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Resumen

Esta tesis estudia métodos de aproximación para cadenas de Markov controladas en tiempo
continuo y para juegos markovianos bipersonales de suma cero en tiempo continuo. Es-
tos modelos dinámicos ya han sido estudiados desde el punto de vista teórico pero, en
general, no es posible obtener expĺıcitamente los valores óptimos de los problemas ni las
estrategias óptimas, debido a la complejidad de las correspondientes ecuaciones de optima-
lidad. Es por ello que se introducen aqúı métodos de aproximación que permitan aproximar
numéricamente dichos valores óptimos y las correspondientes estrategias óptimas.

En un contexto más general, la idea es proponer una definición de convergencia de una
sucesión {Mn}n≥1 de modelos de cadenas de Markov controladas a un modelo M, cuya
solución óptima se quiere aproximar. Se darán entonces condiciones bajo las cuales la
convergencia Mn →M implique la convergencia de los valores óptimos y de las poĺıticas
óptimas de Mn a los de M. Esta misma problemática se abordará para la convergencia
Gn → G para juegos de Markov de suma nula.

Los modelos de control y juegos considerados tienen espacio de estados numerable,
espacios de acciones de Borel, y sus tasas de transición y pago pueden ser no acotadas.
Se estudiarán los criterios de optimalidad del pago descontado y del pago promedio. Las
hipótesis principales que se harán sobre estos modelos incluyen desigualdades de tipo Lya-
punov sobre las tasas de transición, continuidad del pago y de las tasas de transición, y
compacidad de los conjuntos de acciones. Además de los resultados de convergencia de
los valores óptimos de los modelos de control M y juegos G, se estudiarán las tasas de
convergencia de los valores óptimos de Mn y Gn, cuando estos se definen mediante una
truncación finita de los espacios de estados y acciones de los modelos originales. Se probará
que estas tasas están estrechamente relacionadas con el máximo exponente para el que se
obtiene una desigualdad de Lyapunov.

Los resultados teóricos obtenidos se ilustran con varias aplicaciones a modelos de pobla-
ciones y procesos de nacimiento y muerte. De esta manera, se prueba también que los
métodos de aproximación estudiados son una herramienta potente que permite estimar
con precisión la solución óptima de modelos estocásticos de decisión complejos.
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Chapter 1

Introduction

1.1 Overview

The goal of this thesis is to propose techniques to approximate continuous-time controlled
Markov chains and Markov games. The motivation for such approximations is mainly
practical. Indeed, the aforementioned control and game models have been extensively
studied theoretically, but it is not possible in general to determine explicitly the optimal
value or the optimal strategies. The purpose of the thesis is precisely to tackle the problem
of approximating numerically such optimal solutions.

In a more general framework, the idea is to propose a definition of convergence of a
sequence of control models {Mn}n≥1 to a control model M, written Mn → M, such
that this convergence implies convergence of the corresponding optimal value functions
and optimal policies. (This will be done, similarly, for game models {Gn}n≥1 and G.) To
some extent, such results can be viewed as a sort of “continuity results” for control models,
ensuring that the functions that map the control model into its optimal value function and
its optimal policy, say V and P, respectively, are continuous, meaning that Mn → M
implies

V(Mn)→ V(M) and P(Mn)→ P(M).

In this sense, it is out of the scope of this thesis to define some kind of topology on the
family of control models ensuring the continuity of V and P. Our point of view in this
thesis will be to start from a so-called original control modelM and then study sequences
of control models {Mn} converging to M, ensuring convergence of optimal values and
policies.

Concerning the application of this technique, one should think of the sequence {Mn}n≥1

converging toM as a sequence of simpler control models that, in principle, we are able to
solve explicitly. Then, the above mentioned convergences V(Mn)→ V(M) and P(Mn)→
P(M) allow to obtain approximations of the optimal value function and the optimal policies
by letting n tend to infinity. Therefore, one of our main objectives is to show how we can
construct such sequence of approximating control models, starting from a given control
modelM. Then, issues such as the convergence rates will be studied as well. All that has

9



10 Chapter 1. Introduction

been said for control models will be analyzed also for game models.
Now we describe briefly the control and game models we will be concerned with. We will

consider continuous-time controlled Markov chains with denumerable state space, Borel
action space and compact action sets. The transition and reward rates are continuous
and they are allowed to be unbounded in state. We are interested in the discounted and
average reward optimality criteria. For game models, we will deal with two-person zero-
sum continuous-time Markov games. The underlying dynamical system is of the same
nature as for the control model: countable state space, Borel action space, compact action
sets, and continuous and possibly unbounded transition and reward rates.

Approximation results for control models are studied in Chapter 2, while such approx-
imation results for game models are the purpose of Chapter 3. There is apparently a close
parallelism between the results obtained in both chapters. In fact, although both chapters
have the same motivation and the same structure, the techniques used in the proofs in
Chapters 2 and 3 are quite different, due precisely to the fact that a control problem (with
a “single player”) and a two-person zero-sum game (two players with opposite goals) are
of a different nature. The conclusions and some interesting open issues are mentioned in
Chapter 4.

1.2 Motivation and state of the art

Control models. When solving a control problem by following the dynamic program-
ming approach, one usually ends up with a so-called optimality equation (also known as the
Bellman or the Hamilton-Jacobi-Bellman equation, depending on the nature of the control
problem under study). Except for some particular cases (as, for instance, linear-quadratic
control problems), such optimality equations cannot be explicitly solved because they are
“highly” non-linear. Moreover, in the case of a countable state space, there is an infinite
amount of such equations.

Concerning continuous-time controlled Markov chains, there exist also algorithms that
are shown to converge to the optimal reward and policies of the control model. These in-
clude the value iteration algorithm —developed in [13, 17] for discounted reward controlled
Markov chains— and the policy iteration algorithm —introduced in [14] for average reward
controlled Markov chains. For the models we shall deal with (with countable state space
and general action space), the value iteration and the policy iteration algorithms are not
viable in practice because they require to perform a “denumerable” amount of calculations
at each step and, in addition, a maximization over a “general” set. This shows the necessity
for numerical methods to approximate the optimal solutions of controlled Markov chains.

In this same vein, and as can be seen in the references, in particular, [5, 35, 36], there
are several approaches to show the existence of optimal policies, but it is not clear at all
how to compute these policies and the corresponding optimal rewards. More precisely,
in [5, Chapter 5] and [36], continuous-time controlled Markov chains with bounded re-
ward and transition rates are analyzed. The uniformization technique (which reduces the
continuous-time controlled Markov chain to a discrete-time one) is used. In our case, how-
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ever, this approach is not possible because we consider unbounded reward and transition
rates. Similarly, in [35, Chapter 11], an algorithm to determine the optimal policies and
the optimal gain of a continuous-time controlled Markov chain is proposed for the finite
state and action case.

One usual tool to obtain numerical solutions to the dynamic programming optimality
equation is by means of the Markov chain approximating method. The idea is to define,
starting from the original control model, a controlled Markov chain with finite state space
whose optimal reward and policies approximate the optimal reward and policies of the
original control model. Such methods have been developed to approximate, e.g., controlled
diffusions [23, 38], discrete-time finite horizon and infinite horizon discounted controlled
Markov chains [24, 40], average reward discrete-time controlled Markov chains [25], or
discrete-time control models involving constraints [2], among others.

As in the Markov chain approximation scheme [23], this suggests the idea of considering
finite-state and finite-action control modelsMn whose optimal reward and policies we can
explicitly compute (by using, for instance, the value or the policy iteration algorithms).
Then, the optimal reward and policies of Mn are used as approximations of those of the
original control model M. Following this approach, we will introduce a finite state and
action truncation technique to obtain the approximating control models Mn. Similar
discretization procedures can be found in, e.g., [2, 20]. The above mentioned more general
framework of convergence of control models Mn → M has already been used in [24] for
finite horizon and infinite horizon discounted discrete-time controlled Markov chains, and
in [3, 39] for constrained discrete-time models.

It is also interesting to mention the reference [19], which proposes approximation tech-
niques for discounted cost Markov decision processes with constraints. Their setting is
similar to ours, in the sense that they propose a definition of convergence for control
models. The technique proofs in [19] mainly rely on linear programming, while here use
dynamic programming arguments.

Game models. We will deal with a two-person zero-sum continuous-time Markov game
with denumerable state space, general action spaces, and possibly unbounded payoff and
transition rates. The optimality criterion consists in finding a Nash equilibrium for the total
expected discounted payoff, and for the long-run expected average payoff of the players.
The existence of such Nash equilibria, as well as the existence of optimal strategies for
the players, has been established in [15, 16]. In these references, it is shown that the
value of the game is the solution of an optimality equation (also referred to as the Shapley
equation).

Now we explain, somehow loosely, the form of this Shapley equation. Let i ∈ S be the
state of the system, and denote by a ∈ A and b ∈ B the actions of the players, that take
values in some Borel spaces A and B. Let P(A) and P(B) be the family of probability
measures on A and B, respectively. There is some operator H that maps, for each fixed
a ∈ A and b ∈ B, a function {u(i)}i∈S into the function {(Hu)(i, a, b)}i∈S such that the
value of the game {V (i)}i∈S —either for the discounted or the average payoff criterion—
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is the unique solution of the equations

V (i) = sup
ϕ∈P(A)

inf
ψ∈P(B)

∫
A

∫
B

(HV )(i, a, b)ψ(db)ϕ(da) (1.2.1)

= inf
ψ∈P(B)

sup
ϕ∈P(A)

∫
A

∫
B

(HV )(i, a, b)ψ(db)ϕ(da) (1.2.2)

for all i ∈ S. It should be clear that one cannot expect to solve, in general, the equations
(1.2.1)–(1.2.2) explicitly. For computational purposes, therefore, one should use some kind
of discretization technique to, at least, approximate the value of the game and the optimal
strategies of the players. This is precisely the goal of this chapter.

Recall that we will let G be the “original” game model and {Gn}n≥1 be a sequence of
game models. We propose a definition of the convergence Gn → G which, under adequate
conditions, implies that the value of the games Gn and the corresponding optimal strategies
converge to the value and the optimal strategies of the game G. Then, for computational
purposes, we show how we can construct, starting from the game model G, a sequence of
game models {Gn}n≥1 with finite state and action spaces that converge to G. Such finite
models can be solved explicitly and, hence, we can provide computable approximations of
the value of the game model G.

As far as we know, this is the first attempt to provide such computable approxima-
tions for continuous-time Markov games with denumerable state space and general action
spaces. The reader interested in related works can consult [21, 28], in which the idea of
approximating a game model G with “simpler” models has been studied. The reference [9]
also considers computational issues for a continuous-time game with general state space
and finite action spaces.

At this point, it is interesting to make a comparison between the approximation ap-
proaches for control and game models. Approximating a game model by means of finite
state and actions game models is, from a technical point of view, more complicated than
such approximations for control models. The analogous to (1.2.1)–(1.2.2) for a control
model in which the state space is S and the action space of the controller is A, is the
optimality (or dynamic programming) equation

V (i) = sup
a∈A
{(HV )(i, a)} for i ∈ S. (1.2.3)

When making a finite approximation, one roughly considers an optimality equation as in
(1.2.3) with finite S and A. Then, one can use, for instance, the policy iteration algorithm
that solves this optimality equation in a finite number of steps. For a game model, however,
the equations (1.2.1)–(1.2.2) are, even in the case of finite S, A, and B, of a continuous
nature because we are optimizing on a set of probability measures (say, a simplex). This
makes the computational problems less straightforward. Here, we combine linear program-
ming with a “value iteration” or a “policy iteration” algorithm to solve such problems.
Moreover, from a computational perspective, the maximum of a function (as in (1.2.3)) is
easier to approximate than the saddle point of a function (as in (1.2.1)–(1.2.2)).
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We shall address these issues for two-person continuous-time Markov games under both
the discounted and the average payoff optimality criteria.

1.3 Contribution

The basic results on control models, namely, the existence of optimal policies and charac-
terization of the optimal value as the solution of the Bellman equation, are already known
results; these are given in Section 2.1. The convergence results for discounted game models
in Section 2.2 are borrowed from [30], but we present them here for completeness. The
results of the convergence rates for discounted models in Section 2.3.2 are, however, orig-
inal. The analysis of convergence of control models under the average reward optimality
criterion in Sections 2.2 and 2.3 is also an original contribution, and it is mainly drawn
from [33].

Concerning the basic results for game models, these are already known facts, and they
are given in Section 3.1. The rest of the material in this chapter (Sections 3.2, 3.3, and
3.4) is an original contribution, and it is based on [26] for the average payoff criterion, and
on [34] for the discounted payoff criterion.

1.4 Notation and preliminary results

We define some notation that will be used throughout.
The real numbers set is denoted by R. Given a topological space X, its Borel σ-algebra

is the smallest σ-algebra containing its open sets. It will be denoted by B(X). In what
follows, measurability issues (sets, functions, measures) will be always referred to the Borel
σ-algebras. Given D ⊆ X, the indicator function of D is ID, with ID(x) = 1 if x ∈ D, and
ID(x) = 0 if x /∈ D. Sometimes it will be also written I{x ∈ D}.

A Polish space is a complete and separable metric space. A Borel space is a measurable
subset of a Polish space. Given a probability measure µ on some Borel space (X,B(X))
and a real-valued measurable function f on X, the integral of f with respect to µ, provided
that it is well defined, will be denoted

µ(f) =

∫
X

fdµ.

The Dirac probability measure supported on some point x ∈ X is denoted by δx; that is,
δx(B) = IB(x) for all B ∈ B(X). The constant function on X equal to 1 will be denoted
by 1.

We will use the Landau notation O. As an illustration, given real-valued sequences
{f(n)}n≥1 and {g(n)}n≥1, the latter being positive, we say that f(n) = O(g(n)) as n→∞
when

lim sup
n→∞

|f(n)|
g(n)

<∞.
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The Kronecker delta is δij, which equals 1 whenever i = j, and 0 otherwise. Given real
numbers x and y, we will use the notation x∨y = max{x, y}. Finally, the symbol := refers
to an equality by definition.

The Hausdorff distance. Suppose that (X, dX) is a metric space. Given two nonempty
subsets C and D of X we define

ρX(C,D) = sup
y∈C

inf
x∈D
{dX(x, y)} ∨ sup

x∈D
inf
y∈C
{dX(x, y)}.

If C and D are closed sets, then ρX(C,D) is referred to as the Hausdorff distance between
C and D. The Hausdorff distance satisfies all the properties of a metric except that it
might not be finite. For {Cn}n≥1 and C closed subsets of X we say that {Cn}n≥1 converges
to C in the Hausdorff metric when ρX(Cn, C)→ 0 as n→∞.

Convergence of probability measures. Now we recall some facts on convergence of
probability measures; see, e.g., [6, Chapter 1] or [7, Chapter 8]. Given a metric space
(X, dX), let P(X) be the family of probability measures on (X,B(X)). We say that the

sequence {µn} ⊆ P(X) converges weakly to µ ∈ P(X), and we will write µn
d−→ µ, if

lim
n→∞

µn(f) = µ(f) (1.4.4)

for all bounded and continuous functions f : X → R. We will use the following definition.

Definition 1.4.1 We say that the function f : X → R is Lipschitz continuous if there
exists a constant L ≥ 0 such that |f(x) − f(y)| ≤ L · dX(x, y) for all x, y ∈ X. In this
case, we say that f is L-Lipschitz continuous. Let Lip1(X) be the set of all 1-Lipschitz
continuous functions on X.

As a consequence of the Portmanteau theorem (see Theorems 1.2 and 2.1 in [6]), to have
weak convergence it suffices that (1.4.4) holds for all bounded and Lipschitz continuous
functions f : X → R. (Although this is not the usual statement of the Portmanteau
theorem, observe that the function constructed in [6, Theorem 1.2] is bounded and Lipschitz
continuous, and then proceed as in the proof of [6, Theorem 2.1]. Another reference for
this result is [7, Remark 8.3.1].)

In case that X is a compact metric space, we have that weak convergence is metrizable
with the Wasserstein distance

dW (µ, ν) = sup
f∈Lip1(X)

{
µ(f)− ν(f)

}
= inf

λ

∫
X×X

dX(x, x′)λ(dx, dx′), (1.4.5)

for µ, ν ∈ P(X), where the infimum ranges over the set of all probability measures λ on
X × X with marginals µ and ν (see Theorems 8.3.2 and 8.10.45, and Section 8.10(viii)
in [7]). With this metric, we have that (P(X), dW ) is a compact metric space [7, Theorem
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8.9.3(i)]. In addition, if {x1, x2, . . .} is a countable dense subset of X, then the countable
family of probability measures

k∑
j=1

βjδxj

for all k ≥ 1 and rational β1, . . . , βk ≥ 0 with
∑
βj = 1 is dense in (P(X), dW ); see [7,

Theorem 8.9.4(ii)] or [8].





Chapter 2

Approximation of control models

We give an overview of this chapter. In Section 2.1 we introduce the control model we will
be dealing with. In particular, we give the basic results on the existence of the controlled
Markov chain model, and on the discounted and average reward optimality criteria. This
section is mainly based on [17, 18, 31].

Section 2.2 gives the definition of convergence of control models and establishes the
first theoretical convergence results. In Section 2.3 we present finite state and action
truncations of the original control model. Convergence is studied and convergence rates
are also analyzed. These sections are based on [26, 34].

Finally, we give some numerical applications for a controlled population system and a
controlled birth-and-death system in Section 2.4.

2.1 Basic results

In this section we give the definition of the control modelM and recall some basic results
on the existence of the controlled process, and on the discounted and average reward
optimality criteria. The results in this section are mainly drawn from [17, 31].

2.1.1 The control model M
We define the control model we will be dealing with. Let

M := {S,A,K, q, r},

which consists of the following elements:

• The state space of the system is the denumerable set S. We suppose that S =
{0, 1, 2, . . .} is the set of nonnegative integers.

• The action space of the controller is A, assumed to be a Borel space, that is, a
measurable subset of a complete and separable metric space. Here, measurability is
always referred to the corresponding Borel σ-algebra.

17
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• The action set in state i ∈ S is A(i), which is a nonempty measurable subset of A.
The family of feasible state-action pairs is defined as

K := {(i, a) ∈ S × A : a ∈ A(i)}.

• The transition rates of the system are given by q = {qij(a)}. We interpret qij(a) as
the transition rate from the state i ∈ S to the state j ∈ S under the action a ∈ A(i).
We assume that a 7→ qij(a) is a measurable function on A(i) for each fixed i, j ∈ S.
The transition rates verify that qij(a) ≥ 0 for every (i, a) ∈ K and j 6= i. Finally, we
suppose that the transition rates are conservative, i.e.,∑

j∈S

qij(a) = 0 for all (i, a) ∈ K,

and stable, i.e.,

q(i) := sup
a∈A(i)

{−qii(a)} <∞ for all i ∈ S.

• The reward rate function is r : K→ R. It is assumed that a 7→ r(i, a) is measurable
on A(i) for each i ∈ S.

This continuous-time controlled Markov chain model can also be found in, e.g., [14, 16, 33].

The dynamics of the control model can be roughly described as follows. Suppose that
the system is in state i ∈ S at some time t ≥ 0. The controller takes an action a ∈ A(i)
and then, on the small time interval [t, t+ dt], the following happens:

• the controller receives an infinitesimal reward r(i, a)dt, and

• the system remains in state i ∈ S with probability 1 + qii(a)dt or makes a transition
to the state j 6= i with probability qij(a)dt.

This procedure is carried on over all the time horizon t ∈ [0,∞).

Control policies. Now we describe the control policies available to the decision-maker.
Let Φ be the family of functions

ϕ ≡ {ϕt(B|i) : t ≥ 0, i ∈ S, B ∈ B(A(i))}

that verify the following properties:

(i) The mapping B 7→ ϕt(B|i) is a probability measure on (A(i),B(A(i))) for each t ≥ 0
and i ∈ S;

(ii) The function t 7→ ϕt(B|i) is measurable on [0,∞) for every i ∈ S and B ∈ B(A(i)).
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We say that ϕ ∈ Φ is a randomized Markov policy or a Markov policy, for short. Such
policies are also sometimes referred to as relaxed controls. The interpretation is, loosely,
that when the state of the system is i ∈ S at time t ≥ 0, the actions taken by the controller
are randomized according to the probability distribution ϕt(·|i).

If the Markov policy ϕ ∈ Φ is such that ϕt(B|i) does not depend on t ≥ 0 then we
say that ϕ = {ϕ(B|i)} is a (randomized) stationary policy. The class of such policies is
denoted by Φs. This means that the controller follows the same probability rule at every
time t ≥ 0.

Finally, if the stationary policy ϕ is such that the probability measure ϕ(B|i) is a Dirac
measure, then we say that ϕ is a deterministic stationary policy. It should be clear that
the class of deterministic stationary policies can be identified with the family of functions
f : S → A with f(i) ∈ A(i) for all i ∈ S, by letting ϕ(·|i) = δf(i)(·). The set of such
functions will be denoted by F. Clearly, we have the following inclusions: F ⊆ Φs ⊆ Φ.

We introduce some notation. For each Markov policy ϕ ∈ Φ we define the corresponding
transition rates as

qij(t, ϕ) :=

∫
A(i)

qij(a)ϕt(da|i) for all i, j ∈ S and t ≥ 0, (2.1.1)

which is just the average transition rate from i to j at time t when using the control
policy ϕ. The so-defined transition rates are finite because the qij(a) are conservative and
stable. In particular, |qij(t, ϕ)| ≤ q(i) for all i, j ∈ S and t ≥ 0. The corresponding reward
rates are

r(t, i, ϕ) =

∫
A(i)

r(i, a)ϕt(da|i) for all i ∈ S and t ≥ 0,

which are given a similar interpretation. Later, we will give conditions ensuring that these
reward rates are well defined and finite.

In the particular case when f ∈ F is a deterministic stationary policy, we will write

qij(f) = qij(f(i)) and r(i, f) = r(i, f(i))

for i, j ∈ S.

The controlled process. We recall that a family of nonnegative real-valued functions
Pij(s, t), for 0 ≤ s ≤ t and i, j ∈ S, is a (nonhomogeneous) transition function when the
following conditions hold:

• Pij(s, s) = δij (the Kronecker delta) for all i, j ∈ S and s ≥ 0.

•
∑

j∈S Pij(s, t) ≤ 1 for all i ∈ S and 0 ≤ s ≤ t.

• The Chapman-Kolmogorov equation holds:∑
k∈S

Pik(s, z)Pkj(z, t) = Pij(s, t)

for all i, j ∈ S and s ≤ z ≤ t.
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• In addition, the transition function is said to be regular when
∑

j∈S Pij(s, t) = 1 for
all i ∈ S and 0 ≤ s ≤ t.

Given some initial state in S at time 0, a regular transition function allows the construction
of a probability measure on S[0,∞), with the product σ-algebra, with conditional distribu-
tions given by the transition function itself.

For each Markov policy ϕ ∈ Φ, consider the family of matrices [qij(t, ϕ)]i,j, for t ≥ 0,
which is a nonhomogeneous Qϕ-matrix. By Proposition C.4 in [17, Appendix C], there
exists a nonhomogeneous transition function

Pϕ
ij(s, t) for i, j ∈ S and t ≥ s ≥ 0

whose transition rates are given by (2.1.1), that is,

lim
h↓0

Pϕ
ij(t, t+ h)− δij

h
= qij(t, ϕ) for all t ≥ 0 and i, j ∈ S. (2.1.2)

To ensure that this transition function is unique and regular we impose the Assumption
2.1.2 below, which uses the notion of a Lyapunov function, defined next.

Definition 2.1.1 (a) We say that w : S → [1,∞) is a Lyapunov function on S when w
is monotone nondecreasing and, in addition, limi→∞w(i) = +∞.

(b) Let Bw(S) denote the family of functions u : S → R such that

||u||w = sup
i∈S
{|u(i)|/w(i)} <∞.

We have that || · ||w is a norm on Bw(S), under which it is a Banach space.

Now we are ready to state our first assumption on the control model M.

Assumption 2.1.2 There exist a Lyapunov function w on S, and constants c1 ∈ R and
b1 ≥ 0 such that ∑

j∈S

qij(a)w(j) ≤ −c1w(i) + b1 for all (i, a) ∈ K.

In addition, for each i ∈ S we have q(i) ≤ w(i).

We will usually refer to an equality such as
∑
qij(a)w(j) ≤ −c1w(i) + b1 as to a Lya-

punov condition on the function w. Under this assumption, we have the following existence
theorem. We omit its proof and the interested reader is referred to [17, Theorem 2.3].

Theorem 2.1.3 Suppose that the control model M satisfies Assumption 2.1.2.
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(i) For every Markov policy ϕ ∈ Φ there exists a unique regular transition function

{Pϕ
ij(s, t)}i,j∈S,0≤s≤t

with transition rates given by the qij(t, ϕ); recall (2.1.2).

Let Ω = K[0,∞) = {(x(t), a(t))}t≥0 be endowed with the product σ-algebra F .

(ii) Given an initial state i ∈ S at time 0 and a Markov policy ϕ ∈ Φ, there exists a
unique probability measure P i,ϕ on (Ω,F) that satisfies the following properties:

– For every A0 ∈ B(A(i)) we have P i,ϕ{x(0) = i, a(0) ∈ A0} = ϕ0(A0|i).

– For any n ≥ 1, given 0 ≤ s1 < s2 < . . . < sn and, on the other hand, ik ∈ S
and Ak ∈ B(A(ik)) for k = 1, . . . , n, we have

P i,ϕ{x(s1) = i1, a(s1) ∈ A1, . . . , x(sn) = in, a(sn) ∈ An} =
n∏
k=1

Pϕ
ik−1ik

(sk−1, sk)ϕsk(Ak|ik),

where we make the convention that i0 = i and s0 = 0.

The corresponding expectation operator will be denoted by Ei,ϕ.

The above theorem ensures the existence of the controlled Markov chain model itself.
Assumption 2.1.2 is used to ensure regularity and uniqueness of the transition function. In
particular, the process {x(t)}t≥0 is nonexplosive under any Markov policy ϕ ∈ Φ. Assump-
tion 2.1.2 ensures, as well, that the (non homogeneous) backward and forward Kolmogorov
differential equations hold.

We have the following bound on the expected growth of w(x(t)). As a consequence
of Assumption 2.1.2 and [17, Lemma 6.3], for every initial state i ∈ S and every Markov
policy ϕ ∈ Φ

Ei,ϕ[w(x(t))] ≤ e−c1tw(i) +
b1

c1

(1− e−c1t) for all t ≥ 0. (2.1.3)

When c1 = 0, the above inequality reads Ei,ϕ[w(x(t))] ≤ w(i) + b1t.

2.1.2 The discounted reward optimality criterion

Let us now focus on the total expected discounted reward optimality criterion. We suppose
that the rewards earned by the controller are depreciated at a constant discount rate α > 0.

Assumption 2.1.4 The control model M satisfies the following conditions.

(i) The discount rate α > 0 is such that α + c1 > 0, where c1 ∈ R is the constant in
Assumption 2.1.2.
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(ii) There exists a constant M > 0 such that |r(i, a)| ≤Mw(i) for all (i, a) ∈ K.

The total expected discounted reward (or, in short, the discounted reward) of the
Markov policy ϕ ∈ Φ when i ∈ S is the initial state is defined as

V α(i, ϕ) := Ei,ϕ

[∫ ∞
0

e−αtr(x(t), a(t))dt

]
= Ei,ϕ

[∫ ∞
0

e−αtr(t, x(t), ϕ)dt

]
.

Under Assumptions 2.1.2 and 2.1.4, and recalling the inequality (2.1.3), we have that
the discounted reward verifies

|V α(i, ϕ)| ≤ Mw(i)

α + c1

+
b1M

α(α + c1)
for all i ∈ S and ϕ ∈ Φ;

in particular, the fact that α+ c1 > 0 is used to ensure that the integral of the exponential
function is finite. Therefore, the optimal discounted reward, defined as

V α(i) := sup
ϕ∈Φ

V α(i, ϕ) for all i ∈ S

is finite. We deduce also that V α(·, ϕ) and V α are in Bw(S) and, by letting M := M(b1+α)
α(c1+α)

,
we obtain

||V α(·, ϕ)||w ≤M for all ϕ ∈ Φ, and ||V α||w ≤M. (2.1.4)

Finally, we say that a Markov policy ϕ ∈ Φ is discount optimal if it satisfies

V α(i, ϕ) = V α(i) for all i ∈ S.

In order to characterize the optimal discounted reward as the solution of a dynamic
programming optimality equation, we need to introduce further assumptions.

Assumption 2.1.5 The control model M verifies the following conditions.

(i) The action sets A(i) are compact for every i ∈ S.

(ii) The functions a 7→ qij(a) and a 7→ r(i, a) are continuous on A(i) for all i, j ∈ S.

(iii) There are constants c2 ∈ R and b2 ≥ 0 with∑
j∈S

qij(a)w2(j) ≤ −c2w
2(i) + b2 for all (i, a) ∈ K.

The conditions (i) and (ii) in Assumption 2.1.5 above impose the usual compactness-
continuity requirements, while part (iii), which is just a Lyapunov condition on the func-
tion w2, is used to ensure the use of Dynkin’s formula.

Our next result will be useful in the sequel.
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Corollary 2.1.6 Under Assumptions 2.1.5(ii)–(iii), for every u ∈ Bw(S) the function
a 7→

∑
j∈S qij(a)u(j) is continuous on A(i) for each i ∈ S.

Proof. Fix i ∈ S and let k > i. Note that, for each a ∈ A(i),∣∣∣ ∞∑
j=k

qij(a)u(j)
∣∣∣ ≤ ||u||w ∞∑

j=k

qij(a)w(j).

On the other hand, by the monotonicity of the Lyapunov function w we have

∞∑
j=k

qij(a)w(j) ≤ 1

w(k)

∞∑
j=k

qij(a)w2(j).

Since k > i,

∞∑
j=k

qij(a)w2(j) ≤
∑
j 6=i

qij(a)w2(j) =
∑
j∈S

qij(a)w2(j)− qii(a)w2(i),

and so, by Assumption 2.1.5(iii)

∞∑
j=k

qij(a)w2(j) ≤ −c2w
2(i) + b2 + q(i)w2(i).

Summarizing, for all a ∈ A(i),∣∣∣ ∞∑
j=k

qij(a)u(j)
∣∣∣ ≤ ||u||w

w(k)

(
− c2w

2(i) + b2 + q(i)w2(i)
)
.

Therefore,

lim
k→∞

sup
a∈A(i)

∣∣∣ ∞∑
j=k

qij(a)u(j)
∣∣∣ = 0

and so the series
∑

j∈S qij(a)u(j) of continuous functions converges uniformly and it is
therefore itself continuous. �

Our next result summarizes the main results on the dynamic programming optimality
equation for M and the existence of discount optimal policies.

Theorem 2.1.7 Let the control model M satisfy the Assumptions 2.1.2, 2.1.4, and 2.1.5.

(i) The optimal discounted reward V α is the unique solution u in Bw(S) of the discounted
reward optimality equation

αu(i) = max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)u(j)
}

for all i ∈ S.
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(ii) A deterministic stationary policy f ∈ F is discount optimal if and only if it attains
the maximum in the discounted reward optimality equation, i.e.,

αV α(i) = max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)V α(j)
}

= r(i, f) +
∑
j∈S

qij(f)V α(j)

for all i ∈ S, and such f ∈ F indeed exist.

The proof of Theorem 2.1.7 is made in [13, Theorem 3.2] and [17, Chapter 6] by using
the value iteration algorithm. In [29, Theorem 1], however, Theorem 2.1.7 is established
by showing the convergence of the policy iteration algorithm.

Notice that, as a consequence of Corollary 2.1.6, we can indeed take the max as a ∈ A(i)
in the discounted reward optimality equation, instead of taking the sup as a ∈ A(i).

2.1.3 The average reward optimality criterion

We will suppose now that the controller is interested in maximizing his long-run expected
average reward. To deal with this optimality criterion, some of the assumptions made so
far on the control modelM must be strengthened. First of all, the Lyapunov condition in
Assumption 2.1.2 is replaced with the following drift condition.

Assumption 2.1.8 There exist a Lyapunov function w on S, constants c1 > 0 and b1 ≥ 0,
and a finite set D ⊂ S such that∑

j∈S

qij(a)w(j) ≤ −c1w(i) + b1ID(i) for all (i, a) ∈ K.

Moreover, for each i ∈ S we have q(i) ≤ w(i).

It should be clear that Assumption 2.1.8 implies Assumption 2.1.2, and so Theorem
2.1.3 applies. In particular, the inequality (2.1.3) is also valid.

Our next assumption is similar to Assumption 2.1.4, except that part (i) has been
suppressed.

Assumption 2.1.9 There exists a constant M > 0 such that |r(i, a)| ≤ Mw(i) for all
(i, a) ∈ K.

Given a control policy ϕ ∈ Φ and an initial state i ∈ S, the long-run expected average
reward (or average reward, for short) is defined as

J(i, ϕ) = lim sup
T→∞

1

T
Ei,ϕ

[ ∫ T

0

r(x(t), a(t))dt
]

= lim sup
T→∞

1

T
Ei,ϕ

[ ∫ T

0

r(t, x(t), ϕ)dt
]
.
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Under Assumptions 2.1.8 and 2.1.9, and using (2.1.3), it is easily seen that the average
reward is finite and bounded, with

|J(i, ϕ)| ≤ Mb1

c1

for all i ∈ S and ϕ ∈ Φ. (2.1.5)

The optimal expected average reward for the initial state i ∈ S is then defined as

J(i) = sup
ϕ∈Φ

J(i, ϕ) for i ∈ S,

and it verifies as well |J(i)| ≤Mb1/c1 for all i ∈ S. We say that a Markov policy is average
reward optimal when J(i, ϕ) = J(i) for every initial state i ∈ S.

