,, .., me s {C1, ., C}),
and T another cocompact NEC group with signature
s =5() = (95 £ [mis s o, mp 1 {CY, o, Cir}).

Then, I and I are isomorphic as abstracts groups if and only if

1. sign(s) = sign(s'),

2.9=¢,r=r,k=F and k; =k, fori=1,..k,

3. m; = m;(i) for a permutation 7 of {1,...,1},

4. if sign(s) = “ + 7 then there exists a permutation 7 of {1,....,k} such that either C! is
a cyclic permutation of Crq for each i € {1,...,k} or C! is a cyclic permutation of the

inverse of Cr(;y for each i€ {1,...,k},

5. if sign(s) = “ =7 then there exists a permutation w of {1,...,k} such that C! is a cyclic

permutation of either Cr(; or of the inverse of Cr(;), for each i€ {1,...,k}.

In addition to the algebraical (group presentation) and geometrical (surface symbol) informa-
tion, the signature carries also topological information of the canonical projection f: H — H/T.
For all z € H, the canonical projection f behaves locally z — 2™, m € N except for points fixed
by reflections. We call m the ramification index at z. If m > 1, then we say that f is ramified

at z. Then, the orbit space H/T" is classified topologically up to homeomorphisms as:

Theorem 1.20. Let I' be an NEC group with signature

s(T) = (g5 £5 [ma, s oy me ] {(n11, 0 Paky ) ooy (nkl,---,nkkk)}),

and let S = H/T'. Then,

43

1. sign(s) = “+ "7 if anf only if S is orientable,
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2. the integers mq, ..., m, are the ramification indices with respect to the canonical projection

H — H/T of the r conic points lying in the interior of S,

3. the integers n;1, ..., Nk, are the ramification indices with respect to the canonical projection
H — H/T of the k; corner points lying on the i-th connected component of the boundary
S.

An arbitrary set of numbers and symbols s defines the signature of an NEC group I' if and

only if the rational number

7

is positive, where n = 2, if sign(s)“ + 7 and n = 1 otherwise. The hyperbolic area of a

fundamental region of T is 27 u(T). Also, if TV is a subgroup of T of finite index, then I is an
NEC group and

[[: 1] = (1) /u(T),

which is the Riemann-Hurwitz formula associated to the covering H/IV — H/T.

If T is an NEC group that contains orientation reversing elements, then it is called a
proper NEC group. In a proper NEC group there is a fuchsian group I'" of index two called
canonical fuchsian group, namely 't = I'n Isom™ (H), with Isom™* (H) being the subgroup
of all orientation preserving isometries of Isom(H). We can also write I' = I'" 0 TT" where
T e I' — 't The signature of the canonical fuchsian group I'" of a proper NEC group I' was

obtained by Singerman [54]:

Theorem 1.21. Let I' be an NEC group with signature
s =s(I') = (g; £5[ma,, o me |5 {11, s Rk )y oo (N1 ooy MRy ) 3,
then T't has the fuchsian signature
s(TT) = (ng + k — Lyma, ma, ooy My, My M1 wovy Ny ),

where, as before, n = 2, if sign(s) = “+ " and n = 1 otherwise.
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1.3.2 Non-cocompact NEC groups

This subsection presents the two main results published in the literature related to the topic
of this thesis. The first one, due to Macbeath and Hoare [41], is a theorem that provides the
algebraic structure of (not necessarily finitely generated) non-cocompact groups of hyperbolic

isometries.

Theorem 1.22. An NEC group with non-cocompact orbit space is the free product of cyclic

groups, groups of the forms
(Cy,Cy,..;08 = C} = ... = (C1Cy)"™ = (CoC)™ = ... = 1),

where n; > 1 and the number of generators and relators is finite or infinite, and groups of the

form
(C_1,C0,Cy, . =C* = C2 = CF = ... = (C_1Cp)" ! = (C1C)™ = (C2C)™ = ... = 1)

and

<Cl, e, Cry B 012 =..= Cf = (0102)"0 =..= (Cr_lcr)nr_l = 1>,

where v = 1 and n; > 1. A fuchsian group with non-cocompact orbit space is the free product of

cyclic groups.

As it can be seen in the theorem’s statement, it is not straightforward to recognize the link
between the generators and relations of this presentation and the geometry of the hyperbolic
plane (for example a marked polygon), or the properties of the related orbit space. This implies
that the usage of this algebraic result cannot be used easily to get further properties of these

groups (e.g. topology of the orbit space).

The second result existing in the literature is due to Zieschang, Vogt and Coldewey [60,
Theorem 4.11.5] and provides a presentation of finitely generated non-cocompact NEC groups.
While it can be easier linked to the geometry of the orbit space, the theorem as well as additional
properties were stated without proof and after the results presented in this work it turned that

the presentation is incomplete.
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Theorem 1.23. A finitely generated NEC group I' admits the following presentation: it has

generators
(a) Xi, i =1,...,s (elliptic elements),
(b) A;,Bi, i =1,...,g9 (hyperbolic translations) if the orbit space H/T' is orientable, or
D;,i=1,...,g (glide reflections) otherwise,
(¢) Ei, i=1,...,m (parabolic elements),
Ei,i=mr+1,...,r9 (hyperbolic translations),
E;,i=ry+1,...,7r3 (hyperbolic translations),
E;,i=r3+1,...,r (boundary hyperbolic translations),
(e) Ci, i =11+1,...,m9 (reflections),
Cij,i=ro+1,...,r3, j=1,...,t; (reflections),
Cijks i=13+1,.,r, 5 =1,...u;, k=1,...,u;; (reflections),
and relations:
(1) X" =1, fori=1,...,s,
(i1) BiCip, B 'Cio =1 fori=1,...,k,
(i1i) CF = CF; = ka]— =1, for all the reflections,
(iv) (Cyjk-1Cij) ¥k =1 fori=ri+1,...,m1 +r2+713, j=2,...,u;

(C@j,k,lCijk)ﬁﬁk =1 fO’f’i =rs+1,...,r, g=1,...,t;,=2,...,1J

s r g
(v) XZ-HEZ- H[Ai,Bi], if the orbit space H/T" is orientable, or
i=1 i=1 i=1
s r g
Xi H E; | |[D?], otherwise.
1 1

i= i=1 i=

However, the presentation is incomplete since the authors did not take into account products
of reflections with a common fixed point at infinity. In the orbit space these reflections yield

non-compact boundary components with semi-cusps, that is, boundary components with either
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just one point at infinity or with two points at infinity each of which belongs to another
boundary component. We will come to this point in Chapter 3. This changes totally the form

of the group presentation, symbol surface and orbit space, as well as the related properties

(signatures, group isomorphisms, etc.).
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CHAPTER

Presentation of finitely generated non-cocompact NEC groups

his chapter is organized as follows. Given a generic finitely generated non-cocompact
NEC group I', in section 2.1 we construct a fundamental region for I' with a particular
surface symbol. This surface symbol reflects geometric and topological properties of
the fundamental region, and provides a canonical presentation by generators and relations of I'.

This is obtained in Section 2.2.

2.1 Surface symbols

A fundamental region of an NEC group can be transformed conveniently by cutting and pasting
pieces. This yields a new fundamental region with a new surface symbol. We follow James in
[30] and proceed in a similar way as Wilkie did in [59] for cocompact NEC groups to obtain a
fundamental region with a canonical surface symbol. We will follow the notation as explained

in section 1.3.

2.1.1 Transformation rules

Transformation rules I. Let z, z* be a pair of labels, and let us write z* = T'(z) with 7" an
orientation reversing element. Then a sequence () of consecutive edges on one side of x can be

removed, provided T'(Q) is put on the same side of z*. So if @ is on the right side of z then @
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can be moved to the right side of z*, and if Q) is on the left side of x then ) can be moved to

the left side of z*, see Figure 21.

rQRz* ~ yRy*T(Q) QzRz* ~ yRT(Q)y*

Figure 21: Transformation rules Ia and Ib

Transformation rules II. Let x, 2’ be a pair of labels, and let us write 2’ = T'(z) with T
an orientation preserving element. Then a sequence () of consecutive edges on one side of x
can be moved (without inversion) to the other side of /. So if @ is on the right side of = then
Q@ can be moved to the left side of 2/, and if @Q is on the left side of x then @) can be moved to

the right side of 2/, see Figure 22.

tQRz' ~ yRT(Q)y' QzRx’ ~ yRy'T(Q)

Figure 22: Transformation rules ITa and IIb

The inverse of transformation rules I and II also apply.

Remark 2.1. We observe that under transformation rules I and I, the initial and end points
of the original sequence coincide with the initial and end points respectively of the transformed

Sequence.

The canonical surface symbol is obtained in a series of steps by applying the above transfor-
mation rules. Although the method is familiar, the existence of vertices and edges at infinity

makes it more cumbersome. We have to keep track of these vertices and edges.
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First step. Assemble all the pairs y,y’ with no other label between them and obtain a

surface symbol of the form
Hmixgnpip;L (1.1)

where (x5, 2;) and (pi,p}) are elliptic and parabolic vertices respectively, and L contains no
sequence xx’ or pp’. The surface symbol may contain labels z, 2’ with no other label between
them. We use transformation rule IIb (with R = &) to move all such pairs to the front of the
symbol. Observe that the vertex (x,z’) is fixed by the orientation preserving transformation X
which pairs x with z’. If (z,2’) lies in H then X is elliptic; otherwise X is parabolic. In the
latter case we write such pair as pp’. We first move the pairs such that the vertex (x,z’) lies in

H and then the pairs pp’, where the vertex (p,p’) is proper. This way we get (1.1).

Second step. Assemble all the pairs d,d* together and obtain a surface symbol of the form

H%QU;HPZP; Hdidf M (1.2)

where M contains no pair xzx', pp’ or dd*. If L in (1.1) contains a pair of labels d, d* then
we assemble them together by using the transformation rule Ia (with R = &). Successive
applications of transformation rules Ia and Ib allow us to assemble together all pairs d, d* and

write them in the front of L.

The sequence M in (1.2) may contain a sequence of the form aBb Ca’Db, where B, C' and
D are labels of consecutive edges of the fundamental region. Such pair a,b is called a linked

pair. In the third step we deal with these pairs.

Third step. Assemble all the linked pairs and obtain a surface symbol of the form

Hazzaz; Hpip; Hdidf Haibga;bi N (1.3)

where N contains no pair xa', pp’, dd* and no linked pair. Applying successively transformation

rule IT (and its inverses) changes a sequence aBb'C'a’ Db with a linked pair in the following way
aBb'Ca' Db ~» ab'Ca’ DbB ~» ab'a’ DObB ~» DCab'a’'bB,

where we first have moved B (from the left of ' to the right of b), then C' (from the right of &
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to the left of b), and finally DC' (from the right of @’ to the left of a). To lighten notation, we
have kept the letters a,b’,a’,b and also B, C, D since no confusion may arise. The same is done
in the following movements. Using again transformation rule II, the linked pair ab’a’b is moved
to the front:

Xab'a'b~s abld’ Xb~s ab/ Xa'b~» aXb'a'b~ aba'bX,

where we have moved X first from the left of a to the right of a’, then from the left of b to the
right of ¥/, then from the left of @’ to the right of @ and finally from the left of ' to the right
of b. Repeating this process we assemble all linked pairs together in the front of M to get a

surface symbol of the form (1.3).

It is well known that a pair d, d* together with a linked pair can be turned into three pairs
dy, di, da, d3, d3, dj. Continuing this process we may eliminate the linked pairs. We do not

perform this transformation now but at the end, to avoid considering different cases.

Therefore, after step three we obtain a surface symbol of the form (1.3) where N contains
no pair zz’, pp’, dd* and no linked pair. The sequence N consists of edges paired with no other
edge and pairs e, ¢ with at least one more label between them. We deal with these sequences

in step fourth.

Fourth step. Assemble the sequences eCe’ with C non-empty and obtain a surface symbol
of the form
Hmzx; Hpipg Hdidf Haibgagbi HeiCieg. (1.4)
i i i i i
where each C; is a sequence of labels representing free edges or edges fixed by reflections.

If the sequence N in (1.3) contains a pair of labels e, ¢’ then there exists at least one more
label between e and €¢’. Choose a label e such that there are as few labels between e and €’ as
for any other such paired symbol. Then each label between e and €’ is paired with no other
edge and so it represents either a free edge or an edge fixed by a reflection. We move such
a sequence eCe’ to the front of N by using transformation rule IIb. Repeating this process

transforms NN into a sequence of the form [ [, e;Cie; T, where each C; is a sequence of labels

representing free edges and edges fixed by reflections. We get

H:L’ZJ}; Hpip;- Hdidf Haib;agbinei@e; T, (1.5)
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where the remaining sequence T has no pair of labels e, e’ and so it is also a sequence of labels
representing free edges or edges fixed by reflections. Lemma 2.2 below shows that this surface
symbol can be changed to another with empty 7. Eliminating the sequence T" makes it easier

to obtain in Section 2.2 a presentation of the NEC group I'.

Lemma 2.2. The surface symbol (1.5) can be transformed into another of the same form with

one more sequence eCe’ and empty T.

Proof. Assume first that the surface symbol contains a sequence eCe’. To lighten notation, we
denote by eCe’ its last sequence and divide e into two edges ejes. We can write the surface
symbol as AejeaCebelT with A = [Jxza’ [[pp’ [[dd* [[ab/a’b []eCe’, where in the last
product we have omitted the sequence ejeaCéle]. Using transformation rule IIb we move A
from the left of e; to the right of €} without inversion, and obtain yeaCehy’ A1T. Observe that
Aj has the same form as A, that is, [[z2' [[pp’ [[dd* []ab'a’b] | eCe’. We write this surface
symbol as eaCehzA1T2Z', which has one more sequence of the form eCe’ than (1.5). We now
repeat the same transformations as in the previous steps and move successively the pairs zz’,

pp’, dd* and ab’a’b in Ay to the front, obtaining therefore a surface symbol of the form

H ;T Hp,-p; H d;d} H a;bialb; H e;Cies 2T7 .

This shows the Lemma in the case where the surface symbol contains a sequence eCe’.

We assume now that there is no sequence eCe’. If there exists a pair xa’ or pp’ then we
repeat movements similar to the above one. Let xz’ be the first pair in the above surface
symbol, and let us divide x into two parts x1 and x2 so that the above surface symbol can be
written as zqxoxha) AT, or, starting at T, as Txyzozhr) A. Transformation rule IIb allows us to
move T from the left of z1 to the right of x, obtaining yzozhy'T' A = woxh 2T’ A2'. The same
transformations as in the above steps move the sequence A frontwards, yielding therefore a

surface symbol of the form

H ;T H piv; H d;dy H a;bialb; 2T .

We assume now that there is no pair zz’ or pp’ but there is a pair dd*. Let dd* be the

first such pair and divide d into two parts d; and da so that the surface symbol (1.5) can be
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written as dydadids AT, or, starting at d5, as d5 AT'd;dad}. Let us denote by D the orientation
reversing transformation such that D(d) = d*, so D(d;) = d} for i = 1,2. Transformation rule

Ib allows us to move d3 AT from the left of d; to the left of di by means of D:

dsAT dydydf ~ ydy D(d5AT) y* =yda D(AT)D(d3)y* =yda D(AT)D?(do)y* =

= ydyD(AT)dyy",

where df := D?(dy) is the image of do under the orientation preserving element D?. Let G be
the orientation reversing transformation such that G(y) = y*. Transformation rule Ib allows us

to use G to move doD(AT)d, from the right of y to the right of y*:
ydoD(AT)dYy y* ~ 22* G(deD(AT)dS) = 22* G(dy)GD(AT)G(dz).

Since GD preserves orientation, the structure of GD(AT) is the same as that of AT. In addition,
if e := G(d}) then G(dy) = GD~2(dy) = GD2G~!(e), which we may write as ¢/ because it is the
image of e under an orientation preserving element. So we may write zz* G(d5)GD(AT)G(d2)
as zz*eATe. We now move the sequence A frontwards, using the movements done in the above

steps, obtaining therefore a surface symbol of the form

d;d* | | a;bialb; eTe .
H i 1_[ 1%

We finally consider the case of a surface symbol of the form [ [; a;biaib; T. Let ab/a’b be the first
linked period and let us divide a into two edges a; and a9 so that the surface symbol can be
written as ajagb'abalb AT or, starting at T, as Tajasb/abajb A. We first move T from the left
of a; to the right of a} to get ajasb/abaiTh A. We now move the sequence @Q = a{T (without

inversion) in the following way:
arasb/aly a\T b A~ ajast) a\T ayb A~ aras a)T bayh A~ ajasbayb o\ T A,

where we first have moved @) T from the left of b to the right of b’, then to the right of ag and
finally to the right of b. Starting at as we may write this surface symbol as asb'abbeT Ae’,
where e := a) and ¢’ is the image of e under an orientation preserving element. We finally move

A frontwards to obtain a surface symbol of the prescribed form []ab'a’b eTe'. O]
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Summarizing, after the fourth step we obtain a surface symbol of the form (1.4) where each
C; is a sequence of labels representing free edges or edges fixed by reflections. In the sixth and
final step we will arrange these sequences according to the types of vertices at infinity they

have. Before that, we eliminate some vertices at infinity. This is done in step five.

