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Abstract
The recent qualitative step in performance of Question Answering (QA)

systems has motivated a parallel profusion of new QA datasets intended to
benchmark them. However, there have been only limited efforts to study
the range of reasoning phenomena in QA, something that would allow for
a more thorough evaluation of QA systems. One phenomenon that has not
received much attention is answerability. It is important that question an-
swering systems are able to decide whether to not give an answer when the
system is unsure. However, most question answering datasets do not in-
clude unanswerable questions, and if they do, do not specify the amount
of unanswerable questions. To date, there is no QA dataset or guideline
available that specifies the optimal amount of unanswerable questions a QA
system should see during training. In this work we propose a modification to
the popular multiple-choice question answering dataset RACE that renders
some questions unanswerable, and we study which proportion of unanswer-
able questions might offer the best results during training and evaluation of
a baseline BERT model.
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Resumen
El reciente salto cualitativo en el rendimiento de los sistemas de Búsqueda

de Respuestas (QA) ha motivado en paralelo la aparición de un gran número
de nuevos conjuntos de datos de QA creados para evaluar dichos sistemas.
Sin embargo, no hay suficientes estudios acerca del abanico de fenómenos
de razonamiento que ocurren en QA, lo cual permitiría una evaluación más
completa de los sistemas de QA. Un fenómeno que no ha recibido suficiente
atención es la habilidad de no responder. En la práctica, es importante que
cuando un sistema de Búsqueda de Respuestas no está seguro, pueda decidir
no ofrecer ninguna respuesta. Sin embargo, la mayoría de los conjuntos de
datos de QA no incluyen preguntas sin respuesta y, si las incluyen, no especi-
fican en qué proporción. Hasta la fecha, no hay ningún conjunto de datos o
guía para su creación disponible que especifique la cantidad óptima de pre-
guntas sin respuesta que un sistema de Búsqueda de Respuestas debería ver
durante el entrenamiento. En este trabajo, proponemos una modificación
del popular conjunto de datos de opción múltiple RACE que convierte al-
gunas preguntas en preguntas sin respuesta, y analizamos qué proporción
de preguntas sin respuesta podría ofrecer los mejores resultados durante el
entrenamiento y la evaluación de un modelo BERT de base.
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1 Introduction
1.1 Area of study and terminology
Reading Comprehension (RC) is the ability to read text and understand its
meaning. Building machines with this ability, or Machine Reading Compre-
hension (MRC), is one of the most elusive and long-standing challenges in Ar-
tificial Intelligence (Norvig, 1986). To define MRC, researchers often invoke
the Turing test: a machine reaches human level intelligence if its responses
in a dialogue with a human cannot be distinguished over the long haul from
those produced by another human (Turing, 1950). While it has been discussed
that defining the problem in terms of human competence focuses on a wrong
goal, Turing’s definition does point out to a workable format to evaluate MRC
(Levesque, 2014). Asking questions about a text passage is a common way to
evaluate RC in humans, and the same approach has been suggested for testing
computers. The task is defined generally in (Burges, 2013): “A machine com-
prehends a passage of text if, for any question regarding that text that can be
answered correctly by a majority of native speakers, that machine can provide a
string which those speakers would agree both answers that question, and does
not contain information irrelevant to that question.”

At the same time, MRC can be placed within the larger, practical problem of
Question Answering (QA). QA aims to give a precise answer to a user’s ques-
tion in natural language. Dating back to the 1960s, the first efforts in the field
sought to provide natural language interfaces to manually constructed, close-
domain knowledge bases. This is called Knowledge-Based QA. The other, early
paradigm was based on text, and known as Information Retrieval (IR)-based
QA. The architecture of early IR-based QA systems consisted of differentmodules
such as question analysis, passage retrieval, and answer extraction (Allam and
Haggag, 2012). With the rise of neural Natural Language Processing, the typi-
cal QA system architecture evolved to a Retriever-Reader setup where, given a
question, the Retriever finds relevant documents and the Reader performs MRC
to extract the answer from them. With earlier neural models such as Recur-
rent Neural Networks, this meant first encoding the passage and the question
separately and then matching them in a combined representation (Qiu et al.,
2019). Current approaches are based on Transformers, generic pretrained mod-
els which can be applied directly to a variety of MRC tasks, in an end-to-end
fashion and with minimal adaptations. These models do away with the afore-
mentioned separation, jointly encoding the passage, the question and the even-
tual answers. Thanks to Transformer models, recent years have seen a large im-
provement in QA systems and successful commercial applications are nowadays
a ubiquitous reality. General search engines like Google and Bing now integrate
Open-domain QA to provide instant answers to queries along traditional search
results, while close-domain QA is an essential component of dialogue systems
broadly adopted in customer support environments or enterprise FAQs.

Parallel to the improvement in QA systems brought by neural models and
Transformers in particular, recent years have seen an explosion in the number

6



of MRC datasets available (Rogers et al., 2021). Besides the need to develop
commercial QA systems, amain reason for this abundance is the need to evaluate
Transformers. Transformers are neural models pretrained on large corpora with
an objective of general language understanding, a vague notion that cannot be
measured directly. The reason for their success is their ample scalability, both in
the sense that they can leverage knowledge from a vast range of examples almost
without supervision, and that they can be applied to numerous NLP tasks. But a
lack of interpretability means that it is unclear what Transformers actually learn.
Their success at a task can only be explained in terms of the task itself — when
they fail, it is not possible to know why they do so. This has fostered efforts to
study and define the different skills at play in MRC, pointing at new directions
for the development of MRC datasets. The present work can be placed within
such efforts.

1.2 Motivation
When specifically proposing theMultiple-Choice format to evaluateMRC, (Levesque,
2014) emphasizes that questions and answers should be carefully designed by
humans to ensure they require some degree of background knowledge. Such
background knowledge would form the basis of a world model, which is a re-
quirement to perform complex inference. Due to pretraining, transformer mod-
els already encode much background knowledge. But it is unclear to which
extent they use it for inference. For example, while current MRC systems can re-
liably answer factoid questions — which they do by simple paraphrasing of the
context, or perhaps using the large number of factoids the already encode —
they do not reliably check that their answers are entailed by the text (Rajpurkar
et al., 2018). But for real-world QA systems, the ability to reason about a ques-
tion’s answerability given a context is critical: if the answer is not contained
in the reference document(s), assuming that a question is answerable leads to a
wrong answer. And in the development of MRC datasets, it is critical that they
allow diagnosing model performance: did the model provide the right answer
because it saw it during pretraining of did it correctly infer it from the text? Did
the model provide a wrong answer because it interpreted the text wrongly or
was it just obliged to give an answer when it was not confident enough about
any of the possibilities?

Until recent, most MRC datasets have assumed that an answer exists for ev-
ery question. Recent examples have started to address the problem of diagnos-
ing different reasoning skills, among them answerability detection. SQuAD 2.0
(Rajpurkar et al., 2018) proposes unanswerable questions, but in an extractive
format: if the answer is not found within the reference text, the model should
just provide an empty string as the answer. QuAIL (Rogers et al., 2020) is a re-
cent, multiple-choice MRC dataset with questions annotated by reasoning type,
one of which is unanswerable questions. However, it does not particularly target
answerability detection, and its proportion of unanswerable questions is simply
balanced with respect to other reasoning types. In this work we propose to fo-
cus on unanswerable questions within the multiple-choice format and study the
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effect of different proportions of unanswerable questions in a dataset.

1.3 Research questions
To state the research problem, we break down the motivation into the following
research questions:

1. What is the optimal scenario to identify unanswerable questions?
2. Does BERT need to see a higher proportion of unanswerable questions in

training to be able to reliably identify them in test?
3. How does a trained BERT model respond when it is tested on different

proportions of unanswerable questions?

1.4 Document outline
In this work we propose a method that modifies the popular multiple-choice
MRC dataset RACE (Lai et al., 2017) to include unanswerable questions, and
study the performance of a baseline BERT model in different training and evalu-
ation scenarios with unanswerable questions. We accomplish this by (1)creating
a range of copies of RACE with different proportions of unanswerable questions,
(2)fine-tuning a BERT model on each of the modified copies, and (3)evaluating
each of the fine-tuned models on each of the modified copies of RACE.

