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Abstract

This dissertation explores the enhancement of music recommendation systems by inte-
grating semantic similarity in Spanish song lyrics, utilizing advancements in machine
learning and natural language processing (NLP), including both supervised and unsu-
pervised approaches. It addresses the gap in current recommendation practices, which
often overlook the rich semantic content of lyrics, despite their potential to significantly
personalize music recommendations. Through theoretical insights into word embeddings
and transfer learning, the development of the LyricSIM dataset for assessing lyric simi-
larity, and empirical evaluations of models designed to distinguish between similar and
non-similar song pairs, this research proposes a novel, lyrics-driven approach to music
recommendation. Focused on the Spanish-speaking market, where Latin music is preva-
lent, this study contributes to the field by demonstrating how NLP technologies can
refine music recommendations, addressing challenges like the cold start problem and
enhancing the diversity of music recommendations, thereby offering a more personalized
and engaging user experience in the streaming era.
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Chapter 1

Introduction

Music streaming services have become the dominant platform for music consumption,
with Latin music accounting for a significant percentage of the global market share. Ac-
cording to the 2022 report from the Recording Industry Association of America (RIAA)1,
streaming accounts for 62% of the total music industry revenue, while Latin music carved
out a significant 6.6% of the total US market in the first half of 2022 alone. Moreover, a
staggering 97% of all Latin music revenues were derived from music streaming formats
during this period. This growth is largely attributable to the personalized playlists of-
fered by these services, built using Recommender Systems (RSs) which apply big data
and machine learning to massive user datasets. Such playlists, tailored to users’ listening
habits, is the source of almost three fourths (74%) of the music experienced by the users,
as highlighted in the Nielsen’s 2017 Music survey2.

The overwhelming reliance on streaming services, coupled with the demonstrable
shift towards personalized content, forms the bedrock of this work. By integrating
advanced machine learning techniques and Natural Language Processing (NLP), we
propose methods to capture the essence of song similarity, to enrich and enhance RSs.
This approach not only seeks to bridge the existing gap in the adaptation of these
systems to the unique characteristics of Latin music but also aims to set a precedent
for future research in the application of Artificial Intelligence (AI) in music streaming
services globally. The present introductory chapter lays the groundwork by detailing the
motivations behind the study and outlining the novel contributions we aim to make in
the field of RSs.

1.1 Motivation

The increasing prominence of streaming services, as discussed earlier, has made it evident
that there is a growing interest in broadening the scope of song recommendation. This

1https://www.riaa.com/wp-content/uploads/2023/03/2022-Year-End-Music-Industry-Revenue-
Report.pdf

2https://www.nielsen.com/wp-content/uploads/sites/2/2019/04/us-music-360-highlights.pdf
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recognition underscores the importance of investigating the untapped potential of lyrics,
which encapsulate a wealth of semantic information within the song.

Songs are fundamentally dual-natured, composed of both music and lyrics. At
present, the majority of industrial music RSs rely on usage patterns, whether implicit
feedback or explicit ratings, leveraged by collaborative filtering models, crowdsourcing
and manual tagging, to compute personalized recommendations (Deldjoo et al., 2024;
Knees et al., 2006; Nanopoulos et al., 2010), or look into the analysis of soundwave simi-
larities (Schedl et al., 2014; Deldjoo et al., 2020, 2022). Other RSs include content-based
methods that focus on metadata such as title, composer, genre, tempo, pitch, mood
(acoustic) and similarity aspects (cultural), like genre, or listening situation (Aucou-
turier et al., 2007; Baumann and Hummel, 2003; Sordo et al., 2007; Knees and Schedl,
2013). However, these systems overlook the semantic information embedded in song
lyrics, an unstructured yet rich data source unattainable from metadata. While music
is often the primary focus in RSs, lyrics represent a vital aspect of national identity and
social consciousness, reflecting cultural experiences, societal issues, and even political
affiliations (Knees and Schedl, 2013). Genres like rap exemplify the growing impor-
tance of lyrics, especially when they connect to nationally relevant topics. Despite this,
lyrics’ semantic content remains underutilized in current recommendation practices on
on-demand music streaming platforms.

In the contemporary landscape, no existing music recommendation services harness
the potential of NLP to automate the use of song lyrics in their systems. Those that
incorporate lyrics do so by merely identifying fragments of the lyrics, such as significant
words. Leading music recommendation services presently include Spotify3, YouTube
Music4, Amazon Music5, Apple Music6, SoundHound7, Gracenote8, Melboss9, and Ge-
nius10. While each platform possesses its unique strengths, only a small number of them
currently facilitate lyric search functionalities, namely Genius and SoundHound. How-
ever, these services merely consider the literal text and do not delve into a profound
analysis of its meaning. Consequently, they fail to offer search capabilities based on the
semantics of the lyrics, which could potentially enrich classification and recommenda-
tion systems or augment content itself to extract more granular information. Shazam11,
while housing a repository of basic song information such as the artist and genre, does
not permit lyric-based searches, offering recommendations based merely on similar char-
acteristics, like soundwave signatures, genre and mood. Spotify, though not facilitating
lyric searches either, presents a richer recommendation experience than its counterparts,
incorporating attributes like the song’s positivity or negativity, rhythm, or loudness,

3https://www.spotify.com/
4https://music.youtube.com/
5https://music.amazon.com/
6https://www.apple.com/apple-music/
7https://www.soundhound.com/
8https://www.gracenote.com/
9https://www.melboss.com/

10https://genius.com/
11https://www.shazam.com/
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beyond basic metadata. SoundHound enables users to vocalize an ’a cappella’ rendi-
tion or employ a text search engine to locate a fragment of the lyrics; however, it too
neglects the use of song lyrics for recommendations. Another music recognition ser-
vice, Gracenote, despite its extensive metadata (including mood, song age, the gender
of the author, among others), does not base its recommendations on lyrical content. Ge-
nius, a lyric-centric service utilized by companies such as Apple, mirrors SoundHound’s
functionality in allowing searches by literal segments of lyrics. Additionally, it offers
supplemental content, including insights into song creation and explanations of verse
meanings, contributed by both the songwriters and the user community. Consequently,
the overarching trend is that existing music recommenders have not capitalized on the
potential of automatic in-depth lyrical analysis to refine song recommender systems or
to infuse the content itself for more granular information extraction.

In view of the overlooked potential of lyrics, the objective of this work is to delve
into the estimation of semantic similarity in Spanish song lyrics for the integration of
NLP technologies into RSs, facilitating a deeper understanding and utilization of the
semantic contents of Spanish song lyrics to foster a more enriched, personalized user
experience in music streaming services. A semantic approach that focuses on the lyrics
could address common challenges, such as the cold start problem, arising when new
songs are introduced into the system without any prior user interaction data, making
it difficult for traditional RSs to recommend these tracks effectively (Knees and Schedl,
2013; Deldjoo et al., 2024) while, at the same time, increasing diversity in other areas
(e. g. genre).

To achieve this, we propose exploring word embedding unsupervised composition
functions (Amigó et al., 2022) and comparing them with fine-tuning-based approaches
in Large Language Models (LLMs). Our goal is to identify songs whose lyrics exhibit
semantic similarity —songs that, in essence, convey similar themes or ideas—. In doing
so, we aim to broaden the dimensions of music recommendations beyond the traditional
markers, offering a more nuanced, lyrics-driven approach. By harnessing the power of
linguistic similarity and NLP technologies, we aim to refine and complement existing
music recommendation systems, presenting an innovative pathway for personalization in
music streaming services.

1.2 Main Contributions

This work offers a foray into the uncharted domain of leveraging semantic similarity in
Spanish song lyrics to enhance music recommendation systems. The contributions of
this research span several dimensions:

- Theoretical Insights: Including a deep dive into the underlying mathematical and
computational principles governing word embeddings, semantic composition, trans-
fer learning, and domain adaptation. By examining transfer learning and domain
adaptation strategies specific to this domain, our analysis sheds light on the nu-
anced requirements for effectively leveraging these technologies. These insights,

3



CHAPTER 1. Introduction

detailed in Chapters 2 (Related Work) and 4.1 (Experimental Setup: Word Em-
beddings), lay the groundwork for our comparative analysis of embedding tech-
niques, emphasizing the importance of specificity in enhancing the accuracy and
relevance of song recommendations.

- Practical Methodologies: This work details the development and application of
training strategies tailored to the task of semantic analysis in song lyrics, focusing
on the integration of both static, non-contextual embedding models and contex-
tual, transformer-based models. Within Chapter 4, ”Experimental Setup,” we
outline the semantic composition methodologies implemented, alongside an anal-
ysis of sentence similarity metrics, further enriching the discourse by explicating
the evaluation metrics and classifiers deployed. This work emphasizes the selection
and fine-tuning of algorithms to address the unique characteristics of semantic sim-
ilarity in song lyrics, demonstrating a bespoke approach to algorithm application
in the context of music recommendation systems.

- Dataset Development: The creation of LyricSIM (Benito-Santos et al., 2023), a
novel dataset specifically designed for exploring semantic similarity in Spanish song
lyrics. This dataset represents a step forward in the domain of music and lyrics
analysis, comprising a diverse collection of human annotated song pairs based on
various aspects such as theme, message, emotions, literal meaning, and cultural
context. The development of LyricSIM, which will be further detailed in Chap-
ter 4.6 (Experimental Setup: Datasets), addresses the need for domain-specific
resources in the Spanish-speaking world. By facilitating the assessment of state-
of-the-art (SOTA) models on this unique dataset, our work bridges the gap between
general-purpose semantic similarity tasks and the specific nuances of music-related
applications, contributing to the advancement of NLP techniques in the context of
music recommendation systems.

- Empirical Contributions: Offering a comprehensive evaluation of the developed
models through a binary classification task aimed at distinguishing between similar
and non-similar song pairs, and introducing novel approaches to semantic analysis
through a rich experimental setup encompassing a variety of training scenarios.
The empirical findings, illustrated Chapter 5 (Experimental Results), underscore
the practical implications of the No Free Lunch theorem (Wolpert and Macready,
1997), which posits that no single algorithm outperforms all others across ev-
ery possible task. This theorem underpins our comparative analysis of diverse
architectural models, underscoring the necessity of tailoring model selection and
optimization to the specific challenges of semantic-based song recommendations.

Through these contributions, this dissertation extends the field of music recommenda-
tion systems, adopting a detailed approach to model selection and evaluation aimed at
refining semantic-based recommendations. In continuation, Chapter 3, ”Hypothesis and
Research Questions,” carefully presents the hypotheses that guide our exploration and
the research questions we aim to address.