A vertex at infinity in the surface symbol (1.4) may be of different types, as parabolic, which
is the fixed point of a parabolic element, semi-parabolic, which is either the common vertex
of two consecutive edges fixed by reflections or a vertex at infinity of the form (e;, ¢) or (¢, €)
in a sequence e;Ce}, and improper, which is the initial or end point of a free edge. But there
may be other vertices at infinity, as Examples 2.3 and 2.4 show. In the next step we transform
the surface symbol to eliminate these other vertices, leaving the parabolic, semi-parabolic and

improper vertices as the unique types of vertices at infinity.

Example 2.3. Let I be the group generated by the glide reflection D(z) = —2z. Clearly, T' is
a finitely generated discrete NEC group with non-compact orbit space (an unbounded Mdbius
band). A fundamental domain for T is the following. Let d be the hyperbolic line joining the
real points —2 and 1, and let d* = D(d) be the hyperbolic line joining the real points —2 and 4.
These two edges together with the free edge f joining 1 and 4 determine a fundamental domain
for T, with surface symbol dd* f. It has two improper vertices (1 and 4) and one proper vertex,
v = —2, where the two consecutive edges d and d* meet. However, v is not a fixed point of D.

It is a proper vertex but it is neither parabolic, nor semi-parabolic, nor improper.

Example 2.4. Let Cy,Cy,C5 and Cy be the hyperbolic lines with endpoints (—2,—1), (—1,1),
(1,3) and (3,—3) respectively. It is easy to see that Cy and Cy are paired by the hyperbolic
transformation T, : z — 3z, whilst C1 and C3 are paired by the hyperbolic transformation
Ty:z— (=3z2+5)/(z—4). It follows that the interior of the region bounded by C; U Cy L C3 U
Cy v [—3,—-2] is a fundamental domain for the action of the group (T, Ty,). We claim that this
is a discrete group. The azis of the hyperbolic transformation Ty, with endpoints Fix(Ty) =
{0, 00}, intersects the axis of the hyperbolic transformation Ty, with endpoints Fiz(Ty) = {(1 +
V/41)/4}. Moreover, the commutator [T,,Ty] : z — (—27z — 45)/(82 + 13) is also a hyperbolic
transformation. It follows from the Discreteness Theorem [24, Thm. 3.1.1], that the group
(Ty,Tyy is discrete. A surface symbol for the above fundamental domain is ab'a’bf, where

a,b’,d’,b are the above hyperbolic lines Cy,Co,C3,Cy and f is the free edge joining the improper
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vertices —3 and —2. We again have vertices at infinity which are neither parabolic, nor semi-

parabolic, nor improper.

Fifth step. Change the surface symbol (1.4) so that the unique vertices at infinity are
parabolic, semi-parabolic or improper vertices.
If this is not so then the initial point of an edge x;, p;, d;, d¥, a;, b}, a}, b; or e; lies at infinity.

Lemma 2.5 below shows that the initial points of all these edges are in the same I"-orbit.

Lemma 2.5. Assume F has surface symbol [, ziz; 11, pip; 11, did} 11, aibialb; 11, eiCie} as
in (1.4). Then the initial points of the edges x;, pi, d;, d¥, a;, b}, a}, b; and e; are all in the

79

same I'-orbit. In particular all of them lie either in H or at infinity.

Proof. Let us use capital letters to denote the elements of I' which pair edges of F, so we have
Xi(zh) = xi, Pi(p,) = pi, Di(d¥) = di, Ai(a;) = a;, B;(b;) = b; and E;(e;) = e;. The initial
point of z; is mapped by the transformation X~ ! to the end point of x}, which is the initial
point of x;41. It follows that the initial points of all the edges x; are in the same I'-orbit. The
initial point of the last edge z; is mapped to the end point of 2, which is the initial point of p;.
Starting with p;, we repeat the same arguments changing x; and X; by p; and P, respectively,
to conclude that the initial points of all the edges p; are in the same I'-orbit as the initial points
of the edges x;. The end point of the last edge p is the initial point of d;. This point is mapped
by Dl_l to the initial point of df, which is mapped, again by Dl_l, to the initial point of ds.
Continuing with this process we see that the initial points of the edges d; and d} are in the
same I'-orbit as the above initial points. The end point of the last edge d is the initial point of
a1. This point is mapped by Al_l to the end point of ). This is the initial point of by, which is
mapped by B! to the end point of b}. This is the initial point of @}, which is mapped by A;
to the end point of a;. Finally, By maps this point, which is the initial point of b, to the final
point of by. So the five vertices of a;bja)b; are in the same I'-orbit. The end point of by is the
initial point of the sequence asbbabby. We repeat the argument to conclude that all the vertices
in the sequence [ [, a;bia;b; are in the same I'-orbit. The end point of the last edge b; is the
initial point of e, which is mapped by E ! to the end point of €}. This is the initial point of
e,. Repeating the above arguments we see that the initial points of all the edges e; are in the
same I'-orbit as the above initial points. This shows the lemma. We also observe that the end

point of the last edge €] is the initial point of the edge z; that we started with. O
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In order to show step five, assume first that the initial point of an edge x; or p; lies at
infinity. Then we may write the surface symbol (1.4) as zz'C where the initial point of z lies
at infinity and its end point (z, 2’) is either elliptic or parabolic. If C' is a free edge then the
initial point of z is an improper vertex and there is nothing to do. In this case the surface
symbol can be written as eC'e’ where e := 2’ and €’ := z are paired by an orientation preserving
element. This surface symbol has one of the two forms described in Theorem 2.9, where the
sequence eCe is called p-sequence and denoted as ¢Cé'. This corresponds to a cyclic NEC
group I' generated either by an elliptic or by a parabolic transformation.

If C is not a free edge then we write C' = C1C5y with the vertex between C and C5 lying in
H, so the surface symbol can be written as Cy22’Cy. Applying transformation rule IIb with
R = @ and @Q = C5 changes the surface symbol to yy'T(C3)C1, where T pairs z with 2’. The
initial point of y is the initial point of Co, which lies in H. We repeat this transformation with
the next pair zz/, assembling the initial point of z with the end point of ¢’ which lies in H.
Continuing with this process we assemble all sequences 22/, dd*, ab'a’b and eCe’ together as
done in previous steps. We end up with a sequence of the same form as (1.4) above, where all

its vertices lie in H except the parabolic, semi-parabolic or improper vertices.

Assume now that (1.4) contains no pair zz’ or pp’ but does contain some pair dd* with its
first vertex at infinity. To lighten notation, let dd* the first such pair, and let us divide d into
two parts 01 and dy with the vertex (d1,d2) lying in H. So the surface symbol can be written
as 01020705 B. Applying transformation rule Ia with @) = §7 and R = ¢J we obtain a surface
symbol of the form ¢&; yy*T'(6F) B, where T is the orientation reversing transformation pairing
d and d*. Since the end point of 7 is finite, the same happens to the three vertices of the pair
yy*. Starting with the edge y we may write this surface symbol as yy*eBe’ where €’ := §; is
the image of e := T'(7) under an orientation preserving element. We next move frontwards all
the edges dd*, ab'a’b and eCe’ occurring in the sequence B as done in previous steps. We again

end up with a sequence of the same form as (1.4) but with the initial vertex of y lying in H.

We now consider the case where (1.4) has no pair za’, pp’ or dd* but has a linked pair with

its vertices at infinity. We deal with this case in Lemma 2.6.

Lemma 2.6. A surface symbol ab'a’bC where the vertices of the linked pair ab'a’b lie at infinity,
can be transformed into a surface symbol uv'u'veCe’ where the linked pair uv'u’'v has no vertex

at infinity.
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Proof. The proof consists of cutting and pasting the fundamental domain in an appropriate way,
keeping track of the vertices at infinity. Let us denote by A and B the orientation preserving
transformations such that A(a) = ' and B(b) = b'. We divide each edge a and b into two edges
a1, az and by, be respectively, with the vertices (a1, a2) and (b1, b2) finite, so that the surface
symbol can be written as ajasbhd]jabalbibe C or, starting at as, as abhb)aba)bibs C ay. Here,
a; = A(a;) and b, = B(b;). We first apply twice transformation rule Ila, one with x = ag,
Q = by, and R = b} (here 2/ = a] = A(a1)), and another with z = daf, @ = b1 and R = byC
(here, 2/ = a1 = A~1(z)). We obtain

asbhbaly a’brbaCay 4 yby A(by)y a’b1baCay a5 yby A(bY)y zbyC AL (k)7

Observe that the four edges y,v, z and 2’ lie in H. We now apply transformation rule IIb with
Q =0by, v = A(by) and R = y'z (here 2’ = by = (AB)~!(z)). We obtain

(AB)~!

y LAWY Y zby CATYH(b)Z 5y vy 20/ (AB)TL(b)) CA™L(b))7 .

We now substitute each primed edge by its description as the image of the unprimed edge.
Namely, 3/ = A(y), v' = (AB)"'(v), b} = B(b;) and 2/ = A~!(2). So the surface symbol,

starting with 2/, is
AN z) y v Aly) 2 (AB) " (v) (AB)"H(B(b1)) C A7 (br).

The pair of consecutive edges A~!(z)y are mapped by A to A(y)z. So we may change the

surface symbol to

uv Au) (AB) Y (v) (AB)"Y(B(b)) C A7 (by).

Denoting the edge (AB)~!(B(b1)) by e we have that A=1(b;) = A~'B~'AB(e) is the image,
say €, of e under an orientation preserving transformation. This shows that the surface symbol
can be written as uvu'v’' eCe’. Now, the initial vertex of u is the initial point of A71(2) = 2/,
which lies in H as pointed out above. It follows that the vertices of the linked pair uvu’v’ lie in

H, and this concludes the proof. ]

Remark 2.7. Observe that the sequence C' in Lemma 2.6 cannot be empty since otherwise

the fundamental domain would be a four sided polygon whose four vertices would be fixed by
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the commutator [A, B] of the two transformations A and B pairing the edges. This would give

[A, B] = 1. But this is impossible because there is no Fuchsian group isomorphic to Z x 7, see,

for instance, [31, Thm 5.7.4].

We finally consider the case where the surface symbol (1.4) has no pair z2/, pp/, dd* and no
linked pair ab’a’b but has a sequence eCe’ with the initial point of e lying at infinity. We divide
e into two parts e; and ey with the vertex (e1,es) lying in H. Starting with eg, the surface
symbol can be written as eaCe, €] Ae; where A consists of sequences eCe’. We now move these
sequences frontwards as done above and assemble them to eaCely. We obtain a surface symbol

of the same form as (1.4) where the initial point of eg lies in H.

Summarizing, after the fifth step we obtain a surface symbol of the form (1.4) where the
unique vertices at infinity are parabolic, semi-parabolic or improper vertices. In the final step

we arrange the sequences e;Cje} according to the types of vertices at infinity they have.

Sixth step. Arrange the sequences eCe’ with C' non-empty.
We first move to the front those sequences with no vertex at infinity. We call them o-
sequences, see Figure 23. In the orbit space H/T', an o-sequence corresponds to a compact

boundary component, which is usually known as oval.

C1

C2

R v {0}

Figure 23: An o-sequence: a compact boundary component.

The remaining sequences eC'e’ contain vertices at infinity. Lemma 2.8 below shows that we

may assume that the end point of e lies at infinity.

Lemma 2.8. Let eCe’ be a sequence of edges such that C has a vertex at infinity. We may

change the sequence to another of the form yDy' where the end point of y is a vertex at infinity.
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Proof. If the initial vertex of C' does not lie at infinity (otherwise we are done) then we may write
C = QR where the vertex between @ and R lies at infinity and @ is non-empty. Transformation
rule ITa changes eQRe’ into yRE(Q)y where E pairs e and €'. Since F preserves points at

infinity, the initial point of R, which is the final point of y, is a vertex at infinity. O

The final point of y may be either proper or improper. If the first edge in R is free (so that
the last edge of @ is fixed by a reflection) then the final point of y is improper and the initial

point of 3/ is proper. That is, the first edge of D is free and its last edge is fixed by a reflection.

We now arrange these sequences eC'e’ with vertices at infinity. We first write those sequences
whose unique vertices at infinity are the end point of e and the initial point of ¢’. These vertices
are semi-parabolic. We call such C' a v-sequence and denote it by Cv’, see Figure 24. These
two vertices are in the same I'-orbit, so in the orbit space H/T' a v-sequence gives rise to a

non-compact boundary component with just one point at infinity. This is a semi-cusp.

<
o

R U {00}

Figure 24: A v-sequence C: a boundary component with one semi-cusp.

We then write those eCe’ such that C' has more than two vertices at infinity but no free
edge. These proper vertices are semi-parabolic. We call such C' an n-sequence and denote it by
6’, see Figure 31. In the orbit space H/T" an n-sequence gives rise to (at least two) non-compact
boundary components, each of them having two points at infinity. These two points are also
semi-cusps but, unlike the case of v-sequences, each such semi-cusp is a point at infinity of two

different non-compact boundary components.

We finally write those sequences eCe’ with improper vertices. We call such C' a u-sequence
and denote it by C. If C consists of a single free edge then in the orbit space H/I" the p-sequence

gives rise to a funnel with no boundary component. Assume C has more than one edge. As
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Figure 25: An n-sequence C: each boundary component has two semi-cusps.

pointed out after Lemma 2.8 we may assume that the end point of € is improper and the initial
point of & is proper, see Figure 32. In the orbit space H/T' such p-sequence gives rise to a
funnel with non-compact boundary components. Each of these boundary components has two
points at infinity, which may be semi-cusps or not. A p-sequence corresponds to a hyperbolic

end with infinite area.

™
\
i
/

P

e o — \\1 //
c - Cs Ci_ Ci
RU{OO} /CQ C’LY 1+1 J 1\ /]+1
5 .
J

C1

Figure 26: A p-sequence C: a hyperbolic end with infinite area

We therefore get a surface symbol of the form

N

l q t
sz szpll_[d df Hazb' b | [eiCie [ [e:Ciei ] [eiCii | [ aCie,
i=1 i=1 i=1 i=1 i=1
where Cj, Cv’i, 6‘1 and & are o-, v-, - and pu-sequences respectively.
Assume now that there exists a pair dd*. It is well known that this pair together with
a linked pair can be turned into three pairs did}, dad;, dsdj. Continuing this process we
eliminate the linked pairs. This gives the two types of surface symbols collected in the following

Theorem 2.9.

Theorem 2.9. A finitely generated NEC group admits a fundamental region with a surface

symbol of one of the following forms:
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l q t
Hf’% szpl Hd d H eiCe H &Cie; | [eiCiei | [ e,
where Cj, Cv'i, @ and @ are o-, v-, n- and p-sequences respectively, and the unique vertices at

infinity are parabolic, semi-parabolic or improper vertices.

2.2 Generators and relations of non-cocompact NEC groups

In this section we obtain a presentation by generators and relations of a finitely generated
non-cocompact NEC group I'. We follow Wilkie in [59] where the analogous result for cocompact

groups is done.

Let F be a fundamental region for I'. It follows from [39, Theorem 2 and Corollary] that a
set of generators of I' is the set {T' e I' : F n TF # J}. Moreover, it is shown in [59, Theorem

2] (see also Lemma 13 in [41]) that the above set can be restricted to the set
E={Tel:FnTF is an edge}.

Each finite vertex v of a fundamental domain F' has N faces meeting at v, say F' = TpF,
TiF,...,Tn_1F. Then the elements G; 1T 1<i< N-1and Gy = Tﬁil satisfy
T, ---Tx = 1. This is called the canonical relation associated to v. It can be expressed in terms
of the elements in E.

The following Theorem 2.10 gives a presentation of I" in terms of the elements of E. It is

the non-compact version of [59, Theorem 2], and it follows from [39] and [41].

Theorem 2.10. Let Ry be the set of relations C% =1 where C' runs over the reflections fizing an
edge of F. Let Ry be the set of canonical relations which includes one for each set of congruent
finite vertices of F. Then R1URy is a complete set of defining relations in terms of the elements

in F.
Observe that proper and improper vertices do not contribute to the set Ry with any relation.

Our goal now is to analyze the canonical relation associated to each type of vertex. Since

proper and improper vertices do not contribute, the canonical relations are the same as in the
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cocompact case. However, the different ways in which vertices at infinity occur in the surface

symbol lead to different ways in which products of consecutive reflections are described.

We first consider vertices of the form v = (x,2’). Let X be the elliptic element pairing the

edges x and z’. Then the canonical relation of the vertex (x,z’) is
XM =1,

where m equals the number of faces meeting at (x,z’).

We next consider vertices of the form v = (¢;,¢j+1) where ¢; and ¢; 41 are consecutive
edges fixed by the reflections C; and (1 respectively. These vertices occur in o-, v-, - and

p-sequences. Then the canonical relation of the vertex (¢;, ¢;11) is
(CiCip1)" =1,

where 2n equals the number of faces meeting at (¢;, ¢;41).