The rest of this document is structured as follows: In chapter 2, we survey the
state-of-the-art of MRC datasets, with special attention to strategies to include
unanswerable questions, and describe the use of Transformers in QA. Chapter 3
introduces the dataset and presents the modification method in detail. Chapter
4 is dedicated to studying the evaluation results. We draw conclusions from that
study in Chapter 5.
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2 State of the art
2.1 Historical approximation to Question Answering and Ma-

chine Reading Comprehension
Question answering (QA) has been a fundamental research area in Natural Lan-
guage Processing, inherent to natural language interfaces for information sys-
tems. At present, QA systems are deployed in contexts such as virtual assis-
tants, search engines, or database interfaces. As a general notion, QA attempts
to automatically provide an exact answer to a given natural language question.
This notion can be formalized as several concrete tasks depending on the format
of the question, the format of the answer and the resources where the answer
should be found.

Starting from the 1960s, there have been two major paradigms of ques-
tion answering (QA): Knowledge-Based QA and Information Retrieval QA. The
best known early systems, Baseball (Green Jr et al., 1961) and LUNAR (Woods,
1972), are two examples of knowledge-based QA operating over the restricted
domains of the US baseball league and the Moon’s geological facts, respectively.
Knowledge-based QA focuses on mapping natural language questions to a for-
mal representation that can be used to query a database in a certain, closed
domain.

Conversely, Information Retrieval (IR) works over non-restricted domains.
IR-based QA can be seen as a two-stage task where, given a query, an informa-
tion retrieval algorithm selects relevant documents or passages from a collection,
and a reading comprehension algorithm selects an answer from these passages
in the form of a span of text. These two steps can be generalized as answer
generation and answer validation. An early example of this two-step architec-
ture is (Simmons et al., 1964). Early IR algorithms of this type were hindered
by the vocabulary mismatch problem (Furnas et al., 1987; Jones, 1972), since
they expected an overlap of words between the question and the passage. This
limitation was partially alleviated by dense word representations that could han-
dle synonymy, starting with Latent Semantic Indexing (Deerwester et al., 1990)
up until the current contextual word embeddings (Devlin et al., 2018). A more
flexible semantic overlap between question and passage is very beneficial for
factoid questions, which require little reasoning and can be solved by semantic
entailment in semantic relations are encoded more generally.

In contrast with factoid questions that can be solved by extractive IR, com-
plex QA requires integrating information and reasoning about events, entities,
and their relations across multiple sentences in the document, which can be un-
derstood as general reading comprehension. At present, the focus of the QA
community has moved away from information retrieval (i.e. the answer genera-
tion step), and onto reading comprehension (i.e. question validation) (Rodrigo
and Penas, 2017). This shift can be illustrated by the introduction of the Ques-
tion Answering for Machine Reading Evaluation (QA4MRE) campaign (Peñas et
al., 2012) at the Conference and Labs of the Evaluation Forum (CLEF) in 2011.
The QA4MRE campaign was based on Multiple Choice Reading Comprehension
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datasets, which simulate a scenario where candidate answers have already been
generated, so the focus is on validating these answers.

The name Question Answering for Machine Reading Evaluation reflects the
current importance of QA as the format (Gardner et al., 2019) of choice to eval-
uate the reading comprehension capability of current neural models aimed at
general language understanding. Transformer models’ dominance and the ne-
cessity of tasks to evaluate them justify the focus on answer validation, meaning
that at present the tasks of QA and Machine Reading Comprehension (MRC)
largely overlap (Chen, 2018). In the literature, similar datasets and systems
are described as QA or MRC indistinctively. And while it can also be discussed
(Zhang et al., 2020d) that MRC also encompasses other tasks beyond QA, such
as textual entailment, this work focuses on MRC understood as the answer vali-
dation component of QA.

2.2 Task definition
Machine Reading Comprehension requires inferring the answer to a given ques-
tion from a given context alone, even when the syntactic match between ques-
tion and passage is poor. The task can be formulated as a supervised learning
problem where given a collection of training examples {(pi, qi, ai)}ni=1, the goal
is to learn a predictor f : (p, q) −→ a which takes a passage of text p and a
corresponding question q as inputs and gives the answer a as output. This for-
mulation (Chen, 2018) then adopts different forms: the passage p can be a short
paragraph or a document with several paragraphs, the notion of question q can
be expanded to a cloze-style (fill-in-the-gap) task, and the task can involve ex-
tracting a span of text from the passage, choosing an answer among multiple
options, or even generating a free-form answer.

2.3 Task types and key datasets
Due to their having been generally adopted for the evaluation of systems capa-
ble of general reading comprehension and the steep evolution of these, recent
years have seen an explosion in the number of Machine Reading Comprehension
datasets available. As of September 2022, the popular huggingface repository1
lists 266 datasets in the question answering category. An exhaustive analysis of
this landscape is beyond the scope of this work, but in this section, following
(Chen, 2018)’s taxonomy, we will outline the types of QA/MRC tasks and de-
scribe a paradigmatic English dataset of each type. More complete surveys can
be found in (S. Liu et al., 2019; Rogers et al., 2021; Sugawara et al., 2018;
Zhang et al., 2019; Zhang et al., 2020d).

1https://huggingface.co/datasets?task_categories=task_categories:
question-answering
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2.3.1 Cloze-style
In contrast to formal questions, cloze-style queries consist of a sentence with one
or more gaps, so the answer is a word or short span of word, often representing
an entity or fact mentioned in the passage. The first large-scale MRC dataset, the
CNN/Daily Mail dataset (Hermann et al., 2015), follows this format. It collects
over 93k articles from the CNN and 220k articles from the Daily Mail. In the
original publications, each article was summarized by a series of bullet points.
From these, the authors automatically generate cloze-style queries by replacing
one named entity by a placeholder. This process limits the kind of answer — the
answers are always entities to be extracted from the article. (Chen et al., 2016)
show that in the CNN/Daily Mail dataset, “the required reasoning and inference
level …is quite simple” and that a relatively simple algorithm can get almost
close to the upper-bound. The CNN/Daily Mail dataset does not deliberately
include multi-sentence reasoning or unanswerable questions.

The automatic question-answer generation process is improved on Who did
what (Onishi et al., 2016), where answer options are person named entities
extracted from a related article about the same event. This reduces the syntactic
similarity between the question and the passage, increasing the need for deeper
semantic analysis. Still, the automatic question generation process introduces
a significant amount of noise in the dataset and limits the ceiling performance
by domain experts (Lai et al., 2017). One more relevant cloze-style dataset is
CLOTH (Xie et al., 2017), where human-crafted questions have been collected
from real reading comprehension tests for students. This method is discussed in
the next point.

2.3.2 Multiple-choice QA
In the Multiple-choice QA task, each question is paired with k hypothesized an-
swers (usually k = 4) where only one is correct. Research (Sugawara et al.,
2018) shows that multiple-choice questions tend to require a broader range of
reasoning skills than answer extraction questions, which usually can only target
factoids. On the other hand, the multiple-choice format can be seen as artifi-
cial regarding real-world scenarios, since it transforms the problem from giving
the correct answer to choosing the most plausible candidate. Still, the multiple-
choice format is considered an acceptable compromise between extractive and
free-form answers, given that it is still too difficult to evaluate the latter (Rogers
et al., 2020). The canonical large-scale dataset of this type is RACE (Lai et al.,
2017), which collects English as a second language exams at two levels of dif-
ficulty. Since the RACE dataset is the object of this work, it is described more
in-depth in Chapter 3.

The idea of using real-world human tasks to evaluate machine reading com-
prehension systems was introduced in (Hirschman et al., 1999), which collects
children’s reading comprehension tests with five “wh” (what, where, when, why,
and who) questions. (Levesque, 2014) suggest specifically the multiple-choice
format to evaluate MRC, emphasizing that, to ensure they demand complex rea-
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soning, questions and answers should be carefully designed by humans. The
Winograd schema (Levesque et al., 2012) proposes single sentences as refer-
ence, paired with binary questions. Another precursor is MCTest (Richardson et
al., 2013), still at a small scale (500 stories and 2000 questions). (Rodrigo et
al., 2015) collects more challenging questions from University entrance exami-
nations, that require a higher degree of textual inference, but as an evaluation
task (24 passages and 115 questions) it is not a sufficient training source for
neural models.

2.3.3 Extractive QA
The extractive QA task is equivalent to the aforementioned reading comprehen-
sion step in IR-based QA: the answer amust be a single span in the given passage
string p, and can be represented by positions astart and aend in p. The canonical
extractive QA dataset is the Stanford Question Answering Dataset (SQuAD) (Ra-
jpurkar et al., 2016). SQuAD was the first large-scale reading comprehension
dataset composed of natural questions — written by humans. It contains 107k
crowd-sourced question-answer pairs over 536 Wikipedia articles. SQuAD has
become the central benchmark in the field, with most models reporting evalua-
tion results on it.

