DESARROLLO DE UN ENTORNO INFORMÁTICO DE AYUDA A LA DOCENCIA DE SISTEMAS DE COMUNICACIÓN

Pedro Parra, Ángel Barriga y Antonio Acosta

Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla
Instituto de Microelectrónica de Sevilla. Centro Nacional de Microelectrónica
Avda. Reina Mercedes, sn. Edificio CICA. 41012-Sevilla
Teléfono: 34-95-4239923; Fax: 34-95-4231832 e-mail: acojam@imse.cnm.es

RESUMEN

Esta comunicación presenta una herramienta informática de ayuda a la docencia de sistemas de comunicación llamada MODULAC. Esta utilidad encapsula un conjunto de funciones sobre los sistemas de modulación por sí mismos y en conexión con el simulador eléctrico PSPICE. Esta aplicación se puede incorporar de forma efectiva en el currículum de asignaturas de Comunicaciones para mejorar la comprensión, tanto en temas fundamentales como en avanzados, así como para permitir que el estudiante ponga en práctica la teoría estudiada.

1. INTRODUCCIÓN Y OBJETIVOS

El uso de ordenadores en la enseñanza de la Electrónica se ha venido generalizando cada vez más, hasta el punto que, hoy en día, no se concibe ninguna asignatura en la que no se realicen prácticas que empleen algún tipo de simulación de circuitos electrónicos [1-3]. Esta comunicación presenta la herramienta informática de ayuda a la docencia MODULAC [4], que encapsula un conjunto de funciones sobre los sistemas de modulación por sí mismos o en conexión con un simulador eléctrico. Esta aplicación se puede incorporar de forma efectiva en el currículum de asignaturas de Comunicaciones para mejorar la comprensión, tanto en temas fundamentales como en avanzados, así como para permitir que el estudiante ponga en práctica la teoría estudiada. En tal sentido, la herramienta está concebida no sólo para obtener soluciones, sino lo que es mejor, para comprender la respuesta. Se trata de que el alumno no sólo imagine la forma y propiedades de un sistema de modulación, sino que vea su circuito y observe su comportamiento, de que plantee problemas nuevos y los resuelva hasta el final, comprobando que se trata de problemas bien o mal planteados, con solución posible o no. Si esta herramienta es interesante para la enseñanza y resolución de problemas simples, lo es más para la resolución de problemas
complejos. Con esta herramienta, los trabajos de dibujo, edición, modificación y simulación han quedado reducidos en la mayoría de los casos a simples manipulaciones con el teclado del ordenador, el cual se encarga de hacer por nosotros el trabajo más penoso y con mayor fiabilidad. Asimismo, se incluye un sistema de ayudas que permiten al alumno, independientemente de la pantalla o uso de la utilidad en la que esté, acceder a un conjunto de informaciones adicionales. Los contenidos de dichas informaciones son configurables por el profesor, con vistas a adecuar las ayudas al nivel de conocimientos de los alumnos.

La complejidad de un sistema de modulación continua, tanto en la parte transmisora como en la receptora condiciona enormemente la realización de prácticas de laboratorio. Esto es debido a que el alumno no dispone del tiempo suficiente en el laboratorio para construir un sistema de comunicación completo, a partir de componentes discretos como bloques básicos. El alto coste en recursos (tiempo-equipamiento específico) de esta solución hace muy interesante la realización de prácticas mediante simulación por ordenador, de menor coste y que proporciona una alta versatilidad.

