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Resumen

La ciencia, la investigación y la innovación buscan resolver retos complejos,

como por ejemplo abordar un tipo de cáncer o, como recientemente, desar-

rollar la vacuna del COVID-19. La resolución de estos problemas complejos,

especialmente en la investigación biomédica, puede ser costosa, ineficiente e

insostenible. Suele implicar la colaboración de un amplio conjunto de sec-

tores y actores, puesto que generalmente una sola institución no dispone

de los recursos necesarios para desarrollar una innovación de principio a

fin, algunos actores se apoyan en otros para combinar sus descubrimientos y

lograr una mayor contribución al individuo. De hecho, el número de publica-

ciones cient́ıficas disponibles crece año tras año, especialmente en el ámbito

biomédico. Las agencias de financiación, los gobiernos y las universidades

están cada vez más interesados en comprender qué actividades de inves-

tigación se financian o se llevan a cabo en el ecosistema de investigación,

cómo contribuye la ciencia a estas misiones y desaf́ıos, y si existen lagunas

de financiación e investigación en diferentes áreas o dominios.

La comprensión de los temas abordados por las publicaciones cient́ıficas

ha atráıdo la atención de los investigadores en procesamiento del lenguaje

natural (PLN), des de hace varias decadas. Sin embargo, los “dominios

espećıficos”, como la biomedicina, se enfrentan a retos y complejidades adi-

cionales. Los modelos neuronales del lenguaje basados en el Transformer han

supuesto un gran avance para diversas tareas de PLN, ya que están preen-

trenados sobre grandes conjuntos de documentos sin etiquetar y son capaces

de aprender una representación universal del lenguaje que se adapta a las

tareas posteriores. La mayoŕıa de estos modelos están preentrenados sobre

textos de dominio general, aunque hay algunos preentrenados o adaptados a

los dominios biomédico y cĺınico, que son especialmente prometedores para

abordar el procesamiento y comprensión de textos en el dominio que nos

ocupa.
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En el presente trabajo, y para dar respuesta a la creciente necesidad de

conocer el estado de la investigación en el dominio biomedico, presentamos

BATRACIO (BAsic-TRAnslational-Clinical research phases classification in

bIOmedical publications), un conjunto de datos para clasificar publicaciones

cient́ıficas del dominio biomédico en fases de investigación. Exploramos

si los modelos lingǘısticos preentrenados espećıficos del dominio superan a

los modelos del lenguaje preentrenados en el dominio general, y cómo los

adaptamos para enfrentarnos a un conjunto de datos desequilibrado en el

dominio biomédico y con categoŕıas adyacentes.

Finalmente, en los resultados observamos que los modelos preentrenados

del lenguaje basados en BERT, espećıficamente los modelos preentrenados

en el dominio biomédico o cient́ıfico, ofrecen una gran oportunidad para

resolver esta tarea satisfactoriamente. Además, también hemos explorado

cómo utilizarlos para la clasificación de textos y qué estrategias pueden

ser favorables para la clasificación de art́ıculos de investigación biomédica,

como la limpieza del texto y el ajuste de hiperparámetros. No obstante,

los principales retos espećıficos de nuestro conjunto de datos son el dese-

quilibrio de clases y que las categoŕıas no son mutuamente independientes,

sino que tienen relaciones semánticas de adyacencia entre ellas. Este no era

un objetivo principal del proyecto, pero también hemos explorado si ligeras

modificaciones en la función de pérdida pueden hacer frente a las categoŕıas

desequilibradas y adyacentes, aunque los resultados de estos experimentos

son parcialmente satisfactorios, apuntan a futuras ĺıneas de investigación.



Abstract

Science, research, and innovation, aim to solve complex challenges, such as

tackling a specific type of cancer or, as recently, the vaccine for COVID-

19. Solving these complex problems, especially in biomedical research, can

be expensive, inefficient and unsustainable. It involves collaboration from

a broad set of actors, because a complete discovery often requires the in-

volvement of many actors and a single institution does not usually have the

resources to develop an innovation from beginning to end, and some actors

rely on others to combine their discoveries to achieve a greater contribution

to the individual. Indeed, the number of scientific publications available is

growing year by year, especially in the biomedical domain. Funding agen-

cies, governments, and universities, are more and more interested in under-

standing what research activities are funded or carried out in the research

and innovation ecosystem, how science is contributing to these missions and

challenges, or whether there are funding gaps in different areas or domains.

Understanding topics addressed by scientific publications have attracted

attention from researchers in NLP. However, “specific domains” such as

biomedicine, face additional challenges and complexity. Transformer-based

neural language models, like BERT, have led to breakthroughs for a variety

of natural language processing (NLP) tasks, which are pre-trained on large-

scale unlabelled documents and can learn universal language representation

which is adapted to downstream tasks. Most of these models are pre-trained

on general domain data, although there are some which are pre-trained

or adapted to the biomedical and clinical domains, which are especially

promising for addressing domain texts.

In this Master’s Thesis, we present BATRACIO (BAsic-TRAnslational-

Clinical research phases classification in bIOmedical publications), a dataset

for classifying scientific publications in biomedical domain in research phases.

We explore if domain specific pre-trained language models outperform gen-
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eral pre-trained language models, and how we adapt them to face an imbal-

anced dataset in biomedical domain with adjacent categories.

Finally, we have seen in results that state-of-the-art BERT-based pre-

trained language models, specifically pre-trained in the biomedical or scien-

tific domain, offer a great opportunity to solve this task. Furthermore, we

have also explored how to use them for text classification and which strate-

gies may be favourable for the classification of biomedical research articles,

such as text cleaning and hyperparameter setting. Nevertheless, the main

specific challenges of our dataset are the class imbalance and that categories

are not mutually independent, they have semantic relations of adjacency

between them. This was not a main goal of the project, but we have also

explored whether slight modifications in the loss function can deal with im-

balanced and adjacent categories, although the results of these experiments

are partially satisfactory, they point to future lines of research.
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Chapter 1

Introduction

1.1 Motivation

The number of scientific publications produced increases from year to year,

but, especially in recent years, this growth has been more significant. The

increase in the literature available is most pronounced in the biomedical

domain, where more than 3,000 publications appear every day (Kim et al.,

2018).

Understanding the topics addressed by scientific publications is a prob-

lem that has been attracting attention for more than twenty years (Mcll-

waine and Williamson, 1999; Crawford-Welch and McCleary, 1992). Dur-

ing the last few years, several initiatives have attempted to simplify the

complexity and to extract knowledge from scientific outputs through the

use of language technologies on their textual content. These technologies

range from automatic text summarisation (Kieuvongngam et al., 2020),

named entity recognition (Giorgi and Bader, 2019), relation extraction (Wei

et al., 2020) (Tran et al., 2021), automatic question-answering (Sarrouti and

Alaoui, 2020) or automatic text classification (Resnik et al., 2020; Su et al.,

2020; You et al., 2020). Text is an extremely rich source of information, al-

though extracting insights or knowledge from it can be time-consuming and

enormously challenging because of its unstructured nature (Minaee et al.,

2021).

Natural language processing (NLP) aims to study human language so

that computers can understand natural language as humans do, and its

applications range from identifying parts of speech of words to answering

questions, to name a few. In contrast to ”general domain” natural language
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processing, “specialised domains” like biomedicine face additional problems,

and past work has shown that using in-domain text can provide additional

advantages over general-domain strategies (Gu et al., 2021; Cohen, 2014).

The application of NLP in the biomedical and clinical domains is known as

BioNLP, and in the last twenty years research on clinical texts and biomed-

ical literature has grown exponentially.

Some of the main difficulties in this domain comes from lexical ambigui-

ties, ranging from different meanings of different words in different contexts

to the disambiguation of acronyms and abbreviations (Duque et al., 2018).

For instance, the acronym ”BSA” in the title The interaction between BSA

and DOTAP at the air-buffer interface can refer to multiple concepts such as

“Bovine Serum Albuminum” or “Body Surface Area” (Duque et al., 2018).

In addition to word sense disambiguation, other challenges that BioNLP has

to deal with are detection of negations, temporal link detection and context

determination (Cohen, 2014).

Automatic text classification is a classic problem in natural language

processing, which is defined as the task of labelling natural language texts

with a set of predefined tags (Sebastiani, 2001), or assigning categories to

text units such as sentences, paragraphs or documents (Minaee et al., 2021).

This task is very important in many natural language processing applica-

tions (Li et al., 2020), such as: Sentiment Analysis, News Categorization,

Topic Analysis, Spam Detection, Question Answering (QA), to mention just

some of them. Textual data to be classified may come from multiple sources,

such as websites, emails, social media, video transcripts, user reviews, tick-

ets, among others (Minaee et al., 2021). In the biomedical domain, text

classification tasks have focused on automatically assigning documents with

categories related to drugs (Li et al., 2017), diseases (Yao et al., 2018a),

genes (Su et al., 2020), and Medical Subject Headings (MeSH) terms (You

et al., 2020), among others. These tasks face many additional challenges,

since medical terminology is quite specific and contains many abbreviations

and acronyms of domain-specific concepts (Qing et al., 2019).

The approaches and techniques used to carry out automatic text classi-

fication have evolved over the years, but the arrival of deep learning, neural

network-based methods, has changed the NLP game rules in very few years,

and some of the most notable developments have been around pre-trained

language models (PLM) (Qiu et al., 2020). Pre-trained language models are
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trained on large-scale unlabelled corpora of documents and can learn univer-

sal language representations based on contextual embeddings. Their main

advantage is that they can be applied in a downstream task, avoiding com-

pletely training a new model from scratch and overfitting on small datasets,

because most available datasets for most supervised NLP tasks are small,

due to the extreme expensive annotation costs (Qiu et al., 2020). Probably

one of the most relevant breakthroughs in NLP of recent years is the arrival of

BERT (Bidirectional Encoder Representations from Transformers) (Devlin

et al., 2019), that proposes a bidirectional multilayer Transformer encoder

based architecture, which uses bidirectional self-attention technique, where

each token can attend to the context on the right and left. Specifically,

BERT has performed state-of-the-art results on 11 NLP tasks, and BERT-

based models pre-trained on scientific and biomedical literature, BioBERT

(Lee et al., 2019), SciBERT (Beltagy et al., 2019), or PubMedBERT (Gu

et al., 2022), have achieved state-of-the-art results in BioNLP tasks such

as named entity recording, relation extraction and question-answering. In

this context, BERT-based models have received special attention from the

research community for classification of scientific literature, and also for a

wide range of tasks in the biomedical domain.

Despite these significant advances in language representation and text

classification techniques, the need for high quality and large annotated cor-

pora with the labels to be assigned remains in order to carry out automatic

text classification tasks. Annotating a dataset is costly and time-consuming.

However, in the biomedical domain it is even more complex, since each task

has to be very well-defined and annotators have to be domain experts, due

to the need for expertise and knowledge about the concepts and type of doc-

uments. For example, in the case of indexing publications in the MEDLINE

database with Medical Subject Headings (MeSH), the cost of manually an-

notating each scientific publication indexed in the database by an expert is

estimated in $9.4 (Mork et al., 2013; You et al., 2020). There is no need to

calculate how much it would cost to annotate a dataset with ten thousand

documents.

A major constraint of classification systems for scientific literature is that

they consider categories as independent of each other, even considering the

possibility of labelling each document with more than one category, but in

practice not all areas are independent of each other. In fact, science tends
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to join and become increasingly interdisciplinary. In many cases, areas are

specially interconnected, and the development of scientific discoveries or in-

novation is not done only by a single activity (Todeva and Rakhmatullin,

2016). Science, research and innovation, are about solving complex chal-

lenges, such as tackling a specific type of cancer or, as recently, the vaccine

for COVID-19. Solving these problems involves collaboration from a broad

set of sectors and actors, and requires an extensive proposal of solutions that

aim to respond to the challenge, by taking risks, doing experiments, and, in

some cases, doing some successful trials (Mazzucato, 2021). This is because

a complete discovery often requires the involvement of many actors doing

different things in a world where research organizations are getting more

and more specialised, where a single institution does not have the resources

to develop an innovation from beginning to end, and where some actors rely

on others to combine their discoveries to achieve a greater contribution to

the individual (Talmar et al., 2020). Solving some of these complex chal-

lenges, especially from biomedical research, can be expensive, inefficient and

unsustainable (Mazzucato, 2021).

We have found that research is very complex, and it is difficult to under-

stand what research activities are carried out in practice, especially when

complex value chains are involved. However, funding agencies, governments,

universities and researchers are interested in understanding in which areas

they are most active, specialised or collaborate internationally (Fuster et al.,

2020). One way to analyse research portfolios to understand research ca-

pabilities is to start by exploring research outputs, such as scientific publi-

cations (Fuster et al., 2020). Classifying research outputs in research areas

that involve complex phases can be really challenging, but it can be ex-

tremely useful for a wide range of stakeholders. For instance, it can benefit

research funding agencies in understanding what research activities they are

funding; government, in mapping the actors researching in a specific area of

interest in their territory; for universities, understanding in which areas they

are active in practice or to better priority-setting for their research strategy;

or for researchers, to most easily extract information from large collections

of scientific articles.

In biomedical research, we can find a value chain, composed of the

phases of research, which is the focus of this thesis. In a similar manner
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as described in (Simpkin et al., 2017; Head et al., 2014) 1 and accord-

ing to our work done with domain experts, a classification of biomedi-

cal research by phases of research should contain the following four cate-

gories: basic research, translational research, clinical research,

and public health. There is a growing interest in classifying biomedical

research in research phases, and we have identified a gap in both the defini-

tion of these categories and in the automatic classification of documents in

them.

This master’s thesis explores automatic text classification of scientific

publications in the biomedical domain in research phases. We have tackled

the problem of classification on the basis of these four categories, defining the

borders and formalising the problem, resulting in a framework for defining

each phase in detail, even in ambiguous cases. The project defines the

BATRACIO task (the acronym of BAsic-TRAnslational-Clinical research

phases classification in bIOmedical publications), a new BioNLP task. To

address the problem, a corpus of biomedical research texts annotated with

the categories has been developed, in conjunction with the description of

how to create an annotated dataset for this domain-intensive task.

We have also explored how state-of-the-art BERT-based pre-trained lan-

guage models perform to solve this task. Different language models pre-

trained from the open domain to the specific domain have been explored,

and the results have been compared with other machine-learning techniques,

to assess whether the powerful BERT, and specifically with pre-trained

models in the biomedical and scientific domains, obtains better results and

whether a better encoding of the context improves the solving of the task

proposed, how to use them for text classification and which strategies may

be favourable for the classification of biomedical research articles. To the

best of the author’s knowledge, no one before has addressed the problem of

automatically classifying scientific articles in the biomedical research phases.

This project is a collaboration with the company SIRIS Academic, and ex-

perts in the biomedical field from SIRIS Academic and from the Medical

University of Innsbruck have been involved in order to define the task and

to label the dataset.

In summary, the confluence of the following trends and opportunities

make this an ideal moment to carry out such a project:

1https://ncats.nih.gov/translation/spectrum

https://ncats.nih.gov/translation/spectrum
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• The growing interest in the research phases in the biomedical domain,

• The increasing application of natural language processing techniques

in the biomedical domain, and

• The success of pre-trained language models in solving many NLP tasks.

1.2 Problem definition

We have tackled the problem of classifying biomedical scientific literature on

the basis of categories in Figure 1.1, defining the borders and formalising the

problem, resulting in a framework for defining each phase in detail, even in

ambiguous cases. The project defines the BATRACIO task (the acronym of

BAsic-TRAnslational-Clinical research phases classification in bIOmedical

publications), a new BioNLP task. Although different attempts to define

the phases in biomedical research can be found in literature (Weber, 2013;

Hanney et al., 2015; Flier and Loscalzo, 2017; Fort et al., 2017), there are

no universally accepted definitions of these phases. A much more complex

challenge arises in assigning individual publications or research projects to

each of the research phases.

Figure 1.1: Research phases in biomedical research considered in BATRA-
CIO.

In the initial project proposal, after reviewing the main phases in biomed-

ical research in the literature, we only considered, and defined, the three

categories of basic research, translational research, and clinical

research, assuming that they were able to cover the whole of biomedical

research. Two domain experts attempted to annotate 100 publications in

the biomedical domain (randomly extracted from PubMed) with those three

proposed categories, redefining the categories iteratively in order to be able

to label publications in biomedicine. The experts expressed the need to



1.2 Problem definition 7

add a fourth phase, after clinical research, to cover those scientific publica-

tions in biomedical research focusing on topics around health policy, global

health, socioeconomic impact on health, population issues, among others.

This fourth phase has been named public health. These four categories,

defined in detail with examples in Chapter 3 and in Appendix C, are pre-

sented here:

• Basic research, often called fundamental research, focuses on scien-

tific exploration and on building new knowledge, and aims to under-

stand fundamental mechanisms of biology, disease and behaviour. For

example, in the case of cancer research, basic research asks how or

where mutations occur in DNA and how DNA functions in a healthy

cell2.

• Translational research, also called pre-clinical research (Woolf, 2008)

focuses on translating the discoveries from basic research into usability

in the clinic, to produce new drugs, devices and treatment options for

patients, with a particular focus on applicability. It uses large-scale

testing and both animal models and human biological material, such

as computer-assisted simulations of drug, device or diagnostic interac-

tions within living systems.

• Clinical research3 seeks to test a specific treatment or procedure,

drug, diagnostic or any technology on patients, focusing not only on

the biological mechanisms, but also on issues of safety, delivery and

protocols for implementation. It includes studies to better understand

a disease in humans and relate this knowledge to findings in cell or

animal models.

• Public health phase involves activities to strengthen public health

capacities and services, seeking to provide conditions under which peo-

ple can stay healthy, improve their health and wellbeing, or prevent

the deterioration of their health. For instance, population analyses

and retrospective studies, are considered in this phase.

2https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\

research-whats-difference/
3https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\

research-whats-difference/

https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\research-whats-difference/
https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\research-whats-difference/
https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\research-whats-difference/
https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\research-whats-difference/
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The objective of BATRACIO will be to develop an automatic text classi-

fication system able to assign the label corresponding to the futher research

phase presented in the article based on the annotated dataset provided by

BATRACIO. Providing, for instance, the title and abstract of the following

scientific article extracted from PubMed:

Title: Viral FLIP blocks Caspase-8 driven apoptosis in the gut in

vivo.

Abstract: A strict cell death control in the intestinal epithelium is

indispensable to maintain barrier integrity and homeostasis. In order

to achieve a balance between cell proliferation and cell death, a tight

regulation of Caspase-8, which is a key player in controlling apopto-

sis, is required. Caspase-8 activity is regulated by cellular FLIP pro-

teins. These proteins are expressed in different isoforms (cFLIPlong

and cFLIPshort) which determine cell death and survival. Interest-

ingly, several viruses encode FLIP proteins, homologous to cFLIP-

short, which are described to regulate Caspase-8 and the host cell

death machinery. In the current study a mouse model was generated

to show the impact of viral FLIP (vFLIP) from Kaposi’s Sarcoma-

associated Herpesvirus (KSHV)/ Human Herpesvirus-8 (HHV-8) on

cell deat h regulation in the gut. Our results demonstrate that expres-

sion of vFlip in intestinal epithelial cells suppressed cFlip expression,

but protected mice from lethality, tissue damage and excessive apop-

totic cell death induced by genetic cFlip deletion. Finally, our model

shows that vFlip expression decreases cFlip mediated Caspase-8 acti-

vation in intestinal epithelial cells. In conclusion, our data suggests

that viral FLIP neutralizes and compensates for cellular FLIP, effi-

ciently counteracting host cell death induction and facilitating further

propagation in the host organism.

The system developed should categorise it as basic research, because,

according to the annotation guidelines4, the article aims to understand cell

death regulation, in other words, cellular understanding of mechanisms.

4Available at Appendix C.
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1.3 Proposal and objectives

The main goal of this work is to identify research phases in biomedical

research outputs. This project defines a new text classification task in

BioNLP. This task consists of automatically classifying scientific literature

in the biomedical domain into the 4 phases of the biomedical research

value chain. The proposed labels are basic research, translational

research, clinical research, and public health. It implies a task of

text classification, in which each document can be assigned only to a single

class. Given a title and description of a scientific publication in the biomed-

ical domain, the system will label the article with the pertinent class.

In order to achieve this, the project aims to create an annotated corpus

of biomedical research texts with the categories of the biomedical research

phases. It aims to explore how the state-of-the-art BERT-based pre-trained

language models perform to solve this task. Different language models pre-

trained from the open domain to the specific domain have been explored,

and the results have been compared with other machine-learning techniques,

to assess whether BERT, and specifically with pre-trained models in the

biomedical domain, obtains better results and whether a better generalisa-

tion of the context improves results in the task proposed.