The obvious limitation of extractive QA datasets is that they can only target
information explicitly mentioned in the text, and therefore can often get solved
with shallow lexical matching. In SQuAD, most questions have answer spans
embedded in sentences that are syntactically similar to the question, and this
syntactic similarity becomes a reliable shortcut that the model learns during
training. Another practical limitation of SQuAD is the lack of unanswerable
questions, caused by the recollection directive of formulating questions whose
answer can be found in the related passage. This problem is addressed in a
subsequent version, SQuAD 2.0 (Rajpurkar et al., 2018).

A different construction process is on TriviaQA(Joshi et al., 2017), based
on question-answer pairs collected from trivia websites. Evidence passages are
gathered from Wikipedia after the collection of questions, resulting in a notably
more challenging dataset than SQuAD due to the considerable syntactic and
lexical variability between questions and the corresponding evidence.

2.3.4 Freeform QA
The last category of QA tasks does not pre-specify any answer options, allow-
ing instead answers that consist of an arbitrary sequence of words. To answer
the questions, the machine needs to reason across multiple pieces of the text
and summarize the evidence (Chen, 2018). The milestone dataset in this cate-
gory is MS MARCO (Nguyen et al., 2016), that contains 1M questions sampled
from real, anonymized user queries to Microsoft’s Bing search engine paired
with passages extracted from real web documents retrieved by Bing. A simi-
lar example is Natural Questions (Kwiatkowski et al., 2019), with queries from
the Google search engine. Another notable example is NarrativeQA (Kočiskỳ
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et al., 2018), which consists of summarized narratives from books and movie
scripts extracted from Wikipedia and question-answer pairs about them written
by humanworkers. Particular about NarrativeQA is that answering the questions
requires understanding the underlying narrative rather than relying on shallow
pattern matching or salience.

Although the free-form task is the most similar to real application scenarios,
it also the most difficult to evaluate because it requires special metrics, such as
BLEU or ROUGE, to assess the natural language generation component.

2.4 Problems of existing MRC datasets
2.4.1 Natural questions
One of the challenges of constructing large-scale datasets is obtaining the ques-
tions. Most datasets in the previous section generate the questions through au-
tomatic processes or crowdsourcing, in both cases based on the evidence. This
hampers the applicability of experiments to real-world scenarios, where users
information needs are spontaneous and unconstrained. Since they do not in-
clude restricted answers, datasets based on naturally occurring questions such
as the aforementioned (Kočiskỳ et al., 2018; Kwiatkowski et al., 2019; Nguyen
et al., 2016) are more difficult to benchmark. An initiative around this problem
is BoolQ (Clark et al., 2019), which follows the data collection method described
in (Kwiatkowski et al., 2019) but only includes yes/no questions. Besides facil-
itating evaluation, yes/no questions have the benefit of often requiring a wide
range of inferential abilities to solve.

2.4.2 Complex reasoning
As MRC systems reach human performance on the most popular MRC datasets,
different strategies has been followed to create more difficult datasets. For ex-
ample, the ARC dataset (Clark et al., 2018) discards questions if they are too
easy for a word co-occurrence algorithm, and ComQA (Abujabal et al., 2018)
discard questions whose answer could be found by existing search engine tech-
nology. Other datasets focus on specific types of reasoning, such as counting or
sorting (Dua et al., 2019) or coreferential (Dasigi et al., 2019).

A principled approach to categorizing reasoning difficulty was taken in (Chen
et al., 2016; Lai et al., 2017), which establish five levels of reasoning difficulty
(in increasing order): word matching, paraphrasing, single-sentence reasoning,
multiple-sentence reasoning and insufficient/ambiguous. According to (Lai et
al., 2017), many questions in popular MRC datasets like CNN, SQuAD, and
RACE are simple factoid questions, or anyway can be solved by simple word
matching or paraphrasing (Lai et al., 2017). Single-sentence reasoning is a lot
easier for models than multi-sentence reasoning, as shown in (Richardson et al.,
2013). Integrating the information contained in multiple sentences is also much
more difficult for humans (Berninger et al., 2011). A dataset that focuses on
multi-sentence reasoning is MultiRC (Khashabi et al., 2018), and this concept is
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extended to long documents in NarrativeQA (Kočiskỳ et al., 2018), and multiple
documents (Yang et al., 2018). A comprehensive approach to several reasoning
phenomena is QuAIL (Rogers et al., 2020), a multiple-choice QA dataset where
questions are annotated by type of reasoning skill. QA system might face dif-
ferent sources of uncertainty; a taxonomy of complex reasoning skills needed is
detailed in (Rogers et al., 2021):

• Inference: refers to moving from a set of propositions to an accepted an-
swer. Several types of inference are categorized in philosophy, attending
to the kind of support (analogy, best explanation, defeasible reasoning),
the strength or the direction (inductive, abductive).

• Retrieval: while the extent of retrieval in MRC datasets may only refer to
the problem of locating information within a passage, another dimension
of retrieval is answerability, i.e. deciding whether the necessary infor-
mation can be found within the passage. We discuss this phenomenon
separately below.

• Input interpretation and manipulation: an MRC system needs the linguis-
tic skills to interpret coreference and ellipsis, as well as the numeric skills
to perform basic counting and ordering.

• Background knowledge: refers to a system’s access to the multitude of
facts necessary to create a world model upon which to base its common
reasoning. This phenomenon is discussed in the following subsection.

• Multi-step: a question may combine any of the above dimensions, that
need to be properly chained.

2.4.3 Background knowledge
An identifiable source of uncertainty when evaluating QA systems is background
knowledge. For example, if a question refers to something that happens sev-
eral times a month and the supporting passage mentions that an event hap-
pens every Saturday, the reasoning involved to answer the question would be
supported by the external knowledge that there are several Saturdays in each
month. In (Rogers et al., 2020), questions involving causality, entity properties,
belief states, subsequent state, or event duration are characterized as requiring
world knowledge to be answered.

QA systems need to incorporate world knowledge to answer these questions,
but at the same time, system evaluation needs to account for the possibility that
questions may be (partially) answered by the system’s world knowledge. In the
past, QA systems have tried to incorporate world knowledge using resources
such as Wordnet or FrameNets. By contrast, current QA systems based on large
language models already encode much background information due to pretrain-
ing, and in fact be queried for factoids directly (Roberts et al., 2020). Their eval-
uation poses the challenge of discriminating whether the system is performing
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inference over the given passage or utilizing pre-encoded background knowl-
edge to answer questions. Another reasons why QuAIL includes reasoning type
annotations is to examine this question.

2.4.4 Unanswerable questions
MRC datasets such as (Hermann et al., 2015; Lai et al., 2017; Rajpurkar et
al., 2016) are constructed with the assumption that a correct answer for every
question exist within the given context. However, this assumption does not hold
in real-world QA applications. For example, in web search there can be multiple
possible sources of information (typically web snippets) that may or may not
contain the correct answer. Since the information contained in a given passage is
limited, some questions inevitably will have no answer within the context of that
passage. In such scenario, a robust MRC system should refrain from answering
rather thanmake an unreliable guess— a sign of language understanding ability.
But to be able to consider the possibility that some questions have no answer,
models need to be trained on unanswerable examples.

Adding onto the previous version of SQuAD, SQuAD 2.0 (Rajpurkar et al.,
2018) includesmore than 50k unanswerable questions written by crowd-workers.
The premise was to add relevant questions with plausible (yet incorrect) answers
within the given passage, but which were unanswerable based on the passage
alone. Their analysis shows that systems’ performance is overestimated in the
presence of unanswerable questions.

Adversarial training Earlier studies have used automatic adversarial methods
to probe model robustness with similar conclusions. (Jia and Liang, 2017) show
how model performance on SQuAD degrades by more than half when tested
over examples adversarially modified with their AddSent algorithm, which ap-
pends a sentence that resembles the question to the reference passage. However,
the data generated this way is similar to the original, resulting in a less diverse
test set. (Wang and Bansal, 2018) propose an improved version of the algo-
rithm, AddSentDiverse, and an improved training regime including adversarial
data augmentation. (Gan and Ng, 2019) propose adversarial question para-
phrasing to test models’ reliance on string matching, and also apply the method
to the creation of training data, improving on models’ robustness. (Ziqing Yang
et al., 2019) experiment over both SQuAD and RACE, but instead of corrupting
the datasets they apply adversarial perturbations at the level of word embed-
dings during training.