Our next assumption is an extension of Assumption 2.1.5, used for the discounted
reward optimality criterion. It uses the following terminology. We say that a deterministic
stationary policy f ∈ F is irreducible when the controlled process {x(t)}t≥0, under the
policy f ∈ F, can travel with positive probability between any two states. In terms of
transition rates this is equivalently stated as follows.

Definition 2.1.10 The deterministic stationary policy f ∈ F is irreducible when, given
arbitrary distinct states i, j ∈ S, there exist states i = i0, i1, . . . , in = j with qik−1ik(f) > 0
for all k = 1, . . . , n.

Note that items (i)–(iii) in our next assumption are the same as in Assumption 2.1.5;
for ease of reference, however, we prefer to state them again.

Assumption 2.1.11 The control model M verifies the following conditions.

(i) The action sets A(i) are compact for every i ∈ S.

(ii) The functions a 7→ qij(a) and a 7→ r(i, a) are continuous on A(i) for all i, j ∈ S.

(iii) There are constants c2 ∈ R and b2 ≥ 0 with∑
j∈S

qij(a)w2(j) ≤ −c2w
2(i) + b2 for all (i, a) ∈ K.

(iv) Every deterministic stationary policy f ∈ F is irreducible.

Under Assumptions 2.1.8 and 2.1.11(iv), we have that for each deterministic stationary
policy f ∈ F, the Markov chain {x(t)}t≥0 has a unique invariant probability measure on S,
that will be denoted by µf . The probabilities µf (i), for i ∈ S, are characterized as the
unique nonnegative solutions xi of the linear equations∑

i∈S

xiqij(f) = 0 for all j ∈ S
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such that
∑

i∈S xi = 1. In addition, the invariant probabilities satisfy µf (i) > 0 for all
i ∈ S and, moreover, we have µf (w) =

∑
i∈S µf (i)w(i) < ∞. These results can be found

in [31, Theorem 2.5]. It also follows that the expected average reward of a policy f ∈ F is
constant (that is, it does not depend on the initial state of the system), with

J(i, f) =
∑
j∈S

r(j, f)µf (j) =: g(f) for all i ∈ S,

where the constant g(f) ∈ R is usually referred to as the gain of f ∈ F.

Exponential ergodicity. An important consequence of the above assumptions is the so-
called uniform exponential ergodicity property. More precisely, under Assumptions 2.1.8
and 2.1.11, the control model M is uniformly exponentially ergodic on F, meaning that
there exist constants R > 0 and γ > 0 such that

sup
f∈F

∣∣Ei,f [u(x(t))]− µf (u)
∣∣ ≤ Re−γt||u||ww(i) (2.1.6)

for all u ∈ Bw(S), i ∈ S, and t ≥ 0. For a proof, see [30, Theorem 2.11] or [32]. This
means that the expected value of u(x(t)), under the policy f ∈ F, approaches its limiting
average value µf (u) at an exponential speed, in the w-norm. Moreover, the constants in
the exponential decay are uniform in f ∈ F.

Additionally, under Assumption 2.1.9, given a deterministic stationary policy f ∈ F
and an initial state i ∈ S, we define the bias of f at i as

hf (i) =

∫ ∞
0

[
Ei,f [r(x(t), f)]− g(f)

]
dt.

As a direct consequence of (2.1.6) we obtain that the bias hf is in Bw(S) with

||hf ||w ≤
RM

γ
, (2.1.7)

and note that the bound on the w-norm of hf is uniform in f ∈ F. Moreover, the expec-
tation of the bias with respect to the invariant probability measure is zero: µf (hf ) = 0.

It is not possible, generally speaking, to derive an explicit expression (depending directly
on the elements of the control modelM) for the constants R and γ in (2.1.6). A particular
case is known, however, for which such explicit expressions are indeed available; see [14, 27]
or [30, Theorem 2.8].

Remark 2.1.12 Suppose that the control model M satisfies the Assumptions 2.1.8 and
2.1.11, with the following additional features.

(a) The set D in Assumption 2.1.8 is D = {0}.
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(b) For any f ∈ F, the state process {x(t)} is stochastically ordered in its initial value,
meaning that

∞∑
j=k

qij(f) ≤
∞∑
j=k

qi+1,j(f)

for all i, k ∈ S with k 6= i+ 1.

(c) For each f ∈ F and every 0 < i < j, the process {x(t)}t≥0 can travel with positive
probability from i to {j, j + 1, . . .} without passing through 0. Equivalently, there
exist nonzero states i = i0, i1, . . . , in, with in ≥ j, such that qik−1ik(f) > 0 for all
k = 1, . . . , n.

Under these additional conditions, the constants in (2.1.6) are

R = 2(1 + b1/c1) and γ = c1.

The condition (b) means, roughly, that the total transition rate to the states in the
set {k, k + 1, . . .} is an increasing function of the initial state. This is not a restrictive
requirement since for, e.g., a population system in which the state space models the size
of the population, it seems quite natural that visiting the states in {k, k + 1, . . .} becomes
more likely as the initial state of the system is itself larger. Similarly, the condition (c)
is not restrictive, as long as the Markov chain has a sufficiently “rich” communication
structure. So, in practice, the more restrictive condition in Remark 2.1.12 is (a).

The optimality equation. Next, we address the characterization of the optimal average
reward J(i) as a solution of an optimality equation. We say that the pair (g, h) ∈ R×Bw(S)
is a solution to the average reward optimality equation for the control model M if

g = max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)h(j)
}

for all i ∈ S.

This is the main theorem on the average reward optimality criterion.

Theorem 2.1.13 Let the control model M satisfy Assumptions 2.1.8, 2.1.9, and 2.1.11.

(i) The optimal average reward J(i) is constant and we will write g∗ = J(i) for all i ∈ S.

(ii) There exist solutions (g, h) ∈ R × Bw(S) to the average reward optimality equation
for M.

If (g, h) ∈ R × Bw(S) is a solution to the average reward optimality equation then
g = g∗, the optimal average reward, and h is unique up to additive constants.

(iii) A deterministic stationary policy f ∈ F is average optimal if and only if it attains
the maximum in the average reward optimality equation, that is,

g∗ = max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)h(j)
}

= r(i, f) +
∑
j∈S

qij(f)h(j)
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for all i ∈ S, and such f ∈ F indeed exist.

In Theorem 2.1.13(ii), the statement on h means that if (g∗, h) ∈ R × Bw(S) and
(g∗, h′) ∈ R × Bw(S) are solutions to the average reward optimality equation, then the
function h − h′ is constant on S. In particular, the family of f ∈ F that attain the
maximum in the optimality equation (as in part (iii)) does not depend on the particular
solution h. We will usually refer to g∗ ∈ R as to the optimal gain of the control modelM.

The Poisson equation. We conclude this section by recalling some results that will be
needed in the sequel. Given a deterministic stationary policy f ∈ F, we say that the pair
(g, h) ∈ R× Bw(S) is a solution to the Poisson equation for f if

g = r(i, f) +
∑
j∈S

qij(f)h(j) for all i ∈ S.

The next result characterizes such solutions. For a proof, see Proposition 3.14 in [31].

Proposition 2.1.14 Suppose that the control modelM satisfies Assumptions 2.1.8, 2.1.9,
and 2.1.11. Given any f ∈ F, the solutions of the Poisson equation for f ∈ F are of the
form

(g(f), hf + λ1) for all λ ∈ R.

It follows that the pair given by the gain g(f) and the bias hf of the policy f ∈ F is
the unique solution (g(f), h) of the Poisson equation for f such that µf (h) = 0.

Moreover, if (g∗, h) ∈ R×Bw(S) is a solution to the average reward optimality equation
for M, and f ∈ F is an average reward optimal policy, it follows that (g∗, h) is a solution
to the Poisson equation for f . Therefore, the function h in the average reward optimality
equation can be chosen to be the bias of an optimal policy, which therefore satisfies the
bound (2.1.7). This is summarized next.

Corollary 2.1.15 Suppose that the control model M satisfies Assumptions 2.1.8, 2.1.9,
and 2.1.11, and let R and γ be the constants for the uniform exponential ergodicity of M;
recall (2.1.6). There exists a solution (g∗, h) ∈ R×Bw(S) to the average reward optimality
equation for M with ||h||w ≤ RM/γ.

We propose the following definition of convergence of policies.

Definition 2.1.16 Given deterministic stationary policies {fn}n≥1 ⊆ F, we say that {fn}
converges to f ∈ F, and we will write fn → f , if limn→∞ fn(i) = f(i) for all i ∈ S.

Given {fn}n≥1 and f ∈ F, we say that f is a limit policy of {fn}n≥1 if there exists a
subsequence n′ such that fn′ → f .

We note that if the action sets A(i) are compact (Assumption 2.1.11(i)) then F is
metrizable and compact with this definition of convergence. The corresponding metric is

d(f, f ′) =
∑
i∈S

1

2i
· dA(f(i), f ′(i))

1 + dA(f(i), f ′(i))

for f, f ′ ∈ F. The proof of the next result can be found in [31, Theorem 3.17].
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Lemma 2.1.17 Let the control model M satisfy Assumptions 2.1.8, 2.1.9, and 2.1.11. If
the sequence {fn}n≥1 converges to f ∈ F then g(fn)→ g(f).

This lemma simply states that the gain function f 7→ g(f) is continuous on F.

2.2 Convergence of control models

The previous section was devoted to analyze the control modelM. In this section we shall
consider a sequence of control models {Mn}n≥1, that we will interpret as approximations
of the control model M. In the sequel, we will sometimes refer to M as to the “original”
control model, whose optimal value and optimal policies we want to approximate, and to
the Mn as to the approximating control models.

2.2.1 Definition

The control model Mn, for each n ≥ 1, is given by the following elements:

Mn := {Sn, A,Kn, qn, rn},

where:

• The state space Sn is a subset (either finite or infinite) of S, the state space of the
original control model M.

• The action space is the Borel space A, which is the same as for the control modelM.

• The action sets are An(i) for i ∈ Sn. We assume that An(i) is a nonempty measurable
subset of A(i). The family of feasible state-action pairs is

Kn := {(i, a) ∈ S × A : i ∈ Sn, a ∈ An(i)} ⊆ K.

• The transition rates of Mn are given by qnij(a) for i, j ∈ Sn and a ∈ An(i). They are
measurable in a and they verify qnij(a) ≥ 0 when (i, a) ∈ Kn and j 6= i, and they are
also assumed to be conservative and stable, meaning that∑

j∈Sn

qnij(a) = 0 for all (i, a) ∈ Kn

and

qn(i) := sup
a∈An(i)

{−qnii(a)} <∞ for all i ∈ Sn.

• The reward rate function for the control modelMn is rn : Kn → R. We assume that
a 7→ rn(i, a) is measurable on An(i) for all i ∈ Sn.
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Therefore, the control models Mn are of the same nature as M, with the particular
feature that the state and action sets of Mn are subsets of the corresponding sets for M.

Control policies. The family of Markov policies forMn, for n ≥ 1, is denoted by Φn. Its
definition is the same as for M, but now accounting for the control model Mn. Namely,
Φn is the set of functions ϕ = {ϕt(B|i)}, for t ≥ 0, i ∈ Sn, and B ∈ B(An(i)), such that
B 7→ ϕt(B|i) is a probability measure on An(i) and such that t 7→ ϕt(B|i) is measurable.

The family of stationary (randomized) policies is Φs
n, while the set of deterministic

stationary policies is identified with Fn, the family of functions f : Sn → A with f(i) ∈
An(i) for all i ∈ Sn.

The notation used for Mn is basically the same as for M, by adding a subscript or
superscript n where needed. For instance,

qnij(t, ϕ) =

∫
An(i)

qnij(a)ϕt(da|i) and rn(t, i, ϕ) =

∫
An(i)

rn(i, a)ϕt(da|i)

for i, j ∈ Sn, t ≥ 0, and ϕ ∈ Φn, while qnij(f) = qnij(f(i)) and rn(i, f) = rn(i, f(i)) for
f ∈ Fn.

The controlled process. To ensure the existence of the controlled process itself, for
the control model Mn, we shall impose some assumptions. Given n ≥ 1, we say that
w : Sn → [1,∞) is a Lyapunov function when w is monotone nondecreasing and

lim
i→∞,i∈Sn

w(i) = +∞

(in particular, the latter condition holds whenever Sn is finite). The w-norm of a function
u : Sn → R is then defined as

||u||w = sup
i∈Sn

{
|u(i)|/w(i)};

cf. Definition 2.1.1. Note that we use the same notation for the w-norm on S and on Sn.
This will not lead to confusion. The family of functions u : Sn → R with finite w-norm is
denoted by Bw(Sn).

Under a condition similar to Assumption 2.1.2, but now for the control modelMn, an
analogous to Theorem 2.1.3 holds. In particular, for any initial state i ∈ Sn and any control
policy ϕ ∈ Φn, there exists a unique probability measure P i,ϕ

n on the canonical space K[0,∞)
n

that models the controlled process Mn. Its expectation operator will be written Ei,ϕ
n .

Definition of convergence. After having described the notation for the sequence of
approximating control models {Mn}n≥1, now we give the definition of convergence of
{Mn}n≥1 to the original control model M.

Definition 2.2.1 Consider the control models M and {Mn}n≥1 defined above. We say
that {Mn}n≥1 converges toM as n→∞, and we will writeMn →M, when the following
conditions are fulfilled.
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(a) The sequence of states {Sn}n≥1 is monotone nondecreasing and its limit is S. This
means that

S1 ⊆ S2 ⊆ S3 ⊆ . . . with
∞⋃
n=1

Sn = S.

Define n(i) = min{n ≥ 1 : i ∈ Sn} for i ∈ S. Therefore, n ≥ n(i) if and only if
i ∈ Sn.

(b) For each i ∈ S we have the following convergence in the Hausdorff sense:

lim
n→∞

ρA(A(i), An(i)) = lim
n→∞

[
sup
a∈A(i)

inf
a′∈An(i)

{dA(a, a′)}
]

= 0.

Given i ∈ S, if {an}n≥n(i) is a sequence in A with an ∈ An(i) for all n ≥ n(i) and such
that, in addition, limn an = a for some a ∈ A(i), then:

(c) limn→∞ q
n
ij(an) = qij(a) for all j ∈ S;

(d) limn→∞ rn(i, an) = r(i, a).

Let us make some comments on this definition. Note that given a state i ∈ S, we
have that n(i) is the first n such that the state i is in Sn. Observe that, in item (b),
ρA(A(i), An(i)) is properly defined only for n ≥ n(i) but, since we are dealing with the
limit as n→∞, this will not be explicit in the notation. Similarly, in (c), we require that
n ≥ n(i) ∨ n(j) but this is neither explicit in the notation.

Let us make some further comments on Definition 2.2.1. Note that, here, we allow all
the elements of the control models Mn (namely, the state space, the action sets, and the
transition and reward rates) to depend on n ≥ 1.

When dealing with related definitions of convergence of control models, the state space
is usually allowed to depend on n; see [2, 20, 33]. The transition and reward rates may as
well depend on n. In this case, the “uniform convergence” property in Definition 2.2.1(c)–
(d) is a usual requirement; see, for instance, the condition (2) in [2, Theorem 6.1], and
Assumptions 3.1(c) and 3.3(c) in [3].

The notion of the Kuratowski convergence for the approximation of control models was
used in [24]. In our context, imposing the Kuratowski convergence of An(i) to A(i) would
consist in assuming that for each i ∈ S

lim
n→∞

inf
a′∈An(i)

{dA(a, a′)} = 0 for all a ∈ A(i),

which is weaker than the requirement in Definition 2.2.1(b). In our context, however, since
we will assume later that A(i) is compact, Hausdorff and Kuratowski convergences will be,
in this case, equivalent.

Let us also mention that the Kuratowski convergence of the actions sets An(i) is related
to the discretization of the state space made in [20, Section 6.3] for a discrete-time Markov
control process. We note however that, in the references [2, 3, 20, 33], the actions sets of
Mn are the same as the action sets of the original control model M.
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2.2.2 The discounted reward criterion

Consider the original control model M and the sequence of control models {Mn}n≥1

defined previously. We deal now with the total expected discounted reward optimality
criterion and we let α > 0 be the discount rate (the same for all the control models). In
Section 2.1.2 we gave conditions ensuring that the discounted reward problem for M is
well posed, and under which the discounted reward optimality equation for M holds.

Assumptions. Our next assumption states the conditions we will impose on the sequence
of control models {Mn}n≥1. We suppose that the original control model M satisfies the
Assumptions 2.1.2, 2.1.4, and 2.1.5.

Assumption 2.2.2 Let w be the Lyapunov function in Assumption 2.1.2. The following
conditions hold for every n ≥ 1.

(i) With the constants c1 > −α and b1 ≥ 0 as in Assumption 2.1.2, we have∑
j∈Sn

qnij(a)w(j) ≤ −c1w(i) + b1 for all (i, a) ∈ Kn,

with qn(i) ≤ w(i) for each i ∈ Sn.

(ii) With the constant M > 0 taken from Assumption 2.1.4(ii), we have

|rn(i, a)| ≤Mw(i) for all (i, a) ∈ Kn.

(iii) The action sets An(i) are compact, and the functions a 7→ qnij(a) and a 7→ rn(i, a) are
continuous on An(i) for every i, j ∈ Sn.

(iv) Taking c2 ∈ R and b2 ≥ 0 from Assumption 2.1.5(iii), the following inequality holds
for every (i, a) ∈ Kn: ∑

j∈Sn

qnij(a)w2(j) ≤ −c2w
2(i) + b2.

It should be clear from its definition that if w is a Lyapunov function for M then its
restriction to Sn is as well a Lyapunov function for Mn for every n ≥ 1. The conditions
imposed in Assumption 2.2.2 mean, roughly, that the hypotheses for M are satisfied by
theMn “uniformly” in n ≥ 1. Indeed, we are imposing that the constants taken from the
assumptions on M are valid for the corresponding assumptions on the Mn.

Under Assumption 2.2.2, we can use Theorem 2.1.3 for the control modelMn to ensure
the existence of the controlled process, and we can define the discounted reward problem
for the control modelsMn. We introduce some more notation. As already mentioned, the
notation for Mn consists in adding a subscript n to the corresponding notation for M.
Given an initial state i ∈ Sn and a control policy ϕ ∈ Φn, its total expected discounted
reward is

V α
n (i, ϕ) := Ei,ϕ

n

[∫ ∞
0

e−αtrn(x(t), a(t))dt

]
= Ei,ϕ

n

[∫ ∞
0

e−αtrn(t, x(t), ϕ)dt

]
.
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The optimal discounted reward is

V α
n (i) := sup

ϕ∈Φn

V α
n (i, ϕ) for all i ∈ Sn,

and the bounds in the w-norm (cf. (2.1.4))

||V α
n (·, ϕ)||w ≤M for all ϕ ∈ Φn, and ||V α

n ||w ≤M, (2.2.1)

with M := M(b1+α)
α(c1+α)

still hold (here, we make use that the constants M, b1, c1 are the same

for every control model Mn).
Note also that Theorem 2.1.7 remains valid for the control models Mn, and so the

optimal discounted reward V α
n ∈ Bw(Sn) as well as discount optimal policies in Fn can be

characterized by means of the corresponding discounted reward optimality equation, which
takes the form

αV α
n (i) = max

a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)V α
n (j)

}
(2.2.2)

for each i ∈ Sn.

Preliminary results. Before proving our main results on convergence for discounted
control models, we establish some useful results.

Lemma 2.2.3 Suppose that M satisfies Assumptions 2.1.2 and 2.1.5(iii), and that the
control models {Mn}n≥1 verify Assumptions 2.2.2(i) and (iv). Given i ∈ S and ε > 0,
there exists some K > i such that

(i) for all a ∈ A(i) we have
∑

j≥K qij(a)w(j) < ε

(ii) for all n ≥ n(i) and every a ∈ An(i) we have
∑

j∈Sn,j≥K q
n
ij(a)w(j) < ε.

Suppose, in addition, that Assumption 2.1.5 holds and that Mn → M. Then for every
i ∈ S and considering n ≥ n(i)

(iii) limn→∞ supa∈An(i) |rn(i, a)− r(i, a)| = 0.

(iv) limn→∞ supa∈An(i)

∑
j∈Sn |q

n
ij(a)− qij(a)|w(j) = 0.

Proof. (i)–(ii). Choose any K > i. Observe that for all a ∈ A(i)∑
j≥K

qij(a)w(j) ≤ 1

w(K)

∑
j≥K

qij(a)w2(j),

where we make use of the monotonicity of w. On the other hand, since K > i, all the
terms qij(a) for j ≥ K are nonnegative and thus∑

j≥K

qij(a)w2(j) ≤
∑
j∈S

qij(a)w2(j)− qii(a)w2(i)

≤ −c2w
2(i) + b2 + w3(i).
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Similarly, if n ≥ 1 is such that i ∈ Sn or, equivalently, n ≥ n(i), then we can repeat the
above arguments to obtain that, for each a ∈ An(i),∑

j∈Sn,j≥K

qnij(a)w(j) ≤ 1

w(K)

∑
j∈Sn,j≥K

qnij(a)w2(j)

≤ 1

w(K)

(∑
j∈Sn

qnij(a)w2(j)− qnii(a)w2(i)
)

≤ 1

w(K)

(
− c2w

2(i) + b2 + w3(i)
)
.

Therefore, it suffices to choose K > i such that

1

w(K)

(
− c2w

2(i) + b2 + w3(i)
)
< ε

to obtain the stated result.

(iii). The proof is by contradiction. Suppose then that for some i ∈ S there are ε > 0
and actions an′ ∈ An′(i) for some subsequence n′ such that |r(i, an′)− rn(i, an′)| > ε. The
action set A(i) being compact, we can choose a further subsequence n′′ with an′′ → a for
some a ∈ A(i). By continuity of the reward rate r we have r(i, an′′) → r(i, a), while by
Definition 2.2.1(d) we have rn′′(i, an′′)→ r(i, a), which leads to a contradiction.

(iv). We proceed by contradiction. Hence, for some given i ∈ S we will suppose that
there exists some ε > 0 and some subsequence n′, larger than n(i), such that, for some
an′ ∈ An′(i), we have ∑

j∈Sn′

|qn′ij (an′)− qij(an′)|w(j) > ε.

By parts (i) and (ii) of this lemma, there exists some K > i such that for every n′∑
j≥K,j∈Sn′

qij(an′)w(j) ≤ ε/3 and
∑

j≥K,j∈Sn′

qn
′

ij (an′)w(j) ≤ ε/3.

Consider the n′ such that {0, 1, . . . , K − 1} ⊆ Sn′ , so that we have

K−1∑
j=0

|qn′ij (an′)− qij(an′)|w(j) > ε/3 for all n′. (2.2.3)

Since the action sets A(i) are compact, choose a further subsequence n′′ such that an′′ → a
for some a ∈ A(i). Take now the limit through n′′ in (2.2.3) and use continuity of the
transition rates qij(·) and Definition 2.2.1(c) to reach a contradiction; indeed, both qn

′′
ij (an′′)

and qij(an′′) converge to qij(a). �

Note that, under Assumptions 2.1.5(i)–(ii), parts (iii) and (iv) in this lemma imply items
(c) and (d) in Definition 2.2.1. Under the assumptions of this lemma, these statements are
equivalent, and we may use (iii)–(iv) in Lemma 2.2.3 in lieu of Definition 2.2.1(c)–(d). We
introduce some more terminology.
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Definition 2.2.4 Suppose that {un}n≥1 is a sequence of functions with un ∈ Bw(Sn) for
each n ≥ 1. We say that {un}n≥1 converges pointwise to u ∈ Bw(S) if

lim
n→∞

un(i) = u(i) for each i ∈ S.

Note that the expression un(i) is defined provided that n ≥ n(i). Since the above
definition is concerned with the limit as n → ∞, we will not make it explicit in the
notation.

We extend the definition of convergence of deterministic stationary policies given in
Definition 2.1.16. Given a sequence of policies {fn}n≥1 with fn ∈ Fn for every n ≥ 1, we
say that {fn}n≥1 converges to f ∈ F if

lim
n→∞

fn(i) = f(i) for each i ∈ S.

Once again, note that fn(i) is defined only for n ≥ n(i), but this is not made explicit in
the notation since we are dealing with the limit as n→∞. In this case, we will also write
fn → f . The notion of limit policy is then similar to that given in Definition 2.1.16.

Lemma 2.2.5 (i) Suppose that the sequence un ∈ Bw(Sn), for every n ≥ 1, satisfies
supn≥1 ||un||w < ∞. Then there exists a subsequence n′ and u ∈ Bw(S) such that
{un′} converges pointwise to u.

(ii) If Assumption 2.1.5(i) is satisfied then, given arbitrary fn ∈ Fn, for n ≥ 1, there
exist a subsequence n′ and f ∈ F such that {fn′} converges to f .

Proof. This lemma follows from a standard diagonal argument. Indeed, for every i ∈ S,
the sequence {un(i)}n≥n(i) is bounded, and hence has a convergent subsequence. Similarly,
we have that {fn(i)}n≥n(i) is a sequence in the compact metric space A(i), and hence has a
convergent subsequence. Use then the fact that S is countable to construct a subsequence
n′ such that un′(i) or fn′(i) are all convergent for i ∈ S. �

We state our final preliminary result.

Lemma 2.2.6 Suppose that M satisfies Assumptions 2.1.2 and 2.1.5(iii), and that the
control models {Mn}n≥1 verify Assumptions 2.2.2(i) and (iv). Let un ∈ Bw(Sn) for n ≥ 1
be such that supn≥1 ||un||w < ∞ and such that {un}n≥1 converges pointwise to some u ∈
Bw(S). Let fn ∈ Fn, for n ≥ 1, be such that fn → f for some f ∈ F. Under these
conditions, if Mn →M then

lim
n→∞

[
rn(i, fn) +

∑
j∈Sn

qnij(fn)un(j)
]

= r(i, f) +
∑
j∈S

qij(f)u(j) for all i ∈ S.

Proof. Let c > 0 be such that ||un||w ≤ c for all n ≥ 1, and so ||u||w ≤ c. Fix i ∈ S and
consider indices n such that n ≥ n(i).
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The fact that rn(i, fn) converges to r(i, f) follows directly from Definition 2.2.1(d). Let
us now analyze the second term in the limit. Fix ε > 0 and for the small constant ε/4c, let
K > i be as in Lemma 2.2.3. If n ≥ n(i) is such that, in addition, {0, 1, . . . , K − 1} ⊆ Sn,
then ∣∣∣ ∑

j∈Sn

qnij(fn)un(j)−
∑
j∈S

qij(f)u(j)
∣∣∣

≤
∣∣∣K−1∑
j=0

[
qnij(fn)un(j)− qij(f)u(j)

]∣∣∣+ c ·
∑

j∈Sn,j≥K

qnij(fn)w(j) + c ·
∑
j≥K

qij(f)w(j)

≤
∣∣∣K−1∑
j=0

[
qnij(fn)un(j)− qij(f)u(j)

]∣∣∣+
ε

2
.

Therefore, since by Definition 2.2.1(c) we have qnij(fn) → qij(f) and as, by hypothesis,
un(j)→ u(j) for 0 ≤ j < K, choosing n large enough makes

∣∣∣K−1∑
j=0

[
qnij(fn)un(j)− qij(f)u(j)

]∣∣∣ < ε/2

(here, note that K does not depend on n; cf. Lemma 2.2.3(b)). This completes the proof.
�

Main result. Now we are ready to prove our main result on the convergence of the
discounted control models.

Theorem 2.2.7 Suppose that the control modelM satisfies Assumptions 2.1.2, 2.1.4, and
2.1.5, and that the control models {Mn}n≥1 verify Assumption 2.2.2. If Mn →M then

(i) For every i ∈ S we have limn→∞ V
α
n (i) = V α(i).

(ii) If fn ∈ Fn, for n ≥ 1, is a discount optimal policy for Mn, then any limit policy
f ∈ F of {fn}n≥1 is discount optimal for M.

Proof. (i). Recalling that the optimal discounted rewards V α
n are uniformly bounded in

the w-norm (see (2.2.1)) and using Lemma 2.2.5, we deduce that there exists a subsequence
n′ such that {V α

n′} converges pointwise to some v ∈ Bw(S).
Fix now an arbitrary state i ∈ S and any action a ∈ A(i), and consider indices n′ ≥ n(i).

By Hausdorff convergence of An′(i) to A(i), there exist actions an′ ∈ An′(i) such that
an′ → a; recall Definition 2.2.1(b). From the discounted reward optimality equation for
the control model Mn′ , given in (2.2.2), we obtain

αV α
n′(i) ≥ rn′(i, an′) +

∑
j∈Sn′

qn
′

ij (an′)V
α
n′(j).
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We can use Lemma 2.2.6 and take the limit as n′ →∞ to obtain

αv(i) ≥ r(i, a) +
∑
j∈S

qij(a)v(j).

Since this is valid for every (i, a) ∈ K we have thus established that

αv(i) ≥ max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)v(j)
}

for every i ∈ S. (2.2.4)

To prove the reverse inequality, fix i ∈ S and, for indices n′ ≥ n(i), let fn′ ∈ Fn′ be a
discount optimal deterministic stationary policy forMn′ . Using again Lemma 2.2.5, there
exists a further subsequence n′′ and some f ∈ F such that fn′′ → f . The policies fn′′
being optimal forMn′′ , they attain the maximum in the corresponding discounted reward
optimality equation (use Theorem 2.1.7 for the control model Mn′′), that is,

αV α
n′′(i) = rn′′(i, fn′′) +

∑
j∈Sn′′

qn
′′

ij (fn′′)V
α
n′′(j). (2.2.5)

Take the limit as n′′ →∞ and use Lemma 2.2.6 to obtain

αv(i) = r(i, f) +
∑
j∈S

qij(f)v(j).

Combining this equation with (2.2.4), we have thus proved that

αv(i) = max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)v(j)
}

for every i ∈ S,

that is, we have established that v ∈ Bw(S) is indeed a solution to the discounted reward
optimality equation for M and, therefore, v = V α, the optimal discounted reward of M.

Therefore, we have proved that the limit of V α
n through any pointwise convergent subse-

quence n′ is V α. Then, we necessarily have that V α
n converges pointwise to V α, establishing

part (i) of the theorem.

(ii). To prove this part, let f ∈ F be any limit policy of optimal policies {fn} for Mn.
Proceed as in (2.2.5) to derive that f attains the maximum in the discounted reward op-
timality equation for M and, hence, it is discount optimal. �

As a consequence of item (ii) in this theorem, if the discount optimal policy for M is
unique and {fn} are optimal policies forMn, then we necessarily have fn → f . Otherwise,
it is not possible to ensure convergence of {fn} although, as it has been shown, any limit
policy is optimal for M.

Summarizing the results in this section, starting from a control model M satisfying
suitable hypotheses, and also from a sequence of control models {Mn} that verify similar
conditions, we have shown that convergenceMn →M implies convergence of the optimal
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discounted reward and of optimal policies. Thus, the approximating control models Mn

can indeed be used to approximate the original control model M.
There remains, however, an important open issue. Usually, the decision-maker is given

the control model M and he is interested in approximating its optimal solution. But,
generally, the decision-maker is not given the sequence of approximating control models
{Mn}. The question, rather, is whether starting from the original control model M the
controller is able to construct a sequence of “simpler” approximating control models {Mn}
which in principle he is able to solve. This is the issue addressed in Section 2.3.

Another important remark is the following. Theorem 2.2.7 gives plain convergence of
V α
n to V α. It would be interesting to know if some kind of convergence rate could be

provided, so as to obtain some error bounds on the approximations. This is addressed as
well in Section 2.3.

2.2.3 The average reward criterion

We consider now the control model M under the long-run expected average reward op-
timality criterion. We consider also the sequence {Mn}n≥1 of control models, defined in
Section 2.2.1 above. In Section 2.1.3 we gave conditions for the solvability of the average
reward problem for M. Now we impose such conditions on the control models Mn.

Assumption 2.2.8 Let w be the Lyapunov function in Assumption 2.1.8. The following
conditions hold for every n ≥ 1.

(i) With the constants c1 > 0 and b1 ≥ 0 as in Assumption 2.1.8, and for some finite
set Dn ⊆ Sn we have∑

j∈Sn

qnij(a)w(j) ≤ −c1w(i) + b1IDn(i) for all (i, a) ∈ Kn,

with qn(i) ≤ w(i) for each i ∈ Sn.

(ii) With the constant M > 0 taken from Assumption 2.1.9, we have

|rn(i, a)| ≤Mw(i) for all (i, a) ∈ Kn.

(iii) The action sets An(i) are compact, and the functions a 7→ qnij(a) and a 7→ rn(i, a) are
continuous on An(i) for every i, j ∈ Sn.

(iv) Taking c2 ∈ R and b2 ≥ 0 from Assumption 2.1.11(iii), the following inequality holds
for every (i, a) ∈ Kn: ∑

j∈Sn

qnij(a)w2(j) ≤ −c2w
2(i) + b2.

(v) Every deterministic stationary policy in Fn is irreducible.
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The above conditions impose that the assumptions we made on the control model
M for the average reward criterion, namely, Assumptions 2.1.8, 2.1.9, and 2.1.11, hold
“uniformly” in n ≥ 1. Indeed, as can be seen from Assumption 2.2.8, all the involved
constants are the same for everyMn, n ≥ 1, and forM. In particular, each control model
Mn is uniformly exponentially ergodic (see (2.1.6)), but it is important to mention that
the above conditions do not necessarily imply that the corresponding constants Rn and γn
do not depend on n ≥ 1.