To the best of our knowledge, this task has not been addressed auto-

matically before. The definition process has consisted of domain work with

three experts to define the annotation guidelines, in which the scope of each

category is detailed. These four categories had not been defined in such

detail in the literature, since the goal of BATRACIO is to force any article

in the biomedical domain to be assigned to one of the categories.

Classifying the scientific outputs of specific funding instruments or sci-

entific publications according to research phases, can help policymakers or

funding agencies to better understand what research activities were carried

out, mapping stakeholders and their research competencies, and hence to

better allocate the resources. This information can also be used to bet-

ter steer research funds towards proposals that are more appropriate to the

ecosystem or would probably have greater impact, avoiding the risk of allow-

ing funding gaps in different research phases and reducing the risk of dupli-

cating efforts. Furthermore, it can also benefit universities in understanding

in which areas they are active in practice or to better priority-setting for

their research strategy; or for researchers, to most easily extract informa-
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tion from large collections of scientific articles.

The general objectives of the project are:

• To define the BATRACIO task and its categories.

• To create an annotated corpus of scientific publications in the biomed-

ical domain for the BATRACIO task.

• To explore whether the problem can be addressed automatically with

general-domain systems or if recent pre-trained language models im-

prove on traditional methods.

• To evaluate if domain specific pre-trained language models pre-trained

on scientific and biomedical documents outperform general-domain

pre-trained language models

• To explore what input data is needed to automatically address the

problem

• To explore whether slight modifications can improve the performance

of BERT-based systems.

1.4 Document structure

This Master’s Thesis is organised as follows:

Chapter 1. Introduction. This chapter presents the main reasons that

motivated this work, as well as the problem definition and the current

state of the field. Finally, the different contributions of the work are

presented.

Chapter 2. State of the art. This chapter describes the discipline

in detail, presenting its background up to the present moment. It

shows the most frequently used approaches and techniques for solving

the most relevant tasks in the domain studied, as well as their main

shortcomings.

Chapter 3. BATRACIO, a dataset for classifying texts in biomed-

ical research phases. This chapter describes in depth the method
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followed for the creation of the annotated corpus, and presents the

main features of the resulting labelled corpus.

Chapter 4. Text classification system based on pre-trained BERT

models. This chapter analyses and discusses the proposed text clas-

sification systems.

Chapter 5. Evaluation and discussion. This chapter describes the

methodology used to evaluate the system and discusses in depth the

results obtained in the evaluation of the systems presented in the pre-

vious chapter.

Chapter 6. Conclusions and future work. This chapter summarises

the different conclusions from this work, and proposes some directions

for further work.





Chapter 2

State of the art

This chapter describes in more detail text classification, biomedical natural

language processing, and pre-trained language models. It shows the current

techniques most commonly used to solve the most relevant tasks of related

to the work done in this Master’s Thesis, as well as their weaknesses.

2.1 Text Classification

With the explosion of the Internet in the information age, the challenge

of classifying massive amounts of data automatically has become funda-

mental (Li et al., 2020). Automatic text classification is a classic problem

in natural language processing, which is defined as the task of labelling

natural language texts with a set of predefined tags (Sebastiani, 2001), or

assigning classes or categories to text units such as sentences, paragraphs

or documents (Minaee et al., 2021). It is also known as text categorization

(Joachims, 1998) or topic spotting (Sebastiani, 2001). Natural text is a rich

source of information, but extracting meaningful information from it can be

challenging and time-consuming because it is an unstructured data source

(Minaee et al., 2021). This task started in the early 60s, but it was in the 90s

that it became one of the main fields of interest of the information systems

disciplines (Sebastiani, 2001). However, the last decade has seen an even

bigger increase in interest in this area by the research community, because

of the rise of neural network-based systems (Li et al., 2020). The problem

of text classification can be addressed automatically in several ways, from

unsupervised or zero-shot learning (Ko and Seo, 2000; Yin et al., 2019a,b),

to semi-supervised learning methods (Sun et al., 2020; Li et al., 2021), but in
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this project we focus on the study of supervised learning approaches. Text

classification is very important in many natural language processing appli-

cations (Li et al., 2020), such as: Sentiment Analysis, News Categorization,

Topic Analysis, Spam Detection, Question Answering (QA), to mention just

some of them. Textual data to be classified can come from multiple sources,

such as websites, emails, social media, video transcripts, user reviews, tick-

ets, among others (Minaee et al., 2021).

As described in (Joachims, 1998; Sebastiani, 2001), from a supervised

perspective, the problem of classifying text into a predefined set of cate-

gories or classes can be formalised as follows. Given a set of categories C,

and a collection of documents D which have these categories assigned. The

function T maps each document dj ∈ D to each class to which the docu-

ment belongs. For the training data, we know T (d) ∈ C. The information

contained in the documents in D may be used by the learning algorithm

or system H to train a model able to predict the class to which each new

document belongs, given H(d) ∈ C. The mapping offered by H(d) can be

used to classify new documents. The main goal is to find the model that

maximises the correct predictions.

Text classification can be applied to different levels of granularity, and

four levels are pointed out by (Kowsari et al., 2019). At document level, the

classifier predicts relevant categories for the whole document. At paragraph

level, for a portion of a document. At sentence level, for portions of a

paragraph, and at sub-sentence level, for portions of a sentence.

In each text classification problem, different constraints guide how and

how many categories or classes can be assigned to each document, and this

is a fundamental issue in the problem conceptualisation. Sebastiani (2001)

proposes to differentiate between single-label and multi-label classification.

Single-label categories, also referred to as non-overlapping categories, are

those problems in which each document can only be labelled with one cat-

egory. The most basic problem is a binary classification problem, in which

the documents are labelled with a boolean category. This is the case of

a standard spam detection system, which decides if the new document is

or is not spam, or a system that classifies social media posts according to

whether they are sexist or not. In these two examples, there are only two

categories and only one can be assigned to each document. The other case of

single-label is when there are more than two categories, but each document
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only belongs to one category. This is sometimes called multi-class text clas-

sification. An example of multi-class is the classification of news with their

main topic, within a possible set of topics such as sports, finance, politics,

international and society. By contrast, if the document can be labelled with

more than one class, this is a multi-label problem, also known as overlapping

categories.

2.1.1 Evolution of text classification techniques

Text classification techniques have evolved a lot in the last twenty years. The

first techniques were based on rules, then on traditional machine learning

algorithms, and, in the last decade, techniques based on deep learning have

been particularly outstanding, because of their successful results (Li et al.,

2020). Automatic text classification approaches can be divided in two major

paradigms (Minaee et al., 2021):

• Rule-based methods.

• Machine learning (data-driven) based methods, where we could differ-

entiate between:

– Traditional methods, or Shallow learning (Li et al., 2020).

– Deep learning, or neural approaches (Minaee et al., 2021).

Rule-based methods, or knowledge-based methods (Cohen, 2014), consist of

differentiating categories on the basis of a set of pre-defined rules. Those

rules can be defined by hand, although some automatic technique have been

also proposed to propose rules from training data (Aubaid and Mishra,

2020). Generally, these rules follow the form if “condition” then “category”,

based on symbolic representations of knowledge. These systems are easily

interpretable. However, the task of defining those rules requires deep do-

main knowledge (Minaee et al., 2021) and intensive manual work. Therefore,

these systems do not obtain the best results, because of their lesser learn-

ing capacity, and complex domains can be specially challenging for them

(Thanaki, 2017) because they cannot capture complex messages, inexplicit

references to the categories and hidden patterns related to the domains.

In contrast, machine learning approaches learn from the observation of

data, using pre-labeled data to learn inherent relations between texts and

their labels to classify (Minaee et al., 2021). But unlike images and numerical
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data, text data require NLP techniques to process the texts well (Li et al.,

2022), such as text segmentation and tokenization, lemmatization and word

sense disambiguation.

Most traditional machine-learning methods follow a two-step approach,

based on, feature extraction, which is fundamental for the effectiveness of

the method, and then to feed a classifier with those features. This re-

quires feature analysis to obtain good performance (Minaee et al., 2021),

but how to reduce the features efficiently is challenging, because the number

of features can increase the computation cost heavily. Bag of Words (BoW)

(Zhang et al., 2010), N-gram (Cavnar and Trenkle, 2001), or Term Fre-

quency Inverse Document Frequency (TF-IDF) (Sebastiani, 2001), among

their variants, are widely used handcrafted extraction methods which al-

low us to represent words in a mapping array of tokens by relevance and

frequency. Traditional methods include statistic-based classifiers, such as

Näıve Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbour

(KNN), or Random Forests (Minaee et al., 2021; Li et al., 2022; Kowsari

et al., 2019). These methods are much more accurate and robust than ear-

lier ones based on rules. However, they rely on feature extraction, which is

costly and time-consuming (Li et al., 2022). Furthermore, this can limit the

portability or generalisation of the systems for further applications to new

datasets or domains (Wei et al., 2020).

Figure 2.1: Flowchart of text classification based on machine learning meth-
ods, extracted from (Li et al., 2022).

In the last years, deep neural network-based techniques have stood out

because of their simplicity, reducing the costs of manual feature extracting,

higher processing efficiency, and, in general, because they have managed

to match or improve state-of-the-art results in many NLP tasks (Wu et al.,

2019). Deep learning methods include feature extraction in the model fitting

process by learning a set of nonlinear transformations that allow the mapping

of features directly to outputs (Li et al., 2022). One of the main advantages
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of these techniques is that they can be trained on unstructured data and

can learn feature representations directly from the input text without much

manual intervention or prior knowledge (Qiu et al., 2020).

Some of the most widely used algorithms in NLP have been MultiLayer

Perceptron (MLP), Convolutional Neural Networks (CNNs), Recurrent Neu-

ral Networks (RNNs), Graph-based Neural Networks (GNNs), attention

mechanism, and Pre-trained Language Models based on Transformer ar-

chitecture (Qiu et al., 2020; Li et al., 2022). RNNs, and their improvements

such as LSTM or biLSTM, can capture distant dependencies in sequence by

recurrent computations. However, they compute sequentially and cannot be

parallelised, and this makes it challenging to build models with more layers

and parameters efficiently, because they take long time to train and take a

lot of memory. On the other hand, CNNs can automatically extract features

from texts, applying convolution filters of different sizes. They capture lo-

cal information well, but presents more weaknesses capturing long-distance

information. GNNs can better capture syntactic structural information in

a text by constructing a graph from it. Attention mechanism allows the

model to pay different attention to specific words or sentences, identifying

the importance of each word or sequence for the classification. Attention

mechanism improves performances and allows better interpretability than

CNNs and RNNs. Nevertheless, Transformer seems to capture better long

dependencies in text, improve in computationally and take less time to train.

It treats text as a fully-connected graph with attention features between

different words by self-attention, which can extract features and relations

between words efficiently based on self-attention, which solves short-term

memory problems (Li et al., 2022).

Pre-trained language models based on Transformer (Vaswani et al., 2017)

learn global semantic representation from a large dataset and successfully

solve many NLP tasks. They generally use unsupervised methods on large

datasets, and then they are adapted to a downstream task, without having to

train the whole model from scratch. Pre-training allows the model to learn

to understand semantics and context. Some of these are ELMo (Peters et al.,

2018), GPT (Radford et al., 2018) and BERT (Devlin et al., 2019). BERT

improved performance on eleven NLP tasks (Devlin et al., 2019). It applies

bidirectional encoding, and pre-training strategy and after fine-tuning to

downstream text classification task by adding a linear classifier in the output
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layer. It is the first fine-tuning-based representation model that achieves

state-of-the-art results for several NLP tasks. It shows how adapting a pre-

trained language model to a downstream task can be really powerful (Sun

et al., 2019), because initialisation with the general representation allows

starting with a general representation and adapting it to the task, instead

of initialising with random values (Qiu et al., 2020).

Although methods based on deep learning are particularly powerful, they

also have several limitations. For instance, they require large amounts of

data to achieve high performance and large computational resources are

needed. Other major challenges when it comes to deep learning methods

are data explainability and interpretability. However, models based on self-

attention can provide a bit more of these aspects based on the relationship

between words. Although, traditional methods are much clearer when we

want to understand why and how they work well, despite being less robust

and effective (Li et al., 2022).

2.2 Text classification in BioNLP

2.2.1 Introduction to BioNLP

For more than twenty years, the number of published biomedical litera-

ture, clinical reports, clinical trials and electronic health records, has expe-

rienced a continued growth (Naseem et al., 2021; Huang and Lu, 2015; Else,

2020; Cohen, 2014). In fact, at present, more than 3,000 publications in the

biomedical domain appear every day (Kim et al., 2018).

Identifying relevant information in biomedical literature to review re-

search about a specific protein or exploring new discoveries in a specific

discipline, is fundamental for any researcher in health and life sciences. In

the same way, health practitioners need to review available electronic health

records to carry out their medical practice (Huang and Lu, 2015).

In view of this situation, one could think that the growing amount of

available information and evidence is very useful to foster new discoveries

in biomedicine and to achieve improvements in disease diagnosis. However,

accessing and reading this large and growing amount of documents manually

would be extremely time-consuming, and therefore, not feasible for humans.

So, we face a contradiction, we have more and more documents than ever,

but the access to them is increasingly harder.
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Natural language processing (NLP) aims to study human language so

that computers can understand natural language as humans do, and its

applications range from identifying parts of speech of words to answering

questions. Unfortunately, NLP techniques, or systems, that work in general

domain texts, do not work as well in specific domains. The application of

NLP in the biomedical and clinical domains is known as biomedical natu-

ral language processing (BioNLP), and in the last twenty years, the work

produced in this field has been growing considerably (Friedman et al., 2002;

Chapman and Cohen, 2009; Huang and Lu, 2015; Wu et al., 2019; Percha,

2021).

The applications of BioNLP are able to contribute to different dimensions

of healthcare and biomedical research. Some impact areas of this field are

contributing to the diagnosis with clinical decision support systems, helping

patients to understand their own medical records, and for public health

and biomedical research improving the access to the biomedical literature

(Leaman et al., 2015).

Clinical and biomedical language have particular features which make

their automatic processing more challenging. As languages in specialized

domains or sub-languages (Harris, 1991), they have their own grammatical

features and terminology (Friedman et al., 2002). Cohen (2014) points out

some potential challenges of processing language in this domain: the nega-

tion detection which is basic to understand the meaning of a text, polysemic

words, the lack of grammatical consistency and punctuation of clinical notes,

or the frequent use of parenthesis and abbreviations in biomedical literature

which introduce additional ambiguity. However, the major difficulty of this

field could be the knowledge of the world, in other words, the information

behind the words which is expected to be known or understood from the

context. Omitted information is especially problematic for BioNLP because

a system must have additional knowledge to be able to gather all the im-

plicit information (Friedman et al., 2002). In fact, many of these documents

are not clearly accessible or understandable by humans without adequate

domain expertise/knowledge.

The major types of documents this research field has studied are mainly

clinical documents and biomedical literature (Cohen, 2014). Nevertheless,

other sources such as social media or web content are also used. An applica-

tion of BioNLP on social media could be pharmacovigilance (Harpaz et al.,
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2014); an example of this would be the monitoring of experiential medica-

tion effects reported by consumers on Twitter (Zhu and Jiang, 2021). And

an example of web content could be the exploration of automatic question-

answering systems based on health questions from FAQ sections of NIH1

websites (Abacha and Demner-Fushman, 2016).

Chapman and Cohen (2009) points out as main reasons behind the de-

velopment of this field, together with the exponential year-on-year growth

of the number of scientific publications, the free access to databases such as

PubMed/MEDLINE (Canese and Weis, 2013) or PubMedCentral and to a

wide variety of corpora, semantic resources and ontologies, such as UMLS

(Bodenreider, 2004) or Gene Ontology (Ashburner et al., 2000). Further-

more, in recent years, the advancements of deep learning in natural lan-

guage processing have fuelled the development in a range of BioNLP tasks

(Demner-Fushman et al., 2021).

The interest in deep learning techniques due to their good performance

is also observable reviewing research contributions of the last few years in

the Biomedical Natural Language Processing Workshop (BioNLP)(Demner-

Fushman et al., 2018). Transformer-based pretrained language models are

explored in the overwhelming majority of the papers in the Proceedings of

the 20th Workshop on Biomedical Language Processing to solve all kinds of

fundamental NLP tasks in the biomedical domain (Demner-Fushman et al.,

2021). Deep learning approaches usually require a lot of annotated data,

and there are limited labelled data because of the high annotation costs.

Moreover, the addition of external knowledge of the domain to the models

is still a major challenge (Demner-Fushman et al., 2021).

Evaluation conferences have played a fundamental role by proposing new

specific shared tasks and providing frameworks for the evaluation of the sys-

tems and techniques. There has been a growth in the number of tasks

related to BioNLP or scientific documents. Perhaps the fundamental tasks

that have been most present in shared tasks are those related to entity iden-

tification, but there has been a great variety of others. Related to entity

recognition and normalisation, SemEval proposed the Analysis of Clinical

Text Task (Elhadad et al., 2015) in order to map entities and acronyms

to UMLS concepts in clinical texts, or, for instance, the Information Ex-

traction from Noisy Text Task (Goeuriot et al., 2021a) in CLEF eHealth.

1National Institute of Health of the United States.
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Also a NER in Spanish, there was the PharmaCoNER task (Gonzalez-Agirre

et al., 2019) in BioNLP, with the goal of identifying pharmacological sub-

stances, compounds, and proteins. IberLEF has also fostered NER-related

task such as MEDDOPROF Task (Lima-López et al., 2021) which aimed

to detect professions and occupations from medical texts, or the Disability

annotation on documents from the biomedical domain (DIANN) task (Fab-

regat et al., 2020) that included NER and negation detection. Other shared

tasks also betting on RE such as Extraction of Drug-Drug Interactions from

Biomedical Texts Task (Segura-Bedmar et al., 2013) in SemEval, or the mul-

tilingual eHealth-KD 2021 (Guan and Liu, 2021) in IberLEF. In relation to

Information Retrieval, there have been the RDoc Task (Anani et al., 2019)

in BioNLP for exploring IR systems in the field of neuroscience, or the Con-

sumer Health Search (Goeuriot et al., 2021b) in CLEF eHealth. Another

task in BioNLP, MEDIQA 2021 Task (Ben Abacha et al., 2021) aimed for

different summarization tasks of medical texts. QA has been studied in both

Biomedical Semantic Question Answering Task (Telukuntla et al., 2020)

and Synergy Task (Nentidis et al., 2021), focused on answering questions

for COVID-19, in CLEF BioASQ. Some others more oriented to scientific

literature in SemEval could also be mentioned, such as the Statement Ver-

ification and Evidence Finding with Tables Task (Wang et al., 2021) or the

Extracting Keyphrases and Relations from Scientific Publications Task (Au-

genstein et al., 2017).

On the other hand, benchmark datasets collect reference tasks to evalu-

ate models or systems in different basic BioNLP tasks and are quite signif-

icant in the evaluation of neural language models, to assess their capacity

to transfer learning from unlabelled corpora to specific BioNLP downstream

tasks. Two of them are the BLUE and the BLURB benchmarks. The BLUE

(Biomedical Language Understanding Evaluation)2 benchmark is proposed

by the NCBI, and it consists of five different tasks based on pre-existing

datasets from shared tasks. The BLURB (Biomedical Language Under-

standing and Reasoning Benchmark)3 is inspired by previous resources, and

contains thirteen evaluation datasets for six diverse tasks.

2https : //github.com/ncbi− nlp/BLUEBenchmark
3https : //microsoft.github.io/BLURB/
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2.2.2 Text classification methods in biomedical domain

Text classification on biomedical and medical records is specially challeng-

ing compared to general domain, owing to imbalanced dataset, misspelling,

acronyms and abbreviations, negations and semantic ambiguity (Mascio

et al., 2020; Cohen, 2014; Mujtaba et al., 2019). Although deep neural

network-based approaches have allowed relevant results to be obtained, the

creation of generalizable classification models able to obtain good results in

both clinical and medical texts is still a complex task, because it is difficult to

cover all existing concepts (Qing et al., 2019; Patel et al., 2018). Pre-trained

models of language have been particularly salient in recent years, but they

also present big limitations in the biomedical domain, and a few initiatives

have explored how to enrich pre-trained language models with biomedical

and clinical knowledge (Gu et al., 2022; Wada et al., 2021; Huang et al.,

2020).

In BioNLP several techniques have been used for text classification, rang-

ing from rule-based approaches, machine learning and deep learning, includ-

ing pretrained language models. Rule-based approaches have been widely

used, and they are currently used in research and domain applications, given

their capacity to incorporate domain knowledge (Mujtaba et al., 2019), and

because of the challenge of extracting meaningful features. Although their

performance can be lower than other methods, rule-based approaches al-

low a much easier involvement of experts. However, rules can become very

complex.

