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Abstract

The field of distributional semantics has seen significant progress in recent years due

to advancements in natural language processing techniques, particularly through the

development of Neural Language Models like GPT and BERT. However, there are still

challenges to overcome in terms of semantic representation, particularly in the lack of

coherence and consistency in existing representation systems.

This work introduces a framework defining the relationship between a probabilistic

space, a set of meanings, and a vector space of static embedding representations; and

establishes formal properties based on definitions that would be desirable for any distri-

butional representation system to comply with in order to establish a common ground

between distributional semantics and other approaches. This work also introduces an

evaluation benchmark, defined on the basis of the formal properties introduced, which

will allow to measure the quality of a representation system.
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1 Introduction

Distributional semantics has undergone a major advance thanks to the existence of large

amounts of data, the increase in computational processing capabilities and advances in

natural language processing (NLP) techniques, especially thanks to the development

of Neural Language Models such as the Bidirectional Encoder Representations from

Transformers (BERT) (Devlin et al., 2019) or the Generative Pretrained Transformer

(GPT) (Radford et al., 2018, 2019) and Large Language Models.

However, despite this huge progress, there are still gaps to address in terms of se-

mantic representation. Semantic representation has important implications in areas such

as machine translation, information retrieval, the correction of non-semantic spaces by

contrastive methods and natural language understanding. Additionally, researchers in

both NLP and cognitive science are working to establish parallelisms in the way humans

learn a language and how large language models acquire knowledge from their training

data, increasing the interest on how these models encode and represent the knowledge

with the aim of being able to shed light in how humans acquire and represent the same

knowledge.

One of the most notable problems is the lack of coherence and consistency in the

representation of words and their semantic relations in existing representational sys-

tems (Maruyama, 2019). The main reason is that distributional semantics focuses on
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the study of how words acquire meaning through their use in specific contexts (the prin-

ciple of contextuality), as opposed to other approaches based on formal definitions and

grammatical categories (following the principle of compositionality).

In this context, and in order to establish some common elements between both

approaches, we propose a theoretical framework based on a semantic space (a space

of meanings) ruled by a set algebra, as well as its connection with the vector space

of embeddings and a space of word sequences. This allows the establishment of a set

of formal rules that allow a coherent and consistent representation of words and their

semantic relations.

The rest of this work is organized into five sections: Section 2 focuses on the moti-

vation behind the work, highlighting the specific challenges. In Section 3 a theoretical

framework is introduced, laying the foundation for the subsequent analysis and experi-

mentation. Section 4 outlines the methodology employed to create a benchmark, which

serves as a reference point for evaluating the benchmark. Section 5 presents the ex-

perimental findings, discussing the various proposals and contrasting their results of

the benchmark testing. Finally, Section 6 offers conclusions, summarizing the key con-

tributions, drawing meaningful insights from the study, and suggesting future lines of

research.
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2 Related work and motivation

There are different approaches and lines of research within distributional semantics. On

one hand, most of the work on evaluation of models based on distributional semantics

focuses on the effectiveness of the systems, either in user-oriented tasks (classification,

dialogue, etc.) (Bailly and Leblond, 2023; Chen et al., 2023; Dar et al., 2022; Shi et al.,

2022; Su et al., 2021; Baroni, 2020; Belinkov and Glass, 2019) or in testing linguistic

capabilities (probes) (Alain and Bengio, 2016; Linzen et al., 2016; Giulianelli et al., 2018).

This line is also working in adding a compositional (semantic) layer to distributional

representation systems, with the objective of achieving Compositional Distributional

Semantic models (Clark and Pulman, 2007; Mitchell and Lapata, 2008; Coecke et al.,

2010; Arora et al., 2017; Bastings et al., 2018; Valvoda et al., 2022).

On the other hand, there are approaches that address the problem of representation

of word sequences regardless of the task to which it is applied: how to represent complex

texts and the analysis of the relations and operators of these representations. This

second line, focused on representation, can itself be divided into three different types of

studies, that focus on one aspect of the embedding process and subsequent manipulation,

trying to study and modify it in order to add that semantic layer: studies on embedding

functions, studies on composition functions and studies on similarity functions and text

distribution in embedding spaces.
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2.1 Studies on embedding functions

In the seminal Mikolov’s work, words are mapped to vectors (Mikolov et al., 2013a,b)

by trying to predict words given another words. These models are trained by sliding

a window along a text corpus and using the central word of the window to predict

the words of its vicinity. These approach created static embeddings. Some extensions

proposed work on representing longer linguistic units (Kiros et al., 2015; Le and Mikolov,

2014).

Newer models are more contextual. Models sensitive to word order, such as LSTMs

(Hochreiter and Schmidhuber, 1997) and variations such as CoVe (McCann et al., 2017)

or ELMo (Peters et al., 2018), introduced a memory cell to preserve a state over long

periods of time; while graph based models, such as Transformers (Vaswani et al., 2017)

and its derivations such as BERT (Devlin et al., 2019), BART (Lewis et al., 2019)

or GPT (Brown et al., 2020), use a fully connected graph to model the relations of

every words in the input text. Transformers can solve several downstream tasks from a

limited training set via fine-tuning, and have great predicting power over word strings

as Language Models (Radford et al., 2019). However, contextual models do not preserve

the isometry between the representation of words and their meanings. This is known as

the representation degradation problem (Ethayarajh, 2019; Gao et al., 2019a; Hupkes

et al., 2020).
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2.2 Studies on composition functions

In the field of compositional distributional text representation, some other works focus

on composition functions that allow generating complex representations from simple

ones (e.g., words). A large body of literature has shown that the sum or global average

of word embeddings is very effective, often outperforming more sophisticated methods

(Mitchell and Lapata, 2010; Boleda, 2020; Lenci, 2018; Blacoe and Lapata, 2012; Perone

et al., 2018; Baroni and Lenci, 2010; Rimell et al., 2016; Czarnowska et al., 2019; Wieting

and Gimpel, 2018; Ethayarajh, 2018). However, additive approaches do not consider

word order and their effectiveness degrades with sequence length (Polajnar et al., 2014).

Clarke et al. (2011) proposed several algebraic approaches to compose meaning.

The approaches include quotient algebras, finite algebras and algebras derived from

semigroups. Algebraic approaches also include the work of Clark and Pulman (2007),

that introduced a tensor product as composition function, but space complexity grows

exponentially; and Smolensky et al. (2016), that worked on mapping inference in pred-

icate logic-based on tensor product representations, but a previous mapping between

sentences and logical propositions is required. Coecke et al. (2010) proposed a composi-

tion function based on algebra of pre-groups, proposing dot product as an approach to

similarity.

Other authors have linked their compositional functions with Information Theory.
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Arora et al. (2017) applied IDF (word specificity, which has a direct correspondence

with the Information Content from Shannon’s Information Theory) and Singular Value

Decompositon to achieve similar results as sequential models such as LSTMs. Amigó

et al. (2022) introduced a new composition and similarity function based on Shannon’s

Information Theory that generalizes traditional approaches and fulfills formal properties

previously established. This function considers

2.3 Studies on similarity functions and text distribution

Other studies focus on measuring and interpreting the semantic proximity of text rep-

resentations in the embedding space. On one hand, there is a significant literature on

semantic similarity among representations. Some traditional similarity functions be-

tween representations are the cosine distance, euclidean distance, dot product or, more

recently, the Information Contrast Model (Amigó et al., 2020).

On the other hand, there is also literature that focuses on studying how represen-

tations are distributed in space. Ethayarajh (2019) researched about how contextual

are contextual word embeddings, finding anisotropy in all the studied models and its

impact in similarity measures, and Baggetto and Fresno (2022) analyzed if the space

anisotropy of contextual models spaces is the reason why they underperform in semantic

tasks with respect to static embeddings, finding no clear correlation between isotropy

and semantic isometry.
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2.4 Situating our work

In this work we start from a holistic perspective. That is, one should not study the

embedding function, composition, or similarity function independently, as all of

these components together are interconnected and form a system. Hence, we propose

the development of an evaluation framework to compare models based on their internal

coherence among all these components.
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3 Theoretical framework: Representation Systems

This section introduces the foundational principles of Distributional Semantic Repre-

sentation Systems. We first analyze the different distributional semantic paradigms,

and then we introduce different spaces and functions to define Distributional Semantic

Representation Systems. After this, we define the properties and constraints that these

functions must follow.