4



Chapter 2

Related Work

Building upon the motivation and contributions outlined earlier, this chapter sets the
stage for a deeper examination of the existing landscape and scholarly discourse sur-
rounding Music RSs and Text Representation. By establishing the context in which our
work is situated, we aim to bridge the gap between the foundational challenges identi-
fied in music recommendation systems and the innovative approaches proposed in our
research.

We initiate with an Overview of Music Recommendation Systems (Section 2.1),
dissecting the operational challenges, technological frameworks, and the distinctive at-
tributes that characterize these systems. This section not only examines the traditional
methodologies employed in music recommendation but also highlights the novel poten-
tial of incorporating semantic similarity between song lyrics as a means to refine and
personalize recommendations. By bringing to light this underexplored aspect, we aim
to illustrate how a deeper semantic understanding of lyrics can substantially enhance
recommendation systems’ effectiveness.

Following this, the discussion transitions to Text Representation (Section 2.2), where
we delve into the mathematical and computational principles that facilitate the rep-
resentation of textual meaning, particularly focusing on the framework for semantic
composition. This examination is pivotal in understanding how lyrics, as a form of un-
structured text, can be quantitatively analyzed and utilized within the context of music
recommendations. By exploring the development and application of compositional dis-
tributional semantics, we set out to address the critical role that text representation
plays in enabling a nuanced approach to song similarity assessment.

Through this analytical journey, we aim to establish a solid foundation for our re-
search, situating our contributions within a broader academic dialogue and affirming
the significance of advancing music RSs through the integration of semantic lyric anal-
ysis. This chapter, therefore, not only contextualizes our work within the existing body
of knowledge but also delineates the theoretical and methodological pathways that our
study endeavors to explore.

5
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2.1 Overview of Music Recommendation Systems

Music streaming platforms have taken over the music industry, resulting in a shift in
music consumption patterns. Two significant challenges faced by music recommendation
systems are the cold start problem and the automatic playlist generation (Deldjoo et al.,
2024). The cold start problem, mentioned in Chapter 1, refers to the challenge of
recommending songs to new users or songs with no existing user or song history. Playlists
are personalized lists of favored songs, representing specific moods, artists, or genres, and
generating these automatically requires accurately deducing the purpose of the current
playlist. This extends to the challenge of ranking songs in response to a user-selected
metadata query (Biswas et al., 2023).

Given the vast volume of music available online, recommendation systems must adapt
to the rapid increase in music data and growing online demand. Music RSs have to take
into account certain factors, such as the duration of items, magnitude of items, sequential
consumption, repeated recommendations, consumption behavior, listening intent, occa-
sion, context, and associated emotions (Kim et al., 2018). These are often addressed
using methods like content-based recommendations, hybridization, and cross-domain
recommendations. In this context, one factor that has not been fully explored is the se-
mantic similarity between song lyrics. Leveraging the different degrees of semantic simi-
larity—from completely different lyrics to outstandingly similar ones—could add another
layer to these recommendation systems, potentially improving their performance.

Content-based recommendation systems typically use song metadata for recommen-
dations, with user preferences modeled using the history of user interactions and prefer-
ences (Velankar et al., 2020). These systems rely on item similarity based on identified
features, recommending items with similar attributes. Standard methods to compute
similarity include K-means clustering (Han et al., 2018) and Monte Carlo sampling (Li
and Zhang, 2018). Here, the opportunity to incorporate semantic similarity between
lyrics could complement existing methods. For instance, lyrics with a ’basic similarity’
or ’outstanding similarity’ might indicate a higher likelihood of user preference for the
songs, which could refine recommendations further.

Hybrid recommendation systems address the shortcomings of both content-based and
collaborative models (Thorat et al., 2015). These systems operate based on the two-
dimensional user vs item matrix, essentially merging the predictions from content-based
and collaborative methods (Adomavicius and Tuzhilin, 2005). Such hybrid approaches
could be significantly enhanced by integrating lyric similarity as a feature, providing an
additional connection point between items in the user-item matrix.

Streaming platforms have caused a significant shift in the music industry, being the
largest source of recorded music revenue (O’Dair and Fry, 2020). They aid users in
music discovery through various tools, from text searching for song playlists, artist, and
release-related metadata, to grouping albums by themes or highlighting latest releases.
The integration of semantic similarity between lyrics could be an innovative addition to
these tools, possibly facilitating more nuanced and engaging user experiences.

The future of RSs lies in advanced systems like context-awareness systems, group
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recommendation systems, systems based on social networks, and techniques based on
computational intelligence (Dong et al., 2020; Schedl et al., 2017). In this context, con-
sidering the semantic similarity between song lyrics could provide a novel dimension for
these future systems, further enhancing their potential to deliver personalized, engaging,
and accurate recommendations.

The user’s specific intent, personality, novelty-seeking behavior, and context all in-
fluence the effectiveness of music recommendations (Swearingen and Sinha, 2001). For
instance, the type of music users listen to often depends on their mood and emotions
(Moscato et al., 2020). Incorporating the semantic similarity between song lyrics could
help in capturing these factors more accurately, enhancing the relevance and appeal of
recommendations.

In conclusion, while existing recommendation models have made significant strides,
there is a compelling case for integrating the semantic similarity between song lyrics as
a complementary feature. The varying degrees of semantic similarity could provide a
rich source of information, potentially enhancing user engagement, satisfaction, and the
overall effectiveness of music recommendation systems.

2.2 Text Representation

The conflict arising from the principles of compositionality and contextuality, as pro-
posed by Frege, reveals a fundamental tension between the paradigms of meaning rep-
resentation: symbolic and distributional (Maruyama, 2019). The Principle of Composi-
tionality, a cornerstone of the symbolic paradigm, posits that the meaning of a whole is
determined by the meanings of its constituent parts and the way they are syntactically
combined. Conversely, the Principle of Contextuality, which underpins the distributional
approach, argues that the meaning of words and utterances depends on their context,
supporting the distributional representation paradigm, where meaning is inferred from
usage context.

This tension between systematic compositionality, which characterizes the symbolic
approach by emphasizing structured, rule-based construction of meaning, and the flexi-
ble, usage-based inference of meaning inherent to the distributional approach, reflects a
fundamental challenge in meaning representation. Systematicity, a concept tied to the
symbolic paradigm, refers to the predictable and orderly combination of semantic units,
a property that allows for the generation of an expansive range of expressions from a
finite set of elements.

Due to the complementary properties of distributional and compositional representa-
tion approaches (contextuality versus systematicity), it is hypothesized that the meaning
of linguistic forms lies in a reciprocal flow between their context and components. As
a result, several authors have proposed incorporating a compositional layer over distri-
butional representations, leading to the development of Compositional Distributional
Semantic models (Mitchell and Lapata, 2010; Arora et al., 2017; Coecke et al., 2010).
Our research is situated within this evolving dialogue, with a focus on unraveling the se-
mantic similarity between song lyrics. To this end, representing the lyrics across various
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songs to ascertain their semantic likeness constitutes the initial step of our investigation,
aiming to harness the synergies of compositional and distributional approaches for a
deeper semantic analysis.

Early semantic models were based on logicist approaches that assumed the Principle
of Compositionality, such as Preference Semantics (Wilks, 1968). These models estab-
lished an unambiguous relationship between a symbol (or a set of symbols) in context and
its meaning (Boleda and Erk, 2015). From the 1980s onwards, the Statistical Paradigm
gained prominence, with the Vector Space Model (VSM) (Salton and Lesk, 1965) serv-
ing as its foundational representation system. This paradigm represents texts as bags of
independent words, disregarding word order and grammar. The subsequent generation
of meaning representation introduced Count-based Language Models, where texts are
represented as word sequences along with their probability distribution (Andreas et al.,
2013).

Unlike Language Models, which represent texts as sequences of tokens rather than
points in continuous space, these models do not offer a direct notion of similarity between
word sequences but infer semantic relationships by comparing statistical characteristics
across models or by evaluating how well specific sequences align with the probabilistic
patterns a model has learned. In recent years, Neural Language Models have emerged
as successful approaches, leveraging neural networks pre-trained on vast text corpora
based on usage context (Devlin et al., 2019; Brown et al., 2020; Mikolov et al., 2013;
Pennington et al., 2014).

In 2008, (Collobert and Weston, 2008) demonstrated that word embeddings gener-
ated from sufficiently large datasets carry both syntactic and semantic meaning, en-
hancing performance on subsequent NLP tasks. Building upon this, some researchers
proposed extending the approach to represent longer linguistic units, such as sentences
(Kiros et al., 2015) or documents (Le and Mikolov, 2014; Kenter et al., 2016). Static
Neural Models, also known as Non-Contextual Neural Models, such as Skip-Gram with
Negative Sampling (SGNS) or Global Vectors (GloVe) (Pennington et al., 2014), optimize
the correspondence between the scalar product of embeddings and their distributional
similarity (Mutual Information) (Levy and Goldberg, 2014; Arora et al., 2016; Le and
Mikolov, 2014). By assuming the distributional hypothesis, which posits that similar
words appear in similar contexts, these models ensure a certain isometry between the
embedding space and meanings. However, these static embedding approaches assign
fixed representations to each word, irrespective of its specific context.

Conversely, the second generation of encoders comprises sequential models that are
sensitive to the order of words in a sequence. The Transformer model (Vaswani et al.,
2017b) exemplifies a successful implementation of this idea. In the Transformer model,
the neural network is pre-trained on a large text corpus using various self-supervised
tasks such as Masked Language Modeling (MLM), Sequence to Sequence (Seq2Seq), or
Permuted Language Modeling (PLM), among others. This pre-training phase has shown
to facilitate inductive transfer learning, where the model, having learned a broad under-
standing of language from the large corpus, can then apply this knowledge to improve
performance on related but different tasks through fine-tuning (Ruder, 2019). Several
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combined approaches, like BERT (Devlin et al., 2019) or GPT (Brown et al., 2020),
have been proposed as well. Transformer-based Neural Language Models exhibit high
accuracy in solving tasks with limited training samples, achieved through fine-tuning.
Moreover, they possess remarkable predictive power over word sequences (Radford et al.,
2019). However, existing literature has shown that contextual models do not consistently
maintain isometry with respect to semantic similarity of word utterances. These models
tend to concentrate word representations in hypercones within multidimensional space, a
phenomenon known as the representation degradation problem (Ethayarajh, 2019; Gao
et al., 2019; Li et al., 2020; Wu et al., 2020; Cai et al., 2021). It is argued that the
underlying cause of this limitation stems from the optimization challenges encountered
with low-frequency words within extensive vocabularies, a common attribute of natural
language generation tasks (Gao et al., 2019). The stochastic nature of the training pro-
cess and the minuscule likelihood of sampling rare words in any given mini-batch lead
to a situation where these words’ embeddings are not optimally refined. This lack of
refinement causes the embeddings to cluster within a narrow cone in the multidimen-
sional space, severely restricting the model’s expressive capabilities. Consequently, while
contextual models excel as Language Models, their effectiveness in text representation
within a semantic space is limited. In other words, although neural networks can predict
words based on preceding sequences and classification labels, the embedding space used
to represent texts does not align coherently with their meanings.