However, as Mascio et al. (2020) points out, in the medical domain, rule-

based systems continue to predominate. Moreover, there is no consensus on

which word representation approach is the most adequate for specific clas-

sification tasks in the domain (Mascio et al., 2020). In the medical domain,

machine learning-based techniques tend to improve the results of rule-based

systems, but machine learning-based systems in most cases require a large

annotated corpus (Patel et al., 2018), and especially in these domain datasets

which are small and limited.

Traditional machine-learning methods have been used to learn from fea-

tures extracted from documents, but the number of features can grow fast

and suffer from a problem of data sparsity. Selected features cannot cover

all linguistic variants. This problem can be even be more prominent in a

domain with small datasets. To go beyond this issue, more complex fea-
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tures are used when dealing with biomedical or clinical documents, such

as citation information (Yepes et al., 2015) or information from ontologies

(Sanchez-Pi et al., 2016).

Deep learning-based methods, like CNNs (Yao et al., 2018b) or RNNs

(Burns et al., 2019), have improved traditional methods in biomedical and

clinical domains. Especially in combination with word embeddings, in-

cluding Doc2Vec (Koutsomitropoulos and Andriopoulos, 2020), Word2Vec

(Prabhakar and Won, 2021) or FastText (Agibetov et al., 2018), they have

been valuable. However, they are still limited because they are generally

trained on general-domain documents, but proposing word embeddings pre-

trained in biomedical documents to mitigate this problem have also been

explored (Agibetov et al., 2018; Yijia et al., 2019).

Nevertheless, hybrid approaches combining different methods seem to

be a prominent trend in the domain, because most new deep learning-based

methods still lack knowledge of the domain. Among these, we can find

proposals combining convolutional neural networks with rule-based features

(Yao et al., 2018b), hybrid biLSTM (Shen and Zhang, 2020), or incorpo-

rating knowledge from the UMLS ontology while training a pre-trained lan-

guage model (Yuan et al., 2021).

Document classification tasks are frequent in the literature, although

they are less present than other tasks, such as entity recognition or relation

extraction. Following these, we present some diverse examples of document

classification in biomedical and clinical domain proposed in recent years.

• Hallmarks of Cancer (HOC) (Baker et al., 2016), this task con-

sists of classifying scientific publications according to the Hallmarks of

Cancer taxonomy. A dataset with 1852 PubMed publication abstracts

manually annotated by experts according to the Hallmarks of Cancer

taxonomy is provided. The taxonomy consists of 37 classes in a hier-

archy. Zero or more class labels are assigned to each sentence in the

corpus. This is part of BLURB and BLUE benchmarks.

• MeSH Class Labels (Cohan et al., 2020) formed by 23k documents,

which consists of classifying medical scientific documents according to

11 top-level disease classes extracted/derived from the Medical Subject

Heading (MeSH) vocabulary, where each document has to be assigned

to a category.



24 CHAPTER 2. State of the art

• Automatic ICD4 Coding (Pascual et al., 2021), they use medi-

cal notes from the MIMIC-III dataset (Johnson et al., 2016), which

consists of medical notes labelled with ICD codes from the ICD-9 tax-

onomy, a multi-label classification, where each document as an average

of 13.15 ICD Codes.

• Claim Detection in Biomedical Tweets (Wührl and Klinger, 2021),

offers a biomedical claim detection dataset in social media for pre-

dicting if a tweet contains a claim and, later, to distinguish between

explicit claim, implicit claim, and non-claim.

2.3 Pretrained Language Models

2.3.1 From static to dynamic word representation

Word and word sequence representations have been a fundamental focus of

research in NLP (Wang et al., 2020). Some of the most widely-used text

representation methods are TF-IDF or one-hot vectors. These are high-

dimensional, and suffer from data sparsity, and they cannot encode syntactic

and semantic information (Kalyan et al., 2022). Words are represented at

a surface level, and a good pre-processing pipeline has to be implemented

to consider derived words as the same. Hence, the need to generate low-

dimensional embeddings that can encode information at the semantic and

syntactic level. In other words, to generate embeddings able to encode word

or sequence meaning in a vector (Qiu et al., 2020).

Some of the main problems were how to represent sequences consider-

ing the context of the words, learning universal language representations

and not training the language representation from scratch on the datasets,

which can reduce the generalisability of the system drastically, especially

with small datasets, for instance, caused by the out-of-vocabulary problem.

Most datasets for NLP tasks are rather small, except for machine trans-

lation. This is one of the main limitations of using neural network-based

approaches, because the large number of parameters in deep neural net-

works can overfit on small datasets. It can also reduce the portability and

generalizability of systems (Qiu et al., 2020).

However, pre-trained language models (PLMs) aim to learn universal

4International Classification of Diseases
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language representation from large corpora, which can then be applied to

a downstream task, thus avoiding the need of training models for a specific

task from scratch. These approaches have had a great impact in the last

decade in NLP (Qiu et al., 2020). We can differentiate between contextual

and non-contextual embeddings5.

Pre-trained language models of first generation or non-contextual, such

as Word2Vec or GloVe, are able to get embeddings at word level, capturing

semantic meaning of words, but their word representation does not capture

information about context of words. It makes difficult, for example, poly-

semic disambiguation, identification of syntactic structures or of semantic

roles in a text (Qiu et al., 2020). One of the main limitations of this kind of

non-contextual embeddings is that they are static, meaning that the repre-

sentation of a word does not change according to the context, and therefore

they fail with polysemic words. Another common problem is that they

mostly suffer from out-of-vocabulary words (Qiu et al., 2020). One of the

first attempt to obtain generic word embeddings trained with unlabelled

data that could be useful for other tasks was (Collobert et al., 2011). Then,

(Mikolov et al., 2013) proposes Word2Vec, which implements the architec-

ture of Continuous Bag-of-Words (CBOW) and Skip-Gram, two shallow

architectures based on two-layer neural network, demonstrating that deep

neural network were not necessary to obtain good embeddings. This imple-

mentation is one of the most popular PLMs for NLP tasks (Qiu et al., 2020).

Also there is GloVe (Pennington et al., 2014), another popular implemen-

tation of word embeddings that computes word to word co-occurrence on a

large corpus to obtain global embeddings, and FastText (Bojanowski et al.,

2016), which proposed to encode sub-word information to face the recurrent

out-of-vocabulary problem. Although using these PLMs the representation

of words is already trained, being context independent, the remaining part

of the model has to be trained from scratch. Furthermore, most NLP tasks

go beyond the level of word, dealing with problems at sentence, paragraph

or document level. Other contributions, such as doc2vec (Le and Mikolov,

2014) or text2vec, attempt to address learning embeddings at sentence or

document level at a fixed dimensional rather than using word-level repre-

sentation. However, they are not more effective than word-level embeddings

5In (Qiu et al., 2020), non-contextual are named first generation embeddings; and
contextual, second generation embeddings.
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(Qiu et al., 2020).

Second generation PLMs or contextual embeddings learn the context of

words and go generally beyond word level; some examples are ULMFiT,

CoVe, ELMo, OpenAI GPT or BERT6. Contextual embeddings address the

context-dependent nature of words and issues such as polysemy, different

meaning of words in different contexts. More modern versions of PLMs

are trained on larger scale corpora, and on more powerful architectures,

such as Transformer, and based on new pre-training tasks. The fine-tuning

technique to adapt PLMs to a downstream task proposed by ULMFiT and

BERT is the mainstream approach (Qiu et al., 2020).

Deep neural networks have made it possible to greatly increase the num-

ber of parameters. Likewise, to prevent overfitting, and to be able to make

use of the potential of deep learning, a much larger dataset is needed. Un-

fortunately, building sufficiently large annotated datasets is very expensive.

On the other hand, unlabelled corpora are much easier to obtain. Thus, in

order to take advantage of all these data, learning a good representation of

these corpora and then applying this representation to a downstream task

allows to obtain significant performance improvements. Pre-training allows

to get universal representations of the language beyond the limited training

set, it allows a good initialisation of the model which in turn provides a

higher generalisability which allows the acceleration of the matching with

the task, and to avoid overfitting in small datasets, what can be seen as a

kind of regularisation. (Qiu et al., 2020).

2.3.2 Bidirectional Encoder Representations from Transform-

ers (BERT)

From the combination of transfer learning, as proposes ULMFiT (Howard

and Ruder, 2018), which shows how training LSTMs on large corpus could

build state-of-the-art text classifiers, with the Transformer encoder archi-

tecture (Vaswani et al., 2017), appears BERT (Bidirectional Encoder Rep-

resentations from Transformers) (Devlin et al., 2019). Combining these two

elements, these models do not have to train task-specific architectures from

6So far, many new proposals have appeared, such as RoBERTa, BigBird, AlBERTa, or
XLM. They are not considered in this work, since although they improve the state of the
art by increasing the number of parameters, size of pre-training data, pre-training tasks,
among others. They do not change the encoding paradigm, and there are not many models
available in the biomedical domain and scientific literature, to explore in this project.
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scratch (Tunstall et al., 2022). BERT is a state-of-the-art language repre-

sentation model proposed by (Devlin et al., 2019), and it supposes a major

advance in pretrained language models in NLP, as it is the first one to

propose pretrained deep bidirectional representation jointly conditioning on

both left and right contexts in all layers (Devlin et al., 2019). One of the

main contributions of BERT is that demonstrates the relevance of bidirec-

tional pre-training for language representation. So far, systems could not

process texts by incorporating contextual information from both sides of the

text. It attempts to solve the limitation of unidirectional language models

or pseudo-bidirectional as their predecessors ELMo and GPT did not pro-

pose a bidirectional architecture, a token only serves previous tokens with

self-attention layers of Transformers (Vaswani et al., 2017), since to generate

good representations requires context on both sides, by using Masked Lan-

guage Modelling pre-training task. This works by randomly masking some

tokens from the inputs, and the goal is to predict the original token by the

context. Additionally, BERT is also trained on Next Sentence Prediction,

to predict the next sentence pre-training pairs of sentences.

BERT is composed by a multi-layer bidirectional Transformer based on

the original implementation by (Vaswani et al., 2017), and it is pre-trained

on a large corpus for masked word prediction and next sentence prediction

tasks. BERT proposes a fine-tuning approach to adapt the PLMs to a down-

stream task. This is the first fine-tuning based representation model achiev-

ing state-of-the-art results on several NLP tasks, improving task-specific

architectures. They demonstrate that self-supervised pretraining on large

corpora can reduce heavily-engineered task-specific architectures.

Figure 2.2: Architecture of PLMs like BERT, diagram extracted from
(Kalyan et al., 2022).
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Vaswani et al. (2017) proposes the Transformer architecture as an encoder-

decoder framework. This architecture outperforms RNNs and CNNs in ma-

chine translation, in quality and in computational cost (Tunstall et al., 2022),

because it can be parallelized. However, PLMs like BERT are based on a

combination of embeddings and transformer encoder layers (Kalyan et al.,

2022). The embedding layer has different sub-layers, each of them encodes

a specific type of information. In the case of BERT, the embedding has

three layers, and provides information about token, segment and position,

for each input token. The input vector is computed by summing the differ-

ent embeddings. Input tokens are generally introduced in a sub-word level,

because it can overpass the out-of-vocaublary problem and to capture addi-

tional information about words. For instance, BERT implements WordPiece

(Wu et al., 2016), with 30,000 token vocabulary. General-domain BERT is

pretrained on BooksCorpus and English Wikipedia.

Figure 2.3: BERT embedding layer, extracted from (Devlin et al., 2019).

The transformer encoder layers encode contextual information of each

input token by applying self-attention mechanism. A sequence of trans-

former encoder layers are applied to encode complex language information

from the input token. The transformer encoder layer consists of a combi-

nation of Multi-Head Self Attention, Position-wise Feed Forward Network,

Add and Norm (Devlin et al., 2019; Kalyan et al., 2022).

A fully-connected self-attention model can capture the relationship be-

tween words and let the model learn the structure by itself, computing the

connection weights between words dynamically with the self-attention mech-

anism (Qiu et al., 2020). It is a better alternative than convolutional and re-

current layers to encode global contextual information (Kalyan et al., 2022).

To avoid that each token attends to itself, multiple self-attention layers are

applied, each with different weight matrices to attend to multiple positions

while encoding a word (Kalyan et al., 2022).

The proposed workflow in the original paper for BERT has to two steps,
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Figure 2.4: Self-attention example, extracted from Illustrated transformer,
http://jalammar.github.io/illustrated-transformer/.

pre-training and fine-tuning (Devlin et al., 2019; Rogers et al., 2020). The

advantage of fine-tuning is that only few parameters need to be learned

for the downstream task. During fine-tuning the parameters are initialised

with pre-trained values. It has a unified architecture, only few differences

between pre-trained architecture and final downstream architecture (Devlin

et al., 2019). Different studies have explored why BERT works well and its

performance, and (Rogers et al., 2020) give an overview of them.

Figure 2.5: Overall pre-training and fine-tuning procedures for BERT from
(Devlin et al., 2019).

2.3.3 Adaptation of PLMs to Text Classification Tasks

There are two main, popular approaches to train the model for text clas-

sification: the feature-based approach (Devlin et al., 2019; Tunstall et al.,

2022) and the fine-tuning (Devlin et al., 2019; Sun et al., 2020). In the

feature-based approach, model parameters are frozen, and it would consist

http://jalammar.github.io/illustrated-transformer/
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of using the hidden states as a low-dimensional representation of texts and

training a classifier on top (Tunstall et al., 2022). Fine-tuning consists of

training the model end-to-end, updating the parameters of the pretrained

model.

Simple fine-tuning for text classification consists of stacking a linear clas-

sifier on top of the last hidden state of the pre-trained BERT. A simple

softmax classifier is added at the end of the model to predict the probability

of a label. All the parameters from the model are fine-tuned by maximizing

the log-probability of the correct label (Sun et al., 2019).

The feature-based approach could train efficient and fast, because pa-

rameters don’t have to be updated. In fact, this approach could work spe-

cially good with small datasets, given that there are not many samples to

train, and the pre-trained knowledge can better generalize the task, and the

small training could quickly overfit or produce catastrophic forgetting. For

instance, the text classification on the Specter model (Cohan et al., 2020)

which is pre-trained on scientific literature by using citation information to

reduce loss, outperforms the fine-tuned version of SciBERT (Beltagy et al.,

2019) in topic classification in scientific and biomedical domain, only by

training a linear SVM as hidden state as only feature. However, Devlin

et al. (2019) find fine-tuning adaptation performs better than feature-based

adaptation.

In (Sun et al., 2019), they investigate how to efficiently use BERT for

text classification tasks, exploring three different ways of fine-tuning to im-

prove performance in text classification. Firstly, during the fine-tuning to

the target task, they explore the possible contribution of each layer in the

capture of different levels of semantic and syntactic information; given that

lower layers encode more general information, they fine-tune with different

learning rates in each layer. Secondly, they explore if further pre-training

of the general domain model to data in the target domain could improve.

Finally, they explore if multi-task fine-tuning can benefit single-task fine-

tuning. To avoid the overfitting problem, they observe the need of an opti-

mizer with an appropriated learning rate. They use the uncased BERT-base

model. They fix a batch size of 24 during fine-tuning, and default parame-

ters. They empirically fix the max number of epochs to 4, and save the best

model on the validation set for testing. Dealing with long texts, because

BERT cannot process texts with a length larger than 512, they explore dif-
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ferent ways of dealing with long texts, and see that head+tail truncation

achieves the best performance. They also corroborate that features from the

last layer of BERT give the best performance. However, they observe that

catastrophic forgetting (McCloskey and Cohen, 1989) is an important prob-

lem in transfer learning, which consists of erasing the pre-trained knowledge

during the learning of the new knowledge. They observe that lower learning

rates, as 2e-5, are necessary to overcome catastrophic forgetting (Sun et al.,

2019). Further, pre-training and in-domain further pretraining, are useful

to improve performance for the text classification task, but cross-domain

pre-training does not benefit. They see that BERT can also improve the

task with small-size data (Sun et al., 2019).

Arslan et al. (2021) explores multi-class text classification, they point

out that text classification tasks have been poorly studied in the literature

by evaluating pre-trained language models. They use different pre-trained

models to classify documents in the financial domain. Even with vocabulary

adaptation, they conclude that no substantial improvement is achieved in

this domain by using in-domain models compared to generic models.

2.3.4 BERT models in BioNLP

BioNLP is the field of natural language processing which tackles the partic-

ularities of clinical and biomedical documents. Natural language processing

in this domain is especially challenging due to its complexity, specifically

because of many in-domain specific words (Cohen, 2014). Performance of

general-domain PLMs in BioNLP tasks has been limited in some cases, re-

searchers focused on building PLMs to face biomedical texts(Kalyan et al.,

2022), and pretraining PLMs on biomedical corpora improves performance

(Lee et al., 2019; Gu et al., 2022). Transformer-based pretrained language

models are explored in the overwhelming majority of the papers in the Pro-

ceedings of the 20th Workshop on Biomedical Language Processing to solve

all kinds of fundamental NLP tasks in the biomedical domain (Demner-

Fushman et al., 2021).

Some BERT models developed to tackle texts in biomedical domain fol-

lowing different domain-adaptation strategies and datasets, such as BioBERT

(Lee et al., 2019), SciBERT (Beltagy et al., 2019), BioMedBERT (Chakraborty

et al., 2020), OuBioBERT (Wada et al., 2021), PubMedBERT (Gu et al.,

2022) or BlueBERT (Peng et al., 2019). However, each one implements a
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different strategy for specific-domain adaptation or pre-training, and each

has shown different success. The most popular sources for pre-training on

large corpora are PubMed and PubMedCentral, which allow open access

to biomedical literature (Kalyan et al., 2022). However, general-domain

BERT should perform better in the biomedical domain than other general-

domain architectures, because it has been pre-trained on the medical subset

of Wikipedia (Sushil et al., 2021).

BioBERT (Lee et al., 2019), SciBERT(Beltagy et al., 2019) and Blue-

BERT (Peng et al., 2019), are further pre-trained from the general domain

BERT, initializing from its weights. BioBERT (Lee et al., 2019) is initialised

from weights of general-domain BERT (pre-trained on English Wikipedia

and BooksCorpus), and pretrained on PubMed abstracts and PMC full-text

articles. They keep the same vocabulary of BERT pre-trained on general

domain, BaseVocab, and any new in-domain word is represented in the

model. BlueBERT (Peng et al., 2019) is pre-trained on PubMed abstracts

and clinical notes, and demonstrates the importance of pre-training among

different text genres. It improves BioBERT in all BLUE benchmark task

test sets (Peng et al., 2019). SciBERT (Beltagy et al., 2019) also starts

from general-domain weights, but includes a new vocabulary in scientific do-

main, SciVocab, which only overlaps 42% with BaseVocab. This model

is adapted to the domain on a random sample of 1.14M full text papers

from Semantic Scholar, consisting of 18% in computer science and 82% in

the biomedical domain. PubMedBERT (Gu et al., 2022) is one of the most

successful and widely used in BioNLP tasks, and has been pre-trained from

scratch on PubMed abstracts, and it demonstrates that domain-specific pre-

training outperforms mixed pre-training as BioBERT does. OuBioBERT

(Wada et al., 2021) applies simultaneous pre-training on a small dataset in

the medical field with general-domain documents, based on a well-balanced

pre-training by up-sampling instances derived from a corpus appropriate for

the target task, and also with an amplified vocabulary. This model improves

document classification tasks in the medical domain and provides successful

results in English and other languages.

Including additional information during the pre-training seems to be a

good strategy for improving performance of PLMs. For instance, LinkBERT

(Yasunaga et al., 2022) and Specter (Cohan et al., 2020) include citation

information as additional input. LinkBERT (Yasunaga et al., 2022) in-
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cludes document links to improve adding salient background knowledge to

the language model, these links can bring knowledge that is not in a single

document. The BioLinkBERT (Yasunaga et al., 2022) offers a new state-

of-the-art result on some BioNLP tasks. This adds the Document Rela-

tion Prediction as a pre-training task. By using the same dataset as in

PubMedBERT it improves in performance, adding the citations between

articles as document links. Specter (Cohan et al., 2020) is pre-trained on

scientific literature, Semantic Scholar corpus (Bhagavatula et al., 2018), and

initialised from SciBERT (Beltagy et al., 2019) weights. This is proposed

for document-level representation tasks, simply by a feature-based approach

instead of task-specific fine-tuning.