In contrast with SQuAD 2.0, these adversarial methods have the advantage
of needing less human labour. However, they do not necessarily produce unan-
swerable questions. An exception is (Zhu et al., 2019), but the question varia-
tions produced are too lexically similar to the original ones and therefore do not
clarify whether the model fully understands them or relies on superficial cues.
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Answer removal While the above adversarial methods work by producing
modified questions for extractiveMRC, other dataset formats allow simplermeth-
ods. (Pradel et al., 2020) shows an example of unanswerable question gener-
ation in Knowledge-Based QA. They modify the Spider KB question answering
dataset by deliberately removing some information from the underlying rela-
tional databases. The present work follows a similar approach over the multiple-
choice MRC format.

Modelling question answerability MRC with unanswerable questions takes
into consideration the possibility that some questions cannot be answered based
on the given context. Here there are two subtasks to consider: giving the ac-
curate answer for answerable questions, and effectively distinguishing answer-
able from unanswerable questions. This last subtask requires an extra answer
verification mechanism. This verification step can be as simple as establishing
a threshold for prediction confidence in general purpose CLMs (Devlin et al.,
2018; Zhang et al., 2020a) and giving a null answer when that threshold is not
reached. Another option is to add a “no-answer” score to the score vector of the
answer span, as in (Clark and Gardner, 2017). A dedicated verifier to deter-
mine answerability can be based on a combined representation of the passage
and the answer, as in (Sun et al., 2018) and (Tan et al., 2018). Dedicated ver-
ifiers can also be additional layers to be trained jointly in a multitask-learning
setup, as in (Liu et al., 2017). In addition to this, (Hu et al., 2019) takes one
more step to verify whether the predicted answer is entailed by the reference
passage. This approach is also seen in (Back et al., 2019), who inspect whether
the answer meets all the conditions extracted from the question by comparing
the embeddings of both, which allows explaining why a question is classified as
unanswerable. In (Zhang et al., 2020b), such restrictions are modelled as syn-
tactic constraints. Finally, a multitask-style approach inspired by human reading
comprehension strategies can be seen in (Zhang et al., 2020c), where a “sketchy”
reading of the relationship between passage and question is done in parallel to
an intensive reading that verifies the answer.

2.5 An overview of current RC systems: Transformer models
Reading comprehension datasets and models have evolved in parallel: under-
standing the performance of existing models helps identify the limitations of
existing datasets (Chen, 2018), and more challenging datasets call for more ad-
vanced models.

Since 2018, a new generation of neural models has brought substantial ad-
vancement to most NLP tasks. The transformer is a novel neural network ar-
chitecture for sequence modelling. It follows the encoder-decoder, end-to-end
framework seen in previous state-of-the-art recurrent neural network models
like LSTMs (Seo et al., 2016) or gated networks (Wang et al., 2017), but cru-
cially dispenses with recurrence or convolutions, instead being based entirely
on self-attention (Vaswani et al., 2017). Most importantly, this allows for paral-
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lelization and thus faster training times. Fundamental for reading comprehen-
sion, transformers are also better than LSTMs at modelling long-term depen-
dencies (Dai et al., 2019) and word sense disambiguation (Tang et al., 2018).
Transformer models are first trained on very large, unlabelled text corpora with
a language modelling objective, in a process known as pretraining (Dai and
Le, 2015; Erhan et al., 2010). This self-supervised (Vaswani et al., 2017) step
ensures that transformers become universal approximators (Yun et al., 2019)
that can later be adapted to a variety of domains and downstream tasks by fine-
tuning (Howard and Ruder, 2018) on smaller datasets, without substantial task-
specific changes to the model architecture. The potential to leverage linguistic
information from the vast amount of unlabelled text data available today has
made transfer learning the current most common approach to many language
understanding tasks (Tenney et al., 2019).

Based on this shared high-level idea, different pretraining objectives have
been explored, with autoregressive and autoencoding language modelling be-
ing the most successful ones. Autoregressive language modelling aims to es-
timate the probability of a text corpus by factorizing the likelihood of a text
sequence x = (x1, . . . , xT ) into a forward product p(x) =

∏T
t=1 p(xt|x<t), thus

only learning uni-directional representations. By contrast, autoencoding-based
pretraining does not explicitly perform density estimation, but instead seeks to
reconstruct the original data from corrupted input (Vincent et al., 2008).

The model we use in this work is BERT (Devlin et al., 2018), the most no-
table example of autoencoding-based pretraining and currently most popular
baseline approach. BERT’s main pretraining objective, the masked language
model, consists in randomly replacing 15% of the tokens from the input by
a special symbol [MASK] (or sometimes another random word) and trying to
predict the original tokens. This effectively fuses left and right contexts. The
capability of modelling deep bidirectional contexts is crucial for QA tasks. An
additional training objective, next sentence prediction, emphasizes the rela-
tionships between two consecutive sentences, and thus makes BERT even more
suitable for QA tasks.

More performant, autoregressive models such as XLNet (Dai et al., 2019)
have appeared after BERT. However, BERT is still much less computationally ex-
pensive because its training objective dispenses with density estimation (instead,
BERT makes the unfavourable assumption of independence between masked to-
kens), and therefore remains the de facto baseline approach to QA tasks.
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3 Methodology
3.1 The RACE Dataset
The original RACE dataset (Lai et al., 2017) is a canonical benchmark inMultiple-
Choice Reading Comprehension (Devlin et al., 2018; Lan et al., 2019; Y. Liu et
al., 2019; Zhilin Yang et al., 2019). RACE is a collection of real English as a Sec-
ond Language exams for 12- to 18-year-old students in China. The exams are
intentionally designed by human experts (English instructors) to evaluate hu-
man language understanding and reasoning, which makes RACE an adequate
tool to examine Machine Reading Comprehension systems too. The dataset is
also large enough to allow the training of current data-driven Machine Reading
Comprehension systems.

Passage:
In my second year of high school, the class was scheduled to run the mile. when the
coach yelled, ”Ready. Set. Go!”, I rushed out like an airplane, faster than anyone else
for the first 20 feet. I made up my mind to finish first. As we came around the first of
four laps, there were students all over the track. By the end of the second lap, many of
the students had already stopped. They had given up and were on the ground breathing
heavily. As I started the third lap, only a few of my classmates were on the track. By the
time I hit the fourth lap, I was alone. Then it hit me that nobody had given up. Instead,
everyone had already finished. As I ran that last lap, I cried. And 12 minutes, 42 seconds
after starting, I crossed the finishing line. I fell to the ground. I was very upset.
Suddenly my coach ran up to me and picked me up, yelling, ”You did it. Mark! You
finished, son. You finished” He looked at me straight in the eyes, waving a piece of paper
in his hand. It was my goal for the day which I had forgotten. I had given it to him before
class. He read it aloud to everyone. It simply said, ”I, Mark Brown, will finish the mile
run tomorrow, come what may.” My heart lifted. My tears went away, and I had a smile
on my face as if I had eaten a banana. My classmates clapped. It was then I realized
winning isn’t always finishing first. Sometimes winning is just finishing.

Questions (correct answer in bold):
1) It took Mark _ to run the mile.
A. about 13 minutes
B. more than 13 minutes
C. only 12 minutes
D. less than 12 minutes
1) Why did Mark cry when he ran the last lap?
A. Because he was quite happy.
B. Because he was too upset.
C. Because he got a pain in his heart.
D. Because he was hungry.

Figure 1: Original sample passage and corresponding questions from RACE.
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The collected exams consist of a supporting passage accompanied by a vari-
able number of questions about it. Each of these questions is in turn paired with
4 candidate answers, of which only one is correct. A sample passage and two
corresponding questions from RACE-M can be seen in Figure 1.

The exams originate from either middle- (12 to 15 years old) or high-school
(15 to 18) examinations, thus allowing the dataset to be separated in two levels
of difficulty (which the authors denominate RACE-M and RACE-H, respectively).
There is a wide gap in difficulty; passages, questions and candidate answers
in RACE-H are 52% longer on average, and contain a much wider vocabulary
(125120 tokens in RACE-H vs. 32811 in RACE-M). The authors claim that, since
both its questions and candidate answers are human generated, RACE is more
challenging than comparable-scale Reading Comprehension datasets. To sup-
port this claim, they annotate a sample of questions with the type of reasoning
phenomena involved: statistics show that 33% of the questions in RACE involve
single-sentence reasoning and 26% multi-sentence reasoning, while a combined
37% can be solved with word matching or paraphrasing – this last figure is 74%
for SquAD. However, in contrast with QuAIL, the RACE dataset is not annotated
with reasoning type beyond this analysed sample.