To address this issue, some approaches, such as Sentence-BERT (Reimers and Gurevych,
2019b) and the Universal Sentence Encoder (Cer et al., 2018), train networks on sentence
pairs as a similarity classification task. However, the effectiveness of these models may
decline when applied to texts with characteristics different from the units on which they
were trained. Notably, (Raffel et al., 2020) found that supervised transfer learning from
multiple tasks does not outperform unsupervised pre-training. (Yogatama et al., 2019)
conducted an extensive empirical investigation to evaluate SOTA Natural Language Un-
derstanding models, exploring the task-independence of the acquired knowledge during
the learning process. They concluded that model performance is sensitive to the choice
of supervised training task. Other experiments conducted through probes suggest that
Neural Language Models fail to capture the systematic nature of language (Talmor
et al., 2020; Pimentel et al., 2020; Goodwin et al., 2020; Hupkes et al., 2020; Bender and
Koller, 2020). In these probing experiments, researchers select a linguistic task and train
a supervised model to predict annotations for that task using the network’s learned rep-
resentations. In summary, although Neural Language Models are remarkably powerful,
they alone cannot adequately represent previously unseen textual information through
composition.

The objective of this paper is to examine the semantic similarity in song lyrics and
explore its integration into a subsequent song recommendation system. Initially, we will
explore unsupervised composition functions that combine static and contextual word
vectors. Furthermore, we will investigate the semantic composition in lyrics with varying
degrees of granularity, such as sentences, stanzas, or entire songs. Additionally, we will
study the similarity between songs as a downstream task through supervised approaches.
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2.2.1 Information-Theoretic Compositional Distributional Semantics

Following the thread of compositional and distributional semantics, where the former
emphasizes the structured, rule-based construction of meaning from the syntactic com-
bination of elements, and the latter draws meaning from the contextual usage of words,
as discussed earlier, we leverage a method that aims to marry these paradigms. This
approach is grounded in the Information-Theoretic Compositional Distributional Seman-
tics (ICDS) framework (Amigó et al., 2022), which provides us with the lingua franca
to describe many of the methods presented throughout this research, offering a rich
theoretical background that revolves around the Shannon Information Theory. This
theory facilitates the derivation of representation properties, similarity functions, and a
parameterizable generalization of these functions.

ICDS is predicated on the principle that the meaning and information content of
linguistic units can be quantified and analyzed through a formal computational frame-
work. It is formalized as a tuple of three critical functions: embedding, composition,
and similarity. These functions collectively aim to capture the semantic richness and
informational specificity of language in a mathematically rigorous manner. The founda-
tional hypothesis of ICDS posits that there exist minimal linguistic units, the semantics
of which are determined by their contextual usage, while their information content is di-
rectly related to their specificity. This perspective aligns with the notion that language’s
systematic nature can be effectively captured through compositional mechanisms, which
simultaneously preserve the informational content of composite utterances. Such an
approach underscores the balance between the discrete and combinatorial aspects of
language semantics.

At the core of ICDS lies the embedding function π : S → Rn, where S represents
the space of basic linguistic units, and Rn denotes the n-dimensional real vector space.
For any basic linguistic unit x ∈ S, the function π(x) yields a vector representation
that encapsulates both the semantic and informational essence of x. In this context, the
functions derived from language models serve as the practical instantiation of π, thereby
bridging theoretical constructs with empirical NLP methodologies.

In applying the ICDS framework to our study, we propose to view the semantics of
a song as the aggregate composition of the meanings of its parts, considered at various
levels of granularity, such as verses, stanzas, and the entire song, as will be further elab-
orated in Section 4.3 (Experimental Setup: Composing Song Lyrics). This perspective
aligns with the ICDS hypothesis that the semantic value of linguistic units is contin-
gent upon their contextual usage, while their informational content correlates with their
specificity. The composition function within ICDS allows for the aggregation of these
vectorized representations, enabling us to construct a coherent semantic representation
of larger textual units, like entire stanzas or songs. This compositional approach is vital
for capturing the layered meanings that emerge from the syntactic and structural ar-
rangement of lyrics, reflecting how the sum of a song’s parts creates a richer semantic
tapestry than the individual components alone. By adopting this framework, we aim
to dissect the complex semantic landscape of song lyrics, parsing their meaning through
both their individual components and their collective assembly.
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Furthermore, the similarity function in ICDS facilitates the comparison of these
compositional representations, allowing us to quantify the semantic likeness between
different songs. This aspect is particularly relevant for our goal of exploring semantic
similarity in song lyrics as a basis for a song recommendation system. By measuring
the similarity between songs at different levels of granularity, we can identify thematic
and semantic resonances that transcend mere lexical correspondence, tapping into the
deeper emotional and narrative connections that songs share.

The uniqueness of ICDS is evident in its insistence that both composition and sim-
ilarity functions adhere to the embedding’s Information Content, typically represented
by vector norms. This requirement ensures that the integration of semantic elements
through the composition function and their comparative analysis via the similarity func-
tion are informed by and consistent with the underlying informational properties encoded
in the embeddings.

2.2.2 Embedding Function and its Properties

Having established the theoretical underpinnings and the practical relevance of the ICDS
framework in the analysis of song lyrics, the following sections will delve into the mathe-
matical properties that govern the representation and composition functions within this
framework, starting with the two properties that affect the embedding function:

• Information Measurability: Given a linguistic unit x, the norm of its vector
representation is approximately equal to the Information Content (Information
Content (IC)) of x, mathematically expressed as:

∥π(x)∥ ≈ IC(x) = − log(p(x))

• Angular Isometry: There exists an isometry between the angular position of
the basic units’ representations and their expected similarity according to human
perception, described by:

cos(π(x), π(y)) ∝ E(SIM(x, y))

2.2.3 Composition Function and its Properties

As we transition to the composition function, we outline the specific constraints that the
IC of a composite expression must adhere to:

• Composition with the Neutral Element: components with null information
content (vector norm of zero) do not affect the composition.

∥v⃗2∥ = 0 =⇒ ∥v⃗1 ⊙ v⃗2∥ = ∥v⃗1∥

• Composition Norm Lower Bound: The norm of the vector of the composite
representation is greater than or equal to the norm of each component, that is, the
composition never reduces the IC.

∥v⃗1 ⊙ v⃗2∥ ≥ ∥v⃗1∥
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∥v⃗1 ⊙ v⃗2∥ ≥ ∥v⃗2∥

• Composition Norm Monotonicity: the norm of the composition vector is
monotonic with respect to the angle between the composed vectors.{

∥v⃗1∥ = ∥v⃗2∥ = ∥v⃗3∥
cos(v⃗1, v⃗2) > cos(v⃗1, v⃗3)

}
=⇒ ∥v⃗1 ⊙ v⃗2∥ < ∥v⃗1 ⊙ v⃗3∥

• Sensitivity to Structure: Given three representations v⃗1, v⃗2, and v⃗3 with equal
norm and angularly equidistant, their composition is not associative.{

∥v⃗1∥ = ∥v⃗2∥ = ∥v⃗3∥ > 0
cos(v⃗1, v⃗2) = cos(v⃗1, v⃗3) = cos(v⃗2, v⃗3) > 0

}
=⇒ (v⃗1⊙ v⃗2)⊙ v⃗3 ̸= v⃗1⊙ (v⃗2⊙ v⃗3)

2.2.4 Vector-Based Information Contrast Model

Building on the formulation of the Information Contrast Model for similarity from ”On
the foundations of similarity in information access” (Amigó et al., 2020), which is a
generalization of PointWise Mutual Information, the work presented in ICDS introduces
the Vector-Based Information Contrast Model aiming to satisfy the three properties of
the similarity function enumerated in the composition section where the publication was
explained.

The metric is defined as:

ICMV
β = ∥v⃗1∥2 + ∥v⃗2∥2 − β(∥v⃗1∥2 + ∥v⃗2∥2 − ⟨v⃗1, v⃗2⟩)

Properties of the ICM similarity function:

• Angular Distance Similarity Monotonicity: Given equal vector norms (same
Information Content), the similarity is monotonic, decreasing in relation to the
angular distance and the proximity of semantic orientation.{

cos(v⃗1, v⃗2) > cos(v⃗1, v⃗3)
∥v⃗1∥ = ∥v⃗2∥ = ∥v⃗3∥ > 0

}
=⇒ δ(v⃗1, v⃗2) > δ(v⃗1, v⃗3)

• Orthogonal Embedding Similarity Monotonicity: For a set of independent
and orthogonal representations, the greater the norm (their specificity), the lower
their similarity.{

cos(v⃗1, v⃗2) = cos(v⃗3, v⃗4) = 0
∥v⃗1∥ < ∥v⃗2∥, ∥v⃗3∥ < ∥v⃗4∥

}
=⇒ δ(v⃗2, v⃗4) > δ(v⃗1, v⃗3)

• Equidistant Embedding Similarity Monotonicity: Given two pairs of vectors
(v⃗1, v⃗

′
1) and (v⃗2, v⃗

′
2), with ϵ⃗ being a vector representing their equidistance then{
v⃗′1 = v⃗1 + ϵ⃗, v⃗′2 = v⃗2 + ϵ⃗
∥v⃗2∥ > ∥v⃗1∥ >> ∥ϵ⃗∥

}
=⇒ δ(v⃗2, v⃗

′
2) > δ(v⃗1, v⃗

′
1)
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2.2.5 Generalized Composition Function

Concluding the discourse on the ICDS framework, we introduce the generalized ver-
sion of the composition function defined in ICDS and employed in this research. This
generalization is expressed through the function Fλ,µ, defined as follows:

Fλ,µ =
v⃗1 + v⃗2

∥v⃗1 + v⃗2∥
·
√
λ(∥v⃗1∥2 + ∥v⃗2∥2)− µ⟨v⃗1, v⃗2⟩

The initial term on the right side of this equation represents the unit vector resultant
from the summation of the two vectors, thereby dictating the direction of the composite
vector. The subsequent term specifies the norm (or magnitude) of this vector, which is
contingent upon both the norms of the individual vectors and their dot product. This
formulation offers a generalization of prevalent composition functions found in existing
literature, such as the sum and average of vectors, allowing for the adjustment of the
composition’s characteristics through the parameters µ and λ.
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Chapter 3

Hypothesis and Research
Questions

The focal point of this dissertation is the exploration and estimation of semantic simi-
larity in Spanish song lyrics through a nuanced approach leveraging unsupervised word
embedding composition functions alongside supervised fine-tuning methodologies ap-
plied in LLMs. Unsupervised learning discovers patterns or structures from unlabeled
data; in contrast, supervised learning involves training a model on a labeled dataset,
where each example is paired with an output label. This research hypothesizes that:

Utilizing neural networks in NLP to analyze and draw from the semantic
content present in song lyrics, by leveraging existing information from related
domains, can significantly enhance music recommendation systems, offering
a more enriched, lyric-driven approach that outperforms current methods.