3.1 Distributional Semantic Paradigms

We can distinguish four distributional semantic paradigms in natural language process-

ing. Figure 1 represents the first of them, which we will call the decision learning

paradigm: the machine receives an expression or text in natural language and makes

decisions based on it.

In this paradigm there are three spaces: that of word sequences, which is the one we

humans use to communicate; a vector space in which the machine represents the word

sequences it receives; and a meaning space that is reduced to a small set of categories

such as true or false, spam or non-spam, positive or negative opinion, topics or some

named entities.

The fact of translating the sequences into a continuous vector space allows the ma-

chine to make decisions in the face of new stimuli by proximity in space. This mode
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of vector representation has been in place since the early years of machine learning.

Text classifiers, web search engines, extractive summaries, etc. are found at this level.

The main limitation of this paradigm is that the logic decision space is very limited

and conditioned by the amount of categories that can be learned by a set of training

samples, and by how these samples are distributed within the representation space.

Figure 1: Decision Learning paradigm. The machine receives an expression or text
in natural language (word sequences) (a), represents it in a vector space (b) and makes
decisions contained in a meaning space (c).

In the second paradigm, called Generative Language Modeling paradigm (see

Figure 2), the machine does not makes decisions but is able to generate language, re-

sponsing words to which a probability is assigned given an input sequence. This allows

for automatic language generation and gives the impression of some creativity on the

part of the machine. This type of systems started with automatic translators and have

evolved into today’s conversational systems, including the famous ChatGPT (OpenAI,

2022) and its main competitors, such as Bard (Google, 2023) or LLAMA (Meta, 2023).
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The strengths of this paradigm are that word prediction can be trained over huge text

collections without needing human annotation.

The recent advance of these systems is due to deep neural language models, which

interconnect the probabilistic space of word sequences (language models) with the vector

space. The word sequences are represented, after a pre-training stage, by activating in-

put and output neurons, and the vector space is represented by the internal state of the

network. The key point is that this paradigm mixes the word prediction power of statisti-

cal language models with the generalization power of vector representations. Therefore,

the system is able to give responses to unseen utterances (i.e., word sequences).

The limitation of this paradigm is that the system is not able to make precise de-

cisions but generating words. The problem grows when we deal with specific domains

(e.g. a small business), for which there is not enough text to generate accurate and pre-

cise answers by language models alone. Notice that a conversational system, however

powerful it may be, does not have a semantic model of the world, and knows how to

speak but does not know what is saying.

Figure 2: Generative Language Modeling paradigm. Recent neural language models
interconnect the probabilistic space of word sequences (a) with the vector space (b). The
word sequences are represented by activating input and output neurons. The vector
space is represented by the internal state of the network.
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In order to mitigate this limitation, the third paradigm, called Discriminative

Language Modeling Paradigm (see Figure 3), consists in adding neuron layers for

training again the pre-trained language model with a few annotated samples. This is

commonly referred to as fine-tuning or few shot learning (Wang et al., 2020; Dodge

et al., 2020; Liu et al., 2022).

The pre-trained step (language modeling) improves the generalization power pro-

vided by the original decision learning paradigm and the required number of training

samples is considerably reduced. The limitation remains that the field of accurate deci-

sions (true/false) is still small.

Figure 3: Discriminative Language Modeling Paradigm. New neuron layers are added
for doing a fine tuning step after/over the pre-trained language model. The pre-
trained step improves the generalization power provided by the original decision learning
paradigm and the required number of training samples is considerably reduced.

An ideal future paradigm, called Neuronal symbolic paradigm, should include

a representation space of meanings or concepts at a logical level rich enough to make

inferences and not just generate probable answers in text format (see Figure 4). This
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paradigm has been refereed as Semantic Parsing, defined as converting natural language

utterances to logical forms that can be easily executed on a knowledge base (Kamath and

Das, 2018). Chen et al. (2020) talks about Neural Symbolic Paradigm in readers, and

Venhuizen et al. (2019) called it Formal Distributional Semantics.

The fundamental barrier is the machine’s lack of knowledge of the world and ex-

perience. Notice that the machine experience (beyond assimilating millions of word

sequences) does not go beyond the set of hand-categorised training samples. It is neces-

sary to explicitly define a logical model of the world, making it applicable only to very

specific contexts. For instance, training a language model to translate word sequences

into data base queries or a programming language. Even so, there are limitations: al-

though there are a huge set of translation samples between natural languages, each

domain would require a wide set of natural/formal translation samples.

Figure 4: Neuronal symbolic paradigm. It includes a representation space of meanings
or concepts (d) at a logical level rich enough to make inferences and not just generate
probable answers in text format.
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The paradigm proposed in this work, called Distributional semantic algebra, is

less ambitious. The idea is that, in the absence of an extensive annotated corpus for

each domain, it is very difficult to model a symbolic distributional semantics. However,

without the need for training on annotated data, and without explicitly

modelling a propositional logic space, we can define basic operators on the

distributional semantic representation that are consistent with the meaning

space (see Figure 5).

Specifically, in this work we study the formal and empirical properties that the op-

erators of text embedding functions, specification and generalization of vector

representation pairs, similarity between vector representations, and meaning infor-

mation cuantification should have. In order to do so, we consider the relation

between a space of word sequences, a space of meanings and a space of em-

beddings. Although the space of meanings is purely theoretical (and not computable),

its properties allows us to derive the properties of the embedding, composition and

similarity functions in the embedding space.
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Figure 5: Distributional semantic algebra. Considering the relation between a space of
word sequences (a), a space of meanings (e) and a space of embeddings (b) it is possible
to obtain formal properties without the necessity of an extensive annotated corpus for
each domain or explicitly modelling a propositional logic space.

3.2 Word Sequences, Embedding and Meaning Spaces

As described previously, in our theoretical model we consider three interacting spaces.

First, the language model, i.e. the space S of all possible word sequences. In

a language model, there is an infinite sample space of simple events consisting in all

the possible infinite word sequences. This is a probability space in which a finite word

sequence is a compound probabilistic event containing all the possible word sequences

extensions. That is, the total frequency for the word ’Hello’ will be higher than for the

sequence ’Hello world’, and hence, P (“Hello”) > P (“Hello world”) > . . . .

In order to state the desirable properties of the embedding space and its associated

algebraic functions, we consider a theoretical sample space Ψ of meaning. In this

probabilistic space, each meaning is a possible outcome. Each word sequence leads

to a compound event in the probabilistic meaning space. More formally, we assume
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the existence of a non computable function πS : S −→ P(Ψ), from the space of word

sequences S to the power set of meanings P(Ψ). Therefore, the more a word sequence s

contains information, the more its meaning is specific and the cardinality of πS is small

as well as its probability P (πS(s)).

It’s necessary to take into account that not all possible meanings (of a word se-

quence) have the same degree of association with the word sequence. This aspect can

be modeled by means of fuzzy events. Events are fuzzy sets of elements of the sample

space (meanings), i.e., a certain membership value for each meaning bounded between

0 and 1. The probability of fuzzy events can be estimated with the Zadeh’s integral

(Zadeh, 1968). In the end, each word sequence is translated by the function πS into a

vector of membership values with as many dimensions as there are meanings in Ψ.

The key assumptions from which we derive the desirable properties of the embedding,

aggregation, and similarity functions in the embedding space are as follows:

• Any change on a word sequence implies a meaning change. In other

words, however small it may be, a change in the words used in an expression

implies some difference in terms of their possible meanings. More formally, being

s, s′ ∈ S, (s ̸= s′) =⇒ (πS(s) ̸= πS(s′)).

• The empty word sequence does not provide any information and is

equally associated to all possible meanings. Formally, πS(” ”) = Ψ, i.e. all

meanings have a maximum membership.
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• An infinitely precise meaning requires an infinite amount or words to

be expressed, i.e. limP (πS(s))→0 |s| = ∞.