RACE contains a total of 27933 text passages with 97687 questions. The
authors provide predefined train, validation and test splits. The tables below
detail the numbers of passages (table 1) and questions (table 2) per difficulty
level and split:

Table 1: Number of passages per difficulty level and split in RACE.

division train validation test all
RACE-H 18728 1021 1045 20794
RACE-M 6409 368 362 7139
all 25137 1389 1407 27933

Table 2: Total number of questions per difficulty level and split in RACE.

division train validation test all
RACE-H 62445 3451 3498 69394
RACE-M 25421 1436 1436 28293
all 87866 4887 4934 97687

3.2 Rendering questions unanswerable
Our definition of unanswerable question is akin to the one seen in QuAIL (Rogers
et al., 2020), where a question is annotated as unanswerable when the support-
ing passage does not provide sufficient information, and world knowledge does
not make one of the answers more likely. By contrast, all questions in the original
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RACE dataset are answerable in principle. To render a question unanswerable,
we simply replace the correct answer option with a sentence that implies that
no answer exists among the given options, i.e. None of the answers are correct.
Eliminating the correct answer turns a question unanswerable regardless of the
type of reasoning involved: it works both in cases where the answer is contained
in the supporting passage literally or can be inferred by reasoning over it, and
questions that require eventual world knowledge to be answered. The remain-
ing three answer options will be plausible but incorrect, thus the only correct
answer is choosing that None of the answers are correct.

To prevent model overfitting (i.e. that systems learn to identify None of the
answers are correct. as the correct answer to any question) and again following
QuAIL, we also introduce the “unanswerable” option in questions that should
remain answerable. In these cases, we replace one of the incorrect answer op-
tions chosen at random, therefore keeping the correct answer choice available,
but at the same time introducing a different kind of distractor, one that indi-
cates that the question may be unanswerable given its particular context and
the other answer choices. Figure 2 shows how we modify the two questions
from the previous Figure 1.

A question modified to be unanswerable:
1) It took Mark _ to run the mile.
A. None of the answers are correct.
B. more than 13 minutes
C. only 12 minutes
D. less than 12 minutes

A question modified to remain answerable:
1) Why did Mark cry when he ran the last lap?
A. Because he was quite happy.
B. Because he was too upset.
C. Because he got a pain in his heart.
D. None of the answers are correct.

Figure 2: Modified sample questions from RACE.

3.3 Generating a modified version of RACE
For convenience, we access the RACE dataset through the huggingface’s Datasets
(Lhoest et al., 2021) library, where instances are already separated by question
(in the version provided by the author, questions are grouped together with
their common supporting passage). In this structure, each example consists of
a question, supporting passage, four candidate answers, and label of the correct
answer.

We create a series of altered versions of the original dataset in order to sim-
ulate scenarios with a different, measurable occurrence of unanswerable ques-
tions. For every version, we apply the modification procedure described in the
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previous section to all questions in the dataset. A parameter C governs the rate
of unanswerable questions in a version, and thus the probability of eliminating
(replacing) the correct answer choice. We divide the dataset by split and diffi-
culty level, and apply the parameter to each group separately, choosing C ×N
examples at random, where N is the number of questions in a particular diffi-
culty level and split. On these chosen instances, we replace the correct answer
by None of the answers are correct.. On the rest of the instances, we preserve the
correct answer and replace an incorrect candidate at random.

For test splits, the process is repeated 5 times, creating 5 test splits per dataset
with differently altered instances.

The value of the parameter C is in the range [0 − 1], where 0 indicates that
the replaced option will always be an incorrect one and therefore all questions
remain answerable, and 1 indicates that for all questions the correct option will
be replaced, producing a scenario where all questions become unanswerable.
Intuitively, these extreme scenarios are senseless, and we expect the middle val-
ues of C to produce the interesting results. Still, the aim of the experiment is
to compare all possible scenarios. We give C the whole range of values [0 − 1]
in steps of 0.1, producing 11 modified copies of RACE with proportions of 0%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of unanswerable
questions.

3.4 Data pre-processing
A large portion of questions in RACE are not proper questions but cloze tasks,
where a gap in a sentence must be filled with a word or short span of words.
Candidate answers to cloze tasks usually do not constitute fully formed sen-
tences. We identify cloze tasks by the character “_”, used to signal the gap to be
filled. By contrast, proper questions usually contain the character “?”. We count
the questions containing “_” and/or “?” (see Table 3) and manually examine
questions that contain both or none and their corresponding answers, deciding
to treat all questions containing “_” as cloze tasks and questions not cntaining
that character as proper questions.

Table 3: Number of questions in RACE, per difficulty level and split, containing
the characters “_” and/or “?”.

level split
contains

“?”
contains

“_”
contains “?”

and “_”
neither “?”

nor “_”
RACE-H train 29438 31340 557 1110

validation 1610 1737 33 71
test 1588 1815 33 62

RACE-M train 10965 13629 549 278
validation 620 771 34 11
test 617 774 18 27
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BERT needs to be fed sequences of sentences separated by a special token,
[CLS]. Thus, to feed themodel we need to transform the dataset’s instances from
a set {passage, question, 4 options, answer} to a sequence. The genera-
tion of this sequence depends on the type of questions. For proper questions, the
resulting sequence has three items, of the form [passage, question, option].
By contrast, for cloze tasks we substitute the answer within the question, obtain-
ing a sequence with two items of the form [passage, question+option]. For
the answer option that has been replaced, “proper question” instances have the
form [passage, question, None of the answers are correct.], while cloze
tasks have the form [passage, None of the answers are correct.]

3.5 Training and evaluation
On each of the 11 datasets we fine-tune a pre-trained BERTmodel with the same
hyperparameters. We fine-tune on the train splits of both RACE-M and RACE-H.

Each of these 11models is evaluated on the 11 datasets. For each dataset, the
model is evaluated on 5 different test splits. The battery of metrics is calculated
separately for each of these 5 test splits, and then averaged by dataset.

3.6 Experimental setup
We use the English BERT-base2 from huggingface Transformers (Wolf et al.,
2019) in a Google Colab3 instance with 8 TPUv2 cores. Furthermore, we make
use of the PyTorch framework (Paszke et al., 2019) and huggingface’s Datasets
(Lhoest et al., 2021) library. Additionally, training was aided by huggingface’s
Accelerate4 library while in evaluation we used PyTorch/XLA5.

2https://huggingface.co/bert-base-uncased
3https://colab.research.google.com
4https://huggingface.co/docs/accelerate/index
5https://github.com/pytorch/xla/
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4 Experimental results
In this chapter, we apply a battery of metrics to the evaluation results obtained
in the previous chapter and discuss the results. For every metric, we construct
an 11 × 11 matrix that relates the 11 models (each trained with a differently
modified version of the RACE dataset) with the 11 test sets. The intention is
to compare the evaluation results of every model over every test set in a single
overview, all at once.

We present thesematrices of results as heatmaps (colour-shaded tables) where
columns represent the 11 trained models ordered by the percentage of unan-
swerable questions on their training set, and rows represent the 11 test sets
— also ordered by the percentage of unanswerable questions in them. In this
setup, a cell contains the value of a metric calculated on the evaluation results
of a particular model over a particular test set. For instance (see Figure 3), on
the heatmap for recall, cell (7, 4) contains the value of recall obtained after eval-
uating the model we trained on a modified version of RACE with 70% of unan-
swerable questions over a modified version of RACE with 40% of unanswerable
questions.

Figure 3: Detail of a cell in the matrix of Recall values: the zoomed-in cell displays
the Recall value obtained by testing the model trained on 70% or unanswerable
questions on a test set with 40% of unanswerable questions.

All the discussed produce values in the range [0, 1]. We display metric values
as float point numbers with a precision of 2 decimals — we sacrifice the con-
venience of converting to percentage to avoid confusion with axes values. Cells
are shaded according to the value they contain, with values close to 0 in black
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and values close to 1 in lighter colours. We use two different colour schemes:

(a) When introducing metrics based on accuracy, i.e. whether the predicted
answer is correct, we use themako colourmap included in the visualization
package Seaborn6, where mid values map to bright blues and high values
map to lighter green.

