
Trabajo Fin de Máster:

Master Dissertation : Information Retrieval
for Question Answering based on Distributed

Representations

Ana Sagrado Sala

Trabajo de investigación para el

Máster en Lenguajes y Sistemas Informáticos

Universidad Nacional de Educación a Distancia

Supervisors

Dr. Álvaro Rodrigo Yuste y Dr. Fernando Lopez Ostenero

February 2022

2

Abstract

Commonly used methods for information retrieval such as TF-
IDF do not capture the semantics of the query or the document.
This is a problem, especially in cases where the words used in
the queries are not contained in the documents. Therefore more
research needs to be done to investigate how text semantics can
be applied to information retrieval, especially in cases where the
corpus of documents is big and the queries and documents rep-
resentations need to be compared fast and without the need of
re-indexing. In this work, we conduct an exploratory study to
investigate different embeddings and deep learning techniques
and how this can be applied to the information retrieval task.
We show that although existing methods based on word over-
lapping perform better in general, in particular cases where the
word overlap between queries and documents is low, the use of
semantic embedding outperforms other methods based on bag
of words.

Contents

1 Introduction 9

2 State of the art 13
2.1 QA systems . 13

2.1.1 Types of systems . 14
2.1.2 Phases of a QA system 16

2.2 Models for Information Retrieval 17
2.3 Embeddings - state of the art 19
2.4 Deep learning for information retrieval 21

2.4.1 Neural encoders and architectures 22
2.4.2 Applications of deep learning 22
2.4.3 Model Architectures 23
2.4.4 CNN applied to the ad-hoc retrieval task 28

2.5 Recap . 30

3 Experimental setup 33
3.1 Dataset . 33
3.2 Evaluation metrics . 34
3.3 Baseline . 36

4 Models based on Embeddings Similarity 37
4.1 Description . 37
4.2 Results . 38
4.3 Overlapping Analysis . 41
4.4 Normalized Overlapping Analysis 48

5 CNN’s for ad-hoc retrieval 53
5.1 Description . 53
5.2 Results . 57

6 Conclusions and Future Work 63

3

4 CONTENTS

Bibliography 65

List of Figures

2.1 Three types of Assymetric Architecture 26

2.2 Representation-focused and Interaction-focused Architectures 27

2.3 Multi-granularity Architectures 28

4.1 Statistics of average query length and number of queries per
each query overlaps category. 43

4.2 Table comparing the MAP1K for different maximum overlaps
thresholds between the query and the document. 44

4.3 Graph comparing the MAP1K for different maximum overlaps
thresholds between the query and the document. 45

4.4 Table comparing the MAP5K for different maximum overlaps
thresholds between the query and the document. 46

4.5 Graph comparing the MAP5K for different maximum overlaps
thresholds between the query and the document. 46

4.6 Table comparing the MAP20K for different maximum overlaps
thresholds between the query and the document. 47

4.7 Graph comparing the MAP20K for different maximum over-
laps thresholds between the query and the document. 47

4.8 Statistics of average query length and number of queries per
each normalised query overlaps bracket. 48

4.9 Table comparing the MAP1K for different maximum normalised
overlaps thresholds between the query and the document. . . . 49

4.10 Graph comparing the MAP1K for different maximum nor-
malised overlaps thresholds between the query and the doc-
ument. 50

4.11 Table comparing the MAP5K for different maximum normalised
overlaps thresholds between the query and the document. . . . 51

4.12 Graph comparing the MAP5K for different maximum nor-
malised overlaps thresholds between the query and the doc-
ument. 51

5

6 LIST OF FIGURES

4.13 Table comparing the MAP20K for different maximum nor-
malised overlaps thresholds between the query and the docu-
ment. 52

4.14 Graph comparing the MAP20K for different maximum nor-
malised overlaps thresholds between the query and the docu-
ment. 52

5.1 General architecture that we will use to train. We will test
different convolution layers and similarity functions. 55

5.2 Table comparing the MAP1K for different maximum normalised
overlaps thresholds between the query and the document. . . . 58

5.3 Graph comparing the MAP1K for different maximum nor-
malised overlaps thresholds between the query and the doc-
ument. 59

5.4 Table comparing the MAP5K for different maximum normalised
overlaps thresholds between the query and the document. . . . 60

5.5 Graph comparing the MAP5K for different maximum nor-
malised overlaps thresholds between the query and the doc-
ument. 60

5.6 Table comparing the MAP20K for different maximum nor-
malised overlaps thresholds between the query and the docu-
ment. 61

5.7 Graph comparing the MAP20K for different maximum nor-
malised overlaps thresholds between the query and the docu-
ment. 61

List of Tables

3.1 Results of the BM25 applied to the ad-hoc retrieval task . . . 36

4.1 Results using fasttext-wiki-news-subwords-300 with three dif-
ferent aggregation functions 39

4.2 Results using word2vec-google-news-300 with three different
aggregation functions . 39

4.3 Results using glove-wiki-gigaword-50 with three different ag-
gregation functions . 39

4.4 Results using glove-wiki-gigaword-300 with three different ag-
gregation functions . 39

4.5 Results using glove-twitter-25 with three different aggregation
functions . 40

4.6 Results using glove-twitter-200 with three different aggrega-
tion functions . 40

4.7 Results using BERT contextualised embeddings with three dif-
ferent aggregation functions 40

4.8 Results using sentence transformers with three different ag-
gregation functions . 40

5.1 Results after training the CNN for 150 epochs with a convo-
lution applied to the document branch and applying cosine
similarity between the document and query vector representa-
tions. 58

7

8 LIST OF TABLES

Chapter 1

Introduction

In recent years we have seen an explosion on the amount of information
available on the web and other digital sources. As the size of information in-
creases the access to that information becomes more difficult and that poses
new challenges.

One of the challenges to address is how we can make that information
available to everyone in a way that is easy to use and do not require domain
expertise. This is the main purpose of question answering systems (QA).
The QA task consists of, given a question posed in natural language, find the
correct answer and present it to the user of the system dismissing the irrel-
evant information (González, José, 2003). The type of QA will also depend
on the input data. For this work, we will focus on question answering over a
collection of unstructured text documents.

To access the information correctly the first step is to analyse and under-
stand the question. This raises other subproblems as question classification,
ambiguity resolution, identification of temporal relationships, etc. A system
that extracts the answer from a document is called shallow, while a system
that can infer information from the text is called a deep QA system (Dwivedi
& Singh, 2013).

A complete QA system is composed of different submodules. The first
step is the information retrieval system where the query is analysed and
the system tries to retrieve the most relevant documents. Traditionally,
systems keyword-based were used for this approach (Haav & Lubi, 2001).
The main problem with these systems is that they lack semantic knowl-
edge and a deeper understanding of the query and context (Deerwester, Du-
mais, Landauer, Furnas, & Harshman, 1990)(Dumais, Landauer, & Littman,

9

10 CHAPTER 1. INTRODUCTION

1996)(Platt, Toutanova, & Yih, 2010). This is partially due to the fact that
the same concept can be expressed using different vocabularies and language
styles in documents and queries (Shen, He, Gao, Deng, & Mesnil, 2014).

Corpus-based semantic representations (i.e. embeddings) exploits statis-
tical properties of textual structure to embed words in a vectorial space. In
this space, terms with similar meanings tend to be located close to each other
(Altszyler, Ribeiro, Sigman, & Fernández Slezak, 2017) which alleviates the
vocabulary gap between documents and queries.

In this work, we will study if we can improve the information retrieval
phase of QA with the use of semantic embeddings. For this purpose, we
will compare a keyword baseline system with different approaches based on
semantic embeddings. Specially we will focus on cases where the overlap
between the words in the queries and the documents is low and therefore a
keyword system would perform poorly.

We will apply semantic embeddings and new deep learning techniques
to extract the semantics of the document and the query and go beyond the
keywords on the text, trying to understand the meaning of the words and
the context in which they appear.

Note that the focus of this work is to analyse systems that work well in
large scale data. This means that the system should be able to efficiently
create a representation for both queries and documents and then compute
the similarity between both representations. The documents representations
can be computed offline and therefore we can add more complexity when
creating these representations. On the other hand, the way we establish
similarity between queries and documents needs to be computed fast and
therefore the similarity function will need to be simple enough to guarantee
that the comparison of the query representation against all the document
representations can be achieved in a reasonable amount of time.

The aim of this study is not just to improve existing metrics at all costs,
but to keep in mind the feasibility and applications that these systems will
have in real life. This study aims to be the first step into more research
over different architectures and embeddings. This is why the code has been
published and created in a modularised way that can be extended easily and
evolve as more research is being done.

This work is organized as follows: In section 2 we will review the state

11

of the art of QA systems relevant for this work, starting with a presenta-
tion of the task and introducing more conventional models and followed by
more recent discoveries, making special emphasis on new embeddings and
deep learning architectures. Next, based on this literature review, we will
describe the experiments. For this we will start by introducing the base-
line used, the metrics used to evaluate performance and the dataset used
for the experiments. In section 4 we start by evaluating the baseline model
and then describe two different experiments. The first experiment will be to
make use of existing embeddings and perform different aggregation functions
over those embeddings for both the query and the document and the second
experiment will be to train a neural network using CNNs. Finally, in section
5 we will draw some conclusions out of the experiments carried out in section
4.

12 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

In this chapter, we will review the state of the art for QA systems relevant
for this work. First, we will introduce the QA task and the different types
of systems and phases. Then we will focus specifically on the information
retrieval task and finally, we will describe more recent techniques and deep
learning architectures specifically designed for the IR task.

2.1 QA systems

In some context, search engines such as Google have become the common way
of searching information (Cairns et al., 2011). The main problem with this
type of engines is that people have difficulties distinguishing between reliable
and unreliable sources. Unlike search engines, which typically returns a list
of documents, the main aim of QA systems is to retrieve the exact answer
for a particular question (Tsatsaronis et al., 2012).

A true QA is an information retrieval based system that can understand
questions posed in natural language and extract the answer from the text
(Loni, 2011).

Although the idea of computer-based QA system has been around since
1970, it did not attract attention until the early 2000 (H. Yu et al., 2007).
The development of this field has been widely supported by the Text Re-
trieval Conference (TREC), which provides the infrastructure necessary for
evaluation at scale. The first QA answering system named Baseball was
developed in 1961 and was able to answer domain-specific natural language
questions about baseball (Loni, 2011). Other systems were developed during
this time but were mainly domain-specific systems with limited understand-
ing of the text. It was with the explosion of the information available on the

13

14 CHAPTER 2. STATE OF THE ART

web that the field has witnessed an increasing interest and more research has
been done towards the end goal of having open-domain QA systems.