We next consider vertices of the form (e, ¢1), which is congruent to a vertex (cg, €’), where ¢;
and ¢, are edges fixed by the reflections C; and C}, respectively, and e and e’ are edges paired

by a hyperbolic transformation E. The canonical relation of this congruent pair of vertices is
(ECLE~'C))™ =1,

where 4n is the number of faces meeting at (e, c;). By Lemma 2.8, we are assuming that these

vertices lie in H only in o-sequences. So for v-, n- and p-sequences we do not have this relation.

Before dealing with the canonical relation corresponding to the set of congruent vertices
which have not been considered yet, we examine the set of canonical relations of the vertices of

the different types of sequences eCe’.

If C is an o-sequence with m edges ¢y, ..., ¢, fixed by the reflections C1, ..., C),, then its
m — 1 vertices (¢;,c;+1) for i =1,...,m — 1 are all in H, see Figure 23. The canonical relations
of these vertices are (C;Ci4+1)"+t =1 for i =1,...,m — 1. In addition, the canonical relation

of the vertex (e, c1) (or its congruent vertex (¢, €)) is (CoC1)™ = 1, where Cy = EC,, B~ 1.
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So an o-sequence provides the following relations:

C?=1fori=0,...,m, (C;1C)"i=1fori=1,...,m, and EC,E 1Cy=1.

IfCisa v-sequence with m edges ¢4, ..., ¢y, fixed by the reflections Cv’l, ey Cv’m, then it has
one proper vertex, which we may assume is the final point of e, see Figure 24. The vertex (€&, ¢;)
(and its congruent vertex (¢,,,€’)) lies at infinity and hence provides no canonical relation. So

a v-sequence provides the following relations:

5’12:1 fori=1,...,m, and (é’i_léi)mzl fori=2,...,m.
If C is an n-sequence with m edges ¢; ..., ¢, fixed by the reflections 6’1, el ,CA'm, then it

has more than one proper vertex, see Figure 31. Write
V ={ie{2,...,m}: the vertex (¢_1,¢) is proper}.

The vertices which lie in H are (¢;_1, ¢;) for i ¢ YA/, and their corresponding canonical relations
are therefore (é'z,lél)m —1fori¢ V. By Lemma 2.8, we may assume that the vertices (é,¢1)
and (&,,¢&") lie at infinity. So they provide no canonical relation. Therefore an 7-sequence

provides the following relations:

C?=1 fori=1,...,m, and (CiaC)™ =1 forief{2,....m}—V.

If Cis a p-sequence with m edges ¢, ..., ¢y, then some of them are free edges. If m=1
(hence C consists of a single free edge) then the only generator associated to a u-sequence is the
hyperbolic transformation E pairing € and & (there is no reflection) and there is no canonical
relation because there is no vertex in H. Assume C' has more than one edge. As pointed out
after Lemma 2.8, we may assume that the vertex (€,¢;) is improper (so ¢; is a free edge) and
that (¢, ') is proper (so &, is fixed by a reflection), see Figure 32. Let U be the set of indices
of free edges:

U={ie{l,...,m}:¢ is a free edge}.

The canonical reflections associated to a u-sequence are therefore C; fori e {1,...,m} —U.
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Observe that 1 € U and that it contains no pair of consecutive indices (so 2 ¢ U). In addition,
if m > 1 then m ¢ U by our assumption based on Lemma 2.8. Let V = {i € {3,...,m} :
the vertex (¢;_1,¢;) is proper} be the set of indices of proper vertices. Then a p-sequence

provides the following relations:

C~'i2=1 forie{l,...,m}—-U, and

(Ci G =1 forief{2,...,m}—V and {i—1,i}nU = .

It remains to deal with the canonical relation corresponding to the set of congruent vertices
which have not been considered yet. As usual, we will use capital letters to denote the elements
of I which pair edges of F, so we have X;(z}) = z;, P;i(p}) = pi, Di(d}) = d;, Ai(a}) = a;,

~

Bl(b;) = bi, EZ(GD = €4, Ez(é/) = 6“ Ez(é/) = éz', Ez(é;) = éi.

7

Assume first that F' has a surface symbol of the form

l

q t
sz szp@ Hazb@azb He’ i€ 'Héiéié/i Héiéié; H C~' é;.
1=1 i=1 i=1

=1

In this case, the set of vertices which have not been considered yet are the initial points of
the edges x;, p;, a;, b;, a, b;, e;, &, é and é;. These points are all congruent, as shown in
Lemma 2.5. Moreover, it follows from the proof of this lemma that applying successively the

letters of the word

r s kol !
({rl1e T =115 1212
=1 =1 =1 3 3

we go through all these points, starting and ending at the initial point of the edge x1. Therefore
W is an orientation preserving transformation which fixes this point. So W is either the identity
or a non-trivial elliptic element. In the first case the canonical relation associated to this set of

congruent vertices is

<

s g k l . t N
X][e] sl [ [ BT E]]Bi-
i=1 i=1 i=1 i=1 i=1 i=1 i=1

This is called the “long relation”. If W has order mg # 1 then we take it as a new elliptic
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generator Xo = W and obtain the relations
s g k
X0 =1 and  Xp- HX [12] 4B
i=1  i=1 4=1 =1

1

Observe that the presentations in both cases (W = 1 or not) just differ in the number of elliptic

generators: they are Xi,...,X,, in the first case, and Xy, ..., X, in the second.

Assume now that the surface symbol is of the form

l - q N N
sz szplndd Hez we; [ [eCie | [eiCies | [eiCie;.
=1 i

i=1 i=1 =1

In this case, the set of vertices which have not been considered yet are the initial points of the

edges z;, pi, d;, df, e;, €;, & and é;, which are all congruent. Here we consider the word
r s g k l - q R N -1
~(ertere a1 A 1A 1)
i=1 =1 i=1 4=1 i=1 4=1 i=1

to go through all these points, starting and ending at the initial point of the edge x1. Again,
W preserves orientation, so it is either the identity or a non-trivial elliptic element. If W is the

identity then the canonical relation associated to these vertices is

If W has order mg # 1 then we take W as a new elliptic generator Xg = W and obtain the

relations

k l t
X(T)nO:l and XO., Xl BﬁD?HEZHVZﬁAlHNZZI

Again, the presentations just differ in the number of elliptic generators.

There are no more sets of congruent vertices lying in H. So there are no more relations. We

summarize the results obtained in this section in the following theorem.

Theorem 2.11. A finitely generated NEC group I' admits the following presentation: it has

generators
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(a) Xi, i =1,...,r (elliptic elements),

(b) P, i=1,..,s (parabolic elements),

(¢) Ai, By, i =1,...,g (hyperbolic translations) if the orbit space H/I" is orientable, or
D;,i=1,...,g (glide reflections) otherwise,

(d) E;j, i =1,...,k, Ej,i=1,...,1, Ej,i=1,...,q E;,i=1,...,t (orientation

preserving elements, usually hyperbolic elements),
(e) Cij,i=1,....,k,j=0,..., ks, (reflections)
Cij,i=1,...,1, 5 =1,...,1; (reflections)
Cij,i=1,...,q,5=1,...,q, (reflections)
CN’ij, i=1,...,t,5€{l,....,t;} —U; for some U; with 1 € Uy, t; ¢ U; (if t; > 1) and
containing no pair j,j + 1 of consecutive elements, (these &j are reflections),
and relations:
(i) X" =1, fori=1,...,r
(i1) BEiCp, B Cio =1 fori=1,...,k,
(i1i) CF = 5’12] = CA’ZQ] = 522] =1, for all the reflections,
() (Cij—1Ci)" =1 fori=1,...,k, j=1,... ki
(Cij1Cij)ia =1 fori=1,...,0, j=2,..., L
(@J_lé’ij)ﬁif =1fori=1,...,q,7€{2,..., qi}—‘/}i for some non-empty Vi c {2,...,qi};

(C~’i7j,1c~’ij)ﬁij =1 fori=1,...,t je{2,...,t;} = Vi for some V;  {2,...,t;} (maybe
empty) whenever the reflections CN'M,l and éij exist, that is, whenever {j—1,j} nU; = .

s g k t

r l
(v) HX"HPi H[Aj,Bj] HE’ H i ﬁ i H i = 1, if the orbit space H/T" is orientable,

i=1 i=1 j=1 i=1 i=1 i=1 i=1
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CHAPTER

Signature of finitely generated non-cocompact NEC groups

n this chapter we introduce the notion of the signature of a finitely generated non-

cocompact NEC group I'. The signature provides more than just a symbolic structure

for defining the presentation of a group: with the help of the signature we can assign
additionally a marked polygon to a canonical fundamental region and describe the geometric
structure of the orbit space H/T'. Additionally, it is a highly efficient approach to deal with
isomorphic groups as well as to represent a broad set of properties linked to the group. This
chapter is organized in the following way. We introduce the signature in Section 3.1. In Section
3.2, we study the orbit space of an NEC group. In Section 3.3, we provide the necessary and
sufficient conditions for the existence of a type-preserving isomorphism between two NEC
groups. In Section 3.4 we obtain the signature of the canonical fuchsian subgroup of an NEC
group given its signature. Finally, in Section 3.5, we present a topological classification of the

orbit space of H under the action of an NEC group.

3.1 Signature of finitely generated NEC groups

Let I be an NEC group and F a fundamental region of I'. As shown in Chapter 2, the vertices
of an n-sequence (¢éi,...,¢;) can be labelled with integers starting from one from left to right,
where the first and last vertices of the sequence are proper vertices in the same orbit and the

sequence might include additional proper vertices, see Figure 31.
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Figure 31: An n-sequence C: in the orbit space each boundary component has two semi-cusps.

Given the group presentation, we define the signature of the n—sequence as the ordered set
N consisting of the orders of the products of two consecutive canonical reflections such that in
case of elliptic products we have integers fn; > 2, or the symbol “c0”, in case the product is
parabolic. We define the parabolic data of the n-sequence as V= {9, ..., Dy}, i.e. the set of
integers j such that the product of reflections C’j_lé’j is parabolic. The parabolic data V gives

A

the position of the symbols “00” in the signature N of the n—sequence, N.

We may also write the signature of the n-sequence in the following way:

(I, ...,I|‘7|) = ((N2, s ig—1)s (Mgt 15 -5 Thiig—1) 5 evey (R 415 o, Mg ),
we call each I; a component of the signature of the 7-sequence, where the symbols “00” are
removed. If N has two consecutive symbols “00”, which happens when the n-sequence includes
an edge whose initial and end points are both proper vertices, then we write I; = (—) and say

that the component is empty.

A p-sequence (¢1,...,¢) is a sequence of t edges where, as shown in Chapter 2, we may
assume that the first one is a free-side and, if ¢ > 1, the last one is an edge fixed by a reflection,

see Figure 32.

Given the group presentation of I', we define the signature of a u—sequence as the set N,
which is an ordered set of integers and the symbol “00”, such that in the j-th position we
have either the order of the elliptic product of the reflections C’j_lé’j, or the symbol “o0” if
the product C'j,lé'j is parabolic, or the number 0, if {j — 1,5} n U # (&, i.e. if the product
C'j_l C'j+1 is hyperbolic and the edge ¢; is free. In summary, the set N has as many elements

as vertices are in the u-sequence (considering the first and last one as paired), with as many
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™

e ——. o

c ¢\ G Ci_ Ci
RU{OO} / 2 Z\/ i+1 J 1\ /]‘i‘l
6.
J

Figure 32: A p-sequence C: a hyperbolic end with infinite area.

“0”s as improper vertices, as many times times the symbol “00” as proper vertices, and as many

integers as the number of elliptic products C’j,lé’j.

We define the sets: U, the hyperbolic data of the p—sequence, as the set of integers
{1, ug, ...,u,} consisting of the labels of the free-sides, V, the parabolic data of the [ —sequence,
as the set of integers {01, ..., U5} consisting of the number j if the product of reflections C'j_lé'j
is parabolic, and the set L, as the set of j € {1,...,t} of the u-sequence such that C’j_léj is

elliptic. Then we have the following equality:
t=|L|+ V| +2/U| = |L| + 7 + 2u.

The expanded form of the signature of the u-cycle is:

(Il, ceny I|U|) = ((ﬁg, ...,ﬁu2_1>, (ﬁu2+2, ceuy ’fLu3_1), ceey (ﬁuu+27 ...,nt)),

where we call each I; a component of the signature of the u-sequence, which is delimited by the
0s removed from N. If a component is empty, namely N has four consecutive 0s, then we will

write I; = (—).

We are now in a position to introduce the signature of an NEC group:

Definition 3.1. The signature of a non-cocompact NEC group I' with presentation as in

Theorem 2.9 is a collection of symbols and non-negative integers of the form:

Sg(r) = (gv i; S5 [m17 “'7mr]; {Cla cey Ck}a {éla ceey C’l}; {éla ceey éq)}S {éla ceey ét})7
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where we write, with a slight abuse of notation, the signatures and the sequences with the same

symbols C;, C;, C; and C;. Additionally,
1. g is a non-negative integer called orbit genus of sg,

2. the signs “ 4+ 7, ¢ — 7 that we write sign(sg), where sign(sg) = “ + 7 if the orbit space

HJ/T is orientable and “ — ” otherwise,
3. s is a non-negative integer,
4. mq,...,m, are non-negative integers > 2 called proper periods of sg,

5. each symbol Cj, that we call o-cycle is an ordered set of integers (niz, n;3, ..., N, ), called

linked periods of the o-cycle or o-periods,

6. each symbol éi, that we call v-cycle, is an ordered set of integers (12,73, ..., Mg, ), that

we call linked periods of the v-cycle or v-periods,

7. each symbol C;, that we call n-cycle, is the expanded form of the signature of an n-sequence,
i.e. an ordered set of integers ((Ri2, ..., Min—1)s (Rogat1s e Piyg—1)s -oor (R 41, <05 Tig; ))-

We call its elements linked periods of the n-cycle or n-periods,

8. each symbol C;, that we call p-cycle, is the expanded form of the signature of a p-sequence,
i.e. an ordered set of integers (i3, -, Tujo—1)s (Pajg+2s -vs Tugg—1)s s (ﬁuwi+2, .y Tit,)) We

call its elements linked periods of the p-cycle or p-periods.
Remarks
1. The signature can be represented in the following ways:

e short form:
sg = (g; %5 83 [ma, ..., mr];
{C1, .., Ok} {C, o, O {Ch, oo, O3 (O, G,
e expanded form, that is used for the theorems 3.4 and 3.9:
sg = (g; %5 83 [ma, ..., mr];
{(nans s gy )y oo (s e i)} (P12, s 00y ) s (T2 ooy ) 5
{((R12, ooy P1019—1) s (A1 619415 -oos T o1g—1)5 --es (1,615, +15 s Pgy )5 oy

((ﬁq% ey ﬁq,ﬁqg—l)ﬂ (ﬁq,f)qz-‘rlv ey ﬁq,f)qg—l)v ey (ﬁq,ﬁq,f,q-i-l? seey ﬁqqq))}S
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{((ﬁlg, ceny ﬁl,ulgfl)a (ﬁl}ull+2, cens ﬁlyullfl), ey (ﬁLululJrQ, ceey ﬁltl))a ceny
(

(ﬁ/t?)a ceey ’Flt,Utl—l)) (,ﬁt,utl-‘rQu ceey ’Flt,utz—l)) ceey (ﬁt,’l.ttut-‘rz’ eeey ,ﬁ/ttt))})

2. The sets of o-, v-, n- and p-cycles may be empty, that is r = 0,k = 0,0 = 0,¢ = 0 and/or
t = 0. In such a case we write [—], {—}, {—} and {—} respectively. As usual, we can have

(<))

a finite number n of empty cycles, and in such case we write {(—),

3. Additionally, the sets N;, V; may be empty and in case that a p-sequence CN'Z is such that
N; = &, U; = {1}, V; = &, we write the signature of the p-sequence just as (—). If there

are t of such p-sequences, then we write {(—), t , (—)}.

4. The signature of a cocompact Fuchsian group can be represented in the following way,
(g +; 05 [ma, .o me [ {=} {=h {=}: {-})

which is equivalent to the classical Fuchsian signature (g;myq, ..., m;).

5. The signature of a cocompact NEC group can be represented in the following way

(95 %3 0; [0 ooy M | {115 ooy M1y ) oeos (s oo et ) 15 (=35 {= 3 {=)

which is equivalent to Wilkie’s signature

(g; £5[ma, oo, mp s {11, oo, Mgy )5 ooey (MELs ooy My, ) ) -

6. The signature of a non-cocompact Fuchsian group can be represented in the following way
(g5 +5 s [, o me s {=h {=h {=}: {(=), =, (=)}

which is equivalent to the Fuchsian signature (g; my, ..., m,; s;t).

3.2 Orbit space of non-cocompact NEC groups

The orbit-space H/I" of H under the action of an NEC group I' can be obtained in the usual
way by identifying the paired edges of a fundamental region. For the NEC groups considered in
this paper (finitely generated), the orbit space is a non-compact surface of finite genus and with
finitely many boundary components compact or not. In this section we describe the topological
and geometrical properties of the orbit space H/T' and the canonical projection H — H/T" in

terms of the signature of the group I' defined above.