Adding additional knowledge to these models is crucial to solve BioNLP

tasks successfully, and it has been effective in other domains. KeBioLM

(Yuan et al., 2021) explores incorporating knowledge into language models

in biomedical domain by adding knowledge from the UMLS knowledge base,

and adds the two new pretraining tasks, namely entity linking and entity

detection. In their experiments, the authors demonstrate successful results

in entity recognition tasks in the biomedical domain. However, how to add

or improve knowledge in pre-trained language models is challenging. Sushil

et al. (2021) explore different ways of enriching clinical domain knowledge

in BERT models, but they do not produce significative improvements with

respect to the baseline BERT models. DiseaseBERT (He et al., 2020) inte-

grates knowledge about diseases such as treatment, diagnoses, among other

aspects to the BERT model. They do this by adding the new pretraining

task of Disease Knowledge Infusion training.

Some other models have been pre-trained on clinical narratives, such

as ClinicalBERT (Alsentzer et al., 2019) which is initialised from BERT-

base and BioBERT, although this does not achieve state-of-the-art results

in clinical tasks. BERT-EHR (Li et al., 2019b) is also pre-trained on elec-

tronic health records, and it includes code, procedure, medication, age, and

gender in the embedding layer. Some others are pre-trained for dealing

with other sources type in biomedical domain such as BERTTweetCovid19

(Müller et al., 2020), or BioRedditBERT (Basaldella et al., 2020), for being

applied to text from social media.

Although text classification is not one of the most popular tasks in

BioNLP, some tasks and articles can be found that explore the use of PLMs



34 CHAPTER 2. State of the art

in the domain. In (Pascual et al., 2021) explore automatic International

Classification of Disease (ICD) coding, which is a multi-label classification

problem. However, they have to deal with the length limitation of these

BERT-based models, which they can only process a maximum length of

512 tokens, and clinical notes usually exceed this maximum input length.

Given that these limitations do not allow the fine-tuning, they go for fea-

ture extraction and classifier, using PubMedBERT. They pre-process texts,

converting all text to lower case and removing all numbers, but they do not

remove infrequent words, because BERT does not suffer from out-of vocabu-

lary terms. They also apply early stopping on the validation set for avoiding

overfitting. In fine-tuning, they observe that 6 epochs work better than only

3. In the case of discharge summary, front truncation yields the best perfor-

mance, although mixed also have a competitive score. In contrast to most

NLP tasks, Transformer architecture is not the state-of-the-art system in

assigning ICD codes.

In (Wührl and Klinger, 2021), they aim to text classification of claims

in biomedical tweets. They experiment with combinations of the recom-

mended fine-tuning hyperparameters from (Devlin et al., 2019), which con-

sist of batch size, learning rate, and number of epochs, and they use those

with the best performance on the validation data. Further, they oversample

the minority class of implicit claims to achieve a balanced training set. In

order to guaranty enough comparability, they oversample. They use default

parameter values. In their experiments, the more complex models, such as

BERT or LSTM, do not outperform the linear models. They attribute this

to the fact that complex models are not able to learn from the training set

and to the small size of the dataset.

Reviewing some articles on similar tasks in biomedical domain, some of

the main challenges can be identified. For instance, in relation extraction

tasks, different variants of BERT may achieve the best results, and fine-

tuning the models is preferable over freezing the layers of the original model

and only updating the weights of new layer added on top of the model (Su

et al., 2021; Cenikj et al., 2021). In (Cenikj et al., 2021) they use early

stopping strategy to prevent overfitting, and trained for 10 epochs or until

validation loss of 2 consecutive epochs does not overpass 5*10-3. They show

how preprocessing of input texts can improve the task. They evaluate with

averaged 10 folds with Macro averaged F1 score.
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In (Su et al., 2021), they use the BERT coding of the last hidden layer

to train a multi-layer perceptron (MLP). In their experiments, they use

BioBERT and PubMedBERT for entity extraction by contrastive learning,

a method used in computer vision. In their experiments, PubMedBERT is

the best model. However, in (Li et al., 2019a) doing entity normalisation in

electronic health records by using BERT models pretrained on biomedical

literature or clinical records does not find statistical relevance.

In (Sushil et al., 2021) they explore clinical domain knowledge of BERT

and BioBERT, and they show that domain knowledge is challenging even

with pretrained language models, because they fail in tasks that require

specific domain knowledge. In (Ujiie et al., 2021), for biomedical entity

linking, they perform several preprocessing steps to improve performance

of PLMs such as splitting documents by sentences, removing punctuations,

and resolving abbreviations.





Chapter 3

BATRACIO, a dataset for

classifying texts in

biomedical research phases

This chapter describes in depth BATRACIO, the dataset developed as part

of this Master’s Thesis.

3.1 Introduction

Batracios, the Spanish translation of ”batrachians”, are vertebrate amphib-

ians that breathe through their gills when they are born, and through their

lungs when they are adults. This is the same idea of evolution through-

out the life cycle of these amphibians that remembers the phases of the

biomedical research.

Figure 3.1: Picture of a batrachian from British reptiles and batrachians
(1888) in (Commons, 2020)
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The BATRACIO task, acronym of BAsic-TRAnslational-Clinical research

phases classification in bIOmedical publications, aims to classify biomedical

research texts throughout the research phases in the biomedical domain.

Biomedical research involves the application of the natural sciences, es-

pecially biology and physiology, to medicine, as the U.S. National Library

of Medicine defines1. This research area in particular has evolved a lot in

recent years, and the number of publications has grown exponentially, but

the categories used to classify this area have not evolved in the same way

(Laar et al., 2018). Moreover, research in this field is increasingly expensive,

and a discovery from its beginning to its end requires the contributions of a

broad set of actors carrying out different research activities (Talmar et al.,

2020; Mazzucato, 2021). This means that identifying different phases of the

same investment is costly and challenging.

Furthermore, in recent years, these areas have become increasingly sepa-

rated from each other (Butler, 2008) and research actors have become more

and more specialised (Talmar et al., 2020). The look towards research from

a value-chain perspective (Simpkin et al., 2017) allows to reduce the com-

plexity of research in research phases. The interest for these perspectives

has grown in recent years (Hanney et al., 2015; Weber, 2013; Hanney et al.,

2015; Flier and Loscalzo, 2017). A valid starting point to grasp the concept

of value chain is as ”a set of activities that brings a product from its concep-

tion to the different phases of production, distribution and consumption, and

how these phases and elements that are responsible for each of the phases,

coordinate and complement each other” (Porter, 1985).

Classifying the scientific outputs according to research phases of research

funded under a specific funding instruments or scientific publications pro-

duced in a region around a specific disease, can help policymakers or fund-

ing agencies to better understand what research activities were carried out,

mapping stakeholders and their research competencies, and hence to better

allocate the resources (Fuster et al., 2020). This information can be used to

better steer research funds towards proposals that are more appropriate to

the ecosystem or would probably have greater impact, avoiding the risk of

allowing funding gaps in different research phases and reducing the risk of

duplicating efforts, as (Simpkin et al., 2017) identifies by a manual mapping

of funding programmes in UK on antibiotic research.

1https://www.ncbi.nlm.nih.gov/mesh?term=Biomedical+Research

https://www.ncbi.nlm.nih.gov/mesh?term=Biomedical+Research
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The initial goal of this project was to design a task that aims to cat-

egorize the documents across different research phases compressed in the

biomedical domain. The phases considered by BATRACIO are the follow-

ing ones: basic research, translational research, clinical research, and public

health. For this purpose, it provides an annotated dataset of research pub-

lications with the research value chain phase proposed by this project. The

first version of the dataset only contains scientific literature. The develop-

ment of a tool like this, and in combination with other available initiatives,

offers a new way of addressing strategic and operational demands of research

funding agencies, policymakers, facilitators, and stakeholders, including ev-

idences for the identification and mobilisation of actors, identification of

research capacities, evidence-based policymaking, priority-setting and bet-

ter resource allocation, identify collaboration capacities (inter-institutions

and intra-institutional) and new opportunities for monitoring and evaluat-

ing impact of research funding.

3.2 Task design

The BATRACIO task aims to propose a unified framework for the definition

of the phases of the biomedical research value chain and for the allocation

of these categories to scientific publications, based on their textual content

in title and abstract.

Because there is no agreement between the definitions of the research

phases, and the interpretation of the phases may differ depending on the

discipline and the perspective of the researcher, the biomedical and health

policy experts2 guiding the project have proposed a new definition and selec-

tion of categories, by starting from the existing literature, reviewing publi-

cations in detail and emphasising the boundaries between phases. Following

the research phases common in cancer research and pharmaceutical devel-

opment, among others. It has been necessary to have a precise definition

of the categories, with practical examples, because there are no clear and

universally accepted definitions. Although different attempts to define the

phases in biomedical research can be found in literature (Weber, 2013; Han-

ney et al., 2015; Flier and Loscalzo, 2017; Fort et al., 2017), there are no

universally accepted definitions of these phases. A much more complex chal-

2From the company SIRIS Academic, https://sirisacademic.com/.

https://sirisacademic.com/
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lenge arises in assigning individual publications or research projects to each

of the research phases.

As a basis for the evaluation of this task, we have generated a new

annotated dataset to classify biomedical literature in the biomedical do-

main according to the research phases to which the research activity cor-

responds on a taxonomy of four possible categories. The categories con-

sidered in BATRACIO are the following research phases: basic research,

translational research, clinical research, and public health. Due

to our knowledge, there are no similar datasets, so We have built the dataset

from scratch with domain experts.

These four categories are presented here, but defined in detail with ex-

amples in Appendix C:

• Basic research, often called fundamental research, focuses on scien-

tific exploration and on building new knowledge, and aims to under-

stand fundamental mechanisms of biology, disease and behaviour. For

example, in the case of cancer research, basic research asks how or

where mutations occur in DNA and how DNA functions in a healthy

cell3.

• Translational research, also called pre-clinical research (Woolf, 2008)

focuses on translating the discoveries from basic research into usability

in the clinic, to produce new drugs, devices and treatment options for

patients, with a particular focus on applicability. It uses large-scale

testing and both animal models and human biological material, such

as computer-assisted simulations of drug, device or diagnostic interac-

tions within living systems.

• Clinical research4 seeks to test a specific treatment or procedure,

drug, diagnostic or any technology on patients, focusing not only on

the biological mechanisms, but also on issues of safety, delivery and

protocols for implementation. It includes studies to better understand

a disease in humans and relate this knowledge to findings in cell or

animal models.

3https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\

research-whats-difference/
4https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\

research-whats-difference/

https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\research-whats-difference/
https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\research-whats-difference/
https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\research-whats-difference/
https://blog.dana-farber.org/insight/2017/12/basic-clinical-translational-\research-whats-difference/
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• Public health phase involves activities to strengthen public health

capacities and services seek to provide conditions under which people

can stay healthy, improve their health and wellbeing, or prevent the

deterioration of their health. For instance, population analyses and

retrospective studies, are considered in this phase.

The task is a classification problem, given an input, in our case a sci-

entific publication, the system must identify the most appropriate category

according to the content described in the text. For example, given the ti-

tle of the following scientific publications, a domain expert could assign the

following categories:

Category Title

Basic research Mechanistic dissection of the PD-L1:B7-1 co-
inhibitory immune complex.

Translational research Optimized fractionated radiotherapy with
anti-PD-L1 and anti-TIGIT: a promising new
combination.

Clinical research Infection with multiple hepatitis C virus geno-
types detected using commercial tests should
be confirmed using next generation sequenc-
ing.

Public health How did the use of psychotropic drugs change
during the Great Recession in Portugal? A
follow-up to the National Mental Health Sur-
vey

Table 3.1: Example of publications annotated with the four categories.

These publications could undoubtedly belong to these categories, but

this manual classification could hardly be done by a person with no knowl-

edge of the biomedical field or who is not familiar with these categories.

The dataset consists of a principal collection of scientific articles which

are annotated by three domain experts. The collection includes title and

abstract, which are the minimum annotation units to differentiate between

the categories proposed. Figure 3.2 presents the outline of the creation of

the dataset and the annotation guidelines. The design of the annotation

guidelines was done by domain experts, and has allowed us to define the

task and the categories, as explained in detail in Section 3.4.

We have ensured a real-world distribution, where classes are not bal-
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Figure 3.2: Outline of the process for dataset creation.

anced, to improve the system’s generalisability and use in real cases. How-

ever, we have avoided biases that could affect the design of the dataset.

In this regard and to achieve a representative photograph of biomedical re-

search, we have considered a temporal range that comprises the last five

years, from 2015 until 2019, in order to have a certain temporal balance. A

longer time frame was ruled out, in order to contemplate the growing trend

of translational research. Finally, it was decided not to include the year

2020, due to the high weight of research in COVID-19 that could probably

add noise to the dataset. Finally, because expert annotation is costly, we

have chosen to annotate 1,000 publications. It is therefore essential to make

a selection of the data for the dataset, taking into account possible biases.

The data collection and selection process in the creation of the dataset,

and the annotation, are presented in detail below.

3.3 Dataset creation

The first step in the construction of the dataset is to collect a broad sample of

publications and projects. In the second step, the records in the biomedical



3.3 Dataset creation 43

domain are filtered, because the database contains a broader scope of records

in health and life sciences, and for the purpose of the project, we are only

interested in the biomedical domain. In the third and final step, we extract

a sample of publications, also considering different balancing strategies on

a set of features of interest.

The database considered are scientific publications from MEDLINE database,

which are extracted from PubMed. PubMed is the search engine of MED-

LINE, the bibliographic database on life sciences and biomedicine main-

tained by the National Library of Medicine (NLM). It covers more than five

thousand scientific journals and more than 26 million records. It has a set

of APIs that allow retrieval of the publications along with their associated

metadata. A large percentage of the records available at PubMed are tagged

with the Medical Subject Headings (MeSH terms), mainly assigned by hand

by reviewers. These indexing categories will be used for the filtering of arti-

cles in the biomedical domain, since the database covers articles beyond the

domain of interest.

3.3.1 Gathering publications from PubMed

As we don’t have access to the complete PubMed/MEDLINE database,

given that the API can only retrieve results from a query, the selection

strategy consists of downloading all publication IDs, sampling 500,000 pub-

lications and then only downloading data for those records. The reason why

we first download all the publication IDs from the API is to ensure rep-

resentative and balanced sampling when we select the sample to annotate.

The APIs allow us to sort the results by date, relevance, citations, but we

cannot collect a random set of publications between 2015 and 2019. For this

reason, we decide to download all the publications indexed in PubMed for

our time range and then filter locally. The download uses two of the main

Entrez Programming Utilities5, the public PubMed’s API. Firstly, the ES-

earch API6 allows us to retrieve the list of unique IDs (UIDs) matching the

query. The information of each publication is then downloaded by request-

ing a set of publications from the EFetch API7, which provides description,

5Documentation available at https://www.ncbi.nlm.nih.gov/home/develop/api/
6API documentation available at https://www.ncbi.nlm.nih.gov/books/NBK25499/

#chapter4.ESearch
7API documentation available at https://www.ncbi.nlm.nih.gov/books/NBK25499/

#chapter4.EFetch

https://www.ncbi.nlm.nih.gov/home/develop/api/
https://www.ncbi.nlm.nih.gov/books/NBK25499/##chapter4.ESearch
https://www.ncbi.nlm.nih.gov/books/NBK25499/##chapter4.ESearch
https://www.ncbi.nlm.nih.gov/books/NBK25499/##chapter4.EFetch
https://www.ncbi.nlm.nih.gov/books/NBK25499/##chapter4.EFetch
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title, journal, citations, author, author affiliation, among many other fields8.

The type of records selected are “journal articles”, because this type of

record is the majority, with 92.6% of publications indexed between 2015

and 2019. Journal articles tend to be consistent, their abstracts tend to

follow similar patterns and structures and have a certain homogeneity in the

writing. In the other types of documents indexed in PubMed, the length and

structure of the textual content is unknown. Only texts written in English

will be obtained.

The number of results for the query9 between 2015-2019 is 2,511,158

articles in English. We only download the IDs of those publications, and

then make a random selection of 100,000 publications per year, 500,000

in total, which are entirely downloaded with their associated MeSH terms

(Lipscomb, 2000). For those publications, we store title and abstract, the

authors, journal information, and MeSH terms. However, not all records

contain all the attributes, and therefore, we will only keep those publications

that contain all the required fields, as Figure 3.2 shows.

Step # publications %

Downloaded publications 500,000 -

With all metadata available & MeSH
terms

330,459 0.662

After Filter 1 - MeSH branches in
biomedicine

276,769 0.554

AfterFilter 1 & Filter 2: Subject
areas

145,821 0.292

Table 3.2: Data completeness from initial publication set to filtering in
biomedical domain.

3.3.2 Filtering publications in the biomedical domain

Given that the database covers a broader scope than biomedical research,

we need to separate what is biomedical research from other fields of rele-

vance to health that are out of our scope. For instance, Health Literacy and

Health Education that are in fact Education and Health; or Health manage-

8https://www.ncbi.nlm.nih.gov/books/NBK25499/
9The query used for each year corresponds to: ("201x/01/01"[Date - Publication]

: "201x/12/31"[Date - Publication]) and \journal article"[Publication Type]

and english[Language]

https://www.ncbi.nlm.nih.gov/books/NBK25499/
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ment which has an impact on clinical research implementation, but is not

considered as biomedical research.

Figure 3.3: Main steps in the filtering of publications in the biomedical
domain.

A filtering process for separating biomeidcal articles is designed by do-

main experts based on the Medical Subject Headings (MeSH)(Lipscomb,

2000), in an ontology-based fashion. MeSH is a comprehensive controlled

vocabulary developed by the National Library of Medicine for searching and

indexing biomedical literature (Sayers et al., 2018). Publications in MED-

LINE are annotated with MeSH terms which are used in many biomedical

text mining applications (You et al., 2020). We identify the MeSH taxon-

omy as the most suitable to filter articles fast. This filtering process involves

an ontological classification based on rules defined by discarding and select-

ing branches of interest that are associated with biomedical research. This

selection of branches on the MeSH taxonomy is done by domain experts.

The entire filtering is available in the Appendix A, and an example of this

selection is shown in Figure 3.4. The aim of this filtering is to capture the

perimeter of the biomedical domain, without being too restrictive, and offer-

ing all the topic diversity in the field. In other words, the filtering purpose

was to select only publications in the biomedical domain to be annotated

by the experts. In terms of evaluation, we were principally interested in

precision, because the aim was to obtain a big and representative sample

of articles. We do so by defining subsets of the MeSH taxonomy that are

aligned with the domain of biomedical research, selection done by our do-

main experts.

To verify our approach, 100 filtered publications are manually evaluated

by domain experts to guarantee the publications offered to the annotators

are effectively in the biomedical domain. Since even after this first filter by

MeSH branches some publications outside the domain were added, a second

filtering step was included in order to remove those publications. To do

this filtering by disciplines, we will use the alignment between journals and

subjects proposed by Science-Metrix (Archambault et al., 2013). It is an

open ontology for classifying scientific journals into bibliometric categories.
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Figure 3.4: Sample of MeSH filters.

This approach was used to eliminate those publications that are outside the

possible areas of interest. The ISSN and ESSN codes of the journals were

used to obtain the bibliometric category of each record. The Science-Metrix

taxonomy is composed of 22 research fields, and each field also contains

subfields, as Figure 3.5 shows. The complete filters are available in the

Appendix B.

Our experts evaluated both filters on a random set of 100 publications

again, and the double filtering was found to have a precision of 92.8%. This

filtering was applied to the final subset of publications and any publica-

tions outside the biomedical research domain found by the annotators dur-

ing annotation were selected as Discarded, as indicated in the Annotation

Guideline in Appendix C.

Filter Precision

Filter 1: MeSH branches in biomedicine 78.26%

Filter 1 + Filter 2: Subject areas 92.85%

Table 3.3: Precision of filtering in the biomedical domain on 100 random
publications.
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Figure 3.5: Sample of Subject filters.

3.3.3 Selection of publications

After applying the filtering in the biomedical domain, we have 145,821 pub-

lications from which we have to select 1,100 candidate publications to be

annotated. As described above, this sampling should be representative and

balanced according to different factors. In order to ensure this and to avoid

bias, we sample according to the following features of interest:

• Publication Year

• Affiliation Country of the Authors

• Journal

• Anatomy (MeSH branch A)

• Organism (MeSH branch B)

• Diseases (MeSH branch C)

• Chemicals and Drugs (MeSH branch D)

Maintaining an appropriate distribution in the A, B, C and D branches

of the MeSH taxonomy will allow for generalizability of the dataset, because
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a very large sample of a specific disease in any of the annotated categories

could add noise and bias the dataset, and would make it difficult to identify

generalizable patterns in the texts.