(b) When presenting metrics based on answerability, i.e. whether the ques-
tion is predicted to be answerable or unanswerable, we use Seaborn’s
rocket colourmap, where mid values map to bright reds and high values
map to lighter orange.

To allow visual comparison of ranges and values among different metrics,
mapping remains constant among heatmaps, i.e. the colourmap always maps to
the range [0− 1], and a particular value, such as 0.4, will have the same colour
in every table.

In tables presenting answerability-based metrics, we shall see that some cells
are light grey. This indicates that their value is undetermined. These are caused
by zero division. For example, if we look at the recall of unanswerable ques-
tions (Figure 6), the bottom row is greyed out, since it represents a test set with
zero unanswerable questions, and therefore calculating recall here involves zero
division.

At the upper and right ends of every heatmap we show column and row av-
erages, respectively. Column averages allow an overview of the behaviour of a
certain model across multiple testing scenarios, while row averages sum up the
difficulty of a test set for different models.

We have evaluated themodels on (modified versions of) RACE high and RACE
middle separately (models were trained on both), but the results we discuss on
this section are aggregated for the entire dataset. The results over (a version
of) RACE middle are always better than the results over (the corresponding ver-
sion of) RACE high. However, we will dismiss these differences in performance
because our interest lies in comparing training strategies, which means looking
at metric values within a certain matrix of models and test sets. For any given
metric, the patterns that emerge in the matrices for both levels of difficulty are
always similar. Therefore, in this section we will be showing aggregated results
for RACE high and RACE middle. For a breakdown by difficulty level, please refer
to the Appendix.

6https://seaborn.pydata.org/tutorial/color_palettes.html
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4.1 General accuracy
Multiple-choice question answering systems are usually evaluated according to
their general accuracy, i.e. the proportion of questions in a test set for which
the predicted answer is equal to the correct answer in relation to the number of
questions in the set (N):

General acc. = correctly answered
N

We show the values of this metric for each combination of model and test
set on Figure 4. The bottom left cell displays the accuracy of a BERT model
that has seen 0% unanswerable questions, neither during training nor during
evaluation, and therefore is the baseline value. However, remember that in any
given dataset, all instances have been modified — unanswerable questions are
those where the correct answer is None of the answers are correct.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%  avg train
Train dataset

0%
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100%
 

avg test

Te
st

 d
at

as
et

0.71 0.65 0.60 0.53 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

0.64 0.62 0.58 0.53 0.44 0.38 0.33 0.27 0.14 0.12 0.10 0.38

0.57 0.58 0.56 0.53 0.46 0.42 0.38 0.34 0.24 0.22 0.20 0.41

0.50 0.54 0.55 0.53 0.48 0.45 0.44 0.41 0.33 0.31 0.30 0.44

0.43 0.51 0.53 0.53 0.50 0.48 0.49 0.47 0.42 0.41 0.40 0.47

0.36 0.47 0.51 0.53 0.51 0.51 0.54 0.54 0.52 0.50 0.50 0.50

0.28 0.43 0.49 0.52 0.53 0.54 0.59 0.61 0.61 0.60 0.60 0.53

0.21 0.39 0.47 0.52 0.55 0.58 0.64 0.67 0.70 0.70 0.70 0.56

0.14 0.36 0.45 0.52 0.56 0.61 0.70 0.74 0.79 0.79 0.80 0.59

0.07 0.32 0.43 0.52 0.58 0.64 0.75 0.80 0.89 0.89 0.90 0.62

0.00 0.28 0.42 0.51 0.59 0.68 0.80 0.87 0.98 0.99 1.00 0.65

0.36 0.47 0.51 0.52 0.51 0.51 0.54 0.54 0.52 0.51 0.50 0.50

Figure 4: Model accuracy on modified RACE test sets

The general observation on this table comes from looking at the diagonal
starting from the bottom-left: a model’s accuracy is better when it is tested on
a dataset with an amount of unanswerable questions similar to the dataset on
which it was trained.

For models trained on datasets with a high amount (80-100%) of unan-
swerable questions, the accuracy on any particular test set almost matches the
amount of unanswerable questions in that set. This suggests that these models
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have learnt to identify the “unanswerable” option as the correct answer, and
they fail to discern the small percentage of truly answerable questions.
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0.71 0.65 0.60 0.53 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

0.71 0.65 0.60 0.53 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

0.72 0.65 0.60 0.54 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

0.71 0.65 0.60 0.53 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

0.71 0.65 0.60 0.53 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

0.71 0.66 0.61 0.54 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

0.71 0.65 0.60 0.53 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

0.71 0.65 0.61 0.54 0.43 0.35 0.28 0.21 0.06 0.02 0.00 0.35

0.72 0.65 0.60 0.53 0.43 0.35 0.27 0.21 0.06 0.02 0.00 0.35

0.71 0.65 0.59 0.52 0.44 0.36 0.27 0.20 0.06 0.02 0.00 0.35

0.71 0.65 0.60 0.53 0.43 0.35 0.28 0.21 0.05 0.02 0.00 0.35

Figure 5: Model accuracy on modified RACE test sets when taking only answerable
questions into account.

We have intentionally created imbalanced datasets in terms of answerability,
and that makes it difficult to compare accuracy values across them. To further
break down these results, wewill look separately at the accuracy in each group of
questions, answerable and unanswerable. Figure 5 shows the general accuracy
when only taking answerable questions into account.

Here, we observe that model accuracy remains relatively constant across test
sets (i.e. by column), but declines rapidly across models as the percentage of
unanswerable questions seen in training rises (i.e. towards the right side of the
table). The reason for this is that predictions are independent of each other, thus
when only looking at answerable questions, the amount of unanswerable ques-
tions in a test set does not matter: what we are looking at here is each model’s
ability to correctly answer answerable questions. And this ability is severely im-
pacted by the presence of unanswerable questions in training: models trained
on over 80% of unanswerable questions are almost completely unable to give
proper answers.

While for each model we see a slight change in accuracy on answerable ques-
tions towards the upper end of the table, this is likely an artifact due to the
smaller number of total answerable questions on those test sets.
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0.00 0.28 0.42 0.53 0.60 0.68 0.81 0.87 0.98 0.98 1.00 0.65

0.00 0.28 0.41 0.52 0.59 0.68 0.81 0.87 0.98 0.99 1.00 0.65

0.00 0.28 0.42 0.52 0.59 0.68 0.81 0.87 0.98 0.99 1.00 0.65

0.00 0.28 0.41 0.52 0.59 0.68 0.80 0.87 0.98 0.98 1.00 0.65

0.00 0.28 0.42 0.52 0.59 0.67 0.80 0.87 0.98 0.99 1.00 0.65

0.00 0.28 0.42 0.52 0.59 0.67 0.80 0.87 0.98 0.99 1.00 0.65

0.00 0.28 0.41 0.51 0.59 0.67 0.80 0.87 0.98 0.99 1.00 0.65

0.00 0.28 0.42 0.51 0.59 0.68 0.80 0.87 0.98 0.99 1.00 0.65

0.00 0.28 0.42 0.51 0.59 0.68 0.80 0.87 0.98 0.99 1.00 0.65

0.00 0.28 0.42 0.51 0.59 0.68 0.80 0.87 0.98 0.99 1.00 0.65

0.00 0.28 0.42 0.52 0.59 0.68 0.80 0.87 0.98 0.99 1.00 0.65

Figure 6: Accuracy on unanswerable questions only, or recall, on modified RACE
test sets.

If instead we look at the accuracy on unanswerable questions (Figure 6), we
see the reverse pattern: models trained on a high proportion of unanswerable
question can reliably detect them. The models that saw over 80% of unanswer-
able questions in training can almost always detect them, but as we saw earlier
(Figure 5) this is at the expense of the ability to deal with answerable questions.
On the other hand, on the left-most columnwe see that the model that saw 0% of
unanswerable questions in training never detects them, suggesting the model’s
inability to infer that none of the other questions is correct or to reasoning over
the content of the “unanswerable” answer option, which in turn signals a strong
preference for word matching. However, the model that saw only 10% of unan-
swerable questions in training does show a certain ability to detect them above
expectations (though still unreliable). But as we saw on Figure 5, this comes at
the expense of the capacity to deal with answerable questions.