The annotation of large corpus for QA systems and the creation of curated
datasets like WorldTree, OpenBookQA, QED, eQASC, eOBQA, Free917,
WebQuestions, WikiMovies, QALD, etc, (Wiegreffe &Marasović, 2021)(Deng
& Liu, 2018) has been significant in the development and evaluation of new
QA systems. But human-annotated datasets are strictly related to plau-
sibility and not faithfulness (Wiegreffe & Marasović, 2021). This design
ignores some of the problems required to answer open-domain questions,
like searching for passages that contain the candidate answer, open-domain
questions, solving conflicts and aggregating the information from different
passages (Dhingra, Mazaitis, & Cohen, 2017). For example, SQUAD ques-
tions were made after reading the text, this is called ’back-written questions’,
which means that lexical overlap between questions and answers is greater
than if the questions were made genuinely (Qu et al., 2020).

Among the type of questions that we can find in these annotated corpora
there are:

• Factoid questions: “How long is a marathon?”

• List questions: “Name the presidents of the US”

• or other question that requires longer answers and more reasoning
across the document: “How do clouds form?”

QA systems were initially focusing on factoid questions but they have
been progressively moving towards more complicated questions such as defi-
nitions (Tsatsaronis et al., 2012).

2.1.1 Types of systems

There are different types of systems that can be used. In this subsection we
will review some of them. Firstly we will make a claisfication based on the
approach (linguistics approach vs statistical approach). And later we will
introduce another classification based on type of data sources.

Approaches

2.1. QA SYSTEMS 15

Different techniques from information retrieval, natural language process-
ing and machine learning can be used to achieve better results on the QA
task (Loni, 2011). At the beginning some studies focused on querying struc-
tured data while others focused on pattern matching techniques to answer
the questions.

There are different approaches that can be used to extract relevant an-
swers for a particular query. One approach is the linguistic approach that
relies on artificial intelligence and different natural language techniques to
build QA systems. One technique to obtain responses to a certain question
can be querying a knowledge bases. This particular area is called ”question
answering over knowledge base” and use rich semantics to deeply understand
questions posed in natural language and find answers from knowledge bases
(B. Fu et al., 2020). In this approach, the question is parsed into a logical
form in order to query the knowledge base. However the knowledge bases
are often incomplete and for this reason, the focus is now shifting towards
unstructured sources as Wikipedia articles (Dhingra et al., 2017). Other lin-
guistic methods include syntax based pattern extraction for questions and
answers (Kolomiyets & Moens, 2011).

Another approach is the statistical approach in which the words are
extracted as features and a statistical model learns to characterise the rela-
tion between question and answer from the training data (Berger, Caruana,
Cohn, Freitag, & Mittal, 2000). This approach has higher portability than
the linguistic approach as it does not need for specific grammars but in-
stead the system learns from the data. This advantage in term of portability
comes with other disadvantages compare to the linguistic approach. One
of them being the difficulty of adding expertise knowledge to these systems
and the requirements of having a good dataset to train the model. Several
techniques can be used for this purpose highlighting SVM, Naive Bayes and
Maximum entropy models (Dwivedi & Singh, 2013). Although this method
presents some disadvantages it produces better results than other competing
approaches.

In this work we will focus on the statistical approach, using large corpus
in conjunction with statistical models to learn patterns from the data.

Type of data sources

16 CHAPTER 2. STATE OF THE ART

Apart from the approaches and techniques used in QA there are other
classifications based on the type of text data that the QA systems has to
deal with. According to (Mervin, 2013) we can have the following types of
systems:

• Factoid QA: focuses on questions in which the answers are syntactic or
semantic entities such as a person, organization, date, etc.

• Web based QA: aim to retrieve webpages that are potentially relevant
to a certain query posed by the user.

• IE based QA systems uses natural language processing techniques to
parse questions a documents.

• Restricted domain QA are QA systems that focus on a specific domain
and requires linguistic knowledge to support the understanding of the
text. This type of QA have better accuracy than open domain QA and
less redundancy.

• Rule based QA: extends the information extraction QA systems by
generating heuristics alongside with other lexical and semantic features.

All these approaches have some pros and cons and there is not any con-
sensus on which approach is better. The choose is purely dependant on the
specific problem and the resources available (Dwivedi & Singh, 2013).

2.1.2 Phases of a QA system

Traditionally, a QA system was composed of three steps (Dwivedi & Singh,
2013) (Loni, 2011).

• The question processing task to analyze the question (parsing, question
classification and query reformulation (Dwivedi & Singh, 2013)) and
create the query for the IR system. Most of the state-of-the-art question
classifiers use machine learning techniques for this purpose (Loni, 2011).

• The passage or document retrieval task to return the most relevant
passages that are more likely to contain the answers to the query.

• The last step is the answer processing. The answering processing task
aim is to retrieve the words or phrases from the passage that contains
the answer to the question.

2.2. MODELS FOR INFORMATION RETRIEVAL 17

This landmark has changed significantly during past years and common
systems are now composed of just two modules. The first module is an
information retrieval module and the second is the reading comprehension
module that extracts the answer from the retrieved text (Zhu et al., 2021).

Most of QA systems first use a document retrieval system to identify rele-
vant documents and then in the second phase they perform a deeper analysis
to extract the answer from a more fine-grained and reduced set of documents
(Monz, 2003). Although these two modules can be developed separately, how
the information retrieval module works directly impacts the reading compre-
hension module. We can have higher accuracy in the information retrieval
module by retrieving more documents, but this will make the comprehension
task more difficult (Dhingra et al., 2017).

(Mervin, 2013) Current QA systems can now accurately find precise an-
swers from a text passage or an entire document (Kaddari, Mellah, Berrich,
Bouchentouf, & Belkasmi, 2020). Unfortunately these systems are not able
yet to adapt to specific domains such as the Biomedical domain. A lot of
work has been done recently around improving the reading comprehension
module, but this one is bounded by the precision of the information retrieval
module. In this work, we will focus on improving the information retrieval
module.

2.2 Models for Information Retrieval

There are several information retrieval strategies. We will review here some
of the more conventional approaches according to (Berger et al., 2000). The
first is adaptive tf-idf and the idea is to adjusts the weights of the tf-idf
matrix to maximise the retrieval of the correct answer. Some other term
weighting models include BM25, LM Dirichlet and Divergence from inde-
pendence (Marwah & Beel, 2020).

BM25 is a bag-of-words retrieval function that ranks documents according
to their relevant results using the following formula (Tinega, Mwangi, &
Rimiru, 2018):

!

t∈q
log(

N

dft
) · (k1 + 1)tftd

k1((1− b) + b(Ld

Lave
) + tftd

(2.1)

18 CHAPTER 2. STATE OF THE ART

where

N :represents the document for the collection

dft :the frequency of a query term in a document

t :is a term of the query q

tftd : represents the frequency of a term in document d

Ld :used to calculate the average document length in the collection

k1 and b :tuning parameters

(2.2)

The most critical language issue for retrieval effectiveness is the term mis-
match problem between queries and documents. One of the ways to solve this
issue is to apply automatic query expansion. This is a simple approach
where the user’s original query is augmented by new features with a similar
meaning (Carpineto & Romano, 2012), this allows expanding the terms in
the query to better match with relevant documents.

Following a similar approach based on term expansion and relatedness,
statistical translation models implicitly expands queries with the use of
pre-constructed translation models, which lets you generate query words not
in a question by translation to alternate words that are related (Lee, Kim,
Song, & Rim, 2008). These models aim to characterise the co-occurrence be-
tween words in the queries and words in the documents. They also alleviate
the lexical gap issue between queries and documents and have been adapted
recently and applied in conjunction with more sophisticated deep learning
models (C. Xiong, Dai, Callan, Liu, & Power, 2017).

Another relevant approach is the latent variable models that makes
the assumption that each question and answer comes from a mix of unseen
topics that can be modelled in the latent space (Séaghdha & Korhonen, 2014).

Although these approaches are valid and still widely used, the research
community has adapted and created new ways to approach the solution. Cur-
rent retrieval models can be categorised into two classes (C. Xiong, Callan,
& Liu, 2017):

• Representation based models: the goal is to learn good continuous
representations of the queries and the documents and then rank the
relevance based on the similarity of the representations. The way to
establish relevance is by similarity of the two embedded representations

2.2. MODELS FOR INFORMATION RETRIEVAL 19

and this can range from the simplistic cosine similarity of two vectors,
or more complex approaches that make use of deep neural networks to
learn deeper interactions between the two representations. One of the
main challenges of the representation based approach is that by nature
the query and document are different. The query is typically short and
keyword-based while the documents can be large and with diversity
of vocabulary (Guo, Fan, Ai, & Croft, 2016) and their representations
must reflect this fact.

• Interaction based models match the query and document at the word
level. These models include the above mentioned translation models.
The main challenge of these models is that the word pairs representa-
tions are too sparse to learn.

More conventional models, while effective, still lack semantic knowledge.
They also suffer from a phenomenon known as the lexical gap. Although in-
troducing semantic knowledge into an IR system can lead to improvements,
the way a query is posed is mainly keyword-based, which explains why some
term matching algorithms like BM25 work so well for this set up (Guo et al.,
2016). Another point that traditional models lack is the awareness of context.
For example, a user asking for “Jaguar SUV prices” might get documents
related to the animal “Jaguar” in more traditional term matching algorithms
where the context is not taken into account. (Hui, Yates, Berberich, & de
Melo, 2017)

New techniques mainly based on deep learning are bringing this gap to-
gether by creating vector representations in the semantic space. These vec-
tors are usually word-level embeddings and how to match a question with
an answer by their words still remains an open problem. Despite all the
interest from the research community in applying deep learning techniques
and distributed representations for information retrieval, the success on ad-
hoc retrieval tasks has been quite limited (Mitra, Diaz, & Craswell, 2016).
Another point of concern is the reproducibility of these experiments. While
many papers suggest improvements over the baseline, which is usually BM25,
the parameters of the BM25 model are rarely specified. This raises some
questions on whether or not a small improvement in performance over the
baseline is significant, or if it is just a case of the baseline being set up poorly
(Yang, Fang, & Lin, 2018).

20 CHAPTER 2. STATE OF THE ART

2.3 Embeddings - state of the art

Word embeddings are fixed-length vector representations for words that rep-
resent meaning via geometry (Almeida & Xexéo, 2019) . A good embed-
ding provides vector representations of words such that the relationship be-
tween two vectors mirrors the linguistic relationship between the two words
(Schnabel, Labutov, Mimno, & Joachims, 2015).