In the orbit space H/I" there exist finitely many simple closed curves [y, ..., l, which decom-

pose H/T" into connected surfaces Sp, Si, ..., S, where Sy is a compact surface called compact
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core. The topological and geometrical properties of Sy are well-known and described for
example in [59]. The surfaces S, ..., S, are non-compact and satisfy Sp nS; = 1;,1 < i < n and
SinS; =, 1<1i+# j<n. Each S; is topologically an unbounded cylinder with one compact
boundary component (the curve [;) and a hyperbolic end. This can be easily seen by means
of a fundamental region whose surface symbol is canonical as the ones described in Section 2.
For instance, a geodesic joining the initial point of an edge p; with the end point of p], both
paired by a parabolic element, yields a simple closed curve [; in the orbit space H/T". This
curve separates Sy from a non-compact surface S; which is topologically a cylinder with one
compact boundary component (the curve [;) and a cusp. A geodesic joining the initial point
of an edge ¢; with the end point of & of a v—sequence, now paired by a boundary hyperbolic
element, yields a simple closed curve /; in the orbit space H/I'. This curve separates Sy from
a non-compact surface S; which, in this case, is topologically a cylinder with one compact
boundary component and a hyperbolic end which we call of type v. Similar descriptions can be
done with n- and u-sequences, with the corresponding cylinders having different hyperbolic
ends. In summary, each parabolic generator corresponds to a hyperbolic end called cusp, each
hyperbolic boundary generator to a funnel, each v—sequence to a hyperbolic end of type v,

each n—sequence to a hyperbolic end of type n and each p—sequence to a hyperbolic end of

type u .

A non-compact boundary component of H/I' corresponds, in the canonical surface symbol
of the group, to a sequence of edges fixed by reflections whose unique vertices at infinity are
its initial and end points. The types of vertices at infinity (proper or improper) classify the

non-compact boundary components into four types as follows, see Figure 33:

e Type I: non-compact boundary components with a unique point at infinity, which we call

semi-cusp of type I. This occurs just in v—sequences.

e Type II: non-compact boundary components with two points at infinity (both correspond-
ing to proper vertices) each of which is also a point at infinity of another non-compact

boundary component. We call them semi-cusps of type II.

e Type III: non-compact boundary components with two points at infinity and just one of

them is a semi-cusp (corresponding to a proper vertex), that is, just one of them is the
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point at infinity of another non-compact boundary component.

e Type IV: non-compact boundary components with two points at infinity (both corre-
sponding to improper vertices) none of which is a semi-cusp. For convenience, this is also

the case of an n—sequence with only one free-side (fuchsian case).

A p—sequence may provide non-compact boundary components of types I, IIT and IV. We
claim that the total number of them is |U| + |V|, where U := {i € {1,....t} : & is a free edge} is
the hyperbolic data of the p-sequence and V is the parabolic data defined above. In fact, there
are 2|U| improper vertices - the last vertex (&, ') is in the same orbit as the first vertex (¢, é)
- and |1~/| proper vertices. Each improper vertex belongs to a unique boundary component,
whilst each proper vertex belongs to two. So the total number of boundary components is
\U| + |V] as claimed. We call the boundary components associated to a u—sequence cuts. Two

cuts sharing a proper vertex are called parallel cuts. Finally, two consecutive cuts not sharing a

proper vertex will be called wltraparallel cuts.

In order to count the number of components of type II, III and IV in a y—sequence, we
use the concept of c-decomposition of a finite subset A of natural numbers. The ordered set
of non-empty subsets of A, (M, ..., M) such that its elements are the biggest subsets of A

consisting of consecutive numbers is called c—decomposition of A, see Examples 3.3.

Let us define F; = {1,2,...,t;} — U;,i = 1,...,t for each p—sequence of the fundamental
Ui .
region, M; = | J M;; be the c—decomposition of F; and let us define the sets A;; = M;; N V;,
j=1
fori=1,...t,5=1,..,|Ul.

Now, it is easy to count the specific number of boundary components associated to a
p-sequence. We have two main cases, when ¢; = 1, that we discuss in Example 3.2 below, and

the general case with ¢; > 1 as shown below:

e The number I'V; of components of type IV associated to the u-sequence i equals the number

of elements of the c-decomposition M; such that A;; = &, that is IV; = card{j : |A;;| = 0}.

e The number I11; of components of type III of the u-sequence 4 is the same as the number

of improper vertices not corresponding to IV-components, that is I11; = 2(|U;| — IV;).
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e Finally, the number II; of components of type II associated to the p-sequence i is
the total number of its boundary components minus the components I11; and IV, i.e.

II; = |U| + |Vi| = ITL; = IV; = V| = |U| + IV;.

Example 3.2. We call a pu—sequence with a unique edge, simple-funnel, i.e. the fuchsian
funnel. In this case we have t; = 1, so F = & and therefore the c-decomposition is empty.
This means that there are no sets A. As stated above in the classification of the non-compact
boundaries, the number of components of type IV in this case is 1 by definition, and for the

types II and IT we have, I[Il =2(1 —1)=0and [T =0—1+1=0.

Examples 3.3.

(1) For the p—sequence ¢y, Ca, ..., ¢9 with U = {1,3,5} and V = {7,8,9}, we have F = {1,...,9} —
{1,3,5} = {2,4,6,7,8,9} with the c—decomposition given by (I, I, Is) with

I = {2}, I = {4}, I3 = {6,7,8,9},

such that

M=DInV=F A=LnV=g, As=InV ={7,8,9}.

So the number of components of type II, III and 1V equal
IV=21I1=23-2)=2I1I=3-3+2=2.

(2) For a u—sequence éy,Ca, ...,¢9 with U = {1,4,7} and V = {3,6,9} we get F = {1,...,9} —
{1,4,7} ={2,3,5,6,8,9} with the c—decomposition given by (I, Iz, I3) with

I ={2,3}, Iy = {5,6}, Is = {8,9},

such that

AM=DLnV =3}, =LV ={6}, A3=I3nV ={9}.

So the number of components of type II, III and IV equal

IV =0,I1I11=23-0)=6,I=3-3+0=0.

These examples show that the number of proper and improper vertices is not enough for
determining the types of the components. For that we need additionally to know their distribution,
an information that as seen above can be traslated into an algorithm which computes the number

of empty A;j.
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Before describing the form of the orbit space of a finitely generated non-cocompact NEC
group, we summarize briefly the idea of a covering which is both branched and folded: let
S denote the unit disc |z|] < 1 and let n be a positive integer. Let S* be the subset of
S consisting of those re” such that 0 < r < 1 and 0 < 6 < % We define the mapping
©: S — S* by p(re’?) = rell?|, where |0*| satisfies —% < 0* < %, 0 = 6*(mod 2m/n). The
mapping f : X — Y is said to be folded and branched to order n at a point x € X if x has a
neighbourhood V' and there exist homeomorphisms hy : V. — S* hy : S* — f(V) satisfying

f = hg opoh;. Finally we have:

Theorem 3.4. Let I' be a finitely generated non-cocompact NEC group with the signature as in
Definition 3.1 and let the numbers 11;, I11;, IV; of components of the different types as defined

above. Then the orbit space S = HJT is a surface:
1. of topological genus g, the genus of the compact core of S,
2. orientable if the signature of I' has sign “ + 7, and non-orientable otherwise,
3. with s cusps,

4. with r conic points lying in the interior of the compact core of S with the branching orders

of the projection H— HJ/T' given by the integers mq,...,m,,
5. with k boundary components on the compact core of S,

6. with k; corner points lying on the i-th boundary component of the compact core of S,
where the canonical projection T' — H/T' is branched and folded with branching orders

Nij,
7. with 1 hyperbolic ends of type v each one consisting of one boundary component of type I,

8. with l; corner points lying on the i-th boundary component of type I, where the canonical

projection I' — H/T is branched and folded with branching orders 1;;,

9. with q hyperbolic ends of type n each one consisting of |V;| + 1 boundary components of
type 11,

10. with q; corner points lying on the i-th non-compact boundary component of type II, where

the canonical projection I' — H/T" is branched and folded with branching orders fi;;,
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11. with t hyperbolic ends of funnel type each one consisting of I11;, I11; and IV; boundary
components of type II, III and IV respectively,

12. with t; corner points lying on the i-th hyperbolic end of type funnel, where the canonical

projection I' — H/T" is branched and folded with branching orders n;; < .

In the example below we describe the orbit-space of H under the action of a non-cocompact

NEC group in terms of its signature.

Example 3.5. Let I" be an NEC group with signature

(3; 43 L; [m1, ma, ma]; {(n11, na2) }; { (12, s, 1)} { =} {(=), (23, R24)), (a3, 7isa), (7i36)) })-
Theorem 3.4 above shows that the orbit space H/T' has the following data:

1. it has topological genus g = 3,

2. is orientable,

3. with s = 1 cusps,

4. with r = 3 conic points lying in the interior of the compact core of S with the branching

orders given by the integers my, mo, ms,
5. with k = 1 boundary component on the compact core of S,

6. with k1 = 2 semi-conic points lying on the boundary component of the compact core of S,

where the canonical projection I' — H/T" is branched with branching orders ni1 and nia,

7. with I =1 boundary components of type I, that is, one non-compact boundary component

with one point at infinity,

8. with l; = 3 corner points lying on the component of type I, where the canonical projection

I' — H/T is branched with branching orders n12,M13 and N4,

9. with t = 3 funnels,

54



3.3. ALGEBRAIC CLASSIFICATION: TYPE-PRESERVING ISOMORPHISMS

10. with 0,2 and 3 corner points lying on the 3 funnels Cy, Cy, Cs respectively, where the canon-
ical projection I' — H/T" is branched and folded with branching orders figs, Mo, N33, T34

and ﬁgﬁ.

Finally, we calculate explicitely the numbers I1;, I11;, IV; of components of type II, I1I and IV
in each funnel i = 1,2,3. We have then,

FL={1}-Uy =0, Fo ={1,2,3,4} — Uy = {2,3,4}, F3 ={1,2,3,4,5,6} — Us = {2,3,4,5, 6},
L = @0y = Iy = {2,3,4},13 = Iy1 = {2,3,4,5,6},A11 = O, Ao1 = Iy n Va = &, Az =
I31 N Vs = {4}.

For the first case, we have obviously 111 = 111y = IV}, = 0 as we have a funnel without cuts.
For the other cases:

IVo =1, 1Ty = 2(|Us| — IVa) =2(1 —=1) =0 and IIy = |Vo| — |Up| + IVo =0 —1+1 =0,
IVs =1, I1T3 =2(|Us| = IV3) =2(1 —1) =0 and II3 = |V3| — |Us| + IVs =1—1+1=1.

Example 3.6. Figure 33 illustrates the non-compact orbit-space of an NEC group of signature

A

(35 +; 15 [ma, ma, ms]; {(n11, na2) b { (a2, fas, Maa) b {((Ra2), (R14)) };

{(=), (723, 7124), (Ti26)), (733, i34, 00, Ti36)) })-

of genus 8 with three funnels including one with two cuts and other with two parallel cuts, one
cusp, one hole with a semi-cusp, one hole with two semi-cusps, an additional compact boundary
and conic points lying in the surface and in its different borders, corresponding to the NEC

group of the example.

3.3 Algebraic classification: type-preserving isomorphisms

In this section, we determine necessary and sufficient conditions for two non-cocompact NEC
groups to be isomorphic via a type-preserving isomorphism. In case of cocompact NEC groups,
the concept of algebraic isomorphism and type-preserving isomorphism are equivalent, as shown
by Macbeth in [40]. However, this property cannot be extended to the non-cocompact case as

the example below shows:

Example 3.7. LetT' and I be two NEC groups with signatures (1;+;0; [—]; {=}; {=} {((=), (=)} {-})
and (1;+;0; [—]; {—=}; {=}1{=}:{((—), (=))}), respectively. Let us define the assignment ¢ : T' —
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Simple-funnel

Hole with a semi-cusp i
(component of type 1) A
i e fgg
ez ! m, Tyt T
A {0 s -
1 i \ * :
ol Voot Corner pojfits
Corner points Vo Nz i

Funnel with ultraparallel cuts
(components of type 1V)

Funnel with a parallel cut

../
Hole with two semi-cusps (components of type I11)

components of type II
( P yee i) “=" Handle

Figure 33: Non-compact orbit-space.

IV, by:

Ay — A,

B, — Bj,

1 — (1,

Cy — (Y,

E— H.

It is clear that ¢ defines a group isomorphism. Let us suppose it is type-preserving. Then, the
parabolic element C1Co is transformed into the element ¢(C1)p(Ca), which is by the definition
of ¢ the product of two reflections, that should be parabolic. However, from the signature above
this product is hyperbolic and therefore the isomorphism assigns a parabolic transformation into

a hyperbolic transformation which is a contradiction.

We extend now Macbeath’s definition of directly and inversely equivalence of period-cycles in
the compact case to v-, n-, p-cycles in the non-compact case. For the period-cycles, Macbeath’s
definition says that the period-cycle C' = (nf,...,n},) is directly equivalent to the period-cycle
C = (n,...,ng) if k = k" and (nf,...,n}) is a cyclic permutation of (ni,...,n;). Analogously
C' is inversely equivalent to C'if k = k' and (n}, ..., n},) is a cyclic permutation of (ni, ..., ny)

reversed, i.e. (ng,...,n1). Similarly, we introduce the following definitions:
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Definition 3.8. Directly and reversely equivalence of v-, n-, p-cycles:

1. The v-cycle C" = (71}, ...,71},) is directly equivalent to the v-cycle C' = (fiy, ..., 7) if they
are identical, that is | =" and n; = 0} for ¢ = 1,...,1. They are reversely equivalent if

I =1 and ' is the same as C reversed.

2. The n-cycle C’ that we write using the expanded form (I7, ... I|V/|) = (A, xRy )5y

Vg

(ﬁif/'\ﬂ’ .y Ty )) is directly equivalent to the n-cycle C=(1,.., \Vl) = ((N2y ey Nig—1), .-

(ﬁ|‘7|+1, i), if ¢ = ¢, |V| = [V’| and the components (I}, ... I|V|) of " are a cyclic

permutation of the components (I, ..., \Vl) of C. We say that ' is reversely equivalent
to C if the components of C’ are a cyclic permutation of the reversed components of C’,

reversed, i.e. if (I1,...,I/, ) is a cyclic permutation of ([ I), where we define I*

/A ) *A
Vi v

. . N s e .
such that for a given component I; = (g, 41, -, N, 1—1)s L = (o1 —15 s Ny41)-

3. The p-cycle C' that we write using the components ((7, ..., ﬁ%g—l); s (ﬁTU’HT s Ty)) =
(14, ..., ‘U,|) is directly equivalent to the p-cycle C' = ((7ig, ..., gy—1); -..; (ﬁ|0|+2, vy ) =

(I, i) i 8 = t',|U| = |U’| and the components (I,...,I'- ) of C" are a cyclic

\U I)
permutation of the components (Iy, ..., 1| |U|) of C. We say that C” is reversely equivalent
to C if the components of C’ are a cyclic permutation of the reversed components of
I7), where as defined

C, reversed, i.e. if (1, ..., I'-)) is a cyclic permutation of (I

/~ ) *
U e

previously, if I; = (g;+2, -, Ry, 1), then I = (g, 1, ..., Ra;+2)-

Theorem 3.9. An NEC group I' with signature

sg = (g;£;8; [m1, ooy My ]; {C1, o, Ci}; {C1, oo, C1}; {C, o, O {Ch, o, Cr)),
is isomorphic to an NEC group T with signature

sg' = (¢ 1585 [ml, ., 1 O], o, G i {CH, o, CLL O, Gl (O -, CY),
via a type-preserving isomorphism if and only if g = ¢, sign(sg) = sign(sg’), s =, r =1/,
k=FkK,l=1,q=4¢,t=1, the proper periods [m},...,m!,] are a permutation of the proper
periods [my,...,m;| and there exist permutations w of {1,....k}, © of {1,...,1}, & of {1,...,q}
and 7 of {1,...,t} such that:

1. in the orientable case, all the cycles C!, C!, C! and C! are either directly equivalent to

the corresponding cycles Cr,, Cv’;r(z-), éﬁ-(i) and C’ﬁ(i) or all are reversely equivalent.

2. in the non-orientable case, each cycle C}, Cv'l’, é’{ and C‘l’ is either directly equivalent to

the corresponding cycles Cr(;y, Cv';r(i), éﬁ-(i) and C’ﬁ(i) or reversely equivalent.
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Similarly to the cocompact case, we see that in the orientable case, corresponding pairs of
cycles are all paired in the same way -either all directly or all inversely. In the non-orientable

case, some may be paired directly and some inversely.

Proof of neccesary conditions. Associated to the presentation of I' as in Theorem 2.11 we have
a marked polygon F with a canonical surface symbol as described in Section 2. As we are
assuming that I" and I are isomorphic via a type preserving isomorphism, I admits exactly
the same presentation as I', its associated marked polygon F’ has the same amount of edges
and vertices, and it can be built such that they are written in the same order. Moreover, the

side-pairing is carried out by the same type of transformations as in F.