Although the models trained on datasets with less uncertainty about the
amount of unanswerable questions are the ones whose accuracy is better in some
scenario (in the ones they were trained for), when aggregating results by model
we observe that it is the models that have been trained with a sizeable amount
of unanswerable questions that perform better overall on a variety of scenarios.
Looking at the average accuracy over different datasets, we see that the model
trained on 60% of unanswerable questions has the highest average accuracy of
all models over all modified versions of RACE.
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4.2 Metrics in terms of answerability
While general accuracy reveals that models are very susceptible to the presence
of unanswerable questions in training data, in ourmultiple-choice setup it speaks
as much about a model’s capacity to determine answerability as about its ability
to correctly answer the questions it deems answerable. To untwine this super-
imposition, we will continue examining the evaluation results by focusing on
answerability alone. In this section, we dismiss the answer given to answerable
questions, paying attention only to whether the system identifies unanswerable
questions. What we propose is the binarization of the model’s responses: in-
stead of A, B, C or D, we will interpret the model’s responses as unanswerable
or answerable. A model decides a question is unanswerable when it chooses the
option that contains None of the answers are correct., and decides the question is
answerable when it chooses any of the other 3 answers). In this way, we switch
the problem from identifying the right answer to recognizing if the question is
answerable given the options. Note that for the calculation of subsequent met-
rics, we consider unanswerable as the positive class.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%  avg train
Train dataset
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1.00 0.91 0.83 0.73 0.62 0.52 0.38 0.28 0.06 0.03 0.00 0.49

0.90 0.85 0.78 0.71 0.62 0.53 0.43 0.34 0.16 0.13 0.10 0.50

0.80 0.79 0.74 0.69 0.62 0.55 0.47 0.40 0.25 0.22 0.20 0.52

0.70 0.73 0.70 0.67 0.62 0.57 0.51 0.46 0.34 0.32 0.30 0.54

0.60 0.66 0.66 0.65 0.62 0.58 0.55 0.52 0.43 0.41 0.40 0.55

0.50 0.60 0.62 0.63 0.61 0.60 0.59 0.57 0.52 0.51 0.50 0.57

0.40 0.54 0.58 0.61 0.61 0.61 0.63 0.63 0.61 0.60 0.60 0.58

0.30 0.47 0.54 0.58 0.60 0.63 0.67 0.69 0.70 0.70 0.70 0.60

0.20 0.41 0.50 0.56 0.60 0.64 0.72 0.75 0.80 0.80 0.80 0.62

0.10 0.35 0.46 0.54 0.60 0.66 0.76 0.81 0.89 0.89 0.90 0.63

0.00 0.28 0.42 0.51 0.59 0.68 0.80 0.87 0.98 0.99 1.00 0.65

0.50 0.60 0.62 0.63 0.61 0.60 0.59 0.57 0.52 0.51 0.50 0.57

Figure 7: Answerability accuracy, i.e. accuracy at unanswerable question detec-
tion.

We define answerability accuracy as:

Answerability acc. = | unanswerable ∧ pred. unanswerable | + | answerable ∧ pred. other |
N
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On Figure 7 we observe that answerability accuracy has a distribution pat-
tern that is similar what we saw for general accuracy. However, values towards
the lower left corner of the table are higher in this case, simply indicating that
models hardly ever choose the unanswerable option when it was hardly seen in
training. We can see this on Figure 8:
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0.00 0.09 0.17 0.27 0.38 0.48 0.62 0.72 0.94 0.97 1.00 0.51

0.00 0.09 0.18 0.27 0.38 0.48 0.62 0.72 0.93 0.97 1.00 0.51

0.00 0.09 0.17 0.26 0.38 0.48 0.62 0.72 0.93 0.97 1.00 0.51

0.00 0.08 0.17 0.27 0.38 0.48 0.62 0.72 0.93 0.97 1.00 0.51

0.00 0.09 0.17 0.26 0.37 0.48 0.62 0.72 0.93 0.97 1.00 0.51

0.00 0.08 0.17 0.26 0.37 0.48 0.62 0.72 0.93 0.97 1.00 0.51

0.00 0.08 0.17 0.26 0.37 0.48 0.62 0.72 0.93 0.97 1.00 0.51

0.00 0.09 0.17 0.27 0.37 0.48 0.62 0.72 0.93 0.97 1.00 0.51

0.00 0.09 0.17 0.26 0.37 0.48 0.62 0.72 0.93 0.97 1.00 0.51

0.00 0.09 0.18 0.28 0.37 0.47 0.62 0.73 0.93 0.97 1.00 0.51

0.00 0.09 0.17 0.27 0.37 0.48 0.62 0.72 0.93 0.97 1.00 0.51

Figure 8: Proportion of times the “unanswerable” option is chosen.

When looking at aggregates by model (the single row above the main ta-
ble) on Figure 7, we see that now it is the model that saw 30% of unanswer-
able questions that performs best on average across all 11 testing scenarios.

We refer again to Figure 6 to observe the models’ recall regarding answerabil-
ity. When measuring the retrieval rate for the unanswerable option (i.e. recall),
how we interpret True Negatives does not matter. If we take unanswerable to be
the positive class, recall in terms of answerability is the same as general recall.
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1.00 0.91 0.83 0.73 0.62 0.52 0.38 0.28 0.06 0.03 0.00 0.49

1.00 0.91 0.82 0.73 0.62 0.52 0.38 0.28 0.07 0.03 0.00 0.49

1.00 0.91 0.83 0.74 0.62 0.52 0.38 0.28 0.07 0.03 0.00 0.49

1.00 0.92 0.83 0.73 0.62 0.52 0.38 0.28 0.07 0.03 0.00 0.49

1.00 0.91 0.83 0.74 0.63 0.52 0.38 0.28 0.07 0.03 0.00 0.49

1.00 0.92 0.83 0.74 0.63 0.52 0.38 0.28 0.07 0.03 0.00 0.49

1.00 0.92 0.83 0.74 0.63 0.52 0.38 0.28 0.07 0.03 0.00 0.49

1.00 0.91 0.83 0.73 0.63 0.52 0.38 0.28 0.07 0.03 0.00 0.49

1.00 0.91 0.83 0.74 0.63 0.52 0.38 0.28 0.07 0.03 0.00 0.49

1.00 0.91 0.82 0.72 0.63 0.53 0.38 0.27 0.07 0.03 0.00 0.49

1.00 0.91 0.83 0.73 0.63 0.52 0.38 0.28 0.07 0.03 0.00 0.49

Figure 9: Specificity at unanswerable question detection.

The retrieval of answerable questions or specificity (Figure 9) yields a pattern
similar to the one seen on Figure 5. Values here are generally higher, indicat-
ing that models that saw few unanswerable questions in training tend to fail by
choosing “proper” but incorrect answers, not by choosing the unanswerable op-
tion. This again can be explained by BERT’s preference for adjacent sentences
that are semantically related.
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4.3 Comparing results on imbalanced datasets
In this work, we compare the results of testing a series of biased models on a
series of imbalanced datasets. While the datasets are (deliberately) imbalanced,
we hypothesize that retrieving one class is as important as retrieving the other.
In such a situation, the ideal scenario is a combination of model and test set that
yields good accuracy over the two classes. But so far, the results indicate that the
ability to retrieve one class is detrimental to the ability to retrieve the other. We
need metric that takes into account the accuracies on each of the two classes at
the same time. To that end, we propose using Youden’s J statistic or Youden’s
index (Youden, 1950), defined as:

J = recall+ specificity− 1

Expanding the formula we have:

J =
true positives

true positives+ false negatives +
true negatives

true negatives+ false positives − 1

Which in our case translates to:

J =
true unanswerable
total unanswerable +

true answerable
total answerable − 1

Youden’s J statistic is a measure of informedness that gives equal weight to
the two types of error: false negatives (unanswerable questions for which the
system chooses a “proper” answer) and false positives (answerable questions
declared unanswerable). It produces values in the range [0 − 1] (by definition
[−1 − 1], but a negative value can be corrected by switching the classes), and
can be seen as a linear transformation of the balanced accuracy (the arithmetic
mean of recall and specificity). We have chosen Youden’s J statistic over balanced
accuracy because it produces a wider range of values.
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0.00 0.20 0.25 0.27 0.22 0.20 0.19 0.15 0.04 0.02 0.00 0.14

0.00 0.19 0.24 0.26 0.22 0.19 0.19 0.15 0.04 0.02 0.00 0.14

0.00 0.20 0.25 0.26 0.22 0.20 0.19 0.15 0.05 0.02 0.00 0.14

0.00 0.20 0.24 0.25 0.22 0.20 0.19 0.15 0.05 0.02 0.00 0.14

0.00 0.20 0.24 0.25 0.22 0.19 0.18 0.15 0.04 0.02 0.00 0.14

0.00 0.20 0.24 0.25 0.22 0.19 0.18 0.15 0.05 0.02 0.00 0.14

0.00 0.19 0.25 0.25 0.23 0.19 0.18 0.15 0.05 0.02 0.00 0.14

0.00 0.20 0.24 0.25 0.23 0.20 0.18 0.15 0.05 0.02 0.00 0.14

0.00 0.20 0.23 0.24 0.22 0.20 0.18 0.14 0.05 0.02 0.00 0.13

0.00 0.20 0.24 0.25 0.22 0.20 0.19 0.15 0.05 0.02 0.00 0.14

Figure 10: Youden’s J statistic in terms of answerability.