• Every word sequence in the language model make sense at a linguistic

level. Therefore, all word sequences in S have at least a meaning with maximum

membership in πS(s).

Finally, we consider the embedding space V , i.e., where word sequences are pro-

jected as n-dimensional vectors. Just like in word sequences, we assume the existence

of a non computable function πV : V −→ P(Ψ), from the space of embeddings V to the

fuzzy power set of meanings P(Ψ).

These three spaces and their relationships are synthetized in Figure 6, together with

an embedding function π : S → V that will be defined in the next sections. We will

see that the theoretical space of meanings and the two non-computable functions that

relate it to the space of word sequences and embeddings will allow us to establish the

desirable properties of a representation system, particularly the properties of projection,

aggregation (⊕ and ⊙), and similarity functions among embeddings.

Notice that, for our purposes, we do not need to specify some aspects such as which

distribution follows the probability space Ψ or the way in which the function πS trans-

forms sequences of words into fuzzy sets of meanings. It is enough for us to assume that

Ψ is a probability space of meanings and that the πS output represents the specificity

of word sequences in terms of possible meanings.
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Figure 6: We consider three interacting spaces: the space S of all possible word
sequences, consisting in all the possible infinite word sequences; a theoretical sam-
ple space Ψ of meaning, where each word sequence leads to a compound event in
the probabilistic meaning space (not all possible meanings have the same degree of as-
sociation with the word sequence, and hence must be modeled by means of fuzzy sets
of elements of the sample space); and the embedding space V , where word sequences
are projected as n-dimensional vectors. We assume the existence of a non computable
function πS : S −→ P(Ψ), from the space of word sequences S to the power set of
meanings P(Ψ), and a non computable function πV : V −→ P(Ψ), from the space of
embeddings V to the fuzzy power set of meanings P(Ψ). Finally, we also work with an
embedding function π : S → V .

3.3 Definition and properties of a representation system

Generally, in the literature, when discussing a distributional representation systems,

there is a talk of an embedding function that projects words or word sequences into

an n-dimensional vector space. Subsequently, their properties are studied, such as how

the representations are distributed in space, or what happens when they are combined

using different operators like addition or dot product. However, how embeddings are

distributed depends on how the similarity function is defined. Furthermore, different
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methods for combining embeddings can be consistent with different embedding func-

tions. In this work, we adopt an holistic perspective. We propose that a representation

system includes all these interrelated components.

Definition 1 [Distributional Semantic Representation System] A dis-

tributional semantic representation system is a tuple (π, I, δ, ⊙, ⊕) of an embedding

π, information measurement I, similarity δ, specificity ⊙ and generalization ⊕

functions:

π : S → V, I : V → R

δ : V × V → R, ⊙, ⊕ : V × V → V

Let’s now define each of the components of the representation system. The embed-

ding function π projects word sequences into a continuous vector space (see Figure 6).

In Figure 6 the word sequences “Hi, how are you?” and “Good morning, mom.” are

translated into two vectors VA and VB by the embedding function π.

Additionally, there should exist a continuous function πV from the embedding space

V to the corresponding fuzzy set in Ψ. This implies that a subtle semantic change in a

word sequence should translate to a subtle change in the embedding space. In turn, the

theoretical function πV translates these vectors into meaning sets A and B, matching

the output of the πS function applied to the original word sequences.

Notice that “Good morning, mom.” is more specific than “Hi, how are you?”. Since
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the second one is a generic greeting while the first one is a good morning greeting to a

mother, the fuzzy meaning subset of “Good morning, mom.” should cover a smaller area.

Furthermore, in accordance with the assumptions described in the previous section,

the empty word sequence should correspond to the complete set of meanings, that is,

maximum uncertainty.

Definition 2 [Embedding Function] An embedding function π : S → V asso-

ciates the space of word sequences S to the embedding space V in such a way that

there exists a continuous function πV : V −→ P(Φ) from the embedding to the fuzzy

power set of meanings such that: ∀s ∈ S : πV

(
π(s)

)
= πS

(
s
)

A fundamental aspect of textual information representation is the ability to measure

information. Traditionally, the amount of textual information has been measured by

applying Shannon’s Information Theory to the space of word sequences. However, the

specificity of a word sequence doesn’t always align with the specificity of its meaning.

In our framework, we apply the notion of Information Quantity (−log(P (x))) directly

to the space of meanings. An Information Quantity measurement in the embedding

space must correspond to the specificity of the fuzzy subset of meanings associated

with the represented word sequence. In Figure 6 (top left equations) the information

measurement function for word sequences A and B returns the minus logarithm of the

corresponding probabilities in the theoretical meaning space.
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Definition 3 [Information Measurement Function] An information mea-

surement function I : V → R from the embedding space to the real numbers

estimates the specificity of the corresponding meaning subset. For all embedding

v ∈ V : I(v) ∝ −log
(
P (πV (v)

)

Since the space Ψ is purely theoretical, as are the projection functions πS and πV ,

we cannot compute the information measurement function. However, based on this

definition, we will be able to derive necessary properties that an information measure

should satisfy.

Since we model the semantics of texts in terms of subsets in the space of meanings,

we can now establish composition operators between texts. Specifically, the intersection

of meaning sets corresponds to an specification operator. In particular, in Figure 6, the

specification of A and B would correspond to a good morning greeting to a mother,

along with asking how she is. This implies a more restricted (specific) set of possible

meanings (A⋂
B). Notice that the intersection in fuzzy sets is defined as the minimum

membership values.

Definition 4 [Specification] A specification function ⊙ : V × V → V is a

function that returns a representation which projection on the meaning space cor-

responds with the meaning set intersection. Formally, ∀ v1, v2 ∈ V : πV (v1 ⊙ v2) =

πV (v1) ∩ πV (v2)

On the other hand, the union of meaning sets corresponds to a generalization opera-
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tor. In the example from Figure 6, the union of meaning sets A and B would correspond

to any greeting in which either the recipient’s well-being is inquired about or a morning

greeting to a mother is involved. Notice that the union in fuzzy sets is defined as the

maximum membership values.

Definition 5 [Generalization] A generalization function ⊕ : V × V → V is

a function that returns a representation which projection on the meaning space

corresponds with the meaning set union. Formally, ∀ v1, v2 ∈ V : πV (v1 ⊕ v2) =

πV (v1) ∪ πV (v2)

The last element of the semantic-distributional representation system is the similarity

measure. To define this, we take as a reference the properties suggested by Tversky in his

cognitive studies (Tversky, 1977). These studies have served as a reference for defining

similarity measures in text representation (Amigó et al., 2020). Tversky’s studies are

particularly suitable for our context, as the author defined objects in terms of sets of

features. This aligns with our representation of textual semantics in terms of sets of

meanings.

In addition, Tversky’s studies dismiss traditional metric properties in euclidean

spaces (maximality, triangular inequality, symmetry), and states that self similarity

grows with the object specificity, and that similarity is assymetric, i.e., the similar-

ity between an specific object and its generalization is larger than vice-versa. Tversky

explains this assymetricity in the choice of subject and referent based on the relative
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salience of the objects, as we tend to select the more salient as referent (the ’prototype’)

and the less salient as the subject (the ’variant’). This is why we tend to say ’the portrait

resembles the person’ rather than ’the person resembles the portrait’.

Definition 6 [Similarity Function] A meaning similarity function δ : V ×V →

R is a function that satisfies:

• Self similarity specificity: P (πV (v1)) < P (πV (v2)) =⇒ δ(v1, v1) > δ(v2, v2)

• Monotonicity regarding intersection and union:

πV (v1) ∪ πV (v2) = πV (v1) ∪ πV (v3)

πV (v1) ∩ πV (v2) > πV (v1) ∩ πV (v3)

 =⇒ δ(v1, v2) > δ(v1, v3) (3.1)

πV (v1) ∩ πV (v2) = πV (v1) ∩ πV (v3)

πV (v1) ∪ πV (v2) < πV (v1) ∪ πV (v3)

 =⇒ δ(v1, v2) > δ(v1, v3) (3.2)

• Assymetricity: πV (v1) ⊂ πV (v2) =⇒ δ(v1, v2) > δ(v2, v1)

3.4 Formal constraints

We have defined the embedding π, aggregation ⊙, ⊕, information measurement I, and

similarity δ functions in terms of their projection in the theoretical space of meanings

Ψ. The projection functions πV , and πS are necessarily unknown. Since this space is

therefore not computable, implementing the functions directly from their definitions is
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not possible. However, these definitions allow us to establish constraints on how these

functions interact with each other. Based on these constraints, we will set up a set of

tests for comparing different real implementations of these functions.