Now we introduce the notation for the average control model Mn. Given a Markov
policy ϕ ∈ Φn and an initial state i ∈ Sn, consider the associated probability measure P i,ϕ

n

and expectation operator Ei,ϕ
n that model the controlled process; those indeed exist as a

consequence of Theorem 2.1.3 and Assumption 2.2.8(i). The expected average payoff is

Jn(i, ϕ) = lim sup
T→∞

1

T
Ei,ϕ
n

[ ∫ T

0

rn(x(t), a(t))dt
]

= lim sup
T→∞

1

T
Ei,ϕ
n

[ ∫ T

0

rn(t, x(t), ϕ)dt
]
,

and the optimal average reward is

Jn(i) = sup
ϕ∈Φn

Jn(i, ϕ) for each i ∈ Sn.

Under our assumptions on Mn we have, as in (2.1.5),

|Jn(i, ϕ)| ≤ Mb1

c1

and |Jn(i)| ≤ Mb1

c1

for all ϕ ∈ Φn and i ∈ Sn. (2.2.6)

By Assumptions 2.2.8(i) and (v), for each deterministic stationary policy f ∈ Fn, the
Markov chain {x(t)}t≥0 under f has a unique invariant probability measure µnf on Sn, for
which µnf (w) is finite. Moreover, the average reward of f ∈ Fn is constant:

Jn(i, f) =
∑
j∈Sn

rn(j, f)µnf (j) =: gn(f) for all i ∈ Sn,

where we recall that gn(f) is called the gain of f ∈ Fn.
Finally, under Assumption 2.2.8, an analogous of Theorem 2.1.13 holds. In particular,

the optimal average reward of Mn is constant:

g∗n = Jn(i) for all i ∈ Sn,

and there exist solutions (g, h) ∈ R × Bw(Sn) to the average reward optimality equation
for Mn

g = max
a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)h(j)
}

for all i ∈ Sn. (2.2.7)

In this case, we have g = g∗n, while h is unique up to additive constants. Moreover, optimal
deterministic stationary policies are characterized as those achieving the maximum in this
optimality equation.

Now we address the issue of the convergence of the optimal gains g∗n of Mn to the
optimal gain g∗ of M. To obtain this result, however, we must impose some additional
conditions. In fact, we will propose two different sufficient conditions under which this
convergence takes place.
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Theorem 2.2.9 Suppose that the control model M verifies Assumptions 2.1.8, 2.1.9, and
2.1.11, and that the control models {Mn}n≥1 satisfy Assumption 2.2.8. In addition, sup-
pose that there exist solutions (g∗n, hn) ∈ R×Bw(Sn) to the average reward optimality equa-
tion (2.2.7) for Mn such that supn≥1 ||hn||w < ∞. Under these conditions, if Mn → M
then

(i) The optimal gains converge: limn→∞ g
∗
n = g∗.

(ii) If fn ∈ Fn is an average reward optimal policy for Mn, then every limit policy of
{fn}n≥1 in F is average optimal for M.

Proof. (i). We know that the sequence {g∗n}n≥1 is bounded (recall (2.2.6)) and, by
hypothesis, the sequence {hn}n≥1 of solutions to the average reward optimality equation for
Mn is also bounded in the w-norm. Therefore, by Lemma 2.2.5, there exists a subsequence
(that without loss of generality we will still denote by n) and a pair (g, h) ∈ R × Bw(S)
such that

lim
n→∞

g∗n = g and lim
n→∞

hn(i) = h(i) for all i ∈ S.

(Recall that the latter expression is defined only when n ≥ n(i).)
Consider now a fixed (i, a) ∈ K. By Definition 2.2.1(b) there exists a sequence {an}n≥n(i)

with an ∈ An(i) and an → a as n→∞. From the average reward optimality equation for
Mn we obtain

g∗n ≥ rn(i, an) +
∑
j∈Sn

qnij(an)hn(j).

We can use Lemma 2.2.6 to take the limit as n→∞, which yields

g ≥ r(i, a) +
∑
j∈S

qij(a)h(j).

Since this is valid for every (i, a) ∈ K we have thus established that

g ≥ max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)h(j)
}

for each i ∈ S.

Suppose now that fn ∈ Fn is average optimal forMn. Again by Lemma 2.2.5, there exists
some f ∈ F and a further subsequence (that we shall still denote by n) such that fn → f .
For such fn ∈ Fn, the optimality equation for Mn reads

g∗n = rn(i, fn) +
∑
j∈Sn

qnij(fn)hn(j) for each i ∈ Sn. (2.2.8)

Using Lemma 2.2.6 we deduce that

g = r(i, f) +
∑
j∈S

qij(f)h(j) for each i ∈ S.
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Therefore, we have established that (g, h) ∈ R×Bw(S) is a solution to the average reward
optimality equation for M, and so g = g∗.

Summarizing, we have shown that any convergent subsequence of the bounded sequence
{g∗n}n≥1 converges to g∗. This implies that the whole sequence converges to g∗, that is,
limn→∞ g

∗
n = g∗.

(ii). To prove that any limit policy of average optimal policies {fn}n≥1 for Mn is average
optimal for M, use (2.2.8) and take the limit through some subsequence such that fn′ →
f ∈ F and such that hn′ converges pointwise to obtain that f indeed attains the maximum
in the average reward optimality equation for M. �

Observe that the analogous result for discounted reward models (Theorem 2.2.7) holds
without any additional condition, except for the basic assumptions on M and Mn and
the convergence Mn →M. Here, for the average reward optimality criterion, we need to
impose further requirements, namely, the existence of bounded solutions hn to the average
optimality equation for the Mn.

In connection with Remark 2.1.12, observe that if all the control modelsMn satisfy the
monotonicity and irreducibility properties given in Remark 2.1.12, together with Dn = {0}
in Assumption 2.2.8(i), then there exist solutions hn to the average reward optimality
equation for Mn that satisfy

||hn||w ≤
2M(1 + b1/c1)

c1

(recall Corollary 2.1.15), and so the condition in Theorem 2.2.9 is indeed satisfied.

We propose now another sufficient condition to obtain convergence of the optimal gains.
The idea is to drop the condition supn≥1 ||hn||w <∞ in Theorem 2.2.9 and to use, instead,
a Lyapunov condition on some power δ > 2 of the function w.

Theorem 2.2.10 Suppose that the control model M verifies Assumptions 2.1.8, 2.1.9,
and 2.1.11, and that the control models {Mn}n≥1 satisfy Assumption 2.2.8. In addition,
suppose that there exist constants δ > 2, cδ > 0 and bδ > 0 with∑

j∈Sn

qnij(a)wδ(j) ≤ −cδwδ(i) + bδ for all n ≥ 1 and (i, a) ∈ Kn.

Under these conditions, if Mn →M then

(i) The optimal gains converge: limn→∞ g
∗
n = g∗.

(ii) If fn ∈ Fn is an average reward optimal policy for Mn, then every limit policy of
{fn}n≥1 in F is average optimal for M.
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Proof. Given n ≥ 1, fix an arbitrary policy f ∈ Fn and an initial state i ∈ Sn. Observe
that for every k ≥ 0 and t ≥ 0∑

j∈Sn,j≥k

P i,f
n {x(t) = j}w2(j) ≤ 1

wδ−2(k)

∑
j∈Sn,j≥k

P i,f
n {x(t) = j}wδ(j)

≤ 1

wδ−2(k)

∑
j∈Sn

P i,f
n {x(t) = j}wδ(j)

=
1

wδ−2(k)
Ei,f
n [wδ(x(t))].

By an analogous to (2.1.3) but now for the function wδ we have

Ei,f
n [wδ(x(t))] ≤ e−cδtw(i) + bδ/cδ,

and thus ∑
j∈Sn,j≥k

P i,f
n {x(t) = j}w2(j) ≤ 1

wδ−2(k)

(
e−cδtw(i) + bδ/cδ

)
.

Recalling that µnf is the invariant probability measure of f for the control model Mn, we
can use Fatou’s lemma as t→∞ to get∑

j∈Sn,j≥k

µnf (j)w2(j) ≤ bδ
cδwδ−2(k)

.

Summarizing, we have shown the following w2-uniform integrability result:

lim
k→∞

sup
n≥1,f∈Fn

∑
j∈Sn,j≥k

µnf (j)w2(j) = 0.

We will need also the following result. Given (i, a) ∈ K and u ∈ Bw(S), or (i, a) ∈ Kn

and u ∈ Bw(Sn), we have∣∣∣∑
j∈S

qij(a)u(j)
∣∣∣ ≤ ||u||w(2+b1)w2(i) and

∣∣∣ ∑
j∈Sn

qnij(a)w(j)
∣∣∣ ≤ ||u||w(2+b1)w2(i), (2.2.9)

respectively. Indeed, if (i, a) ∈ K, we have∣∣∣∑
j∈S

qij(a)u(j)
∣∣∣ ≤ ||u||w(− 2qii(a)w(i) +

∑
j∈S

qij(a)w(j)
)
≤ ||u||w(2w2(i) + b1),

by Assumption 2.1.8. The argument is similar for (i, a) ∈ Kn.
Suppose now that ε > 0 is given.

• Choose K1 such that∑
j∈Sn,j>K1

µnf (j)w2(j) < ε for every n ≥ 1 and f ∈ Fn. (2.2.10)
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• For this K1, choose K2 > K1 with

max
i=0,1,...,K1

max
a∈A(i)

∑
j>K2

qij(a)w(j) < ε (2.2.11)

(recall Lemma 2.2.3(i)).

• For these K1 and K2 choose N0 with {0, 1, . . . , K2} ⊆ SN0 such that n ≥ N0 implies
(Lemma 2.2.3(iii))

max
i=0,1,...,K1

max
a∈An(i)

|r(i, a)− rn(i, a)| < ε (2.2.12)

and (Lemma 2.2.3(iv))

max
i=0,1,...,K1

max
a∈An(i)

∑
j∈Sn

|qij(a)− qnij(a)|w(j) < ε. (2.2.13)

Let n ≥ N0 and fix arbitrary f ∈ Fn. We can extend f ∈ Fn to some policy f ∈ F, where
f(i) = f(i) ∈ An(i) ⊆ A(i) for i ∈ Sn, and f(i) ∈ A(i) is defined arbitrarily for i /∈ Sn.
The Poisson equation for f is

g(f) = r(i, f) +
∑
j∈S

qij(f)h(j) for all i ∈ S,

where h ∈ Bw(S) can be chosen to be the bias of f , and thus ||h||w ≤ RM/γ; recall (2.1.7)
and Proposition 2.1.14. This Poisson equation is written on the states i ∈ Sn as

g(f)− rn(i, f) = r(i, f)− rn(i, f) +
∑
j∈S

qij(f)h(j) for all i ∈ Sn,

where we can indeed replace f with f in the righthand side. Multiply the above equations
by the invariant probability measure µnf (i) and sum over i ∈ Sn to obtain

g(f)− gn(f) =
∑
i∈Sn

µnf (i)
(
r(i, f)− rn(i, f)

)
+
∑
i∈Sn

µnf (i)
∑
j∈S

qij(f)h(j). (2.2.14)

Let us first analyze the leftmost term in the righthand side of this expression. For states
0 ≤ i ≤ K we have by (2.2.12)

∣∣∣ K1∑
i=0

µnf (i)
(
r(i, f)− rn(i, f)

)∣∣∣ ≤ K1∑
j=0

µnf (i)ε ≤ ε.

For states larger than K1 we have, by (2.2.10),∣∣∣ ∑
i∈Sn,i>K1

µnf (i)
(
r(i, f)− rn(i, f)

)∣∣∣ ≤ 2M
∑

i∈Sn,i>K1

µnf (i)w(i) ≤ 2Mε,
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where we use the fact that w(i) ≥ 1.
We analyze now the rightmost term of (2.2.14). Note that it equals∑

i∈Sn

µnf (i)
∑
j∈Sn

qij(f)h(j) +
∑
i∈Sn

µnf (i)
∑
j /∈Sn

qij(f)h(j)

=
∑
i∈Sn

µnf (i)
∑
j∈Sn

(qij(f)− qnij(f))h(j) +
∑
i∈Sn

µnf (i)
∑
j /∈Sn

qij(f)h(j), (2.2.15)

where me make use of the equality
∑

i∈Sn µ
n
f (i)qnij(f) = 0 for all j ∈ Sn because µnf is

the invariant probability measure of f ∈ Fn under Mn. Regarding the leftmost term of
(2.2.15), it can be split into the sums for 0 ≤ i ≤ K1 and for i ∈ Sn with i > K1. Firstly,
by (2.2.13),

K1∑
i=0

µnf (i)
∣∣∣ ∑
j∈Sn

(qij(f)− qnij(f))h(j)
∣∣∣ ≤ RM

γ
ε
K−1∑
i=0

µnf (i) ≤ RM

γ
ε.

Secondly, applying (2.2.9)∑
i∈Sn,i>K1

µnf (i)
∣∣∣ ∑
j∈Sn

(qij(f)− qnij(f))h(j)
∣∣∣ ≤ 2||h||w(2 + b1)

∑
i∈Sn,i>K1

µnf (i)w2(i)

≤ 2RM(2 + b1)

γ
ε,

by (2.2.10). We proceed now with the rightmost term of (2.2.15). We have∑
i∈Sn

µnf (i)
∣∣∣ ∑
j /∈Sn

qij(f)h(j)
∣∣∣ ≤ RM

γ

∑
i∈Sn

µnf (i)
∑
j /∈Sn

qij(f)w(j).

For states 0 ≤ i ≤ K1, by (2.2.11) we have

K1∑
i=0

µnf (i)
∑
j /∈Sn

qij(f)w(j) ≤
K1∑
i=0

µnf (i)
∑
j>K2

qij(f)w(j) ≤ ε,

while for states i ∈ Sn, i > K1, proceeding as in the proof of (2.2.9), we have∑
i∈Sn,i>K1

µnf (i)
∑
j /∈Sn

qij(f)w(j) ≤ (2 + b1)
∑

i∈Sn,i>K1

µnf (i)w2(i) ≤ (2 + b1)ε.

Consequently, letting c = 1+2M+RM(3b1 +8)/γ, we have shown that |g(f)−gn(f)| <
cε for all n ≥ N0. Since f ∈ Fn is arbitrary it follows that

lim
n→∞

sup
f∈Fn
|g(f)− gn(f)| = 0, (2.2.16)
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where f is any extension to F of f ∈ Fn.
Now we are ready to conclude the proof. Suppose that f ∗ ∈ F is an average reward

optimal policy for M. We can construct a sequence {fn}n≥1 of policies in Fn such that
fn → f ∗ and let fn be an arbitrary extension of fn to F. It should be clear that fn ∈ F
converges to f ∗ ∈ F. Given ε > 0, for n large enough we have, by continuity of the gain
(Lemma 2.1.17)

|g(fn)− g∗| < ε,

and also that
g(fn) < ε+ gn(fn) ≤ ε+ g∗n,

from which g∗ − g∗n < 2ε follows. Conversely, if f ∗n ∈ Fn is average optimal for Mn, then
given ε > 0 and for n large enough

g∗n − ε ≤ g(fn) ≤ g∗

for any extension fn ∈ F of f ∗n, and so g∗n − g∗ < ε. This completes the proof of part (i) of
this theorem, that g∗n → g∗.

For statement (ii), let {fn}n≥1 be average optimal policies for Mn and consider a sub-
sequence (for simplicity, also denoted by n) that converges to some f ∈ F. If fn is an
extension of fn to F, then we also have that fn converges to f ∈ F. Using (2.2.16) it
follows that

lim
n→∞

[
g(fn)− g∗n] = 0,

and so, by part (i) and Lemma 2.1.17 again, g(f) = lim g(fn) = g∗, thus showing that f is
average optimal for M. �

This theorem, whose proof is by far more involved than that of Theorem 2.2.9, allows
to drop the condition supn≥1 ||hn||w < ∞ imposed in that theorem. The inconvenient of
this condition in Theorem 2.2.9 is that it practically assumes that the constants Rn and
γn in the uniform ergodicity condition for Mn do not depend on n ≥ 1. Such a result is
not readily available since, except for the particular case described in Remark 2.1.12, there
is no explicit known relation between the coefficients R and γ and the data of the control
model. On the contrary, the strengthened Lyapunov condition presented in Theorem 2.2.10
depends directly on the data (namely, the transition rates) of the control model Mn and,
therefore, it is easy to verify it (or discard it) in practice.

2.3 Finite state and action approximations

In the previous section, we have analyzed convergence of a sequence of given control models
Mn to a so-called original control modelM, and we have studied several properties of this
convergence. Here we take another point of view: we assume that we are given the original
control modelM and we show how we can construct a sequence {Mn}n≥1 of control models
that verify the hypotheses described in the previous section.
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2.3.1 Definition

Consider the control model M = {S,A,K, q, r} described in Section 2.1.1. We are in-
terested in approximating numerically the optimal value and the optimal policies for M,
either for the discounted or the average reward optimality criteria.

We propose the following finite state and action truncation of the control model M.
We must assume, further, that the action sets A(i) of M are compact for every i ∈ S;
cf. Assumptions 2.1.5(i) and 2.1.11(i). For any n ≥ 1, consider the control model Mn =
{Sn, A,Kn, qn, rn} defined as follows:

• The state space is Sn = {0, 1, . . . , n}.

• For each i ∈ Sn, the action set An(i) is a finite subset of A(i) such that the condition
in Definition 2.2.1(b) is verified (see the comment below).

• The transition rates are as follows. If (i, a) ∈ Kn and 0 ≤ j < n, let qnij(a) = qij(a),
and if j = n let

qnin(a) =
∑
k≥n

qik(a) = −
n−1∑
k=0

qik(a).

• For (i, a) ∈ Kn, define the reward rate rn(i, a) = r(i, a).

Regarding the construction of the action sets, such a construction is indeed possible be-
cause the action sets A(i) are compact. As an illustration, consider the family of balls with
center in A(i) and radius 1/n. Define An(i) as the set of centers of a finite subcover. Then
the Hausdorff distance verifies ρA(A(i), An(i)) ≤ 1/n, thus satisfying Definition 2.2.1(b).
Observe also that the transition rates are conservative and stable, with qn(i) ≤ q(i) for
every i ∈ Sn. Indeed, −qnii(a) = −qii(a) ≤ q(i) for (i, a) ∈ Kn with i < n, while for
a ∈ An(n)

−qnnn(a) =
n−1∑
k=0

qnk(a) ≤ −qnn(a) ≤ q(n).

Finally, note that n(0) = 1 and that n(i) = i for all i ≥ 1.
The interpretation ofMn is as follows. We can say, loosely, that the truncated control

model Mn follows the same dynamics as M, but when it reaches a state larger than n it
is “restarted” at n.

Our next lemma needs continuity of the transition and reward rates; cf. Assumptions
2.1.5(ii) and 2.1.11(ii).

Lemma 2.3.1 Suppose that the control model M is such that its action sets A(i) are
compact for every i ∈ S, and such that the functions a 7→ qij(a) and a 7→ r(i, a) are
continuous on A(i) for each i, j ∈ S. Then the control models Mn defined above verify
Mn →M.
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Proof. It is clear that Sn ↑ S and, by construction, convergence in the Hausdorff metric of
the An(i) to A(i) holds. Given i, j ∈ S and a sequence an ∈ An(i) such that an → a ∈ A(i),
for n large enough we have qnij(an) = qij(an), which converges to qij(a) by continuity of
the transition rates; thus Definition 2.2.1(c) holds. A similar argument is valid for the
condition on the reward rates given in Definition 2.2.1(d). �

Consequently, the control models Mn constructed above are finite state and action
truncations of the original control modelM and, besides, under some additional conditions
on M, they converge: Mn →M. It remains to study if the control models Mn somehow
inherit the assumptions so far imposed on M, so that we can use Theorems 2.2.7, 2.2.9,
and 2.2.10 to obtain convergence of the optimal values and the optimal policies.

2.3.2 Finite truncations for discounted models

Consider the control model M and let us focus on the discounted reward optimality cri-
terion, with a discount rate α > 0. Our first task is to check whether the finite state and
action truncations Mn defined previously verify the conditions in Assumption 2.2.2, so
that we can use Theorem 2.2.7.

Proposition 2.3.2 Suppose that the control model M satisfies Assumptions 2.1.2, 2.1.4,
and 2.1.5. Then the control models Mn constructed in Section 2.3.1 verify:

(i) The optimal discounted rewards converge: for every i ∈ S, limn→∞ V
α
n (i) = V α(i).

(ii) Any limit policy of discount optimal policies for Mn is discount optimal for M.

Proof. Our first step in this proof is to show that Assumptions 2.1.2, 2.1.4, and 2.1.5
on the control model M imply Assumption 2.2.2 for the finite state and action truncated
control models Mn.

Let us check Assumption 2.2.2(i). Recall that the Lyapunov function w, as well as
the constants c1 > −α and b1 ≥ 0, are taken from Assumption 2.1.2. Given n ≥ 1 and
(i, a) ∈ Kn,

∑
j∈Sn

qnij(a)w(j) =
n−1∑
j=0

qij(a)w(j) +
(∑
j≥n

qij(a)
)
· w(n)

≤
n−1∑
j=0

qij(a)w(j) +
∑
j≥n

qij(a)w(j)

=
∑
j∈S

qij(a)w(j) ≤ −c1w(i) + b1,

where we use monotonicity of w and the fact that qij(a) ≥ 0 for j > n ≥ i. We have
already mentioned that qn(i) ≤ q(i) ≤ w(i) for all i ∈ Sn. Therefore, Assumption 2.2.2(i)
holds.
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Clearly, by construction we have also Assumption 2.2.2(ii), while Assumption 2.2.2(iii)
trivially holds because the sets An(i) are finite. Finally, Assumption 2.2.2(iv) is derived
using the same arguments as before, for part (i).

The control modelsMn converge toM (recall Lemma 2.3.1) and they satisfy Assump-
tion 2.2.2. We can therefore use Theorem 2.2.7, and the proof is complete. �

Therefore, starting from a control model M that satisfies suitable assumptions, we
have been able to construct a sequence of control modelsMn, with finite state and action
spaces, whose optimal discounted value and discount optimal policies converge to those
ofM. This enables us to provide computable numerical approximations of the solution of
a control model with countable state space and compact action sets.

Solving a finite discounted control problem. For completeness, we show now how we
can explicitly solve a finite state and action control model, as theMn, under the discounted
reward optimality criterion. We use the well known technique of uniformization.

Consider the finite state and action control model Mn for some fixed n ≥ 1. Its
discounted reward optimality equation reads

αV α
n (i) = max

a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)V α
n (j)

}
for i ∈ Sn.

Let the constant qn be such that qn > qn(i) for all i ∈ Sn. It suffices to choose, for instance,
qn > w(n). Given (i, a) ∈ Kn consider the following probability distribution on Sn:

pnij(a) =
qnij(a)

qn
+ δij for j ∈ Sn.

Clearly, the pnij(a) are nonnegative and they sum up to one. Straightforward calculations
show that the discounted reward optimality equation forMn can be equivalently rewritten
as

V α
n (i) = max

a∈An(i)

{rn(i, a)

α + qn
+

qn
α + qn

∑
j∈Sn

pnij(a)V α
n (j)

}
for i ∈ Sn.

This is the discounted reward optimality equation of a discrete-time finite state and action
control model with state space Sn, action sets An(i), reward function rn/(α+qn), transition
probabilities pnij(a), and discount factor qn

α+qn
< 1. Both the continuous-time and the

discrete-time problems are equivalent, meaning that their optimal discounted value function
is the same, and that they have the same sets of optimal deterministic stationary policies.
The so-defined discrete-time control problem can be explicitly solved using, for instance,
the value iteration algorithm, which consists in the successive application of a contraction
operator; see [35] for more details on this algorithm.

We can also use the policy iteration algorithm forMn, described next, which converges
to the optimal value and an optimal policy in a finite number of steps.
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Step 0. Choose an arbitrary policy f0 ∈ Fn and set k = 0.

Step 1. Determine the discounted reward vk of fk as the unique solution of the system of
linear equations

αvk(i) = rn(i, fk) +
∑
j∈Sn

qnij(fk)vk(j) for j ∈ Sn.

Step 2. Determine fk+1 ∈ Fn as the policy attaining the maximum

fk+1(i) ∈ argmax
a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)vk(j)
}

for i ∈ Sn,

letting fk+1(i) = fk(i) if possible.

Step 3. If fk+1 = fk then fk is discount optimal forMn and vk = V α
n . Otherwise, increase

k by one and go to Step 1.

This algorithm provides a sequence {vk}k≥0 that is (componentwise) increasing. If the
algorithm does not terminate at some step k ≥ 0, then there exists at least one i ∈ Sn with
vk(i) < vk+1(i). The policy space Fn being finite, it follows that the algorithm converges
necessarily in a finite number of steps.

Hence, the finite state and action truncated modelsMn can be indeed explicitly solved.

The Lipschitz continuous case. It remains to study whether it is possible to obtain a
rate of the convergence of V α

n (i) to V α(i), for i ∈ S. We will now show that this is indeed
possible, although some of our assumptions on the control modelM must be strengthened.

First of all, we prove the following useful result. In (2.3.1) below, note that the maxi-
mum is attained as a consequence of Corollary 2.1.6.

Lemma 2.3.3 Suppose that the control model M satisfies Assumptions 2.1.2, 2.1.4, and
2.1.5. Suppose also that there exists some u ∈ Bw(S) and some nonnegative function
v : S → [0,∞) such that∣∣∣αu(i)− max

a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)u(j)
}∣∣∣ ≤ v(i) for all i ∈ S, (2.3.1)

where the function v satisfies∑
j∈S

qij(a)v(j) ≤ −cvv(i) + bv for all (i, a) ∈ K

for some constants cv > −α and bv ≥ 0. Under these conditions, we have∣∣V α(i)− u(i)
∣∣ ≤ v(i)

α + cv
+

bv
α(α + cv)

for each i ∈ S.
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Proof. Given any initial state i ∈ S and an arbitrary Markov policy ϕ ∈ Φ, it can be
proved, as in (2.1.3), that

Ei,ϕ[v(x(t))] ≤ e−cvtv(i) +
bv
cv

(
1− e−cvt

)
for all t ≥ 0, (2.3.2)

or Ei,ϕ[v(x(t))] ≤ v(i) + bvt in case that cv = 0.
Let f ∈ F be such that (recall Corollary 2.1.6)

max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)u(j)
}

= r(i, f) +
∑
j∈S

qij(f)u(j) for all i ∈ S,

and so, as a consequence of (2.3.1),

αu(i)− r(i, f)−
∑
j∈S

qij(f)u(j) ≤ v(i) for all i ∈ S.

By Dynkin’s formula, for all i ∈ S and t ≥ 0 we have

Ei,f [e−αtu(x(t))]− u(i) = Ei,f
[ ∫ t

0

e−αs
[
− αu(x(s)) +

∑
j∈S

qx(s)j(f)u(j)
]
ds
]

≥ −Ei,f
[ ∫ t

0

e−αs
[
r(x(s), f) + v(x(s))

]
ds
]
.

By dominated and monotone convergence, we can take the limit as t→∞ to obtain, using
(2.3.2) that

u(i) ≤ V α(i, f) + Ei,f
[ ∫ ∞

0

e−αsv(x(s))ds
]

≤ V α(i, f) +
v(i)

α + cv
+

bv
α(α + cv)

≤ V α(i) +
v(i)

α + cv
+

bv
α(α + cv)

for each i ∈ S.
On the other hand, if f ∗ ∈ F is a discount optimal policy forM, using (2.3.1) we obtain

−v(i) ≤ αu(i)− r(i, f ∗)−
∑
j∈S

qij(f
∗)u(j) for all i ∈ S.

Using the Dynkin formula for f ∗, for all i ∈ S and t ≥ 0

Ei,f∗ [e−αtu(x(t))]− u(i) = Ei,f∗
[ ∫ t

0

e−αs
[
− αu(x(s)) +

∑
j∈S

qx(s)j(f
∗)u(j)

]
ds
]

≤ Ei,f∗
[ ∫ t

0

e−αs
[
− r(x(s), f ∗) + v(x(s))

]
ds
]
.
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Letting t → ∞ and recalling that f ∗ is discount optimal we obtain, proceeding as before,
that

u(i) ≥ V α(i)− v(i)

α + cv
− bv
α(α + cv)

for each i ∈ S.

The stated result readily follows. �

Remark 2.3.4 As a side result, this lemma shows that if u ∈ Bw(S) is a solution of the
discounted reward optimality equation for M, then u = V α, the optimal discounted reward
function. Indeed, if u is such solution, choose v ≡ 0 with bv = 0, and the result follows.

The next result shows an interesting fact about Lyapunov conditions. It states, roughly,
that if a Lyapunov condition holds for some function, then it is also satisfied for its powers,
provided that these are less than one.

Lemma 2.3.5 Given a family of conservative and stable transition rates {qij(a)}, suppose
that the function h : S → [0,∞) satisfies q(i) ≤ h(i) for all i ∈ S. If there exists a power
γ > 0 and a constant cγ ≥ 0 such that∑

j∈S

qij(a)hγ(j) ≤ cγh
γ(i) for all (i, a) ∈ K, (2.3.3)

then for every power 0 < γ′ < γ∑
j∈S

qij(a)hγ
′
(j) ≤ cγh

γ′(i) for all (i, a) ∈ K.

Proof: Fix (i, a) ∈ K and η > 0. Rewrite (2.3.3) as

1

h(i) + η

∑
j 6=i

qij(a)hγ(j) +
( qii(a)

h(i) + η
+ 1
)
hγ(i) ≤

( cγ
h(i) + η

+ 1
)
hγ(i). (2.3.4)

Define now

pi =
qii(a)

h(i) + η
+ 1 and pj =

qij(a)

h(i) + η
for j 6= i.

These coefficients are nonnegative (we use here the fact that q(i) ≤ h(i)) and
∑

j∈S pj = 1.
Therefore, (2.3.4) is equivalent to∑

j∈S

pjh
γ(j) ≤

( cγ
h(i) + η

+ 1
)
hγ(i).

Using Jensen’s inequality for the concave function x 7→ xγ
′/γ yields∑

j∈S

pjh
γ′(j) ≤

( cγ
h(i) + η

+ 1
)γ′/γ

hγ
′
(i)
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or, equivalently,∑
j∈S

qij(a)hγ
′
(j) ≤ hγ

′
(i)

(( cγ
h(i) + η

+ 1
)γ′/γ

− 1

)
(h(i) + η).

Since 0 < γ′/γ < 1, we have( cγ
h(i) + η

+ 1
)γ′/γ

− 1 ≤ cγ
h(i) + η

,

and so ∑
j∈S

qij(a)hγ
′
(j) ≤ cγh

γ′(i),

which completes the proof. �

As a consequence of this lemma, we have the following. Suppose that there exists a
power γ > 0 such that the Lyapunov function w, taken from Assumption 2.1.2, verifies for
some constants cγ ∈ R and bγ ≥ 0 the inequality∑

j∈S

qij(a)wγ(j) ≤ −cγwγ(i) + bγ for all (i, a) ∈ K. (2.3.5)

We have also
∑
qij(a)wγ(j) ≤ (|cγ| + bγ)w

γ(i), and so we can use Lemma 2.3.5 to derive
that, for every 0 < γ′ < γ,∑

j∈S

qij(a)wγ
′
(j) ≤ (|cγ|+ bγ)w

γ′(i) for all (i, a) ∈ K, (2.3.6)

and thus wγ
′

also verifies a Lyapunov condition as in (2.3.5):∑
j∈S

qij(a)wγ
′
(j) ≤ −cγ′wγ

′
(i) + bγ′ for all (i, a) ∈ K,

with cγ′ = −(|cγ|+ bγ) and bγ′ = 0.

Now we present our new conditions on the control modelM. Namely, we will assume, as
before, that the control modelM satisfies Assumptions 2.1.2 and 2.1.4, while Assumption
2.1.5 will be replaced with the following stronger condition.

Assumption 2.3.6 The control model M verifies the following conditions.

(i) The action sets A(i) are compact for every i ∈ S.

(ii) The functions a 7→ qij(a) and a 7→ r(i, a) are Lipschitz continuous on A(i) for all
i, j ∈ S, that is,

|qij(a)− qij(a′)| ≤ LijdA(a, a′) and |r(i, a)− r(i, a′)| ≤ LidA(a, a′)

for all i, j ∈ S and a, a′ ∈ A(i), and some constants Lij > 0 and Li > 0.
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(iii) There are constants δ > 2, cδ > −α, and bδ ≥ 0 with∑
j∈S

qij(a)wδ(j) ≤ −cδwδ(i) + bδ for all (i, a) ∈ K.

Part (i) of this assumption is the same as Assumption 2.1.5(i). Observe that the continu-
ity of the transition and reward rates imposed in Assumption 2.1.5(ii) is now strengthened
to Lipschitz continuity. The condition in Assumption 2.3.6(iii) above imposes a Lyapunov
inequality on some power δ > 2 of the Lyapunov function w. By the previous discussion
(in particular, recall Lemma 2.3.5) this condition implies Assumption 2.1.5(iii). Therefore,
it is indeed true that Assumption 2.3.6 is stronger that Assumption 2.1.5. Regarding the
Lyapunov condition on wδ above, note that it has the particular feature that the coefficient
cδ is supposed to be strictly larger than −α; cf. Assumption 2.1.4(i).

We are now ready to state our main result on the convergence rates. Recall that,
starting from the original control modelM, we construct the finite state and action trun-
cated control models Mn, as described in Section 2.3.1. Our next result shows that if we
choose a “sufficiently fine” grid of actions An(i) for the control model Mn, measured by
the Hausdorff distance between An(i) and A(i), then we can achieve a convergence rate of
order 1/wδ−2. For the next result, recall the notation M used in (2.1.4) and (2.2.1).