One of the main advantages of the pre-trained models or embeddings is
that they reduce the need for feature engineering, which is a time consum-
ing and usually costly task (Qiu et al., 2020). In traditional informational
retrieval, terms have a discrete or local representation whereas distributed
representations of the text match the query against the document in the se-
mantic latent space. But these two approaches are not mutually exclusive, a
combination of local and distributed representation can improve the perfor-
mance of an IR system (Mitra et al., 2016).

The first generation of pre-trained models were models aimed to learn
good word representations, such as Skip-Gram (Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013) and Glove (Pennington, Socher, & Manning, 2014).
Although these embeddings can capture rich semantics, they are unable to
capture the context in which the word or token appears. The other main
disadvantage is the out of vocabulary issue, in which words that did not
appear in the training phase, will not have a representation embedding. To
tackle the out of vocabulary issue other representations have appeared based
on character level such as CharCNN (Kim, Jernite, Sontag, & Rush, 2015),
FastText (Bojanowski, Grave, Joulin, & Mikolov, 2017) and Byte-Pair En-
coding (Sennrich, Haddow, & Birch, 2016) .

The second generation of pre-trained models include models such as
BERT (Devlin, Chang, Lee, & Toutanova, 2019) , CoVe (McCann, Brad-
bury, Xiong, & Socher, 2018), OpenAI GPT (Radford & Narasimhan, 2018)
and ELMo (Peters et al., 2018) and are models pre-trained in different down-
stream tasks that represent words as contextualised embeddings.

Pre-trained models offer several advantages (Qiu et al., 2020):

• Models trained on huge corpus can learn universal representations

• Pre-training models offer better initialisation of the network than ran-
dom weight and this can quickly speed up the training process and
improve the results

2.4. DEEP LEARNING FOR INFORMATION RETRIEVAL 21

• Pre-training can also be seen as a regularization technique in the ab-
sence of a big corpus

Some of these pre-trained embeddings have been trained over millions
of documents and therefore are rich in semantics. Despite this, it remains
unclear how these vectors can be used to train accurate IR systems. In the
next section, we will review some of the progress that has been made in the
use of word embedding applied to IR.

2.4 Deep learning for information retrieval

For years the BM25 model has been the best information retrieval model,
but now we are seeing some other models that make use of the state of the
art pre-trained embeddings, like BERT, to feed into a deep learning model
and create embeddings to represent the text (Karpukhin et al., 2020). Other
works, that follow a term matching approach, make use of non contextu-
alized word embeddings like Word2Vec, stating that the semantics of these
embeddings trained on large scale data contain more information than the
information that can be learnt by training embeddings from the ground truth
data for ad-hoc retrieval (Guo et al., 2016).

The improvements made in (Karpukhin et al., 2020) are a combination
of the well-known BM25 and embeddings learned from the text. While these
improvements are encouraging there are several precautions that we need to
take when we evaluate these models. They require a lot of computational
resources for both training and vector similarity comparison, and these re-
sources might not be available in all cases. Also, we do not know if the
results would work equally on a different dataset that has not been used dur-
ing training. For example, in (Mitra et al., 2016) they train a neural network
for the ad-hoc retrieval task using the data from the search engine Bing, but
the pre-trained embeddings they used were previously trained on a corpus of
Bing queries. We do not know if using embeddings pre-trained on a different
dataset will work equally well.

Another drawback is that the encoded representation of the paragraph
tends to be question dependant and that make these systems more ineffi-
cient and difficult to implement for a real use case (W. Xiong, Wang, &
Wang, 2021). On the other hand, methods based on tf-idf are insufficient
to capture deep semantics beyond lexical overlapping (W. Xiong et al., 2021).

22 CHAPTER 2. STATE OF THE ART

To tackle these issues some authors have opted for a mix of BM25 index
model for the first retrieval phase and a second more complex deep learning
model that re-ranks the results from the BM25 output (Nogueira & Cho,
2020). Other authors claim that the use of a model based on local represen-
tations and a model based on distributed representations can outperform any
of the two separately (Mitra et al., 2016). They create two models, one based
on an interaction matrix between the terms in the query and the terms in
the document, and another deep learning model that aim to generate good
representations of the query and document and then learns the relevance
between the two in the interaction layers. The final ranking score is then
computed as the sum of the scores for both models.

2.4.1 Neural encoders and architectures

To create embeddings from words we need a way to encode the words infor-
mation. Initially, there are two types of architectures widely used to encode
the semantics of the words. The first one is sequential based models. These
models capture the context of the word in sequential order. One example of
these models are the LSTM or GRU recurrent models or the CNN models.
The main problem with LSTM or GRU is that given their recurrent nature
they tend to be slow for both training and inference (A. W. Yu et al., 2018).
CNN models have proven successful in capturing the context of the words
(C. Xiong, Callan, & Liu, 2017)(Hui et al., 2017) and are much faster than
their counterparts RNN (A. W. Yu et al., 2018).

Another alternative that has seen a lot of success recently, is the fully con-
nected self-attention model. These models use a fully connected graph to rep-
resent the relation between every pair of words and the model learns the struc-
ture (Qiu et al., 2020). In common architectures for QA the self-attention
layer learns the interactions between context and question (A. W. Yu et al.,
2018). While these models have proven powerful they tend to overfit on small
or medium-size datasets.

2.4.2 Applications of deep learning

There are different IR tasks in which neural ranking models can be applied
(Guo et al., 2019):

• Ad-hoc retrieval refers to the IR in which documents remain rela-
tively static

2.4. DEEP LEARNING FOR INFORMATION RETRIEVAL 23

• Question answering refers to the answers of question posed in natural
language. Question could be close or open domain, and the sources
of information could come from a knowledge base (or other source of
structured data) or unstructured data as web pages. There have been
a variety of task formats for QA:

– multiple-choice selection

– answer passage/sentence retrieval

– answer span locating

– answer synthesizing from multiple sources

Altough some of this task are not considered IR tasks (Guo et al.,
2019): “multiple-choice selection is typically formulated as a classifi-
cation problem while answer span locating is usually studied under the
machine reading comprehension topic”. Hence, when referring to QA,
it means, particularly for the answer passage/sentence retrieval task.

• Community QA aims to answer questions based on previous ques-
tions already answered by the community. Questions and answers usu-
ally come from web pages such as Quora, Yahoo!, Stack Overflow, etc.
In this type of IR models, the question can be answered directly by the
pool of answers retrieved by the community or assuming that similar
questions can be answered by the same answer.

• Automatic conversation systems can be divided into two categories.
Retrieval based systems that search for the answers to a query in a large
conversational repository and return the best match. Or generative
based systems that synthesize new replies (Song et al., 2018).

Deep learning can be applied to many of these tasks. Deep learning has
seen great success over recent years and it is attracting more research. These
models are getting more popularity than the more traditional models based
on bag of words mainly due to the fact that they have better capabilities
in terms of understanding the text and they can encode information not
just about the context but also about the semantics and syntaxis of the
text. Specifically, when applied to areas such as QA systems, it can reduce
considerably, or even eliminate, the feature engineering step.

2.4.3 Model Architectures

In this subsection, we will formulate the problem and review the different
deep learning architectures commonly used for ad-hoc retrieval. For this

24 CHAPTER 2. STATE OF THE ART

task, the main goal is to learn a ranking function that assigns a higher rank
to documents more relevant to the query posed.

The ranking method can be described as a function f of s and t, where s
and t are the query representation and document representation respectively.
We can formulate f as

f(s, t) = g(ψ(s),φ(t), η(s, t))

where ψ,φ are representation functions that extract features from s and t
respectively and η is an interaction function that extracts features from the
(s,t) pairs. And the final step consists of a function g that computes the
relevance score or rank based on these representations.

As mentioned in previous sections we can differentiate between represen-
tation based and interaction-based systems. In interaction-based systems,
the interaction function η is a complex function while for representation
based systems this function can be a simple function like cosine similarity.

Symmetric vs. Asymmetric Architectures

The representation functions ψ and φ define the type of symmetry architec-
ture. If ψ and φ are the same, then we have a symmetric network, and if ψ
and φ are different functions then the architecture is asymmetric.

Symmetric Architecture Symmetric architectures refer to architectures
in which question and answer can be exchanged before training without af-
fecting the final output. Among the symmetric architectures, we have siamese
networks and symmetric interaction networks. Siamese networks refers to the
network in which weights are the same between the question and answer rep-
resentation, i.e, ψ is equal to φ. On the other hand, symmetric interaction
networks employ a symmetric interaction function, η, to represent the inputs.

These symmetric architectures are well suited for problems in which the
question and answers, s and t, are similar in length and form. This can be
the case for phrase retrieval systems but if the document is much longer than
the query this type of architecture can perform badly mainly because of the
padding needed to fit the query and document in the same initial embedding.

Asymmetric Architecture These architectures fit well on ad-hoc re-
trieval but can also be used on QA tasks where passages and questions need

2.4. DEEP LEARNING FOR INFORMATION RETRIEVAL 25

to be ranked. In these architectures, if we exchange s and t into the network
we will get completely different outputs.

There are mainly three strategies used in this architecture, as depicted in
Figure 2.1.

• Query split: based on the assumption that most queries in ad-hoc
retrieval are keyword based. In this strategy, we split the query into
words terms to match against the document. A typical model is DRMM
(deep relevance matching model) (Guo et al., 2016).

• Document split: based on the assumption that a long document could
be partially relevant to a query under the scope hypothesis. We can
split the document to capture fine-grained interaction signals rather
than treat them as a whole. A representative model based on this
strategy is HiNT (Romero et al., 2015).

• Join split: Joint split, by its name, uses both assumptions of query
split and document split. A typical model based on this strategy is
DeepRank (Pang et al., 2017).

DeepRank is a model that uses deep learning techniques to rank for the
IR task (Pang et al., 2017). The aim is to generate a score that can be used
to rank and order the phrases based on the relatedness to the query. This
model consists of three different steps that try to imitate the way the hu-
mans will score the responses, this is done by answering the three questions:
Where does the relevance occur? How to measure the local relevance? How
to aggregate such local relevances to determine the global relevance score?

DeepRank is structured into three steps: a Detection Strategy (according
to the query-centric assumption, the relevance usually occurs at the locations
where the query terms appear in the documents), a Measure Network (the
goal of this step is to determine the local relevance, i.e relevance between
query and each query-centric context), and an Aggregation Network (after
the measurement step, we obtain a vector h to represent the local relevance
between query and each query-centric context. Therefore, we need a further
aggregation step to output a global relevance score).

In addition, in neural ranking models applied for QA there is another
popular strategy leading the asymmetric architecture. We name it one-way
attention mechanism which typically leverages the question representation
to obtain the attention over candidate answer words in order the enhance

26 CHAPTER 2. STATE OF THE ART

the answer representation. For example, IARNN and CompAgg get the
attentive answer representation sequence weighted by the question sentence
representation.