3.4.1 Embedding and Information Measurement functions

Regarding the embedding function π and the information measurement function I, the

first constraint refers to the sensitivity of the embedding function to small changes in

word sequences. Formally,

Constraint 1 [Injectivity]

Any difference in an expression implies a difference in meaning. Being x and y two

word sequences in S: x ̸= y −→ π(x) ̸= π(y)

According to the definition of πS (i.e. projection of word sequences into the meaning

space), and the definition of the information measurement function I, the information

measurement function should return zero for the representation of the empty sequence.

That is,

Constraint 2 [Zero informativeness]

The the empty sequence representation has zero information.

Formally, I(π(” ”)) = 0

On the contrary, we can always over-specify (with more words) a set of meanings to

a subset (of lower probability) included in this set. Therefore, only an infinite amount
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of words can contain an infinite amount of information. More formally,

Constraint 3 [Infinite informativeness]

Infinite informativeness implies an infinite length sequence.

Formally, I(π(s)) = ∞ −→ |s| = ∞.

3.4.2 Specification and generalization functions

According to the definition of I, ⊕ and ⊙, the properties of union and intersection sets,

the properties of the union and intersection of fuzzy sets in Ψ, the definition of πS and

its convergence with πV across π, we can infer that generalizing will reduce the amount

of information (the more ’vague’ are the meanings associated to a word sequence, the

less amount of information it will contain), and that the specification will increase the

amount of information. Formally, this implies that

Constraint 4 [Generalization and Specification Information Monotonic-

ity] The information content grows with the specification and decreases with the

generalization. Formally, being v1 ̸= v2 ∈ V :

I(v1), I(v2) < I(v1 ⊙ v2)

I(v1 ⊕ v2) < I(v1), I(v2)

In addition, since generalization and specification are defined in terms of union and

intersection of fuzzy meaning sets in Φ, they inherit properties such as Associativity,
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Commutativity, Distributiveness and Idempotency:

Constraint 5 [Commutativity]

v1 ⊙ v2 = v2 ⊙ v1, v1 ⊕ v2 = v2 ⊕ v1

Constraint 6 [Associativity]

(v1 ⊙ v2) ⊙ v3 = v1 ⊙ (v2 ⊙ v3), (v1 ⊕ v2) ⊕ v3 = v1 ⊕ (v2 ⊕ v3)

Constraint 7 [Distributiveness]

(v1 ⊕ v2) ⊙ v3 = (v1 ⊙ v3) ⊕ (v2 ⊙ v3), (v1 ⊙ v2) ⊕ v3 = (v1 ⊕ v3) ⊙ (v2 ⊕ v3)

Constraint 8 [Idempotency]

(v1 ⊕ v2) ⊕ v2 = v1 ⊕ v2, (v1 ⊙ v2) ⊙ v2 = v1 ⊙ v2

Additionally, there must be a neutral element for both operators, just like the union

and intersection operators of sets. There exists a representation vgen ∈ V that is so

general that its specification with any other meaning v produces the same meaning

v. Similarly, there exists a representation vspe that is so specific that its generalization

with any other meaning v produces the same representation v. In particular the identity

element of the specifiction function ⊙ is the empty sequence representation π(””). More

generally, any generalization of v (i.e. v⊕v′) is a neutral element for v. On the contrary,
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there is no neutral element for the generalization function ⊕, but depends of the vector.

The generalization neutral element of v is any specification of v (i.e. v⊙v′). Formally,

Constraint 9 [Neutral elements]

∀v′ ∈ V : v ⊕ (v ⊙ v′) = v ∀v′ ∈ V : v ⊙ (v ⊕ v′) = v

3.4.3 Similarity Function Formal Constraints

According to the Tversky’s monotonicity axiom, similarity grows with the amount of

common features (intersection) and decreases with the amount of disjoint features.

Therefore, given the definition of πV , its correspondence with πS across π, and the defi-

nition of ⊙ and ⊕, the similarity function should satisfying that the similarity between

two vectors should be lower than the similarity between a vector and their specification

(avoiding disjoint elements). On the other hand, the similarity between two vectors

is higher than the similarity between a vector and its generalization (increasing the

intersection size). That is,

Constraint 10 [Similarity monotonicity]

δ(v1, v2) ≤ δ(v1, v1 ⊙ v2), δ(v1, v2) ≤ δ(v1, v1 ⊕ v2)
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In addition, specific meanings are closer to them self than general concepts:

Constraint 11 [Self-similarity]

I(v1) ≥ I(v2) −→ δ(v1, v1) ≥ δ(v2, v2)

The specific meaning is closer to the general than vice-versa. Formally,

Constraint 12 [Asymmetricity] Being v1 ̸= v2:

δ(v1, v1 ⊙ v2) ≥ δ(v1 ⊙ v2, v1)
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4 Benchmarking representation systems

This section focuses in the desing of a test set to benchmark representation systems

using word sequences, ontological ancestors and text summaries. First we analyze the

similarities and differences of these three groups (sequences, ontological ancestors and

summaries), then, based on this, we introduce a set of test for word sequences, ontolog-

ical ancestors and summaries to check their compliance with the constraints defined in

the previous section.

4.1 Word sequences, ontological ancestors and summaries

We first introduce some clarifications about working with word sequences, ontological

ancestors and abstracts.

Word sequences: Following Constraints 2 and 3, adding more words to a sequence

will increase the amount of information, as it is equivalent to over-specify a set of

meanings to a subset of meanings.

Ontological ancestors: A word A is an ontological ancestor of a word B if there exists

a hierarchical link between A and B, where A alludes to a more general or abstract

concepts that B also posses. For example, the word ’dog’ is more specific than its

ontological ancestor ’mammal’, and the word ’animal’ is the ontological ancestor of
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both ’dog’ and ’mammal’. A word will be more specific than its ontological ancestor,

and hence have more amount of than its ancestor.

Summaries: Less words in a sequence will contain less amount of information; hence,

a summary must have less amount of information than the original text, as it is supposed

to have a reduced extension compared with the original text. Furthermore, there exists

a metric to measure the quality of a summary based on the information loss of the

summary with respect of the original text (Hoplaros et al., 2014).

An extractive summary does not constitute a problem, as the original text will

consist of the same words as the summary plus another set of words, so the above

property will always be maintained. However, abstractive summaries may use some

words that contain more information than the original words used in the text, so the

summary will have more information than the original text, which does not make sense.

If this happens, some extra information is being added, either deliberately (enriching it

with one’s own knowledge, for example) or unconsciously (using a more formal register,

for example). However, this is not a major problem, as it is expected to occur in very

infrequent situations.

4.2 Test definition

The amount of information of word sequences, ancestors and summaries and the remarks

stated in the previous paragraphs will allow us to design the same type of test (for some
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of the constraints) for all the three types of problem. Indeed, let s1 and s2 be two word

sequences, and s1 + s2 be their concatenation. Then, we can assume that, in general,

I(π(s1)) ≤ I(π(s1 + s2)),

that is, the greater the number of words added to a sequence, the more information is

transmitted. On the other hand, the amount of information contained in a word and its

ontological ancestor has a similar relationship. The higher a word is in the ontological

hierarchy, the more general it is, and therefore, it contains less information. So, let w

be a word and w′ be its ontological ancestor, then

I(π(w′)) ≤ I(π(w)).

A similar thing happens with summaries. A summary is a reduced representation of a

text, so being s′ a summary of s, then

I(π(s′)) < I(π(s)).