Theorem 2.3.7 Suppose that the control model M satisfies the Assumptions 2.1.2, 2.1.4,
and 2.3.6, and suppose that the action sets of the finite state and action truncated models
{Mn}n≥1 are chosen such that, for some constant D > 0 and every n ≥ 1 and i ∈ Sn,

ρA(An(i), A(i)) ≤ Dwδ(i)

wδ−2(n) · (Li + 2Mw(n)
∑n−1

j=0 Lij)
.

Then there exists a constant c > 0 such that for every n ≥ 1 and i ∈ Sn

|V α
n (i)− V α(i)| ≤ c

wδ(i)

wδ−2(n)
.

Proof. Fix n ≥ 1 and i ∈ Sn. The discounted reward optimality equation for M at the
state i ∈ Sn reads

αV α(i) = max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)V α(j)}. (2.3.7)

Thus, for every a ∈ A(i) we have

αV α(i) ≥ r(i, a) +
∑
j∈S

qij(a)V α(j) = r(i, a) +
∑
j∈S

qij(a)(V α(j)− V α(n)). (2.3.8)

Observe now that, since ||V α||w ≤M, recall (2.1.4),∣∣∣∑
j>n

qij(a)(V α(j)− V α(n))
∣∣∣ ≤ 2M

∑
j>n

qij(a)w(j).
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By monotonicity of w we have the following inequality∑
j>n

qij(a)w(j) ≤ 1

wδ−2(n)

∑
j>n

qij(a)wδ−1(j).

As a consequence of Assumption 2.3.6(iii) and Lemma 2.3.5, we have the following Lya-
punov inequality on wδ−1 (cf. (2.3.6))∑

j∈S

qij(a)wδ−1(j) ≤ (|cδ|+ bδ)w
δ−1(i) for all (i, a) ∈ K.

In particular, ∑
j>n

qij(a)wδ−1(j) ≤ −qii(a)wδ−1(i) +
∑
j∈S

qij(a)wδ−1(j)

≤ q(i)wδ−1(i) + (|cδ|+ bδ)w
δ−1(i)

≤ (1 + |cδ|+ bδ)w
δ(i).

Consequently, we obtain from (2.3.8) that for every a ∈ A(i)

αV α(i) ≥ r(i, a) +
n−1∑
j=0

qij(a)(V α(j)− V α(n))− 2M
(1 + |cδ|+ bδ)w

δ(i)

wδ−2(n)
.

Now, if a ∈ An(i) ⊆ A(i) we have, by definition of the control model Mn, that r(i, a) =
rn(i, a) and that qij(a) = qnij(a) if 0 ≤ j < n, while

−
n−1∑
j=0

qij(a) = qnin(a).

We have thus shown that for every a ∈ An(i)

αV α(i) ≥ rn(i, a) +
∑
j∈Sn

qnij(a)V α(j)− 2M
(1 + |cδ|+ bδ)w

δ(i)

wδ−2(n)
,

and therefore

αV α(i) ≥ max
a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)V α(j)
}
− 2M

(1 + |cδ|+ bδ)w
δ(i)

wδ−2(n)
. (2.3.9)

Starting again from (2.3.7), let a∗ ∈ A(i) attain the maximum in that equation, so that

αV α(i) = r(i, a∗) +
∑
j∈S

qij(a
∗)V α(j) = r(i, a∗) +

∑
j∈S

qij(a
∗)(V α(j)− V α(n)).
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Proceeding as in the first part of this proof, we derive

αV α(i) ≤ r(i, a∗) +
n−1∑
j=0

qij(a
∗)(V α(j)− V α(n)) + 2M

(1 + |cδ|+ bδ)w
δ(i)

wδ−2(n)
. (2.3.10)

By the Lipschitz continuity property in Assumption 2.3.6(ii), we have that the function

a 7→ r(i, a) +
n−1∑
j=0

qij(a)(V α(j)− V α(n))

is Lipschitz continuous on A(i) with Lipschitz constant Li + 2Mw(n)
∑n−1

j=0 Lij. Therefore,
if a∗n ∈ An(i) is such that

dA(a∗n, a
∗) = min

a′∈An(i)
dA(a′, a∗) ≤ ρA(An(i), A(i))

we have, from (2.3.10),

αV α(i) ≤ r(i, a∗n) +
n−1∑
j=0

qij(a
∗
n)(V α(j)− V α(n))

+
(
Li + 2Mw(n)

n−1∑
j=0

Lij
)
ρA(An(i), A(i)) + 2M

(1 + |cδ|+ bδ)w
δ(i)

wδ−2(n)
.

Recalling our hypothesis on ρA(An(i), A(i)) and letting

C = D + 2M(1 + |cδ|+ bδ)

yields, by definition of the reward and transition rates of Mn, that

αV α(i) ≤ rn(i, a∗n) +
∑
j∈Sn

qnij(a
∗
n)V α(j) + C

wδ(i)

wδ−2(n)

≤ max
a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)V α(j)
}

+ C
wδ(i)

wδ−2(n)
.

Combining this inequality with (2.3.9) finally establishes that∣∣∣αV α(i)− max
a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)V α(j)
}∣∣∣ ≤ C

wδ(i)

wδ−2(n)
for all i ∈ Sn.

Now we are going to use Lemma 2.3.3 for the control model Mn. By construction of
Mn, recall in particular Proposition 2.3.2, the control modelMn satisfies the assumptions
in Lemma 2.3.3. Observe now that {V α(j)}j∈Sn ∈ Bw(Sn) plays the role of the function u,
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while the function v in Lemma 2.3.3 is now C wδ(i)
wδ−2(n)

, for i ∈ Sn. By Assumption 2.3.6(iii)
and arguing as in the proof of Proposition 2.3.2, it can be shown that∑

j∈Sn

qnij(a)
Cwδ(j)

wδ−2(n)
≤ −cδ

Cwδ(i)

wδ−2(n)
+

Cbδ
wδ−2(n)

for all (i, a) ∈ Kn.

We can indeed use Lemma 2.3.3 to show that, for every i ∈ Sn

|V α(i)− V α
n (i)| ≤ Cwδ(i)

wδ−2(n)(α + cδ)
+

Cbδ
wδ−2(n)α(α + cδ)

.

Therefore, letting

c =
C(α + bδ)

α(α + cδ)

we obtain the desired result. �

This theorem shows that, if we consider a fixed initial state i ∈ S, then the convergence
rate of V α

n (i) to V α(i) is of order 1/wδ−2(n). Therefore, the convergence order is related
to the maximal exponent δ > 2 such that a Lyapunov condition∑

j∈S

qij(a)wδ(j) ≤ −cδwδ(i) + bδ for all (i, a) ∈ K

with cδ > −α holds. Clearly, the larger we can find δ with this property, the faster the
convergence.

An interesting fact in Theorem 2.3.7 is that the approximation error |V α
n (i) − V α(i)|

can be explicitly computed because it depends on the data of the original control model: it
depends on the function w and on related constants. Therefore, the finite state and action
truncations provide computable approximations with explicitly computable approximation
errors.

Moreover, notice that the condition on the finite action sets An(i), expressed in terms
of ρA(An(i), A(i)) in Theorem 2.3.7, is parametrized in the numerator by wδ(i); assuming
that the Lipschitz constants of the reward and transition rates do not vary with i, this
requires to have a “dense” grid of points An(i) in A(i) for small values of the state i,
whereas this grid is allowed to be “sparse” for large values of i.

2.3.3 Finite truncations for average models

Now we are interested in the expected average reward optimality criterion for the control
model M. To approximate its optimal value and policies we consider the finite state and
action truncations {Mn}n≥1 defined in Section 2.3.1.

The basic assumptions for the control modelM under the average reward criterion are
Assumptions 2.1.8, 2.1.9, and 2.1.11. Our next result explores whether these conditions
are inherited by the truncated control models Mn, that is, to check whether Assumption
2.2.8 is satisfied.
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Proposition 2.3.8 If the control modelM satisfies Assumptions 2.1.8, 2.1.9, and 2.1.11,
then the truncated control models Mn verify Assumption 2.2.8 except perhaps item (v),
and Mn →M.

Proof. The fact that Assumptions 2.2.8(i)–(iv) are satisfied by the Mn is proved as in
Proposition 2.3.2 and we omit the details. Concerning Assumption 2.2.8(v) observe that
it is not possible to deduce that each policy in Fn is irreducible forMn from irreducibility
of policies in F for M. Indeed, since the control model Mn consists in “restarting” the
process at state n when it leaves {0, 1, . . . , n}, the states in Sn need not communicate. For
instance, suppose that for M the only way to go from 0 to 1 is by visiting n + 1. Then,
for Mn, the states 0 and 1 will not communicate. �

From this proposition we deduce that the control modelMn might not have a constant
optimal average reward, and that there might not exist solutions to its average reward
optimality equation. This is an important departure point from the discounted case for
which Proposition 2.3.2 indeed establishes that the optimal discounted rewards of Mn

converged to those of M.
By recovering the conditions in Theorems 2.2.9 and 2.2.10 we can, however, obtain

convergence. For our next result, recall that g∗n denotes the optimal gain of the control
model Mn.

Proposition 2.3.9 Suppose that the control model M satisfies Assumptions 2.1.8, 2.1.9,
and 2.1.11, and assume further that the finite state and action truncated models Mn are
such that every policy in Fn is irreducible. Suppose that one of the conditions below hold:

(a) Either there exist solutions (g∗n, hn) ∈ R × Bw(Sn) to the average reward optimality
equation of Mn such that supn≥1 ||hn||w <∞,

(b) Or there exist constants δ > 2, cδ > 0, and bδ ≥ 0 such that∑
j∈S

qij(a)wδ(j) ≤ −cδwδ(i) + bδ for all (i, a) ∈ K.

Under these conditions, the optimal gains g∗n of Mn converge to the optimal gain g∗ of M,
and any limit policy of average optimal policies for Mn is average optimal for M.

Proof. Under the additional irreducibility condition, we have that the finite state and
action truncated control modelsMn satisfy Assumption 2.2.8 with, moreover,Mn →M;
recall Proposition 2.3.8. If part (a) holds, then the result follows from Theorem 2.2.9. If
part (b) is true, the we can proceed as in the proof of Proposition 2.3.2 to show that the
condition in Theorem 2.2.10 is satisfied by the Mn. �

As already mentioned, for practical purposes, the condition in (b) is easier to manage
than (a) for a given control model M.
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Solving a finite average control problem.

To solve explicitly a finite state and action control problem with irreducible stationary
policies, one can use the policy iteration algorithm. This algorithm has been analyzed in
[14] and also in [31, Section 4.2.2]. We describe it next.

Step 0. Choose an arbitrary policy f0 ∈ Fn and set k = 0.

Step 1. Determine the gain g(k) ∈ R of fk and a vector hk ∈ Bw(Sn) such that (g(k), hk)
is a solution to the Poisson equation for fk

g(k) = rn(i, fk) +
∑
j∈Sn

qnij(fk)hk(j) for i ∈ Sn.

Step 2. Determine fk+1 ∈ Fn as the policy attaining the maximum

fk+1(i) ∈ argmax
a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)hk(j)
}

for i ∈ Sn,

letting fk+1(i) = fk(i) if possible.

Step 3. If fk+1 = fk then fk is average optimal forMn and g(k) = g∗n. Otherwise, increase
k by one and go to Step 1.

The sequence {g(k)}k≥0 is monotone nondecreasing and if the algorithm does not stop at
step k then g(k) < g(k+1). The policy space Fn being finite, the algorithm necessarily ter-
minates by solving the average reward optimality equation forMn and finding an average
optimal policy.

The Lipschitz continuous case. Now we aim at obtaining rates of convergence for the
convergence to the optimal gain of the original control model M. To do so, we need to
impose stronger assumptions on our control model. We begin with our next result, which
is an average reward version of Lemma 2.3.3. It does not need to assume that stationary
policies are irreducible.

Lemma 2.3.10 Let the control model M satisfy Assumptions 2.1.8, 2.1.9, and 2.1.11(i)–
(iii). Suppose that there exists a pair (g, h) ∈ R × Bw(S) and a nonnegative function
u : S → [0,∞) such that∣∣∣g − max

a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)h(j)
}∣∣∣ ≤ u(i) for all (i, a) ∈ K,

where u is such that there exist constants cu > 0 and bu ≥ 0 with∑
j∈S

qij(a)u(j) ≤ −cuu(i) + bu for all (i, a) ∈ K.

Under these conditions,

|J(i)− g| ≤ bu
cu

for all i ∈ S.
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Proof. Given arbitrary ϕ ∈ Φ, i ∈ S, and t ≥ 0, we have

r(t, i, ϕ) +
∑
j∈S

qij(t, ϕ)h(j) ≤ g + u(i).

Using Dynkin’s formula for the function h ∈ Bw(S) we obtain

Ei,ϕ[h(x(t))]− h(i) = Ei,ϕ
[ ∫ t

0

∑
j∈S

qx(s)j(s, ϕ)h(j)ds
]

≤ gt+ Ei,ϕ
[ ∫ t

0

u(x(s))ds
]
− Ei,ϕ

[ ∫ t

0

r(s, x(s), ϕ)ds
]
.

Dividing by t > 0 and rearranging terms yields

1

t
Ei,ϕ

[ ∫ t

0

r(s, x(s), ϕ)ds
]

+
1

t

(
Ei,ϕ[h(x(t))]−h(i)

)
≤ g+

1

t
Ei,ϕ

[ ∫ t

0

u(x(s))ds
]
. (2.3.11)

Observe that
∣∣Ei,ϕ[h(x(t))]

∣∣ ≤ ||h||wEi,ϕ[w(x(t))] ≤ ||h||w
(
e−c1tw(i) + b1/c1

)
, as a conse-

quence of (2.1.3). Therefore, we have

lim
t→∞

1

t

(
Ei,ϕ[h(x(t))]− h(i)

)
= 0.

By (2.1.3) applied to the function u we have Ei,ϕ[u(x(s))] ≤ e−cus + bu/cu, and so

lim sup
t→∞

1

t
Ei,ϕ

[ ∫ t

0

u(x(s))ds
]
≤ bu
cu
.

Taking the lim sup as t → ∞ in (2.3.11) gives J(i, ϕ) ≤ g + bu/cu for every i ∈ S and
ϕ ∈ Φ. Therefore, for each i ∈ S we have J(i) ≤ g + bu/cu.

Choose now a policy f ∈ F such that

g − u(i) ≤ r(i, f) +
∑
j∈S

qij(f)h(j) for all i ∈ S.

Proceeding as in the first part of this proof we can show that J(i) ≥ J(i, f) ≥ g − bu/cu
for each i ∈ S. The stated result follows. �

Now we give our additional condition on the control model M. This condition is
stronger than Assumption 2.1.11 and will henceforth replace it. It is inspired from As-
sumption 2.3.6.

Assumption 2.3.11 The control model M verifies the following conditions.

(i) The action sets A(i) are compact for every i ∈ S.
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(ii) The functions a 7→ qij(a) and a 7→ r(i, a) are Lipschitz continuous on A(i) for all
i, j ∈ S, that is,

|qij(a)− qij(a′)| ≤ LijdA(a, a′) and |r(i, a)− r(i, a′)| ≤ LidA(a, a′)

for all i, j ∈ S and a, a′ ∈ A(i), and some constants Lij > 0 and Li > 0.

(iii) There are constants δ > 2, cδ > 0, and bδ ≥ 0 with∑
j∈S

qij(a)wδ(j) ≤ −cδwδ(i) + bδ for all (i, a) ∈ K.

(iv) Each deterministic stationary policy in F is irreducible.

We can use Lemma 2.3.5 to show that item (iii) implies Assumption 2.1.11(iii), so that
indeed Assumption 2.3.11 is stronger than Assumption 2.1.11.

This is our main result on the convergence rates to g∗. Since we are not assuming
irreducibility of the policies in Fn, the optimal gain g∗n of Mn needs not exist, and hence
our result refers to the optimal average reward Jn(i) for i ∈ Sn.

Theorem 2.3.12 Suppose that the control modelM satisfies the Assumptions 2.1.8, 2.1.9,
and 2.3.11, and suppose that the action sets of the finite state and action truncated models
{Mn}n≥1 are chosen such that, for some constant D > 0 and every n ≥ 1 and i ∈ Sn,

ρA(An(i), A(i)) ≤ Dwδ(i)

wδ−2(n) · (Li + 2RM
γ
w(n)

∑n−1
j=0 Lij)

.

Then there exists a constant c > 0 such that for every n ≥ 1

max
i∈Sn
|Jn(i)− g∗| ≤ c

wδ−2(n)
.

Proof. Let (g∗, h) ∈ R × Bw(S) be a solution to the average reward optimality equation
for the control model M with ||h||w ≤ RM/γ; recall Corollary 2.1.15. Let n ≥ 1 and
i ∈ Sn and write the average reward optimality for the control model M at state i ∈ Sn:

g∗ = max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)h(j)
}

= max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij(a)(h(j)− h(n))
}
. (2.3.12)

Observe now that for all a ∈ A(i)∣∣∣∑
j>n

qij(a)(h(j)− h(n))
∣∣∣ ≤ 2RM

γ

∑
j>n

qij(a)w(j).
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Arguing as in the proof of Theorem 2.3.7, we obtain∑
j>n

qij(a)w(j) ≤ 1

wδ−2(n)

∑
j>n

qij(a)wδ−1(j).

By Assumption 2.3.11(iii) and Lemma 2.3.5,∑
j∈S

qij(a)wδ−1(j) ≤ (cδ + bδ)w
δ−1(i)

and so ∑
j>n

qij(a)wδ−1(j) ≤ (1 + cδ + bδ)w
δ(i).

Therefore, from (2.3.12), for every a ∈ A(i),

g∗ ≥ r(i, a) +
n−1∑
j=0

qij(a)(h(j)− h(n))− 2RM

γwδ−2(n)
(1 + cδ + bδ)w

δ(i).

Suppose now that a ∈ An(i) ⊆ A(i). Recalling the definition of the transition and reward
rates of the truncated control model, the above inequality can be written

g∗ ≥ rn(i, a) +
∑
j∈Sn

qnij(a)h(j)− 2RM

γwδ−2(n)
(1 + cδ + bδ)w

δ(i),

so that

g∗ ≥ max
a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)h(j)
}
− 2RM

γwδ−2(n)
(1 + cδ + bδ)w

δ(i). (2.3.13)

Proceeding with the proof, let a∗ ∈ A(i) attain the maximum in (2.3.12), that is,

g∗ = r(i, a∗) +
∑
j∈S

qij(a
∗)(h(j)− h(n)).

As before, we obtain

g∗ ≤ r(i, a∗) +
n−1∑
j=0

qij(a
∗)(h(j)− h(n)) +

2RM

γwδ−2(n)
(1 + cδ + bδ)w

δ(i).

By Assumption 2.3.11(ii), the function

a 7→ r(i, a) +
n−1∑
j=0

qij(a)(h(j)− h(n))
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is Lipschitz continuous on A(i) with Lipschitz constant Li + 2RM
γ
w(n)

∑n−1
j=0 Lij. Conse-

quently, letting a∗n ∈ An(i) given by

dA(a∗n, a
∗) = min

a′∈An(i)
dA(a′, a∗) ≤ ρA(An(i), A(i)),

we obtain

g∗ ≤ r(i, a∗n) +
n−1∑
j=0

qij(a
∗
n)(h(j)− h(n)) +

2RM

γwδ−2(n)
(1 + cδ + bδ)w

δ(i)

+
(
Li +

2RM

γ
w(n)

n−1∑
j=0

Lij

)
ρA(An(i), A(i)).

By the condition on ρA(An(i), A(i)), letting

C = D +
2RM

γ
(1 + cδ + bδ)

we obtain

g∗ ≤ r(i, a∗n) +
n−1∑
j=0

qij(a
∗
n)(h(j)− h(n)) + C

wδ(i)

wδ−2(n)

or, recalling the definition of rn and qn, that

g∗ ≤ rn(i, a∗n) +
∑
j∈Sn

qnij(a
∗
n)h(j) + C

wδ(i)

wδ−2(n)
.

Recalling the inequality (2.3.13), we have thus established that∣∣∣g∗ − max
a∈An(i)

{
rn(i, a) +

∑
j∈Sn

qnij(a)h(j)
}∣∣∣ ≤ C

wδ(i)

wδ−2(n)
for every i ∈ Sn.

We apply now Lemma 2.3.10 to the control model Mn for the function

i 7→ C
wδ(i)

wδ−2(n)
;

indeed, note thatMn satisfies the conditions given in that lemma (recall Proposition 2.3.8)
because Lemma 2.3.10 did not assume irreducibility of stationary policies. Hence, letting
c = Cbδ/cδ, for all i ∈ Sn we get

|Jn(i)− g∗| ≤ c

wδ−2(n)
.

The proof is now complete. �
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This result shows that the optimal average reward of the control model Mn converges
to g∗, the optimal gain of the original control modelM, at a rate 1/wδ−2(n). Therefore, the
convergence rate is related to the maximal exponent δ > 2 for which a Lyapunov condition
of the form ∑

j∈S

qij(a)wδ(j) ≤ −cδwδ(i) + bδ for all (i, a) ∈ K

holds, with the condition that cδ > 0. Interestingly, the convergence of Jn(i) to g∗ is
uniform in i ∈ Sn as n→∞.

Observe also that the constant c in the convergence rate depends on the data of the
original control model M, except perhaps for the constants R and γ from exponential
ergodicity.

2.4 Applications

Now we show some applications of the results in the previous section. We study a dis-
counted reward problem in Section 2.4.1 and an average reward problem in Section 2.4.2.

2.4.1 A population system with catastrophes

Our next example is a generalization of the population system proposed in [17, Exam-
ple 7.2]; see also [33, Section IV].

We describe the elements of the controlled population system M. The state space is
S = {0, 1, 2, . . .}, which stands for the size of the population. The natural birth and death
rates of the population are λ > 0 and µ > 0, respectively.

We suppose that the decision-maker controls the immigration rate a taking values in
the interval a ∈ [0, a2], for some a2 > 0. Also, when the population size is i ≥ 1, we assume
that a catastrophe occurs at a rate d(i, b) ≥ 0, which is is controlled by an action b ∈ [b1, b2]
chosen by the controller. Therefore, the action space is A = [0, a2]× [b1, b2] and the action
sets are

A(0) = [0, a2]× {b1} and A(i) = [0, a2]× [b1, b2] for i ≥ 1.

Note that when the population size is 0, the controller does not take any action regarding
the catastrophes: this is represented by the “void” action b1. To have a unified notation,
we define nevertheless d(0, b) = 0 for all b ∈ [b1, b2].

If a catastrophe occurs when the size of the population is i ≥ 1, we denote by γi(j), for
1 ≤ j ≤ i, the probability that j individuals perish in the catastrophe. We must have

i∑
j=1

γi(j) = 1 for each i > 0.

Let us now define the transition rates of the system. In state i = 0 they are given by

q01(a, b) = a = −q00(a, b) for all (a, b) ∈ A(0),
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while for i > 0 and (a, b) ∈ A they are given by

qij(a, b) =


0 for j > i+ 1,
λi+ a for j = i+ 1,
−(λ+ µ)i− a− d(i, b) for j = i,
µi+ d(i, b)γi(1) for j = i− 1,
d(i, b)γi(i− j) for 0 ≤ j < i− 1.

When the population size is i ∈ S, the controller receives a reward at a rate p · i for
some p > 0. The cost rate for controlling the immigration and the catastrophe rates is
c(i, a, b), for (i, a, b) ∈ K. We will thus consider the net reward rate

r(i, a, b) = p · i− c(i, a, b) for (i, a, b) ∈ K.

The rewards earned by the controller at depreciated at the constant discount rate α > 0.

Assumption 2.4.1 The controlled population systemM verifies the following conditions.

(i) There exists constants 0 ≤ dm < dM such that dm · i ≤ d(i, b) ≤ dM · i for all i ∈ S
and b ∈ [b1, b2].

(ii) For some constant cM we have |c(i, a, b)| ≤ cM(i+ 1) for all (i, a, b) ∈ K.

(iii) The functions d(i, b) and c(i, a, b) are continuous in a and b for each i ∈ S.

Note that part (ii) in this assumption indeed implies that d(0, b) = 0 for b ∈ [b1, b2].
We choose the Lyapunov function w of the form w(i) = R · (i + 1) for i ∈ S, where the
constant R satisfies

R ≥ max{1, λ+ µ+ a2 + dM}.
Here is our first result on the control model M.

Proposition 2.4.2 If the discount rate α > 0 verifies α > λ− µ− dm then the controlled
population system M satisfies Assumptions 2.1.2, 2.1.4, and 2.1.5.

Proof. By its definition, it is clear that w is a Lyapunov function on S. Also by con-
struction, it satisfies q(i) ≤ w(i) for each i ∈ S because q(i) ≤ (λ + µ + dM)i + a2 for all
i ∈ S.

A direct calculation shows that, for all (i, a, b) ∈ K

∑
j∈S

qij(a, b)w(j) = (λ− µ)w(i) +R(µ− λ+ a)−Rd(i, b)
i−1∑
k=0

(i− k)γi(i− k).

(Note that the above sum is not defined when i = 0, but in this case the factor d(i, b)
vanishes.) Since d(i, b)

∑i−1
k=0(i− k)γi(i− k) ≥ dmi it follows that∑

j∈S

qij(a, b)w(j) ≤ (λ− µ− dm)w(i) +R(µ− λ+ a2 + dm) for all (i, a, b) ∈ K.
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Therefore, Assumption 2.1.2 holds for

c1 = µ− λ+ dm and b1 = R|µ− λ+ a2 + dm|.

The condition α + c1 > 0 is indeed satisfied and so Assumption 2.1.4(i) holds. It is also
easily seen that Assumption 2.1.4(ii) is satisfied.

Regarding Assumption 2.1.5, parts (i) and (ii) follow directly from our condition on the
population system M. Concerning part (iii), it can be shown that for all (i, a, b) ∈ K, the
quantity

∑
j∈S qij(a, b)w

2(j) equals

2(λ− µ)w2(i) +R(2a− λ+ 3µ)w(i) +R2(a− λ− µ)− d(i, b)
i−1∑
k=0

[(w2(i)− w2(k)]γi(i− k)

and thus∑
j∈S

qij(a, b)w
2(j) ≤ 2(λ− µ)w2(i) +R(2a2 − λ+ 3µ)w(i) +R2(a2 − λ− µ)

= w2(i)
(

2(λ− µ) +
1

w(i)
R(2a2 − λ+ 3µ) +

1

w2(i)
R2(a2 − λ− µ)

)
.

Given ε > 0, choose i0 large enough such that i ≥ i0 implies

1

w(i)
R(2a2 − λ+ 3µ) +

1

w2(i)
R2(a2 − λ− µ) < ε.

Fur such i ≥ i0 and (a, b) ∈ A(i) we have∑
j∈S

qij(a, b)w
2(j) ≤

(
2(λ− µ) + ε

)
w2(i),

while choosing the constant b2 ≥ 0 large enough, we have for all 0 ≤ i < i0 and (a, b) ∈ A(i)
that ∑

j∈S

qij(a, b)w
2(j) ≤

(
2(λ− µ) + ε

)
w2(i) + b2,

thus showing the condition in Assumption 2.1.5(iii). �

As a consequence, if we consider the finite state and action truncations ofM, as defined
in Section 2.3.1, we can use Proposition 2.3.2 to conclude that, for every initial state i ∈ S,
the optimal discounted value V α

n (i) of Mn converges to the optimal discounted reward
V α(i), and also that limit policies of discount optimal policies for Mn are optimal for M.
This holds for every discount rate α with α > λ− µ− dm.

Under some additional conditions, we can obtain an explicit convergence rate.

Proposition 2.4.3 Let the controlled population system M verify Assumption 2.4.1 and
suppose, in addition, that the functions c(i, a, b) and d(i, b) are Lipschitz continuous in a
and b for every fixed i ∈ S. Under these conditions,
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(i) If µ ≥ λ then for every discount rate α > 0 and every γ > 0 we can adequately choose
the action sets for the truncated finite state and action control models Mn so that

|V α
n (i)− V α(i)| = O(n−γ) as n→∞ for all i ∈ S.

(ii) If µ < λ then for every discount rate α with α > 2(λ−µ) and every 0 < γ < α
λ−µ−2,

we can adequately choose the action sets for the truncated finite state and action
control models Mn so that

|V α
n (i)− V α(i)| = O(n−γ) as n→∞ for all i ∈ S.

Proof. Fix an arbitrary power β > 2 and consider the Lyapunov function i 7→ wβ(i).
Writing down the expression for

∑
j∈S qij(a, b)w

β(j) as a series of powers of i+1, i.e., using
expressions such as

(i+2)β = (i+1)β+β(i+1)β−1+O((i+1)β−2) or iβ = (i+1)β−β(i+1)β−1+O((i+1)β−2),

it can be shown that for all (i, a, b) ∈ K∑
j∈S

qij(a, b)w
β(j) ≤ β(λ− µ)wβ(i) + O((i+ 1)β−1)

= wβ(i)
(
β(λ− µ) +

O((i+ 1)β−1)

wβ(i)

)
.

Now we proceed as in the proof of Proposition 2.4.2. For every ε > 0 there exists some
i0 ∈ S such that the expression within parentheses is less than β(λ − µ) + ε for all i ≥ i0
and, therefore, for such i ≥ i0 and (a, b) ∈ A(i) we have∑

j∈S

qij(a, b)w
β(j) ≤ (β(λ− µ) + ε)wβ(i).

Finally, by choosing bβ ≥ 0 large enough we obtain∑
j∈S

qij(a, b)w
β(j) ≤ (β(λ− µ) + ε)wβ(i) + bβ for all (i, a, b) ∈ K. (2.4.1)

Therefore, a Lyapunov condition for wβ holds for every β > 2. We will now obtain the
convergence rates by checking Assumption 2.3.6(iii).

Consider the case µ ≥ λ. Let α > 0 be the discount rate and choose any γ > 0. Let
β = γ + 2 and let 0 < ε < α. Then we indeed have the condition in Assumption 2.3.6(iii)
because β(λ− µ) + ε < α; recall (2.4.1). Therefore, by Theorem 2.3.7, we can choose the
action sets of Mn to achieve an O(n−γ) approximation error.

Consider now the case µ < λ and let α be a discount rate with α > 2(λ− µ). For any
0 < γ < α

λ−µ − 2, let β = γ + 2, so that 2 < β < α
λ−µ . Choose ε > 0 with ε < α− β(λ− µ).

The condition in Assumption 2.3.6(iii) holds (recall (2.4.1)) and we can determine the
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Figure 2.1: The optimal discounted rewards V α
n (i) for i = 5, 10, 15.

action sets of Mn so as to obtain a convergence order of O(n−γ). �

Numerical experimentation. We fix the values of the parameters

λ = 3.05, µ = 3, a2 = 5, b1 = 5, b2 = 8.

The catastrophe rate is given by d(i, b) = ib/10 for i > 0 and b ∈ [5, 8]. The distribution
{γi(j)} of the catastrophe size is a truncated geometric distribution with parameter γ = 0.8;
more precisely, given i > 0,

γi(j) =
γj−1(1− γ)

1− γi
for 1 ≤ j ≤ i.

Finally, the net reward rate is

r(i, a, b) =
(
10− (a− 2)2 − 0.5(b− 8)2

)
i.

The interpretation of the term (a−2)2 is that we suppose that there is a natural immigration
rate (which equals 2), and that augmenting or diminishing this natural immigration rate
implies a cost for the controller. Similarly, the term (b− 8)2 means that there is a natural
catastrophe rate (which equals 8), and the controller incurs a cost when decreasing it. The
discount rate is α = 0.1. Note that we are indeed under the conditions of Proposition
2.4.2, and so the optimal value and optimal policies of Mn converge to those of M.
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(b) The optimal actions b∗n(i)

Figure 2.2: The optimal policies f ∗n(i) for i = 5, 10, 15

For every n ≥ 1, we consider the truncated control model Mn with state space Sn =
{0, 1, . . . , n} and action sets

An(0) =

{
`1a2

2n
: 0 ≤ `1 ≤ 2n

}
× {b1}

and

An(i) =

{(
`1a2

2n
, b1 +

`2

2n
(b2 − b1)

)
: 0 ≤ `1, `2 ≤ 2n

}
for i > 0.

In particular, the actions sets An(i) verify the Hausdorff convergence property given in
Definition 2.2.1.

For every 1 ≤ n ≤ 70, we solved the discounted control problem for Mn. Given
the initial states i = 5, 10, 15, the discount optimal rewards V α

n (i) and the optimal actions
actions a∗n(i) and b∗n(i) forMn are displayed in Figures 2.1 and 2.2, respectively, as functions
of n.

Empirically, we observe that the optimal reward and actions quickly converge, and
become stable for relatively small values of n. We observe that the graph in Figure 2.1
is smoother, whereas the actions displayed in Figure 2.2 are somehow saw-shaped. This
should not be surprising because V α

n (i) is obtained after some kind of “averaging”, while
the actions shown in Figure 2.2 take values proportional to 1/2n for 1 ≤ n ≤ 70.

2.4.2 A controlled birth-and-death process

We consider the control birth-and-death system studied in [17, Example 7.1] under the
average reward optimality criterion.

The state space is S = {0, 1, . . .} and the state variable stands for the size of the
population. The population’s natural birth rate is λ > 0, while the death rate is assumed to
be controlled by the decision-maker. More precisely, we consider the compact action space
A = [µ1, µ2], for 0 < µ1 < µ2, with A(i) = A for all i ∈ S. So, the death rate corresponds
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to an action a ∈ A chosen by the controller. In addition, we suppose that, when the
population decreases, either one or two individuals die, with respective probabilities p1

and p2. In order to avoid extinction, we assume also that, when the population size is 0,
the birth rate is given also by λ, which is then interpreted as an immigration rate.