3.4 Annotation

A manual annotation process is preferred, since especially in the medical

domain, the quality of the annotations is more important than the quantity

of annotations (Patel et al., 2018). For the dataset annotation process,

we have been inspired and oriented by the corpus creation methodologies

proposed by (Szarvas et al., 2008; Patel et al., 2018; Oconnor et al., 2020),

for the biomedical domain, which include the following steps:

1. Annotation guide and study of sample examples to create the guide.

2. Training of the annotators.

(a) Labelling a sample of texts.

(b) Discussion about conflicts.

(c) Updating the annotation guide to cover conflicts.

3. Annotation of the dataset.

(a) Annotation of the 20% of the records.

(b) Agreement at first 20%.

(c) Redefinition of the annotation guideline.

(d) Annotation of the whole dataset.

(e) Final agreement.

4. Dataset statistics and description.

3.4.1 Guideline development

Since this is a new task, the annotation guideline are designed from the

ground up. For the definition, two experts in the domain have defined the

boundaries of the categories based on literature review and expert discussion.

In the initial project proposal, after reviewing the main phases in biomedical

research in literature, we only considered the three categories of basic re-

search, translational research and clinical research, assuming that they were
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able to cover the whole spectrum of biomedical research. To adapt these

preliminary definitions to an annotation scenario, both experts attempted

to annotate 100 publications in the biomedical domain (randomly extracted

from PubMed) with the three proposed categories. After this process, they

expressed the need to add a phase after clinical research, to cover the whole

spectrum of publications considered as biomedical research, because some

of them are focused on socioeconomic aspects, retrospective studies about

impact on population, and related to health policy issues of biomedical re-

search. We have named this fourth phase ”Public Health”, although it is

idfferent from the general concept of public health, because we are here re-

stricted to biomedical research. After this, the guidelines are adapted and

complemented with a set of examples for each of the categories.

In the same experiment, the minimum unit of annotation is evaluated.

Given the suspicion that only the title and the abstract would not be suffi-

cient for some articles, the sections of introduction, materials and methods,

and MeSH terms, are also provided to the experts for each article. Unex-

pectedly, the experts conclude that by using just the title and abstract, it

is possible to assign all four categories to scientific publications. This is

an interesting finding for future applications of this resource, since 52% of

scientific articles in the fields of life sciences and molecular biology are not

open access and only the title and description are accessible10.

The differentiation between some of the phases can be enormously chal-

lenging. In some cases, the category suitability can be clear, because the

methods and type of research activity are undoubtedly within a specific cate-

gory. However, in others the difference could become difficult to distinguish,

because what differentiates the phase is the scientific question behind the

research activity. Furthermore, in other cases, the document can be near

the borders between two areas, because the task forces the documents to

belong to one class. To help annotators in ambiguous cases, the categories

have been defined exhaustively by experts. The definition has also benefited

from the discussion about a sample of documents.

After the annotation of the first 400 publications, guidelines were up-

dated by redefining boundaries between categories, because between basic

and translational research the agreement was specially low, a slight agree-

ment of 0.22. This made it necessary to adjust the annotation guidelines,

10PubMed
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because some publications were difficult to interpret or did not meet the

initial definition of the guidelines.

3.4.2 Annotation Procedure

The 1,100 publications were annotated by 3 expert in the domain. The three

annotator have a PhD in different fields of biomedicine and developmental

biology. Agreement was calculated on the base of averaged Cohen’s k, and

the three annotators annotated the same publications, due to the complexity

of the task.

Firstly, we annotated the first 400 publications, where the general agree-

ment was moderate. When studying the agreement between pairs of cate-

gories, between basic and translational research the agreement was specially

low, a slight kappa agreement of 0.22. After a discussion between the anno-

tators and a review over some publications with zero and partial agreement,

the first 400 publications were re-annotated. The agreement increased sub-

stantially our kappa to 0.78 (+.09) with respect to the first annotation. This

agreement is particularly high, and the definitions are considered as good.

During the following iterations, the quality is maintained, even between pairs

of categories, as Table 3.4 and Table 3.5 show. Finally, the 14 publications

with zero agreement were discussed, and the final label was agreed among

the three annotators based on the definition in the annotation guidelines.

Table 3.4 shows the results of the inter-annotator agreement by anno-

tation checkpoint and iteration, as well as the final kappa-score. The final

agreement is adequate between the three annotators. However, as more

publications are annotated and more time passes since the initial discus-

sions, the agreement decreases slightly. In fact, the accuracy of manual

text classification can be influenced by human factors such as fatigue and

expertise (Li et al., 2020). On the other hand, Table 3.5 shows the agree-

ment by pairs of categories, and one can observe that the most difficulty

is found between pairs of categories that are adjacent as research phases,

such as basic-translational, translational-clinical, or clinical-public health.

In addition, after the iteration 2 on the checkpoint 1, the boundaries of each

category are redefined. However, this differentiation remains particularly

challenging, given the high overall inter-annotator agreement.

Two control checkpoints were selected in order to explore general agree-

ment and by pairs of categories, and also to explore the number of instances
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Cohen’s k % Coinci-
dence

Annotation of first 400 publications 0.690 0.730

Re-annotation of first 400 publications, after
redefinition of guidelines

0.782 0.859

Annotation of first 800 publications 0.768 0.850

Final dataset (1100 publications) 0.748 0.832

Table 3.4: Average of inter-annotator agreement between the 3 annotators
during the development of the annotation guidelines, during the annotation
of the dataset, and for the final dataset.

of each category.

The annotation was carried out by three annotators, the two annotators

who designed the guidelines and a third annotator. A1, A2 and A3 anno-

tated the same publications. In general, the inter-annotator agreement is

substantial. In the first annotation checkpoint, on the first 400 publications,

a k=0.69 was obtained, which is acceptable. Although when looking at the

agreement by pairs of classes, between the Basic-Translational and Clinical-

Public Health categories, this agreement is particularly low. After this, the

categories were redefined and some of the cases of disagreement were dis-

cussed in order to reformulate guidelines. A second annotation iteration on

the same 400 publications was carried out, and it achieved a substantial

agreement for all pairs of categories. At checkpoint 2 after the first 800

publications, the agreement remained acceptable, but given the proportion

of publications in the Basic and Translational categories with respect to the

clinical research, a half of the remaining sample of 300 publications to be

annotated is resampled based on a selection of journals which could be more

related with basic and clinical research.

3.5 Dataset Statistics

In Table 3.6, we show general class distribution. Given the small size of the

Public Health category, we show both distribution of classes, also removing

this class. Among the 1100 publications, 480 (43.64%) are in the clinical

research phase, 349 (31.73%) in the basic research phase, 220 (20.00%) in

the translational research phase, and 51 (4.64%) in the public health phase.

Table 3.7 shows the general characteristics of the dataset. There are
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Cohen’s k

Pairs of cate-
gories

Annotation
of first 400
publica-
tions

Re-annotation of first
400 publications, after
redefinition of guide-
lines 1

Final
dataset

Basic-
Translational

0.223 0.614 0.595

Translational-
Clinical

0.796 0.904 0.867

Clinical-
Public
Health

0.617 0.719 0.719

Basic-Clinical 0.887 0.953 0.946

Basic-Public
Health

1.000 1.000 0.962

Translational-
Public Health

0.986 1.000 0.994

Table 3.5: Average of Cohen’s k inter-annotator agreement between the 3
annotators during the development of the annotation guidelines, during the
annotation of the dataset, and for the final dataset.

1100 publications in the biomedical domain annotated in 4 categories. The

total number of sentences in the dataset is 11,066, in only title and abstract,

with an average of 10.06 sentences per publication. The total number of

uncased words in the dataset is 278,103, with 25,834 unique words, and the

average number of words per publication is 252.82.
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ALL Classes Removing Public
Health

Basic research 349 (31.73%) 349 (33.27%)

Translational research 220 (20.00%) 220 (20.97%)

Clinical research 480 (43.64%) 480 (45.76%)

Public Health 51 (4.64%) -

Total 1100 1049

Table 3.6: Class distribution in the final dataset.

Final dataset

#categories 4

#documents 1,100

#sentences 11,066

avg. #sentences 10.06

#words (total) 278,103

#words (unique) 25,834

avg. #words 252.82

Table 3.7: Final dataset statistics.





Chapter 4

Systems and classification

methods

The aim of this work is not only to provide datasets, but also to see if

we can automatically classify biomedical scientific publications according

to the BATRACIO, i.e. according to four categories which represent the

different phase of the biomedical research. For this purpose we have used and

evaluated a wide range of current state-of-the-art systems, which we have

grouped into traditional machine-learning systems, deep-learning systems,

and BERT-based systems.

4.1 Traditional machine-learning methods

Most traditional machine-learning methods follow a two-step approach, based

on feature extraction, which is fundamental for the effectiveness of the

method, and then to feed a classifier with those features. There can be

different types of features, which generally are split sentences, preprocessing

texts, cleaned and segmented words, converted to vectors by filtering words

by frequency, or other weighting algorithms (Kalyan et al., 2022). For this

case, we have tokenized words and removed stopwords, then we extract fea-

tures from text by TF-IDF, the number of features extracted are 10,000,

because this kind of algorithms do not work well with large numbers of

features.

The learning methods used in our experiments are SVM and Random

Forest, two of the machine-learning algorithms most popular in text classi-



56 CHAPTER 4. Systems and classification methods

fication (Kowsari et al., 2019). These systems have been implemented with

the library Sklearn1.

4.1.1 SVM

SVM (Sebastiani, 2001) is one of the most popular methods in text cate-

gorisation due to its good performance. It learns the hyperplane in a fea-

ture space that separates the positive training examples from the negative

ones with the maximum possible margin, tending to minimize the general-

ization error. This learning algorithm was originally designed for working

with binary classification tasks, and the dominate technique for addressing

multi-class problems with SVM is by using Multiple-SVM (Kowsari et al.,

2019).

• SVM-Tfidf: One of our baseline models is based on a SVM classifier

with default parameter setting in SKlearn, This means that a linear

kernel has been used. Features are extracted by applying TF-IDF on

preprocessed text and top 10,000 features are selected. We empirically

chose this number because this kind of algorithms do not work well

with large numbers of features.

4.1.2 Random Forest

Random Forest (RF) (Kowsari et al., 2019) is a learning method based on a

combination of decision trees, the predicted class is the category selected by

most trees. RF and decision tree methods are fast and accurate for document

categorization. They are fast to train but slow in prediction steps.

• RF-Tfidf: One of our baseline models is based on a Random Forest

classifier with default parameter setting in SKlearn. This means that

the classifiers has 100 trees. Features are extracted by applying TF-

IDF on preprocessed text and top 10,000 features are selected. We

empirically chose this number because this kind of algorithms do not

work well with large numbers of features.

1https://scikit-learn.org/stable/

https://scikit-learn.org/stable/
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4.2 Deep learning methods

In the last 10 years, deep learning-based techniques have improved tradi-

tional shallow machine learning, by learning a set of nonlinear transforma-

tions that allow to map features directly to output, including feature extrac-

tion into the model fitting process (Li et al., 2022). These methods can be

trained on unstructured data and can learn feature representation directly

from input text without too many manual interventions (Li et al., 2022).

The learning methods used in our experiments are CNNs and LSTMs, two

of the most used architectures in NLP.

These systems have been implemented with the library Keras2, and for

the configuration of them we have been inspired from (Bokka et al., 2019).

4.2.1 Convolutional Neural Networks (CNN)

A convolutional neural network (CNN) (Kowsari et al., 2019) is a deep learn-

ing architecture that, although initially designed for images, has been widely

used for text classification. CNN can automatically extract features from

texts, applying convolutional filters of different sizes. These systems capture

well local information, but have difficulties to capture information at long

distance in the text. Pre-trained word embeddings improve generalizabil-

ity and allow applying transfer learning in word representation. However,

general-domain pre-trained word embeddings lack of sufficient knowledge

of biomedical domain, for this reason we explore the use of general-domain

Word2vec (Mikolov et al., 2013), pre-trained on Google News, and BioWord-

Vec (Yijia et al., 2019), a pre-trained Word2vec model in biomedical litera-

ture.

• CNN-Word2Vec: A model with pre-trained vectors from Word2Vec,

batch size of 16, one convolution layer with kernel of 5, and global max

pooling.

• CNN-BioWordVec: A model with pre-trained vectors from

BioWordVec, batch size of 16, one convolution layer with kernel of 5,

and global max pooling.

2https://keras.io/

https://keras.io/


58 CHAPTER 4. Systems and classification methods

4.2.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) are a type of Recurrent Neural Net-

work (RNN) that consider the problem of keeping long distance information

and dependency, unlike CNN. They learn sequential information by com-

puting sequentially. They appear to solve the vanishing gradient problem

by introducing memory to the network. In our experiment we have used

Bidirectional LSTM (biLSTM), which is a sequence processing model that

consists of two concatenated LSTM, the first takes the input in a forward

direction and the other, backwards. They increase the information available

about context, although this is not exactly bidirectional. However, the main

handicap of this model is that it is are sequential and time-consuming.

• biLSTM-Word2vec: A model with pre-trained vectors from Word2Vec,

batch size of 16, and one layer with 32 units.

• biLSTM-BioWordVec: A model with pre-trained vectors from

BioWordVec, batch size of 16, and one layer with 32 units.

4.3 BERT-based systems

In the last few years, pre-trained language models based on Transformers

have stood out as a better option for text classification, due to their capac-

ity of learning global language representations from large datasets and being

adapted to a downstream task just by adding a final layer, in the case of

text classification a linear classifier, and adapting the weights of the model

by fine-tuning parameters. Specifically, BERT is the first pre-trained fine-

tuning based and bidirectional language model, that achieve state-of-the-art

results in several NLP tasks. Contextual pre-trained language models im-

prove previous models because they do not have to be trained from scratch,

reducing cost of computational resources and improving in performance.

Specifically in BioNLP tasks, BERT-based systems are the new base-

line method, as we can see by reviewing contribution in last three years

of BioNLP workshop in ACL. In most of the contributions in BioNLP, in-

domain pre-trained language models tend to improve versus general pre-

trained models. This is because the domain language is specially challeng-

ing and complex, although in others specific domains, like financial domain,

there is not such a clear improvement with domain-specific models (Arslan
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et al., 2021). In recent years, new approaches for adapting the pre-training

language models have emerged improving the biomedical knowledge of them

have appeared. We have explored the use of some of the most widely used

BERT-based biomedical models and some other interesting although less

used in literature.

The implementation of the systems is carried out by using HuggingFace’s

Transformers library as the pre-trained language models.

There are many models available, and to identify which model is the best

for a specific task can be a challenge, given the increasing number of pre-

trained language models and architectures. This step implies an intensive

use of computational resources (Nozza et al., 2020).

The following systems have been implemented with Pytorch3 and models

have obtained from HuggingFace4.

4.3.1 Pre-trained BERT models and biomedical variants used

The models used, and their main features, are described below:

• BERT-base (Devlin et al., 2019) is a multi-layer bidirectional

Transformer encoder. Pre-trained on general domain corpus, BooksCor-

pus and English Wikipedia, for the objectives of Masked Language

Modelling and Next Sentence Prediction. We chose BERT-base archi-

tecture (12 layers, 768 hidden learning and 12 attention heads, sum-

ming a total number of 110M parameters), for the comparison with

biomedical variants of BERT.

• BioBERT (Lee et al., 2019) is initialised from weights of general-

domain BERT (Devlin et al., 2019), and it is further pre-trained on

PubMed abstracts and PubMedCentral full-text articles. They keep

the same vocabulary of general-domain BERT.

• SciBERT (Beltagy et al., 2019) is a BERT-base model adapted

to the specific-domain by pre-training on a random sample of mixed-

domain 1.14M full text papers from Semantic Scholar, 18% in com-

puter science and 82% in the biomedical domain. It includes new vo-

cabulary in scientific domain which only overlaps 42% with the general-

domain vocabulary in BERT and BioBERT.

3https://pytorch.org/
4https://huggingface.co/

https://pytorch.org/
https://huggingface.co/
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• PubMedBERT (Gu et al., 2022) is a domain-specific BERT-base

model pre-trained from scratch on PubMed literature.

• BlueBERT (Peng et al., 2019) starts from weights of general-

domain BERT, and it is further pre-trained on PubMed abstracts and

clinical notes, demonstrating the importance of pre-training among

different text genres for some tasks.

• OuBioBERT (Wada et al., 2021) is pre-trained on general-domain

documents and a small corpus of biomedical abstracts from PubMed.

It applies simultaneous pre-training on small dataset in the medical

domain with general-domain documents, based on a well-balanced pre-

training by up-sampling instances derived from a corpus appropriate

for the target task, and also with an amplified vocabulary, in order to

face the problem of specific domains with small number of available

documents as well as specific domains in other languages.

• BioLinkBERT (Yasunaga et al., 2022) is pretrained in the same

pretraining corpus used in PubMedBERT, PubMed abstracts, adding

citation between articles as additional information during pretraining,

in the new Document Relation Prediction pre-training objective task.

• ClinicalBERT (Alsentzer et al., 2019) is initialised from BERT-

base and further pre-trained over approximately 2M million clinical

notes.

4.3.2 Adaptation of BERT models

We have explored the two main approaches for adapting BERT models to a

text classification task (Tunstall et al., 2022). The first one, fine-tuning, pro-

posed in the original paper (Devlin et al., 2019) and other studies (Sun et al.,

2019; Su et al., 2021; Cenikj et al., 2021). Fine-tuning consists in adjusting

and updating pre-trained weights by a back propagation algorithm that aims

to reduce loss function value in order to get closer to desired outputs. The

second, feature-based approach, consists in all parameter freezing and sim-

ply training a linear classifier embedded on top of the model, as suggested in

(Cohan et al., 2020; Pascual et al., 2021). Furthermore, parameter freezing

could be a good approach for avoiding catastrophic forgetting (McCloskey

and Cohen, 1989; Sun et al., 2019), because our dataset is small.
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Following the proposed optimal hyperparameters proposed in the orig-

inal BERT paper (Devlin et al., 2019), we have explored the following hy-

perparameter configuration:

• Learning rate (Adam): 5e-5, 3e-5, 2e-5

• Batch size: 16, 32

• Epochs: 2, 3, 4

4.3.3 Loss function

The main objective of neural networks is to minimise the difference between

the prediction and the expected output, comparing the predicted distribu-

tion of results and the true distribution. This distance or error is computed

based on a cost or error function. The standard cost function for text clas-

sification tasks is the cross-entropy loss5.

However, the cost function does not consider the class imbalance. Cost

weighting is an important alternative to data augmentation for unbalanced

classes (Tayyar Madabushi et al., 2019), it involves increasing the cost as-

sociated with obtaining an erroneous low-frequency class label. A special

feature of our task is that categories are sequentially sorted. Nevertheless,

cost function does not consider order between categories. We propose an

ordered weighting of the loss function by considering the error to be double

when categories, target and predicted, are adjacent categories, because this

is where the highest error rate is concentrated.

In our experiments, we consider the following modification in the loss

function:

• Loss: cross-entropy loss without weighting categories.

• Weighted loss: as (Tayyar Madabushi et al., 2019) propose, we in-

crease the cost of incorrectly labelling the class with lower number of

samples by weighting the cross-entropy loss function.

• Neighbouring loss: we consider the error, from cross-entropy loss,

to be double when target and predicted categories are adjacent.

5https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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4.3.4 Text preprocessing

One of the strengths of BERT is that systems can directly learn from un-

structured text; however, in the biomedical domain, learning from unstruc-

tured language remains a challenge (Schick and Schütze, 2019; Pascual et al.,

2021; Cenikj et al., 2021). Acronyms are especially common in science and

even more in biomedical publications, as authors regularly seek to shorten

the long names for diseases, bacteria, and chemicals. Barnett and Doubleday

(2020) documented acronyms use in more than 24 million scientific article

titles and 18 million scientific articles published between 1950 and 2019.

They reported that 19% of titles and 73% of abstracts contain acronyms.

Of the more than one million unique acronyms in their data, 0.2% appeared

regularly and most acronyms, 79%, appeared less than 10 times (Hogan

et al., 2021).

Schick and Schütze (2019) says that pre-trained language models do not

work well with rare words, and when datasets have a high number of unique

words, they are also more challenging. In the biomedical domain, several

articles propose to pre-process and clean documents to improve performance

of pre-trained language models. Pascual et al. (2021) propose to remove all

numbers, because they are frequent in scientific studies, but they do not add

relevant information for BioNLP tasks. Cenikj et al. (2021) also highlight

how preprocessing can improve performance tasks for the same reasons. In

(Ujiie et al., 2021) punctuation and abbreviations are removed.