Then, it is posible to design a test set to check if a Representation System complies

with the Constraints from Section 3. Based on the similarities stated in the previous

subsection, it is possible to design some of the tests that apply for word sequences,
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ancestors and summaries; others are different depending on the type of the test. In

order to create the tests, we define:

• Being s1, s2, s3 three word sequences with I(π(s1)) > I(π(s2)) and s1 + s2 the

concatenation of the first two; s3 another word sequence to use as support for

comparison reasons.

• Being wa an ancestor of both w and w′ in an ontology (e.g. mammal, cat and

dog), waa an ancestor of wa (e.g. animal and mammal) and wb having no relation

with wa.

• Being r1 and r2 summaries of r.

4.2.1 Tests for word sequences, ancestors and summaries

As stated before, some tests can be designed to apply for word sequences, summaries

and ancestors. Then, we identify s1 = w = r1 and s2 = wa = r2:

Test 1

π(s1) ̸= π(s2)

Two different word sequences have two different representations.
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Test 2

I(π(””)) = 0

An empty sequence is represented as the zero vector.

Test 3

π(s1) ⊙ π(s2) = π(s2) ⊙ π(s1)

The specification function is conmutative.

Test 4

π(s1) ⊕ π(s2) = π(s2) ⊕ π(s1)

The generalization function is conmutative.

Test 5

(π(s1) ⊙ π(s2)) ⊙ π(s3) = π(s1) ⊙ (π(s2) ⊙ π(s3))

The specification function is associative.

Test 6

(π(s1) ⊕ π(s2)) ⊕ π(s3) = π(s1) ⊕ (π(s2) ⊕ π(s3))

The generalization function is associative.
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Test 7

(π(s1) ⊕ π(s2)) ⊙ π(s3) = (π(s1) ⊙ π(s3)) ⊕ (π(s2) ⊙ π(s3))

The generalization function is distributive.

Test 8

(π(s1) ⊙ π(s2)) ⊕ π(s3) = (π(s1) ⊕ π(s3)) ⊙ (π(s2) ⊕ π(s3))

The specification function is distributive.

Test 9

δ[(π(s1)⊕π(s2))⊕π(s1), π(s1)⊕π(s2)] > δ[(π(s1)⊕π(s2))⊕π(s1), (π(s1)⊕π(s2))⊕π(s3)]

To check idempotency of the generalization function: (π(s1) ⊕ π(s2)) ⊕ π(s1)

must be more similar to π(s1) ⊕ π(s2) (ideally, it must be equal) than for any other

vector.
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Test 10

δ[(π(s1)⊙π(s2))⊙π(s2), π(s1)⊙π(s2)] > δ[(π(s1)⊙π(s2))⊙π(s2), (π(s1)⊙π(s2))⊙π(s3)]

To check idempotency of the specification function: (π(s1)⊙π(s2))⊙π(s2) must

be more similar to π(s1)⊙π(s2) (ideally, it must be equal) than for any other vector.

Test 11

δ[(π(s1) ⊕ π(s2)) ⊙ π(s1), π(s1)] > δ[(π(s1) ⊕ π(s2)) ⊙ π(s1), π(s2)]

To check neutral elements: specifying over something that has been generalized

must result in the original concept, then, (π(s1) ⊕ π(s2)) ⊙ π(s1) must be more

similar to π(s1) (ideally, it must be equal) than for any other vector in the space.

Test 12

δ[(π(s1) ⊙ π(s2)) ⊕ π(s1), π(s1)] > δ[(π(s1) ⊙ π(s2)) ⊕ π(s1), π(s2)]

To check neutral elements: generalizing over something that has been specified

must result in the original concept, then, (π(s1) ⊙ π(s2)) ⊕ π(s1) must be more

similar to π(s1) (ideally, it must be equal) than for any other vector in the space.
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Test 13

δ(π(s1), π(s1) ⊙ π(s2)) > δ(π(s1), π(s2))

To check similarity monotonocity: a concept A is less similar to another concept

B than to the specification of A with B.

Test 14

δ(π(s1), π(s1) ⊕ π(s2)) > δ(π(s1), π(s2))

To check similarity monotonocity: a concept A is more similar to another con-

cept B than to the generalization of A with B.

Test 15

δ(π(s1), π(s1)) > δ(π(s2), π(s2))

To check self-similarity: the more specific is the sequence, the more similar is

to itself.

Test 16

δ(π(s1), π(s1) ⊙ π(s2)) > δ(π(s1) ⊙ π(s2), π(s1))

To check that a specific meaning is closer to the general than vice versa.
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Test 17

δ(π(s1), π(s1) ⊕ π(s2)) < δ(π(s2), π(s1) ⊕ π(s2))

To check that a specific meaning is closer to the general than vice versa.

4.2.2 Tests using word sequences

These tests only apply for the word sequences dataset.

Test 18

I(π(s1)) < I(π(s1 + s2))

Over-specifying implies more amount of information.

Test 19

I(π(s1)), I(π(s2)) < I(π(s1) ⊙ π(s2))

The specification has more amount of information than the components alone.

Test 20

I(π(s1) ⊕ π(s2)) < I(π(s1)), I(π(s2))

The generalization has less amount of information than the components alone.
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4.2.3 Tests using ontological ancestors

These tests only apply for the ontological ancestors dataset.

Test 21

I(π(wa)) ̸= I(π(w))

A word can not have the same amount of information than its ontological an-

cestor (as it is more specific).

Supposing that δ(w, wa) > δ(w, wb), then

Test 22

I(π(w) ⊕ π(wa)) > I(π(w) ⊕ π(wb))

The amount of information of generalizing two similar concepts is more than

generalizing two different concepts.

Test 23

I(π(w) ⊙ π(wa)) < I(π(w) ⊙ π(wb))

The amount of information of specifying two similar concepts is less than specifying

two different concepts.
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4.2.4 Tests using summaries

These tests only apply for the summaries dataset.

Test 24

I(π(r)) > I(π(r1))

A summary contain less information than the original text.

Test 25

I(π(r1)), I(π(r2)) < I(π(r1) ⊙ π(r2))

The specification has more amount of information than the components alone.

Test 26

I(π(r1) ⊕ π(r2)) < I(π(r1)), I(π(r2))

The generalization has less amount of information than the components alone.

Table 1 shows the tests for words sequences, ancestors and summaries associated to

each of the defined constraints.

4.3 Dataset definiton

Once the tests have been defined, we have proceeded to create the dataset with which

to run the tests. This dataset consists on 70 word sequences, 47 ancestors and 40
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Constraint Tests with sequences Tests with ancestors Tests with summaries
Constraint 1 Test 1
Constraint 2 Test 2
Constraint 3 Test 18 Test 21 Test 24
Constraint 4 Test 19, 20 Test 22, 23 Test 25, 26
Constraint 5 Test 3, 4
Constraint 6 Test 5, 6
Constraint 7 Test 7, 8
Constraint 8 Test 9, 10
Constraint 9 Test 11, 12
Constraint 10 Test 13, 14
Constraint 11 Test 15
Constraint 12 Test 16, 17

Table 1: Tests for words sequences, ancestors and summaries associated to each of the
defined constraints.

summaries, thus creating 157 elements, in order to test different scenarios and to be

able to analyse the impact on the type of data on the robustness of the framework.

A first proposal with the test cases was created by ChatGPT and then all test

cases proposed were finally selected manually, as several cases proposed from ChatGPT,

specially for the ancestors dataset, were difficult to understand the hierarchical relations

among the words.

The results are aggregated and normalized so each of the constraints and the three

type of data have a score from 0 to 1, making then a 36 point grading system (12 points

for each type: sequences, ancestors and summaries). Some examples of the dataset can

be found in Tables 2 (for sequences data), 3 (for ancestors data) and 4 (for summaries

data).
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s2 s1 s3
dog blue car apple pie is delicious
cat tall tree running in the park
hat red balloon playing guitar solo

house green grass swimming in the lake
mouse big elephant dancing under the moon

Table 2: Example for the sequences dataset.

w w′ wa waa

Dog Cat Mammal Animal
Pear Apple Fruit Plant
City Town Settlement Place

Guitar Drums Instrument Music
Ash Tree Forest Plant

Table 3: Example for the ancestors dataset.

r r1 r2
The quick brown
fox jumps over
the lazy dog.