The values in Figure 10 reveal that both Figure 4 and Figure 7 are too opti-
mistic. As seen above, a model’s accuracy is generally good on test sets that are
similar to the one the model was trained on, which leads to good values towards
the lower left and upper right corners of the tables — where train and test sets
have little uncertainty concerning answerability and also match.

Here we see a different picture: as expected, the values on the leftmost and
three rightmost columns are almost 0, again confirming that the respective mod-
els only have predictive capability for the class they have seen most. Results are
not much better towards the centre of the table, and no value reaches 0.5, in-
dicating all models’ poor informedness concerning answerability. However, we
see that the “30%” model is clearly better informed that the others.

Although our results generally speak of a big trade-off between recognizing
answerability and correctly answering abilities, and do not allow us to prescript
any particular training regime, the 30% of unanswerable questions in training
could be an interesting focus point in combination with the proposals we make
in the following, last chapter.
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5 Conclusions and future work
After having looked at the evaluation results obtained from ourmethod to find an
optimal scenario for the identification of unanswerable questions in QA systems,
in this chapter we draw conclusions about how well these results answer the
research questions set out in Chapter 1, we assess our methodology in light of
the results, and consider future directions for the present research taking note
of that assessment.

5.1 Research questions revisited
Research question 1: What is the optimal scenario to identify unanswerable
questions? Our experimental results indicate a strong preference for certainty
regarding answerability, but not a clear path on how to deal with uncertainty re-
garding answerability, the main aim of the study. Models only obtained strong
results when dealing with datasets that a) were similar to the ones they had
been trained on and b) contained a very low or very high number of unanswer-
able questions. Models were for the most part unable to deal with distractors,
and only reproduced training bias. Youden’s J statistic and Figure 10 reveal
that a proportion of 30% of unanswerable questions during training yields the
most informed system, but to the general decrease in ability to correctly answer
questions that might be unanswerable once they occur during training, we can-
not recommend setup. Further research is needed to achieve a scenario where
unanswerable questions can be recognized to a significant extent without harm-
ing the system’s ability to answer answerable questions.

Research question 2: Does BERT need to see a higher proportion of unan-
swerable questions in training to be able to reliably identify them in test?
Looking at Figure 4 by row we see that in an evaluation scenario with 50% of
unanswerable questions, the amount of them seen in training does not matter
as long as there were some — over 10%. For scenarios with less that 50% of
unanswerable questions (presumably more likely), models that saw less than
that amount are preferable. If we relax the criteria and look at answerability
detection only (Figure 7), the evaluation scenario with 50% of unanswerable
questions is also better handled by models that saw a lower proportion during
test. Only for scenarios with more that 50% of unanswerable questions the re-
sults suggest indeed a higher proportion during training.

The above signals that the proportion of unanswerable questions a BERT
system should see during training largely depends on the end application.

Research question 3: How does a trained BERT model respond when it is
tested on different proportions of unanswerable questions? Our results show
that BERT models generally benefit from a biased training. However, looking at
the performance separately on each class, we see that the ability to detect an-
swerability or to correctly answer answerable questions remains constant across
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different scenarios. There is a trade-off between the two abilities which appears
in any scenario, but while a model’s performance depends on the evaluation
scenario being biased in the same direction as the model, model’s informedness
stays the same. Therefore, we would advise that it is unnecessary to test models
in different scenarios regarding answerability. A single scenario with 10–50%
of unanswerable questions, which matches what is proposed in other literature,
would suffice.

5.2 Evaluation of the proposedmethod and further directions
5.2.1 Adversarial methods and the multiple-choice format
Evaluation results (Figures 4, 5) clearly show how detrimental the adversarial
method of answerable questions replacement (by unanswerable ones) was to
the system’s ability to effectively answer answerable questions. Given the sys-
tem’s almost complete inability to deal with answerable questions when their
proportion in training was low, we can ascribe this inability to insufficient train-
ing data.

This points out at an alternative method consisting in the adversarial aug-
mentation of the original RACE dataset, where modified, unanswerable ques-
tions are added along with the original, answerable ones. This would have the
additional benefit of allowing further interpretation of false positives: if the sys-
tem decides that a question is unanswerable while the answer is in fact present,
we could study how this happened by comparing the system’s response to the
original question, in turn prompting the study of the original dataset and its
distractor answer options.

5.2.2 Interaction of the chosen dataset format and model
As we have seen in Chapter 2, working with the multiple-choice format in-
volves devising a format to simultaneously feed the model a passage, a ques-
tion, and four answer options. Since we decided to use a baseline BERT model
directly, feeding BERT these elements simultaneously means transforming a set
of the form {passage, question, 4 options} into 4 sequences of the form
[passage, question, option] or [passage, question&option] (depending
on the form of the question). This has the effect of transforming answerable
questions into sequences of semantically related sentences, while unanswerable
questions become sequences of sentences where the last one is going to be largely
unrelated to the preceding ones. At the same time, this changes the problem into
selecting the most probable sequence.

BERT has a secondary pretraining objective of next sentence prediction, favour-
ing semantically related contiguous sentences. This means BERT will give an-
swerable and unanswerable questions very different scores, which is clearly ben-
eficial for answerability detection. However, it does not mean that BERT is rea-
soning over the content of the “unanswerable” option, or that it is reasoning over
the different options simultaneously. What we see in the results is that answer
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options are scored independently of each other, which means that if a BERT
model is biased to see more unanswerable questions, most likely it recognizes
the sequence with the lowest score as the correct one, while this is not always
the keys. This could be further analysed by studying the effects of different pro-
portions of distractor questions during training and test — in the present work,
we have introduced the distractor in every set of options.

5.2.3 What makes questions unanswerable?
In this work we have modified a multiple-choice QA dataset by replacing some
answer options by the sentence None of the answers are correct. The experi-
mental results, but also the dataset’s format, make it difficult to study whether
the content of the unanswerable question was ideal, since we have no data to
elucidate why some unanswerable questions are detected why others are not.
An opportunity to further examine this, perhaps in combination with the adver-
sarial augmentation proposed above, would be to study the effects of different
contents in the “unanswerable” option, be it special tokens, alternative phrases
or an analysis of the system’s responses when the correct answer is simply elim-
inated. Moreover, further inquiry into what constitutes an unanswerable ques-
tion could point out at different possibilities to generate unanswerable questions
from existing data.
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A Appendix: Experimental results by difficulty level
A.1 Experimental results on RACE high
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Figure 11: Model accuracy on modified RACE high test sets
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Figure 12: Model accuracy on modified RACE high test sets when taking only
answerable questions into account.
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Figure 13: Accuracy on unanswerable questions only, or recall, on modified RACE
high test sets.
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Figure 14: Accuracy at unanswerable question detection on modified RACE high
test sets.
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Figure 15: Proportion of times the “unanswerable” option is chosen on modified
RACE high test sets.
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Figure 16: Specificity at unanswerable question detection on modified RACE high
test sets.
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Figure 17: Youden’s J statistic in terms of answerability on modified RACE high
test sets.
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A.2 Experimental results on RACE middle
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Figure 18: Model accuracy on modified RACE middle test sets
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Figure 19: Model accuracy on modified RACE middle test sets when taking only
answerable questions into account.
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Figure 20: Accuracy on unanswerable questions only, or recall, on modified RACE
middle test sets.
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Figure 21: Accuracy at unanswerable question detection on modified RACE middle
test sets.
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Figure 22: Proportion of times the “unanswerable” option is chosen on modified
RACE middle test sets.
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Figure 23: Specificity at unanswerable question detection on modified RACE mid-
dle test sets.
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Figure 24: Youden’s J statistic in terms of answerability on modified RACE middle
test sets.
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