More specifically, for the orientable case the marked polygon of I can be defined as:
!

r S q t
F = Hxﬂ:; Hpip'i Hazbzalb HeZC €; Hé Cié! H Ciél Hé'C,-é;,
i=1 =1 = i=1 =1 i=1 i=1
and in the way we have defined the isomorphic presentation, we can build a fundamental

region of I so that the labelled polygon has the form:
k ! q t

Hx” "’Hp;'p;'ﬂa"b'" my [ elcel [ Tercner [l elcnel [ el
i=1 i=1 i=1 i=1

with the same amount of edges, free-sides, vertices in H and at infinity, of the same type
and order. The same construction above as well as the discussion in the coming paragraphs can
be done for the non-orientable case without changes in the argument. As mentioned above, the
labelled polygons F and F’ can be built such that the paired edges x;z}, p;p}, a;bia;b;, €;C;el,
éiéié eZCe and &;,C;é; of F and z/z, p!pl!, a?b"aV!, eClell | & C;V;”, A”C’A’” and &/C!e"
of F’ follow the same order in both labelled polygons with v-, 1-, u-sequences including the
same free-edges, edges and vertices in H U JH in the same order. This is so due to the fact
that the group I' and the presentation of I'” injected by the type-preserving isomorphism have
identical number, type and order of transformations, fact that cannot be stated in general for
the given presentation of the group IV as Example 3.7 shows. Two hyperbolic polygons with the
same amount and order of edges and vertices in H u 0H are homeomorphic. If we identify the

corresponding points on the paired edges, we obtain F/TI" and F’/I"”, two non-compact surfaces

with boundaries and in the way we have defined F,F’, it follows then that F/T" and F'/T" are

58



3.3. ALGEBRAIC CLASSIFICATION: TYPE-PRESERVING ISOMORPHISMS

homemeomorphic.

In the diagram below, we represent the different marked polygons and surfaces described up to
now, where 7, ¢’ are inclusion maps, j1, j2, 71, j5 are natural projections, r, 7’ the homeomorphisms

mentioned above and 6,6’ are the maps which make the squares I and III below commutative.

H - F L F’ - H
J2 I J1 II 71 III A
Hr-—' ®vr—" -¥r—% ~Hr

Figure 34: Homeomorphism between H/T' and H/T’

It is well known that the maps 6,60" are homeomorphisms, as described for example in [23,
Th. 5.9.6 |, where the proof is done for Fuchsian groups though, but it can be extended to
NEC groups without changes. Therefore, the map defined by r* = ¢'r'0~! : H/I' — H/I” is
also a homeomorphism. Additionally, if [C}], [CV‘Z], [C‘z] and [C;] denote the image in H/T' of
an o-, v-, - or an p-sequence respectively, then r*([C;]) = [C’J’],r*([a]) = [CV';],T*([CA’,]) =
[CA'J’],T*([CNQ]) = [CN’j’] are respectively the corresponding images in H/T" of an o-, v-, - or
an p-sequence of IV of the same type, due to the fact that T' and I” are isomorphic via a

type-preserving assignation. Taking into consideration that r* is a homeomorphism, we have

the following cases:

(i) [C] = [C]:
this is the compact case and we have a homeomorphism 7* : S* — S' that has either
degree +1 or —1. In the orientable case, all the boundaries are mapped with the same
degree and so the sets of period-cycles are transformed either all to a cyclic permutation,
or all to a cyclic permutation of the other reversed. In the non-orientable case, each
boundary can be mapped with either degree +1 or —1 and so each period cycles can be

permuted cyclically or cyclically reversed.

(it) [C] - [C"]:

in this case the boundaries are homeomorphic to S' minus one point and so we can
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write 7* : St — {a} — S!' — {a’}. The extension of r* to the compactification, which
we still denote r*, has degree +1 or —1. However, as [C], [C’] have one point removed,
the homeomorphism leaves the v-periods as they are or reversed. This situation is ex-
plained in Figure 35, where the ovals are the non-compact borders, and Ny, N, ..., N;
are distinguished points on the border related to the v-periods. Let v be a path on
the border from the distinguished point Nj related to the v-period n; to the point NV
related to the v-period n; and let 4/ be the image by r* of 4. As we have removed
one point on the borders, there is just a unique continuous path possible between N
and N; and the same happens between r*(N;) and r*(N;). But if there were cyclic
permutations of the periods, then both paths v and 4" would be homeomorphic, which is
not possible because the path v contains all the other distinguished points N, ..., N;_1
and the path +' contains none of their images. We conclude then, that the v-periods in

the case of type-preserving isomorphisms can only be either the same or the same reversed.

Figure 35: Paths v and 7/ on non-compact borders cannot be homeomorphic

(iii) [C] — [C"];
in this case the boundaries are homeomorphic to S' minus n points and so we can
write 7* : St — {ay,...,a,} — S' — {a},...,al,}. Again, the extension of r* to the com-
pactification has degree +1 or —1. The n-cycle can be written in the expanded form
(P25 ey g —1)5 (Mgt 15 -0y Mg 1) ooy (o 415 -+, ). Let us denote I = (o, _; 41, -0, Ty —1)-
In this way the n-cycle can be represented in the form (I3, ..., IVI)' Using exactly the
same argument as the discussion about paths on the border in the case of v-cycles,
we conclude that the n-periods cannot be exchanged between components or permuted

cyclically within the components. Only cyclic permutations of the components or cyclic
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permutations of the reversed cycles I J* are possible, i.e. only the cyclic permutations
(I, ...,I‘V‘,Il), (I3, ...,L;Wl,ll,lg), etc. and cyclic permutations of the reversed peri-
ods (IIVI’ I|V|71’ I >’(I|\7|71’ e IF IIV\)’ etc. are compatible with the homeomorphism
induced by the type-preserving isomorphism.

(iv) [C] - [C]:
in this case the boundaries are homeomorphic to S' minus n points and minus m closed
arcs and so we can write 7* : S'—{a1, ..., an} — 20 [bi, ¢i] = ST —{a}, ...,al } =D [V, ],
where [b;, ¢;], [b], ¢;] stand for closed arcs removed on the borders. Removing a closed arc
from S! yields a homeomorphic space as removing a point from S'. Then, we can compact-
ify adding m + n points and we get that r* has degree +1 or —1. Now, the boundary by
the p-cycle can be written in the form ((723, ..., uy—1), (Rug+25 s Pug—1)5 -y (s 425 -5 Tot)-
Let us denote I; = (ﬁu].+2, ...,ﬁuj+1_1). In this way the p-cycle can be represented in
the form (Iy, ..., Ijy|). Using exactly the same argument as the discussion about paths
on the border as in the case of n- and v-cycles, we conclude that the p-periods cannot
be exchanged between components or permuted cyclically within the components and
only cyclic permutations of the components or cyclic permutations of the reversed cy-
cles I are possible, i.e. only the cyclic permutations (L2, .., Ly, 1), (I3, - Ly, Iy I2),
etc. and cyclic permutations of the reversed cycles (I"‘;J|,...,Ii"), (I|”;J‘_1,...,Ii“,l"‘£]|),
(I"’EJ‘_Q, 1T I|";]|, Il"gjl_l), etc. are compatible with the homeomorphism induced by the

type-preserving isomorphism.

Before dealing with the proof of the sufficient conditions we show in the following lemmas
that some basic transformations between the signatures of the groups I" and I can be repre-
sented as type-preserving isomorphisms between them. We will apply these lemmas to finalize

the proof of the Theorem 3.9.

Lemma 3.10. An NEC group T with signature
(g7i_787 [mlv”wm?"];{ch"'7Ck};{él7”'7él};{éla"'7éq};{élv"‘7ét})7

is isomorphic via a type-preserving isomorphism to an NEC group I" with signature
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(g5 383 [, e M) {C1, ooe, O} {Cr (1) - Cr i {C14 e O} {C, o, G},

where T is a permutation of {1,...,1}.

Proof. It is enough to prove that two consecutive v-cycles can be permuted, as any other
permutation is a finite composite of this basic one. To lighten notation, we show that ¢, and

Cy can be permuted. Then, the presentation of I' includes the relations:
(1) 5'12] = C’QQJ =1, for all the reflections,

v

(ZZ) (CLj_lCV'lj)ﬁlj =1forj=2,... 1 (6127],_16127].)%2]' =1forj=2,... 1l

(iii) | ]j IIAWB

where we are assuming that the orbit space H/I" is orientable. In the non-orientable case the

<
»
<

&le
tiy
bj<
my
i<
o
e B
tq:

proof is the same and will not be repeated. The presentation of IV includes:
« 2 2
(i) C'y; = C"y; =1, for all the reflections,

(i) (C'1 5 1C";)™M5 = 1for j =2,...,11; (C'g; 1C"9;)"2 = 1for j = 2,..., ly;

s S

t
(i) ﬁ A B, HE{E/IE'Z...E/lﬁEQHE/i _1,

i=1

[y

1=
where we assume that h’lj = 1ng; and ﬁéj = nyj. It is easy to show that the isomorphism

¢ : T — I defined by:
1. ¢: By — B/ EYE
2. ¢: Ey — Ef,
3. ¢: Cy — E{CyE
4. ¢: Co; — C1,
5. all the other generators of I' correspond in the same manner to those in I,

is a type-preserving isomorphism. It is relevant to remark that the parabolic elements

ElélllEf 15’11 and EQéQl2 E’Q_ 15’21 are transformed into parabolic elements. O

The proof is similar for the - and p-cycles and will not be repeated. In these cases we just
need to consider that there are more parabolic and/or hyperbolic products of reflections. The

corresponding lemmas are:
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Lemma 3.11. An NEC group I' with signature
(g5 %5 83 [y ooy e ] {C oy O} {CH ooy Ci3 {C14 oo, G} {Cs o, ),

is isomorphic via a type-preserving isomorphism to an NEC group I" with signature
(g3 £58; [ma, ooy my ] {C1, o, O} {C, oo, C1l {Ch(1)s oo G} {C oo G},

where 7 is a permutation of {1,...,q}.

Lemma 3.12. An NEC group T with signature
(g3 %38 [ma, ooy me]; {C1, oo, Ci}i{C, oo, Y {C, oo, Gl {C, o, CY),

is isomorphic via a type-preserving isomorphism to an NEC group I with signature
(g5 %5 85 [ma, oo me s {C1, ooy Ci1s {C, o, C1E {C oo, O} {Cr 1y s G )

where T is a permutation of {1,...,t}.

Recall that two v-cycles are directly equivalent if they are the same and therefore there
is nothing to prove for them in the case of direct equivalence. We now deal with cyclic

permutations of the components of an 7- or a p-cycle, see Lemmas 3.13 and 3.14 below:

Lemma 3.13. The group I' with signature
(g5 %5 83 [y ooy M s {C1 ooy Ok }5 {C, oo, 11 {C oo, Gy, g1 {C4 o, G},
is isomorphic via a type-preserving isomorphism to an NEC group I" with signature
(g; £58;[m1, ..., m;]; {C1, ..., Ck }; {C’l, . él}; {él, e CA'Z/, - C'q}; {C’l, e C’t}),
where the n-cycle CA'Z' is directly equivalent to the cycle C;, i.e. the components of C’Z’ are a cyclic

permutation of the components of C;.

Proof. Let us assume that I" and TV have all the same relations except for the i-th n-cycle,
and let us use the component representation of the n-cycles, so that the i-th n-cycle has

wpn
1

the form ([;1, ..., IilVi ‘). To lighten notation we drop the first subscript “i”, where the con-

text makes it obvious the distinction between the cycles and the reflections. We write
(N2, ey Poy—1)y (Pt 1y oo Thiig—1) s --s (ﬁ%ﬂ, ..+, Tg;)), the j-th component being I; = (g, 11, -, o, 1),
where by convention we write U3 = 1. The corresponding relations, either in the orientable or

in the non-orientable case, can be written:
(i) (Cj_1C;)™ =1 for j€{2,...,¢;} — V; and a non-empty Vi = {a,...,05,} < {2...,qi},
(74) the product CA'j,lé'j is parabolic for j € V;,

(#ii) the product EC,, E~'Cy is parabolic.
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The i-th n-cycle of T is assumed by hypothesis to be a cyclic permutation of (11, ..., IIViI)’
that we may take (1o, ..., Vi) 1), as any other cyclic permutation is the succesive application

of this one. The corresponding relations include then:

(") (C’J 1C’ ) i=1forje{2,...,q:} — V'; for some non-empty V’; < {2,...,4},
(#') the product C”j_lé/j is parabolic for j € V;,
(#4¢") the product E"CA’(’hEAl_ch’{ is parabolic.

As defined before, the components of the i-th n-cycle of I are the cyclic permutation of the
components of the i-th n-cycle of I' such that the 09-th reflection in I' is transformed into the
first reflection in I”, and therefore the j-th reflection in T is transformed in the (j — 92 + 1)-th
reflection in IV, taking the indexes modulo ¢;. Similarly, the set {1} U v, = {1, 09, ..., Dp, }
is transformed after the cyclic permutation in the set {1} U V/; = {1,9}, ..., op.) = {(1 -

U9 + 1),1,..., (05, — 02 + 1)} with the integers read module g;. Reordering, we finally get
{1} UV = {1,03 — Do + 1,..., 05, — D2 + 1, qi — Do + 2}. The isomorphism ¢ : I' — I” is defined
by:

1. ¢:Cj; — ;7ﬁ2+1,j—@2+1>0,

2. ¢: C’ — E’C’_U2+1 —1 otherwise,

3. all the other generators of " correspond in the same manner to those in I".

Now, it is clear that ¢ is an isomorphism, it is type-preserving and (i), (i7’), (¢i7’) are the images

of (i), (i1), (ii1) via ¢:

e Let us assume first that j ¢ {1} u Vi. For j > vy — 1, we have gf)(( . 10) i) =
(C]’ _0, i 7J2+1)"1 = 1. The periods verify then n’j = Nj_j,+1 and we ﬁnally get
(C” 10’) i = 1. In the case j < d3—1, we have ¢((C i 1C yii) = (B¢ BN =

J—02 J t2+1
1and (C/_,C)™ = 1 with 2} = tj_g1.

e Let us assume that j € {1} U V;. Then, for j > vy — 1 the image C”j_@zé”j_@2+1 of the
parabolic element CA’j,ch’j is parabolic. For j < vo — 1, the image E’CA”j_gQCA”j_@ﬁlEl_l
of the parabolic element C’j_léj is parabolic and so is the product ol —b2 ol j—to+1. The

image E’C”qi_@ﬁlé’qi_@ﬁgl@*l of the parabolic element ECA’qZ.EACA& is parabolic and
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so must be é/qi_@2+1é,qi_@2+2. Finally, the image E’C’éﬁf‘?l_l(:“{ of the parabolic element

CA'@Q,lCA'@Q is again parabolic. The index calculations are done module g;.

Lemma 3.14. An NEC group I with signature
(g;£;8; [m1, o, My ] {C1, ooy, Cr 3 {C1y o, i1 {CH, o, Cg 3 {C, o, Gy o, G},
is isomorphic via a type-preserving isomorphism to an NEC group I" with signature
(97 ia S5 [mh ceey m?‘]; {Cla [ERE) Ck}7 {017 ceey Cl}a {Cla ceey éq}v {éla ceey CN’z/) ceey ét});
where the p-cycle Q/ is directly equivalent to the cycle C, i.e. the components of CN’{ are a cyclic

permutation of the components of C;.

Proof. The proof of this lemma is very similar to the lemma before with the following difference:
the components in the previous case of n-cycles are delimited by the parabolic product of
reflections. Now the hyperbolic products of reflections delimit the components of the p-cycles.
Let us assume that I' and I have the same relations except for the i-th p-cycle, and let us use
the component representation of the u-cycles, so that the i-th p-cycle has the form (I3, ..., I \Ui|)>
where we have dropped again the first subscript “¢”. The corresponding relations either in the

orientable or the non-orientable case can be written:

(i) (Cj—1C;)™ =1 whenever the reflections C'j_; and C; exist, that is, whenever {j—1,5} N
U; = g, where for simplifying the proof, the parabolic products C’j,léj where j € V; are

assumed with period infinite,
(74) the product CN’j,lé’jH is hyperbolic for j € U;,
(4ii) the product ECy, E~'Cy is hyperbolic.

The i-th p-cycle of T” is assumed by hypothesis to be a cyclic permutation of (I3, ..., I, |Ui|)’
that we may take (12, ..., Ij,|, [1), as any other cyclic permutation is the succesive application

of this one. The corresponding relations include then:

(') (C’;_lC’J’.)ﬁlj = 1 whenever the reflections C’J’-_l and C‘; exist, that is, whenever {j—1,j} N

U] = &, where we use again infinite periods for parabolic products,

(#') the product C’;_lé’gﬂ is hyperbolic for j € U/,
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(#4¢") the product E"C’éiﬁ_léé is hyperbolic.

As defined before, the components of the i-th u-cycle of I are the cyclic permutation of
the components of the i-th p-cycle of I' such that the free-side at the us-th position is
transformed into the first free-side of the i-th p-cycle of I, and therefore the j-th reflection
in I is transformed in the (j — ug + 1)-th reflection in I, taking the indexes modulo ¢;.
Similarly, the set U; = {1, ug, ..., u,,} is transformed after the cyclic permutation in the set
Ul = {1,u/2,...,u;;} = {1l —wu2 + 1,1,...,uy, —uz + 1} and reordering we finally get U/ =
{1,us —ug + 1...,uy;, —ug + 1,t; — ug + 2}. The isomorphism ¢ : I' — I" is defined by:

1. ¢:Cj—Cl i1, j—us+1>0,
2. ¢:C; — E"C’}_WHE’/*I, otherwise,
3. all the other generators of I" correspond in the same manner to those in I".