A fox jumps
over a dog.

Animal jumps
over animal.

John is a talented
musician who plays
multiple instruments.

John is a
talented musician.

John plays
several instruments

The majestic mountains
stood tall, covered
in a blanket of snow.

Majestic
snow-covered
mountains.

Snowy mountains
in their glory.

Emily spent her summer
vacation traveling to exotic
locations and exploring
new cultures.

Emily explored
new cultures on
summer vacation.

Traveler Emily
discovers exotic places.

The scientific experiment
yielded groundbreaking
results that could
revolutionize the industry.

Groundbreaking
experiment results.

Revolutionary findings
in science.

Table 4: Example for the summaries dataset.
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5 Experimentation

In this section we define several representation systems (i.e., several embedding, infor-

mation measurement, generalization, specification and similarity functions) to evaluate

the framework defined in the previous section, and then we present and analyze the

results.

5.1 Definition of the representation systems

In order to test our evaluation framework, we applied it to a series of approaches to

embedding functions, information measurement, generalization, specification, and simi-

larity.

5.1.1 Information Measurement function

For the information Measurement function, we consider the vector’s norm. According

to the analysis by Levy and Goldberg (2014) and Arora et al. (2016), the dot product

of SGNS embedding (Skip-gram with Negative-Sampling) approximates the Pointwise

Mutual Information (PMI) between two words. With π(w) being the embedding of the

word w:

⟨π(w), π(w′)⟩ ∝ PMI(w, w′) = log
(

P (w, w′)
P (w′) · P (w′)

)
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We will refer to this as the Levy’s correspondence. This implies that there exists a

correspondence between the vector norm and the Information Content of represented

utterances according to Shannon’s Information Theory:

IC(w) = − log(P (w)) = − log
(

P (w, w)
P (w) · P (w)

)
= PMI(w, w) ≃ ⟨π(w), π(w)⟩ = ∥π(w)∥2

The information measurement function consists in extending this correspondence to

word sequences:

I(v) = |v|2

In addition, Gao et al. (2019b) proved that under some assumptions, the optimal

embeddings of infrequent tokens in Transformer Language Models can be extremely far

away from the origin. Li et al. (2020) observed empirically that “high-frequency words

are all close to the origin, while low-frequency words are far away from the origin” in

Transformer language models.

5.1.2 Embedding Functions

As embedding function, we use in this experiment the SGNS implementation Word2Vec,

which is the most popular word embedding function in the literature. In order to

represent word sequences, we apply five alternative word composition functions:
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’Sum’ and ’average’ word composition functions: The first two are the sum and

average of vectors. A large body of literature has shown that the sum or global average

of word embeddings is very effective, often outperforming more sophisticated methods

(Mitchell and Lapata, 2010; Boleda, 2020; Lenci, 2018; Blacoe and Lapata, 2012; Perone

et al., 2018; Baroni and Lenci, 2010; Rimell et al., 2016; Czarnowska et al., 2019; Wieting

and Gimpel, 2018; Ethayarajh, 2018).

Information Theory based word composition functions (Fjoint, Find and Finf):

An intrinsic limitation of these two additive approaches is that word order is not consid-

ered. In Amigó et al. (2022) several Information Theoretic functions that preserve the

text structure are presented. These composition functions particularise the Fλ,µ(v1, v2)

function for different λ and µ values:

Fλ,µ(v1, v2) = v1 + v2

|v1 + v2|

√
λ(|v1|2 + |v2|2) − µ(v1 · v2),

The Fjoint variant (with λ = 1 and µ = 1) assumes that the information content of the

composition of two sequences s1 and s2 corresponds with the joint probability (I(s) =

−log(P (s1, s2))). The second variant Find, with λ = 1, µ = 0, assumes that statistical

independence between words (I(s) = −log(P (s1) ·P (s2))). The third variant, Finf , with

λ = 1, µ = min(|v1|, |v2|)
max(|v1|, |v2|)

, is designed to satisfy different formal constraints (Amigó

et al., 2022).
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5.1.3 Specification and generalization functions

We define three pairs as specification and generalization functions.

Algebraic approach (Algebraic): In terms of generalizing two concepts, the idea

of algebraic basis has been used. Every vector v ∈ V can be written as a weighted

sum of the vectors that compounds the basis. Then, a vector (a subset of meanings)

can be seen as a composition of different vectors (subsets of meanings). To obtain the

contribution of a specific vector w of the basis to the vector v, then it is needed to

calculate the projection of v over w. This idea can be applied to two random vectors to

get the contribution of one into the other and vice versa. This contribution can be seen

as the generalization of the two vectors:

v1 ⊕alg v2 = 1
2

[
v1 · v2

v1

|v1|2
+ v1 · v2

v2

|v2|2

]

Following these reasoning, the sum of vectors seems suitable for the specification

functions, as the contributors of each of the vectors will increase its ’importance’ if they

are similar (then, there is an over-specification of this contributor) and decrease if they

are opposite:

v1 ⊙alg v2 = v1 + v2

Their limitation is the associativity (for generalization) and distributiveness (for both
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generalization and specification) properties, which are not satisfied.

Information Theory based functions (Information): As a second option, we

start from the Levy’s correspondence (PMI vs. dot product of representations), extend-

ing this principle from words to sequences. Being v1 = π(s1) and v2 = π(s2):

PMI(s1, s2) ∝ v1 · v2

Therefore, the mutual information between two sequences can be estimated as the dot

product multiplied by a certain factor β. For instance, “pets” could be considered as

the mutual information of “dogs” and “cats”. We define the generalization function in

each dimension as the common information of sequences:

(v1 ⊕inf v2)i = MinNormSign(v1,i, v2,i)
√

β · v1,i · v2,i

where MinNormSign(v1, v2) represents the sign of the lower component between {v1,i, v2,i}.

The sign selection gives preference to the most general meaning. On the other hand, the

information based specification is defined as the sum of Information Quantities minus

the mutual (common redundant) information, giving preference to the longest vector
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(most specific meaning)

(v1 ⊙inf v2)i = MaxNormSign(v1, v2)
√

v2
1,i + v2

2,i + β · v1,i · v2,i

where MaxNormSign(v1, v2) represents the sign of the major component between {v1,i, v2,i}.

Assuming the Levy’s PMI correspondence, these functions satisfy that the Information

Quantity of the combination is a linear function of the single and mutual Information

Quantities:

I(v1 ⊕inf v2) = |v1 ⊕inf v2|2 =
∑

i

(βv1,iv2,i)

= βv1 · v2 ≃ PMI(s1, s2)

I(v1 ⊙inf v2) = |v1 ⊙inf v2|2 =
∑

i

(v2
1,i + v2

2,i − βv1,iv2,i)

= v2
1 + v2

2 − βv1 · v2 ≃ I(s1) + I(s2) − PMI(s1, s2)

In addition, taking β = min(|v1|,|v2|
max(|v1|,|v2|) , these functions satisfy the boundary constraints:

I(v1 ⊕inf v2) < I(v1), I(v2)

I(v1 ⊙inf v2) > I(v1), I(v2)
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Their limitation is the associativity, distributiveness and idempotency properties, which

are not satisfied.

Fuzzy Set Operator based functions (Fuzzy): In order to satisfy the associativity

property, we apply the union and intersection operators to the vectors. The intersection

of fuzzy sets (minimum value in each component) reduces the representation to com-

mon information, while the union operator (maximum value) generates more specific

representations, but eliminates redundant information. We handle the sign in the same

way as in the previous functions.

(v1 ⊕SetOp v2)i = MinNormSign(v1, v2) Min(|v1,i|, |v2,i|)

(v1 ⊙SetOp v2)i = MaxNormSign(v1, v2) Max(|v1,i|, |v2,i|)

The limitation of the fuzzy set operator based functions is that they do not keep a direct

correspondence with Information Quantities according to the Levy’s correspondence.

5.1.4 Similarity Functions

As similarity functions we consider the alternatives proposed in Amigó et al. (2022).