We perform basic processing following the recommendations in (Schick

and Schütze, 2019; Cenikj et al., 2021; Pascual et al., 2021; Ujiie et al., 2021):

• Acronym resolution: we use the AbbreviationDetector compo-

nent in scispacy6, which implements a simple algorithm for identify-

ing abbreviation’s definitions in biomedical text (Schwartz and Hearst,

2003) and after, the abbreviations are replaced by the full name.

• Removal of numbers: we remove all numbers in abstracts, they

do not add meaning about the categories of interest, and sometimes

correspond to results or references.

• Removal of special characters: we remove special characters, be-

cause scientific literature can include formulas and rare characters,

which can reduce performance.

6https://github.com/allenai/scispacy

https://github.com/allenai/scispacy
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Evaluation and discussion

This chapter describes the methodology used to evaluate the proposed sys-

tems and methods, and presents the results obtained in different sets of

experiments. The results are also analysed and discussed in depth.

5.1 Evaluation methodology

5.1.1 Evaluation collection

The dataset we have used is BATRACIO, a dataset designed and developed

as part of this project, and explained in detail in Chapter 3. BATRACIO

consists of 1100 scientific publications from PubMed with title and abstract.

The publications have been annotated by three domain experts with the fol-

lowing categories: basic research, translational research, clinical

research, and public health. These categories form one of the main

understandings of the phases of biomedical research. Biomedical research

involves different phases, because a complete discovery often requires the

involvement of many actors doing different things.

The dataset is imbalanced, and Table 5.1 presents the distribution of

categories in the dataset. Table 5.2 describes some of the main character-

istics of the dataset, such as the number of sentences and the numbers of

words. For more information on the dataset, see Chapter 3.

5.1.2 Evaluation metrics

We use precision, recall, f-measure, and accuracy, measures in order

to evaluate the behaviour of SOTA machine learning techniques. The eval-
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ALL Classes Removing Public
Health

Basic research 349 (31.73%) 349 (33.27%)

Translational research 220 (20.00%) 220 (20.97%)

Clinical research 480 (43.64%) 480 (45.76%)

Public Health 51 (4.64%) -

Total 1100 1049

Table 5.1: Class distribution in the final dataset.

Final dataset

#categories 4

#documents 1,100

#sentences 11,066

avg. #sentences 10.06

#words (total) 278,103

#words (unique) 25,834

avg. #words 252.82

Table 5.2: Final dataset statistics.

uation of the systems by means of the dataset has been carried out through

10-fold cross-validation. The split is done in a stratified approach to ensure

samples of all categories in all partitions, as random partitioning did not

provide such representation. The validation set is carried out by a 0.1 split

on the train. As we will evaluate with k-fold cross-validation, we use the

averaged values of the metrics across all k-folds. The evaluation of imbal-

anced datasets is challenging, because models generally predict the majority

class with major accuracy, and because of this, results can be misleading.

Macro-averaged F-measure is a more appropriate evaluation metric, as it

considers the performance of each class equally (Tayyar Madabushi et al.,

2019).

The metrics are described in detail below:

• Precision1 is the proportion of correctly classified examples among

those classified in that category. It is a good metric to identify how

well it identifies the samples predicted in the category, but it does not

include information about the quantity of results. This is calculated

as:
1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

precision_score.html#sklearn.metrics.precision_score

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html##sklearn.metrics.precision_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html##sklearn.metrics.precision_score
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Precision =
#True positives

#True positives+ #False positivies

• Recall2 is the proportion of true categories that are identified. This

is calculated as:

Recall =
#True positives

#True positives+ #False negatives

• F-measure combines precision and recall, by calculating the harmonic

mean between both. Precision and recall are complementary metrics,

and f-measure can combine information from both. This is calculated

as:

F-measure = 2 ∗ Precision ∗Recall
Precision+Recall

• Accuracy is the share of correct predictions (both true positives and

true negatives) among the total number of cases examined. However,

it presents some limitations when dealing with imbalanced datasets, as

a non-informative system that classifies all instances as the majority

class could achieve considerable good accuracy results, by counterpart

with f-measure. This is calculated as:

Accuracy =
#Correct classifications

#All classifications

We choose these evaluation metrics because they are the most widely

used in the literature, they allow us to compare with other works, and

because they are best suited to the evaluation of a categorical classification

system.

The metrics are calculated with the library sklearn3.

2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

recall_score.html#sklearn.metrics.recall_score
3https://scikit-learn.org/stable/modules/classes.html#module-sklearn.

metrics

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html##sklearn.metrics.recall_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html##sklearn.metrics.recall_score
https://scikit-learn.org/stable/modules/classes.html##module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html##module-sklearn.metrics
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5.2 Results

The experiments performed in this section focus on exploring the use of

domain-specific pre-trained language models to solve the BATRACIO task,

and how to adapt them to a downstream task of text classification in order

to obtain satisfactory results.

The following research questions have been addressed in the experiments:

1. Can the problem be addressed automatically with general-domain sys-

tems? Can recent pre-trained language models improve on traditional

methods?

2. Do domain specific pre-trained language models outperform generic

pre-trained language models?

3. Which is the best approach to adapt models to the text classification

task, the fine-tuning or the feature-based approach?

4. What input data do we need to automatically address the problem?

5. Does the imbalance of the dataset affect the performance of systems?

Can we mitigate this fact by forcing the system to learn from class

distribution and semantic distance between categories?

6. Do pre-trained language models improve if text is pre-processed?

7. How important are hyperparameters? And what would be a pertinent

configuration?

5.2.1 Can the problem be addressed automatically with general-

domain systems? Can recent pre-trained language mod-

els improve on traditional methods?

Table 5.3 shows the results of the general-domain systems considered as

a baseline, using as input title and abstract. Among these, we have ex-

plored traditional machine learning systems on linguistic features, and deep-

learning-based systems using general and domain-specific word embeddings.

The best result is obtained with BERT-base model adapted to the task with

fine-tuning. As it can be seen, all other systems are not able to perform the

task adequately, as they only predict the two majority categories. The fact

that systems that typically perform well in many text classification tasks do
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not satisfactorily solve this task may indicate that the task is complex and

challenging.

System F1 Acc.

SVM-tfidf .511 .767
RF-tfidf .499 .756
CNN-Word2Vec .470 .638
CNN-BioWordVec .427 .645
biLSTM-Word2Vec .479 .680
biLSTM-BioWordVec 409 .632
BERT-base
- Fine-tuning .785 .871
- Feature based .245 .462

Table 5.3: Comparison of an ensemble of general-domain methods used in
text classification. Input data is title+abstract. Results are reported as
macro-average between 10-folds.

Some of the common issues between the systems is that extraction of

features by weighted frequency from documents does not work correctly for

those systems that learn from features, because the link to the category is

not explicitly mentioned, as would be the case if the categories were dis-

eases. It is clear that linguistic and semantic features present difficulties

representing categories in BATRACIO, including non-contextual word em-

beddings4 and contextual embeddings5, because they are encoding the same

linguistic and semantic information of the documents, where some concepts

related to diseases, molecular entities or viruses, which are transversal, can

take special relevance in the vector representation. Of course, an accurate

design of features, involving domain experts, could improve the performance

of baseline systems.

As extracted from the results, the use of word embeddings, general-

domain and specific-domain, does not provide much information to help

systems to clearly differentiate between categories. However, fine-tuning

all parameters with BERT-base seems to solve the task much better than

previous systems. According to our domain experts, the difference between

categories is essentially based on the research question behind the scientific

article, and often this is not explicitly mentioned in the abstract, and strong

domain knowledge is needed to contextualise this information from the title

4As Word2Vec and BioWordVec.
5Alluding to the feature-based implementation of BERT.



68 CHAPTER 5. Evaluation and discussion

and abstract. The fact that it is an imbalanced dataset makes it even more

difficult to learn the categories when there are no clear linguistic features.

We conclude that BERT-base is the best system explored. Because with

its by-default design for text classification (Devlin et al., 2019), it is able

to predict all categories and obtain the best evaluation results compared to

the other systems explored. However, freezing all parameters of models to

simply train a linear classifier on the contextual embeddings does not work

in this case, in contrast to what is indicated in (Devlin et al., 2019; Peters

et al., 2019).

5.2.2 Do domain specific pre-trained language models out-

perform generic pre-trained language models on a dataset

for multi-class classification?

In Table 5.4, we present experiments on several biomedical BERT-based

models, which are described in Section 4.3.1, in order to explore one of the

main questions of this project, namely if domain-specific pre-trained lan-

guage models improve general-domain models, which kind of domain adap-

tation can improve performance in this task? As it can be seen in the

table, higher performance is achieved if we use domain-specific models for

the biomedical domain, as biomedical domain contains many peculiarities

such as specific terminology, polysemic words, and frequent use of abbre-

viations and acronyms. Indeed, several models pre-trained in the domain

or adapted to the domain improve BERT-base, which is designed for the

general domain, but not all domain-specific models perform well.

The two best performing models are PubMedBERT and sciBERT, both

of which have been trained from scratch on biomedical literature. However,

PubMedBERT improves by 2.9% points to sciBERT in F-measure, maybe

because PubMedBERT is fully-trained on biomedical documents, but sciB-

ERT is pretrained on 18% of articles from the computer science domain and

82% from the broad biomedical domain. This is particularly relevant to see

how pre-training influences the performance of pre-trained language models

in specific domains. BioBERT, which shares the vocabulary of BERT-base

and was further pre-trained on biomedical documents, does not respond so

well, maybe because it does not have vocabulary in the domain and it cannot

encode very particular scientific jargon. Specter is the third best, with a dif-

ference of 3.7—% less F-measure than the best system. It is presented as a
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System P R F1 Acc.

PubMedBERT .888 .837 .850 .907
sciBERT .851 .809 .821 .821
Specter .844 .803 .813 .883
BioBERT .870 .793 .809 .888
ouBioBERT .860 .781 .799 .883
linkBioBERT .851 .779 .796 .885
BERT-base .834 .766 .785 .878
clinicalBERT .861 .759 .780 .859
BlueBERT .815 .760 .776 .869

Table 5.4: Comparison of domain specific pre-trained language models.
Trained by fine-tuning, fixing the following hyperameter configuration: 4
epochs, learning rate of 2e-5, and batch size of 16. Input data is ti-
tle+abstract. Results are reported as macro-average between 10-folds.

model that works especially well for classifying documents in research topics.

Since including citation information between documents during pre-training

could help capture our categories where articles from the same phase could

be cited more frequently. It is noteworthy BERT-base’s success, it obtains

similar results to several other models in the domain, despite being a generic

model. One of the possible reasons, as suggested by (Sushil et al., 2021), is

that BERT-base was pre-trained on Wikipedia which includes WikiMed, a

set of Wikipedia medical and scientific pages, and therefore has some knowl-

edge of the domain, unlike general-domain Word2vec (Mikolov et al., 2013),

which is pre-trained on Google News. Surprisingly, BlueBERT which is a

model that achieves state-of-the-art results in several BioNLP tasks, has

obtained worse results than BERT-base with this hyperparameter configu-

ration. Nevertheless, as we have observed in other experiments not shown

in the table, with a by-default learning rate of 2e-5 this model obtains worse

results than with a smaller learning rate such as 3e-5 and 5e-5. This points

out one of the main challenges when adapting PLMs to a downstream task

as, especially when the dataset is small, fine-tuning parameters with high

learning rates could remove the knowledge embedded in the model.
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5.2.3 Which is the best approach to adapt models to the text

classification task, the fine-tuning or the feature-based

approach?

Table 5.5 shows the comparison between the adaptation of pre-trained lan-

guage models to the text classification task by the fine-tuning and the

feature-based by approaches. In fine-tuning, it adapts the parameters for

minimising the loss between categories. The latter consists of freezing the

model parameters and only training the classification layer. BERT is pre-

trained on two tasks, Next Sentence Prediction and Masked Language Mod-

elling, based on the knowledge captured during these two tasks, the model

is able to generalise by language in a low dimensional space. Basically, fine-

tuning consists of adding a linear classifier on top of the last BERT layer and

then training the entire network during few epochs, updating all parameter

weights by the loss function and training. The feature-based approach con-

sists of only training the classification layer on top of the last hidden state,

which provides sentences encoded in 768 dimensions. As can be extracted

from the results, feature-based approach does not perform the classifica-

tion satisfactorily, probably because contextual embeddings can not encode

information about the categories of the task, which are transversal across

diseases, domains, and techniques, because the information it attends to

could not be the most relevant to our categories.

Feature based Fine-tuning
System F1 Acc. F1 Acc.

PubMedBERT .201 .333 .850 .907
sciBERT .168 .431 .821 .821
Specter .147 .405 .813 .883
BioBERT .153 .432 .809 .888
ouBioBERT .151 .435 .799 .883
linkBioBERT .264 .477 .796 .885
BERT-base .245 .485 .785 .878
clinicalBERT .155 .438 .780 .859
BlueBERT .231 .462 .776 .869

Table 5.5: Comparison of domain specific pre-trained language models by
fine-tuning and feature-based approaches. Fixing the following hyperpa-
rameter configuration: 4 epochs, learning rate of 2e-5, and batch size of 16.
Input data is title+abstract. Results are reported as macro-average between
10-folds.
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Figure 5.1: T-SNE dimensional reduction of embedding produced by Pub-
MedBERT by feature-based approach (left) and fine-tuning (right). 50% of
the dataset was used for fine-tuning the model and the other 50% publica-
tions have been encoded with both methods.

With the aim of exploring empirically how the two methods represent the

documents, we employed dimensional reduction with T-SNE to visualise the

final embeddings of the PubMedBERT model, our best pre-trained language

model. For this specific exploration, we have split the dataset in two, using

50% for testing and 50% to train. The image on the left in Figure 5.1 shows

the 2-dimensional distribution of the embedding coding that comes out of

the PubMedBERT model, and this is used to train a classifier. We have used

the other 50% of publications to obtain the encoded contextual embedding

produced by the raw model and the fine-tuned version. Indeed, we see how

fine-tuning guides the model to clearly differentiate the categories as can be

seen in the Figure 5.1, not only for the training and validation set, but also

for a set not seen during training.
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5.2.4 What is the most important part of the text to auto-

matically address the problem?

The following Table 5.6 displays the evaluation of the models by fine-tuning

according to different data inputs. For this purpose, different data input

combination were tested (i) title, (ii) abstract and (iii) title and abstract.

The combination of both sections, title and abstract, gives better results for

all four systems. This experiment is only carried out on the best systems

and the most widely used in the literature, using the best configuration.

However, it is interesting to see how with only the title the systems can

learn to differentiate between the categories. Therefore, both sections are

relevant to solve the task correctly. The best system given (ii) abstract,

and (iii) title and abstract, is PubMedBERT. However, with the title only,

the difference between systems is much smaller. Obviously, (iii) title and

abstract contains more information, which allows a better contextualisation

of the activities carried out in each publication.

The two sections were described as the minimum unit of annotation by

our domain experts, and both may contain relevant information. Although

most information is concentrated in the abstract, because there are defined

the research problem and contribution of the article, the title often contains

very explicit references to the categories of interest such as this publication

Clinical Characteristics of Rheumatoid Arthritis Patients Achieving Func-

tional Remission after Six Months of Non-tumor Necrosis Factor Biologi-

cal Disease-Modifying Antirheumatic Drugs (DMARDs) Treatment in the

“Clinical Research” phase.

Title Abstract Title+Abstract
System F1 Acc. F1 Acc. F1 Acc.

PubMedBERT .794 .855 .813 .888 .850 .907
sciBERT .795 .864 .804 .880 .821 .887
BioBERT .786 .858 .794 .876 .809 .888
BERT-base .705 .804 .772 .869 .785 .878

Table 5.6: Comparison of domain specific pre-trained language models
trained on different textual sections of the scientific publications. Trained
by fine-tuning, fixing the following hyperparameter configuration: 4 epochs,
learning rate of 2e-5, and batch size of 16. Results are reported as macro-
average between 10-folds.
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5.2.5 Analysing the categories in depth

One of the main challenges of working with small and imbalanced datasets is

that the systems tend to learn the most frequent classes. Table 5.7 shows F-

measure and accuracy by category for PubMedBERT, sciBERT, bioBERT,

and BERT-base, which are four main systems in literature and with the

highest results in our task. As it can be seen, the best model is PubMed-

BERT which is also the one that best predicts the categories with fewer

instances, namely Public health and Translational research.

Basic Translational Clinical Public Health ALL
System F1 F1 F1 F1 F1

PubMedBERT .912 .850 .949 .688 .850
sciBERT .892 .816 .937 .639 .821
BioBERT .897 .815 .934 .590 .809
BERT-base .885 .805 .927 .522 .785

Table 5.7: Comparison of domain specific pre-trained language models
trained by category. Trained by fine-tuning, fixing the following hyper-
pameter configuration: 4 epochs, learning rate of 2e-5, and batch size of 16.
Input data is title+abstract. Results are reported as macro-average between
10-folds.

The four categories in BATRACIO constitute a set of research phases,

where some are adjacent between them. As observed during dataset an-

notation, disagreement between expert annotator is concentrated between

neighbouring categories, as Table 3.5 shows. In the diagram shown in Fig-

ure 5.2.5, we show confusion matrix by categories of the predicted values

by fine-tuned PubMedBERT, averaged for the 10 folds. As we can see in

the diagram, the automatic system also has to deal with the difficulty of

differentiating between adjacent categories. The boundaries between these

pairs of categories seem to be more confusing, because there is the higher

rate of error.

Dealing with an imbalanced dataset and with neighbouring cate-

gories

As shown in the previous subsections, two of the main challenges that sys-

tems have to deal with BATRACIO are the imbalanced distribution of sam-

ples per category and a configuration of categories where some are seman-

tically adjacent to others. Categories are not mutually independent, they
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Figure 5.2: Averaged confusion matrix for fine-tuned version of PubMed-
BERT. Results are reported as average between 10-folds.

shape a semantic value chain and have semantic relations of neighbour-

ing between them. Systems and domain experts have more difficulty dis-

cerning between adjacent categories, such as between basic research and

translational research, because there is more ambiguity. In this section,

as Table 5.8 shows, we explore whether task adaptation can be improved

by addressing these two challenges during fine-tuning by modifying the loss

function and introducing information about class distribution and adjacency

between pairs of categories.

To address the category imbalance, we introduce a vector of weights,

giving as weight to each category the inverse proportion of its frequency in

the dataset, and to the loss function used during training. In this way, the

inverse weight vector can should help to rescale the weight given to each

class and would focus more on categories with fewer samples. For three

of the models, it improves the F1 for the Public Health category and the

overall F1 too. This approach could be a good option to mitigate the effect

of the imbalance for the minority categories.

Another main challenge we find in this task is the fact of dealing with a

configuration of categories where they form a semantic sequence relationship.

Although it was not the aim of the project to explore this, and we have not

found proposals for this specific problem in the literature. We have decided

to probe the effect of reinforcing adjacency by modifying the loss function, as
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Basic Trans. Clinical Pub. Health ALL
System F1 F1 F1 F1 F1

Fine-tuning
PubMedBERT .912 .850 .949 .688 .850
sciBERT .892 .816 .937 .639 .821
BioBERT .897 .815 .934 .590 .809
BERT-base .885 .805 .927 .522 .785

+ Weighted loss
PubMedBERT .897 .826 .942 .659 .831
sciBERT .893 .819 .938 .659 .827
BioBERT .889 .796 .930 .628 .811
BERT-base .879 .802 .931 .609 .805

+ Neighbouring loss
PubMedBERT .904 .837 .942 .619 .826
sciBERT .887 .813 .939 .621 .815
BioBERT .893 .795 .932 .609 .807
BERT-base .887 .799 .931 .606 .806

+ Weighted and Neighbouring loss
PubMedBERT .895 .828 .942 .635 .825
sciBERT .891 .815 .938 .663 .827
BioBERT .893 .805 .938 .662 .825
BERT-base .885 .801 .930 .602 .804

Table 5.8: Comparison of domain specific pre-trained language models
trained with modified loss function. Trained by fine-tuning, fixing the fol-
lowing hyperparameter configuration: 4 epochs, learning rate of 2e-5, and
batch size of 16. Input data is title+abstract. Results are reported as
macro-average between 10-folds.

neighbouring loss. Following the strategy of weighing categories with fewer

samples in the cost function for imbalanced datasets (Tayyar Madabushi

et al., 2019), we modify the loss function to consider the error to be double

when categories are adjacent, thus it should reinforce adjacent categories to

be separated during fine-tuning, given that as shown in Figure 5.2.5, this is

where the highest error rate is concentrated. This approach performs well

for BERT-base, but obtains similar or worse results for the other models.