It is clear that ¢ is an isomorphism, it is type-preserving and (i'), (ii'), (¢i7") are the images of
(1), (i), (i) via ¢. For the elliptic and parabolic products of reflections, the proof is exactly
the same as in the lemma before and will not be repeated here. Let us assume then that
j > us — 1,5 € U;. We see that the image C”j,wé”j,uﬁg = C’;,flé]’-/ﬂ of the hyperbolic
element éj_léj+1 is hyperbolic. If j < us — 1, € U;, the image E’CN”j_uQCN"j_uﬁgE’,_l of the
hyperbolic element C'j_léjH is hyperbolic and so is the product é’j_u,z C”j_u2+2 = C”jz_lé”j/H.
The image E’C”ti,uﬁlé’tﬁuﬁgf?/_l of the hyperbolic element EétiE_léQ is hyperbolic and
S0 is C'/ti_uﬁlé’ti_uﬁ;;. Finally, the image E’C‘giE’—l(Z’g of the hyperbolic element Cy,_1Cj, 41

is also hyperbolic. The index calculations are done module ¢;. O

We now deal with reverse equivalence of cycles. In the next lemma we show that an NEC
group with a signature with sign = “ 4+ 7, where all the periods and components of the n- and
v-cycles, are the same reversed as the ones of another NEC group with the same sign in the

signature, is isomorphic via a type-preserving isomorphism:

Lemma 3.15. An NEC group I' with signature
(g; +; S; [ml, ...,mr]; {Cl, ey Ck}, {él, ey C’l}; {él, ooy éq}; {él, ceey ét}),

is isomorphic via a type-preserving isomorphism to an NEC group I" with signature
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(g5 +3 83 [ma, oo ] {CF oo, CEBACT, ., CEHACT, ., CEL{CY, ., CF D),
where the cycles C}, é’:‘, C’:‘, C’f are inversely equivalent to the cycles C;, C;,Ci, C; respectively,
i.e. the periods of C are a cyclic permutation of the periods of C; reversed, the periods of é;‘
are the periods of C; reversed and the components of éf, C’;“ are a cyclic permutation of the

reversed components of C;, C;, reversed.

Proof. Using the properties of the proper periods (cocompact NEC case) and the lemmas above,
we may assume I to have the signature:

(954583 [0 s T CF s e CTF ACT s Y ACE s CT 1 ACH es CF).

Therefore, we have to prove that the group I' is isomorphic to a group which includes the

relations:
@) X, = 1fori=1,...,r,
(i) EiCh, B 'Cly=1fori=1,...,k
(d23") C’;JZ = Cv'g = C’g = C’Z’JQ = 1, for all the reflections,
(') (Cf ;1O kit =1fori=1,....k j=1,..., k;
(CLi_ Cl)titimave = Tfori = 1,...,0, j=2,....1

(C’ 1C” Yliai=i+2 = 1fori=1,...,q, 7 €{2,...,q} — V'; for some non-empty V/; <
{1, ails

(C’ 1C” YUiti=i+3 = 1 for i = 1,...,t, j € {3,...,t;} — V'; for some V/; < {3,...,t;}
(maybe empty) whenever the reflections C! i ;-1 and C exist, that is, whenever {j—1, j} N

Ul = .

s g k l q t
H r—it1 H P H[A;w BY] H Bl H E it H E'q it HE/t—i-H =1
i=1  j=1 i=1 i=1 i=1 i=1
The isomorphism ¢ : I' — I is defined by:

/

g—i+1s
2. ¢:B;—> A_/g—i-‘rl?

3. ¢:X; — FX, 1 F1,

4 ¢ P — T (X)P i T (G Th ) F
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5 ¢:E — E

~

6. ¢: B, — P,

A

7. ¢: B — FE VR
. i -1 -1
8. ¢:E — FE'F1,
9.¢: Cy — Cly_is ¢ : Cij » FCl, _ \F7', ¢:Cyj —» FCl, ;F7', ¢ : Cy —
FCly it

otk R a A t A Y A
where F' = Hi:l By i1 Hi:l B i [[io B it Hi:l Ey i1, F = Hi:l Ey it F =
A T 5k I q . )
[lici Byipr [lici By and B = [y By [licq By [1io) By—iqq- It is clear that ¢ is

an isomorphism. Additionally, the relations in I' are transformed into:
L. $(E;Cip, B ' Cio) = E; ' ClyBICY,. = 1, so E;CY, E;7'Cly = 1.

lFl

2. The image of the parabolic element E v{liEvgfleﬂl is p(E;Cy, B 1Ch) = FE “1CLE! i,
which is also parabolic and therefore E{C’Z’IZE ej! i1 1s parabolic too. The same happens

to the image of EiéiqiEA‘i_léil.

3. Similarly, the image of the hyperbolic element EiéitiEi_ 1C.y is W(Ei@tiEi_ 1@-2) =
FE,"'Cl,E!C!, F~', which is also hyperbolic and so EN';C’Z’tZ .~ 1C!, is hyperbolic too.

it

4. Lengthy but easy computations show that the image of

ﬁXiﬁPiﬁ HEH li ﬁEN"L

-1 ~1p-1 / ~1 : :
ISFHP HX - H g]H, g—j+1]1F ", whose inverse is

l q t
H X; H P/ H % B H Ej_i H B i H By i H By i,
i=1 i=1 i=1 i=1

Wthh is the 1dent1ty.

O

The following last three lemmas deal with groups with non-orientable orbit space and show
that v-, n- and p-cycles can be reversed individually. The lemmas are the non-cocompact

equivalent to Macbeath’s [40, Lemma 5]. We prove all of them in the same way at the end.
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Lemma 3.16. An NEC group I' with signature
(g =383 [m1, ey M s {C1, o0y O }5 {CH, oy iy ooy G} {Cy ooy Cgdi {C1, o, Ci)),
is isomorphic via a type-preserving isomorphism to an NEC group I" with signature
(g =3 83 [y ooy M s {C, ooy O }5 {C, oy CF oo, G} {C o, C b3 (G, o, G},
where the cycle C’:‘ is inversely equivalent to the cycle C;, i.e. the periods of C’;" are the periods

of C; reversed.

Lemma 3.17. An NEC group I' with signature
(g: =383 [m1, oy M s {C, o0, O} {CH, o, Ci1 {1 oo, Gy o, Cgdi {C1 o, G},
is isomorphic via a type-preserving isomorphism to an NEC group I" with signature
(g5 =3 83 [, coos M ] {C, oo, O }5 {CH oy, Gl {1, oo, CF o, Cyds {C, o, G},
where the cycle C’;" is inversely equivalent to the cycle C;, i.e. the components of é’;" are a

cyclic permutation of the components of C; reversed.

Lemma 3.18. An NEC group I' with signature
(g: =583 [m1, oy M s {C1 o0y O} {CH, o, C1 {1 oo, O} {C, o, Gy o, Co)),
is isomorphic via a type-preserving isomorphism to an NEC group I" with signature
(g =5 83 [y ooy M ] {C, o, O} {C oy, i1 {1, oo, O} {Cy o, CF o, G},
where the cycle C’;" is inversely equivalent to the cycle C;, i.e. the components of C~'z* are a

cyclic permutation of the components of C; reversed.

Proof. Let us assume that I' and I have the same relations except for one of the i-th cycle,
where in I the components and periods are as in I" but reversed. Then, the presentation of I’

includes:

<
»

where we use now the notation E; for all the hyperbolic elements F;, EZ-, E’i, Ei and C; for all the
reflections C;, C;, C;, C; with the aim to unify the proof of the lemmas above. The presentation
of I includes:

(') éli =1, for all the reflections, (627],_1@;],)@5 =1,

1,
r S g
..oy / i 95+ =1 ===/ -/
(12") HXi sz' HDz' By B BB gt
i=1 =1 j=1
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-
1]

where the components and periods of the i-th boundary component are reversed and 7
Mi0;+1—; Where o; is k;,1;, g; or t; depending on the type of the i-th boundary component. The

isomorphism ¢ : I' — I" is defined by:

1. ¢: E; - FE;, F~ Y

2. ¢: Dy — D'E},

3. ¢:B;—FE; BE,j=1,..,i-1,

4. ¢:Cij — FCy, . ;F~' F = (E}..E)"'D, ",

5. all the other generators of I correspond in the same manner to those in I".

It is clear that ¢ is an isomorphism, however in order to show that it is type-preserving, we
have to prove that D;E; is a glide reflection. In the cocompact case, this is an indirect result of
[40, Lemma 5]: as an isomorphism between cocompact NEC groups is necessarily a type preserv-
ing isomorphism, the products D;E; in these isomorphisms are glide reflections. As the type of
transformation resulting of the product depends only on the relative positions of the axis of the
translation Eg, the axis of the glide reflection D; and its line of reflection, then we just need to
build a compact fundamental region from the non-compact one where the edges paired by D; pre-
ceed in the surface symbol to the sides paired by EZ By just leaving all the sides identic except
for the edges between the paired by hyperbolic elements that are removed, and joining them via
a new side in H fixed by a reflection we get the needed compact fundamental region. In this way

we prove that the products D’gE; are glide-reflections and so the isomorphism is type-preserving.

Now, we prove that (i), (i7'), (ii7) are the images of (i), (i), (i4i) via ¢:

(1) ¢(€?J) = Fé;oiﬂ_jF*lFé;,oiﬂ_jF’l =1 and this implies 6;»20i+1_j =1,
(1) $((Cij-1Ci)™) = (FCi g1 F 7 FC 4y F 1) = 150 (C, C

T _
i7o¢+1—jci,oi+1—j> "=
—! =/ Mo tli
Land (C; ;€ ;) et =1,

(iii) ¢(ITi=y Xi[Tizy P12y DiEr..Bi 1 EiEig1. . Eryiygi) =

1 ' — e~ — =y ey N — _
:H§=1X1{Hlepi,1_[?:1Di2D;]EiD;]Ez’Ei E\E;..E; E; \E;FE; F'Eip1..Fyigp =

-/

19—/ - —
Finally, depending on the type of the i-th boundary, we can have in I':
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1. an additional relation in case of compact boundaries: Ezélkbf; 16@0 =1,

2. in the case of a v- or a n-cycle, the product F;C; ,, F; 16@1 is parabolic,
3. in the case of a p-cycle, the product E;C; ,,E; 16@1 is hyperbolic,

that should be verified in I by the corresponding relations. The first case is the cocompact case
and will not be discussed here. In the second and third cases, if the product Fiémifi_ 16,4 is
parabolic (hyperbolic), then so will be ¢(E;C; », E; 15171) =F E;_léglﬁ;é;mF ~1 and therefore

= 1=

E,; C’MEZ-U;M is parabolic (hyperbolic), and so is its conjugate égylﬁﬁ;oiﬁ[l and finally

7

the inverse F;é;oz,ﬁi_lé;l is then also parabolic (hyperbolic). O

Proof of the sufficient conditions of Theorem 3.9. Let us assume that we have an NEC group I'
with signature sg = (g; £; s; [m1, ..., my|; {C1, ..., Ci }; {él, e C’l}; {C’l, ey C’q}; {C1,...,Cs}) and
that I” has a signature sg’ = (g; +; s; [m}, ..., mL]; {C}, ..., Ca }: {C}, ... CI}: {CY, ..., C’;}; (C],...,C}),
with sign(sg)=sign(sg’), the proper periods [m], ..., m!] are a permutation of the proper periods
[m1, ...,m,] and there exist permutations ¢ of {1,...,k}, é of {1,...,1}, b of {1,...,q} and ¢ of
{1,...,t} such that in the orientable case, all the cycles C7, CV’Z’ , C’{ and C! are either directly

v

equivalent to the corresponding cycles Cy;y, C 3(i) C 363) and C (i) OT all are reversely equivalent.

In the non-orientable case, each cycle C/, (j'l’, C’Z’ and C‘l’ is either directly equivalent to the

corresponding cycles Cy;), C (i) C ) and C 5(i) OT reversely equivalent.

The general sufficient conditions stated in the theorem are then the concatenation of the

following basic operations applied in the signatures:
1. permuting the v-, n- and p-cycles (Lemmas 3.10, 3.11 and 3.12),
2. cyclically permuting the components of the 7- and p-cycles (Lemmas 3.13 and 3.14),

3. cyclically permuting the reversed components of all the 7- and p-cycles reversed (Lemma

3.15),

4. cyclically permuting the reversed components of a v, an 7- and a u-cycle in the non-

orientable case (Lemmas 3.16, 3.17 and 3.18),
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plus the well known conditions on the proper- and cycle-periods corresponding to the cocompact

part already proved by Wilkie [59] and Macbeath [40].

Then, Lemmas 3.10 to 3.18 prove finally that the conditions in Theorem 3.9 are sufficient. [

3.4 Canonical fuchsian subgroup

Given the signature of a finitely generated NEC group in this section we compute the signature
of its canonical fuchsian subgroup. A non-cocompact fuchsian group has signature of the form
(g;m1, ma,...,my; s;t), where s is the number of cusps and ¢ the number of funnels of the

corresponding orbit space.

In a finitely generated fuchsian group each conjugacy class of maximal finite cyclic subgroups
gives rise to a period, the number of conjugacy classes of maximal parabolic cyclic subgroups
gives rise to the parabolic part of the signature (number of cusps) and the number of conjugacy
classes of maximal boundary hyperbolic cyclic subgroups gives rise to the hyperbolic part of
the signature (number of funnels). A boundary hyperbolic element is characterized by the
fact that it leaves a unique interval of discontinuity ¢ in R invariant such that two boundary
elements with the same interval of discontinuity o are powers of a unique boundary element

that stabilizes o, see [5, pag. 262 and 266].

We are now in the situation of characterizing the canonical fuchsian group of an NEC group:

Theorem 3.19. Let I' be a finitely generated NEC' group with signature:
Sg = (g7 iv S [m17 sty m?”]7 {017 teey Ck‘}7 {éh cery él}? {élv seey C/\’11}7 {6’17 teey ét})v
i full

Sg = (g; i; S; [ml, veey mr]; {(nn, ...,nlkl), ceuy (nkl, ...,nkkk)}; {(Tvl,lg, ...,hlll), ceuy (hlg, veey TVL”l)};
{((ﬁ127 ”wﬁl,f}lgfl)v ceey (ﬁl,ﬁ1¢@1+17 ...,ﬁqu)), ceey ((ﬁq% "'7ﬁq,’f)q271)7 ceey (ﬁq,f)q’{)q+17 ceey ﬁq,qq))};
{((ﬁ’13) "'7ﬁ’17U12—1)7 ceey (ﬁLulul-‘rl) "'7ﬁ’17t1))7 ceey ((,ﬁt37 "')ﬁt,ut1—1)7 ceey (ﬁ’t,utut-‘rl) "'7ﬁ’t,tt))})'
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Then the canonical Fuchsian subgroup of I' has signature

Sg(r+) = (779 +k+1+ q— 1;m1amlam2am27 ooy My My, N1, "'7nkkkaﬁ12a "'ahllla

q t t
12, oy Rggys 13, ooy g3 28 + 1+ Y B+ Y 0352+ Y [Ui)),
i=1 i=1 i=1
where 1 = 2 for sign “ + 7 and n =1 for sign * — 7.

Proof. We first look for conjugacy classes in I't of elliptic, parabolic and boundary hyperbolic
elements of I'. By [54, Lemma 4], for an elliptic generator X € I', the groups conjugate to
(X in T fall into two conjugacy classes inside I'*. For a parabolic generator P € T, following
the proof of this lemma, we show that for any G € I' — I'*, the group G{P)G~!, which is
conjugate in I' to (P) is not conjugate in I'" to (P). Otherwise, there would exist G' € I'"
such that G’G(P)G~1G'~1 = (P). As (P) is the stabilzer of a unique point p € dH, we deduce
GG’ (p) = p and therefore G'G € stab(p), which is a contradiction as P € I't.

For a boundary hyperbolic element H, if the groups (H) and G(H)G~! with Ge T —T'*t,
were conjugate in I't by G’, then if ¢ is the unique interval of discontinuity of H, the ele-
ments of G(HYG~! and G'G{H)G~'G~! would have the same interval of discontinuity, i.e.
Go =G'Go =o0.

Claim G and G'G are reflections.
Proof. Let us assume that G is a glide reflection such that G? is a boundary element that
stabilizes o and therefore the boudary elements G? and in (H) are powers of a unique boundary
element that stabilizes ¢. This means that there exists a canonical fundamental region where
the glide reflection G links two edges with at least a vertex at infinity. However, as the edges
linked by a glide reflection have the orientation reversed, G' can only link edges with both
vertices in 0H. Otherwise when applying it to the vetex at infinity, it will be mapped into a
vertex in H. Now, this means that the edges linked by such glide reflection has a common vertex
at infinity that is neither parabolic, semi-parabolic or improper (as in the unbounded moebius
band in the example 2.3) which is a contradiction, as a canonical fundamental region can only
include parabolic, semiparabolic and improper vertices at infinity. Then G is a reflection and

for the same reason G'G also. This shows the claim.
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As G and G'G are both reflections and both have to fix the same axis, namely the axis
of H, we conclude that G = G’, which is a contradiction as we have supposed that (H) and
G{(H)G~! are conjugate by G’ e I'*.