Figure 2.1: Three types of Assymetric Architecture

Representation-focused vs. Interaction-focused Architectures

We can distinguish another two types of architectures, representation focused
(mainly focused on getting two good representation functions φ and ψ) or
interaction focused (more focused on the interaction function η). Besides
these two categories, some neural rankings used a hybrid approach, see Figure
2.2.

Representation focused architectures These architectures focus on get-
ting good deep representations functions φ and ψ, but no interaction function
η is computed, instead, the interaction g between question and answer is com-
puted as a simple evaluation function as cosine similarity or MLP.

Different deep network structures have been applied for φ and ψ, includ-
ing fully-connected networks, convolutional networks and recurrent networks.

This architecture is also more suitable for tasks with short input texts
since it is often difficult to obtain good high-level representations of long

2.4. DEEP LEARNING FOR INFORMATION RETRIEVAL 27

texts (Guo et al., 2019). The main advantage of these models is that they
are efficient for online computation. The embeddings of the document are
computed offline and although the query needs to be embedded online this
comes with a low cost given the short size of the query compared to the size
of the documents. This last point is relevant to the problem we are focusing
on how to create IR systems that can work efficiently on large scale data.

Interaction focused architectures The assumption of this architecture
is that relevance should be represented as the interaction between question
and answer. These models focus on the interaction function η instead of the
representation functions φ and ψ.

The use of an interaction-based model could be better suited for the ad-
hoc retrieval task given that the representation based approach will lose the
detailed matching signals that are more relevant for the ad-hoc retrieval task
than for other NLP tasks (Guo et al., 2016).

Hybrid architectures This architecture uses both, the representations of
s and t, and the interaction between them. There are two major hybrid
strategies:

• Combined strategy: generates the representation based and interaction-
based sub-models and combines their outputs to generate the relevance
score.

• Coupled strategy: integrate the interaction functions, φ and ψ, with
the interaction function η in the same compact representation.

Single-granularity vs. Multi-granularity Architecture

The final relevance score is produced by the evaluation function g. This func-
tion combines the different representations to create the ranking score. This
can be done at different granularities (word, sentence, phrase, document) as
illustrated in figure 2.3.

Single-granularity architecture assumes that the function g can be di-
rectly applied to the feature representation φ, ψ and η.

Multi-granularity architecture assumes that the function g uses fea-
tures with different granularities based on different language units. We can
identify two types of multi-granularity

28 CHAPTER 2. STATE OF THE ART

Figure 2.2: Representation-focused and Interaction-focused Architectures

• Vertical multi-granularity: takes advantage of the hierarchical nature of
deep networks so that the evaluation function g could leverage different
level abstraction of features for relevance estimation.

• Horizontal multi-granularity: is based on the assumption that language
has intrinsic structures (e.g., phrases or sentences), and we shall con-
sider different types of language units, rather than simple words, as
inputs for better relevance estimation.

2.4.4 CNN applied to the ad-hoc retrieval task

As introduced in the previous section, there are several architectures that
can be used to train a neural network for the information retrieval task. The
main purpose of this neural network is to learn a good ranking function

f(s, t) = g(ψ(s),φ(t), η(s, t))

As we stated at the beginning of this work, we aim to create a system
that can work well on large scale data, and for that, we need to focus on
representation based architectures. This means that we can describe the
ranking as

f(s, t) = g(ψ(s),φ(t))

2.4. DEEP LEARNING FOR INFORMATION RETRIEVAL 29

Figure 2.3: Multi-granularity Architectures

The type of neural network chosen to learn good representation functions
(ψ(s) and φ(t)), will depend on the use case and requirements. Traditionally
RNN works well with text data, given the sequence nature of the text (X. Fu,
Liu, Xu, & Cui, 2017). Also, CNNs have proven successful when applied to
computer vision (Krizhevsky, Sutskever, & Hinton, 2017), but some recent
studies suggest that their applications are not just bound to image processing
(Collobert & Weston, 2008). There are several use cases that have proven the
success of applying CNNs to text data, and particularly to the information
retrieval task (Pang et al., 2017) (Shen et al., 2014). Apart from being pow-
erful, these types of neural networks are faster than other widely used NN
like their counterpart RNN (or any of their variations like LSTM or GRU).
Here we present some of the most relevant examples that successfully apply
CNN’s to different language tasks and that will inspire our experiments:

1. (Shen et al., 2014) trains a neural network using CNNs for the retrieval
task. They use clickthrough data logged by a commercial search en-
gine. The architecture of the model contains (1) a word-n-gram layer,
(2) a letter-trigram layer that transforms each word trigram into a
letter-trigram representation vector, (3) a convolutional layer that ex-
tracts contextual features for each word (4) a max-pooling layer to
form a fixed-length sentence-level feature vector, and (5) a semantic
layer that extracts a high-level semantic feature vector for the input
word sequence.

30 CHAPTER 2. STATE OF THE ART

After training the neural net, cosine similarity is applied to compute
the similarity between the queries and the documents.

2. (Kim, 2014) uses pre-trained word2vectors to train a neural network
for sentence classification. The neural network is a 1-layer CNN trained
on top of word vectors from an unsupervised language model. In the
first experiments, they kept the word vectors static and just learnt the
parameters from the network. They state that these results suggest
that the word vectors are universal feature extractors. Among the
tests done, the most successful is the non-static strategy in which they
use one single channel but they update the word embeddings for the
specific task during backpropagation.

3. (Reimers & Gurevych, 2019) they use siamese networks to fine-tune
BERT to create more meaningful sentence embeddings trained on the
Semantic Textual Similarity task. They argue that the BERT embed-
dings need to be fine-tuned for any downstream task.

CNNs provide certain features like local connectivity, weight sharing, and
pooling. They have proven to be effective in mining semantic clues in contex-
tual windows (Young, Hazarika, Poria, & Cambria, 2018). This goes in line
with the aim of this work, which is to study the impact of the use of semantic
and contextualised embeddings over word overlapping methods. Two of the
major drawbacks of CNNs are that they are data-heavy models, and in some
instances, it might not be possible to have a big training and test set, and
that they struggle to learn long-distanced contextualised information and
preserve the sequential order (Young et al., 2018).

2.5 Recap

In this state of the art section, we have provided an overview of the QA
systems, the type of systems and their phases. Specifically, we have focused
our attention on the information retrieval module.

More semantic capabilities with applications to text data have been in-
troduced in recent years and we have seen some of those applied to the
information retrieval tasks.

The existence of open-source embeddings trained over millions of docu-
ments and for different tasks have proven effective in adding semantic value
when transferred to other downstream tasks different from the ones used for

2.5. RECAP 31

training. Also, we have introduced some deep learning architectures that aim
to learn semantic patterns and create models that go beyond key-word based
methods like BM25.

It is important to emphasize that the focus of this work is to study the ap-
plications of semantics for information retrieval over large scale data. Work-
ing with small scale datasets comes with its own challenges, like small training
sets, but also some benefits like the possibility of applying interaction focused
architectures that can retrieve the documents fast enough. As we have seen
in the literature review, an interaction focused architecture might be more
suitable for the information retrieval task, but this approach is incompatible
with the creation of systems that can retrieve documents over millions of
documents in a reasonable amount of time for the users.

In 2019, 90% of the data produced was produced between 2017 and 2019
alone (Wu, Barker, Kim, & Ross, 2013). And as we expect this trend to
increase, more research needs to be done on how the IR systems can evolve
and be applied without incrementing the response times exponentially as the
number of documents increases. We approach this task knowing that rep-
resentation focused architectures might not perform as good as interaction
focused architectures but that more research has to be done to create systems
that can seamlessly cope with the increase of information available.

In the next sections, we will introduce the experiments, the data used for
these experiments and the evaluation metrics used to evaluate the experi-
ments. Later we will run the experiments and provide the results and lastly
we will provide some conclusions and ideas for future work.

32 CHAPTER 2. STATE OF THE ART

Chapter 3

Experimental setup

As mentioned before, we will make different experiments, one based on word
embeddings and another on neural networks. In this chapter, we will make
an introduction to these experiments. First, we will describe the dataset that
we will use for training and testing, then we will introduce the models that
we are going to test and later we will describe the evaluation metrics that
we will apply to measure the performance of each individual experiment.

3.1 Dataset

The dataset used for the experiments will be SQUAD2.0 (Rajpurkar, Zhang,
Lopyrev, & Liang, 2016). SQUAD is a reading comprehension dataset, con-
sisting of questions posed by crowdworkers on a set of Wikipedia articles,
where the answer to every question is a segment of text, or span, from the
corresponding reading passage . Although this dataset was designed to be
evaluated on the machine comprehension task we will adapt it to the ad-hoc
retrieval task.

We have chosen this dataset because it provides documents of variable
length and semantically restricted paragraphs. As we will see in the follow-
ing sections the use of BERT embeddings is restricted to paragraphs of a
maximum of 512 tokens, this means that the way the SQUAD dataset was
created will make straightforward the process of creating the embeddings for
every paragraph.

The dataset contains questions with a short answer and a paragraph
containing the answer. There is also some unanswerable questions to help
improve the machine comprehension model but for this exercise, we will solely

33

34 CHAPTER 3. EXPERIMENTAL SETUP

focus on the questions with answer. The dataset is composed of a training set
used to train the models and a development set used to test the performance
of the models 1.

• The train set contains 86769 questions with the answer for each of those
questions contained in one of the 440 documents.

• The development set contains 5926 questions with the answer contained
in one of the 35 documents. The development set will serve as the test
set for our experiments.

As we stated above, the initial aim of this dataset was to be used to train
machine comprehension models. We will need to adapt the dataset to make
it suitable for the ad-hoc retrieval task.

This dataset is composed of many paragraphs corresponding to particular
Wikipedia documents. Because we want to retrieve the document that con-
tains the answer for a particular question, rather than the single paragraph
containing the answer, we have created the documents from the paragraphs
of the document.

Given the length of the documents, we will encode each paragraph sep-
arately and then we will flatten the encoders at the document level. For
example, if we have a document with two paragraphs and the first paragraph
contains 40 tokens, the second paragraph 30 tokens and the encoder length is
768, then the vectors representation for that document will have size [70, 768].

This point will be especially relevant while using contextualised embed-
dings. The basic idea behind these computations is that for each paragraph
the encoder will contain information related to that single paragraph but we
will feed all the paragraphs, as a single document, into the neural network
and with the convolution layers we will add the context and capture signals
from other paragraphs.

3.2 Evaluation metrics

To evaluate the performance of the models, we will use the MAP (Cormack
& Lynam, 2006) (Mean Average Precision) with different k levels.