Therefore, the transition rates of the original control model M are, for i = 0,

q01(a) = λ = −q00(a) for a ∈ A,

whereas, for i = 1,

q10(a) = a, q11(a) = −(a+ λ), q12(a) = λ for a ∈ A.

For i ≥ 2, the transition rates of the system are given by

qij(a) =


p2ai for j = i− 2,
p1ai for j = i− 1,
−(a+ λ)i for j = i,
λi for j = i+ 1,
0 otherwise,

for each a ∈ A, with p1, p2 ≥ 0 and p1 + p2 = 1.
We suppose that the controller receives a reward p · i per time unit when the population

size is i ∈ S, where p > 0 is a given constant. Moreover, we suppose that the cost rate
when taking the action a ∈ A in state i ∈ S is c(i, a). Thus, the decision-maker considers
the net reward rate function

r(i, a) = p · i− c(i, a) for all (i, a) ∈ K.

Next we state our assumptions on this controlled model.

Assumption 2.4.4 The controlled birth-and-death system M verifies the following con-
ditions. For some constant cM we have |c(i, a)| ≤ cM(i + 1) for all (i, a) ∈ K, and the
function c(i, a) is continuous in a ∈ A for every i ∈ S.

We check our hypotheses on this control model.

Proposition 2.4.5 If the controlled birth-and-death system verifies Assumption 2.4.4 and
µ1(1 + p2) > λ, then the Assumptions 2.1.8, 2.1.9, and 2.1.11 hold. If, in addition, we
have

λ < µ1 and p2 ≤ 1/2

then the conditions in Remark 2.1.12 hold.

Proof. We consider the Lyapunov function w(i) = C(i+ 1), for i ∈ S, where the constant
C satisfies

C ≥ max{1, λ+ µ2}.
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With this definition, w is a Lyapunov function and it indeed satisfies q(i) ≤ w(i) for each
i ∈ S. Direct calculations give, for every a ∈ A,∑

j∈S

q0j(a)w(j) = Cλ and
∑
j∈S

q1j(a)w(j) = −C(a− λ)

and, for i ≥ 2,∑
j∈S

qij(a)w(j) = −(a(1 + p2)− λ)w(i) + C(a(1 + p2)− λ) (2.4.2)

≤ −(µ1(1 + p2)− λ)w(i) + C(µ2(1 + p2)− λ).

Choose now c1 with 0 < c1 < µ1(1 + p2)− λ and let I0 ≥ 2 be such that i > I0 implies

C

w(i)
(µ2(1 + p2)− λ) ≤ µ1(1 + p2)− λ− c1.

Then, for i > I0 and a ∈ A we have∑
j∈S

qij(a)w(j) ≤ w(i)
(
− (µ1(1 + p2)− λ) +

C

w(i)
(µ2(1 + p2)− λ)

)
≤ −c1w(i).

Clearly, choosing b1 ≥ 0 large enough, we have∑
j∈S

qij(a)w(j) ≤ −c1w(i) + b1 for 0 ≤ i ≤ I0 and a ∈ A(i).

Therefore, Assumption 2.1.8 holds for the finite set D = {0, 1, . . . , I0}.
It is trivial to check that Assumptions 2.1.9 and 2.1.11(i)–(ii) hold. Also, each deter-

ministic stationary policy f ∈ F is irreducible because the process can travel with positive
probability between any two states (by augmenting or diminishing the state by one unit).
Finally, it remains to study Assumption 2.1.11(iii).

Fix a power β ≥ 2. The idea is to write qij(a)wβ(j), for i ≥ 2 and a ∈ A, as a power
series of (i + 1), in which we keep the terms of degree β + 1 and β. Proceeding this way,
we obtain:

qi,i−2(a)wβ(i− 2) =
p2a

C
· wβ+1(i)− p2a(1 + 2β) · wβ(i) +R−2(i, a),

qi,i−1(a)wβ(i− 1) =
p1a

C
· wβ+1(i)− p1a(1 + β) · wβ(i) +R−1(i, a),

qii(a)wβ(i) = −a+ λ

C
· wβ+1(i) + (a+ λ) · wβ(i),

qi,i+1(a)wβ(i) =
λ

C
· wβ+1(i) + λ(β − 1) · wβ(i) +R1(i, a),
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where the residual terms R` are all O((i+ 1)β−1) and they verify

lim
i→∞

sup
a∈A

|R`(i, a)|
wβ(i)

= 0 for ` = −2,−1, 1.

Summing the above equations yields∑
j∈S

qij(a)wβ(j) = −β(a(1 + p2)− λ) · wβ(i) +
∑
`

R`(i, a)

≤ wβ(i)

(
−β(µ1(1 + p2)− λ) +

∑
R`(i, a)

wβ(i)

)
.

Therefore, proceeding as in the proof of Assumption 2.1.8, if

0 < cβ < β
(
µ1(1 + p2)− λ),

choosing I0 large enough such that i > I0 implies∑
R`(i, a)

wβ(i)
≤ β

(
µ1(1 + p2)− λ)− cβ for all a ∈ A,

and letting bβ ≥ 0 be large enough, we obtain∑
j∈S

qij(a)wβ(j) ≤ −cβwβ(i) + bβ I{0 ≤ i ≤ I0} for all (i, a) ∈ K,

which is in fact stronger than the requirement in Assumption 2.1.11(iii).

Let us now focus on the conditions given in Remark 2.1.12. For item (a), we must check
Assumption 2.1.8 but now for the set D = {0}. In this case, we assume that µ1 > λ, which
implies that µ1(1 + p2) > λ.

From (2.4.2) we have that, for i ≥ 2 and a ∈ A,∑
j∈S

qij(a)w(j) = −Ci
(
a(1 + p2)− λ

)
≤ −Ci

(
µ1(1 + p2)− λ

)
.

Therefore, choosing

0 < c̃1 ≤
2

3

(
µ1(1 + p2)− λ

)
we obtain, for all i ≥ 2 and a ∈ A∑

j∈S

qij(a)w(j) ≤ −c̃1w(i). (2.4.3)

For i = 1 and a ∈ A, we have
∑

j qij(a)w(j) ≤ −C(µ1 − λ). Consequently, if we choose

c̃1 =
1

2
(µ1 − λ) ≤ 2

3

(
µ1(1 + p2)− λ

)
,
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then (2.4.3) holds also for i = 1. Finally, since
∑

j q0jw(j) = Cλ, we conclude that letting

c̃1 =
1

2
(µ1 − λ) and b̃1 =

C

2
(µ1 + λ)

yields ∑
j∈S

qijw(j) ≤ −c̃1w(i) + b̃1I{i = 0} for all (i, a) ∈ K,

and so part (a) in Remark 2.1.12 holds.
For the monotonicity conditions in part (b), after some elementary computations, it

can be shown that these monotonicity conditions hold provided that p2 ≤ 1/2 (the critical
values to obtain this bound are i = 1 and k = 1). Finally, it is obvious that part (c) in
Remark 2.1.12 holds.

Consequently, under these additional conditions, the constants R and γ in the uniform
exponential ergodicity conditions become

R = 2
(
1 + b̃1/c̃1) = 2

(
1 +

C(µ1 + λ)

µ1 − λ

)
and γ = c̃1 =

1

2
(µ1 − λ).

The proof is complete. �

Let g∗ ∈ R be the optimal gain of the controlled birth-and-death processM. Consider
the finite state and action truncated control models Mn, for n ≥ 1, as defined in Section
2.3.1. By construction of theMn, deterministic stationary policies are irreducible forMn.
So, let g∗n ∈ R be the optimal gain for Mn.

We can use Proposition 2.3.9 to establish the convergence g∗n → g∗. Proposition 2.3.9
gives, namely, two different sufficient conditions (a) and (b), which correspond to items (i)
and (ii) in the result below, respectively. Our next result makes a direct application of the
results in Proposition 2.4.5 and its proof is straightforward.

Proposition 2.4.6 Suppose that the controlled birth-and-death process M satisfies As-
sumption 2.4.4.

(i) If µ1 > λ and p2 ≤ 1/2 then the condition in Proposition 2.3.9(a) holds. So, g∗n → g∗

and limit policies of average optimal policies of Mn are average optimal for M.

(ii) If µ1(1 + p2) > λ then the condition in Proposition 2.3.9(b) holds. So, g∗n → g∗, and
limit policies of average optimal policies of Mn are average optimal for M.

Consequently, at least for this example, the Lyapunov condition on wδ given in Proposi-
tion 2.3.9(b) is weaker than the monotonicity conditions in Proposition 2.3.9(a) because, as
already noticed, µ1 > λ implies µ1(1 + p2) > λ. Therefore, the technique of the Lyapunov
conditions on wδ appears to be a powerful tool from the applications perspective.

The interpretation of the inequality µ1(1 + p2) > λ is as follows. The minimal death
rate is µ1, while the expected number of perished individuals is p1 + 2p2 = 1 + p2. Hence,
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Figure 2.3: The optimal gain g∗n.

µ1(1 + p2) > λ states that the minimal death rate (taking into account the diminution of
the population) is larger than the birth rate: this is just the usual ergodicity condition of
a birth-and-death process.

Finally, we address the issue of the convergence rate.

Proposition 2.4.7 Suppose that the controlled birth-and-death system satisfies Assump-
tion 2.4.4, with µ1(1 + p2) > λ, and suppose also that the function a 7→ c(i, a) is Lipschitz
continuous on A for each i ∈ S, with a Lipschitz constant Li such that Li ≤ L(i + 1) for
all i ∈ S. Under these conditions, given δ > 2, if we choose the actions sets An(i) of the
truncated control model Mn such that, for some constant D > 0,

ρA(An(i), A) ≤ D · w
δ(i)

wδ(n)
for all n ≥ 1 and i ∈ Sn

then there is some constant c > 0 with

|g∗n − g∗| ≤
1

nδ−2
for all n ≥ 1.

Proof. We can use Theorem 2.3.12, which indeed applies as a consequence of our hy-
potheses and the proof of Proposition 2.4.5. Regarding the condition on ρA(An(i), A),
observe that Li is of order i, while

∑
j Lij is of order i as well. Therefore, the Hausdorff

distance between An(i) and A(i) must be bounded by Dwδ(i)/wδ(n) to obtain the desired
convergence rate. �

Therefore, under our standing conditions, we can reach any convergence rate 1/nβ, for
β > 0, provided that we choose sufficiently fine grids of points when discretizing the action
space A.
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Figure 2.4: The optimal actions f ∗n(6).

Numerical results. For this controlled birth-and-death system, we fix the following
values of the parameters:

λ = 5, µ1 = 4.5, µ2 = 7, p1 = 0.75, p2 = 0.25, p = 10,

and so, µ1(1 + p2) > λ holds but not µ1 > λ; recall Proposition 2.4.6. The reward rate
function is

r(i, a) = pi− (a− µ2)2 ln(1 + µ2 − a) · i for all (i, a) ∈ K.
The cost rate function c(i, a) = (a−µ2)2 ln(1 +µ2− a) · i can be interpreted as follows.

Suppose that µ2 is the natural death rate of the population. The controller can decrease
this natural death rate by using an adequate medical policy. Hence, the farther the real
death rate a ∈ [µ1, µ2] is from the natural death rate µ2, the more expensive is the medical
policy.

The finite state and action truncated control model Mn has state space

Sn = {0, 1, . . . , n}

and action sets An(i), for i ∈ Sn, given by{
µ1 +

k

2n
(µ2 − µ1) : 0 ≤ k ≤ 2n

}
.

The transition and reward rates are defined as in Section 2.3.1. In particular, all the
transition rates remain unchanged:

qnij(a) = qij(a) except for qnnn(a) = −an for a ∈ An(i).

For each 1 ≤ n ≤ 100 we solve the truncated control model Mn by using the policy
iteration algorithm. In Figure 2.3, we show the optimal gain g∗n as a function of n. To
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study the convergence of optimal policies, Figure 2.4 shows the optimal actions f ∗n(6) for
Mn as a function of n. Empirically, it is clear from Figures 2.3 and 2.4 that the sequences
{g∗n} and {f ∗n(6)} converge. We deduce the approximate values

g∗ = 10.6603 and f ∗(6) = 5.3125,

for the optimal gain g∗ and an optimal policy f ∗ of M.





Chapter 3

Approximation of Markov games

This chapter is organized as follows. In Section 3.1 we define the game models we will
be dealing with, state our main assumptions, and recall some previously known results
on the discounted and average payoff optimality criteria. Convergence of game models is
defined in Section 3.2, in which we also state our assumptions on the sequence of converging
game models. In Section 3.3 we give our main results on approximations of game models
under the discounted payoff optimality criterion, while Section 3.4 addresses these issues for
the average payoff criterion. Finally, in Section 3.5 we make an application to a controlled
population system managed by two players, and we show some computational results using
the techniques developed herein.

The results presented in Section 3.1 are already known and they are mainly borrowed
from [15, 16, 31]. The rest of the material in this chapter is an original contribution and
it corresponds to the publications [34] for the discounted payoff criterion and [26] for the
average payoff criterion.

3.1 Basic results

The definition of the game model in this chapter and the corresponding basic results are
mainly borrowed from [15, 16] and [31, Chapter 10].

3.1.1 The game model G
We consider a two-player zero-sum continuous-time Markov game model

G = {S,A,B,K, Q, r},

where the elements of G are the following.

• S = {0, 1, 2, . . .} is the state space.

• A and B are the action spaces for players 1 and 2, respectively. We assume that A
and B are Borel spaces (i.e., measurable subsets of complete and separable metric
spaces). The corresponding metrics are denoted by dA and dB, respectively.

77
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• For each i ∈ S, the nonempty measurable sets A(i) ⊆ A and B(i) ⊆ B stand for
the actions available for players 1 and 2 in state i ∈ S, respectively. The family of
feasible triplets is defined as

K = {(i, a, b) ∈ S × A×B : a ∈ A(i), b ∈ B(i)}.

• The transition rate matrix of the system is Q = [qij(a, b)]. It is assumed that:

(1) The function (a, b) 7→ qij(a, b) is measurable on A(i)×B(i) for all i, j ∈ S;

(2) The transition rates are conservative, that is,∑
j∈S

qij(a, b) = 0 for all (i, a, b) ∈ K,

with qij(a, b) ≥ 0 whenever i 6= j;

(3) The transition rates are stable, i.e., q(i) := supa∈A(i),b∈B(i){−qii(a, b)} <∞.

• Finally, the measurable function r : K→ R is interpreted as the reward rate function
for player 1 and the cost rate function for player 2.

The game G is played as follows. At each time t ≥ 0, both players observe the state of
the system x(t) = i ∈ S and then, independently and simultaneously, they choose actions
a(t) = a ∈ A(i) and b(t) = b ∈ B(i). In a small time interval [t, t+ dt]:

• player 1 receives a reward r(i, a, b)dt,

• player 2 incurs a cost r(i, a, b)dt,

• the system remains in state i ∈ S with probability 1+qii(a, b)dt or makes a transition
to the state j 6= i with probability qij(a, b)dt.

This procedure is carried on over all the time horizon t ∈ [0,∞). The optimality criteria
with respect to which the players will try to make optimal decisions will be defined later.
Let us mention that we are interested in the discounted and the average payoff optimality
criteria.

To ensure the existence of the dynamic game model G we need some additional assump-
tions. We will use the following terminology.

Definition 3.1.1 (a) We say that w : S → [1,∞) is a Lyapunov function on S when w
is monotone nondecreasing and, in addition, limi→∞w(i) = +∞.

(b) Let Bw(S) denote the family of functions u : S → R such that

||u||w = sup
i∈S
{|u(i)|/w(i)} <∞.

We have that || · ||w is a norm on Bw(S), under which it is a Banach space.
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Next we state our conditions on the game model G.

Assumption 3.1.2 There exists a Lyapunov function w on S, and constants c1 ∈ R and
d1 ≥ 0 with ∑

j∈S

qij(a, b)w(j) ≤ −c1w(i) + d1 for all (i, a, b) ∈ K.

In addition, for each i ∈ S we have q(i) ≤ w(i).

This assumption is usually referred to as a Lyapunov hypothesis on the transition rates
of the system. In the sequel, we will explain the use of the above hypotheses.

Strategies of the players. We introduce some notation. Let A(i) and B(i) be the
families of probability measures on A(i) and B(i), when endowed with their Borel σ-
algebras B(A(i)) and B(B(i)), respectively. On A(i) and B(i) we will consider the topology
of weak convergence.

Let

π1 ≡ {π1
t (C|i)}t≥0,i∈S,C∈B(A(i))

be such that π1
t (·|i) is in A(i) for all t ≥ 0 and i ∈ S, and such that t 7→ π1

t (C|i)
is a measurable function on [0,∞) for all C ∈ B(A(i)) and i ∈ S. We say that π1 is a
randomized Markov strategy for player 1, and we denote by Π1 the set of all such strategies.
The family Π2 of randomized Markov strategies

π2 ≡ {π2
t (C|i)}t≥0,i∈S,C∈B(B(i))

for player 2 is defined similarly.
We say that π1 ∈ Π1 is a randomized stationary strategy (or stationary, for short)

for player 1 when π1
t (C|i) does not depend on t ≥ 0. Thus, the class Π1,s of stationary

strategies for player 1 can be identified with

Π1,s =
∏
i∈S

A(i).

Similarly, the class of randomized stationary strategies for player 2 is Π2,s =
∏

i∈S B(i).
Given a pair of strategies (π1, π2) ∈ Π1 × Π2, i, j ∈ S, and t ≥ 0, define

qij(t, π
1, π2) =

∫
A(i)

∫
B(i)

qij(a, b)π
2
t (db|i)π1

t (da|i).

The above integral is well defined and finite because the system’s transition rates are
conservative and stable. In particular, they satisfy

−qii(t, π1, π2) =
∑
j 6=i

qij(t, π
1, π2) ≤ q(i) for each t ≥ 0 and i ∈ S.



80 Chapter 3. Approximation of Markov games

Define also

r(t, i, π1, π2) =

∫
A(i)

∫
B(i)

r(i, a, b)π2
t (db|i)π1

t (da|i).

We will also use the following notation. Given i, j ∈ S, ϕ ∈ A(i), and ψ ∈ B(i), let

qij(ϕ, ψ) =

∫
A(i)

∫
B(i)

qij(a, b)ψ(db)ϕ(da), (3.1.1)

r(i, ϕ, ψ) =

∫
A(i)

∫
B(i)

r(i, a, b)ψ(db)ϕ(da), (3.1.2)

and for stationary strategies (π1, π2) ∈ Π1,s × Π2,s, we write

qij(π
1, π2) = qij(π

1(·|i), π2(·|i)) and r(i, π1, π2) = r(i, π1(·|i), π2(·|i)).

Our next result summarizes the main results on the existence of the state and actions
process. See, e.g., Proposition 3.1 in [15] or Proposition 10.3 in [31].

Theorem 3.1.3 Suppose that Assumption 3.1.2 is satisfied.

(i) For every (π1, π2) ∈ Π1 × Π2 there exists a regular (nonhomogeneous) transition
function

{P π1,π2

ij (s, t)}i,j∈S,0≤s≤t
with transition rates qij(t, π

1, π2), that is,

lim
h↓0

P π1,π2

ij (t, t+ h)− δij
h

= qij(t, π
1, π2) for all i, j ∈ S and t ≥ 0.

Let Ω = K[0,∞) = {(x(t), a(t), b(t))}t≥0 be endowed with the product σ-algebra F .

(ii) Given an initial state i ∈ S at time 0 and (π1, π2) ∈ Π1 × Π2, there exists a unique
probability measure P i,π1,π2

on (Ω,F) such that:

– For each A0 ∈ B(A(i)) and B0 ∈ B(B(i)), we have

P i,π1,π2{x(0) = i, a(0) ∈ A0, b(0) ∈ B0} = π1
0(A0|i) · π2

0(B0|i).

– Given arbitrary n ≥ 1 and 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn, and, on the other hand,
given ik ∈ S, Ak ∈ B(A(ik)), and Bk ∈ B(B(ik)), for k = 1, . . . , n, we have

P i,π1,π2{x(s1) = i1, a(s1) ∈ A1, b(s1) ∈ B1, . . . ,

x(sn) = in, a(sn) ∈ An, b(sn) ∈ Bn}

=
n∏
k=1

P π1,π2

ik−1ik
(sk−1, sk)π

1
sk

(Ak|ik)π2
sk

(Bk|ik),

with the convention that i0 = i and s0 = 0.
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This result ensures the existence of the dynamic game model itself. In particular, the
Lyapunov condition stated in Assumption 3.1.2 is used to ensure the uniqueness and non-
explosiveness of the non-homogeneous Q-process, and it guarantees that the forward and
backward Kolmogorov differential equations are satisfied.

We will refer to {x(t)}t≥0 as the state process, while {a(t)}t≥0 and {b(t)}t≥0 are the
actions processes for players 1 and 2. The expectation operator associated to the probability
measure P i,π1,π2

will be denoted by Ei,π1,π2
.

3.1.2 The discounted payoff optimality criterion

In this section we analyze the discounted optimality criterion. We will suppose that the
reward/cost of the players is depreciated at a constant discount rate α > 0, and so the
infinitesimal rate r(x(t), a(t), b(t)) at time t ≥ 0 is brought to its present value, namely,
e−αtr(x(t), a(t), b(t)). The goal of player 1 is then to maximize his total expected discounted
reward, loosely,

E
[ ∫ ∞

0

e−αtr(x(t), a(t), b(t))dt
]
,

while player 2 wants to minimize his total expected discounted cost. A formal definition
will be given below.

Assumption 3.1.4 The game model G satisfies the following conditions.

(i) The discount rate α satisfies α + c1 > 0, with c1 the constant in Assumption 3.1.2.

(ii) There exists a constant M > 0 such that |r(i, a, b)| ≤Mw(i) for all (i, a, b) ∈ K.

Given an initial state i ∈ S and a pair of strategies (π1, π2) ∈ Π1 × Π2, we define the
total expected discounted payoff as

V α(i, π1, π2) = Ei,π1,π2

[∫ ∞
0

e−αtr(x(t), a(t), b(t))dt

]
. (3.1.3)

Thus, V α(i, π1, π2) is the total expected discounted reward for player 1, and it is the total
expected discounted cost for player 2. Using [14, Lemma 3.2] or [17, Lemma 6.3], under
Assumption 3.1.2, we have that

Ei,π1,π2

[w(x(t))] ≤ e−c1tw(i) +
d1

c1

(1− e−c1t). (3.1.4)

We note that if c1 = 0 then the righthand term of (3.1.4) is w(i) + d1t; to see this, just let
c1 ↑ 0 in (3.1.4). As a consequence of Assumption 3.1.4, given i ∈ S and (π1, π2) ∈ Π1×Π2,
we have

|V α(i, π1, π2)| ≤M

∫ ∞
0

e−αtEi,π1,π2

[w(x(t))]dt ≤ Mw(i)

α + c1

+
d1M

α(α + c1)
.

Hence, letting M = M(α+d1)
α(α+c1)

, it follows that

‖V α(·, π1, π2)‖w ≤M for all (π1, π2) ∈ Π1 × Π2. (3.1.5)
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Remark 3.1.5 If (π1, π2) is a pair of stationary strategies, by Theorem 3.1.3(ii) we have
(cf. (3.1.3))

V α(i, π1, π2) = Ei,π1,π2

[∫ ∞
0

e−αtr(x(t), π1, π2)dt

]
for each i ∈ S.

Therefore, in order to obtain V α(i, π1, π2) for a pair of stationary strategies, instead of
integrating the reward state-actions process r(x(t), a(t), b(t)), it suffices to integrate the
function r(x(t), π1, π2) which depends only on the state process.

Given the initial state i ∈ S, the discounted lower value and upper value functions of
the game model G are defined as

Lα(i) = sup
π1∈Π1

inf
π2∈Π2

V α(i, π1, π2)

Uα(i) = inf
π2∈Π2

sup
π1∈Π1

V α(i, π1, π2),

respectively. We note that, as a consequence of (3.1.5), we have

||Lα||w ≤M and ||Uα||w ≤M.

The lower value of the game is the maximal discounted reward for player 1 when using
a “maximin” strategy. Indeed, for every fixed strategy π1 ∈ Π1, the worst scenario for
player 1 is when player 2 chooses the strategy π2 ∈ Π2 attaining the infimum

inf
π2∈Π2

V α(i, π1, π2).

Then, player 1 chooses the strategy yielding the maximal reward, that is, the one achieving
the supremum in the definition of Lα(i). Similarly, the upper value of the game corresponds
to the optimal payoff of player 2 when using a “minimax” strategy. It is easy to see that
Lα(i) ≤ Uα(i) for every i ∈ S.

Definition 3.1.6 The game G has a value when Lα(i) = Uα(i) for all i ∈ S. The function
V α(i) := Lα(i) = Uα(i) is called the value function of the game G.

In this case, we say that (π∗1, π∗2) ∈ Π1 × Π2 is a pair of discount optimal strategies
when

V α(i, π1, π∗2) ≤ V α(i, π∗1, π∗2) ≤ V α(i, π∗1, π2)

for all i ∈ S and (π1, π2) ∈ Π1 × Π2.

A direct calculation shows that if V α is the value function of the game and (π∗1, π∗2) ∈
Π1×Π2 is a pair of discount optimal strategies, then V α(i) = V α(i, π∗1, π∗2) for each i ∈ S.
A pair of optimal strategies is usually referred to as a noncooperative or Nash equilibrium
of the game.

To ensure the existence of the value function and solutions to the corresponding Shapley
equations, we need to impose further conditions on our game model.
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Assumption 3.1.7 The game model G satisfies the following conditions.

(i) For each i ∈ S, the sets A(i) and B(i) are compact.

(ii) For all i, j ∈ S, the functions r(i, a, b) and qij(a, b) are continuous on A(i)×B(i).

(iii) There exist constants c2 ∈ R and d2 ≥ 0 with∑
j∈S

qij(a, b)w
2(j) ≤ −c2w

2(i) + d2 for all (i, a, b) ∈ K.

The conditions (i)–(ii) above are the usual continuity-compactness hypotheses, while
(iii) is used to ensure that Dynkin’s formula holds. It imposes a Lyapunov condition on
the function w2 but, this time, the constant c2 needs not be related to the discount rate α;
cf. Assumption 3.1.4(i).

The following lemma is a consequence of our assumptions, and it will be useful in the
forthcoming.

Lemma 3.1.8 Suppose that Assumption 3.1.7 holds.

(i) Given i ∈ S and k > i, we have∑
j≥k

qij(ϕ, ψ)w(j) ≤ 1

w(k)

(
− c2w

2(i) + d2 + q(i)w2(i)
)

for all ϕ ∈ A(i) and ψ ∈ B(i).

(ii) For every i ∈ S and u ∈ Bw(S), the functions

(ϕ, ψ) 7→ r(i, ϕ, ψ) and (ϕ, ψ) 7→
∑
j∈S

qij(ϕ, ψ)u(j)

are continuous on A(i) × B(i), when endowed with the product topology of the weak
convergences on A(i) and B(i).

Proof. (i). First of all, observe that given i ∈ S, k > i, and (a, b) ∈ A(i)×B(i) we have∑
j≥k

qij(a, b)w(j) ≤ 1

w(k)

∑
j≥k

qij(a, b)w
2(j) (3.1.6)

≤ 1

w(k)

(∑
j∈S

qij(a, b)w
2(j)− qii(a, b)w2(i)

)
≤ 1

w(k)

(
− c2w

2(i) + d2 + q(i)w2(i)
)
, (3.1.7)

where we have used monotonicity of w in (3.1.6) and Assumption 3.1.7(iii) in (3.1.7).
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(ii). From (3.1.7) we have that

lim
k→∞

sup
(a,b)∈A(i)×B(i)

∑
j≥k

qij(a, b)w(j) = 0

and, in particular,

lim
k→∞

sup
(a,b)∈A(i)×B(i)

∣∣∣∑
j≥k

qij(a, b)u(j)
∣∣∣ = 0.

Consequently, the series
∑
qij(a, b)u(j) of continuous functions converges uniformly on

A(i)×B(i). It is therefore a bounded and continuous function, because A(i) and B(i) are
compact. This establishes that (a, b) 7→

∑
j∈S qij(a, b)u(j) is continuous. The continuity

of (ϕ, ψ) 7→
∑

j∈S qij(ϕ, ψ)u(j) follows from Theorem 3.2 in [6]. The arguments for the
continuity of (ϕ, ψ) 7→ r(i, ϕ, ψ) are similar. �

The continuity of
∑

j∈S qij(a, b)w(j) is a usual requirement in Markov game models;
see [16, Assumption C.3] or [31, Assumption 10.7.b]. As seen in Lemma 3.1.8 above, this
condition is in fact implied by our hypotheses.

The main result on the discounted game G is the following. It is borrowed from [16, 31].

Theorem 3.1.9 Suppose that the game model G satisfies Assumptions 3.1.2, 3.1.4, and
3.1.7.

(i) The game G has a value V α ∈ Bw(S) with ‖V α‖w ≤M.

(ii) The value function V α is the unique solution u in Bw(S) of the equations

αu(i) = sup
ϕ∈A(i)

inf
ψ∈B(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)u(j)
}

(3.1.8)

= inf
ψ∈B(i)

sup
ϕ∈A(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)u(j)
}

(3.1.9)

for all i ∈ S.

(iii) There exists a pair of optimal randomized stationary strategies.

Moreover, (π1, π2) ∈ Π1,s×Π2,s is a pair of optimal randomized stationary strategies
if and only if π1(·|i) and π2(·|i) attain the supremum and the infimum in (3.1.8) and
(3.1.9), respectively, for every i ∈ S. That is,

αu(i) = inf
ψ∈B(i)

{
r(i, π1(·|i), ψ) +

∑
j∈S

qij(π
1(·|i), ψ)u(j)

}
= sup

ϕ∈A(i)

{
r(i, ϕ, π2(·|i)) +

∑
j∈S

qij(ϕ, π
2(·|i))u(j)

}
for all i ∈ S.
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Remark 3.1.10 The fact that there exists a pair of optimal stationary strategies implies
that the value of the game satisfies

V α(i) = sup
π1∈Π1,s

inf
π2∈Π2,s

V α(i, π1, π2) = inf
π2∈Π2,s

sup
π1∈Π1,s

V α(i, π1, π2)

for all i ∈ S. Note that we are taking the infimum and the supremum over the family of
stationary strategies (cf. the definition of the lower and upper value of the game).

The equations (3.1.8)–(3.1.8) are also referred to as the Shapley equations.

3.1.3 The average payoff optimality criterion

In this section we will study the average optimality criterion, that is, when the players
want to optimize their long-run expected average payoff. To study the average optimality
criterion, further conditions on the game model G must be imposed. In particular, the
Assumption 3.1.2, which ensures the existence of the state and actions process, is replaced
with the following stronger condition.

Assumption 3.1.11 There exists a Lyapunov function w on S, constants c1 > 0 and
d1 ≥ 0, and a finite set D ⊂ S such that∑

j∈S

qij(a, b)w(j) ≤ −c1w(i) + d1ID(i) for all (i, a, b) ∈ K.

Moreover, for all i ∈ S we have q(i) ≤ w(i).

We note that we use the same notation as in Assumption 3.1.2 for the constants c1, d1

in the Lyapunov condition. This will not cause confusion because it will always be clear
from the context whether we are in the discounted or the average payoff case.

Since Assumption 3.1.11 implies Assumption 3.1.2, Theorem 3.1.3 applies and there
indeed exist state and actions processes {(x(t), a(t), b(t))}t≥0 for the game model G. The
expectation operator associated to P i,π1,π2

will be, as before, denoted by Ei,π1,π2
.

Under Assumption 3.1.11, given an initial state i ∈ S and a pair of strategies (π1, π2) ∈
Π1 × Π2, by [17, Lemma 6.3], cf. (3.1.4), we have

Ei,π1,π2

[w(x(t))] ≤ e−c1tw(i) +
d1

c1

(1− e−c1t) for all t ≥ 0. (3.1.10)

The long-run expected average payoff (or average payoff) of the players, when starting
from the initial state i ∈ S, and using the strategies π1 ∈ Π1 and π2 ∈ Π2, is defined as

J(i, π1, π2) = lim sup
T→∞

1

T
Ei,π1,π2

[∫ T

0

r(x(t), a(t), b(t))dt

]
.

To ensure finiteness of the average payoff of the players, we use Assumption 3.1.4(ii),
which is stated here for ease of reference.
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Assumption 3.1.12 There exists a constant M > 0 such that |r(i, a, b)| ≤Mw(i) for all
(i, a, b) ∈ K.

Under Assumption 3.1.12 and as a consequence of (3.1.10), the long-run average payoff
is finite. Moreover,

|J(i, π1, π2)| ≤ Md1

c1

for all i ∈ S and (π1, π2) ∈ Π1 × Π2.

Definition 3.1.13 The long-run average lower and upper value functions of the game G
are respectively defined as

L(i) = sup
π1∈Π1

inf
π2∈Π2

J(i, π1, π2) and U(i) = inf
π2∈Π2

sup
π1∈Π1

J(i, π1, π2)

for each i ∈ S. If L(i) = U(i) =: V (i) for all i ∈ S then we say that the game G has a
value, and V is the value function of the game. If the game G has a value then we say that
(π1
∗, π

2
∗) ∈ Π1 × Π2 is a pair of average optimal strategies if

V (i) = inf
π2∈Π2

J(i, π1
∗, π

2) = sup
π1∈Π1

J(i, π1, π2
∗) for each i ∈ S.