Combining weighted loss and neighbouring loss seems to improve on the

other configurations for sciBERT and BioBERT, to mitigate the two chal-

lenges of the dataset. However, the best PubMedBERT system does not

improve, being the best configuration without modifying the loss function.

Balancing instances per category and removing “Public Health”

One of the particularities of our system is that it is imbalanced. In this

section, we explore what would happen if our dataset was balanced or if we
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did not have the minority class, ”Public Health”.

The results of these two experiments are available in the table 5.9.

Removing “Public Health” Balancing instances per category
System F1 Acc. F1 Acc.

PubMedBERT .897 .914 .756 .771
sciBERT .892 .910 .785 .791
BioBERT .889 .908 .624 .659
BERT-base .880 .901 .649 .668

Table 5.9: Comparison of domain specific pre-trained language models for
3-category configuration and balanced-category configuration. Trained by
fine-tuning, fixing the following hyperparameter configuration: 4 epochs,
learning rate of 2e-5, and batch size of 16. Input data is title+abstract.
Results are reported as macro-average between 10-folds.

If we remove the category “Public Health”, the performance of the sys-

tems improves, because there are more samples and the three remaining

categories are much more clear and robust. For instance, for the best sys-

tem, PubMedBERT, the F-measure improves by 4.7 percentage points, and

even more for the other three systems, bringing them closer to the perfor-

mance of the best system.

However, if we balance categories to the minimum common number, in

this case with 45 publications for training as “Public Health”, for each cate-

gory, the effectiveness per category is more comparable between categories,

but the performance is much lower, due to the lower number of samples per

category. Moreover, the number of samples per category is not representa-

tive enough to perform well in real applications.

5.2.6 Other experiments

In this last section, we explore if text pre-processing, as suggested in the

literature (Schick and Schütze, 2019; Cenikj et al., 2021; Pascual et al.,

2021; Ujiie et al., 2021), improves the capacity of biomedical pre-trained

language models, as well as how hyperparameter setting contributes during

training and how specific configurations can affect the learning capacity of

models. For this, we explore the hyperparameters recommended in (Devlin

et al., 2019).
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Text cleaning

As identified in the literature, acronym resolution, removal of numbers and

special characters, can improve performance of pre-trained language models

in the biomedical domain. Table 5.10 compares the effect of cleaning ab-

stracts, resolving acronyms, and removing numbers and special characters.

Raw abstract Acronym Num.+SC Acr.+Num.+SC
System F1 Acc. F1 Acc. F1 Acc. F1 Acc.

PubMedBERT .813 .888 .813 .888 .823 .892 .812 .886
sciBERT .804 .880 .805 .879 .809 .882 .804 .873
BioBERT .794 .876 .811 .881 .801 .879 .817 .882
BERT-base .772 .869 .784 .872 .766 .872 .779 .875

Table 5.10: Comparison of domain specific pre-trained language models with
text cleaning. Trained by fine-tuning, fixing the following hyperameter con-
figuration: 4 epochs, learning rate of 2e-5, and batch size of 16. Input data
is title+abstract. Results are reported as macro-average between 10-folds.
Column description: Acronym = resolving acronyms / Num.+SC = remov-
ing numbers and special characters / Acr.+Num.+SC = resolving acronyms,
and removing numbers and special characters

Applying different pre-processing techniques helps systems to obtain

more information from categories. However, not all preprocessing steps

improve for all systems. For systems trained on BERT-base and BioBERT,

which share vocabulary, acronym resolution improves, possibly because they

do not have a vocabulary in the domain. However, for PubMedBERT and

SciBERT, acronym resolution does not improve, because they already in-

corporate information in the domain that could include acronyms in many

cases. The removal of numbers and special characters, which do not provide

domain information and add basically noise, improves substantially for both

models.

In conclusion, texts cleaning to resolve acronyms and remove numbers

and special characters (frequent in scientific abstracts as results or formulas)

can improve how pre-trained models process texts in the biomedical domain.

However, it will have to be studied in detail how text cleaning affects the

performance of our best configurations.
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Exploring optimal hyperparameters

A major challenge in deep-learning based approaches is the selection of the

best hyperparameters. Doing an exhaustive exploration of hyperparameter

combination can be especially costly. Another big challenge, especially with

small datasets, is overfitting. In other words, when the system learns exactly

the training set, but does not learn to generalise the categories. This is very

frequent and common due to the large number of parameters trained. In

this section, we explore what the best hyperparameters are for the PubMed-

BERT model. The graphic in Figure 5.3 shows the loss rate of the training

and validation sets during training for each epoch. The original BERT pa-

per recommends a number of epochs between 2 and 4, as we can see in

the graph, after 4 epochs the system does not learn and starts overfitting,

getting worse when it evaluates with data it has not trained on. Here, we

corroborate how the recommended number of epochs is also adequate for

our dataset.

Figure 5.3: Averaged training and validation loss for 10-folds, with Pub-
MedBERT.

During these learning epochs, the test set, which is not involved dur-

ing training, has also been evaluated at each checkpoint, as shown in Fig-

ure 5.2.6. Indeed, the system improves in F1 and accuracy up to 4 epochs.

After the fourth training epoch, it does not learn any more, and only learns
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the training set. As observed in the literature, the use of an early stopping

strategy can be a good solution to prevent overfitting.

Figure 5.4: Averaged F1 and accuracy per epoch for 10-folds, with Pub-
MedBERT.

Another fundamental hyperparameter is the learning rate. This is a

tuning parameter in the optimisation algorithm that determines the step size

of the movement towards a minimum in the loss function. If it is too large,

the system will not be able to learn properly, but if it is too small, it may

not learn enough. Table 5.11 explores the three learning rates recommended

by (Devlin et al., 2019). With a lower learning rate, the models seem to

learn better, however for our best model, PubMedBERT, we obtain the

best results with a learning rate of 2e-5, the most used in the literature.

For the other models, the improvement is greater with lower learning rates.

Probably due to the complexity of the task, a lower learning rate can help

to identify the categories more concisely.
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lr=2e-5 lr=3e-5 lr=5e-5
System F1 Acc. F1 Acc. F1 Acc.

PubMedBERT .850 .907 .835 .898 .844 .897
sciBERT .821 .887 .826 .893 .834 .894
BioBERT .809 .888 .828 .895 .822 .886
BERT-base .785 0.878 .809 .882 .826 .883

Table 5.11: Comparison of learning rates in domain specific pre-trained
language models. Trained by fine-tuning, fixing the following hyperameter
configuration: 4 epochs and batch size of 16. Input data is title+abstract.
Results are reported as macro-average between 10-folds.
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Conclusions and future work

This chapter summarises the main conclusions of the work carried out, and

proposes some lines of future work.

6.1 Conclusions

The main objective of this project was to explore the automatic text classifi-

cation of scientific publications according to the different phases in biomed-

ical research, and to explore the use of pre-trained language models. The

principal contribution of this work is the task and dataset of BATRACIO

(BAsic-TRAnslational-Clinical research phases classification in bIOmedical

publications). To the best of our knowledge, no previous work before has

addressed the problem of automatically classifying scientific literature ac-

cording to biomedical research phases.

The task seeks to help policymakers or funding agencies to better under-

stand what research activities were carried out, mapping stakeholders and

their research competencies, and hence to better allocate the resources, by

classifying the scientific outputs of specific funding instruments or scientific

publications, according to research phase. This information can also be used

to better steer research funds towards proposals that are more appropriate

to the ecosystem or which would probably have greater impact, avoiding the

creation of funding gaps in different research phases and reducing the risk

of duplicating efforts. Furthermore, it can also benefit universities in under-

standing which areas they are active in practice or to better priority-setting

for their research strategy; or for researchers, to most easily extract infor-

mation from large collections of scientific articles. As a result, the dataset
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and systems can be used as a basis for exploration in real applications.

Since the problem proposed is new, the work described in this research

includes the creation and annotation of a dataset of 1,100 scientific publi-

cations in the biomedical domain extracted from PubMed, categorized by re-

search phase with the following categories: basic research, translational

research, clinical research, and public health. Designing a new task

is a big challenge, especially in a complex domain as biomedicine. For this

reason, we have involved domain experts for designing the task and for an-

notating the dataset. However, the creation of the dataset has been costly

and has required the organisation of several workshops for discussion with

experts, data extraction and analysis in depth to reduce biases and to get

publications in the domain of interest.

We have also explored whether the problem can be addressed automati-

cally with general-domain systems, or if recent pre-trained language models

improve on traditional methods. We have seen that state-of-the-art BERT-

based pre-trained language models offer a great opportunity to solve this

task. Different language models pre-trained from the open domain to the

specific domain have been explored, and the results have been compared

to other machine-learning techniques to assess whether the powerful tool of

BERT, and specifically with pre-trained models in the biomedical or scien-

tific domain, obtains better results and whether a better generalisation of

the context improves the solving of the task proposed. Furthermore, we have

also explored how to use them for text classification and which strategies

may be favourable for the classification of biomedical research articles, such

as text cleaning and hyperparameter setting.

Different domain-specific models in the biomedical domain have ap-

peared in recent years, trying to incorporate domain knowledge through

different approaches, although not all models work equally well for this task.

Furthermore, as seen in the experiments, minor modifications in the configu-

ration of hyperparameters, in text cleaning1 or in the input data, can change

the performance of the systems.

We have seen that using pre-trained language models and adapting them

to a downstream task of text classification by fine-tuning, adding a classi-

fication layer on top of the model and updating parameter weights, allows

for a reduction in the resource consumption, because training a model from

1Such as acronym resolution, or number and special character elimination.
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scratch requires a lot of computational resources and execution time. The

community-driven paradigm and thanks to the HuggingFace community, it

is more feasible and easier to use these Transformer-based systems.

Nevertheless, the main specific challenges of our dataset are the class

imbalance and that categories are not mutually independent, they shape

a semantic value chain and have semantic relations of adjacency between

them. This was not a main goal of the project, but we have also explored

whether slight modifications in the loss function can deal with imbalanced

and adjacent categories. Although the results of these experiments are par-

tially satisfactory, they point to future lines of research.

6.2 Future work

This work has opened up new lines of research that could be tackled in the

future.

As future lines of work, it could be interesting to look with domain

experts at the particular cases where systems fail and to try to understand

the source of those errors, if there is some kind of bias, or documents are more

complicated or diffuse. In addition, in the next months, the best system will

be applied to two real applications, two collections of scientific publications.

One collection is in the domain of cancer research, which introduces the

challenge of portability of the system to a much more specific domain. The

other collection concentrates on publications of a university hospital. The

use of the system in these real applications will be evaluated by experts

in order to understand its real effectiveness outside the experimental and

evaluation environment, limited by the dataset.

The dataset developed is small, and a possible line of improvement could

be to explore data augmentation techniques to increase samples of categories

with fewer samples. However, as the experiment results point out, the best

solution would be to increase the number of samples in the dataset, in order

to increase the absolute number of samples of minority categories.

In this project we have explored as data inputs only the title and ab-

stract, the minimum unit of annotation, according to experts. However,

there is an additional interesting research line related to exploiting other

sections of scientific articles, such as Introduction or Materials and Methods

section, where there may be relevant information about the research phase.
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Another interesting direction is to incorporate the semantic relation be-

tween categories using other unexplored techniques. In most cases, cate-

gories or classes are symbolic labels and no additional information about

them is available, such as introducing representation in the pre-trained

model of the category, other kind of external information, or even exploring

different modifications in the loss function of the performed in this project.

In the creation of the dataset, publications in the biomedical domain

have been filtered by a rule-based classification approach with ontological

information from MeSH taxonomy. The creation of a dataset for identi-

fying which publication belong to the biomedical domain could allow the

application of the designed system given any publication and not only in

the biomedical domain. Another challenge identified during the creation of

the dataset, in which only scientific articles have been filtered, is that some

review articles are reported as articles, but they are in fact reviews of tech-

niques and do not involve a research activity to be analysed, but rather the

review of techniques or research on diseases across different research phases.

One possible approach to differentiate between articles and reviews is to

create a trained system with articles and reviews, which would not require

the contribution of experts.

As can be seen in the literature, increasing the model size lead to improve

performance of tasks. In recent years, larger models, with more parameters,

more robust, trained on larger collections, are continuously appearing. How-

ever, there are not many adapted to the biomedical domain. Another line

of exploration is to use systems on pre-trained language models with larger

architectures than BERT.

We have adapted pre-trained language models with fine-tuning, but re-

cent proposals include other downstream task adaptation techniques, such as

p-tunning or prompt-tunning, which offer more efficient and faster ways to

adapt the models. However, they also present many challenges that should

be addressed.

Finally, immediate future work will include writing a scientific journal

article to communicate and share the results of this work with the research

community.
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Appendix A

MeSH Filter defining the

scope of biomedicine

The next table contains in a CSV format the taxonomical filters used to

retrieve publications in the domain of biomedical research from their MeSH

terms.

Scope , Main MeSH Heading , Tree Number / ID , Add , Exclude MESH, Exclude TREE

Biomedical Research , Anatomy ,A,TRUE, ,

Biomedical Research , D i s ea s e s ,C,TRUE, ,

Biomedical Research , Chemicals and Drugs ,D,TRUE, ,

Biomedical Research , ” Ana lyt i ca l , D iagnos t i c and Therapeut ic Techniques , and Equipment ” ,E,TRUE, ,

Biomedical Research , Health Care ,N, , ,TRUE

Biomedical Research , B ioeng inee r ing , J01 . 2 9 3 . 0 6 9 ,TRUE, ,

Biomedical Research , Biomedical Engineer ing , J01 . 2 9 3 . 1 4 0 ,TRUE, ,

Biomedical Research , Health Occupations ,H02 , , ,TRUE

Biomedical Research , S t a t i s t i c s as Topic ,E05 . 3 1 8 , , ,TRUE

Biomedical Research , ” Models , Theo r e t i c a l ” ,E05 . 5 9 9 , , ,TRUE

Biomedical Research , ” Imaging , Three−Dimensional ” ,E01 . 3 7 0 . 3 5 0 . 4 0 0 , , ,TRUE

Biomedical Research , Equipment Design , D004867 , ,TRUE,

Biomedical Research , Equipment Fa i l u r e Analys is , D019544 , ,TRUE,

Biomedical Research , F i n i t e Element Analys is , D020342 , ,TRUE,

Biomedical Research , Equipment Safety , D004869 , ,TRUE,

Biomedical Research , Four i e r Analys is , D005583 , ,TRUE,

Biomedical Research , Rheology ,E05 . 8 3 0 , , ,TRUE

Biomedical Research , ” Games , Experimental ” ,E05 . 3 8 5 , , ,TRUE

Biomedical Research , Thermometry , E05 . 9 3 3 , , ,TRUE

Biomedical Research , E l e c t r i c a l Equipment and Suppl ie s , E07 . 3 0 5 , , ,TRUE

Biomedical Research , Brain−Computer I n t e r f a c e s ,E07 . 3 0 5 . 0 7 6 ,TRUE, ,
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Biomedical Research , Opt ica l Devices ,E07 . 6 3 2 , , ,TRUE

Biomedical Research , ” Phantoms , Imaging ” , D019047 , ,TRUE,

Biomedical Research , Quantum Dots , D045663 , ,TRUE,

Biomedical Research , Radiat ion Equipment and Supp l i e s ,E07 . 7 1 0 , , ,TRUE

Biomedical Research , Bioeng ineer ing , D057005 , ,TRUE,

Biomedical Research , Synthet i c Biology , D058615 , ,TRUE,

Biomedical Research , E lect rodes , D004566 , ,TRUE,

Biomedical Research , Biota ,N06 . 2 3 0 . 1 2 4 . 0 4 9 . 1 0 0 ,TRUE, ,

Biomedical Research , Disease Vectors , N06 . 8 5 0 . 3 1 0 . 3 5 0 ,TRUE, ,

Biomedical Research , Drug Contamination , N06 . 8 5 0 . 3 6 0 ,TRUE, ,

Biomedical Research , Molecular Epidemiology , E05 . 3 1 8 . 4 1 6 ,TRUE, ,

Biomedical Research , Organic Chemicals , D02 , , ,TRUE

Biomedical Research , Prote ins , D011506 , ,TRUE,

Biomedical Research , S p e c i a l t y Uses o f Chemicals , D27 . 7 2 0 , , ,TRUE

Biomedical Research , Extremit ie s , A01 . 3 7 8 , , ,TRUE

Biomedical Research , Head , A01 . 4 5 6 , , ,TRUE

Biomedical Research , Inorgan i c Chemicals , D01 , , ,TRUE

Biomedical Research , Brain , D001921 , ,TRUE,

Biomedical Research , Polymers , D25 . 7 2 0 , , ,TRUE

Biomedical Research , Polymers , D05 . 7 5 0 , , ,TRUE

Biomedical Research , Oi ls , D10 . 6 2 7 , , ,TRUE

Biomedical Research , Complex Mixtures ,D20 , , ,TRUE

Biomedical Research , Phys i ca l Examination , E01 . 3 7 0 . 6 0 0 , , ,TRUE

Biomedical Research , Complementary Therapies ,E02 . 1 9 0 , , ,TRUE

Biomedical Research , A r t i f a c t s , E05 . 0 4 7 , , ,TRUE

Biomedical Research , Breeding ,E05 . 8 2 0 . 1 5 0 , , ,TRUE

Biomedical Research , Psycho l og i c a l Techniques ,E05 . 7 9 6 , , ,TRUE

Biomedical Research , Weights and Measures , E05 . 9 7 8 , , ,TRUE

Biomedical Research , Telemetry , E05 . 9 2 5 , , ,TRUE

Biomedical Research , Phenomena and Processes ,G,TRUE, ,

Biomedical Research , Phys i ca l Phenomena , G01 , , ,TRUE

Biomedical Research , Chemical Phenomena , G02 , , ,TRUE

Biomedical Research , Plant P h y s i o l o g i c a l Phenomena , G15 , , ,TRUE

Biomedical Research , Mathematical Concepts , G17 , , ,TRUE

Biomedical Research , B i o l o g i c a l Phenomena , G16 , , ,TRUE

Biomedical Research , Plant S t ruc tu r e s ,A18 , , ,TRUE

Biomedical Research , Viruses , [ B04 ] ,TRUE, ,

Biomedical Research , Plasmodium , [ B01 . 0 4 3 . 0 7 5 . 3 8 0 . 6 1 1 ] ,TRUE, ,

Biomedical Research , Host Microb ia l I n t e r a c t i o n s , [ G16 . 5 2 7 ] ,TRUE, ,

Biomedical Research , Regenerat ion , [ G16 . 7 6 2 ] ,TRUE, ,

Biomedical Research , ” Remission , Spontaneous ” , [ G16 . 7 6 7 ] ,TRUE, ,
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Biomedical Research , Organe l l e B iogenes i s , [ G16 . 6 4 5 ] ,TRUE, ,

Biomedical Research , Neurosc iences , [ H01 . 1 5 8 . 6 1 0 ] ,TRUE, ,

Biomedical Research , Biogen ic Monoamines , [ D02 . 0 9 2 . 2 1 1 . 2 1 5 ] ,TRUE, ,

Biomedical Research , ” Models , B i o l o g i c a l ” , [ E05 . 5 9 9 . 3 9 5 ] ,TRUE, ,

Biomedical Research , ” Models , Animal ” , [ E05 . 5 9 8 ] ,TRUE, ,

Biomedical Research , Cognit ion , D003071 ,TRUE, ,

Biomedical Research , Neurocogn i t ive Disorders , [ F03 . 6 1 5 ] ,TRUE, ,

Biomedical Research , Vaccines , [ D20 . 2 1 5 . 8 9 4 ] ,TRUE, ,

Biomedical Research , Toxoplasma , [ B01 . 0 4 3 . 0 7 5 . 1 8 9 . 2 5 0 . 7 5 0 . 8 0 0 ] ,TRUE, ,

Biomedical Research , Nanotechnology , [ H01 . 6 0 3 ] ,TRUE, ,

Biomedical Research , Biomedical Technology , [ J01 . 8 9 7 . 1 1 5 ] ,TRUE, ,

Biomedical Research , Mycobacterium t u b e r c u l o s i s , D009169 ,TRUE, ,

Biomedical Research , ” S p e c i a l t i e s , S u r g i c a l ” , [ H02 . 4 0 3 . 8 1 0 ] ,TRUE, ,

Biomedical Research , Aeroso ls , D000336 , ,TRUE,

Biomedical Research , Greenhouse Gases , D000074382 , ,TRUE,

Biomedical Research , Photosynthes i s , D010788 , ,TRUE,

Biomedical Research , Plant C e l l s , [ A11 . 7 5 0 ] , , ,TRUE

Biomedical Research , Movement , [ G11 . 4 2 7 . 4 1 0 ] , , ,TRUE

Biomedical Research , ” Yeast , Dried ” , D015002 , ,TRUE,

Biomedical Research , Photosystem I I Prote in Complex , D045332 , ,TRUE,

Biomedical Research , Photosystem I Prote in Complex , D045331 , ,TRUE,

Biomedical Research , Light−Harvest ing Prote in Complexes , D045342 , ,TRUE,

Biomedical Research , Feeding Behavior , [ G07 . 2 0 3 . 6 5 0 . 3 5 3 ] , , ,TRUE

Biomedical Research , Al loys , D000497 , ,TRUE,

Biomedical Research , Oxidation−Reduction , D010084 , ,TRUE,

Biomedical Research , B io reac tor s , [ E07 . 1 1 5 ] , , ,TRUE

Biomedical Research , Ce l l u l o s e , D002482 , ,TRUE,

Biomedical Research , Ce l l Wall , D002473 , ,TRUE,

Biomedical Research , Phonation ,G09 . 7 7 2 . 5 8 5 , , ,TRUE

Biomedical Research , Voice ,G09 . 7 7 2 . 9 2 5 , , ,TRUE

Biomedical Research , Par tur i t i on , D036801 , ,TRUE,

Biomedical Research , Sign language , D012813 , ,TRUE,

Biomedical Research , Hearing , D006309 , ,TRUE,

Biomedical Research , Diet , D004032 , ,TRUE,

Biomedical Research , Beverages ,G07 . 2 0 3 . 1 0 0 , , ,TRUE

Biomedical Research , Fermented Foods ,G07 . 2 0 3 . 2 0 0 , , ,TRUE

Biomedical Research , Food ,G07 . 2 0 3 . 3 0 0 , , ,TRUE

Biomedical Research , Breeding , D001947 , ,TRUE,

Biomedical Research , S e l e c t i v e Breeding , D000068618 , ,TRUE,

Biomedical Research , ”DNA, Ancient ” , D000072441 , ,TRUE,

Biomedical Research , Phylogeny , D010802 , ,TRUE,



108 APPENDIX A. MeSH Filter defining the scopus of biomedicine

Biomedical Research , B i o l o g i c a l Evolut ion ,G16 . 0 7 5 , , ,TRUE

Biomedical Research , B i o l o g i c a l Evolut ion ,G05 . 0 4 5 , , ,TRUE

Biomedical Research , Gene Frequency ,G05 . 3 3 0 , , ,TRUE

Biomedical Research , Genetic Var ia t ion ,G05 . 3 6 5 , ,TRUE,

Biomedical Research , Radiometric Dating , D055110 , ,TRUE,



Appendix B

Subject domain filter based

on the Science-Metrix

Taxonomy

The next table contains in a CSV format the taxonomical filters used to

retrieve publications in the domain of biomedical research from the subject

domain classification of their journal.