1For SQUAD, the test set is not publicly available. This dataset is just used to evaluate
the models.

3.2. EVALUATION METRICS 35

Given a query qi and a set of documents D, the information retrieval sys-
tem should return a set of possible documents s1, s2, s3, ..., sk ranked based
on the relevance to the correspondent query, where each si ∈ D.

We define:

rel(d)

"
1, 1 if the document d is relevant to the query qi

0, otherwise
(3.1)

P@k =
k!

i=1

rel(si)

k
(3.2)

here P@k is the precision for the k most relevant documents retrieved. Next
we define the total relevant documents:

R =
!

di∈D

rel(d) (3.3)

Using equations 3.3 and 3.2 we can define the average precision as:

AP =

|S|!

k=1

rel(sk) ∗
P@k

R
(3.4)

Where S = s1, s2, ..., sk is the set of documents retrieved.

The same average precision is computed for each question separately. To
obtain the final score given a set of queries we calculate the average precision
of each query individually and then calculate the mean value of the AP for
each question. This final score is called MAP (Mean Average Precision) and
it is the metric we will use to evaluate the experiments.

Another commonly used metric, especially when there is just one doc-
ument containing the answer to the question is the Mean Reciprocal Rank
(MRR) (Craswell, 2016). We have opted to use the MAP because there are
several k values we can adjust for this metric. However, for this particular
case, the MAP value when k=1 is the same as the MRR when there is just
one relevant document, which is the case for SQUAD.

36 CHAPTER 3. EXPERIMENTAL SETUP

We will evaluate all the experiments using k values for k ∈ 1, 2, 3, 5, 10, 20, 50.
We have selected many values to have a clearer view of model performance.
We also want to study in more detail how the model performs with small
k-values and that is the reason why we have selected lower granularity on
the small k-values.

3.3 Baseline

Since we are focusing on models that work well on large scale data our base-
line will be BM25 (see details of the function in section 2.2). We will index
the documents in the SQUAD test set using BM25 and then rank the queries.
This will be the baseline that we will use to compare performance with the
other two experiments.

We will use BM25 at a document level and apply MAP (Mean Average
Precision) to evaluate and compare the results with the embedding approach
(see section 3.2).

The first exercise will be to compare how an unsupervised model will per-
form for this particular task. For this, we will choose both parameters, k1 and
b, for the BM25 using the default python values (k1=1.5 and b=0.75) and
other values already tuned for another IR retrieval task in (Pérez-Iglesias,
Joaqúın and Garrido, Guillermo and Rodrigo, Álvaro and Araujo, Lourdes
and Peñas, Anselmo, 2009) (k1=0.1 and b=0.6). To make a fair comparison
between fully unsupervised models we have to assume that there is no access
to any ground truth, and therefore these parameters can not be fine-tuned.

SQUAD map1 map2 map3 map5 map10 map20 map50
BM25
(k1=1.5, b=0.75)

0.8209 0.8521 0.8610 0.8677 0.8715 0.8732 0.8736

BM25
(k1=0.1, b=0.6)

0.7662 0.8072 0.8192 0.8282 0.8338 0.8356 0.8360

Table 3.1: Results of the BM25 applied to the ad-hoc retrieval task

The results shown in the table 3.1 will serve as the baseline when com-
paring other approaches in the next section.

Chapter 4

Models based on Embeddings
Similarity

In this experiment we are going to evaluate different embeddings and different
aggregation functions applied to different embeddings. Once the document
and query are aggregated we will apply the cosine similarity to establish the
relevance between document and query. We have left for future work the
study of other similarity metrics.

4.1 Description

We will generate the word embeddings and aggregate the word embeddings of
the documents and queries using different aggregation functions (sum, max
and min). We will also test the following embeddings:

• fasttext-wiki-news-subwords-300

• word2vec-google-news-300

• glove-wiki-gigaword-50

• glove-wiki-gigaword-300

• glove-twitter-25

• glove-twitter-200

• BERT (dimension: 768)

• Sentence transformers (dimension: 768) (Reimers & Gurevych, 2019)

37

38 CHAPTER 4. MODELS BASED ON EMBEDDINGS SIMILARITY

This selection of embeddings will allow us to draw some conclusions on how
the size of the embeddings and the nature of the embedding, i.e the dataset
used to train those embeddings, impacts the quality of the retrieval model.
For example, comparing two different embeddings with the same nature
but different sizes (glove-wiki-gigaword-50 with dimension 50 vs glove-wiki-
gigaword-300 with dimension 300) or embeddings that were trained using
different data sources (for example glove-twitter-25 trained on social media
data or word2vec-google-news-300 trained on google news). Apart from the
different embeddings, we will test three different aggregation functions over
these embeddings, these will be: minimum, maximum and sum.

All the embeddings are created using the python gensim library, except
for BERT that uses the pytorch pretrained BERT model and the sentence
transformers created using the sentence transformers python library. The
motivation to use BERT or other models based on BERT, like sentence trans-
formers, is to include contextualised embeddings in our study.

4.2 Results

Here we present the results after using the embeddings introduced above.
See tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8. Each table contains the results
for MAP@k for k ∈ [1, 2, 3, 5, 10, 20, 50] and using the aggregation functions
sum, max and min.

As we can appreciate in the tables the bigger the embeddings are the
higher the scores. This could be due to the big size of the documents and the
fact that the higher the dimension of the embeddings the more information
we can capture.

We also notice that embeddings trained on Wikipedia tend to give better
results this could indicate that embeddings trained on a dataset with the
same nature of the document give better results.

Across all the experiments there is another common pattern. The aggre-
gation function sum always outperforms the others two (min and max).

Despite the not so bad results, the baseline BM25 still retrieves better
results than the best embedding, which is BERT using the sum aggregation.

4.2. RESULTS 39

SQUAD map1 map2 map3 map5 map10 map20 map50
gensim - sum 0.3920 0.4514 0.4748 0.4960 0.5125 0.5217 0.5245

gensim - max 0.0425 0.0646 0.0741 0.0907 0.1152 0.1347 0.1470

gensim - min 0.0509 0.0696 0.0787 0.0936 0.1099 0.1287 0.1440

Table 4.1: Results using fasttext-wiki-news-subwords-300 with three different
aggregation functions

SQUAD map1 map2 map3 map5 map10 map20 map50
gensim - sum 0.5934 0.6484 0.6697 0.6853 0.6959 0.7001 0.7011

gensim - max 0.2458 0.3035 0.3315 0.3578 0.3788 0.3911 0.3952

gensim - min 0.2529 0.3104 0.3360 0.3604 0.3829 0.3960 0.3997

Table 4.2: Results using word2vec-google-news-300 with three different ag-
gregation functions

SQUAD map1 map2 map3 map5 map10 map20 map50
gensim - sum 0.5287 0.5992 0.6230 0.6414 0.6532 0.6577 0.6589

gensim - max 0.1460 0.1915 0.2157 0.2414 0.2662 0.2825 0.2883

gensim - min 0.1223 0.1654 0.1895 0.2152 0.2402 0.2564 0.2635

Table 4.3: Results using glove-wiki-gigaword-50 with three different aggre-
gation functions

SQUAD map1 map2 map3 map5 map10 map20 map50
gensim - sum 0.6304 0.6916 0.7087 0.7217 0.7311 0.7341 0.7351

gensim - max 0.3462 0.4122 0.4395 0.4627 0.4830 0.4918 0.4942

gensim - min 0.2959 0.3597 0.3896 0.4155 0.4376 0.4476 0.4502

Table 4.4: Results using glove-wiki-gigaword-300 with three different aggre-
gation functions

40 CHAPTER 4. MODELS BASED ON EMBEDDINGS SIMILARITY

SQUAD map1 map2 map3 map5 map10 map20 map50
gensim - sum 0.2644 0.3299 0.3573 0.3849 0.4086 0.4192 0.4221

gensim - max 0.0511 0.0726 0.0854 0.1008 0.1207 0.1401 0.1534

gensim - min 0.0226 0.0381 0.0497 0.0655 0.0888 0.1086 0.1222

Table 4.5: Results using glove-twitter-25 with three different aggregation
functions

SQUAD map1 map2 map3 map5 map10 map20 map50
gensim - sum 0.4978 0.5572 0.5797 0.6009 0.6144 0.6201 0.6217

gensim - max 0.0928 0.1281 0.1503 0.1749 0.1993 0.2159 0.2246

gensim - min 0.0426 0.0602 0.0710 0.0857 0.1099 0.1278 0.1412

Table 4.6: Results using glove-twitter-200 with three different aggregation
functions

SQUAD map1 map2 map3 map5 map10 map20 map50
bert - sum 0.6962 0.7510 0.7676 0.7786 0.7857 0.7880 0.7885
bert - max 0.4569 0.5181 0.5386 0.5559 0.5700 0.5769 0.5800
bert - min 0.1888 0.2479 0.2732 0.2983 0.3194 0.3342 0.3394

Table 4.7: Results using BERT contextualised embeddings with three differ-
ent aggregation functions

SQUAD map1 map2 map3 map5 map10 map20 map50
ST - sum 0.6297 0.6871 0.7058 0.7194 0.7277 0.7314 0.7324
ST - max 0.5372 0.5985 0.6177 0.6349 0.6472 0.6525 0.6541
ST - min 0.5604 0.6216 0.6426 0.6577 0.6687 0.6736 0.6750

Table 4.8: Results using sentence transformers with three different aggrega-
tion functions

4.3. OVERLAPPING ANALYSIS 41

4.3 Overlapping Analysis

For the next analyses, we will focus on the embeddings that performed bet-
ter, which are the BERT embeddings using the sum aggregation. In SQUAD
the queries were created after seeing the text, which leads to a higher word
overlapping than if the question were made genuinely before seeing the text.
We will focus on the results above and perform a more in-depth analysis on
how this overlap might be affecting the results.

Given that BM25 is a keyword-based method, i.e it ranks based on the
overlapping between document and query, we expect to see low performance
on BM25 for queries with a low overlap between the queries and documents.
In this particular case of low overlap we expected to see better results using
the embeddings approach.

The definition of overlap in this context is quite vague. To define overlap
we will first tokenize the query and remove the stop words. With the query
list of words, we will see how many of them appear in the text. This is a very
simple experiment that aims to check whether the word overlapping between
the query and the document is benefiting the results for BM25.