We address several research questions that are poised to drive the experimental
enquiries discussed in the remainder of this article.

RQ1 Could word embeddings unsupervised semantic composition prove a viable method
for resolving the song recommendation problem, particularly when viewed as a
contributing factor within a broader song recommendation system?

RQ2 In tackling the task of unsupervised semantic composition, do static or contextual
word embeddings offer a more effective approach? This composition process aims
to encapsulate sentence semantics through an Information Theory-based Compo-
sitional Distributional Semantics approach.

RQ2.1 When utilized in tandem with unsupervised semantic composition, do static
embeddings, which maintain a certain level of semantic isometry with the
ideal meaning space, enable the resolution of the classification problem of
song similarity?
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RQ2.2 When paired with unsupervised semantic composition, would the contextual
word embeddings, even though their representations do not preserve semantic
isometry, allow for effective song similarity classification?

RQ3 In both the cases of static and contextual word embeddings, would domain-specific
transfer learning offer benefits to the classification of song similarity?

RQ4 Regarding the supervised methodology, which centers on the fine-tuning of pre-
trained models, which strategy yields superior results for song similarity classifi-
cation? How would these supervised methods compare to the unsupervised ap-
proach?

This research aims to validate this hypothesis through a comprehensive exploration
of various semantic composition methods and sentence similarity metrics, coupled with
different supervised training strategies involving cross-encoders and bi-encoders, and
evaluating their efficacy in identifying semantically similar song lyrics. These supervised
strategies, leveraging recent advances, like the self-attention mechanism, have defined
the SOTA in tasks requiring fine-grained understanding of text pairs, such as question-
answering, text similarity or relevance ranking (Reimers and Gurevych, 2019a; Devlin
et al., 2019).

Regarding our annotation experiment, we utilized a 6-point numeric scale akin to
that developed for the SemEval tasks Agirre et al. (2012). Similar to the structure
employed in the original SemEval tasks, our scale includes a specific level for complete
dissimilarity (level 0) and five additional levels (levels 1-5) to delineate varying degrees
of semantic similarity, arranged in ascending order of intensity. Despite the potential for
nuanced analysis offered by this scale, the decision was made to proceed with a binary
classification of song lyrics as either similar or dissimilar for several compelling reasons
rooted in both our data analysis and relevant literature.

The distribution of the annotations across the 6-point scale revealed a notable con-
centration of data at the least similar point, with intermediate and upper levels seeing
fewer examples. This pattern, coupled with the total sample size available for our study,
suggested that binary classification would provide a firmer foundation for both training
and evaluating our models due to the more balanced distribution of data it afforded.
Furthermore, when examining inter-annotator agreement, it became evident that con-
sensus was more readily achieved at the scale’s extremes. Annotators found it relatively
straightforward to identify texts as clearly similar or dissimilar, whereas agreement on
the finer distinctions of intermediate similarity levels proved more elusive. This varia-
tion in agreement underscores the challenges inherent in maintaining consistency and
reliability across annotators when dealing with a scale that offers more nuanced options.

The literature on scale design and annotation complexity also supports the simpli-
fication of the scale. Studies have indicated that scales with too many options can
introduce cognitive strain, leading to decreased accuracy and consistency among an-
notators (Tversky, 1977; Nowak and Rüger, 2010). The challenge of making precise
distinctions, particularly for assessments as subjective as semantic similarity, is exacer-
bated by a larger number of scale points. If the scale’s complexity has led to inconsistent
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annotations, consolidating similar labels after the fact could help mitigate the impact
of any potential annotator errors. This approach can streamline the dataset, thereby
enhancing the signal-to-noise ratio for learning algorithms. Reducing the number of cat-
egories not only simplifies the task for future annotations but also refines the existing
dataset, which may result in improved model performance due to the increased clarity
and consistency in the training data.

In light of these considerations, transitioning to a binary classification system emerged
as a strategic choice aimed at bolstering the robustness and clarity of our analysis.

We also explore both supervised and unsupervised approaches. In the supervised
realm, we try both cross-encoder and bi-encoder techniques. In the unsupervised con-
text, we look into non-supervised semantic composition approaches based on static and
contextual embeddings. Within these methods, we examine the performance of both
multilingual and monolingual pre-trained models, as well as domain-adapted and general-
domain models. Multilingual language models, are trained on datasets comprising multi-
ple languages. These models are designed to understand and process information across
linguistic boundaries, offering the flexibility to work with texts in various languages
without the need for separate models. Monolingual language models, on the other hand,
are trained exclusively on datasets in a single language, enabling them to specialize and
deeply understand the linguistic nuances, idioms, and syntax specific to that language.
This specialization often results in higher performance on NLP tasks within the same
language because the model has a focused knowledge base that aligns closely with the
intricacies and unique characteristics of the language it was trained on (Agerri et al.,
2020; Agerri and Agirre, 2023; Armengol-Estapé et al., 2021; Martin et al., 2020). In the
context of analyzing Spanish song lyrics, a monolingual model trained on Spanish texts
is expected to capture the subtleties of Spanish language usage more accurately than its
multilingual counterparts.

We expect this comprehensive approach to enhance our understanding of semantic
similarity in song lyrics. This endeavor is, nonetheless, not just an academic exercise; it
has tangible implications for the development of song RSs.
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Chapter 4

Experimental Setup

Building on the comprehensive exploration of semantic similarity within song lyrics out-
lined in the previous sections, this chapter delves into the experimental setup designed
to validate our hypothesis and address the research questions (RQs) posited at the
outset of this study. The foundational hypothesis—that various semantic composition
methods and sentence similarity metrics, and advanced supervised training strategies
involving cross-encoders and bi-encoders, can significantly enhance the efficacy of iden-
tifying semantically similar song lyrics—sets the stage for a detailed examination of the
methodologies employed in our research.

Our objectives are twofold: first, to assess the relative performance of different se-
mantic composition methods in capturing the nuanced semantic similarities between
song lyrics; and second, to evaluate how various sentence similarity metrics and super-
vised training strategies can improve the identification of semantic similarities within this
unique textual domain. The experimental setup, designed to address these objectives,
incorporates a blend of both supervised and unsupervised learning strategies, leveraging
the latest advancements in NLP such as self-attention mechanisms that have redefined
the SOTA in fine-grained text analysis tasks.

To systematically approach these objectives, we structure our experiment around
several key components: the selection and preparation of a diverse dataset of song lyrics,
the deployment of pre-trained and fine-tuned models encompassing both cross-encoders
and bi-encoders, and the application of a binary classification scheme grounded in our
preliminary data analysis and literature review. This binary classification not only aligns
with the distribution patterns observed in our annotated data but also simplifies the
model training and evaluation process without compromising the depth of semantic
analysis required for our study.

Moreover, the exploration extends to contrasting the effectiveness of monolingual
and multilingual models within the unsupervised framework, offering insights into the
influence of language-specific nuances on the task of semantic similarity detection. The
decision to employ both static and contextual word embeddings, derived from established
methodologies like the Continuous Bag of Words (CBOW) and Skip-gram models, as
well as the more recent transformer-based models like BERT and RoBERTa, encapsu-
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lates our comprehensive approach to understanding the multifaceted nature of semantic
composition in song lyrics.

As we move forward in this chapter, we will outline the specific experimental con-
ditions, the dataset preparation and annotation process, the selection criteria for the
models and embeddings, and the evaluation metrics employed to assess model perfor-
mance. This setup not only aims to validate our hypothesis but also to contribute
valuable insights and methodologies to the broader field of NLP, with potential implica-
tions for the development of more effective semantic similarity detection systems across
various domains of text.

4.1 Word Embeddings

Word embeddings represent a fundamental concept in NLP, especially in the context
of applying neural networks to language tasks. They involve mapping each word wi

from a vocabulary V to a dense vector representation xi. These vectors, known as
word embeddings, capture the semantic and syntactic properties of words in a high-
dimensional space. The collection of all such vectors forms the word embedding matrix
X, where X ∈ R|V |×d with |V | representing the vocabulary size and d denoting the
dimensionality of the embeddings.

In practice, an input text sequence w1, w2, . . . , wT is converted into a sequence of
corresponding word embeddings x1, x2, . . . , xT . This sequence serves as the input to a
neural network, allowing it to process and understand the textual information. Word em-
beddings provide several key advantages over sparse representations like one-hot encod-
ing, including semantic richness, better generalization capabilities, and computational
efficiency.

These embeddings can be obtained in multiple ways. Two widely recognized meth-
ods involve using pre-trained embeddings and learning embeddings specific to a task.
Pre-trained embeddings, such as GloVe and Word2Vec, are learned from large exter-
nal corpora and provide a general representation of linguistic properties. These will be
discussed in greater detail in subsequent sections. The rationale behind utilizing pre-
trained embeddings lies in the principle of transfer learning, which offers a solution to
the limitations of the traditional supervised learning paradigm when there is insufficient
labeled data for the desired task or domain. Transfer learning addresses this challenge by
leveraging data from a related task or domain, known as the source task and source do-
main. The knowledge gained from solving the source task in the source domain is stored
and applied to the target task and domain. This process is depicted in the transition
from the traditional supervised learning setup to the transfer learning setup. The core
objective of transfer learning is to learn the target conditional probability distribution in
the target domain, utilizing the information gleaned from the source domain and source
task (Ruder, 2019).