This work includes the standard similarity functions Cosine, Euclidean distance, and

dot product, as well as the Information Contrast Model with is based on Information
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Theory (Amigó et al., 2020):

δcos(v1, v2) = v1 · v2

|v1||v2|
,

δEuc(v1, v2) =
d∑

i=1
(vi

1 − vi
2)2,

δDotP rod(v1, v2) = v1 · v2,

δICM(v1, v2) = α1IC(v1) + α2IC(v2) − βIC(v1 ∪ v2).

The information contrast model (Amigó et al., 2020) is the linear combination of their

Information Quantities and the Information Quantity of their union:

δ(v1, v2) = α1IC(v1) + α2IC(v2) − βIC(v1 ∪ v2),

which can be seen as a generalized version of a parametric Pointwise Mutual Information.

The ICM parameters were set to α1 = 1 = α2 and β = 1.5.

5.2 Results

Combining the corresponding embedding functions, generalization and specification

functions and similarity functions we have 5 × 3 × 4 = 60 combinations. An analy-

sis of all these possible combination has been performed. For each of the combination,

all tests were executed, obtaining a score for each of the constraints and the type of
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test (sequences, ancestors, summaries). The results of all combinations can be found

in Tables 5 and 6. Each row show the results of one of the possible combinations, and

each column show the result for a type of test (sequence, ancestors, summaries, and

total). Values represent the score obtained throughout the execution, with a range from

0 to 36, being the higher, the better. In bold letter, the highest result for each of the

column. The best results are obtained with the combination of Sum of Vectors, Fuzzy

approach and ICM, although the Fλ,µ functions obtain a similar score as the Sum of

Vectors. The results of the combinations will be studied deeper in the next subsections,

from an embedding, specification and generalization and similarity perspective.

Note that the embedding functions do not apply to the ancestors tests results, i.e.

the results are the same for the sum of vectors, average and F functions (they depend

on the generalization and specification functions and similarity functions). This is due

to the fact that the embedding functions are different when composing several words,

and ancestor tests are single-word tests.

5.2.1 Embedding function analysis

Results are shown in Figure 7 and Table 7. Fλ,µ functions obtain a similar score to the

Sum of vectors. Averaging the vectors is the worst choice. This is because the larger

the text, the greater the amount of information, and the more impact this amount of

information has on the rest of the processes. An embedding that does not ’eliminate’
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Type Sequences Ancestors Summaries Total
Sum of Vectors - Algebraic - Cosine 8.86 8.11 6.82 23.79

Sum of Vectors - Algebraic - Euclidean 6.09 5.67 5.76 17.52
Sum of Vectors - Algebraic - Dot 7.74 7.66 8.77 24.17
Sum of Vectors - Algebraic - ICM 8.66 8.34 9.25 26.25

Sum of Vectors - Information - Cosine 8.69 7.93 6.85 23.47
Sum of Vectors - Information - Euclidean 5.25 4.52 5.01 14.78

Sum of Vectors - Information - Dot 8.42 8.14 8.80 25.36
Sum of Vectors - Information - ICM 8.64 8.13 9.45 26.22

Sum of Vectors - Fuzzy - Cosine 9.62 8.76 7.62 26.00
Sum of Vectors - Fuzzy - Euclidean 6.25 5.46 6.01 17.72

Sum of Vectors - Fuzzy - Dot 9.37 8.68 9.53 27.58
Sum of Vectors - Fuzzy - ICM 9.60 9.11 10.49 29.20
Average - Algebraic - Cosine 7.78 8.11 7.09 22.98

Average - Algebraic - Euclidean 5.01 5.67 5.45 16.13
Average - Algebraic - Dot 6.47 7.66 5.69 19.82
Average - Algebraic - ICM 7.53 8.34 6.09 21.96

Average - Information - Cosine 7.77 7.93 8.00 23.70
Average - Information - Euclidean 4.33 4.52 4.53 13.38

Average - Information - Dot 7.58 8.14 6.21 21.93
Average - Information - ICM 7.77 8.13 7.25 23.15

Average - Fuzzy - Cosine 8.77 8.76 8.61 26.14
Average - Fuzzy - Euclidean 5.33 5.46 5.53 16.32

Average - Fuzzy - Dot 8.48 8.68 7.11 24.27
Average - Fuzzy - ICM 8.75 9.11 8.14 26.00

Table 5: Results for all the combinations tested (Part 1/2). Each row shows the
results of one of the possible combinations, and each column show the result for a type
of test (sequence, ancestors, summaries, and total). Values represent the score obtained
throughout the execution, with a range from 0 to 36, being the higher, the better. In
bold letter, the highest result for each of the column. The best results are obtained
with the combination of Sum of Vectors, Fuzzy approach and ICM, although the Fλ,µ

functions obtain a similar score as the Sum of Vectors.
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Type Sequences Ancestors Summaries Total
Fjoint - Algebraic - Cosine 8.43 8.11 7.34 23.88

Fjoint - Algebraic - Euclidean 5.58 5.67 5.70 16.95
Fjoint - Algebraic - Dot 7.12 7.66 8.00 22.78
Fjoint - Algebraic - ICM 8.11 8.34 8.97 25.42

Fjoint - Information - Cosine 8.77 7.93 8.31 25.01
Fjoint - Information - Euclidean 5.26 4.52 5.02 14.80

Fjoint - Information - Dot 8.50 8.14 8.94 25.58
Fjoint - Information - ICM 8.63 8.13 9.34 26.10

Fjoint - Fuzzy - Cosine 9.70 8.76 8.80 27.26
Fjoint - Fuzzy - Euclidean 6.26 5.46 6.01 17.73

Fjoint - Fuzzy - Dot 9.35 8.68 9.25 27.28
Fjoint - Fuzzy - ICM 9.62 9.11 10.46 29.19

Find - Algebraic - Cosine 8.39 8.11 6.58 23.08
Find - Algebraic - Euclidean 5.58 5.67 5.58 16.83

Find - Algebraic - Dot 7.17 7.66 8.17 23.00
Find - Algebraic - ICM 8.13 8.34 8.91 25.38

Find - Information - Cosine 8.73 7.93 7.33 23.99
Find - Information - Euclidean 5.25 4.52 4.99 14.76

Find - Information - Dot 8.47 8.14 8.81 25.42
Find - Information - ICM 8.64 8.13 9.37 26.14

Find - Fuzzy - Cosine 9.66 8.76 8.19 26.61
Find - Fuzzy - Euclidean 6.25 5.46 5.99 17.70

Find - Fuzzy - Dot 9.35 8.68 9.35 27.38
Find - Fuzzy - ICM 9.64 9.11 10.44 29.19

Finf - Algebraic - Cosine 8.43 8.11 6.76 23.30
Finf - Algebraic - Euclidean 5.59 5.67 5.62 16.88

Finf - Algebraic - Dot 7.13 7.66 8.09 22.88
Finf - Algebraic - ICM 8.08 8.34 8.97 25.39

Finf - Information - Cosine 8.77 7.93 7.75 24.45
Finf - Information - Euclidean 5.26 4.52 5.01 14.79

Finf - Information - Dot 8.46 8.14 8.88 25.48
Finf - Information - ICM 8.61 8.13 9.41 26.15

Finf - Fuzzy - Cosine 9.71 8.76 8.47 26.94
Finf - Fuzzy - Euclidean 6.26 5.46 6.01 17.73

Finf - Fuzzy - Dot 9.30 8.68 9.32 27.30
Finf - Fuzzy - ICM 9.60 9.11 10.48 29.19

Table 6: Results for all the combinations tested (Part 2/2). Each row shows the
results of one of the possible combinations, and each column show the result for a type
of test (sequence, ancestors, summaries, and total). Values represent the score obtained
throughout the execution, with a range from 0 to 36, being the higher, the better. In
bold letter, the highest result for each of the column. The best results are obtained
with the combination of Sum of Vectors, Fuzzy approach and ICM, although the Fλ,µ

functions obtain a similar score as the Sum of Vectors.
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the amount of information (by weighting, for example) must therefore offer better re-

sults. Specifically, averaging vectors impacts directly in Constraint 3, especially for great

amount of words (such as summaries). Cosine similarity function hides this problem as

it normalizes the vectors, but the other similarity functions, that are norm-sensitive,

underperform due to this.