En el caso de los sistemas de modulación, se hace indispensable una herramienta que combine adecuadamente aspectos tales y como una alta velocidad de simulación (para que el alumno compruebe rápidamente si los resultados obedecen a las modificaciones realizadas sobre la entrada), precisión en los resultados (para que el resultado de la simulación se asemeje lo más posible al comportamiento real del circuito) y facilidad de manejo por parte del alumno y para el propio profesor. En tal sentido se ha seleccionado PSPICE [5] como herramienta de simulación, ya que es conocida por los alumnos, presenta un buen compromiso entre velocidad y precisión y maneja de forma muy eficiente la combinación entre el uso de primitivas como elementos y el maeromodelado de bloques más complejos. Asimismo permite opciones de post-procesado de los resultados, que facilitan la tarea de interpretación de los mismos. Para facilitar la interfaz con PSPICE, MODULAC permite incluir la información topológica de los circuitos a través de modificaciones sobre el esquemático. El alumno sólo debe variar ciertos parámetros en los componentes del circuito, previo cálculo teórico de dichos valores, realizar las simulaciones con las entradas deseadas, también configurables, de forma que observe, interprete y compare los resultados con los esperados teóricamente. Las prácticas propuestas, cuyos contenidos se encuentran en las respectivas ayudas, contienen una Introducción, el Estudio Teórico que deben realizar previamente y una guía para la realización de la práctica.

2. DESCRIPCIÓN DE LA APLICACIÓN

MODULAC es un entorno informático didáctico para el estudio de sistemas de modulación, que recoge las características de un entorno visual, haciendo una utilización conjunta de texto, gráficos y simulación. Esta aplicación surgió y fue desarrollada con el objetivo inicial de cubrir la demanda de una herramienta que facilitara las prácticas a los alumnos de 5º curso de Física de la Universidad de Sevilla, dentro de la asignatura “Teoría de la Comunicación” de la especialidad Electrónica. Al estar enfocado a la enseñanza, destaca por ser fácil de manejar, cómodo e intuitivo y por tener un entorno gráfico amigable. Por estas razones, el ámbito de aplicación de la herramienta se hace apropiado para su empleo por cualquier usuario que desee adentrarse en el estudio de los sistemas de comunicaciones a nivel de circuito, sin necesidad de tener amplios conocimientos informáticos. Para el desarrollo de esta herramienta se ha utilizado un entorno
de programación visual, en concreto Visual Basic [6-7], en una plataforma PC, siendo compatible con cualquier entorno Windows.

La aplicación permite trabajar con nueve sistemas de modulación tanto analógicos como digitales, todos ellos extraídos de [8-10]. De los sistemas de modulación continua incluimos el AM (Modulación en amplitud), el DSBSC (modulación de banda lateral doble con portadora suprimida), el SSB (modulación de banda lateral simple) y el FM (modulación en frecuencia). Como caso intermedio, incluimos un ejemplo de sistema discreto en el tiempo PAM (modulación por amplitud de pulsos) y un par de sistemas de modulación digital: FSK (modulación por conmutación en frecuencia) y ASK (modulación por conmutación de amplitud). De forma paralela, también incluimos el estudio y análisis por simulación de dos esquemas de multiplexado, el TDM (multiplexado por división de tiempo) y el FDM (multiplexado por división de frecuencia). Con cada tipo de sistema se puede ver su circuito a nivel de esquemático, su código fuente en PSpICE y las librerías, que hemos llamado AM y FM, y que contienen todos los elementos y macrobloques necesarios para la simulación. Las realizaciones prácticas correspondientes a los sistemas AM y FM ya se implementaron de forma independiente y se ejecutaron como prácticas previo a la realización de MODULAC [11].

Otras facilidades de la aplicación permiten la posibilidad de modificar el código PSpICE de una manera cómoda. La forma más fácil de realizar tal función es tener el circuito en la pantalla y picar con el ratón en el componente del circuito que deseamos modificar, siendo la modificación del código transparente para el alumno. También se contempla la posibilidad de modificar el código de una manera directa, apareciendo una ventana de edición y escribiendo directamente el código fuente del circuito modificando algún componente o incluso añadiéndolo. Otras opciones interesantes son la posibilidad de poder salvar e imprimir toda esta información. La posibilidad de llamar directamente al simulador y lanzar la simulación de los sistemas de modulación, configurando las fuentes de excitación de la simulación, es otra interesante función de la que dispone la aplicación. Junto a esta funcionalidad se incluye un conjunto de ayudas, configurable en sus contenidos por el profesor de prácticas, que faciliten al alumno la comprensión, no sólo de la aplicación, sino de los propios sistemas de modulación.