Pre-trained embeddings are a manifestation of transfer learning in the context of
NLP. By using embeddings that have been pre-trained on large, diverse corpora, we can
transfer the general linguistic knowledge captured by these embeddings to our specific
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task or domain, even when labeled data is scarce. This approach enables the model
to benefit from a rich, pre-existing understanding of language, facilitating better per-
formance on the target task through the nuanced representation of words and their
relationships.

In the context of this thesis, we will also explore the use of transformer models for
generating word embeddings. Transformers represent a significant advancement in the
field of NLP and offer a dynamic approach to generating context-sensitive embeddings.
The specifics of using transformers, along with GloVe and Word2Vec embeddings, will
be elaborated in the following sections, highlighting their application and relevance to
our research.

4.1.1 Static Word Embeddings

In our study, we employ two fundamental methods to obtain static vector representations
of words: the CBOW and Skip-gram architectures fromWord2Vec, and the GloVe model.
These methods are crucial for generating embeddings that capture the linguistic context
and semantic relationships of words in our corpus.

Word2Vec Methodologies: Developed by Mikolov et al., Word2Vec encompasses
two distinct approaches for creating word embeddings:

• Continuous Bag of Words (CBOW): This method involves predicting the cur-
rent word based on its context. Our implementation of CBOW aims to maximize
the following objective function:

J(θ) =
1

T

T∑
t=1

log p(wt|wt−1, wt+1)

Here, wt denotes the current word, with wt−1, wt+1 representing the surrounding
contextual words. The model’s focus is on understanding the likelihood of a word
given its surrounding words.

• Skip-gram: In contrast to CBOW, Skip-gram predicts the context given a word.
This approach is effective for capturing a broader range of word associations. The
objective function for Skip-gram in our study is formulated as:

J(θ) =
1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j |wt)

where wt represents the current word, and wt+j are the context words.

Both CBOW and Skip-gram are implemented as shallow, two-layer neural networks,
trained to reconstruct linguistic contexts of words effectively.

GloVe Model: Another method we utilize is GloVe, developed by Pennington
et al. (2014). GloVe combines global and local statistical information from the corpus
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to produce word embeddings. Our application of GloVe involves constructing a co-
occurrence matrix X, where Xij indicates the frequency of word j appearing in the
context of word i. The objective of GloVe in our context is to minimize the following
function:

J(θ) =
V∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2

Here, V represents the vocabulary size, wi and w̃j are word vectors, and bi, b̃j are the
respective bias terms. This method effectively captures both the local context and global
statistical properties of words in our dataset.

4.1.2 Contextual Word Embeddings

Model Name No. of Parameters Language Model Architecture

BERT base 110M Multilingual BERT
Alberti base 110M Multilingual BERT
Bertin base 125M Spanish RoBERTa
MarIA base 125M Spanish RoBERTa
MarIA large 355M Spanish RoBERTa
STSB 270M Multilingual XLM-RoBERTa

Table 4.1: Model Comparison: Parameters and Architecture

Contextual word embeddings, as a key innovation in natural language processing,
have been revolutionized by the development of transformer models. Unlike static em-
beddings like Word2Vec and GloVe, which produce a fixed embedding for each word,
contextual embeddings provide dynamic representations that change based on the sur-
rounding text. This ability to capture linguistic context is crucial for understanding the
complexities of language, including polysemy and varied syntactic arrangements.

Transformers, introduced by Vaswani et al. (2017a), are central to this advancement.
Their unique feature, the self-attention, is a mechanism where the relevance of different
tokens is dynamically assessed through learned weights. This relevance is quantified by
the attention scores, derived from the dot product of Query (Q) and Key (K) vectors,
followed by a softmax operation to ensure these scores sum to one. The attention scores
are then used to create a weighted sum of Value (V) vectors, producing the output
representations that are contextually aware, effectively modulating the representation of
token embeddings as they propagate through the model’s layers.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

The Transformer architecture typically relies on multiple attention heads within the
self-attention mechanism, each with its own set of learnable parameters. These multiple
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heads allow the model to simultaneously process token representations from different
perspectives, subdividing the embedding space into as many heads as there are, and then
concatenating these processed representations before passing them to the feed-forward
layer.

In addition to this self-attention mechanism, transformers incorporate positional en-
codings to account for the order of tokens in the sequence, paramount for understanding
language structure and syntax, as it allows the model to recognize patterns and relation-
ships that depend on the sequence of words or phrases. The incorporation of positional
information with attention-driven contextual embeddings ensures that the model’s out-
put is not only contextually aware but also structurally informed, providing a robust
framework for generating and understanding complex linguistic constructs.

In the realm of transformers, we specifically leverage encoder models, shown in Table
4.1. Unlike decoders or generative models that learn the joint probability distribution
P (x, y), encoders are designed to learn the conditional probability P (y|x) directly from
the raw data. This approach is particularly advantageous in tasks where the goal is to
understand or classify input data rather than generate new data. For instance, BERT,
a notable transformer-based model, uses multiple layers of encoders. It processes the
entire input sequence in one go, allowing each word to be contextualized based on its
complete surrounding context, both preceding and following.

This bidirectional nature of BERT and similar models represents a significant en-
hancement over earlier unidirectional models. The ability to consider the full context
of a sentence enables a more accurate and nuanced representation of language, signif-
icantly improving performance on various complex NLP tasks. The embeddings from
transformer encoders are profoundly contextual, varying in accordance with the input
sentence. As a result, they offer a more detailed and precise understanding of language.

Training these transformer models involves refining both the embeddings and the
self-attention weights through backpropagation and gradient descent methods. This
training process ensures that the model effectively captures and represents the contextual
relationships intrinsic to the text.

In summary, the use of encoder models in transformers for generating contextual
word embeddings marks a paradigm shift in natural language processing. By employ-
ing advanced deep learning architectures and self-attention mechanisms, these models
provide sophisticated, context-aware representations of language, surpassing the static
embedding techniques and enhancing the ability to interpret complex linguistic patterns.

4.2 Monolingual and Multilingual models

The unprecedented advances in NLP have underscored the pivotal role of large pre-
trained language models, developed and trained on extensive corpora through resource-
intensive processes predominantly by major corporations. This trend has largely favored
English, resulting in the most advanced language models for English being publicly
released by these entities. For languages other than English, the question of performance
equivalence arises, especially when considering the multilingual models like multilingual

23



Chapter 4: Experimental Setup

BERT and XLM-RoBERTa, which purportedly support over 100 languages. Despite
their proficiency in high-resource languages, it is observed that monolingual models often
outperform their multilingual counterparts in language-specific tasks, as mentioned in
Section 3. This discrepancy is attributed to the tailored training designs and corpus
selections that cater to the linguistic subtle differences of each language, leading to the
development of superior monolingual models.

Given the focus on encoder-only masked language models, and the evident gap in
performance between monolingual and multilingual models, our methodology encom-
passes a comparative analysis of these models for Spanish. This approach is informed
by the recent findings, who highlight the nuanced performance differences and advo-
cate for a deeper investigation into the factors influencing these outcomes (Agerri and
Agirre, 2023). Our evaluation extends to include prominent multilingual models, along-
side monolingual models (detailed in Table 4.1), to provide a comprehensive assessment
of their efficacy across a spectrum of Spanish NLP tasks:

BERT models were trained on MLM and next sentence prediction (NSP) objectives.
The original MLM implementation relies on random masking of tokens in each input
sequence. With a vocabulary of 30,000 tokens, it uses a sliding window approach with
a fixed sequence length that can cross document boundaries.

- BERT multilingual base model (cased)1 (Devlin et al., 2019). The BERT model
was pre-trained using a 3.3 billion word corpus composed of the BooksCorpus (800
million words) and Wikipedia (2.5 billion words). The training procedure involved
generating input sequences by sampling two spans of text from the corpus, referred
to as ”sentences”. One sentence received the A embedding and the other received
the B embedding, with 50% of the time B being the actual next sentence following
A and 50% of the time being a random sentence. The input sequences were then
tokenized using the WordPiece tokenization with a uniform masking rate of 15%.
The training was done with a batch size of 256 sequences and over 1 million steps,
approximately 40 epochs, using Adam optimization with various hyperparameters
such as learning rate, weight decay, and dropout probability. The training loss was
the sum of the MLM likelihood and the NSP likelihood. BERT learned the [SEP],
[CLS], and sentence A/B embeddings during pre-training and chose a task-specific
fine-tuning learning rate that performed the best on the development set.

- Alberti2(de la Rosa et al., 2023) is a BERT based multilingual model trained on
poetry for stanzas and verses. The model was pre-trained on a large corpus of
multilingual poetry datasets, including resources from English, German, Russian
and, particularly relevant to this work, Spanish. The pre-training of Alberti is
a form of domain adaptation that allows the model to learn and capture specific
patterns and features present in poetry datasets, which are not necessarily present
in other datasets.

1https://huggingface.co/bert-base-multilingual-cased
2https://huggingface.co/flax-community/alberti-bert-base-multilingual-cased
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RoBERTa (Liu et al., 2019) discards NSP task during pre-training relying solely on
MLM and introduces dynamic masking, a method that changes the masking pattern for
each training instance. The model was trained on full sentences rather than fixed-length
segments. It is worth noting that the model’s vocabulary consists of 50,265 tokens,
including the line-break character; we used this character to delimit song verses and
stanzas.

- Bertin3 (de la Rosa et al., 2022)

In this model, it was found that traditional methods of pre-training, which rely on
large amounts of data from sources such as Common Crawl, can contain enough
noise to produce sub-optimal results. To overcome the challenge of training a
language model on a large corpus of Spanish text, the authors used a technique
called perplexity sampling to create a smaller subset of the Spanish mC4 dataset for
training the model. The mC4 dataset is a multilingual variant of C4, containing
natural text in 101 languages from the public Common Crawl web-scrape, and
was used to train the mT5 multilingual model. The Spanish portion of mC4
contains about 416 million documents and 235 billion words in approximately
1TB of uncompressed data.

The Bertin model was trained using the MLM objective, with hyperparameters
and setup similar to those in RoBERTa (Liu et al., 2019). The model was trained
for 250k steps, with a batch size of 2048 for 128 sequence length and 384 for 512
sequence length. The training was divided into two stages, with 230k steps of
training with 128 sequence length, followed by a few more steps of training with
512 sequence length from previous checkpoints. The number of warm-up steps for
512 sequence length was reduced to 500. The training process lasted approximately
one week, with MLM accuracy scores reported at the end of training for both 128
and 512 sequence length.

- MarIA4 (Gutiérrez-Fandiño et al., 2022).