As a consequence of Assumption 3.1.12, the lower and upper value functions of the
game are finite, namely,

|L(i)| ≤ Md1

c1

and |U(i)| ≤ Md1

c1

, for all i ∈ S. (3.1.11)

The next assumption uses the following terminology. We say that a pair of stationary
strategies (π1, π2) ∈ Π1,s × Π2,s is irreducible if, given arbitrary distinct states i, j ∈ S,
there exist states i = i0, i1, . . . , in = j such that qik−1,ik(π

1, π2) > 0 for all k = 1, . . . , n.

Equivalently, the homogeneous Markov chain {x(t)}t≥0 is irreducible under P i,π1,π2
for

every initial state i ∈ S.

Assumption 3.1.14 The game model G satisfies the following conditions.

(i) For each i ∈ S, the sets A(i) and B(i) are compact.

(ii) For all i, j ∈ S, the functions r(i, a, b) and qij(a, b) are continuous on A(i)×B(i).

(iii) There exist constants c2 ∈ R and d2 ≥ 0 with∑
j∈S

qij(a, b)w
2(j) ≤ −c2w

2(i) + d2 for all (i, a, b) ∈ K.

(iv) Each pair of strategies in Π1,s × Π2,s is irreducible.
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We note that Assumptions 3.1.14(i)–(iii) are the same as Assumption 3.1.7. For ease
of reference, however, we prefer to state them again here.

Under Assumptions 3.1.11 and 3.1.14(iv) we have that, for each (π1, π2) ∈ Π1,s × Π2,s,
the Markov chain {x(t)}t≥0 (under the probability measure P i,π1,π2

) has a unique invariant
probability measure µπ1,π2 on S that does not depend on the initial state and which, in
addition, satisfies µπ1,π2(w) < ∞; see, e.g., [31, Theorem 2.5]. In particular, the average
payoff of (π1, π2) ∈ Π1,s × Π2,s does not depend on the initial state i ∈ S and

J(i, π1, π2) = µπ1,π2(r(·, π1, π2)) for all i ∈ S.

Furthermore, if Assumption 3.1.14 is satisfied then the game model G is uniformly expo-
nentially ergodic on Π1,s × Π2,s; see, e.g., [31, Assumption 10.10]. This means that there
exist positive constants R and γ such that for each u ∈ Bw(S), t ≥ 0, and i ∈ S,

sup
(π1,π2)∈Π1,s×Π2,s

∣∣Ei,π1,π2

[u(x(t))]− µπ1,π2(u)
∣∣ ≤ Re−γt||u||ww(i). (3.1.12)

Remark 3.1.15 In general, it is not possible to have an explicit expression for the value
of the constants R and γ in (3.1.12) above. There exists, however, a particular case in
which these constants are actually known. For a reference, see [14, 27] or [30, Theorem
2.8]. Suppose that Assumptions 3.1.11 and 3.1.14 hold and, in addition, assume that

(a) In Assumption 3.1.11 we have D = {0}.

(b) For every (π1, π2) ∈ Π1,s × Π2,s, the stochastic process {x(t)}t≥0 is stochastically
ordered in its initial value:

∞∑
j=k

qij(π
1, π2) ≤

∞∑
j=k

qi+1,j(π
1, π2)

for all i, k ∈ S with k 6= i+ 1.

(c) For each (π1, π2) ∈ Π1,s × Π2,s and every 0 < i < j, the process {x(t)}t≥0 can
travel with positive probability from i to {j, j + 1, . . .} without passing through 0.
Equivalently, there exist nonzero states i = k0, k1, . . . , kn, with kn ≥ j, such that
qks−1ks(π

1, π2) > 0 for all s = 1, . . . , n.

Under these conditions, the game model G is uniformly exponentially ergodic on Π1,s×Π2,s

and the value of the constants in (3.1.12) is

R = 2(1 + d1/c1) and γ = c1.

We introduce some more terminology. We say that a pair (g, h) ∈ R × Bw(S) is a
solution of the average optimality equations of the game model G if, for all i ∈ S,

g = sup
ϕ∈A(i)

inf
ψ∈B(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)h(j)
}

= inf
ψ∈B(i)

sup
ϕ∈A(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)h(j)
}
.
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The main result on the existence of the value of the game and on characterization of
optimal strategies follows.

Theorem 3.1.16 Suppose that the game model G satisfies Assumptions 3.1.11, 3.1.12,
and 3.1.14. Then the following statements hold.

(i) The game has a value g∗ ∈ R that does not depend on the initial state, that is, V (i) = g∗

for all i ∈ S.

(ii) There exist solutions to the average optimality equations.

If (g, h) ∈ R × Bw(S) is a solution to the average optimality equations then g = g∗,
the value of the game, and h is unique up to additive constants.

There exists a solution (g∗, h) of the average optimality equations with ||h||w ≤ RM/γ
(recall (3.1.12)).

(iii) There exists a pair of optimal stationary strategies. A pair of stationary strategies
(π1, π2) ∈ Π1,s × Π2,s is average optimal if and only if

g∗ = inf
ψ∈B(i)

{
r(i, π1(·|i), ψ) +

∑
j∈S

qij(π
1(·|i), ψ)h(j)

}
= sup

ϕ∈A(i)

{
r(i, ϕ, π2(·|i)) +

∑
j∈S

qij(ϕ, π
2(·|i))h(j)

}
for each i ∈ S, where (g∗, h) is any solution of the average optimality equations.

3.2 Convergence of game models

3.2.1 Definition

In the forthcoming we consider a sequence of game models

Gn = {Sn, A,B,Kn, Qn, rn} for n ≥ 1.

These game models will be interpreted as approximations of the original game model G.
The elements of these game models satisfy the following conditions.

• The state space Sn is a (finite or infinite) subset of S.

• The action spaces are A and B, as for the game model G.

• The set of available actions in state i ∈ Sn are the nonempty measurable sets An(i) ⊆
A(i) and Bn(i) ⊆ B(i) for players 1 and 2, respectively. Let

Kn = {(i, a, b) ∈ Sn × A×B : a ∈ An(i), b ∈ Bn(i)} ⊆ K.
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• The transition rate matrix is given by Qn = [qnij(a, b)] for i, j ∈ Sn and (a, b) ∈
An(i)× Bn(i). We assume that (a, b) 7→ qnij(a, b) is measurable on An(i)× Bn(i) for
all i, j ∈ Sn. The transition rates are assumed to be conservative and stable, that is,∑

j∈Sn

qnij(a, b) = 0 and sup
a∈An(i),b∈Bn(i)

{−qnii(a, b)} =: qn(i) <∞

for (i, a, b) ∈ Kn, with the condition that qnij(a, b) ≥ 0 for i 6= j.

• The reward/cost rate function is rn : Kn → R, assumed to be measurable.

As for G, the game model Gn is a two-person zero-sum continuous-time Markov game.
We will be interested in the discounted and the average payoff optimality criteria for the
game models Gn.

Next we introduce some notation. In the game model Gn, the family of randomized
Markov strategies for players 1 and 2 are denoted by Π1

n and Π2
n, respectively. They are

defined similarly to the corresponding strategies for the game model G. The family of
stationary strategies is

Π1,s
n =

∏
i∈Sn

An(i) and Π2,s
n =

∏
i∈Sn

Bn(i),

where An(i) and Bn(i) denote the family of probability measures on An(i) and Bn(i),
respectively. We will consider the topology of weak convergence on An(i) and Bn(i).

With w a Lyapunov function in S, let Bw(Sn) be the Banach space of functions u :
Sn → R with finite w-norm

||u||w = sup
i∈Sn
{|u(i)|/w(i)}.

(We note that we use the same notation ||u||w for u : S → R and u : Sn → R.) Notations
such as

qnij(ϕ, ψ) and rn(i, ϕ, ψ)

for i, j ∈ Sn, ϕ ∈ An(i), and ψ ∈ Bn(i) are given the obvious definitions; see (3.1.1)–(3.1.2).

Consider the game models G and Gn studied so far. We propose a definition of the
game models Gn converging to the original game model G. In this definition, we make use
of the Hausdorff metric (recall its definition given in Section 1.4).

Definition 3.2.1 We say that Gn → G as n→∞ when the following conditions hold:

(a) The sequence of states {Sn}n≥1 verifies

S1 ⊆ S2 ⊆ S3 ⊆ . . . and
∞⋃
n=1

Sn = S.

This will be denoted by Sn ↑ S. We define n(i) = min{n ≥ 1 : i ∈ Sn} for each i ∈ S,
and so i ∈ Sn if and only if n ≥ n(i).
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(b) For each i ∈ S, the sequences of action sets An(i) and Bn(i) verify

lim
n→∞

ρA(An(i), A(i)) = 0 and lim
n→∞

ρB(Bn(i), B(i)) = 0.

We will write ρn(i) = ρA(An(i), A(i)) ∨ ρB(Bn(i), B(i)).

(In the sequel, we will assume that the sets An(i), Bn(i), A(i), B(i) are closed and
so we will properly say that An(i) and Bn(i) converge to A(i) and B(i) as n → ∞,
respectively, in the Hausdorff metric.)

For every i ∈ S, given sequences {an}n≥n(i) and {bn}n≥n(i), with an ∈ An(i) and bn ∈ Bn(i),
such that an → a and bn → b for some a ∈ A(i) and b ∈ B(i), we have:

(c) limn→∞ q
n
ij(an, bn) = qij(a, b) for all j ∈ S, and

(d) limn→∞ rn(i, an, bn) = r(i, a, b).

Observe that expressions such as ρA(An(i), A(i)) or qnij(an, bn) are defined only for large
enough n (namely, n ≥ n(i) in the former case, and n ≥ n(i) ∨ n(j) in the latter). This is
not made explicit in the notation since we are dealing with the limit as n→∞.

Our next lemma gives some equivalent statements of Definition 3.2.1.

Lemma 3.2.2 Suppose that Assumptions 3.1.7(i)–(ii) hold.

(i) The condition in Definition 3.2.1(c) can be replaced with the following statement.
Given i, j ∈ S and ε > 0 there exists n0 ≥ n(i) ∨ n(j) such that for all n ≥ n0

sup
(a,b)∈An(i)×Bn(i)

|qnij(a, b)− qij(a, b)| ≤ ε.

(ii) The condition in Definition 3.2.1(d) can be replaced with the following statement.
Given i ∈ S and ε > 0 there exists n0 ≥ n(i) such that for all n ≥ n0

sup
(a,b)∈An(i)×Bn(i)

|rn(i, a, b)− r(i, a, b)| ≤ ε.

Proof. (i). First we prove that if Definition 3.2.1 holds, then (i) also holds. We proceed
by contradiction. If (i) does not hold then there is some i, j ∈ S and ε > 0 such that, for
infinitely many n ≥ n(i) ∨ n(j), there exist an ∈ An(i) and bn ∈ Bn(i) with

|qnij(an, bn)− qij(an, bn)| > ε. (3.2.1)

For such n, since an ∈ An(i) ⊆ A(i), there exists a subsequence {n′} and a ∈ A(i) such
that an′ → a. Similarly, for some subsequence, still denoted by {n′}, we have bn′ → b for
some b ∈ B(i). Next, define ãn ∈ An(i) and b̃n ∈ Bn(i), for n ≥ n(i), as follows.

• If n belongs to the subsequence {n′} then let ãn = an and b̃n = bn;
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• Otherwise, let ãn ∈ An(i) and b̃n ∈ Bn(i) be such that

dA(ãn, a) ≤ inf
x∈An(i)

dA(x, a) +
1

n
≤ ρA(An(i), A(i)) +

1

n

dB(b̃n, b) ≤ inf
y∈Bn(i)

dB(y, b) +
1

n
≤ ρB(Bn(i), B(i)) +

1

n
.

We have thus constructed sequences ãn ∈ An(i) and b̃n ∈ Bn(i), for n ≥ n(i), such that
ãn → a and b̃n → b. Consequently, by (c), for n large enough we have

|qnij(ãn, b̃n)− qij(a, b)| ≤
ε

2
.

In particular, recalling (3.2.1), along the subsequence {n′} we have

|qij(an′ , bn′)− qij(a, b)| >
ε

2
.

This contradicts the continuity of the transition rate function.
Conversely, let us now prove that Definition 3.2.1(a), (b), and (d), together with (i),

imply (c). Fix i, j ∈ S, and let an ∈ An(i) and bn ∈ Bn(i) be such that an → a ∈ A(i) and
bn → b ∈ B(i). By the condition (i), given ε > 0, for n large enough we have

|qnij(an, bn)− qij(an, bn)| ≤ ε

2
.

But now continuity of the function (a, b) 7→ qij(a, b) implies that for n large enough we
also have

|qij(an, bn)− qij(a, b)| ≤
ε

2
.

This yields

|qnij(an, bn)− qij(a, b)| ≤ ε

and so limn q
n
ij(an, bn) = qij(a, b). This completes the proof that (c) ⇔ (i).

To prove statement (ii) we can proceed similarly. �

Given a sequence of functions un : Sn → R, for n ≥ 1, we say that {un} converges
pointwise to some function u : S → R when

lim
n→∞

un(i) = u(i) for all i ∈ S.

Note that, for fixed i ∈ S, un(i) is well defined only when n ≥ n(i). Since the above
definition is concerned with the limit as n → ∞, the requirement n ≥ n(i) will not be
explicit in the notation.

We introduce some more terminology. Given a pair of randomized stationary strategies
(π1

n, π
2
n) ∈ Π1,s

n × Π2,s
n for the game model Gn, for n ≥ 1, we say that the randomized
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stationary strategies (π1, π2) ∈ Π1
s ×Π2

s are a limit strategy of {(π1
n, π

2
n)}n≥1 if there exists

a subsequence {n′} such that

π1
n′(·|i)

d−→ π1(·|i) and π2
n′(·|i)

d−→ π2(·|i)

for all i ∈ S. Under the assumption that the action sets A(i) and B(i) are compact, every
such sequence {(π1

n, π
2
n)} indeed has a limit strategy because π1

n ∈ A(i) and π2
n ∈ B(i),

which are compact metric spaces with the Wasserstein metric (recall Section 1.4).

3.2.2 The discounted payoff case

Suppose for the moment that we are interested in analyzing the discounted payoff opti-
mality criterion for the game model G. For each game model Gn we will analyze as well
the discounted payoff criterion.

The discount rate α > 0 is the same for all the game models Gn and G. Supposing that
the Assumptions 3.1.2, 3.1.4, and 3.1.7 are satisfied, next we state our hypotheses on the
sequence {Gn}n≥1.

Assumption 3.2.3 The following statements hold for every n ≥ 1.

(i) For all (i, a, b) ∈ Kn ∑
j∈Sn

qnij(a, b)w(j) ≤ −c1w(i) + d1,

where the Lyapunov function w and the constants c1 > −α and d1 ≥ 0 come from
Assumption 3.1.2. For each i ∈ Sn, we have qn(i) ≤ w(i).

(ii) For the constant M > 0 in Assumption 3.1.4(ii) we have

|rn(i, a, b)| ≤Mw(i) for all (i, a, b) ∈ Kn.

(iii) For each i ∈ Sn, the sets An(i) ⊆ A(i) and Bn(i) ⊆ B(i) are compact, while for all
i, j ∈ Sn, the functions rn(i, a, b) and qnij(a, b) are continuous on An(i)×Bn(i).

(iv) With c2 ∈ R and d2 ≥ 0 as in Assumption 3.1.7(iii), we have∑
j∈Sn

qnij(a, b)w
2(j) ≤ −c2w

2(i) + d2 for all (i, a, b) ∈ Kn.

We can say, roughly, that Assumption 3.2.3 consists in supposing that Assumptions
3.1.2, 3.1.4, and 3.1.7 hold “uniformly” in n ≥ 1.

We can apply Theorem 3.1.3 to Gn and, therefore, there indeed exists a stochastic
process {(x(t), a(t), b(t))}t≥0 taking values in Kn that models the state and actions pro-
cesses for the game model Gn. In particular, the corresponding expectation operator will
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be denoted by Ei,π1,π2

n . Given i ∈ Sn and (π1, π2) ∈ Π1
n × Π2

n, define the total expected
discounted payoff for the game model Gn as

V α
n (i, π1, π2) = Ei,π1,π2

n

[ ∫ ∞
0

e−αtrn(x(t), a(t), b(t))dt
]
.

We also have (cf. (3.1.5)),

‖V α
n (·, π1, π2)‖ ≤M for all π1 ∈ Π1

n and π2 ∈ Π2
n. (3.2.2)

The lower and upper value functions of the game Lαn and Uα
n in Bw(Sn), and the value

function V α
n (provided it exists) are given the usual definitions. We have a result similar

to Lemma 3.1.8, which is stated without proof.

Lemma 3.2.4 Suppose that Assumption 3.2.3 holds and fix n ≥ 1.

(i) Given i ∈ Sn and k > i, we have∑
j≥k,j∈Sn

qnij(ϕ, ψ)w(j) ≤ 1

w(k)

(
− c2w

2(i) + d2 + q(i)w2(i)
)

for all ϕ ∈ An(i) and ψ ∈ Bn(i).

(ii) For every i ∈ Sn and u ∈ Bw(Sn), the functions

(ϕ, ψ) 7→ rn(i, ϕ, ψ) and (ϕ, ψ) 7→
∑
j∈Sn

qnij(ϕ, ψ)u(j)

are continuous on An(i)×Bn(i).

Our next lemma states a useful continuity result.

Lemma 3.2.5 Suppose that the game models G and {Gn}n≥1 satisfy Assumptions 3.1.2,
3.1.4, 3.1.7, and 3.2.3, and also that Gn → G. Suppose that the sequence vn ∈ Bw(Sn), for
n ≥ 1, converges pointwise to v ∈ Bw(S), and that

sup
n≥1
||vn||w = m <∞.

For fixed i ∈ S, assume also that ϕn ∈ An(i) and ψn ∈ Bn(i), for n ≥ n(i), are such that

ϕn
d−→ ϕ and ψn

d−→ ψ as n→∞

for some ϕ ∈ A(i) and ψ ∈ B(i). Under these conditions,

lim
n→∞

[
rn(i, ϕn, ψn) +

∑
j∈Sn

qnij(ϕn, ψn)vn(j)
]

= r(i, ϕ, ψ) +
∑
j∈S

qij(ϕ, ψ)v(j).
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Proof. Let us first analyze the term rn(i, ϕn, ψn). By Lemma 3.2.2(ii), given ε > 0 there
exists n0 ≥ n(i) such that n ≥ n0 implies

|rn(i, a, b)− r(i, a, b)| ≤ ε

2
for all (a, b) ∈ An(i)×Bn(i).

In particular, we have

|rn(i, ϕn, ψn)− r(i, ϕn, ψn)| ≤
∫
An(i)

∫
Bn(i)

|rn(i, a, b)− r(i, a, b)|ψn(db)ϕn(da) ≤ ε

2
(3.2.3)

for n ≥ n0. On the other hand, by Lemma 3.1.8(ii) we have that r(i, ϕn, ψn) converges to
r(i, ϕ, ψ) as n→∞. Consequently, there is some n1 ≥ n(i) such that n ≥ n1 gives∣∣r(i, ϕn, ψn)− r(i, ϕ, ψ)

∣∣ ≤ ε

2
. (3.2.4)

From (3.2.3) and (3.2.4) we have that |rn(i, ϕn, ψn) − r(i, ϕ, ψ)| ≤ ε for n ≥ n0 ∨ n1.
Therefore,

lim
n→∞

rn(i, ϕn, ψn) = r(i, ϕ, ψ).

We proceed with the proof. As a consequence of Lemmas 3.1.8(i) and 3.2.4(i) we deduce
that, given ε > 0, there exists some k > i such that

∑
j≥k qij(ϕ, ψ)w(j) ≤ ε and such that,

for all n ≥ n(i), ∑
j≥k,j∈Sn

qnij(ϕn, ψn)w(j) ≤ ε.

Therefore, since ‖vn‖w ≤ m implies ‖v‖w ≤ m, we have∣∣∣∑
j≥k

qij(ϕ, ψ)v(j)
∣∣∣ ≤ mε

and, for all n ≥ n(i), ∣∣ ∑
j≥k,j∈Sn

qnij(ϕn, ψn)vn(j)
∣∣ ≤ mε.

Consequently, if n ≥ n(i) is such that, in addition, {0, 1, . . . , k − 1} ⊆ Sn, we have∣∣∣ ∑
j∈Sn

qnij(ϕn, ψn)vn(j)−
∑
j∈S

qij(ϕ, ψ)v(j)
∣∣∣ ≤ k−1∑

j=0

∣∣qnij(ϕn, ψn)vn(j)− qij(ϕ, ψ)v(j)
∣∣+ 2mε.

The left-hand term of the last expression can be made arbitrarily small by choosing n large
enough. Indeed, as made at the beginning of this proof, we can prove that

qnij(ϕn, ψn)→ qij(ϕ, ψ)

which, together with the fact that vn(j) → v(j) for all j ∈ S, yields the stated result
because, once i ∈ S and ε > 0 are given, the state k remains fixed and does not depend
on n. The proof is now complete. �

Each discounted game model Gn has a value function that can be characterized by the
corresponding Shapley equations; cf. Theorem 3.1.9.
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Theorem 3.2.6 Suppose that Assumption 3.2.3 is satisfied. Then the following statements
hold for each n ≥ 1.

(i) The game Gn has a value V α
n ∈ Bw(Sn) with ‖V α

n ‖w ≤M.

(ii) The value function V α
n is the unique solution u in Bw(Sn) of the equations

αu(i) = sup
ϕ∈An(i)

inf
ψ∈Bn(i)

{
rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)u(j)
}

(3.2.5)

= inf
ψ∈Bn(i)

sup
ϕ∈An(i)

{
rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)u(j)
}

(3.2.6)

for each i ∈ Sn.

(iii) There exists a pair of optimal randomized stationary strategies for the game model Gn.

Moreover, (π1, π2) ∈ Π1,s
n ×Π2,s

n is a pair of optimal randomized stationary strategies
if and only if π1(·|i) and π2(·|i) attain the supremum and the infimum in (3.2.5) and
(3.2.6), respectively, for every i ∈ Sn.

3.2.3 The average payoff case

Suppose now that we are interested in the average optimality criterion for the game
model G. In this case, we will also consider the long-run average payoff criterion for
the approximating game models Gn, for n ≥ 1. The hypotheses we made on the average
game model G were Assumptions 3.1.11, 3.1.12, and 3.1.14. We will impose the following
conditions on the game models Gn.

Assumption 3.2.7 The following statements hold for every n ≥ 1.

(i) For all (i, a, b) ∈ Kn ∑
j∈Sn

qnij(a, b)w(j) ≤ −c1w(i) + d1IDn(i),

where the Lyapunov function w and the constants c1 > 0 and d1 ≥ 0 come from
Assumption 3.1.11, and Dn ⊆ Sn is a finite set. For each i ∈ Sn, we have qn(i) ≤
w(i).

(ii) For the constant M > 0 in Assumption 3.1.12 we have

|rn(i, a, b)| ≤Mw(i) for all (i, a, b) ∈ Kn.

(iii) For each i ∈ Sn, the sets An(i) ⊆ A(i) and Bn(i) ⊆ B(i) are compact, while for all
i, j ∈ Sn, the functions rn(i, a, b) and qnij(a, b) are continuous on An(i)×Bn(i).
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(iv) With c2 ∈ R and d2 ≥ 0 as in Assumption 3.1.14(iii), we have∑
j∈Sn

qnij(a, b)w
2(j) ≤ −c2w

2(i) + d2 for all (i, a, b) ∈ Kn.

(v) Each pair of strategies in Π1,s
n × Π2,s

n is irreducible.

Once again, these conditions consist in assuming the the hypotheses for the game
model G hold “uniformly” in n ≥ 1 for the game models Gn. It is worth noting that
Assumption 3.2.7 implies Assumption 3.2.3. In particular, Lemmas 3.2.4 and 3.2.5 remain
valid under Assumption 3.2.7.

For the game model Gn, the long-run expected average payoff of the players, when
starting from the initial state i ∈ Sn, and using the strategies π1 ∈ Π1

n and π2 ∈ Π2
n, is

defined as

Jn(i, π1, π2) = lim sup
T→∞

1

T
Ei,π1,π2

n

[∫ T

0

rn(x(t), a(t), b(t))dt

]
.

The long-run average lower and upper value functions of the game Gn are respectively
defined as

Ln(i) = sup
π1∈Π1

n

inf
π2∈Π2

n

Jn(i, π1, π2) and U(i) = inf
π2∈Π2

n

sup
π1∈Π1

n

Jn(i, π1, π2)

for each i ∈ S. If Ln(i) = Un(i) =: Vn(i) for all i ∈ S then we say that the game Gn has a
value, and Vn is the value function of the game.

As a consequence of Assumptions 3.2.7(i)–(ii), the lower and upper value functions of
the game are finite and they have the same bounds as the value functions of G, recall
(3.1.11),

|Ln(i)| ≤ Md1

c1

and |Un(i)| ≤ Md1

c1

, for all i ∈ Sn.

The next theorem is derived directly from Theorem 3.1.16. It just states that every
game model Gn has a constant value function that can be characterized by means of the
corresponding optimality equations.

Theorem 3.2.8 Suppose that Assumption 3.2.7 holds and fix n ≥ 1.

(i) The average game Gn has a constant value g∗n ∈ R, with |g∗n| ≤Md1/c1.

(ii) There exist solutions (g, h) ∈ R× Bw(Sn) to the average optimality equations for Gn

g = sup
ϕ∈An(i)

inf
ψ∈Bn(i)

{
rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)h(j)
}

= inf
ψ∈Bn(i)

sup
ϕ∈An(i)

{
rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)h(j)
}

for i ∈ Sn.

If (g, h) ∈ R× Bw(Sn) is a solution to the average optimality equations then g = g∗n,
the value of the game, and h is unique up to additive constants.
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(iii) There exists a pair of optimal stationary strategies. A pair of stationary strategies
(π1, π2) ∈ Π1,s

n ×Π2,s
n is average optimal if and only if they attain the supremum and

the infimum in the average optimality equations.

We note that, in Theorem 3.1.16, we mentioned the existence of a function h ∈ Bw(S),
solution of the average optimality equations, such that ||h||w ≤ RM/γ, where the positive
constants R and γ come from the uniform exponential ergodicity property; recall (3.1.12).
For the approximating game models Gn, we cannot say that the constants Rn, γn for the
game model Gn (which indeed is uniformly exponentially ergodic) do not depend on n ≥ 1.
However, if each game model Gn satisfies the conditions given in Remark 3.1.15, then we
deduce the existence of solutions hn ∈ Bw(Sn) with ||hn||w ≤ RM/γ, the same bound for
G and every Gn.

3.3 Approximation results for discounted games

3.3.1 Convergence results: the general case

Now we prove our main result on the convergence of discounted game models.

Theorem 3.3.1 Suppose that the game models G and {Gn}n≥1 satisfy Assumptions 3.1.2,
3.1.4, 3.1.7, and 3.2.3. If Gn → G then the following statements are satisfied.

(i) For all i ∈ S, limn→∞ V
α
n (i) = V α(i).

(ii) If (π1
n, π

2
n) is a pair of optimal randomized stationary strategies for the game model Gn,

then any limit strategy (π1, π2) ∈ Π1
s ×Π2

s is a pair of optimal randomized stationary
strategies for the game model G.

Proof. (i). Recall that the sequence {V α
n } of the values of the games Gn verifies

|V α
n (i)| ≤Mw(i) for all n ≥ 1 and i ∈ Sn;

see (3.2.2). Therefore, by using a diagonal argument, we deduce the existence of u ∈ Bw(S)
and a subsequence {kn} such that

lim
n→∞

V α
kn(i) = u(i) for all i ∈ S.

Fix i ∈ S and, for n such that kn ≥ n(i), consider the function on Akn(i)×Bkn(i)

(ϕ, ψ) 7→ rkn(i, ϕ, ψ) +
∑
j∈Skn

qknij (ϕ, ψ)V α
kn(j).

This function is continuous as a consequence of Lemma 3.2.4. Therefore,

ϕ 7→ inf
ψ∈Bkn (i)

{
rkn(i, ϕ, ψ) +

∑
j∈Skn

qknij (ϕ, ψ)V α
kn(j)

}
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is upper semi-continuous on the compact set Akn(i) and, hence, it has a maximum which
is reached at some ϕn ∈ Akn(i). There exists a further subsequence {kn′} such that

ϕn′
d−→ ϕ0 for some ϕ0 ∈ A(i). Without loss of generality, and to simplify the notation,

we will suppose that the whole sequence {ϕn} converges to ϕ0.
Fix now arbitrary ψ ∈ B(i). For each n there exist

x1, . . . , xt ∈ B(i) and β1, . . . , βt ∈ [0, 1]

with
∑
βj = 1 such that dW (ψ, ψ̂n) ≤ 1/n, with ψ̂n =

∑
βjδxj . Let yj ∈ Bkn(i) be such

that dB(yj, xj) = miny∈Bkn (i) dB(y, xj) for each j = 1, . . . , t, and define

ψ̃n =
t∑

j=1

βjδyj ∈ Bkn(i).

If f is a bounded L-Lipschitz continuous function on B(i) then we have∣∣∣ ∫ fdψ̃n −
∫
fdψ

∣∣∣ ≤ ∣∣∣ ∫ fdψ̃n −
∫
fdψ̂n

∣∣∣+
∣∣∣ ∫ fdψ̂n −

∫
fdψ

∣∣∣.
We note that∣∣∣ ∫ fdψ̃n −

∫
fdψ̂n

∣∣∣ =
∣∣∣ t∑
j=1

βj[f(yj)− f(xj)]
∣∣∣ ≤ L

t∑
j=1

βjdB(yj, xj)

≤ LρB(Bkn(i), B(i)),

which converges to 0 as n → ∞. On the other hand, since ψ̂n
d−→ ψ we have

∫
fdψ̂n →∫

fdψ. So, we have shown that

lim
n→∞

∫
fdψ̃n =

∫
fdψ

for all bounded and Lipschitz-continuous functions on B(i). This implies that ψ̃n
d−→ ψ.

Summarizing, given arbitrary ψ ∈ B(i) we have constructed ψ̃n ∈ Bkn(i) such that {ψ̃n}
converges weakly to ψ.

By Theorem 3.2.6(ii), the value V α
kn

of the game Gkn verifies

αV α
kn(i) = sup

ϕ∈Akn (i)

inf
ψ∈Bkn (i)

{
rkn(i, ϕ, ψ) +

∑
j∈Skn

qknij (ϕ, ψ)V α
kn(j)

}
= inf

ψ∈Bkn (i)

{
rkn(i, ϕn, ψ) +

∑
j∈Skn

qknij (ϕn, ψ)V α
kn(j)

}
≤ rkn(i, ϕn, ψ̃n) +

∑
j∈Skn

qknij (ϕn, ψ̃n)V α
kn(j).
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Taking the limit as n→∞ and recalling Lemma 3.2.5, we obtain

αu(i) ≤ r(i, ϕ0, ψ) +
∑
j∈S

qij(ϕ0, ψ)u(j).

But ψ ∈ B(i) being arbitrary, we conclude that

αu(i) ≤ inf
ψ∈B(i)

{
r(i, ϕ0, ψ) +

∑
j∈S

qij(ϕ0, ψ)u(j)
}
,

and so,

αu(i) ≤ sup
ϕ∈A(i)

inf
ψ∈B(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)u(j)
}
.

Arguing similarly, we can show that

αu(i) ≥ inf
ψ∈B(i)

sup
ϕ∈A(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)u(j)
}
.

Combining these two inequalities, we conclude that

αu(i) = sup
ϕ∈A(i)

inf
ψ∈B(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)u(j)
}

= inf
ψ∈B(i)

sup
ϕ∈A(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)u(j)
}

for each i ∈ S. By Theorem 3.1.9(ii), this implies that u equals V α, the value of the
game G.

So far, we have shown that if u is any limit point of {V α
n } then, necessarily, u = V α.

But this implies that limn→∞ V
α
n (i) = V α(i) for all i ∈ S. The proof of (i) is now complete.

(ii). Suppose that (π1, π2) ∈ Π1
s×Π2

s is a limit strategy through the subsequence {n′}. Fix
i ∈ S and write

ϕ∗n = π1
n(·|i), ψ∗n = π2

n(·|i), ϕ∗ = π1(·|i), ψ∗ = π2(·|i)

for n ≥ n(i). Then we have

ϕ∗n′
d−→ ϕ∗ and ψ∗n′

d−→ ψ∗.

For n ≥ n(i), we know that ϕ∗n′ and ψ∗n′ attain the supremum and the infimum in the
Shapley equation for Gn′ for the state i; recall Theorem 3.2.6(iii). Therefore,

αV α
n′(i) = sup

ϕ∈An′ (i)
inf

ψ∈Bn′ (i)

{
rn′(i, ϕ, ψ) +

∑
j∈Sn′

qn
′

ij (ϕ, ψ)V α
n′(j)

}
= inf

ψ∈Bn′ (i)

{
rn′(i, ϕ

∗
n′ , ψ) +

∑
j∈Sn′

qn
′

ij (ϕ∗n′ , ψ)V α
n′(j)

}
. (3.3.1)
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Proceeding as in the proof of part (i), we can show that for every ψ ∈ B(i) there exists a

sequence ψn′ ∈ Bn′(i) such that ψn′
d−→ ψ, and so, by (3.3.1),

αV α
n′(i) ≤ rn′(i, ϕ

∗
n′ , ψn′) +

∑
j∈Sn′

qn
′

ij (ϕ∗n′ , ψn′)V
α
n′(j).

Taking the limit as n′ → ∞ and recalling that V α
n converges pointwise to V α (part (i) of

this theorem), gives

αV α(i) ≤ r(i, ϕ∗, ψ) +
∑
j∈S

qij(ϕ
∗, ψ)V α(j).

Since ψ ∈ B(i) is arbitrary, we have

αV α(i) ≤ inf
ψ∈B(i)

{
r(i, ϕ∗, ψ) +

∑
j∈S

qij(ϕ
∗, ψ)V α(j)

}
.