In the same lemma, Singerman showed that any group conjugate in I' to (C; j—1Cj;) is
conjugate in I'* to (C; j—1Cy;). In our case, this applies to the elliptic products Cv’i’j_lcv’ij,
éi,jfléij and C'i,jfléij, too.

In the same way, any group conjugated in I" to the group generated by the parabolic
elements Cv’iléili, CA'Z-7j,1CA'ij with 7;; = o0 or C~'i7j,1C~’ij with 7;; = o0, is conjugated in
I't respectively to éiléili, CA'm_lCA'ij with 7;; = o or C’Lj_lé’ij with 7;; = oo0. Indeed,
if G € T —I'*, then the conjugate G{C;1Cy,>G~" in T of the group (C;1Cy,), verifies
G<CV'1~1CV'Z~11.>G_1 = G<éiliéiléiliéili>G_l = GCV’ili<Cv’¢1Cv',~li>(GCv'ili)_1, so that they are also
conjugated in I't. The same can be done for the groups <CA’Z-,]~_1CA'¢]~> with 7;; = o0 and
<C~’i7j_1(~3’ij> with 72;; = oo in I'*. The total number of parabolic conjugacy classes in I'" is then
2s+1+q+ Z;?:l 0; + Zle ¥;, where as before ¥; is the number of parabolic products C’i’jflé}-j

and ¥; the number of parabolic products CN'i7j_1C~’ij.

Similarly, a group conjugated to the group generated by the boundary hyperbolic elements
C’,-gé’iti or by the hyperbolic products C~'i7j_2@-j are conjugate in I't to C’ilé’iti or éi,j_géij
respectively, where j — 1 € U;, namely the linked side is a free-edge and there is no reflection
CN’m,l in the presentation. The proof of this fact is exactly the same as the parabolic and

elliptic cases. Finally, the total number of hyperbolic conjugacy classes is 2t + Z§=1 |U;|, where

|U;| is the number of boundary hyperbolic products in the i-th p-sequence.

For calculating the genus, we take into account that if I' is a group acting properly
discontinuously on a manifold H, then the orbit space H/T" has the structure of an orbifold.
It is also well known that if there is a cover f : H/T' — H/T of degree d of H/T', then the
Riemann-Hurwitz formula reads d = x(H/T")/x(H/T"), where x is the Euler-characteristic of
the corresponding orbifold. Now, as I'*" is a subgroup of index 2 in T, it can be defined an orbit

space cover f : H/T'" — H/T of degree 2. Therefore, x(H/T'") = 2x(H/T'). It is well known
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(see [35, Section 1]) that the Euler-characteristic of an orbifold H/A where A is a fuchsian

group of signature (g;my, ..., m,; s;t) is

VE/A) =229~ N1 1) su

iz mi
For the canonical fuchsian group I'*" of the NEC group I', we have shown that the signature is

+ /. v v A A ~ ~ .
sg(I'™) = (g’ ma, ma, ma, Ma, ooy My, M, ML, ooy Ny 5 T2, ey ML T2 Thgqy > T35 -os ity
q t t
25 +1+q+ ). 0+ > T2t + Y |U),

i=1 i=1 i=1

where the proper periods include only the subindices 7, j where n;;, 725, 75, 7;; are finite and
0i,U; are the number of semi-parabolic vertices in the i-th 7- and p-sequences. Then, the

Euler-characteristic of the orbit space H/T'" is

r k; 1
X(HTT) =2 -2g 21— )= Y Y-y =Y Y- )
i=1 mi i=1j=1 Tij i=1j=1 Tij
qi 1 t 1 t t
2= =D Y (= —) =Y &i—2s -2t~ ) |Uil,
i=1j=1 Tij i=1jeL; Tij i=1 i=1

where we have called L; the set of j € {1, ...,¢;} such that C’i,j,l@j is elliptic and we have added
the parabolic term —I, for adding the indices 7 = 1 with 72;1 = o0 to the sum Z§=1 22;2(1 — %),
and the parabolic terms —q and — >J_; 0;, for adding to the sum Y,/ , ;I'iZQJEVi(l - ﬁ) the
indices j = 1,7 € V; with f;; = o0.

In the case of the non-cocompact NEC group T', the orbifold Euler-characteristic of H/I" can be
calculated directly via the usual definition x(H/T') = F — E+V, where F, E, V are respectively
the number of faces, edges and vertices of a triangulation of H/T', where each vertex and edge
weighs 1/k, with k the order of its stabilizer, see [58, Def 13.3.3, Prop. 13.3.4 and Examples].
We use the canonical form of the fundamental region and the equivalence of the pairing edges
and related vertices for calculating it. First of all, we have necessarily only one face, so F' = 1.
The number of edges of the fundamental region is one per paired ones and half for mirror edges.
The free-sides do not belong to the fundamental region (non-compact part) and actually count

as 0. We have then
E=FE|+ E»,
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with
Ei=s+r+ng+k+1+q+t,

where 1 = 1,2 depending on the sign of the non-cocompact NEC signature and for mirror edges

k
EQZ;EkH Zl+ 2q,+ Zt—\UI
i=1

As mentioned above, if o is the order of the stabilizer of a vertex, then % is the weight at
counting them. The parabolic, semiparabolic and improper vertices are counted as 0. Then,

the total number of weighted vertices is

where as before we call L; the set of j € {1,...,¢;} such that C; j,lé’i ; is elliptic. The conic

vertices count mi and the corner vertices count %7% — % L and ; — . The vertices of the
@ 3
fundamental region paired respectively by the hyperbolic transformatlons FE; are of order 2 and

count %k‘ and all other vertices are conjugated and count 1. We can then conclude

k
1
xXHT)=F-E+V=1—s—r—ng— k—l—q—t—zz}kz Zl_
1 1 1 ! ko ki 11 UL 11
— > i — 5 (- |Ui) +1+Z + - — do—+
23 23 mi 32 (S5 2
q r t
11 1 11 1
D D I e D I G VS S P
i:13:12nij i=1 i:ljeLiQan 2
ko ki I I q ¢
1 1 1 1 1 1
PP PRI o) YE (L ENEI N o o TIESNSI NS o o VNN T
z:1j212 Tij izlj:12 Tij zzlj:12 Tij
! 1,1
IIDWIEEE —fZ\m L
i=1jeL; i=1

where we have used the fact that t; = 2|U;| + | L;| + 0;, i.e. the total number of edges in the i-th
p-sequence is the same as the total number of vertices (considering the first and last vertices
the same as they are paired). In turn the total number of vertices is the number of improper

vertices (2|U;|) plus the number of proper vertices (9;) plus the number of vertices in H (| E;|).
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Using the Riemann-Hurwitz formula xy(H/T'") = 2x(H/T), we get

r 1 k ki 1 l; 1 q; 1
2 291—22(1—5)—2 (1—7?)—2 (1—73*)—22(1—&)
i=1 ¢ i=1j=1 v i=1j=1 v i=1j=1 v
t 1 ¢ t
—ZZ(l—ﬁ—i')—zs—Qt—Zw—‘ b =
i=1jeE; J i=1 =1
r 1 kK 1
=4—25—2ng—2k -2l —2q — — = — —
s —2ng — 2k — 21 — 2g 2t+22(mi 1)+ZZ(% 1)+
i=1 i=1j5=1
l lz 1 q qi 1 t; 1 t t
DI Nt R I N ot IR DI N et D N DI
i=1j=1 "% i=1j=1 "% i=1jeg; Y i=1 i=1
Rearranging the terms and simplifying, we finally obtain
2¢' = —2+4+2ng+2k+2l+2qandsog =ng+k+1+q—1. O

3.5 Topological classification of the orbit space

The main goal of this section is to classify topologically the (non-compact) orbit space from
the signature of the group. In the case of cocompact fuchsian groups, given a signature
(g;mq1,ma,...,m,), the related orientable orbit space is classified up to homeomorphism by the
genus g. Similarly, the orbit space of a cocompact NEC group is identified up to homeomorphism
by the invariants g, +, k, i.e. genus, orientability and the number of boundary components of
the space. As a surface with a closed disc removed is topologically equivalent to a surface with
a point removed, the orientable orbit space of a non-cocompact fuchsian group of signature
(g;m1, ma,...,my; s;t), where s is the number of punctures and ¢ the number of funnels, is then

defined by the invariants g, s + t.

In order to obtain the invariants classifying topologically the orbit space corresponding to a
non-cocompact NEC group in terms of its signature, we introduce the basic classification of
non-cocompact surfaces following the classical results of Richards [50], Brown and Messer [7]

and Konya [34].

Let P, © P, O ... be a nested sequence of unbounded connected regions of a surface S such

that:
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(1) the boundary of P, in S is compact for all n,
(2) for any bounded subset A of S, P, n A = J for n sufficiently large.

We say that two sequences P, © P, D ... and Q1 D @2 D ... are equivalent if, for any n
there is an integer N such that P, c @Qn and vice versa. We denote by p* the equivalence class
of sequences containing p = P; > P, O ... that we call an end of S. The set B(S) of all ends
of S is a topological space having as elements the ends of S and endowed with the following
topology: for any set U in S whose boundary in S is compact, we define U* to be the set of
all ends p* represented by some p = P| © P, O ... , such that P, o U for n sufficiently large.
A bordered surface is said to be planar if every compact subsurface in it is of genus zero. A
surface without borders is planar if and only if every Jordan curve separates it. We say that the
end p* is planar and/or orientable if the sets P, are planar and/or orientable for all sufficiently

large n.

A surface S with non-empty boundary is of infinite genus and/or infinitely nonorientable
if there is no bounded subset A of S such that S — A has genus 0 and/or is orientable. A
non-compact surface S can be classified attending to its orientability in four types, namely
orientable, infinitely nonorientable, nonorientable with an odd number of “cross cups” or with
an even number of “cross cups”. The spaces of ends B(.S) is then defined as a nested triple of
the sets B(S) o B’(S) o B"(S) where B'(S), B”(S) are the parts of B(S) which are not planar
and infinitely nonorientable respectively. Richards proved in [50] that two surfaces without
boundaries of the same genus and orientability class are homeomorphic if and only if their

spaces of ends considered as triple of spaces are topologically equivalent.

In case of surfaces with boundaries we have to consider additionally the ends contained on
the boundaries: we define similarly the triple of spaces C(S), C’(S), C"(S) corresponding to all
the ends on the boundary, and the subsets of non planar ends on the boundary and infinitely
nonorientable ends on the boundary. Additionally, we say that two ends are adjacent if there
exists a boundary component for which they are the end of it. Two boundary ends are said to
be equivalent if they belong to the same sequence of adjacent ends. We finally define the set D
as the quotient of C' by the equivalence relation above. Equipped with the boundary space of
ends and D, Prishlyak and Mischenko [49] proved that two surfaces S and Sz with the same
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genus, orientability class and same number of compact boundaries are homeomorphic if and
only if there is a homeomorphism which maps B(S1) onto B(S2), B'(S1) onto B'(S2), B”(S1)
onto B”(Sz), C(S1) onto C(S2), C’'(S1) onto C’(S2), C"(S1) onto C”(S2) and D(S7) onto D(S2).

For a surface S that is an orbit space generated by a finitely generated non-cocompact NEC
group, we know that S has finite genus, and therefore by definition B'(S) = C'(S) = &, and S
has finite orientability class, also by definition B”(S) = C”(S) = &. So we have proved:

Lemma 3.20. Let I' be a finitely generated non-cocompact NEC group and S = H/T', then
B'(S)=B"(S)=C'(S)=C"(S) = .

Let I be an NEC group of signature:
sg = (g £ 8 [ma, oo, me [ {C1, o, G} {C, o, CE {C, o, G Y O, o, C1)).

For classifying the compact core of the orbit space we have the genus g, orientability + and the

number k of compact borders.

Now, for the non-cocompact part, the space of ends B(.S) corresponds to points and closed
disks removed on the surface, i.e. punctures and simple funnels. As a surface with a puncture
removed is topologically (but not conformally) equivalent to a surface with a simple funnel,
their total number is an invariant, that we write s +n?, where n? is the total number of y-cycles

that are simple funnels. In other words n° is the number of funnels with 0 cuts.

Similarly, the space of ends on the boundary C'(S) corresponds to boundaries on which we
remove points and closed segments, so that each border with only one semi-puncture (total
number [) is topologically equivalent to a funnel with one (non-compact) cut (total number
nl'). Let us call ny, k > 2, the number of n-cycles C;, such that HA/Z| = 0; = k, i.e. boundary
components with exactly k semi-punctures. And we call n* the number of p-cycles C; with a
total number of k cuts. As before, semi-punctures (points removed on a border) and cuts on
the funnels (closed segments removed on the border) are topologically, but not conformally

equivalent.
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Let us define N, = nj +n*, k=2, Ny = s + n® and N; = [ + n!. Let us define the number
M
N,
N = Hpk-:iv
k=0

with M the maximum k such that N # 0 and pg the k-th prime number. We call N the
diagram invariant (motivated by the definition of diagram and the homeomorphism theorem of
non-cocompact 2-manifolds [7, Theorem 2.2]). It identifies from a topological point of view
the space of ends B(S) (Ng) and C(S) (Ng, k = 1) of the surface S = H/I'. Finally, we have

proved the following theorem:

Theorem 3.21. The orbit space H/T' of a finitely generated non-cocompact NEC group T with

stgnature:
58 = (97 ia S [ml’ "')mT]; {Clv ceey Ck}7 {éla cey CV1l}7 {017 ey éq)}7 {éla ey C’t})

is a non-compact surface topologically classified by the invariants (g, £, k, N), where g is the
genus of H/T', “+7 stands for its orientability, k is the number of compact boundary components

and N is the diagram invariant defined above.

Example 3.22. Let us consider the surface of the example 8.5. According to the Theorem 3.21,

we have the following invariants that classify topologically (up to homeomorphism) the surface:

Invariants of the compact core: the genus g = 3, orientability “+”7 and number k = 1 of

compact borders,
e Ny: one puncture, s = 1 and one simple funnel n® =1, Ny = 2,
o Ni: onev—cycle, | = 1 and no funnel with only one cut, n' = 0, such that Ny = 1,
e Ny: one n—cycle with no = 1 and two u-cycles with two cuts, No = 3,

Finally, M = 2 and the diagram invariant N = 2No3Ni5N2 — 923153 — 1500 and therefore the
list of invariants is (3, +, 1,1500).
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Other results on NEC groups

n this chapter, we study additional properties of not necessarily non-cocompact NEC
groups, namely the elementary NEC groups and the limit set. In Section 4.1 we describe
all the elementary NEC groups, including those with orientation reversing isometries. In
Section 4.2, we prove that an NEC group and its canonical fuchsian subgroup have the same
limit set, and then introduce the classification of NEC groups of first and second kind, similarly

to the classification of fuchsian groups.

4.1 Elementary NEC groups

In this section we describe a class of subgroups of isometries of the hyperbolic plane called

elementary groups, which have a particularly simple structure.
Definition 4.1. An NEC group I is elementary if there is a finite I'-orbit in 0H u H.

The elementary fuchsian groups are of one of the following types (see Katok [32, Theorem

2.4.3]):
1. I' ~ C),, a finite cyclic group generated by an elliptic element of order m,
2. I' ~ Cy is an infinite cyclic group generated by either a parabolic or a hyperbolic element,

3. T~ Co ® Oy, conjugated in Isom(H) to (S, T) where S(z) = kz,k > 1 and T(z) = =L.
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For proper elementary NEC groups, we have the following classification.

Theorem 4.2. A proper elementary NEC group ' is a group of one of the following types:
1. T' ~ Oy, generated by a reflection,
2. I' ~ Cy, generated by a glide reflection,

3. I' ~ D,,, dihedral generated by an elliptic element of order m and a reflection fizing the

elliptic fized point,

4. I' = Dy, generated by a parabolic element and a reflection fixing the parabolic fized point,
or by a reflection fixing a and b in 0H and an elliptic involution swapping a with b, or by
a glide reflection and an elliptic involution swapping the fixed points of the glide reflection,
or by a hyperbolic element and a reflection swapping the fized points of the hyperbolic

element,

5. T =~ Cy® Oy, generated by either a reflection fixing a,b € 0H, or a reflection swapping a

and b, or a glide reflection firing a,b, and an elliptic element swapping a with b,

6. I' ~ Cyy ®Cy, generated by a hyperbolic element and either a reflection or a glide reflection
both fixing the same points in 0 H,

7. T ~ Doy @ Co, generated by a hyperbolic element fixing a and b, an elliptic involution

swapping a with b and a reflection preserving {a, b},

8. I' ~ Dy, x Cy, generated by a hyperbolic element fixzing a and b, an elliptic involution

swapping a with b and a reflection swapping a with b,

Ns

T > Cp @Cy or (Cyp, @ Cy) x Co, generated by a hyperbolic element fizing a and b, an

elliptic involution swapping a with b and a glide reflection fixzing a and b.