MarIA was pre-trained on a corpus derived from the National Library of Spain’s
selective crawls carried out between the years 2009 and 2019, which covers a wide
range of themes, relevant events, and domains at risk of disappearing. The corpus
was processed to generate 59TB of JSON files containing text extracted from the
WARC files, including paragraphs, headers, and hyperlinks’ texts. The model was
evaluated on 9 tasks, including text classification, Named Entity Recognition and
Classification, Paraphrase Identification, Part-of-Speech Tagging, Semantic Tex-
tual Similarity, Textual Entailment, and Question Answering. The evaluation
datasets include Multilingual Document Classification Corpus, CoNLL-NERC,
CAPITEL-NERC, PAWS-X, Universal Dependencies Part-of-Speech, Spanish tex-
tual similarity datasets, Cross-Lingual NLI Corpus, and a newly created Spanish
Question Answering dataset.

3https://huggingface.co/bertin-project/bertin-roberta-base-spanish
4https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne
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The MarIA model was trained using fine-tuning methodology based on the usual
practices in NLP and AI literature. The evaluation was done using the Hugging-
Face Transformers library and a single linear layer was added to the model being
fine-tuned for each task. A grid search was conducted for all models and tasks with
the same settings, including batch size, weight decay, learning rate, and epochs,
to ensure a fair comparison. The best checkpoint was selected based on the down-
stream task metric on the development set and then evaluated on the test set.

XLM-RoBERTa (Cross-Lingual Language Model RoBERTa) (Conneau et al., 2020),
shares MLM training objective with BERT and RoBERTa, but includes a cross-lingual
alignment objective called Translation Language Modeling in which parallel sentences in
different languages are concatenated and a mask is applied to tokens in both languages.
The vocabulary is also the largest, with 250,000 tokens, utilizing a SentencePiece with
BPE tokenizer.

- Sentence-Transformers5(STSB) (Reimers and Gurevych, 2019a).

The original model presents a modification of the pre-trained BERT network,
known as Sentence-BERT (SBERT), that derives semantically meaningful sentence
embeddings. Sentence-Transformer uses a siamese and triplet network structure
and can be compared using cosine similarity, reducing the computational overhead
from 65 hours with BERT to just 5 seconds while maintaining accuracy. SBERT
outperforms other state-of-the-art sentence embedding methods on semantic tex-
tual similarity tasks and transfer learning tasks. The model used in this work is
a multilingual variation of the original model, that substitutes BERT with XLM-
RoBERTa.

An examination of sentence embeddings utilizing Wikipedia as its corpus, this
study leverages the articles to build a significant collection of weakly labeled sen-
tence triplets. The Triplet Objective serves as the framework while SBERT,
a cutting-edge sentence embedding technique, is trained on 1.8 million training
triplets and evaluated on a substantial 222,957 test triplets.

To fine-tune the BERT/RoBERTa networks, the authors create siamese and triplet
networks and use either a classification objective function, a regression objective
function, or a triplet objective function to update the weights so that the pro-
duced sentence embeddings are semantically meaningful. SBERT was trained on
a combination of the SNLI and Multi-Genre NLI datasets using a 3-way softmax
classifier objective function for one epoch. The training details include a batch-size
of 16, Adam optimizer with learning rate 2e-5, and a linear learning rate warm-up
over 10% of the training data.

This comparison is pivotal, as it not only challenges prevailing assumptions about
model performance but also elucidates the potential of multilingual models in contexts
previously dominated by monolingual counterparts.

5https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
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4.3 Composing Song Lyrics

In the advancement of our research, the construction of vector representations for song
lyrics plays a pivotal role, utilizing the foundational work laid out in the word em-
beddings and ICDS discussions. By amalgamating distributional representations of lin-
guistic units, the ICDS function offers a means to encapsulate the semantic essence of
song lyrics into dense vector spaces, composing texts longer than one word while ad-
hering to the principles of compositionality and contextuality. This process, however,
introduces several considerations that significantly impact the quality and applicability
of the generated embeddings, notably, the operational dynamics of the ICDS function
make it uniquely sensitive to various factors in the composition process. These include
the directional flow in which the song lyrics are processed, whether sequentially from
start to end or vice versa, and the level of granularity at which the lyrics are segmented
for analysis—be it at the level of entire songs, individual stanzas, or discrete sentences.
Each choice in this compositional framework affects the resultant vector representations,
influencing both their semantic depth and their alignment with the intricate structures
of musical lyrics.

Moreover, the employment of embeddings from distinct Transformer layers further
enriches our methodology. By extracting embeddings from both the initial and final
layers of Transformer models, we aim to investigate the performance implications of
leveraging different levels of linguistic abstraction and contextualization inherent in these
layers. This exploration is crucial for understanding how varying depths of semantic
processing contribute to the effectiveness of our models in capturing the nuanced fabric
of song lyrics.

4.3.1 Composition Function

Following our exploration of the ICDS framework in Section 2.2 (Related Work: Text
Representation), where we delved into embedding functions and their properties, as well
as the foundational principles guiding our semantic analysis of song lyrics, we now turn
our attention to the generalized composition function. As introduced in Section 2.2.5
(Text Representation: Generalized Composition Function), the norm of the composite
vector is adjusted according to a combination of the individual vectors’ norms and their
dot product, balanced by the parameters λ and µ. These parameters are pivotal in mod-
ulating the composition’s sensitivity to the magnitude and orientation of the constituent
vectors, embodying a flexible approach to semantic composition.

The intricate interplay between the aforementioned parameters delineate distinct
methods that provide unique strategies to vector composition:

• Fsum: The summation of the basic unit vectors.

• Favg: The average of the basic unit vectors.

• Find: Operates under the presumption that the combined linguistic forms are sta-
tistically independent.
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• Fjoint: Represents the conjunction of the ICs.

• Finf: Added as it fits within the theoretical framework satisfying the earlier de-
scribed properties.

For each of these methods, utilized in this work, the values of λ and µ are as given
in Table 4.2:

Method λ µ

Fsum 1 -2
Favg

1
4 −1

2
Find 1 0
Fjoint 1 1

Finf 1 min(∥v⃗1∥,∥v⃗2∥)
max(∥v⃗1∥,∥v⃗2∥)

Table 4.2: ICMβ Composition Functions

4.3.2 Composition Direction

The ICDS function employed for semantic composition is sensitive to the direction in
which it is applied. Specifically, two directions are considered: left-to-right and right-to-
left. The directionality of composition affects the weightage of various parts of the song
during embedding generation. For instance, a right-to-left composition may emphasize
the beginning of the song, while a left-to-right composition could highlight its conclusion.
Understanding the impact of composition direction offers insights into how different
aspects of a song contribute to its overall semantic representation.

4.3.3 Granularity

Granularity refers to the level of segmentation applied to songs before they undergo
semantic composition through the ICDS method. We consider three primary units of
granularity: song level (entire lyrics), sentences, and stanzas. Each unit offers a distinct
lens through which the semantic landscape of a song is explored, influencing the model’s
capacity to discern and represent both global thematic elements and localized semantic
nuances.

Lyrics At the song level, the focus is on capturing the overarching thematic and emo-
tional constructs that define the entirety of a song. This global perspective aims to syn-
thesize the song’s comprehensive narrative, offering insights into the dominant themes
and sentiments that pervade the lyrics as a whole.

28



Neural Approaches to Decode Semantic Similarities in Spanish Song Lyrics for
Enhanced Recommendation Systems

Stanzas Moving to a finer granularity, analyzing songs at the stanza level allows the
model to hone in on specific sections of a song, each potentially encapsulating distinct
thematic or narrative shifts within the broader context of the song. This level of analysis
is particularly adept at uncovering the local semantic nuances that contribute to the
song’s overall meaning, enabling a more nuanced interpretation of its lyrical content.

Sentences Analyzing the song at the sentence level introduces the finest granularity,
where each sentence is examined for its semantic significance within the song. This
detailed approach is crucial for detecting subtle variations in tone, perspective, or the-
matic elements that sentences uniquely convey. It offers an in-depth comprehension of
the song’s dynamic semantic architecture, revealing the nuanced interplay of language
and meaning that shapes the overall narrative.

This systematic exploration of granularity enables us to investigate the trade-offs
between local interpretability and global coherence in the context of song similarity de-
tection. By varying the level of granularity, we gain insights into how different segments
of a song contribute to its semantic identity, thereby informing our approach to modeling
song similarity in nuanced and contextually aware manners.

4.3.4 Transformer Layer

The selection of specific transformer layers for extracting embeddings is informed by
the recognition of the representation degradation problem, where contextual models
tend to cluster word representations into hypercones within the multidimensional space,
thereby limiting the isometry essential for maintaining semantic similarity across word
utterances. Works on this problem have suggested the enhanced performance achieved
by combining outputs from various layers, rather than solely relying on the last hidden
state (Li et al., 2020).

Transformers, particularly through their self-attention mechanism, multi-head atten-
tion, and multi-layer architecture, learn diverse representations that evolve across the
model’s layers. Initial layers tend to capture more about the general meaning of words
(less contextual), whereas later layers incorporate progressively more context into these
representations. This layered learning process underlines the importance of carefully se-
lecting which layers to utilize for embedding extraction in our methodology. This insight
has motivated us to explore the potential of both the initial pre-trained embedding layer
and the output of the last layer, aiming to capture a richer, more nuanced representation
of text that integrates both foundational linguistic properties and advanced contextual
subtleties and facilitates a detailed comparative analysis.

The pre-trained embedding layer offers a broad, general representation of linguistic
properties, capturing the foundational semantics of words before contextual influences
are applied. This layer is instrumental for establishing a solid baseline of semantic
understanding that is not overly specific to any particular context. Conversely, the
output of the last layer, refined through successive transformations within the model,
embodies a highly contextualized understanding of the text. It integrates the cumulative
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insights gained from the model’s deep processing, making it invaluable for capturing the
nuanced, context-specific semantics essential for tasks like song lyric composition and
similarity detection.

4.3.5 Considerations on Special Tokens

As delineated in Section 4.1.2 (Word Embeddings: Contextual Word Embeddings), our
study employs encoder transformer blocks in the case of contextual models. These
models inherently utilize a set of special tokens during their training phase, each serving
distinct functions. Notably, the CLS and < s > tokens are employed to mark the
commencement of a text sequence and act as a classification embedding, encapsulating
the entirety of the sequence’s information. Similarly, SEP and < /s > tokens function as
separators or denote the end of a sequence. These tokens are present across all contexts,
fulfilling a structural role and are invariably fed into the model.