3. EJEMPLOS DE APLICACIÓN DE LA UTILIDAD

Una demostración de uso del programa se ha presentado en el 1er Certamen Iberoamericano de Tecnologías Aplicadas a la Enseñanza de la Electrónica (CITA’98), que se celebra de forma simultánea al TAE’98, así que no tiene cabida en la presente comunicación una presentación exhaustiva de las utilidades del programa. No obstante haremos un recorrido por las distintas partes de la utilidad, con vistas a que el lector pueda hacerse una idea de la potencia de la misma.

La pantalla principal de la aplicación se muestra en la Figura 1, en la que aparece ya seleccionado el circuito de modulación AM. En la parte superior se encuentra la línea de menús con acceso a las distintas utilidades. Estas utilidades también pueden ser accedidas desde la primera fila de botones en la parte superior de la pantalla. De izquierda a derecha, estos botones indican la opción de “Ver Circuito” (activada en este momento en el caso AM), “Ver Código” (opción para visualizar el código PSpICE del circuito seleccionado), “Ver Librerías” (opción para visualizar las librerías de macromódulos empleados en los sistemas de modulación), “Lanzamieato
de la Simulación”, “Configurar el Simulador”, “Guardar la Información”, “Imprimir la Información Deseada” (tanto códigos como circuitos) y “Petición de Ayuda” (tanto del propio simulador y de realización de las prácticas propuestas, así como la modificación de los propios contenidos de las ayudas del simulador).

Figura 1. Pantalla principal de la utilidad, con la opción de “visualizar circuito AM” seleccionada. Tanto los parámetros que aparecen en el circuito, como la fuente de excitación, pueden ser modificadas por el usuario.

En la segunda línea de botones, aparecen los distintos tipos de esquemas de modulación-demodulación que contempla la herramienta. En el ejemplo de la figura, está seleccionado el correspondiente al esquema AM, como puede verse en la Figura, aparecen los distintos bloques constituyentes del sistema, con los parámetros marcados que son susceptibles de modificación. Por ejemplo en el caso del diodo del modulador AM, el parámetro de emisión “nem” tiene una particular influencia en el índice de modulación. Asimismo, existe la posibilidad de adentrarse en el nivel de jerarquía de los bloques constituyentes del sistema y poder acceder a los esquemáticos de dichos bloques, ya estén realizados con macromódulos o mediante la interconexión de elementos de librería.
Para todos los sistemas de modulación, son configurables el retraso, la atenuación y el ruido en el canal, el ancho de banda y la ganancia de los filtros emisores y receptores, así como el tipo y características de la señal mensaje (lineal a tramos, senoidal o periódica).

4. EVALUACIÓN TRAS LA IMPLANTACIÓN DE LA HERRAMIENTA. CONCLUSIONES

Los resultados más importantes obtenidos tras llevar a la práctica el uso de esta herramienta, conciernen a la innovación didáctica que supone para los alumnos la visualización de circuitos, formas de onda y espectros que han visto en la Teoría correspondientes a este tipo de sistemas, así como la gran ventaja que supone disponer de un sistema de ayuda interactiva. Asimismo cabe destacar la gran cantidad de tiempo que han ahorrado en realizar las tareas tediosas de edición de ficheros fuente para simulación, así como la destreza que han adquirido en el manejo de un entorno informático de ayuda a la docencia.

En cuanto a la interacción profesor-alumno, la inclusión de la materia en las ayudas determina en gran medida la autosuficiencia del alumno para realizar con satisfacción la práctica. Ello conlleva un mejor aprovechamiento de las horas del profesor, que pueden ser dedicadas a temas menos puntuales y de mayor importancia.

Finalmente, el grado de aprendizaje adquirido por parte del alumnado ha sido muy alto en comparación con el que se hubiera alcanzado a través de otras alternativas de realización de prácticas, ya que el alumno aprovecha todo el tiempo de realización de las prácticas en ahondar en conceptos y estudiar soluciones "reales", y no en montajes tediosos o interminables ediciones de ficheros fuente para simulación.

5. BIBLIOGRAFÍA