Fie ld Eng l i sh , SubFie ld Engl i sh ,REMOVE

” Agr i cu l ture , F i s h e r i e s & Fores t ry ” , Veter inary Sc i ences ,REMOVE

” Agr i cu l ture , F i s h e r i e s & Fores t ry ” , Dairy & Animal Sc ience ,REMOVE

” Agr i cu l ture , F i s h e r i e s & Fores t ry ” , Food Science ,REMOVE

” Agr i cu l ture , F i s h e r i e s & Fores t ry ” , F i s h e r i e s ,REMOVE

” Agr i cu l ture , F i s h e r i e s & Fores t ry ” ,Agronomy & Agr icu l ture ,REMOVE

Biology , Plant Bio logy & Botany ,REMOVE

Biology , Evolut ionary Biology ,REMOVE

Biology , Entomology ,REMOVE

Biology , Zoology ,REMOVE

Biology , Ecology ,REMOVE

Biology , Marine Bio logy & Hydrobiology ,REMOVE

Biomedical Research , Biochemistry & Molecular Biology ,KEEP

Biomedical Research , Microbio logy ,KEEP

Biomedical Research , Developmental Biology ,KEEP

Biomedical Research , Virology ,KEEP

Biomedical Research , Toxicology ,KEEP

Biomedical Research , Physiology ,KEEP

Biomedical Research , Nut r i t i on & D i e t e t i c s ,KEEP
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Biomedical Research , Genet ics & Heredity ,KEEP

Biomedical Research , Biophys ics ,KEEP

Biomedical Research , Mycology & Paras i to logy ,KEEP

Biomedical Research , Anatomy & Morphology ,KEEP

Biomedical Research , Microscopy ,KEEP

Bui l t Environment & Design , Bui ld ing & Construct ion ,REMOVE

Chemistry , Medic ina l & Biomolecular Chemistry ,KEEP

Chemistry , Organic Chemistry ,KEEP

Chemistry , Ana ly t i c a l Chemistry ,KEEP

Chemistry , General Chemistry ,KEEP

Chemistry , Polymers ,KEEP

Chemistry , Ino rgan i c & Nuclear Chemistry ,KEEP

Chemistry , Phys i ca l Chemistry ,REMOVE

C l i n i c a l Medicine , Oncology & Carc inogenes i s ,KEEP

C l i n i c a l Medicine , Neurology & Neurosurgery ,KEEP

C l i n i c a l Medicine , Card iovascu lar System & Hematology ,KEEP

C l i n i c a l Medicine , Immunology ,KEEP

C l i n i c a l Medicine , General & I n t e r n a l Medicine ,KEEP

C l i n i c a l Medicine , Nuclear Medicine & Medical Imaging ,KEEP

C l i n i c a l Medicine , Surgery ,KEEP

C l i n i c a l Medicine , O b s t e t r i c s & Reproductive Medicine ,KEEP

C l i n i c a l Medicine , Pharmacology & Pharmacy ,KEEP

C l i n i c a l Medicine , Orthopedics ,KEEP

C l i n i c a l Medicine , Gast roentero logy & Hepatology ,KEEP

C l i n i c a l Medicine , Endocr inology & Metabolism ,KEEP

C l i n i c a l Medicine , Urology & Nephrology ,KEEP

C l i n i c a l Medicine , Ophthalmology & Optometry ,KEEP

C l i n i c a l Medicine , Dent i stry ,KEEP

C l i n i c a l Medicine , Dermatology & Venereal Diseases ,KEEP

C l i n i c a l Medicine , Resp i ratory System ,KEEP

C l i n i c a l Medicine , Ped i a t r i c s ,KEEP

C l i n i c a l Medicine , Otorhinolaryngology ,KEEP

C l i n i c a l Medicine , Psychiatry ,KEEP

C l i n i c a l Medicine , A r t h r i t i s & Rheumatology ,KEEP

C l i n i c a l Medicine , Anesthes io logy ,KEEP

C l i n i c a l Medicine , Pathology ,KEEP

C l i n i c a l Medicine , Emergency & C r i t i c a l Care Medicine ,KEEP

C l i n i c a l Medicine , General C l i n i c a l Medicine ,KEEP

C l i n i c a l Medicine , Sport Sc i ences ,KEEP

C l i n i c a l Medicine , Trop ica l Medicine ,KEEP

C l i n i c a l Medicine , Al lergy ,KEEP
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C l i n i c a l Medicine , G e r i a t r i c s ,KEEP

C l i n i c a l Medicine , Complementary & Al t e rna t i v e Medicine ,KEEP

C l i n i c a l Medicine , Legal & Forens i c Medicine ,KEEP

C l i n i c a l Medicine , Environmental & Occupat ional Health ,KEEP

Earth & Environmental Sc i ences , Environmental Sc i ences ,KEEP

Earth & Environmental Sc i ences , Meteorology & Atmospheric Sc i ences ,REMOVE

Earth & Environmental Sc i ences , Geochemistry & Geophysics ,REMOVE

Economics & Bus iness , L o g i s t i c s & Transportat ion ,REMOVE

Economics & Bus iness , Bus iness & Management ,REMOVE

Enabling & S t r a t e g i c Technolog ies , Biotechnology ,KEEP

Enabling & S t r a t e g i c Technolog ies , Nanoscience & Nanotechnology ,KEEP

Enabling & S t r a t e g i c Technolog ies , B io in fo rmat i c s ,KEEP

Enabling & S t r a t e g i c Technolog ies , ” S t ra t eg i c , Defence & Secur i ty Stud i e s ” ,REMOVE

Enabling & S t r a t e g i c Technolog ies , Op toe l e c t r on i c s & Photonics ,KEEP

Engineer ing , Biomedical Engineer ing ,KEEP

Engineer ing , Environmental Engineer ing ,REMOVE

Engineer ing , Operat ions Research ,REMOVE

” General Arts , Humanities & S o c i a l S c i enc e s ” ,” General Arts , Humanities & S o c i a l S c i enc e s ” ,REMOVE

General Sc i ence & Technology , General Sc i ence & Technology ,KEEP

H i s t o r i c a l Studies , Anthropology ,REMOVE

H i s t o r i c a l Studies , ” His tory o f Sc ience , Technology & Medicine ” ,REMOVE

Informat ion & Communication Technolog ies , Medical In fo rmat i c s ,KEEP

Informat ion & Communication Technolog ies , A r t i f i c i a l I n t e l l i g e n c e & Image Process ing ,KEEP

Mathematics & S t a t i s t i c s , S t a t i s t i c s & Probab i l i ty ,KEEP

Philosophy & Theology , Applied Ethics ,KEEP

Phys ics & Astronomy , Chemical Physics ,REMOVE

Phys ics & Astronomy , Acoust ics ,KEEP

Phys ics & Astronomy , Optics ,KEEP

Phys ics & Astronomy , F lu ids & Plasmas ,KEEP

Phys ics & Astronomy , General Physics ,KEEP

Phys ics & Astronomy , Astronomy & Astrophys ics ,KEEP

Phys ics & Astronomy , Applied Physics ,KEEP

Psychology & Cogni t ive Sc i ences , Experimental Psychology ,KEEP

Psychology & Cogni t ive Sc i ences , Developmental & Child Psychology ,KEEP

Psychology & Cogni t ive Sc i ences , C l i n i c a l Psychology ,KEEP

Psychology & Cogni t ive Sc i ences , Behav iora l Sc i ence & Comparative Psychology ,KEEP

Psychology & Cogni t ive Sc i ences , S o c i a l Psychology ,KEEP

Psychology & Cogni t ive Sc i ences ,Human Factors ,KEEP

Psychology & Cogni t ive Sc i ences , General Psychology & Cognit ive Sc i ences ,KEEP

Psychology & Cogni t ive Sc i ences , Psychoanalys i s ,KEEP

Publ ic Health & Health Se rv i c e s , Publ ic Health ,KEEP
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Publ ic Health & Health Se rv i c e s , Rehab i l i t a t i on ,KEEP

Publ ic Health & Health Se rv i c e s , Nursing ,KEEP

Publ ic Health & Health Se rv i c e s , Epidemiology ,KEEP

Publ ic Health & Health Se rv i c e s , Health Po l i cy & Serv i c e s ,KEEP

Publ ic Health & Health Se rv i c e s , Gerontology ,KEEP

Publ ic Health & Health Se rv i c e s , Substance Abuse ,KEEP

Publ ic Health & Health Se rv i c e s , Speech−Language Pathology & Audiology ,KEEP

S o c i a l Sc i ences , Education ,KEEP

S o c i a l Sc i ences , Criminology ,KEEP

S o c i a l Sc i ences , Family Studies ,KEEP

S o c i a l Sc i ences , Gender Studies ,KEEP

S o c i a l Sc i ences , Demography ,KEEP

S o c i a l Sc i ences , S o c i a l S c i enc e s Methods ,KEEP

S o c i a l Sc i ences , Soc io logy ,KEEP

S o c i a l Sc i ences , Law ,KEEP

S o c i a l Sc i ences , Sc i ence Studies ,KEEP

S o c i a l Sc i ences , In format ion & Library Sc i ences ,KEEP

S o c i a l Sc i ences , S o c i a l Work ,KEEP



Appendix C

Annotation Guideline

The task proposes the identification of value-chain research phase in sci-

entific outputs, classifying publications and research projects among the

research phase of the records, choosing between: (1) basic research, (2)

translational research, (3) clinical research or (4) public health.

C.1 Category definition

According to this, each record must be categorized in one of the following

categories:

1) Basic research (also called fundamental research)

This focuses on discoveries and knowledge, driven by hypotheses that ad-

vance the understanding of the unknown; it builds new knowledge; in biomed-

ical sciences it uses cells and model organisms and very rarely human sub-

jects or human biological material. It involves scientific exploration that

can reveal fundamental mechanisms of biology, disease or behaviour. Every

stage of the translational research spectrum builds upon and informs basic

research. It studies the core building blocks of life (such as: DNA, cells,

proteins, molecules, etc.) in order to answer fundamental questions about

their structures and how they work. For example, oncologists now know

that mutations in DNA enable the unchecked growth of cells in cancer. A

scientist conducting basic research might ask: How does DNA work in a

healthy cell? How do mutations occur? Where along the DNA sequence do

mutations happen? And why?



114 APPENDIX C. Annotation Guideline

The following topics should be considered part of basic research:

• Tissue, Cellular & Molecular basis of disease

• Tissue, Cellular & Molecular understanding of mechanisms

• Use of Animal models - zebrafish, rats, human cells, fly, c.elegans,

mice, rabbit, guinea pig

• Development of techniques - protein, chemistry, molecular, cellular

Some examples of publications in the category:

• GPR40 full agonism exerts feeding suppression and weight loss through

afferent vagal nerve.

• The Functional Mammalian CRES (Cystatin-Related Epididymal Sper-

matogenic) Amyloid is Antiparallel β-Sheet Rich and Forms a Metastable

Oligomer During Assembly.

• Viral FLIP blocks Caspase-8 driven apoptosis in the gut in vivo.

• Apelin enhances the osteogenic differentiation of human bone marrow

mesenchymal stem cells partly through Wnt/β-catenin signaling path-

way.

• Improved yellow-green split fluorescent proteins for protein labeling and

signal amplification.

The following topics should be considered part of basic research:

• Tissue, Cellular & Molecular basis of disease

• Tissue, Cellular & Molecular understanding of mechanisms
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• Use of Animal models- zebrafish, rats, human cells, fly, c.elegans, mice,

rabbit, guinea pig

• Development of techniques- protein, chemistry, molecular, cellular

Some examples of publications in the category:

• GPR40 full agonism exerts feeding suppression and weight loss through

afferent vagal nerve.

• The Functional Mammalian CRES (Cystatin-Related Epididymal Sper-

matogenic) Amyloid is Antiparallel β-Sheet Rich and Forms a Metastable

Oligomer During Assembly.

• Viral FLIP blocks Caspase-8 driven apoptosis in the gut in vivo.

• Apelin enhances the osteogenic differentiation of human bone marrow

mesenchymal stem cells partly through Wnt/β-catenin signaling path-

way.

• Improved yellow-green split fluorescent proteins for protein labeling and

signal amplification.

2) Translational research (also called pre-clinical research)

This focuses on translating the discoveries into usability in the clinic, uses

large scale testing and both animal models and human biological material.

There is a focus on applicability. It connects the basic science of disease with

human medicine. During this stage, scientists develop model interventions

to further understand the basis of a disease or disorder and find ways to treat

it. Testing is carried out using cell or animal models of disease; samples of

human or animal tissues; or computer-assisted simulations of drug, device
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or diagnostic interactions within living systems. For this area of research

the end point is the production of a promising new treatment that can be

used clinically or commercialized (“brought to market”). This enterprise is

vital, and has been characterized as follows: “effective translation of the new

knowledge, mechanisms, and techniques generated by advances in basic sci-

ence research into new approaches for prevention, diagnosis, and treatment

of disease is essential for improving health.”

The following topics should be considered part of translational research:

• Study of processes or diseases with the intent to treat

• Drug and vehicle development (since they have a therapeutic target)

• Pre-clinical models (even advanced ones like sheep and pigs)

• With patients samples only as proof of concept, as in tumour sam-

ples/biobank usage which is not central to the paper

• With patients samples to establish research pre-clinical models (like

in cell lines)

Some examples of publications in the category:

• Characterization of a porcine model of atrial arrhythmogenicity in the

context of ischaemic heart failure.

• Assessment of an ultrasound-guided technique for catheterization of

the caudal thoracic paravertebral space in dog cadavers.

• Nerve Repair and Orthodromic and Antidromic Nerve Grafts: An Ex-

perimental Comparative Study in Rabbit.

• Murine SIGNR1 (CD209b) Contributes to the Clearance of Uropathogenic

Escherichia coli During Urinary Tract Infections.
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• Notopterol-induced apoptosis and differentiation in human acute myeloid

leukemia HL-60 cells.

3) Clinical research

This searches by testing a specific treatment or procedure, drug, diagnostic

or any technology on patients, focusing not only on the biological mecha-

nisms (if applicable) but also on issues of safety, delivery and protocols for

implementation. This is the stage of research where clinical trials tend to

take place. It includes studies to better understand a disease in humans

and relate this knowledge to findings in cell or animal models, testing and

refinement of new technologies in people, testing of interventions for safety

and effectiveness in those with or without the disease, behavioural and ob-

servational studies, and outcomes and health services research. The goal of

many clinical trials is to obtain data to support regulatory approval for an

intervention. It explores whether new treatments, medications and diagnos-

tic techniques are safe and effective in patients. Physicians administer these

to patients in rigorously controlled clinical trials, so that they can accu-

rately and precisely monitor patients’ progress and evaluate the treatment’s

efficacy, or measurable benefit.

The following topics should be considered part of clinical research:

• Clinical trials

• Research regarding patients treatment protocol

• Research implicating patients directly

• Research with patient samples as central feature (genetics of disease,

biomarkers, prognostic markers,...)
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• Diagnostic of disease

• Classic Epidemiology- cohorts

• Psychiatry (Mental disorders)

• Healthcare standards and guidelines

Some examples of publications in the category:

• Characterization of a porcine model of atrial arrhythmogenicity in the

context of ischaemic heart failure.

• Supraclavicular versus infraclavicular approach in inserting totally im-

plantable central venous access for cancer therapy: A comparative ret-

rospective study.

• The effect of apolipoprotein E polymorphism on serum metabolome -

a population-based 10-year follow-up study.

• Functional variations of the TLR4 gene in association with chronic

obstructive pulmonary disease and pulmonary tuberculosis.

• Comparing patterns of volatile organic compounds exhaled in breath af-

ter consumption of two infant formulae with a different lipid structure:

a randomized trial.

4) Public health

This is defined as “the art and science of preventing disease, prolonging life

and promoting health through the organized efforts of society” (Acheson,

1988; WHO)?. Activities to strengthen public health capacities and service

aim to provide conditions under which people can stay healthy, improve their
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health and wellbeing, or prevent the deterioration of their health. Public

health focuses on the entire spectrum of health and wellbeing, not only the

eradication of particular diseases. Many activities are targeted at popu-

lations such as health campaigns. Public health services also include the

provision of personal services to individual persons, such as vaccinations,

behavioural counselling, or health advice.

The following topics should be considered part of public health:

• Clinical trials

• Research regarding patients treatment protocol

• Research implicating patients directly

• Research with patient samples as central feature (genetics of disease,

biomarkers, prognostic markers,...)

• Cultural/socioeconomic impact on Health

• Health Policy

• Global Health

• Population Health

Some examples of publications in the category:

• Post-elimination surveillance in formerly onchocerciasis endemic focus

in Southern Mexico.

• Association of intestinal colonization of ESBL-producing Enterobacte-

riaceae in poultry slaughterhouse workers with occupational exposure-A

German pilot study.
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• Use of non-HIV medication among people living with HIV and receiv-

ing antiretroviral treatment in Côte d’Ivoire, West Africa: A cross-

sectional study.

• How did the use of psychotropic drugs change during the Great Reces-

sion in Portugal? A follow-up to the National Mental Health Survey

• Prevalence and social burden of active chronic low back pain in the

adult Portuguese population: results from a national survey

C.2 Annotation process

The annotations process must be done by following different steps. The next

lines describe the step-by-step process that the annotator must accomplish

for each publication or R&D project:

1. Read title and abstract of the record. If the text is not in English, or

is not in the biomedical domain, label it as Discarded.

2. Assign the category basic/translational/clinical/public health re-

search according to the research phase it takes part of (if in doubt, go on to

the next one, and you could add the category Doubt) a. Assign the record

one of the following labels: - basic - translational - clinical - public health -

In case of doubt, you can add the label doubt. In this case, the agreement

will be completed with the other two annotators, or it will be discussed later.

b. Finish the labelling process for the publications and projects, continue

with the next record.
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