In our investigative efforts, we conducted experiments to ascertain the impact of
semantic composition with ICDS under various configurations: one that includes all
special tokens in the sequence, another that omits special tokens during inference to
solely obtain word or subword representations, and a third approach that provides the
model with all tokens but removes the special tokens prior to executing operations for
composite vector derivation. The experimental outcomes revealed negligible differences
across these configurations, with any variations falling well within the margin of error.
For illustrative clarity, a figure detailing these findings is presented in Appendix A.4.

Based on these observations, we opted for the third configuration. This decision stems
from our recognition of the importance of presenting the model with input structured
as it has been trained to expect, inclusive of the special tokens, yet removing them
post-inference to extract an embedding solely composed of vectors representing words
or subwords. It is pertinent to note that this decision does not affect non-contextual
models.

4.4 Sentence Similarity Metrics

In the scope of this project, where sets of phrases are transformed into vectors in an n-
dimensional space, semantic similarity is a metric in which the distance between them is
based on how similar their semantic content is. This section introduces the two metrics
utilized in this development.

4.4.1 Cosine Similarity

Cosine similarity is a fundamental metric in the field of NLP, offering a measure of
similarity between two non-zero vectors in an inner product space. This metric quantifies
the cosine of the angle between two vectors, thus capturing their directional alignment
rather than their magnitude. The value of cosine similarity ranges within [−1, 1], with
a value of 1 indicating identical orientation, 0 denoting orthogonality, and -1 suggesting
diametrically opposed directions.
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Mathematically, cosine similarity is defined as:

cos(θ) =
A ·B

∥A∥∥B∥
where A and B are the vector representations of the text units being compared, ·

denotes the dot product, and ∥A∥ and ∥B∥ are the Euclidean norms (magnitudes) of
the vectors.

In the realm of NLP, cosine similarity is particularly valued for its ability to effectively
measure the semantic proximity between documents, sentences, or words represented as
vectors in high-dimensional spaces. This is especially relevant in applications such as
document clustering, information retrieval, and similarity-based recommendation sys-
tems, where the semantic relatedness of textual entities plays a crucial role.

One of the particularities of cosine similarity is its insensitivity to the overall mag-
nitude of the vectors, focusing solely on their orientation. This characteristic makes it
exceptionally useful in comparing documents of varying lengths. Moreover, cosine sim-
ilarity is a core component in the operational framework of many vector space models,
including TF-IDF (Term Frequency-Inverse Document Frequency) and word embeddings
like Word2Vec and GloVe.

In summary, cosine similarity provides a robust and intuitive metric for assessing
semantic relationships in text data, enabling researchers and practitioners to uncover
meaningful insights into the structure and dynamics of natural language.

4.4.2 Vector-Based Information Contrast Model

Building on our exploration of semantic similarity metrics within the domain of natural
language processing, we utilize ICM, as delineated in Section 2.2.4 (Text Representation:
Vector-Based Information Contrast Model). In contrast with cosine similarity, this met-
rics takes into account both, the magnitude of the vectors, as well as their angle. The
ICM represents a significant evolution from the traditional Point-Wise Mutual Informa-
tion (PMI) model by introducing three parameters: α1, α2, and β. These parameters
enhance the model’s flexibility, allowing for a more nuanced representation of semantic
relationships between linguistic units.

ICM is characterized by its ability to adjust the weighting of the probabilistic events
x and y, thus offering a more refined understanding of their informational content. When
β = 1, ICM functions equivalently to PMI, capturing the mutual dependence between
x and y. At β = 2, it approximates the product of conditional probabilities, further
extending its applicability to a wider range of semantic analysis tasks. This versatility
makes ICM a powerful tool for probing into the intricacies of language, supporting both
theoretical inquiries and practical applications in computational linguistics.

A noteworthy aspect of ICM is its generalization of the Linear Contrast Model (Tver-
sky, 1977) under certain conditions, which underscores its theoretical depth and potential
for capturing complex semantic phenomena. Furthermore, the vector-based implemen-
tation of ICM, ICMV β, adapts this model to vector space representations, making it
particularly suited for contemporary NLP methodologies.
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The Information Contrast Model stands out for its robust mathematical foundation
and its adaptability to various semantic similarity assessment scenarios. By integrating
ICM into our analysis, we aim to leverage its comprehensive approach to better under-
stand and quantify the nuanced semantic relationships that underpin natural language.

4.5 Classifiers

The task of distinguishing between similar and dissimilar pairs of song lyrics necessi-
tates an approach to classification capable of interpreting and quantifying the convo-
luted semantic relationships embedded within textual data. In this study, we employ
two distinct classifiers for the three architectures: the Binary Logistic Classifier and
the Cross-Encoder. Each classifier serves a unique purpose in our analysis, chosen for
their specific advantages in handling the complexity of natural language data and their
suitability for binary classification tasks.

The Binary Logistic Classifier is a foundational tool in our methodology, prized for
its simplicity and effectiveness in leveraging distance metrics, such as cosine similarity,
to predict binary outcomes. This approach aligns well with the need to quantify the
degree of similarity between song lyrics, providing a probabilistic assessment based on
the semantic distance between pairs.

Conversely, the Cross-Encoder represents a more sophisticated classification model,
designed to directly process and analyze pairs of texts. This model’s architecture, in-
corporating dense layers and non-linear activations, allows for a deeper understanding
of the contextual relationships between song lyrics, making it adept at capturing the
nuanced differences that distinguish similar from dissimilar pairs.

In our study, we implemented 5-Fold cross-validation to train all classifiers. After
completing the training and validation across all folds, we calculated the classifiers’ final
performance metric by averaging the results from each fold. This approach smoothed
out any anomalies specific to a single fold, leading to a more stable and generalizable
performance metric

Transformer base model training and supervised fine tuning were implemented using
HuggingFace6 transformer and Sentence Transformers7 libraries (Reimers and Gurevych,
2019a), employing two architectures: siamese networks as a bi-encoder, and a cross-
encoder. In our experiments, we trained on AWS cloud service, and a NVIDIA RTX
4090, performing a grid search for hyperparameter selection. The search space included
learning rates of 2e-5, 3e-5, 5e-5, with linear decay and 10% warm-up of the total step
count. Epoch counts were 2, 3, 4, with batch sizes of 16 and 32. This training followed
best practices proposed in the BERT original paper (Devlin et al., 2019).

6http://huggingface.co
7https://sbert.net
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4.5.1 Binary Logistic Classifier

The Binary Logistic Classifier, in this context, is utilized for binary classification tasks
based on the cosine distance between pairs of items. This classifier computes the prob-
ability of each pair belonging to a positive class, with the cosine distance serving as
the primary feature. The logistic regression model, central to this classifier, employs
the logistic function, but the input feature is the cosine distance between two vector
representations. The cosine distance, denoted as dcos, is defined as:

dcos(v1,v2) = 1− v1 · v2

∥v1∥∥v2∥
Where v1 and v2 represent the vectors of the two items being compared.
The logistic regression model then employs this cosine distance as the input feature

(x):

p(y = 1|dcos) = σ(w⊤dcos + b)

In this equation, σ represents the logistic function, w is the weight vector associated
with the feature, and b is the bias term. The objective of the model is to minimize
the binary cross-entropy loss during the training process. The loss function for binary
classification is defined as:

L = −
N∑
i=1

[yi log(p(yi|dcos,i)) + (1− yi) log(1− p(yi|dcos,i))]

Here, N is the number of training examples, yi is the binary ground truth label
for the i-th example, and p(yi|dcos,i) is the predicted probability for the i-th example
being in the positive class, as determined by the cosine distance. This model is adept at
classifying pairs of items based on their similarity, as quantified by the cosine distance,
making it particularly suitable for tasks where relational dynamics between items are
pivotal.

4.5.2 Cross-Encoder

The Cross-Encoder is a more advanced classification model for assessing pairwise sim-
ilarity that directly ingests the pair of songs separated by a special token. Unlike the
Logistic Classifier, the Cross-Encoder employs a series of dense layers and a non-linear
activation, to capture more complex relationships between the song pairs.

The architecture employed, shown in Figure 4.1, is described as follows:

Cross-Encoder : (x1,x2) 7→ y

The Cross-Encoder takes the pair (x1,x2) as input and passes it through the trans-
former layers. Post this step, the architecture includes a sequence of dense layers and
activation functions. The first dense layer, denoted as D1, is a fully connected layer that
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Figure 4.1: Cross-Encoder architecture, (Reimers and Gurevych, 2019a)

transforms the embedding into a different dimensional space. This is followed by a tanh
activation function, providing the necessary non-linearity to the model:

z = tanh(D1(v))

Here, v denotes the embedding obtained from the final hidden state, and z is the
transformed feature vector.

Subsequent to the tanh activation, a second dense layer D2 is employed. This layer
further transforms the feature vector, preparing it for the final classification step:

u = D2(z)

Where u represents the output from the second dense layer.
For assessing the class, a softmax function is applied to the output of the final dense

layer, converting the raw logits into probabilities, expressed as:

softmax(u)i =
eui∑K
j=1 e

uj

Here, K represents the number of classes, and i indexes a specific class. This results
in a probability distribution over K classes for each song pair.

p(c|h) = softmax(Wh) (4.1)

Similarly to the Binary Logistic Classifier, the loss function to optimize was the
cross-entropy loss.

The input song pairs are tokenized, and the classification and separation tokens are
added to the input sequences, which are then padded to meet the criteria of a fixed max-
imum sequence length of 512 tokens. Next, the pre-trained language representations are
fine-tuned on the labeled dataset of Spanish song pairs, allowing them to effectively
capture the nuances of the Spanish language and learn to identify similarities and dis-
similarities between song pairs. For text classification, the final hidden state of the
classification token is used as the representation, and a softmax classifier is added on
top of the language representations to predict the probability of the label c (either 0 or
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1, indicating dissimilar or similar song pairs, respectively), with the trainable parameter
matrix W. A critical aspect of this architecture is the use of the [CLS] (classification)
token, a special token used in transformers like BERT and RoBERTa. The final hidden
state of this [CLS] token, after passing through the transformer layers, encapsulates a
comprehensive representation of the combined input pair. In contrast, non-contextual
models like GloVe lack this mechanism for aggregating contextual information across
tokens. Static models generate embeddings for individual words without considering the
broader sentence or document context, resulting in representations that are the same
regardless of where or how a word is used within the text. This absence of the CLS
token and the lack of inherent contextual awareness present a challenge when adapting
static models to tasks traditionally suited for contextual models, especially in archi-
tectures that rely on aggregated representations for decision-making. Therefore, while
it’s theoretically possible to adapt static embeddings for use in a cross-encoder setting,
this method was primarily employed with contextual models based on the transformer
architecture. The parameters of the language representations are updated using an op-
timization algorithm, AdamW, with the goal of minimizing the loss function over the
training dataset.