Figure 7: Visualization of the impact of the different embedding functions. X axis
shows each of the combinations studied, Y axis shows the score obtained by each combi-
nation. Best results are obtained with the Fuzzy option + ICM, almost independently
of the embedding function.

5.2.2 Specification and generalization functions analysis

Results are shown in Figure 8 and Table 8. The best results are obtained with the Fuzzy

option, scoring around three points higher than the other two options and outperforming

the two oher option in every combination. This is because it is the only associative
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Type Sum of vectors Average Fjoint Find Finf

Algebraic - Cosine 23.79 22.98 23.88 23.08 23.30
Algebraic - Euclidean 17.52 16.13 16.95 16.83 16.88

Algebraic - Dot 24.17 19.82 22.78 23.00 22.88
Algebraic - ICM 26.25 21.96 25.42 25.38 25.39

Information - Cosine 23.47 23.70 25.01 23.99 24.45
Information - Euclidean 14.78 13.38 14.80 14.76 14.79

Information - Dot 25.36 21.93 25.58 25.42 25.48
Information - ICM 26.22 23.15 26.10 26.14 26.15

Fuzzy - Cosine 26.00 26.14 27.26 26.61 26.94
Fuzzy - Euclidean 17.72 16.32 17.73 17.70 17.73

Fuzzy - Dot 27.58 24.27 27.28 27.38 27.30
Fuzzy - ICM 29.20 26.00 29.19 29.19 29.19

Table 7: Results grouped by embedding function. Each row shows the results of one of
the possible combinations, and each column show the result for the embedding functions
used. Values represent the score obtained throughout the execution, with a range from
0 to 36, being the higher, the better. In bold letter, the highest result for each of the
column. Best results are obtained with the Fuzzy option + ICM, almost independently
of the embedding function.

function of the three options, as the rest of the test results are similar.

5.2.3 Similarity function analysis

Results are shown in Figure 9 and Table 9. As it can be seen, the best results are obtained

with ICM. Notice that ICM similarity measure generalizes the Ecludiean distance and

dot product distance, but satisfying simoultaneosly more properties defined in Amigó

et al. (2022). This is due to the fact that the ICM is an Information Theory measure: as

it works with the amount of information of both components and their union, it is very

sensitive with longer texts (summaries), even more if there is a lot of shared information

between them.

Euclidean distance have the worst results (scoring around 6 points less than the
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Figure 8: Visualization of the impact of the different specification and generalization
functions. X axis shows each of the combinations studied, Y axis shows the score
obtained by each combination. Best results are obtained with the Sum of Vectors +
ICM, although Fλ,µ functions + ICM obtain similar results.
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Type Algebraic Information Fuzzy
Sum of Vectors - Cosine 23.79 23.47 26.00

Sum of Vectors - Euclidean 17.52 14.78 17.72
Sum of Vectors - Dot 24.17 25.36 27.58
Sum of Vectors - ICM 26.25 26.22 29.20

Average - Cosine 22.98 23.70 26.14
Average - Euclidean 16.13 13.38 16.32

Average - Dot 19.82 21.93 24.27
Average - ICM 21.96 23.15 26.00
Fjoint - Cosine 23.88 25.01 27.26

Fjoint - Euclidean 16.95 14.80 17.73
Fjoint - Dot 22.78 25.58 27.28
Fjoint - ICM 25.42 26.10 29.19
Find - Cosine 23.08 23.99 26.61

Find - Euclidean 16.83 14.76 17.70
Find - Dot 23.00 25.42 27.38
Find - ICM 25.38 26.14 29.19

Finf - Cosine 23.30 24.45 26.94
Finf - Euclidean 16.88 14.79 17.73

Finf - Dot 22.88 25.48 27.30
Finf - ICM 25.39 26.15 29.19

Table 8: Results grouped by specification and generalization functions. Each row shows
the results of one of the possible combinations, and each column show the result for the
specification and generalization functions used. Values represent the score obtained
throughout the execution, with a range from 0 to 36, being the higher, the better. In
bold letter, the highest result for each of the column. Best results are obtained with the
Sum of Vectors + ICM, although Fλ,µ functions + ICM obtain similar results.
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other similairy functions). This may be due to the fact that, at the distance level, a

similarity measure generated by an angular difference (more semantic) is not the same

as a modulus (amount of information). Hence, a measure that gives the same weight to

both components cannot result in a good overall measure.

The dot product obtains slightly better results than the cosine. They are, essentially,

the same metric, the cosine being normalized and the dot product not being normalized.

It seems that some information is lost normalizing the results. As the module of the

vectors is related to their Information Quantity, this means that Information Quantity

is relevant in order to compute the similarity between vectors.

Figure 9: Visualization of the impact of the different similarity functions. X axis shows
each of the combinations studied, Y axis shows the score obtained by each combination.
Best results are obtained with the Fuzzy option, both for Sum of Vectors and Fλ,µ

functions.
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Type Cosine Euclidean Dot ICM
Sum of Vectors - Algebraic 23.79 17.52 24.17 26.25

Sum of Vectors - Information 23.47 14.78 25.36 26.22
Sum of Vectors - Fuzzy 26.00 17.72 27.58 29.20

Average - Algebraic 22.98 16.13 19.82 21.96
Average - Information 23.70 13.38 21.93 23.15

Average - Fuzzy 26.14 16.32 24.27 26.00
Fjoint - Algebraic 23.88 16.95 22.78 25.42

Fjoint - Information 25.01 14.80 25.58 26.10
Fjoint - Fuzzy 27.26 17.73 27.28 29.19

Find - Algebraic 23.08 16.83 23.00 25.38
Find - Information 23.99 14.76 25.42 26.14

Find - Fuzzy 26.61 17.70 27.38 29.19
Finf - Algebraic 23.30 16.88 22.88 25.39

Finf - Information 24.45 14.79 25.48 26.15
Finf - Fuzzy 26.94 17.73 27.30 29.19

Table 9: Results grouped by similarity function. Each row shows the results of one of
the possible combinations, and each column show the result for the similarity functions
used. Values represent the score obtained throughout the execution, with a range from
0 to 36, being the higher, the better. In bold letter, the highest result for each of the
column. Best results are obtained with the Fuzzy option, both for Sum of Vectors and
Fλ,µ functions.
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6 Conclusions and futures lines of work

6.1 Conclusions

We have shown that Information Theory based functions performs as well as the most

used functions, even outperforming them: F-functions and the vector sum obtain similar

results when considering the trade-offs with the rest of the functions involved, while

vector averaging obtains inferior results when ’smoothing’ the information quantity;

and we have also shown that the ICM is the best measure of similarity from a holistic

point of view, considering the trade-offs with the rest of the functions involved.

Additionally, we have stressed the necessity of similarity functions more sensitive

to the amount of information: we have shown that, considering the trade-offs with the

rest of the functions involved, the Euclidean distance is the worst performer, which

demonstrates that the information quantity (modulus) and the semantics (angle) do

not have the same impact on the result. This also explains why the dot product has a

slightly better result than the cosine, since the cosine only considers the similarity by

angle as it is a normalised result. Combining these two results, we can determine that

the greatest impact on similarity is given by the angle, having the amount of information

a little impact on actual similarity functions.

We have also shown that the presented framework is robust, and that results obtained
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testing several proposals such as the F-functions or ICM are consistent with the results

obtained by their authors. This demonstrates that the goal of this work of creating

a framework that can be used by the community as a reference for future research in

representation systems has been achieved.

6.2 Future research

Several lines of research are opened with this work:

• The main research focus will be on conducting a comparative study of the main

current proposals, whether contextual or non-contextual, in order to establish a

classification of the best possible combinations to be used.

• A second line of work will focus on the creation of new properties resulting from the

transfer of the rules of the set algebra operators, in order to enrich the benchmark

presented in this work.

• A third line of work will focus on the search for new functions of the representation

system: new specification and generalization functions, similarity functions that

are more sensitive to the information quantity, for example.

• A fourth line of work should focus on continuing to bridge the gap between distri-

butional semantics and information theory.
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