In the following experiment, we will set a maximum overlap threshold and
just take the questions where the overlap is less than the particular thresh-
old. For example, if we set the maximum overlap threshold to 9, we will
filter out the queries in which the overlap between query and document is
more than 9 and then compute MAP@k for the remaining queries. As these
results are cumulative, we will see an increase in the MAP@k values as we
increase the maximum overlap. We will do the comparisons using MAP@k
for every k ∈ [1, 5, 20]. We have choosen this values to be able to draw some
conclusions for cases where we require a very precise system (k=1), a more
flexible system that allows a small set of documents retrieved (k=5) and a
system where we can retrieve many documents (k=20).

We will extract some statistics from the data. For every query overlap
we are going to analyse the average length of the queries and also how many
queries we have for that particular overlap. If we check the average length
for the different query overlaps (see Figure 4.1) we can easily see that there
is a tendency of queries with low overlap to be shorter in length.

The fact that the query overlap is almost equal to the average query
length suggests that there is a high overlap between words in the queries and

42 CHAPTER 4. MODELS BASED ON EMBEDDINGS SIMILARITY

the documents containing the answers. This result reinforces the idea that
in some datasets like SQUAD, where the questions were created after seeing
the text, the query overlaps will be higher than the type of questions that
we expect to see in a real use case.

Also, longer queries have higher probabilities of words appearing in the
document, and the focus of this analysis is not to analyse how the length
of the query affects the performance of the model but to establish how the
word overlap affects each model. This will motivate the use of normalised
overlapping to analyse the results independently of the query length.

4.3. OVERLAPPING ANALYSIS 43

Figure 4.1: Statistics of average query length and number of queries per each
query overlaps category.

For the different values of k, we will show the MAP@k values over distinct
overlapping thresholds (figures 4.2, 4.4, 4.6) and also a more graphical rep-
resentation in which we can see the intersection point between the MAP@k
values for BERT and the MAP@K values for BM25 (see figures 4.3, 4.5, 4.7).
On the left side of the intersection point, i.e for low threshold overlappings,
BERT retrieves better results than its counterpart BM25. On the other hand,
when we increase the maximum overlap between query and document, we

44 CHAPTER 4. MODELS BASED ON EMBEDDINGS SIMILARITY

can see that BM25 improves significantly whereas the results for BERT stay
rather flat. Even though the results and numbers vary, we see this pattern
for every k.

Figure 4.2: Table comparing the MAP1K for different maximum overlaps
thresholds between the query and the document.

4.3. OVERLAPPING ANALYSIS 45

Figure 4.3: Graph comparing the MAP1K for different maximum overlaps
thresholds between the query and the document.

46 CHAPTER 4. MODELS BASED ON EMBEDDINGS SIMILARITY

Figure 4.4: Table comparing the MAP5K for different maximum overlaps
thresholds between the query and the document.

Figure 4.5: Graph comparing the MAP5K for different maximum overlaps
thresholds between the query and the document.

4.3. OVERLAPPING ANALYSIS 47

Figure 4.6: Table comparing the MAP20K for different maximum overlaps
thresholds between the query and the document.

Figure 4.7: Graph comparing the MAP20K for different maximum overlaps
thresholds between the query and the document.

Given that the query overlaps highly correlate with the average query
length, these results suggest that for short queries, a model that is not based

48 CHAPTER 4. MODELS BASED ON EMBEDDINGS SIMILARITY

on word matching, like BERT, might be more suitable. As we mentioned
ealier, studying the normalised query overlap might be more relevant for this
analysis to extract some conclusions independently of the query length.

4.4 Normalized Overlapping Analysis

We will normalise the overlaps, i.e we will divide the query overlaps by the
query length. To make it easier to analyse we will create categories in 10
different splits between 0.0 and 1.0. For example, if the percentage of overlap
is 0.6789 we will assign this overlap to the 0.6 split. The analysis will be
carried out in the same way. First, we will study the query length and number
of queries that lie in each split and then for each maximum normalised overlap
we will study the performance of BM25 vs BERT.

Figure 4.8: Statistics of average query length and number of queries per each
normalised query overlaps bracket.

As we can see in the table 4.8 the average length of the query is more
diverse across the different splits. Also, there higher number of queries are
concentrated between the splits 0.7 and 0.9, and in particular the highest
number of queries is contained in the split 0.9, this indicates a very big over-
lap between queries and documents in the SQUAD dataset.

4.4. NORMALIZED OVERLAPPING ANALYSIS 49

These statistics give us a better overview of how the query overlapping
affects the results independently of the query length. Note that in the table
4.8 we do not have the normalised query overlap of 0.2, that is because none
of the queries have an overlap between 0.2 and 0.3.

We will analyse these results in the same way we have done for the not
normalised query overlaps. We can see the results for every maximum nor-
malised overlap threshold and their corresponding MAP@k values for BM25
and BERT (see figures 4.9, 4.11, 4.13).

For all different k values, we see that BERT performance is better when
the overlapping between query and document is less than 0.6. These results
suggest that a semantic model like BERT might be more suitable in some
instances where the overlap between query and document is low and a model
like BM25 underperforms.

Figure 4.9: Table comparing the MAP1K for different maximum normalised
overlaps thresholds between the query and the document.

50 CHAPTER 4. MODELS BASED ON EMBEDDINGS SIMILARITY

Figure 4.10: Graph comparing the MAP1K for different maximum nor-
malised overlaps thresholds between the query and the document.

4.4. NORMALIZED OVERLAPPING ANALYSIS 51

Figure 4.11: Table comparing the MAP5K for different maximum normalised
overlaps thresholds between the query and the document.

Figure 4.12: Graph comparing the MAP5K for different maximum nor-
malised overlaps thresholds between the query and the document.

52 CHAPTER 4. MODELS BASED ON EMBEDDINGS SIMILARITY

Figure 4.13: Table comparing the MAP20K for different maximum nor-
malised overlaps thresholds between the query and the document.

Figure 4.14: Graph comparing the MAP20K for different maximum nor-
malised overlaps thresholds between the query and the document.

Chapter 5

CNN’s for ad-hoc retrieval

In the previous section, we have run some experiments over the embeddings
and concluded that using BERT embeddings and the aggregation function
sum return the best results. Although BERT has not surpassed BM25, we
have proved that in cases where there is low overlapping between query and
document, a semantic model like BERT is more suitable. We will use these
results to construct a neural network aiming to learn more meaningful em-
beddings than a simple average pooling.

5.1 Description

There are several uses cases that have proven the efficacy of applying CNNs
to text data. In the next experiment, we will create a neural network com-
bining different strategies already introduced in section 2.4.4.

Similarly to (Shen et al., 2014) we will follow a representation-focused
approach applying CNNs and aiming to learn vector embeddings for both
the documents and the queries. To the best of our knowledge, there is not
any study that shows how using the BERT embeddings to train a CNN can
improve the vector representations for both documents and queries.

An approach similar to (Reimers & Gurevych, 2019) but using an asym-
metric architecture instead of a symmetric one can be applied to the ad-hoc
retrieval task. Symmetric architectures usually work well when the two in-
puts of the net have similar sizes and characteristics but in our particular
case, the two inputs fed into the net will be the document and the query,
and they differ significantly in both size and characteristics. In (Reimers

53

54 CHAPTER 5. CNN’S FOR AD-HOC RETRIEVAL

& Gurevych, 2019) they fine-tune BERT while training on the downstream
task but for our case, this will be very costly and inefficient so instead of
fine-tunning BERT we will use the vector representations from BERT as the
input to our neural network.

Using embeddings as the input to a neural network is an approach simi-
lar to the one followed by (Kim, 2014), but instead of using embedding like
word2vec, in this experiment, we will use the contextualised embeddings from
BERT. The use of embeddings as a starting point for the NN has been widely
used for different task along with different types of networks. For example,
(X. Fu et al., 2017) uses word2vect embeddings as the input of a recursive
autoencoder to improve sentiment analysis. In a similar way, (Wang, Huang,
Zhu, & Zhao, 2016) applies Glove embeddings along with aspect embeddings
to improve an aspect-level sentiment classification model. Also, (Qin, Xu, &
Guo, 2016) trains word2vect embeddings and then feeds those embeddings
into a convolutional neural network to improve relation classification.

After applying CNN’s to both the question and the document BERT em-
beddings we need to identify the best way to establish similarity between
these two representations. Two common methods are applying a fully con-
nected layer or a cosine similarity function between the representation vectors
(Shen et al., 2014). Another approach could be the use of a similarity matrix
M to establish the similarity between the question vector representation xq

and the answer text representation (Severyn & Moschitti, 2016):

sim(xq, xa) = xT
q Mxa (5.1)

This seeks to find a candidate document representation x
′
a = Mxa that is

close to the input query xq. We will test a similar approach in our experi-
ments.

When designing a CNN architecture there are several common tech-
niques that can help in the training phase. Dropout (Kim, 2014) and ReLU
(Ghasemi, Fahimeh and Mehridehnavi, Alireza and Pérez-Garrido, Alfonso
and Pérez-Sánchez, Horacio, 2018) are good regularisation techniques that
can add performance to the model if used with CNN’s. In our experiment,
we will make use of these regularisation techniques to avoid overfitting.

Also, we can extract non-linear features by using a convolutional layer in
conjunction with an activation function (Severyn & Moschitti, 2016). Gen-
erally, CNN’s architectures, when applied to text data, make use of a single

5.1. DESCRIPTION 55

CNN layer (Shen et al., 2014)(Collobert & Weston, 2008) and a pooling layer,
in some cases followed by a fully connected layer (Collobert & Weston, 2008).

Multiple convolutional layers may be stacked by taking the output of one
convolutional layer as input to the next layer(Kalchbrenner, Grefenstette, &
Blunsom, 2014). Note that in some literature, they refer to the convolutional
layer or the convolutional operator as the convolution followed by the acti-
vation function (Shen et al., 2014). We will follow the same convention and
refer to the convolution as the convolution followed by the activation function.

In this experiment, we will apply a one-dimensional convolution operator.
The one-dimensional convolution computes a weighted sum of input chan-
nels or features, i.e it is an operation between a vector of weights m ∈ Rm

and a vector of inputs viewed as a sequence s ∈ Rs (Kalchbrenner et al., 2014).

Note that all the experiments carried out up until this point were unsu-
pervised, i.e no labelled data for training were needed. To train the CNN we
will make use of both the training set for SQUAD and the development set,
which we will refer to as the development set or test set interchangeably.

Figure 5.1: General architecture that we will use to train. We will test
different convolution layers and similarity functions.