But from the Shapley equation for G we know that

αV α(i) = sup
ϕ∈A(i)

inf
ψ∈B(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)V α(j)
}
.

Hence, ϕ∗ attains the supremum in the Shapley equation for i ∈ S.
Similarly, ψ∗ attains the infimum in the Shapley equation for G and i ∈ S and, by

Theorem 3.1.9(iii), this implies that (π1, π2) ∈ Π1
s×Π2

s is indeed a pair of optimal strategies
for G. �

Theorem 3.3.1 above proposes a general convergence result but it is not ready yet for
numerical applications. Next, we show how to construct finite state and actions game
models Gn starting from the original game model G.

3.3.2 Convergence results: finite approximations

Given a game model G satisfying Assumptions 3.1.2, 3.1.4, and 3.1.7 we now show how to
construct a sequence of game models {Gn}n≥1 for which Assumption 3.2.3 holds. For each
n ≥ 1, the elements of the game model Gn are the following.

• The state space is Sn = {0, 1, . . . , n}.

• For i ∈ Sn, let An(i) and Bn(i) be finite subsets of A(i) and B(i), respectively, such
that

ρA(An(i), A(i))→ 0 and ρB(Bn(i), B(i))→ 0

as n→∞.
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• Given i ∈ Sn and 0 ≤ j < n, define qnij(a, b) = qij(a, b), and let

qnin(a, b) =
∑
j≥n

qij(a, b) = −
n−1∑
j=0

qij(a, b)

for (a, b) ∈ An(i)×Bn(i).

• The reward/cost rate is rn(i, a, b) = r(i, a, b) for (a, b) ∈ An(i)×Bn(i).

We note that construction of An(i) and Bn(i) with the property of convergence in the
Hausdorff metric is indeed possible. For instance, for each n ≥ 1, consider the open cover
of A(i) given by the open balls centered in a ∈ A(i) with radius 1/n, and let An(i) be the
centers of a finite subcover. Then ρA(An(i), A(i)) ≤ 1/n.

Theorem 3.3.2 If the game model G satisfies Assumptions 3.1.2, 3.1.4, and 3.1.7 then
the sequence {Gn}n≥1 defined above satisfies Assumption 3.2.3 and, moreover, Gn → G.

Proof: First of all, we observe that the transition rates of Gn are conservative:∑
j∈Sn

qnij(a, b) =
∑
j∈S

qij(a, b) = 0 for all (i, a, b) ∈ Kn,

and stable. Indeed, −qnii(a, b) = −qii(a, b) ≤ w(i) for i < n and

−qnnn(a, b) = −
∑
j≥n

qnj(a, b) ≤ −qnn(a, b) ≤ w(n).

Concerning Assumption 3.2.3(i), observe that for all (i, a, b) ∈ Kn∑
j∈Sn

qnij(a, b)w(j) =
∑
j∈Sn

qij(a, b)w(j) +
∑
j>n

qij(a, b)w(n)

≤
∑
j∈Sn

qij(a, b)w(j) +
∑
j>n

qij(a, b)w(j)

=
∑
j∈S

qij(a, b)w(j) ≤ −c1w(i) + d1,

where we make use of the monotonicity of w. The fact that qn(i) ≤ w(i) has been estab-
lished along with the stability of the transition rates of Gn. So, Assumption 3.2.3(i) indeed
holds.

Clearly, Assumptions 3.2.3(ii)–(iii) are also satisfied, while Assumption 3.2.3(iv) is
proved similarly to Assumption 3.2.3(i).

It remains to check that Gn → G. Items (a) and (b) in Definition 3.2.1 hold by construc-
tion of Gn. Finally, given i, j ∈ S, if (an, bn) ∈ An(i)× Bn(i) are such that an → a ∈ A(i)
and bn → b ∈ B(i) then

rn(i, an, bn) = r(i, an, bn) and qnij(an, bn) = qij(an, bn)
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for n > i ∨ j, and so Definitions 3.2.1(c)–(d) hold by continuity of the transition and
reward/cost rates of G. �

As a consequence of Theorem 3.3.1, the value functions of the finite state and actions
games Gn converge to the value function of G, and any limit strategy of optimal stationary
strategies for Gn is optimal for G.

Next, we address the issue of the rate of convergence of V α
n (i) to V α(i). To establish

such convergence rates, we need to strengthen our hypotheses. Namely, Assumption 3.1.7
will be replaced with the following stronger condition.

Assumption 3.3.3 The game model G satisfies the following conditions.

(i) For each i ∈ S, the sets A(i) and B(i) are compact.

(ii) For each i, j ∈ S, the functions (a, b) 7→ r(i, a, b) and (a, b) 7→ qij(a, b) are Li- and
Lij-Lipschitz continuous on A(i)×B(i), i.e.,

|r(i, a, b)− r(i, a′, b′)| ≤ Li
(
dA(a, a′) + dB(b, b′)

)
|qij(a, b)− qij(a′, b′)| ≤ Lij

(
dA(a, a′) + dB(b, b′)

)
for all a, a′ ∈ A(i) and b, b′ ∈ B(i), and some Li > 0 and Lij > 0.

(iii) With w the Lyapunov function in Assumption 3.1.2, there exist constants δ > 2,
cδ > −α, and dδ ≥ 0 with∑

j∈S

qij(a, b)w
δ(j) ≤ −cδwδ(i) + dδ for all (i, a, b) ∈ K. (3.3.2)

We have that Assumption 3.3.3(iii) is indeed stronger than Assumption 3.1.7(iii). To
this end we use the following transcription of Lemma 2.3.5.

Lemma 3.3.4 Suppose that the function h : S → [0,∞) satisfies q(i) ≤ h(i) for all i ∈ S.
If there exists a power γ > 0 and a constant cγ ≥ 0 such that∑

j∈S

qij(a, b)h
γ(j) ≤ cγh

γ(i) for all (i, a, b) ∈ K, (3.3.3)

then for every power 0 < γ′ < γ∑
j∈S

qij(a, b)h
γ′(j) ≤ cγh

γ′(i) for all (i, a, b) ∈ K.

Consequently, if there exists a power γ > 0 such that the Lyapunov function w verifies∑
j∈S

qij(a, b)w
γ(j) ≤ −cγwγ(i) + dγ for all (i, a, b) ∈ K
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and some constants cγ ∈ R and dγ ≥ 0, then for every 0 < γ′ < γ∑
j∈S

qij(a, b)w
γ′(j) ≤ (|cγ|+ dγ)w

γ′(i) for all (i, a, b) ∈ K

(indeed, just note that
∑
qij(a, b)w

γ(j) ≤ (|cγ| + dγ)w
γ(i) and use Lemma 3.3.4). In

particular, if Assumption 3.3.3(iii) holds then necessarily Assumption 3.1.7(iii) is satisfied.
Moreover, the following inequality, which will be used in the sequel, easily follows as well:∑

j∈S

qij(a, b)w
δ−1(j) ≤ (|cδ|+ dδ)w

δ−1(i) for all (i, a, b) ∈ K. (3.3.4)

Lemma 3.3.5 Consider a fixed n ≥ 1 and suppose that the game model Gn satisfies As-
sumption 3.2.3. Suppose that there exists a function u ∈ Bw(Sn) such that, for all i ∈ Sn,∣∣αu(i)− sup

ϕ∈An(i)

inf
ψ∈Bn(i)

{rn(i, ϕ, ψ) +
∑
j∈Sn

qnij(ϕ, ψ)u(j)}
∣∣ ≤ h(i)

for some h(i) ≥ 0. Assume, in addition, that there exist constants ch > −α and dh ≥ 0
such that ∑

j∈Sn

qnij(a, b)h(j) ≤ −chh(i) + dh for all (i, a, b) ∈ Kn.

Under these conditions,

|V α
n (i)− u(i)| ≤ h(i)

α + ch
+

dh
α(α + ch)

for each i ∈ Sn.

Proof: First of all, we note that for every (π1, π2) ∈ Π1
n × Π2

n, t ≥ 0, and i ∈ Sn we have

Ei,π1,π2

n [h(x(t))] ≤ e−chth(i) +
dh
ch

(1− e−cht) if ch 6= 0

or Ei,π1,π2

n [h(x(t))] ≤ h(i) + dht when ch = 0 (the proof of these inequalities is similar to
that of (3.1.4)). Therefore, in either case,

Ei,π1,π2

n

[∫ ∞
0

e−αth(x(t))

]
≤ h(i)

α + ch
+

dh
α(α + ch)

for all i ∈ Sn. (3.3.5)

For every i ∈ Sn, there exists some ϕ ∈ An(i) such that for all ψ ∈ Bn(i)

αu(i)− rn(i, ϕ, ψ)−
∑
j∈Sn

qnij(ϕ, ψ)u(j) ≤ h(i).

Consequently, there exists a stationary policy π1 ∈ Π1,s
n such that for every stationary

π2 ∈ Π2,s
n

αu(i)− rn(i, π1, π2)−
∑
j∈Sn

qnij(π
1, π2)u(j) ≤ h(i) for all i ∈ Sn.
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Using Dynkin’s formula gives, for every i ∈ Sn and t ≥ 0,

Ei,π1,π2

n [e−αtu(x(t))]− u(i) = Ei,π1,π2

n

[ ∫ t

0

e−αs[−αu(x(s)) +
∑
j∈Sn

qnx(s)j(π
1, π2)u(j)]ds

]
≥ −Ei,π1,π2

n

[ ∫ t

0

e−αs[rn(x(s), π1, π2) + h(x(s))]ds
]
.

Now we let t → ∞ in this inequality. Recalling (3.1.4) and Remark 3.1.5 for the game
model Gn, and using dominated and monotone convergence, we obtain

u(i) ≤ V α
n (i, π1, π2) + Ei,π1,π2

n

[ ∫ ∞
0

e−αsh(x(s))ds
]

≤ V α
n (i, π1, π2) +

h(i)

α + ch
+

dh
α(α + ch)

,

where we have used (3.3.5). Since this inequality holds for some π1 and all π2, we obtain

u(i) ≤ sup
π1∈Π1,s

n

inf
π2∈Π2,s

n

{V α
n (i, π1, π2)}+

h(i)

α + ch
+

dh
α(α + ch)

= V α
n (i) +

h(i)

α + ch
+

dh
α(α + ch)

(3.3.6)

for all i ∈ Sn (use Remark 3.1.10 for the game model Gn).
Observe now that, the sets An(i) and Bn(i) being finite, we have

inf
ψ∈Bn(i)

sup
ϕ∈An(i)

{rn(i, ϕ, ψ) +
∑
j∈Sn

qnij(ϕ, ψ)u(j)}

= sup
ϕ∈An(i)

inf
ψ∈Bn(i)

{rn(i, ϕ, ψ) +
∑
j∈Sn

qnij(ϕ, ψ)u(j)};

see Theorem 1 in [12]. So, using a symmetric argument with the inequality

−h(i) ≤ αu(i)− inf
ψ∈Bn(i)

sup
ϕ∈An(i)

{rn(i, ϕ, ψ) +
∑
j∈Sn

qnij(ϕ, ψ)u(j)}

gives the existence of π2 ∈ Π2,s
n such that for all π1 ∈ Π1,s

n

V α
n (i, π1, π2) ≤ u(i) +

h(i)

α + ch
+

dh
α(α + ch)

for all i ∈ Sn,

and, therefore,

V α
n (i) ≤ u(i) +

h(i)

α + ch
+

dh
α(α + ch)

for all i ∈ Sn.

Together with (3.3.6), this proves the stated result. �

Finally, we state our main result on the convergence rates to the value of the game. In
this theorem, the game models Gn are constructed, starting from G, as described at the
beginning of this section. It uses the notation ρn(i) introduced in Definition 3.2.1.
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Theorem 3.3.6 Suppose that the game model G satisfies Assumptions 3.1.2, 3.1.4 and
3.3.3. Let {Gn}n≥1 be the sequence of finite state and actions truncations of G, and suppose
that the action sets for Gn are chosen in such a way that, for all n ≥ 1 and i ∈ Sn, and for
some constant D > 0

ρn(i) ≤ Dwδ(i)

wδ−2(n+ 1)(Li + 2Mw(n)
∑n−1

j=0 Lij)
.

Under these conditions, there exists a constant c > 0 such that, for every n ≥ 1 and i ∈ Sn,

|V α
n (i)− V α(i)| ≤ c

wδ(i)

wδ−2(n+ 1)
.

Proof: Fix n ≥ 1 and i ∈ Sn. We have

αV α(i) = sup
ϕ∈A(i)

inf
ψ∈B(i)

{r(i, ϕ, ψ) +
∑
j∈S

qij(ϕ, ψ)V α(j)}

≤ sup
ϕ∈A(i)

inf
ψ∈Bn(i)

{r(i, ϕ, ψ) +
∑
j∈S

qij(ϕ, ψ)V α(j)}. (3.3.7)

Note that for every (ϕ, ψ) ∈ A(i)×B(i)

∑
j∈S

qij(ϕ, ψ)V α(j) =
n−1∑
j=0

qij(ϕ, ψ)(V α(j)− V α(n)) +
∑
j>n

qij(ϕ, ψ)(V α(j)− V α(n)),

and recalling that ||V α||w ≤M,∣∣∑
j>n

qij(ϕ, ψ)(V α(j)− V α(n))
∣∣ ≤ 2M

∑
j>n

qij(ϕ, ψ)w(j).

Observe now that proceeding as in the proof of Lemma 3.1.8(i) and recalling (3.3.4), we
can show that∑

j>n

qij(ϕ, ψ)w(j) ≤ 1

wδ−2(n+ 1)
·
(

(|cδ|+ dδ)w
δ−1(i) + q(i)wδ−1(i)

)
≤ (|cδ|+ dδ + 1)

wδ(i)

wδ−2(n+ 1)
. (3.3.8)

Therefore, combining (3.3.7) and (3.3.8), we obtain

αV α(i) ≤ sup
ϕ∈A(i)

inf
ψ∈Bn(i)

{
r(i, ϕ, ψ) +

n−1∑
j=0

qij(ϕ, ψ)(V α(j)− V α(n))
}

+ C
wδ(i)

wδ−2(n+ 1)
,

with
C = 2M(|cδ|+ dδ + 1).
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By upper semicontinuity, the above supremum is indeed attained. Consequently, there
exists ϕ ∈ A(i) such that, for every ψ ∈ Bn(i), we have

αV α(i) ≤ r(i, ϕ, ψ) +
n−1∑
j=0

qij(ϕ, ψ)(V α(j)− V α(n)) + C
wδ(i)

wδ−2(n+ 1)
. (3.3.9)

Given arbitrary ε > 0, there exist a finite set {x1, . . . , xk} ⊆ A(i) and β1, . . . , βk ≥ 0, with
β1 + . . .+ βk = 1, such that

dW (ϕ,
k∑
j=1

βjδxj) ≤ ε.

For every xj, let x̂j ∈ An(i) be such that

dA(xj, x̂j) = min
y∈An(i)

dA(xj, y) ≤ ρA(An(i), A(i)).

It is easy to see (recall (1.4.5)) that

dW (
k∑
j=1

βjδxj ,
k∑
j=1

βjδx̂j) ≤
k∑
j=1

βjdA(xj, x̂j) ≤ ρA(An(i), A(i)),

and so, letting ϕ̂ =
∑k

j=1 βjδx̂j ∈ An(i),

dW (ϕ, ϕ̂) ≤ ε+ ρA(An(i), A(i)).

Summarizing, for ϕ ∈ A(i) we have found a probability measure in ϕ̂ ∈ An(i) which is
“close” to ϕ in the Wasserstein metric. By the Lipschitz continuity Assumption 3.3.3,
observe that the function on A(i)×B(i) given by

(a, b) 7→ r(i, a, b) +
n−1∑
j=0

qij(a, b)(V
α(j)− V α(n))

is Lipschitz continuous, with Lipschitz constant Li+ 2Mw(n)
∑n−1

j=0 Lij. Consequently, the
same applies to

a 7→
∫
Bn(i)

[
r(i, a, b) +

n−1∑
j=0

qij(a, b)(V
α(j)− V α(n))

]
ψ(db).

Use now (1.4.5) to derive that∣∣∣r(i, ϕ, ψ) +
n−1∑
j=0

qij(ϕ, ψ)(V α(j)− V α(n))− r(i, ϕ̂, ψ) +
n−1∑
j=0

qij(ϕ̂, ψ)(V α(j)− V α(n))
∣∣∣

≤
(
Li + 2Mw(n)

n−1∑
j=0

Lij

)
· dW (ϕ, ϕ̂) ≤

(
Li + 2Mw(n)

n−1∑
j=0

Lij

)
· (ε+ ρA(An(i), A(i))).
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Therefore, recalling (3.3.9), this yields that αV α(i) is less than or equal to

r(i, ϕ̂, ψ) +
n−1∑
j=0

qij(ϕ̂, ψ)(V α(j)− V α(n))

+ C
wδ(i)

wδ−2(n+ 1)
+
(
Li + 2Mw(n)

n−1∑
j=0

Lij

)
· (ε+ ρA(An(i), A(i))).

Since this holds for all ψ ∈ Bn(i) and the particular ϕ̂ ∈ An(i) constructed above, we
deduce that

αV α(i) ≤ sup
ϕ∈An(i)

inf
ψ∈Bn(i)

{
r(i, ϕ, ψ) +

n−1∑
j=0

qij(ϕ, ψ)(V α(j)− V α(n))
}

+ C
wδ(i)

wδ−2(n+ 1)

+
(
Li + 2Mw(n)

n−1∑
j=0

Lij

)
· (ε+ ρA(An(i), A(i))).

But ε > 0 being arbitrary and recalling our hypothesis on ρA(An(i), A(i)) ≤ ρn(i), we
derive that

αV α(i) ≤ sup
ϕ∈An(i)

inf
ψ∈Bn(i)

{r(i, ϕ, ψ) +
n−1∑
j=0

qij(ϕ, ψ)(V α(j)− V α(n))}+
(C +D)wδ(i)

wδ−2(n+ 1)
.

= sup
ϕ∈An(i)

inf
ψ∈Bn(i)

{rn(i, ϕ, ψ) +
∑
j∈Sn

qnij(ϕ, ψ)V α(j)}+
(C +D)wδ(i)

wδ−2(n+ 1)
,

where the last equality is derived from the definition of the reward and transition rates of
the game model Gn.

Using a symmetric argument, we can show that

αV α(i) ≥ inf
ψ∈Bn(i)

sup
ϕ∈An(i)

{rn(i, ϕ, ψ) +
∑
j∈Sn

qnij(ϕ, ψ)V α(j)} − (C +D)wδ(i)

wδ−2(n+ 1)
.

As in the proof of Theorem 3.3.2 we can show that the inequality in Assumption
3.3.3(iii) is satisfied by the transition rates of Gn with the same constants cδ and dδ.
Therefore, by Lemma 3.3.5, we conclude that, for every i ∈ Sn,

|V α
n (i)− V α(i)| ≤ (C +D)wδ(i)

(α + cδ)wδ−2(n+ 1)
+

(C +D)dδ
α(α + cδ)wδ−2(n+ 1)

.

Recalling the definition of the constants C and M, and letting

c =
(2M(α + d1)(|cδ|+ dδ + 1) +Dα(α + c1))(dδ + α)

α2(α + c1)(α + cδ)
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we have

|V α
n (i)− V α(i)| ≤ c

wδ(i)

wδ−2(n+ 1)

for all n ≥ 1 and i ∈ Sn. �

The above theorem shows that, if a Lyapunov condition holds for the function wδ (with
δ > 2) then, by making a suitable choice of the finite action sets An(i) and Bn(i), the error
when approximating V α(i) with V α

n (i) is of order 1/wδ−2(n + 1). Moreover, we have an
explicit expression for the multiplicative constant c that depends on the initial data (and
related constants) of the game model G.

3.3.3 Solving numerically a finite discounted game

Our previous results show that the value function V α of the original game model G can be
approximated by the value V α

n of the finite state and actions game models Gn. But, from
the numerical perspective, it remains to explain how a finite state and actions game model
can be solved explicitly.

Consider the finite state and actions game Gn defined at the beginning of Section 3.3.2.
Let qn > 0 be such that

qn > −qnii(a, b) for all (i, a, b) ∈ Kn (3.3.10)

(it suffices to let qn > w(n)). For u = {u(i)}i∈Sn ∈ Rn+1 define the operator Tnu ∈ Rn+1

as

Tnu(i) = max
ϕ∈An(i)

min
ψ∈Bn(i)

{
rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)u(j)
}

= min
ψ∈Bn(i)

max
ϕ∈An(i)

{
rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)u(j)
}

for i ∈ Sn. Define also T̃nu ∈ Rn+1 as

T̃nu(i) = max
ϕ∈An(i)

min
ψ∈Bn(i)

{rn(i, ϕ, ψ)

α + qn
+

qn
α + qn

∑
j∈Sn

(qnij(ϕ, ψ)

qn
+ δij

)
u(j)

}
(3.3.11)

= min
ψ∈Bn(i)

max
ϕ∈An(i)

{rn(i, ϕ, ψ)

α + qn
+

qn
α + qn

∑
j∈Sn

(qnij(ϕ, ψ)

qn
+ δij

)
u(j)

}
(3.3.12)

for i ∈ Sn (cf. Section 8 in [16]). It is easily seen that the equation αu = Tnu is equivalent

to the fixed point equation u = T̃nu. Therefore, as a consequence of Theorem 3.2.6, the
value V α

n of the game Gn is the unique fixed point of the operator T̃n. Moreover, by a

standard calculation, it follows that T̃n is a contraction operator on Rn+1 with modulus
qn/(α + qn) < 1 when considering the supremum norm; that is,

‖T̃nu− T̃nv‖ ≤
qn

α + qn
‖u− v‖ for all u, v ∈ Rn+1.
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Hence, the iterative procedure (which is a sort of value iteration algorithm):

1. Fix arbitrary u0 ∈ Rn+1,

2. For k ≥ 1, let uk = T̃nuk−1,

converges geometrically to V α
n in the supremum norm. Concerning the computation of the

iterate T̃nu for a given u ∈ Rn+1, we can apply our next lemma, which uses the following
notation. Given a positive integer N , define ∆N as the set of nonnegative λ1, . . . , λN such
that λ1 + . . .+ λN = 1.

Lemma 3.3.7 Given the real-valued matrix C = {Cs,t}1≤s≤I,1≤t≤J , define

V ∗ = max
λ∈∆I

min
1≤t≤J

∑
1≤s≤I

λsCs,t = min
µ∈∆J

max
1≤s≤I

∑
1≤t≤J

µtCs,t.

Let c ≥ 0 be such that all the elements of the matrix D, with Ds,t = Cs,t + c, are strictly
positive. Consider the linear programming problem

min 1′x subject to D′x ≥ 1, x ≥ 0,

and let x∗ ∈ RI be an optimal solution. Then V ∗ = 1
1′x∗
− c.

Proof: We have
V ∗ + c = max

λ∈∆I

min
1≤t≤J

∑
1≤s≤I

λsDs,t =: Ṽ

and suppose that Ds,t ≥ ε > 0 for all s and t. Observe that Ṽ equals the optimum of the
linear programming problem: maximize v subject to

v ≤
∑

1≤s≤I

λsDs,t for all 1 ≤ t ≤ J,

with v ≥ ε and λ ∈ ∆I . Letting xs = λs/v for s = 1, . . . , I, it follows that 1/Ṽ equals the
optimum of:

min 1′x subject to D′x ≥ 1, x ≥ 0, 1′x ≤ 1/ε,

where the last constraint is redundant. �

Therefore, once uk−1 is known, we can effectively compute uk by solving the linear
programming problem described in Lemma 3.3.7. Namely, given i ∈ Sn and for all as ∈
An(i) with 1 ≤ s ≤ I, and all bt ∈ Bn(i) with 1 ≤ t ≤ J , define

Cs,t =
rn(i, as, bt)

α + qn
+

qn
α + qn

∑
j∈Sn

(qnij(as, bt)
qn

+ δij

)
uk−1(j)

and then use Lemma 3.3.7 to determine uk.
Regarding a stopping criterion for the above algorithm, we have the following result.

In the next lemma, the norm || · || refers to the supremum norm on Rn+1.
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Lemma 3.3.8 Given the finite state and actions game model Gn, consider the sequence of
iterates {uk}k≥0, where u0 ∈ Rn+1 is arbitrary and, for k ≥ 1, uk = T̃nuk−1. Fix ε > 0 and
let k ≥ 1 be such that ||uk−1 − uk|| ≤ εα/qn. The following statements hold.

(i) ||uk − V α
n || ≤ ε.

(ii) The strategy π1
∗ ∈ Π1,s

n such that, for all i ∈ Sn, π1
∗(·|i) attains the maximum in

(3.3.11) for the iteration uk+1 = T̃nuk is 2ε-optimal for player 1, meaning that

V α
n (i)− 2ε ≤ inf

π2∈Π2
n

V α
n (i, π1

∗, π
2) for all i ∈ Sn.

(iii) The strategy π2
∗ ∈ Π2,s

n such that, for all i ∈ Sn, π2
∗(·|i) attains the minimum in

(3.3.12) for the iteration uk+1 = T̃nuk is 2ε-optimal for player 2, meaning that

V α
n (i) + 2ε ≥ sup

π1∈Π1
n

V α
n (i, π1, π2

∗) for all i ∈ Sn.

Proof. (i). We have

||uk − V α
n || ≤ ||uk − uk+1||+ ||uk+1 − V α

n || ≤
qn

α + qn

(
||uk−1 − uk||+ ||uk − V α

n ||
)

because V α
n is the fixed point of T̃n, and so

||uk − V α
n || ≤

qn
α
||uk−1 − uk|| ≤ ε.

(ii). For u : Sn → R, consider the operator

Ũu(i) = min
b∈Bn(i)

{rn(i, π1
∗(·|i), b)

α + qn
+

qn
α + qn

∑
j∈Sn

(qnij(π1
∗(·|i), b)
qn

+ δij

)
u(j)

}
for i ∈ Sn,

which is a contraction on Rn+1 with modulus qn
α+qn

, and let W be its unique fixed point.
The fixed point equation

W (i) = min
b∈Bn(i)

{rn(i, π1
∗(·|i), b)

α + qn
+

qn
α + qn

∑
j∈Sn

(qnij(π1
∗(·|i), b)
qn

+ δij

)
W (j)

}
for i ∈ Sn,

corresponds to the discounted cost optimality equation of a continuous-time control prob-
lem (for player 2) when the strategy of player 1 is π1

∗; see [31, Section 3.3]. Therefore,
W (i) = infπ2∈Π2

n
V α
n (i, π1

∗, π
2) for all i ∈ Sn.

Observe now that

||W − V α
n || ≤ ||W − uk||+ ||uk − V α

n ||. (3.3.13)
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Now, on the one hand,

||W − uk|| ≤ ||W − T̃nuk||+ ||T̃nuk − uk||

= ||ŨW − Ũuk||+ ||T̃nuk − uk|| ≤
qn

α + qn

(
||W − uk||+ ||uk−1 − uk||

)
because T̃nuk = Ũuk, and so

||W − uk|| ≤
qn
α
||uk−1 − uk||.

On the other hand, as established in part (i), ||uk − V α
n || ≤

qn
α
||uk−1− uk||. From (3.3.13),

we obtain

||W − V α
n || ≤

2qn
α
||uk−1 − uk|| ≤ 2ε,

and the result follows. The proof of (iii) is similar. �

As a consequence of this lemma, we can explicitly obtain an approximation of the value
and nearly optimal strategies for both players for the game model Gn.

3.4 Approximation results for average games

In this section we study the approximation problem for an average payoff Markov game;
recall Sections 3.1.3 and 3.2.3.

3.4.1 Convergence results: the general case

In our next theorem we prove the main result on the convergence of the average value
of the game models Gn to the average value g∗ of G. We also analyze the optimality of
the limiting strategies. We note that, in addition to the conditions imposed so far on the
game models G and Gn we need a supplementary hypothesis. Namely, we suppose that the
functions hn ∈ Bw(Sn) in the solution of the average optimality equations for Gn, recall
Theorem 3.2.8, can be chosen in such a way that supn≥1 ||hn||w < ∞. In connection with
this, see Remark 3.4.2 below.

Theorem 3.4.1 Suppose that the game model G satisfies Assumptions 3.1.11, 3.1.12, and
3.1.14, and that the game models Gn satisfy Assumption 3.2.7. In addition, assume that
there exist hn ∈ Bw(Sn), solutions to the average optimality equations of Gn in Theorem
3.2.8, such that supn≥1 ||hn||w is finite. Under these conditions, if Gn → G then

(i) The average value of Gn converges to the average value of G, i.e., limn→∞ g
∗
n = g∗.

(ii) If (π1
n, π

2
n) ∈ Π1,n

s ×Π2,n
s is a pair of average optimal strategies for Gn for every n ≥ 1,

then any limiting strategy (π1, π2) ∈ Π1
s × Π2

s is average optimal for G.
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Proof. (i). Since the sequence of average values {g∗n}n≥1 is bounded (recall Theorem
3.2.8(i)), and by the hypothesis on the sequence {hn}n≥1, it follows that there exists some
subsequence {n′} along which {g∗n} and {hn} converge. Without loss of generality, we shall
assume that the whole sequences converge. Hence, there exists a pair (g, h) ∈ R × Bw(S)
such that

lim
n→∞

g∗n = g and lim
n→∞

hn(i) = h(i) for all i ∈ S.

Fix i ∈ S and consider n ≥ n(i). From the average optimality equations for the game
model Gn in state i ∈ Sn we obtain

g∗n = sup
ϕ∈An(i)

inf
ψ∈Bn(i)

{
rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)hn(j)
}
.

The function
(ϕ, ψ) 7→ rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)hn(j)

being continuous (Lemma 3.2.4), it follows that

ϕ 7→ inf
ψ∈Bn(i)

{
rn(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)hn(j)
}

is upper semicontinuous, and so it reaches a maximum on the compact set An(i) at the
point, say, ϕ∗n ∈ An(i), that is,

g∗n = inf
ψ∈Bn(i)

{
rn(i, ϕ∗n, ψ) +

∑
j∈Sn

qnij(ϕ
∗
n, ψ)hn(j)

}
. (3.4.1)

The sequence {ϕ∗n} ⊆ A(i) has some convergent subsequence. We shall assume that the

whole sequence converges: that is, for some ϕ ∈ A(i) we have ϕ∗n
d→ ϕ.

Fix now arbitrary ψ ∈ B(i) and n ≥ n(i). For every such n there exist some points
x1, . . . , xt ∈ B(i) and positive β1, . . . , βt with

∑
βk = 1, such that

dW
(
ψ,

t∑
k=1

βkδxk
)
< 1/n.

We will write ψ̂n =
∑t

k=1 βkδxk . For each xk let yk ∈ Bn(i) be such that

dB(yk, xk) = min
y∈Bn(i)

dB(y, xk) ≤ ρB(Bn(i), B(i)).

Consider the probability measure ψ̃n =
∑t

k=1 βkδyk . A straightforward calculation yields

that dW (ψ̂n, ψ̃n) ≤ ρB(Bn(i), B(i)). Consequently, we have that ψ̃n ∈ Bn(i) verifies ψ̃n
d→ ψ

because
dW (ψ̂n, ψ) ≤ ρn(i) + 1/n→ 0.
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Now, from (3.4.1), for every n ≥ n(i) we have

g∗n ≤ rn(i, ϕ∗n, ψ̂n) +
∑
j∈Sn

qnij(ϕ
∗
n, ψ̂n)hn(j).

Take the limit as n→∞ and use Lemma 3.2.5 to conclude that

g ≤ r(i, ϕ, ψ) +
∑
j∈S

qij(ϕ, ψ)h(j).

Since ψ ∈ B(i) is arbitrary, we obtain that

g ≤ inf
ψ∈B(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)h(j)
}
,

and so
g ≤ sup

ϕ∈A(i)

inf
ψ∈B(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)h(j)
}
.

Proceeding with a symmetric argument we can establish that

g ≥ inf
ψ∈B(i)

sup
ϕ∈A(i)

{
r(i, ϕ, ψ) +

∑
j∈S

qij(ϕ, ψ)h(j)
}
.

Since i ∈ S is arbitrary, we conclude that the pair (g, h) ∈ R× Bw(S) is a solution to the
average optimality equations for the game model G. Hence, we must have g = g∗.

Summarizing, we have proved that any convergent sequence of the bounded sequence
{g∗n}n≥1 converges to g∗. Necessarily, we must have lim g∗n = g∗.
(ii). Suppose that (π1

n, π
2
n) ∈ Π1,n

s × Π2,n
s are optimal stationary strategies for the players,

and suppose that (π1, π2) is a limiting strategy through the subsequence {n′}. As in the
proof of statement (i) of this theorem, we can show that

g∗ ≤ inf
ψ∈B(i)

{
r(i, π1(·|i), ψ) +

∑
j∈S

qij(π
1(·|i), ψ)h(j)

}
for all i ∈ S,

from which optimality of strategy π1 for player 1 follows. We proceed similarly for player 2.
The proof is now complete. �

Remark 3.4.2 This convergence theorem has been proved under the additional hypothesis
that supn ||hn||w <∞. We note that if each game model Gn satisfies the conditions given in
Remark 3.1.15 then the condition supn ||hn||w <∞ is fulfilled. See also Theorem 3.1.16(ii).