Proof. Attending to the number of points of the finite orbit and whether this orbit is in H or

0H we have the following possibilities:

Case 1: I" has an orbit consisting of one point a € H. We can write then I' = stab{a}. As

no glide reflection, hyperbolic or parabolic element fixes any point in H, then the group can

only contain reflections and elliptic elements. We deduce then I is
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(1.1) a group generated by a unique reflection R as generator, I' = (R) ~ Cs.

(1.2) a group generated by an elliptic element E and a reflection R both fixing a, I' = (E, R) ~
D,,.

Observe that we have I't = {Id} or {elliptic).

Case 2: T" has an orbit consisting of one point a € 0H. Again, we write I' = stab{a}. We

have the following cases:
(2.1) a group generated by a unique element S, I' = {(S). We have the following possibilities:

(2.1.1) S = R is a reflection, I"' = (R) ~ C3, or

(2.1.2) S = D is a glide reflection, I = (D) ~ Cl.
We have I't = (Id) or {(hyperbolic).

(2.2) A group generated by a parabolic element P and an orientation reversing element S, both

fixing a € 0H, I' = (P, S), so that we get:
(2.2.1) T = (P, R reflection fizing a € 0H) = (R, PR|R* = (PR)?> = 1)~ Oy + Co ~ Dy.

In this case, S cannot be a glide reflection fixing a since otherwise I't would contain a
parabolic element and the hyperbolic element S?, which is impossible as a fuchsian group
cannot contain a parabolic element and a hyperbolic element fixing the same point, see
for example see Katok [32, proof of Theorem 2.4.3]. Additionally, we have I'" = (Id) or
(Parabolic).

(2.3) A group generated by a hyperbolic element H and an orientation reversing element S,
both fixing a € JH, ' = (H, S). Let b € 0H be the other fixed point of H. Then, we have

two possibilities:

(2.3.1) T' = (H, R reflection fixing a € 0H).
Claim R(b) = b.
Proof. Suppose R(b) # b. Then, R # HRH ! since otherwise R(b) = HRH'(b) =
HR(b) = R(b) € Fiz(H) = {a,b} which is a contradiction. So RHRH ~! is parabolic

fixing a, which is impossible as mentioned above. So we deduce R(b) = b, this shows
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our claim.

Choosing {a, b} = {0, 0} we conclude then I' = (z — Az, R — —Z2) = C, @ Cs.

(2.3.2) I' = (H, D glide reflection fizing a € 0H).

Claim D(b) = b.
Proof. Suppose D(b) # b. Then, D?(b) # b, because the {(D)—orbit of b is infinite.
Therefore, I'" contains the hyperbolic elements H and D? with different fixed point
sets. This is impossible, see [32, proof of Theorem 2.4.3]. So, D(b) = b, showing our
claim.
Again, choosing {a,b} = {0,00} we conclude I' = (H : z — Xz, D : z — —pz (u >
1)). Since (H, D?) is cyclic, see [32, Theorem 2.3.5], we may write (H, D?) =
(hyperbolic Fy. SoT' = (F : z — az,D : z — —puz (un > 1)) = (F,D|FD =
DF,D? = F™ for some m) ~

(DF¥y = Cy if m=2k+1,

(FY®(DF*)y=C, ®Cy if m = 2k.

Case 3: I' has an orbit consisting of two points a,b € 0H. Again, we write I' = stab{a, b}.

In this case, I'" cannot contain parabolic elements, since the orbit of a point under a parabolic
element is infinite, unless the point if the fixed point of the parabolic element. We have the

following cases:

(3.1) a group generated by a unique element S, I' = (S preserving {a,b} ¢ 0H). We have the
following possibilities, where we may assume {a, b} = {0, 00}:
(3.1.1) T' = (R reflection fixing a,be dH) = (z — —z) ~ (s,
(3.1.2) T = (R reflection swapping a with by = (z — ﬁ, >0y~ Co,
z
(3.1.3) T' = (D glide reflection fizing a,by = {z— —AZ, A > 0) ~ Cq.
. group generated by two elements £ an , Wit an elliptic involution swapping a
(3.2) A db 1 E and S, with E an elliptic involuti i
with b in 0H, and S an orientation reversing isometry preserving {a, b}, I' = (E,S). We
have the following possibilities, where again {a, b} = {0, 0}:
1
(3.2.1) I' = (E, R reflection z — —Z fixing a,b) = (z +—> ——,z— —2z) ~ Co ® Oy,
z
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(3.2.2)

(3.2.3)

I' = (FE, R reflection z — gswapping a with by ~
z
Cy® Cy if u =1, thisis the case (3.2.1),
Cy%Cy = Dy otherwise.

Observe that ER is such z — —~ and so ER is a glide reflection fixing a, b.
]

I' = (E, D glide reflection firing a,b € JH). This is the case (3.2.2) with the

product FR a glide reflection.

(3.3) A group generated by two elements H and S, with H a hyperbolic element H(z) = Az

(A > 1) fixing a = 0 and b = o0, and S an orientation reversing element preserving

{a,b} = {0,00}, I = (H,S). We have the following possibilities:

(3.3.1)

(3.3.2)

(3.3.3)

I' = (H, R reflection z — —Z fixing a,b) ~ Cy @ Cy, which is the case (2.3.1)
above.
I' = (H, R reflection z — gswapping a with by =(RH, Ry ~ Cy * Cy = Dy,

PA .
because RH : z — “—, is a reflection.
z

I' = (H, D glide reflection fizing a,by ~ Cy or Co, @ Cy. This is the case (2.3.2).

(3.4) A group generated by three elements H, FE and S, with H a hyperbolic element H(z) = Az

1
fixing a = 0 and b = o, E an elliptic involution E(z) = —— swapping 0 and o
z

and S an orientation reversing element preserving {0,00}. In this case, we can write

1
't 2(EH,E)=Cy%Cy = Dy, as EH(z2) = % has order 2.
2

We have the following possibilities:

(3.4.1)

(3.4.2)

I'=(H,E,Rreflection z — —z fixzing a,b€ {H) ~ TT @ Cy ~ (Cy x Cy) ® Cy =
DOO (‘DCQ.
I'=(H,E, R reflection z — ﬁ swapping a with by ~

z

Dy @ Cy if w =1, thisis the case 3.4.1,

Dy x Cy = otherwise.

For the case i # 1, we have considered first that (RE)? is an orientation preserving
element fixing two points in dH and therefore is hyperbolic and so (H, (RE)?) is
a cyclic group as both are hyperbolic groups fixing the same points. Then there
exists a hyperbolic element F such that (RE)? = F™ for some n. We can then write

(H,E,R) = (F,E,R|(EF)? = E2 = R = 1, RER = EF™). Now, it is clear that
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't =(F,E|(EF)?=FE? =1)~ 03%Cy ~ Dy, isnormal in T, TT n(R|R? = 1) = ¥
and any element of I' can be written in the form TR with T € T't, i.e. T is the

semidirect product of I'" and (R|R? = 1).

(34.3) I' =(H, E, D glide reflection z — —uz fizing a,by ~ (H, D) x Cs.
In this case, the semidirect product of (H, D) and (E|E? = 1) is straightforward

considering that EHE = H~! and EDE = D! and as seen in (2.3.2), (H, D) ~
Coo

or

Case 4: T has an orbit consisting of k > 2 points in H or k > 3 points in 0H. First of all, I'"

cannot contain elements of infinite order since the parabolic and hyperbolic elements can have
only either fixed points at infinity or infinite orbits (see [32, pg. 39]). In fact, I'" = {id} or
(elliptic of order n). We have the following cases:

(4.1) T'" = {Id} and so I" = (reflection) ~ Cs,
(4.2) Tt = (F elliptic order m fixing p) and so I' = (FE, R reflection; fixing p) ~ Dy,.
U

Remark 4.3. From the theorem is clear that the elementary NEC groups are finitely generated.

Additionally, an elementary group is non-cocompact.

4.2 Limit orbits and the classification of NEC groups

Let z € H and {T},} a sequence of distinct elements of an NEC group I'. If the sequence {T},z}

has a limit, then this is a limit point of I'.

Definition 4.4. The limit set of an NEC group I' is the set of all limit points of I'-orbits
I'z, z € H and is denoted by A(T).

For fuchsian groups the limit set can be one of the following (see Katok [32, Theorem 3.4.6]):
1. a set consisting of 0, 1,2 points in JH,

2. a perfect nowhere dense subset of 0H,
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3. JH.
We have the following results:

Theorem 4.5. Let T’ be an NEC group and let A(T"), A(T'") be the limit sets of the NEC group
and of its canonical fuchsian subgroup. Then A(T) = A(T'T).

Proof. First of all, it is clear that A(T't) < A(T"). Conversely, for each a € A(T"), there exists
a sequence {1} in I" with T,,z — a. We can ensure that there exists an infinite subsequence
of {T,} such that either all the elements belong to I'" or to I' — I'". If the elements belong
to T'", then a € A(T'"). If they belong to I' — T'", then as I'" is a subgroup of index two of
', we can decompose the group into a union of two disjoint sets ' U TT" with T e ' — T'*
and therefore we have a sequence S,, = T~ 1T, in I'* such that S,z — T 'a € A(T'"). But
TSpz = TS,T Tz — a, so we have a sequence of elements of R, = T'S,7~! € I'* and a

w = Tz € H such that R,w — a and therefore a € A(T'"). O
The following corollary is immediate:
Corollary 4.6. The limit set of an NEC group is one of the following:
1. a set consisting of 0,1,2 points in 0H,
2. a perfect nowhere dense subset of 0H,
3. 0H.

A fuchsian group A is said to be of the first kind if its limit set is 0H, otherwise is of the
second kind. Specifically, elementary fuchsian groups are of the second kind. Fuchsian groups
of the first kind are finitely generated and have finite covolume. Based on the Theorem 4.5 we

can introduce the same classification of NEC groups and obtain similar results:

Definition 4.7. An NEC group T is called of the first kind if its limit set is 0H. Otherwise it

is called of the second kind.

Corollary 4.8. Let T’ be an NEC group and T'" its fuchsian canonical subgroup. Then T is of
the first kind if and only if T'C is of the first kind.

Proof. The proof is a direct consequence of A(T') = A(T'"). O
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Corollary 4.9. Let I' be a finitely generated non elementary NEC group. Then I' is of the

first kind if and only if it has a fundamental region of finite area.

Proof. T is of the first kind if and only if I't is of the first kind and this happens in case of
non-elementary finitely generated fuchsian groups if and only if there is a fundamental region
of I't of finite area (for example applying Beardon [5, Theorem 10.1.2]). Now, as I'* is a
subgroup of index two of I', there is a fundamental region of I' whose area is half the area of a

fundamental region of I't and therefore finite. O

Finally we can easily derive the following corollaries:

Corollary 4.10. Let I' be a finitely generated non elementary NEC group of first kind. Then

the signature of T does not include any C cycles

sg = (g; ;5 [ma, ooy my |3 {C1, ooy Ci 3 {Ch, oo, CD) Y {CH, o, C) Y {1
Proof. By Theorem 3.19, the signature of the canonical fuchsian group I'" is

+ . . .
Sg(r ) = (719 +hk+1+ q— 1,m17m1)m27m27 cony My Moy ML ey Mkky > 0125 <205 T,

q t t
ﬁ172...ﬁq7qq, ﬁl,?)---ﬁt,tt; 2s + 1+ 2 U; + Z 2 ﬁi’j; 2t + 2 |UZ’),
i=1 i=15=1 i=1
where 1 = 2 for sign “ 4+ ” and i = 1 for sign “ — 7. As the fuchsian group is finitely generated
n g n g

of first kind, then 2t + >°¢_, |U;| = 0. This means that ¢ = 0 and therefore the signature of the

canonical group is reduced to

Sg(FJr) = (779 +k+1+ q— 1;m1)m17 coey My My, N1, °")nkkk7ﬁ127 "'7hlll7

q
ﬁ172...ﬁq7qq; 2s + 1+ Z Uy O),
=1

in other words, there is no u-sequence in the fundamental region, i.e. the related data in the

signature is empty. O

Corollary 4.11. Let I" be a finitely generated non elementary NEC group of first kind of
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stgnature as in corollary 4.10. Then, the measure of any fundamental region is

1
w(l) = 27 [ng+kz+l+q—2+s+2 1——)+

=1 m;
1 & 1 1 i 1 1 & 1
- 1— — )+ = 1— - 1— :
+ 2;;_1( )t 2;;1( )t 2;1;1( A

where n = 2 for sign “ +7 and n =1 for sign *“ —
Proof. The area of a non elementary finitely generated fuchsian group A of signature (g; m1, ..., m;; s; 0)
is

u(A) = 2029 215+ (1 - ]

i=1 mi
By corollary 4.10, the signature of the canonical fuchsian group I'" is
(F+) ( ng + k+1+ q— 1; ST, TN, T2, TN,y ey Ty My V115 ey Ty ﬁlZa (EXT} hllla

1,2, ooy g3 25 + 1+ Z 0;0)

i=1
where n = 2 for sign “ +” and n = 1 for sign “ —”. As I'" has index two in I, we have
pu(T*) =2u(T). So we get
1
(T = 2[ng+k+l+q—2+s+—l+ ZUZ—I-ZI—E)-F
=1 v
k ki I L q
1 1 ! 1 1 1
ODAEFEIED D IEERE) ISR
2 2 & njj 2 ¢ - N4
i=1j=1 i=175=2 =1 ey,
1
— o [g+k—|—l+q—2+s+2 1——)+
=1 i
k ki I L q 4
1 ! 1 ! 1 1 1
= 1—— = 1— = 1-— .
PPN AEPIPDNCE DI H ol
1=1j5=1 1=175=1 J 1=175=1 J
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CHAPTER

Conclusions

he focus of this thesis has been oriented to understand the structure and classification,
from an algebraic, geometrical and topological point of view, of finitely generated

non-cocompact NEC groups.

The main original results obtained are summarized below:

1. We have defined a canonical fundamental polygon of an NEC group I', providing details of
the structure of its fundamental region, specifically studying the properties of edges and

vertices at infinity for which the notions of v-, n- and p-sequences have been introduced.

2. We have obtained the presentation of these groups via generators and relations closely
linked to the geometry of the canonical fundamental region, including orientation preserv-

ing, reversing isometries and hyperbolic boundary and parabolic elements.

3. We have defined a signature for non-cocompact groups that collects the algebraical
(presentation), geometrical (marked polygon) and topological (identification of the orbit

space H/T") data of the groups.

4. We have described the non-compact orbit space (non compact Klein surfaces) and defined

topological invariants that classify them up to homeomorphism.
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5. We have identified the necessary and sufficient conditions for the existence of type-

preserving isomorphisms between two groups given their signatures.

6. We have obtained the signature of the (non-cocompact) canonical fuchsian subgroup of a

proper NEC group given its signature.

7. We have presented the form of all elementary NEC groups and the structure of the limit
set of an NEC group I'. Due to the fact that the canonical fuchsian group is a normal

subgroup of index two, we also proved that the limit sets of I' and 't are the same.

8. Using the fact that the limit sets A(T") and A(T'") are the same, we have applied directly
results and concepts of the theory of fuchsian groups for studying properties of NEC
groups (e.g. classification of NEC groups in first and second kind, signature of finitely
generated NEC groups of first kind, finite measure of first kind NEC groups finitely

generated and their value in terms of the signature).

5.1 Future work

The introduction in this thesis of basic results of non-cocompact finitely generated NEC groups

as stated above can be immediately applied in three directions:

1. Study of algebraic properties of NEC groups, including for example the study
of the signatures of their (normal) subgroups, finitely maximal NEC groups, the rank
of finitely generated NEC groups, etc. Linked to the concepts of measure and Euler-
characteristic of a fundamental region is the problem of showing that given an abstract

signature, there exists an NEC group with this signature if and only if

thk+l+qgrt+ 2+Zr](1 1)+1zk::ki(1 1)+12li(1 1)+
ng q 5= o) T3 T T2 7
o e 23S e 2SS T
1 q 4 1 1 t B 1
+§ZZ(1—@,)+§Z(U¢+’UH+ PN _?))>O’
im1j=2 ij i=1 JEE; “J

where n = 2, if sign(s) =7+ ” and n = 1.

2. Study of non-compact Klein surfaces: Prove a uniformization theorem for non-

compact Klein surfaces, namely under which conditions a non-compact Klein surface of
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finite genus is an orbit space of the form H/T', with I" a finitely generated NEC group.
In general, the study of the properties of the symetries and moduli spaces linked to

non-compact Klein surfaces.

. Properties of the groups of automorphisms of non-compact Klein surfaces:
The study of the automorphism groups of non-compact Klein surfaces is a topic about
which not much is known and where the results of this thesis might contribute. For
instance, the automorphism groups of non-compact Riemann surfaces with a finitely
generated fundamental group are finite, as shown by Greenberg in [25] and this work
might help to understand under which conditions a Klein surface which is the orbit space
of a finitely generated non-cocompact NEC group has a finite group of automorphisms.
Also the study of the structure of the automorphism groups for different non-compact
Klein surfaces (surfaces with punctures, funnels with or without cuts, etc.) or the
existence of surfaces with automorphism groups in a prescribed class are topics for a

future development of the results in this thesis.
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