The first layer of our architecture will be the BERT embedding (see doc-

56 CHAPTER 5. CNN’S FOR AD-HOC RETRIEVAL

ument and query embeddings on Figure 5.1). We have chosen these embed-
dings based on the results from the previous experiment. The next step will
be to apply a convolution layer. Here we refer to the convolution layer as
all the convolution-type of operations and layers. This means that a convo-
lution layer could be a single convolution or it could be many convolution
layers stacked. This is where most of the learning during training will hap-
pen. From the convolution layer, we will create a vector representation using
a pooling strategy. The last step will be to measure the similarity between
the document and query embeddings, we will try different approaches which
include using cosine similarity, a fully connected layer (Collobert & Weston,
2008) and creating a similarity matrix between the query and document em-
bedding (Severyn & Moschitti, 2016).

As we can appreciate there are several combinations that we could try.
Due to the limitations of resources and time, we will restrict the experi-
ments to the most successful ones. We will not provide numbers for all the
experiments, but rather guide the experiments towards the most successful
combination of parameters. Also, it is important to mention that the aim of
these experiments is not to find the best parameters but to narrow down the
search and to improve upon those that return the bests results.

Convolution layer:

• Depth: this refers to the number of layers stacked

– Single layer: this is where we apply a single convolution layer to
the input embeddings. In many articles of the literature (Collobert
& Weston, 2008), a single layer is applied while working with text
data and this technique has proved efficient in our experiments.

– 2-layers: We have tried to increased the depth of the network
by adding another layer. The performance decrease dramatically
when increasing the depth, this can be due to the complexity of
the problem. Note that due to time and resources limitations we
have not been able to test if this type of network will improve if
trained for several days or even weeks.

• Width: this refers to the width of the convolution. Notice that if we
use more than convolution layer, each layer will have its own width.

– 50: small width

– 100: medium width

– 400: large width

5.2. RESULTS 57

Similarity functions:

• Matrix similarity: on the experiments, we see that the network is not
able o learn any patterns when using a similarity matrix

• Fully connected layer: adding a fully connected layer to measure the
similarity between both representations gave us better results than us-
ing

• Cosine similarity: between the queries and documents vector represen-
tations

• Max cosine similarity of the pooling document against every term of
the query

Pooling strategies:

• Average pooling: This pooling method mimics one of the aggregation
techniques that we applied when we made the previous experiment with
the embeddings.

• Max pooling: Max pooling is a pooling strategy used for CNNs when
applied to image data. In our case, the experiments have shown a slight
decrease in performance when using this pooling strategy compared to
average pooling. And therefore for the sake of interpretability, we have
restricted the experiments to average pooling.

5.2 Results

Among all these combinations, the best results were obtained using the fol-
lowing parameters:

• On the document branch: using an initial average pool with kernel size
10 followed by convolution with kernel size 400 and average pooling
over the resulting vector.

• On the query branch: average pooling over the BERT embeddings

• Cosine similarity function

For this experiment, the MAP@k values for k ∈ [1, 2, 3, 5, 10, 20, 50] are
shown in table 5.1. These results have not improved upon the results of the
previous experiment. We have seen that CNNs can add semantic value and

58 CHAPTER 5. CNN’S FOR AD-HOC RETRIEVAL

improve performance in the presence of low overlap between queries and doc-
uments. We have done the same overlap analysis as in the first experiment
and in figures 5.2, 5.4, 5.6 we can see that when the normalised overlap is
low, we obtain better results with CNNs than BM25. We have observed that
the intersection point between BERT and BM25 happens between the 0.2
and 0.3 normalised overlap for k=1 (see figure 5.3), and between 0.5 and 0.6
for k ∈ 5, 20 (see figures 5.5, 5.7). Although these improvements are not as
good as the ones we have seen using the BERT embeddings.

If we compare the BERT embeddings using the sum aggregation with the
CNNs, the results for this second experiment are worse for every MAP@K.
One of the main problems we have seen when training the CNNs is that they
have difficulties learning, this can be due to the size of the document and the
issues of CNNs learning long-distance dependencies.

map1 map2 map3 map5 map10 map20 map50
0.6225 0.6866 0.7043 0.7192 0.7279 0.73105 0.7319

Table 5.1: Results after training the CNN for 150 epochs with a convolution
applied to the document branch and applying cosine similarity between the
document and query vector representations.

Figure 5.2: Table comparing the MAP1K for different maximum normalised
overlaps thresholds between the query and the document.

5.2. RESULTS 59

Figure 5.3: Graph comparing the MAP1K for different maximum normalised
overlaps thresholds between the query and the document.

60 CHAPTER 5. CNN’S FOR AD-HOC RETRIEVAL

Figure 5.4: Table comparing the MAP5K for different maximum normalised
overlaps thresholds between the query and the document.

Figure 5.5: Graph comparing the MAP5K for different maximum normalised
overlaps thresholds between the query and the document.

5.2. RESULTS 61

Figure 5.6: Table comparing the MAP20K for different maximum normalised
overlaps thresholds between the query and the document.

Figure 5.7: Graph comparing the MAP20K for different maximum nor-
malised overlaps thresholds between the query and the document.

62 CHAPTER 5. CNN’S FOR AD-HOC RETRIEVAL

Chapter 6

Conclusions and Future Work

In this work, we have tested different approaches for the information retrieval
phase of a Question Answering system. In the first experiment, we have
tested a non-supervised approach that ranks the similarity between queries
and documents based on the similarity of their embeddings. We have tested
different pre-trained embeddings and ranked their similarity using the cosine
similarity function. The best results were obtained using Bert embeddings
and the aggregation function sum. Despite this, the results of this first ex-
periment did not outperform those obtained by the baseline BM25.

In the second experiment, we have evaluated a supervised approach using
CNNs and fed the BERT embedding into the network. These results have
not shown any improvement compared to the first experiment.

Moreover, we have conducted an analysis to compare the first experiment
with the baseline BM25 and test which one performs better in cases where
the term overlap between queries and documents is low. In this analysis, we
have shown that while BM25 performs better in the presence of high overlap
between terms, in cases where the overlap is low, the embedding approach
outperforms the baseline. However, one of the main problems is that the
datasets available for evaluation usually have a higher overlap than the over-
lap we expect to see in real systems. In fact, one of the conclusions that
this analysis has shown is that for the SQUAD dataset the overlap between
queries and documents is big. We think that a new collection with a more
realistic overlap should overcome this problem.

We leave for future work the study of other similarity measures that could
offer different results.

63

64 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

Almeida, F., & Xexéo, G. (2019). Word embeddings: A survey.

Altszyler, E., Ribeiro, S., Sigman, M., & Fernández Slezak, D. (2017, Nov).
The interpretation of dream meaning: Resolving ambiguity using latent
semantic analysis in a small corpus of text. Consciousness and Cog-
nition, 56 , 178–187. Retrieved from http://dx.doi.org/10.1016/

j.concog.2017.09.004 doi: 10.1016/j.concog.2017.09.004

Berger, A., Caruana, R., Cohn, D., Freitag, D., & Mittal, V. (2000). Bridging
the lexical chasm: Statistical approaches to answer-finding. In Proceed-
ings of the 23rd annual international acm sigir conference on research
and development in information retrieval (p. 192–199). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/345508.345576 doi: 10.1145/345508.345576

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word
vectors with subword information.

Cairns, B., Nielsen, R., Masanz, J., Martin, J., Palmer, M., Ward, W., &
Savova, G. (2011, 01). The mipacq clinical question answering system.
AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA
Symposium, 2011 , 171-80.

Carpineto, C., & Romano, G. (2012, jan). A survey of automatic query ex-
pansion in information retrieval. ACM Comput. Surv., 44 (1). Retrieved
from https://doi.org/10.1145/2071389.2071390 doi: 10.1145/
2071389.2071390

Collobert, R., & Weston, J. (2008). A unified architecture for natural lan-
guage processing: deep neural networks with multitask learning. In
Icml ’08.

Cormack, G. V., & Lynam, T. R. (2006). Statistical precision of infor-
mation retrieval evaluation. In Proceedings of the 29th annual inter-
national acm sigir conference on research and development in infor-
mation retrieval (p. 533–540). New York, NY, USA: Association for
Computing Machinery. Retrieved from https://doi.org/10.1145/

1148170.1148262 doi: 10.1145/1148170.1148262

65

http://dx.doi.org/10.1016/j.concog.2017.09.004
https://doi.org/10.1145/345508.345576
https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/1148170.1148262

66 Bibliography

Craswell, N. (2016). Mean reciprocal rank. In L. Liu & M. T. Özsu (Eds.),
Encyclopedia of database systems (pp. 1–1). New York, NY: Springer
New York. Retrieved from https://doi.org/10.1007/978-1-4899

-7993-3 488-2 doi: 10.1007/978-1-4899-7993-3 488-2
Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harsh-

man, R. A. (1990). Indexing by latent semantic analysis. J. Am. Soc.
Inf. Sci., 41 , 391-407.

Deng, L., & Liu, Y. (2018). Deep learning in natural language processing
(1st ed.). Springer Publishing Company, Incorporated.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-
training of deep bidirectional transformers for language understanding.

Dhingra, B., Mazaitis, K., & Cohen, W. W. (2017). Quasar: Datasets for
question answering by search and reading.

Dumais, S., Landauer, T., & Littman, M. (1996, 09). Automatic cross-
linguistic information retrieval using latent semantic indexing. AAAI
Tech. Rep, 1 .

Dwivedi, S., & Singh, V. (2013, 12). Research and reviews in question
answering system. Procedia Technology , 10 , 417-424. doi: 10.1016/
j.protcy.2013.12.378

Fu, B., Qiu, Y., Tang, C., Li, Y., Yu, H., & Sun, J. (2020). A survey on
complex question answering over knowledge base: Recent advances and
challenges.

Fu, X., Liu, W., Xu, Y., & Cui, L. (2017, 02). Combine hownet lexicon to
train phrase recursive autoencoder for sentence-level sentiment analy-
sis. Neurocomputing , 241 . doi: 10.1016/j.neucom.2017.01.079

Ghasemi, Fahimeh and Mehridehnavi, Alireza and Pérez-Garrido, Alfonso
and Pérez-Sánchez, Horacio. (2018, 06). Neural network and deep-
learning algorithms used in qsar studies: merits and drawbacks. Drug
Discovery Today , 23 . doi: 10.1016/j.drudis.2018.06.016

González, José. (2003, 01). La Búsqueda de Respuestas: Estado Actual y
Perspectivas de Futuro. Inteligencia artificial: Revista Iberoamericana
de Inteligencia Artificial, ISSN 1137-3601, null 8, NÂo. 22, 2004, pags.
37-56 , 8 . doi: 10.4114/ia.v8i22.805

Guo, J., Fan, Y., Ai, Q., & Croft, W. B. (2016, Oct). A deep relevance match-
ing model for ad-hoc retrieval. Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge Management .
Retrieved from http://dx.doi.org/10.1145/2983323.2983769 doi:
10.1145/2983323.2983769

Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., . . . Cheng, X.
(2019). A deep look into neural ranking models for information re-
trieval.

https://doi.org/10.1007/978-1-4899-7993-3_488-2
http://dx.doi.org/10.1145/2983323.2983769

Bibliography 67

Haav, H.-M., & Lubi, T.-L. (2001). A survey of concept-based information
retrieval tools on the web..