Remark 3.4.3 It is also worth noting that, in Theorem 3.4.1, we have not used Assump-
tion 3.1.14(iv) on the irreducibility of stationary strategies for G. In fact, if we drop
Assumption 3.1.14(iv) then we cannot apply directly Theorem 3.1.16 to the game model G.
Interestingly, Theorem 3.4.1 is in fact a proof of the existence to solutions of the average
optimality equations for G (and, hence, the existence of a constant average value function),
based on suitable properties of a family of (simpler) game models Gn.
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3.4.2 Convergence results: finite approximations

Starting from the countable state space, general action spaces game model G, we consider
the sequence of finite state and actions game models Gn that were defined in Section 3.3.2.
For ease of reference, we give again the definition of the game model Gn. For each n ≥ 1
we define the game model Gn with elements {Sn, A,B,Kn, Qn, r}:

• The state space of Gn is the finite set Sn = {0, 1, . . . , n}.

• The action spaces are A and B, as for the game model G.

• The available actions for players 1 and 2 are arbitrary finite sets An(i) ⊆ A(i) and
Bn(i) ⊆ B(i), respectively. For every i ∈ Sn, they verify

ρn(i) = ρA(An(i), A(i)) ∨ ρB(Bn(i), B(i))→ 0

as n→∞. Let Kn = {(i, a, b) ∈ Sn × A×B : a ∈ An(i), b ∈ Bn(i)}.

• Given (i, a, b) ∈ Kn and j ∈ Sn, the transition rates Qn are

qnij(a, b) =

{
qij(a, b) when j 6= n∑

k≥n qik(a, b) when j = n.

These transition rates are conservative and stable, with −qnii(a, b) ≤ −qii(a, b) ≤ q(i)
for (i, a, b) ∈ Kn.

• The payoff rate function is the restriction of r to Kn, that we will also denote by r.

The dynamics of the game model Gn is roughly as follows: the game model Gn evolves
according to the same dynamics as the game G and, whenever the system reaches a state
strictly larger than n, it is restarted at state n.

Lemma 3.4.4 If the game model G satisfies Assumptions 3.1.11, 3.1.12, and 3.1.14(i)–
(iii) then the sequence {Gn}n≥1 satisfies Assumptions 3.2.7(i)–(iv) and, besides, Gn → G.

Proof. The proof is easy and similar to that of Theorem 3.3.2. �

It is important to mention that the irreducibility of stationary strategies for Gn cannot
be deduced from the irreducibility of stationary policies for G. That is why we have not
included Assumption 3.1.14(iv) in the hypotheses of Lemma 3.4.4. Therefore, Assumption
3.2.7(v) needs not hold, we cannot use Theorem 3.2.8, and Gn might not have a value.

Moreover, we can neither use Theorem 3.4.1 on the convergence of the value functions
of Gn to that of G. So, in the context of a Markov game with the average payoff opti-
mality criterion, the finite state and actions truncated game models Gn might not be used
as approximations of G. This is an important departure point from the results in the
discounted payoff setting in which, under mild hypotheses, the truncated game models Gn
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could be used to approximate the discounted game G. So, we will need to impose additional
assumptions to obtain convergence.

The next result will be useful in the forthcoming. We note that this lemma does not
suppose Assumption 3.1.14(iv) on the irreducibility of stationary strategies for G. Hence,
the game model G might not have a value function.

Lemma 3.4.5 Let G satisfy Assumptions 3.1.11, 3.1.12, and 3.1.14(i)–(iii). Suppose that
there exist g ∈ R, h ∈ Bw(S), and u : S → [0,∞) such that, for all i ∈ S,

g − u(i) ≤ sup
ϕ∈A(i)

inf
ψ∈B(i)

{r(i, ϕ, ψ) +
∑
j∈S

qij(ϕ, ψ)h(j)} (3.4.2)

≤ inf
ψ∈B(i)

sup
ϕ∈A(i)

{r(i, ϕ, ψ) +
∑
j∈S

qij(ϕ, ψ)h(j)} ≤ g + u(i), (3.4.3)

and such that, for some constants cu > 0 and du ≥ 0, the function u satisfies∑
j∈S

qij(a, b)u(j) ≤ −cuu(i) + du for all (i, a, b) ∈ K.

Then g − du/cu ≤ L(i) ≤ U(i) ≤ g + du/cu for all i ∈ S.

Proof. By Lemma 3.1.8 and Assumptions 3.1.14(i)–(iii), given i ∈ S, the function ϕ 7→
r(i, ϕ, ψ) +

∑
j∈S qij(ϕ, ψ)h(j) is continuous on A(i) for all ψ ∈ B(i). Hence,

ϕ 7→ inf
ψ∈B(i)

{r(i, ϕ, ψ) +
∑
j∈S

qij(ϕ, ψ)h(j)}

is upper semicontinuous and it reaches a maximum on the compact set A(i). As a conse-
quence of (3.4.2), there exists some ϕ∗i ∈ A(i) such that for all ψ ∈ B(i)

g − u(i) ≤ r(i, ϕ∗i , ψ) +
∑
j∈S

qij(ϕ
∗
i , ψ)h(j).

Consider the stationary strategy π1
∗ ∈ Π1,s such that π1

∗(·|i) = ϕ∗i for all i ∈ S. Given an
arbitrary Markov strategy π2 ∈ Π2,

g − u(i) ≤ r(t, i, π1
∗, π

2) +
∑
j∈S

qij(t, π
1
∗, π

2)h(j)

for all i ∈ S and t ≥ 0. Using Kolmogorov’s backward equations for a nonstationary
Markov chain [17, Proposition C.4],

Ei,π1
∗,π

2

[h(x(t))]− h(i)

≥ −
∫ t

0

Ei,π1
∗,π

2[
r(s, x(s), π1

∗, π
2) + u(x(s))

]
ds+ gt. (3.4.4)
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By arguments similar to those used to derive (3.1.10) we have

Ei,π1
∗,π

2

[u(x(s))] ≤ e−cusu(i) +
du
cu

(1− e−cus) for all s ≥ 0,

and so dividing by t in (3.4.4) and taking the lim sup as t→∞ yields g ≤ J(i, π1
∗, π

2)+ du
cu

.

Consequently, since π2 ∈ Π2 is arbitrary

g − du
cu
≤ inf

π2∈Π2
J(i, π1

∗, π
2) ≤ sup

π1∈Π1

inf
π2∈Π2

J(i, π1, π2) = L(i).

Proceeding similarly with (3.4.3) we obtain U(i) ≤ g+ du
cu

for each i ∈ S. The stated result
follows. �

As already mentioned, we need to strengthen our hypotheses to obtain convergence.
Namely, we will replace Assumption 3.1.14 with the following stronger condition.

Assumption 3.4.6 (i) With w the Lyapunov function in Assumption 3.1.11, there exist
δ > 2, cδ > 0, and dδ ≥ 0 such that∑

j∈S

qij(a, b)w
δ(j) ≤ −cδwδ(i) + dδ for all (i, a, b) ∈ K.

(ii) The action sets A(i) and B(i) are compact for every i ∈ S. For all i, j ∈ S there are
positive constants Li and Lij with

|r(i, a, b)− r(i, a′, b′)| ≤ Li
(
dA(a, a′) + dB(b, b′)

)
|qij(a, b)− qij(a′, b′)| ≤ Lij

(
dA(a, a′) + dB(b, b′)

)
for all a, a′ ∈ A(i) and b, b′ ∈ B(i); i.e., the functions r(i, ·, ·) and qij(·, ·) are Lipschitz
continuous.

(iii) Each pair of strategies in Π1,s × Π2,s is irreducible.

In this assumption, we impose a Lyapunov condition on wδ for some δ > 2, in which the
coefficient cδ is positive (cf. Assumption 3.3.3(iii)). Also, we impose Lipschitz continuity
of the reward and transition rates. Note that Assumption 3.4.6(i)–(ii) is analogous to
Assumption 3.3.3 expect for the additional condition on cδ. Note that Assumption 3.4.6(i)
indeed implies Assumption 3.1.14(iii), as consequence of Lemma 3.3.4.

Next we state our main result on the convergence of the value functions.

Theorem 3.4.7 Suppose that the game model G satisfies Assumptions 3.1.11, 3.1.12, and
3.4.6. Fix D > 0 and suppose that the action sets An(i) and Bn(i) of Gn, for n ≥ 1, are
chosen so that

ρn(i) ≤ Dwδ(i)

wδ−2(n+ 1)
(
Li + w(n)2RM

γ

∑n−1
j=0 Lij

) for i ∈ Sn. (3.4.5)
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Then there exists a constant c > 0 that depends neither on n ≥ 1 nor on i ∈ Sn such that,
for all i ∈ Sn and n ≥ 1,

g∗ − c

wδ−2(n+ 1)
≤ Ln(i) ≤ Un(i) ≤ g∗ +

c

wδ−2(n+ 1)
.

Consequently,

max
i∈Sn
|Ln(i)− g∗| and max

i∈Sn
|Un(i)− g∗|

are both O(w−(δ−2)(n+ 1)) as n→∞.

Proof. Fix n ≥ 1 and i ∈ Sn. Let (g∗, h) ∈ R × Bw(S) be a solution of the average
optimality equations for the game model G such that ||h||w ≤ RM/γ. From the average
optimality equation in Theorem 3.1.16 we deduce that there exists ϕ∗ ∈ A(i) such that,
for all ψ ∈ B(i),

g∗ ≤ r(i, ϕ∗, ψ) +
∑
j∈S

qij(ϕ
∗, ψ)h(j). (3.4.6)

Observe that
∑

j∈S qij(ϕ
∗, ψ)h(j) equals

n−1∑
j=0

qij(ϕ
∗, ψ)(h(j)− h(n)) +

∑
j>n

qij(ϕ
∗, ψ)(h(j)− h(n))

≤
n−1∑
j=0

qij(ϕ
∗, ψ)(h(j)− h(n)) + 2||h||w

∑
j>n

qij(ϕ
∗, ψ)w(j),

where, proceeding as in Lemma 3.1.8 we obtain∑
j>n

qij(ϕ
∗, ψ)w(j) ≤ 1

wδ−2(n+ 1)

∑
j>n

qij(ϕ
∗, ψ)wδ−1(j)

≤ 1

wδ−2(n+ 1)
(1 + dδ)w

δ(i).

On the other hand, the probability measures with finite support being dense in A(i)
(see Theorem 8.9.4 in [7]), given ε > 0 there exist x1, . . . , xk ∈ A(i) and positive β1, . . . , βk
with

∑
βt = 1 such that dW (ϕ∗,

∑
βtδxt) < ε. For each xt let yt ∈ An(i) be such that

dA(xt, yt) = min
a∈An(i)

dA(xt, a) ≤ ρA(An(i), A(i))

and define ϕ̃n =
∑
βtδyt ∈ An(i). It is easily seen that

dW (
∑

βtδxt , ϕ̃n) ≤ ρA(An(i), A(i)) ≤ ρn(i)
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and thus dW (ϕ∗, ϕ̃n) < ε+ρn(i). By Lipschitz continuity in Assumption 3.4.6(ii), it follows
that

∑
j∈S qij(ϕ

∗, ψ)h(j) is less than or equal to

n−1∑
j=0

qij(ϕ̃n, ψ)(h(j)− h(n)) + 2||h||ww(n)dW (ϕ∗, ϕ̃n)
n−1∑
j=0

Lij

+ 2||h||w(1 + dδ)
wδ(i)

wδ−2(n+ 1)
.

On the other hand, we have

r(i, ϕ∗, ψ) ≤ r(i, ϕ̃n, ψ) + LidW (ϕ∗, ϕ̃n).

Summarizing, for ϕ̃n ∈ An(i) constructed above and for all ψ ∈ Bn(i) ⊆ B(i) we have (see
(3.4.6)) that g∗ is less than or equal to

r(i, ϕ̃n, ψ) +
n−1∑
j=0

qij(ϕ̃n, ψ)(h(j)− h(n)) + dW (ϕ∗, ϕ̃n)
(
Li+

+ 2||h||ww(n)
n−1∑
j=0

Lij

)
+ 2||h||w(1 + dδ)

wδ(i)

wδ−2(n+ 1)
.

Recalling the bound on dW (ϕ∗, ϕ̃n) and the definition of the transition rates of Gn, it follows
that

g∗ ≤ r(i, ϕ̃n, ψ) +
∑
j∈Sn

qnij(ϕ̃n, ψ)h(j) + (ε+ ρn(i))·

·
(
Li + 2||h||ww(n)

n−1∑
j=0

Lij

)
+ 2||h||w(1 + dδ)

wδ(i)

wδ−2(n+ 1)
.

Since ψ ∈ Bn(i) is arbitrary, recalling the bounds on ||h||w and ρn(i), and since ε > 0 is
arbitrary as well, it follows that

g∗ ≤ sup
ϕ∈An(i)

inf
ψ∈Bn(i)

{
r(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)h(j)
}

+
Cwδ(i)

wδ−2(n+ 1)

for all i ∈ Sn, where C = D + 2RM(1 + dδ)/γ. The symmetric inequality, that is,

g∗ ≥ inf
ψ∈Bn(i)

sup
ϕ∈An(i)

{
r(i, ϕ, ψ) +

∑
j∈Sn

qnij(ϕ, ψ)h(j)
}
− Cwδ(i)

wδ−2(n+ 1)

for i ∈ Sn, is proved similarly. Now we use Lemma 3.4.5 for the game model Gn to derive
the stated result for c = C/cδ. �
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Therefore, by making a suitable choice of the sets An(i) and Bn(i), we obtain conver-
gence, uniformly in i ∈ Sn, of the lower and upper value functions Ln and Un to the value
of G at a rate 1/wδ−2(n + 1). Note that, for fixed n ≥ 1, the bound on ρn(i) in (3.4.5)
grows (loosely) with wδ(i) for i ∈ Sn. This means that “fine” choices of the action sets
of Gn must be made for “small” states, but “coarser” actions sets are allowed for “large”
states.

It is also worth mentioning that Theorem 3.4.7 above does not assume the existence of
the value of the games Gn, and yet it provides a result on the convergence of the lower and
upper value functions. If the game Gn has a value g∗n ∈ R then the result of Theorem 3.4.7
becomes, obviously,

|g∗n − g∗| ≤
c

wδ−2(n+ 1)
for all n ≥ 1.

3.4.3 Solving numerically a finite average game

It remains to show how to solve numerically the game model Gn. Under an additional
irreducibility assumption, we can use the following “policy iteration” procedure.

Theorem 3.4.8 Suppose that the finite state and actions game models {Gn}n≥1 satisfy
Assumption 3.2.7. For each fixed n ≥ 1 consider the following iterative procedure.

Step 0. Choose arbitrary π1
0 ∈ Π1,s

n . Set k = 0 and go to Step 1.

Step 1. Find solutions gk ∈ R and hk : Sn → R of the average cost optimality equation

gk = min
b∈Bn(i)

{
rn(i, π1

k, b) +
∑
j∈Sn

qnij(π
1
k, b)hk(j)

}
for i ∈ Sn.

Step 2. For each i ∈ Sn, find ϕi ∈ An(i) attaining the maximum

max
ϕ∈An(i)

min
b∈Bn(i)

{
rn(i, ϕ, b) +

∑
j∈Sn

qnij(ϕ, b)hk(j)
}
.

Define π1
k+1 ∈ Π1,s

n by means of π1
k+1(·|i) = ϕi for i ∈ Sn. Increase k by one and go

to Step 1.

The sequence {gk}k≥0 is monotone nondecreasing and it converges to the value g∗n of the
game Gn.

Remark 3.4.9 In Step 1, we solve the average cost optimality equation of a control prob-
lem for player 2 when the strategy of player 1 is π1

k. It can be solved, in a finite number of
steps, with the usual policy iteration algorithm (see chapters 3 and 4 in [31]). But also it
is well known that solving this optimality equation reduces to a linear programming prob-
lem; see [35, Section 8.8] for the discrete-time analogue. Regarding Step 2, this maximin
problem is equivalent to a linear programming problem (recall Lemma 3.3.7 and see also
[22, Section 7.11]) and, therefore, it can be solved explicitly.

Hence, the “policy iteration” algorithm in Theorem 3.4.8 reduces to solving, iteratively,
linear programming problems. This makes the algorithm computationally tractable.
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Proof. Fix k ≥ 0 and observe that, by construction of π1
k+1,

min
b∈Bn(i)

{
rn(i, π1

k+1, b) +
∑
j∈Sn

qnij(π
1
k+1, b)hk(j)

}
≥ min

b∈Bn(i)

{
rn(i, π1

k, b) +
∑
j∈Sn

qnij(π
1
k, b)hk(j)

}
= gk (3.4.7)

for all i ∈ Sn. By a standard dynamic programming argument (see, e.g., [31, Lemma 3.10])
it follows that

gk+1 = inf
π2∈Π2

n

Jn(i, π1
k+1, π

2) ≥ gk,

since gk+1 is the optimal average reward of player 2 when the strategy of player 1 is fixed
and equal to π1

k+1. On the other hand, it also follows that

g∗n = sup
π1∈Π1

n

inf
π2∈Π2

n

Jn(i, π1, π2) ≥ gk.

Consequently, the sequence {gk}k≥0 is monotone nondecreasing and its limit, denoted by
g, satisfies g ≤ g∗n.

Let π2
k ∈ Π2,s

n be a (nonrandomized) strategy attaining the minimum in the definition
of gk. We can choose hk as the bias of (π1

k, π
2
k) and, by uniform exponential ergodicity of

Gn and the results in [31, Section 3.4], we can choose hk such that supk≥0 ||hk||w is finite.
There exists a subsequence {k′} such that the sequences hk′ and hk′+1 converge to some
functions h(1) and h(2) on Sn, respectively, and such that, in addition,

π1
k′+1(·|i) d−→ π1(·|i) and π2

k′+1(·|i) d−→ π2(·|i) for all i ∈ Sn,

for some (π1, π2) ∈ Π1,s
n × Π2,s

n , as k′ →∞. We have that

gk′+1 = rn(i, π1
k′+1, π

2
k′+1) +

∑
j∈Sn

qnij(π
1
k′+1, π

2
k′+1)hk′+1(j)

and also, by (3.4.7), that

gk′ ≤ rn(i, π1
k′+1, π

2
k′+1) +

∑
j∈Sn

qnij(π
1
k′+1, π

2
k′+1)hk′(j)

for all i ∈ Sn. Therefore, for all i ∈ Sn,∑
j∈Sn

qnij(π
1
k′+1, π

2
k′+1)(hk′+1(j)− hk′(j)) ≤ gk′+1 − gk′ .

Taking the limit as k′ →∞, it follows that∑
j∈Sn

qnij(π
1, π2)(h(2)(j)− h(1)(j)) ≤ 0 for all i ∈ Sn.
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The function h(2) − h(1) being subharmonic for the irreducible strategy (π1, π2), it is con-
stant; see [31, Proposition 2.6]. Now,

max
ϕ∈An(i)

min
b∈Bn(i)

{
rn(i, ϕ, b) +

∑
j∈Sn

qnij(ϕ, b)hk′(j)
}

(3.4.8)

= min
b∈Bn(i)

{
rn(i, π1

k′+1, b) +
∑
j∈Sn

qnij(π
1
k′+1, b)hk′(j)

}
≤ rn(i, π1

k′+1, π
2
k′+1) +

∑
j∈Sn

qnij(π
1
k′+1, π

2
k′+1)hk′(j)

= gk+1 +
∑
j∈Sn

qnij(π
1
k′+1, π

2
k′+1)(hk′ − hk′+1)(j) for all i ∈ Sn.

Taking the limit as k′ →∞ and recalling that hk′−hk′+1 converges to a constant function,
we obtain

max
ϕ∈An(i)

min
b∈Bn(i)

{
rn(i, ϕ, b) +

∑
j∈Sn

qnij(ϕ, b)h
(1)(j)

}
= min

ψ∈Bn(i)
max
a∈An(i)

{
rn(i, a, ψ) +

∑
j∈Sn

qnij(a, ψ)h(1)(j)
}
≤ g,

(interchange of limit and max-min in (3.4.8) follows because the action sets An(i) and
Bn(i) are finite; see [12, Theorem 1]) from which (cf. proof of Lemma 3.4.5)

inf
π2∈Π2

n

sup
π1∈Π1

n

Jn(i, π1, π2) = g∗n ≤ g

follows. This completes the proof of the result. �

It should be clear that if π1
k+1 = π1

k for some k ≥ 0 then (gk, hk) is a solution of the
average optimality equations for Gn. Similarly, it can be derived from [11, Theorem 1] that
if gk+1 = gk for some k ≥ 0 then (gk, hk) is as well a solution of the average optimality
equations for Gn. Therefore, in either case gk equals the value g∗n of the game Gn and π1

k

is an optimal strategy for player 1. Finite convergence of the algorithm might not occur
in general, however, because even if An(i) is finite, An(i) is not. On the contrary, for
finite state and action Markov decision processes, the policy iteration algorithm converges
in a finite number of steps. The policy iteration algorithm has been shown to converge
quadratically for certain classes of Markov decision processes [37], but no such convergence
rates have been obtained for the policy iteration algorithm for Markov games.

3.5 An application

In this section we show an application of our numerical procedures to a game model based
on a population system.
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3.5.1 A dynamic population system

A population system is managed by players 1 and 2. The natural birth and death rates per
individual are λ > 0 and µ > 0, respectively. Player 1 is interested in the system having
a large population and, to this end, player 1 can decrease the mortality rate (for instance,
by using a suitable medical policy). On the other hand, the goal of player 2 is to have a
small number of individuals; player 2 can choose policies that decrease the birth rate of
the system (e.g., discouraging immigration).

We consider the following game model.

• The state space, standing for the number of individuals in the population, is S =
{0, 1, 2, . . .}.

• The action sets of the players are A = B = [−1, 1], while A(i) = B(i) = [−1, 1] for
all i ∈ S.

• The system’s transition rates qij(a, b) satisfy qij(a, b) = 0 when |i − j| > 1. When
|i− j| ≤ 1 we let

q01(a, b) = −q00(a, b) = λ− Cb|b|,

and, for i ≥ 1,

qi,i−1(a, b) = µi− Ca|a|
√
i, qi,i+1(a, b) = λi− Cb|b|i,

with qii(a, b) = −(qi,i−1(a, b) + qi,i+1(a, b)), for some constants 0 < Ca < µ and
0 < Cb < λ, and all (a, b) ∈ A×B.

• The payoff rate (interpreted as a reward for player 1 and a cost for player 2) is given
by

r(i, a, b) = p i+ Crab
√
i for i ∈ S and −1 ≤ a, b ≤ 1,

for some constants p > 0 and Cr > 0.

In the above definitions, the term
√
i models the fact that the payoff has a concave behavior

with respect to the population size, while the term ab in the payoff rate captures the
interplay between the actions of the players. Note that when the players take the actions
a = 0 and b = 0 then they do not act on the dynamic system. In this case, the corresponding
Markov process (referred to as the natural population system) is recurrent when λ ≤ µ
and transient when λ > µ.

3.5.2 The discounted game

We consider the Lyapunov function w given by w(i) = (λ+ µ+ 1) · (i+ 1) for i ∈ S. Now
we focus on the discounted payoff optimality criterion. Suppose that α > 0 is the discount
rate for the payoffs of the players.
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Proposition 3.5.1 Consider the population model G defined above. If the discount rate
α > 0 satisfies λ − µ < α then Assumptions 3.1.2, 3.1.4, and 3.1.7 hold. If, in addition,
we have 2(λ− µ) < α then Assumption 3.3.3 is satisfied.

Proof: Fix an integer k ≥ 1 and consider the Lyapunov function i 7→ wk(i). Given a state
i ≥ 1 we have∑
j∈S

qij(a, b)w
k(i) = (wk(i− 1)− wk(i))(µi− Ca|a|

√
i) + (wk(i+ 1)− wk(i))(λi− Cb|b|i).

Noting that

(i+ 2)k − (i+ 1)k = k(i+ 1)k−1 + O(ik−2) and ik − (i+ 1)k = −k(i+ 1)k−1 + O(ik−2),

some elementary calculations give∑
j∈S

qij(a, b)w
k(i) = k(λ− µ− Cb|b|)wk(i) + O(ik−

1
2 ) ≤ k(λ− µ)wk(i) + O(ik−

1
2 ).

Therefore, given an integer k ≥ 1 and a constant ck < k(µ − λ), there exists dk ≥ 0 such
that ∑

j∈S

qij(a, b)w
k(i) ≤ −ckwk(i) + dk for all (i, a, b) ∈ K.

Note also that −qii(a, b) ≤ w(i) for all (i, a, b) ∈ K, and so Assumptions 3.1.2 and 3.1.7(iii)
hold.

If λ−µ < α then choose −α < c1 < µ−λ, and so Assumption 3.1.4(i) holds. Regarding
the other assumptions, note that Assumption 3.1.4(ii) holds by letting M = p+ Cr, while
Assumptions 3.1.7(ii)–(iii) are straightforward.

It should be clear that Assumption 3.3.3(ii) is satisfied. If 2(λ − µ) < α, then choose
δ > 2 and cδ such that

−α < cδ < δ(µ− λ),

and so Assumption 3.3.3(iii) holds. �

For each n ≥ 1, consider now the finite state and actions game model Gn as described in
Section 3.3.2. As a consequence of Theorems 3.3.1, 3.3.2, and 3.3.6 we obtain the following
results.

(i) Case λ ≤ µ (the natural population system is recurrent). Given arbitrary discount rate
α > 0 we have

lim
n→∞

V α
n (i) = V α(i) for all i ∈ S.

Given arbitrary k > 0, by suitably choosing the action sets An(i) and Bn(i) we have

|V α
n (i)− V α(i)| = O(n−k) for each i ∈ S.
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(ii) Case λ > µ (the natural population system is transient). Given a discount rate λ−µ <
α we have

lim
n→∞

V α
n (i) = V α(i) for all i ∈ S.

If the discount rate is such that 2(λ− µ) < α then for each 0 < k < α
λ−µ − 2 we can

choose the finite sets An(i) and Bn(i) such that

|V α
n (i)− V α(i)| = O(n−k) for each i ∈ S.
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Figure 3.1: Value of the games V α
n (i) for n = 1, . . . , 30.

For the numerical experimentation we choose the following values of the parameters:

λ = 2.6, µ = 2.5, α = 1.2, Ca = Cb = Cr = 0.2, and p = 3.

For each n ≥ 1 we consider the truncated game model Gn with state space {0, 1, . . . , n}. The
action sets An(i) ≡ An and Bn(i) ≡ Bn consist of the n+1 points 2k

n
−1 for k = 0, 1, . . . , n.

For n = 1, . . . , 30, we solve the finite game model Gn by using the value iteration
procedure described in Section 3.3.3: we start from the initial value u0 = 0, while uk+1 =
T̃nuk for k ≥ 0, and we let

qn = max
(i,a,b)∈Kn

{−qnii(a, b)}+ 0.1;

recall (3.3.10). As a stopping criterion for the value iteration algorithm, we let ε = 5×10−5

and we stop at the iterate k when

||uk − uk−1|| ≤ εα/qn,
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Actions in A30 and B30.
−1.000 −0.933 −0.867 . . . 0.867 0.933 1.000

Player 1
i = 0 0.033 0.033 0.033 . . . 0.033 0.033 0.000
i = 1 0.499 < 10−4 < 10−4 . . . < 10−4 0.499 0.000

Player 2
i = 0 0.499 < 10−4 < 10−4 . . . < 10−4 0.499 0.000
i = 1 0.499 < 10−4 < 10−4 . . . < 10−4 0.499 0.000

Table 3.1: Optimal strategies in A30 and B30 for G30.

which ensures that ‖uk − V α
n || ≤ ε (this refers to the supremum norm in Rn+1).

In Figure 3.1 we display the values V α
n (i) for i = 0, 1, 2, 3 and 1 ≤ n ≤ 30. We observe

that the values of the games Gn become stable for relatively small values of the truncation
size n, say for n ≥ 20. We obtain the approximations

V α(0) ' 2.6179, V α(1) ' 3.9269, V α(2) ' 5.8948, V α(3) ' 8.0524.

By Lemma 3.3.8, the approximation error (with respect to the value V α
30 of the game model

G30) is less than 5× 10−5. Empirically, we observe that convergence seems to occur faster
than at the convergence rate given in Theorem 3.3.6. This is because the bounds used to
derive the convergence rate are very conservative.

Concerning the approximation of optimal strategies, for n = 30 we show in Table 3.1
the randomized strategies π1

∗(·|i) and π2
∗(·|i) for i = 0 and i = 1 as described in Lemma

3.3.8. Table 3.1 displays the corresponding probability distributions on the discretized sets
of actions A30 = B30. These are 10−4-optimal strategies. Empirically, this suggests that the
optimal strategy for player 1 in the game model G will be to choose his actions uniformly
on [−1, 1] in state i = 0, and to randomize between actions −1 and 1, with probabilities
1/2, in state i = 1. For player 2, the estimation of an optimal strategy is to randomize
between actions −1 and 1, with probabilities 1/2, in both states i = 0 and i = 1.

3.5.3 The average game

Now we consider the game model G under the average payoff optimality criterion. The
proof of our next result is omitted because it is similar to that of Proposition 3.5.1.

Proposition 3.5.2 If µ > λ then Assumptions 3.1.11, 3.1.12, and 3.4.6 hold, with w the
Lyapunov function w(i) = (λ+ µ+ 1) · (i+ 1) for i ∈ S.

For n ≥ 1, let Gn be the game model described previously, namely, its state space is
Sn = {0, 1, . . . , n} and its action sets are An(i) = Bn(i) = {2k

n
− 1 : k = 0, 1, . . . , n} for

i ∈ Sn.
The game Gn has a value g∗n (indeed, stationary policies are irreducible; recall Assump-

tion 3.2.7(v) and Theorem 3.2.8) and, as a consequence of Theorem 3.4.7, we have that g∗n
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Figure 3.2: Value g∗n of the game Gn for n = 1, . . . , 60.

converges to the value g∗ of G at a rate n−k for any k ≥ 1, by suitably choosing the finite
actions sets, provided that µ > λ.

For the numerical experimentation we choose the following values of the parameters:
λ = 2.2, µ = 2.5, Ca = 0.8, Cb = Cr = 0.2, and p = 3. For n = 1, . . . , 60, we solve the
finite game model Gn by using the policy iteration procedure described in Theorem 3.4.8.
Figure 3.2 displays the value g∗n as a function of n = 1, . . . , 60. Empirically, we indeed
observe a quick convergence and we obtain the approximate value g∗ ' 9.694. This is in
accordance with our theoretical results.
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Conclusions

In this thesis we have introduced the notion of convergence of control and game models;
namely, we have studied the convergence of a sequence of approximating models to an
original control model. This definition of convergence of Mn to M, or Gn to G, mainly
relies on:

• Convergence of the state space;

• Convergence of the action sets in the Hausdorff metric;

• Uniform convergence of the transition and reward rates.

If the approximating models and the original model satisfy similar hypotheses, then the
above referred convergence implies convergence of the optimal value function and the op-
timal policies. These theoretical results find direct applications by using the finite state
and action truncations. Moreover, under some additional conditions, explicit rates of con-
vergence of the optimal values can be obtained. Our numerical results show that the
techniques developed herein are computationally efficient and can be used in practice to
solve approximately control and game problems.

From a technical point of view, and as it has been seen, the analysis of game mod-
els is more complicated than studying control problems. Indeed, when solving a control
problem, the corresponding dynamic programming equation is concerned with a “maxi-
mization” operator, whereas for game models it is a “maxmin” or “minmax” operator.
This makes that our proofs for game models here are more subtle than those for control
models. Another important difference between control and game models is that, for the
discounted and average optimality criteria, deterministic stationary policies are a sufficient
class for control problems, while in game models we need to consider randomized station-
ary strategies. This makes that the finite state and action truncated models are of a finite
nature for control models (the family of deterministic stationary policies is finite), but the
game model is still of a continuous nature (the class of stationary strategies is uncount-
able). A consequence of this fact is, as an illustration, that the policy iteration algorithm
for control models converges in a finite number of steps, but, on the other hand, the policy
iteration algorithm does not necessarily finitely converge for a game model.

127
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A recurrent issue throughout this thesis is the use of Lyapunov conditions on the control
and game models, related to a so-called Lyapunov function w. Such conditions can be seen
as the core of the assumptions imposed on the control and game models. Indeed, the
function w, which somehow bounds the reward and transition rates, and the Lyapunov
conditions are used to:

(a) Prove the existence of the dynamic system itself (existence of the Markov process),

(b) Ensure the use of Dynkin’s formula,

(c) Obtain convergence rates of the optimal value functions.

In this sense, one typically needs a Lyapunov condition on w to obtain (a), a Lyapunov
condition on w2 for (b), and a Lyapunov condition on wδ for some δ > 2 to obtain (c).
Therefore, the technique of the Lyapunov conditions on the powers of w turns out to be
a powerful tool to obtain interesting results on the control and game models studied here.
In particular, the convergence rate of the optimal value functions closely depends on the
maximal exponent δ > 2 for which a suitable Lyapunov condition holds. Moreover, from
a practical point of view, and as can be seen in the applications sections, verifying or
discarding such Lyapunov conditions is usually a quite easy task, and sufficient conditions
for these can be expressed, most of the time, by simple conditions on the parameters of
the dynamic system.

Finally, let us mention some open issues. It would be interesting to study the approxi-
mation techniques developed in this thesis for finite horizon control and game models. In
this case, optimal strategies are not, in general, stationary, and the corresponding opti-
mality equation incorporates a differentiation with respect to the time component (such
term does not appear in discounted and average models due to their stationary nature).
It would be also interesting to know whether the approximation techniques can be used
to study refined optimality criteria such as, e.g., bias optimality. In this case, optimal
policies are derived by solving two nested optimality equations. Adapting our techniques
to approximate such optimal policies is indeed a challenging open issue because the error
in the first optimality equation would be somehow transferred to the second optimality
equation, with, in addition, its own approximation error. Hence, it is not yet clear at all
how to tackle such optimality criteria with our approximation techniques.
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