Hui, K., Yates, A., Berberich, K., & de Melo, G. (2017). Co-pacrr: A
context-aware neural ir model for ad-hoc retrieval.

Kaddari, Z., Mellah, Y., Berrich, J., Bouchentouf, T., & Belkasmi, M. G.
(2020). Biomedical question answering: A survey of methods and
datasets. 2020 Fourth International Conference On Intelligent Com-
puting in Data Sciences (ICDS), 1-8.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional
neural network for modelling sentences.

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., . . . tau
Yih, W. (2020). Dense passage retrieval for open-domain question
answering.

Kim, Y. (2014). Convolutional neural networks for sentence classification.

Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2015). Character-aware
neural language models.

Kolomiyets, O., & Moens, M.-F. (2011). A survey on ques-
tion answering technology from an information retrieval per-
spective. Information Sciences , 181 (24), 5412-5434. Re-
trieved from https://www.sciencedirect.com/science/article/

pii/S0020025511003860 doi: https://doi.org/10.1016/j.ins.2011.07
.047

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017, may). Imagenet classi-
fication with deep convolutional neural networks. Commun. ACM ,
60 (6), 84–90. Retrieved from https://doi.org/10.1145/3065386

doi: 10.1145/3065386

Lee, J.-T., Kim, S.-B., Song, Y.-I., & Rim, H.-C. (2008, 01). Bridging lexical
gaps between queries and questions on large online q&a collections with
compact translation models. In (p. 410-418). doi: 10.3115/1613715
.1613768

Loni, B. (2011). A survey of state-of-the-art methods on question classifica-
tion..

Marwah, D., & Beel, J. (2020). Term-recency for tf-idf, bm25 and use term
weighting. In Wosp.

McCann, B., Bradbury, J., Xiong, C., & Socher, R. (2018). Learned in
translation: Contextualized word vectors.

Mervin, R. (2013, 10). An overview of question answering system. , 1 .

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositional-
ity.

https://www.sciencedirect.com/science/article/pii/S0020025511003860
https://doi.org/10.1145/3065386

68 Bibliography

Mitra, B., Diaz, F., & Craswell, N. (2016). Learning to match using local
and distributed representations of text for web search.

Monz, C. (2003). Document retrieval in the context of question answering. In
F. Sebastiani (Ed.), Advances in information retrieval (pp. 571–579).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Nogueira, R., & Cho, K. (2020). Passage re-ranking with bert.
Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J., & Cheng, X. (2017, Nov).

Deeprank. Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management . Retrieved from http://dx.doi.org/

10.1145/3132847.3132914 doi: 10.1145/3132847.3132914
Pennington, J., Socher, R., & Manning, C. (2014, 01). Glove: Global vectors

for word representation. In (Vol. 14, p. 1532-1543). doi: 10.3115/v1/
D14-1162

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &
Zettlemoyer, L. (2018). Deep contextualized word representations.

Platt, J., Toutanova, K., & Yih, W.-t. (2010, October). Translingual doc-
ument representations from discriminative projections. In Proceedings
of the 2010 conference on empirical methods in natural language pro-
cessing (pp. 251–261). Cambridge, MA: Association for Computational
Linguistics. Retrieved from https://aclanthology.org/D10-1025

Pérez-Iglesias, Joaqúın and Garrido, Guillermo and Rodrigo, Álvaro and
Araujo, Lourdes and Peñas, Anselmo. (2009, 09). Information retrieval
baselines for the respubliqa task. In (p. 253-256). doi: 10.1007/978-3
-642-15754-7 28

Qin, P., Xu, W., & Guo, J. (2016, may). An empirical convolutional neural
network approach for semantic relation classification. Neurocomput.,
190 (C), 1–9. Retrieved from https://doi.org/10.1016/j.neucom

.2015.12.091 doi: 10.1016/j.neucom.2015.12.091
Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., & Huang, X. (2020,

Sep). Pre-trained models for natural language processing: A sur-
vey. Science China Technological Sciences , 63 (10), 1872–1897. Re-
trieved from http://dx.doi.org/10.1007/s11431-020-1647-3 doi:
10.1007/s11431-020-1647-3

Qu, C., Yang, L., Chen, C., Qiu, M., Croft, W. B., & Iyyer, M. (2020,
Jul). Open-retrieval conversational question answering. Proceedings
of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval . Retrieved from http://dx.doi

.org/10.1145/3397271.3401110 doi: 10.1145/3397271.3401110
Radford, A., & Narasimhan, K. (2018). Improving language understanding

by generative pre-training..
Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+

http://dx.doi.org/10.1145/3132847.3132914
https://aclanthology.org/D10-1025
https://doi.org/10.1016/j.neucom.2015.12.091
http://dx.doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1145/3397271.3401110

Bibliography 69

questions for machine comprehension of text.
Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings

using siamese bert-networks.
Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio,

Y. (2015). Fitnets: Hints for thin deep nets.
Schnabel, T., Labutov, I., Mimno, D., & Joachims, T. (2015, September).

Evaluation methods for unsupervised word embeddings. In Proceed-
ings of the 2015 conference on empirical methods in natural language
processing (pp. 298–307). Lisbon, Portugal: Association for Com-
putational Linguistics. Retrieved from https://aclanthology.org/

D15-1036 doi: 10.18653/v1/D15-1036
Séaghdha, D. Ó., & Korhonen, A. (2014). Probabilistic distributional se-

mantics with latent variable models. Computational Linguistics , 40 ,
587-631.

Sennrich, R., Haddow, B., & Birch, A. (2016, August). Neural machine trans-
lation of rare words with subword units. In Proceedings of the 54th an-
nual meeting of the association for computational linguistics (volume 1:
Long papers) (pp. 1715–1725). Berlin, Germany: Association for Com-
putational Linguistics. Retrieved from https://aclanthology.org/

P16-1162 doi: 10.18653/v1/P16-1162
Severyn, A., & Moschitti, A. (2016). Modeling relational information in

question-answer pairs with convolutional neural networks.
Shen, Y., He, X., Gao, J., Deng, L., & Mesnil, G. (2014). A latent semantic

model with convolutional-pooling structure for information retrieval. In
Proceedings of the 23rd acm international conference on conference on
information and knowledge management (p. 101–110). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/2661829.2661935 doi: 10.1145/2661829.2661935
Song, Y., Li, C.-T., Nie, J.-Y., Zhang, M., Zhao, D., & Yan, R. (2018, 7). An

ensemble of retrieval-based and generation-based human-computer con-
versation systems. In Proceedings of the twenty-seventh international
joint conference on artificial intelligence, IJCAI-18 (pp. 4382–4388).
International Joint Conferences on Artificial Intelligence Organization.
Retrieved from https://doi.org/10.24963/ijcai.2018/609 doi:
10.24963/ijcai.2018/609

Tinega, G., Mwangi, P., & Rimiru, R. (2018, 10). Text mining in digi-
tal libraries using okapi bm25 model. International Journal of Com-
puter Applications Technology and Research, 7 , 398-406. doi: 10.7753/
IJCATR0710.1003

Tsatsaronis, G., Schroeder, M., Paliouras, G., Almirantis, Y., Androutsopou-
los, I., Gaussier, E., . . . Ngonga Ngomo, A.-C. (2012, 01). Bioasq: A

https://aclanthology.org/D15-1036
https://aclanthology.org/P16-1162
https://doi.org/10.1145/2661829.2661935
https://doi.org/10.24963/ijcai.2018/609

70 Bibliography

challenge on large-scale biomedical semantic indexing and question an-
swering..

Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2016, November). Attention-
based LSTM for aspect-level sentiment classification. In Proceedings of
the 2016 conference on empirical methods in natural language process-
ing (pp. 606–615). Austin, Texas: Association for Computational Lin-
guistics. Retrieved from https://aclanthology.org/D16-1058 doi:
10.18653/v1/D16-1058

Wiegreffe, S., & Marasović, A. (2021). Teach me to explain: A review of
datasets for explainable natural language processing.

Wu, L., Barker, R. J., Kim, M. A., & Ross, K. A. (2013, jun). Navi-
gating big data with high-throughput, energy-efficient data partition-
ing. SIGARCH Comput. Archit. News , 41 (3), 249–260. Retrieved
from https://doi.org/10.1145/2508148.2485944 doi: 10.1145/
2508148.2485944

Xiong, C., Callan, J., & Liu, Z. (2017). Convolutional neural networks for
so-matching n-grams in ad-hoc search zhuyun dai..

Xiong, C., Dai, Z., Callan, J., Liu, Z., & Power, R. (2017, Aug). End-to-
end neural ad-hoc ranking with kernel pooling. Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in
Information Retrieval . Retrieved from http://dx.doi.org/10.1145/

3077136.3080809 doi: 10.1145/3077136.3080809
Xiong, W., Wang, H., & Wang, W. Y. (2021). Progressively pretrained dense

corpus index for open-domain question answering.
Yang, P., Fang, H., & Lin, J. (2018, oct). Anserini: Reproducible rank-

ing baselines using lucene. J. Data and Information Quality , 10 (4).
Retrieved from https://doi.org/10.1145/3239571 doi: 10.1145/
3239571

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in
deep learning based natural language processing.

Yu, A. W., Dohan, D., Luong, M.-T., Zhao, R., Chen, K., Norouzi, M.,
& Le, Q. V. (2018). Qanet: Combining local convolution with global
self-attention for reading comprehension.

Yu, H., Lee, M., Kaufman, D., Ely, J., Osheroff, J. A., Hripcsak, G.,
& Cimino, J. (2007). Development, implementation, and a cogni-
tive evaluation of a definitional question answering system for physi-
cians. Journal of Biomedical Informatics , 40 (3), 236-251. Re-
trieved from https://www.sciencedirect.com/science/article/

pii/S1532046407000202 doi: https://doi.org/10.1016/j.jbi.2007.03
.002

Zhu, F., Lei, W., Wang, C., Zheng, J., Poria, S., & Chua, T.-S. (2021). Re-

https://aclanthology.org/D16-1058
https://doi.org/10.1145/2508148.2485944
http://dx.doi.org/10.1145/3077136.3080809
https://doi.org/10.1145/3239571
https://www.sciencedirect.com/science/article/pii/S1532046407000202

Bibliography 71

trieving and reading: A comprehensive survey on open-domain question
answering.