4.5.3 Siamese Network: Bi-Encoder

The Bi-Encoder fine tuning configuration consists of two parallel neural networks that
encode each element of a song pair into separate embeddings. These embeddings capture
the linguistic and semantic characteristics of each song, and their similarity is quantified
using a cosine similarity metric, as depicted in figure 4.2.

Incorporating the methodology from the Sentence-BERT paper by Reimers et al.,
our training objective utilizes cosine similarity within a logistic loss function. This setup
allows the model to fine-tune the embeddings, enhancing the differentiation between
similar and dissimilar song pairs. By optimizing the embeddings to maximize cosine
similarity for similar pairs and minimize it for dissimilar ones, the model becomes adept
at discerning nuanced semantic relationships.

Our model’s adaptation to Spanish song lyrics is a crucial aspect of our approach.
The fine-tuning process on a dataset comprising Spanish song lyrics enables the Bi-
Encoder to align with the unique linguistic and semantic idiosyncrasies of the Spanish
language. This is particularly important given the distinct stylistic and cultural elements
prevalent in Spanish music, which might differ significantly from those in more generic
language datasets.

A key advantage of our approach is the application of supervised learning, as opposed
to unsupervised methods. Leveraging annotated data for song similarity allows the
model to have a clear understanding of its performance on specific instances. This
direct feedback loop during training fosters a more refined and effective learning process,
leading to superior performance in identifying both subtle similarities and differences
between songs.

In our study, we employed a logistic classifier to evaluate the performance of models
trained using the bi-encoder architecture. The bi-encoder is designed to independently
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Figure 4.2: Bi-encoder training (Reimers and Gurevych, 2019a)

encode each element of a pair, generating embeddings that capture the semantic nuances
of the content. The logistic classifier then uses these embeddings to classify pairs as
similar or dissimilar. This process involves calculating the cosine similarity between
embeddings and applying logistic regression to predict the likelihood of similarity.

4.6 Datasets

The necessity for models to perform efficiently across different but related domains —
as mentioned at the beginning of this section — has become a fulcrum of research and
application. At its core, domain adaptation addresses the distributional shift that occurs
when the distribution of the data in the target domain differs from that in the source
domain, thus leading to a decline in the performance of models when applied to the
target domain.

In machine learning, it is conventionally presupposed that training and test datasets
adhere to the principle of being independent and identically distributed (i.i.d.), imply-
ing that each sample is mutually independent and collectively sourced from a uniform
distribution. This foundational assumption, however, may not invariably align with the
conditions encountered in practical applications.

To further align our models with the domain of song lyrics, we engage in an ex-
tended training utilizing the MLM task. This approach involves selectively masking out
tokens in the lyrics and prompting the model to predict the masked words, based on
the surrounding context. By customizing pre-trained embeddings for the nuances of
song lyrics, this task enables us to explore the potential for improved performance in
domain-related tasks. It aims to bridge the gap between the broad linguistic knowledge
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of pre-trained models and the unique vernacular of song lyrics, enhancing the model’s
ability to generate and interpret complex constructs within the target domain.

In the context of our research, domain adaptation emerges as an imperative process,
offering a scaffold to build models that are not only proficient in understanding the in-
tricacies of the source domain but are also adept at generalizing this understanding to
analyze song lyrics in the target domain with a high level of expertise. By leveraging
mathematical formulations and strategies of domain adaptation, our research stands on
a robust foundation, paving the way for an exploration that is both deep and mathe-
matically rigorous.

Work on cross-lingual embedding models, indicates that the actual choice of data used
for the model to learn a cross-lingual representation space contributes more decisively
to performance than the actual underlying architecture (Levy et al., 2017). This insight
is particularly relevant to the process of supervised fine tuning and domain adaptation,
where the goal is to tailor models to perform well on specific subsets of data, such as
adapting from general Spanish text to the specialized domain of Spanish song lyrics. In
this section, we elucidate the rationale behind our dataset selection, tailored to meet
distinct research objectives, including domain adaptation and classification tasks. Our
focus is on outlining the characteristics of each dataset and how the methodology ensures
that the data not only provides a robust foundation for training but also aligns with the
nuanced requirements of the respective tasks.

4.6.1 Domain Adaptation Dataset

Initially, a comprehensive corpus containing 147,912 songs was curated from a variety
of publicly accessible online sources. This dataset spans multiple genres and covers an
extensive time range, from 1936 to the present. Distinct from traditional prose, a song
lyric exhibits a unique structural form that more closely aligns with poetic compositions.
In this structure, lyrics are partitioned into smaller units termed stanzas, which serve
as autonomous semantic and prosodical entities. Each stanza is further subdivided into
lines that could either be complete sentences or fragments of an elongated sentence.
Within our corpus, these stanzas are encoded as arrays of string elements, which are
subsequently nested within a higher-dimensional array to represent a complete song.

To achieve a high-quality and non-redundant dataset, we executed a series of data
cleansing steps. This included the removal of duplicate entries, empty strings, and
single-word songs. Special characters, artist names, song titles, and blank lines were
also eliminated. The resulting dataset was segmented into stanzas to better facilitate
model training. We also incorporated a strategy to preserve line break characters, aimed
at supporting models that depend on such delineations. This was achieved without
compromising the tokenization process for models employing different types of tokenizers,
such as BertTokenizers.

To enhance the quality of the input data, especially in the context of stanzas, we
conducted an additional round of deduplication on the segmented dataset. This was to
manage recurring elements like choruses that might otherwise be over-represented in the
training data.
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4.6.1.1 Data Preparation Through Fixed Sized Chunks

In the chunking approach, a non-overlapping sliding window technique was applied to
create training samples that could cross document boundaries. This method involved
selecting chunks of text with a length of 128 tokens for 90% of the training data, and
512 tokens for the remaining 10% of the data, so the model could learn long distance
relations.

4.6.1.2 Preserving Lyric Integrity

The second approach, stanzas/lyrics, involved feeding the models with stanzas for 90%
of the training data and entire song lyrics for the remaining 10%. This strategy aimed
to preserve the document boundaries and inherent structure of the songs, as stanzas
and lyrics often exhibit unique semantic and syntactic relationships. By maintaining
these boundaries during the training process, the models were expected to better learn
long-distance relations and capture the distinct characteristics of Spanish songs.

4.6.2 Fine-tuning Annotated Dataset

For our experimentation, we will utilize LyricSIM (Benito-Santos et al., 2023), a dataset
tailor made for this task and composed of 676 pairs of songs annotated according to
varying degrees of semantic similarity, which are demarcated into six distinct levels on
the Likert scale. These levels range from ’Completely different (0)’, denoting a com-
plete dissimilarity in lyrics, to ’Outstanding similarity (5)’, where lyrics share the same
message, emotions, intentions, and lyrical situation, differing only in lexicon and genre.
Between these two extremes, four levels capture an increasingly nuanced range of sim-
ilarity, acknowledging minor aspects without semantic importance at level 1, thematic
relationships at level 2, basic similarity in message and feelings at level 3, and substan-
tial similarity with minor variations in lyrical situations and literal meaning at level
4. Emulating the structure utilized in original SemEval tasks (Agirre et al., 2012), the
scale dedicates one level to total dissimilarity (level 0), while the remaining five levels
encapsulate a spectrum of semantic similarity (levels 1-5) of increasing intensity. How-
ever, we have modified the category descriptions to accommodate the broader context
of similarity among song lyrics.

- Completely different (0): the lyrics are entirely dissimilar.

- Barely any similarity (1): the lyrics share minor aspects without semantic
importance, such as language style or sociocultural context.

- Little similarity (2): there is no semantic similarity (lyrical situation, message,
feelings), but the lyrics can be considered thematically (literal meaning) related.

- Basic similarity (3): the lyrics resemble each other in message, feelings of the
protagonist/singer, lyrical situation, or literal meaning.
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- Notable similarity / missing details (4): the lyrics share the same message
and feelings but differ in lyrical situations and/or literal meaning.

- Outstanding similarity (5): the lyrics share the same message, emotions, in-
tentions, and lyrical situation, differing only in lexicon and genre.

In order to generate a thorough dataset of similarity annotations for Spanish song
lyrics that covers various dimensions of lyrical content, we employed a crowdsourcing
platform. From a total pool of 63 annotators, selected participants engaged in the
annotation task. Following data collection, we garnered over 8,325 pair-wise similarity
values that represented the evaluation of 2,775 pairs by three different participants each,
detailed in Table 4.3.

dataset rating count percent

Original

0 3058 36.73%
1 3014 36.20%
2 1058 12.71%
3 746 8.96%
4 347 4.17%
5 102 1.23%

Filtered

0 837 41.27%
1 705 34.76%
2 360 17.75%
3 88 4.34%
4 34 1.68%
5 4 0.20%

Table 4.3: Number of ratings in the dataset after refinement.

Aware of the need for reliable data, we set up strict filtering criteria to lower rat-
ing variability and improve the dataset’s accuracy. This careful refinement process was
crucial for making the dataset more useful, leading to a significant increase in agree-
ment between annotators. We employed Krippendorff’s reliability alpha as the metric
for assessing annotator concordance, achieving a notable score of 0.90. This marked im-
provement from the preliminary score of 0.27 prior to refinement underscores the efficacy
of our dataset curation efforts.

For identifying dissimilar pairs, we focused exclusively on those instances where all
three annotators unanimously determined a pair to be dissimilar, assigning it a score of
0. This process yielded a total of 837 pairwise dissimilarities. Regarding similarities, our
criteria targeted pairs that garnered exact agreement from two out of three annotators
on a specific score. To ensure the inclusion of only the most reliable cases, we opted to
omit any pairs where the third annotator’s score deviated significantly (by a difference
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of 2 or more points from the most common score), leading to a selection of 676 similarity
pairs, which represents 24.36% of the initial dataset. Consequently, the curated dataset
comprises 2,028 annotations reflecting both similarity and dissimilarity judgments across
75 unique song lyrics.

Such a high degree of reliability not only attests to the dataset’s quality but also
validates its potential as a foundational resource for advancing research into the semantic
nuances of song lyrics. Through this refined dataset, our study aims to delve into
the multifaceted semantic landscapes of musical texts, offering novel insights into how
similarity in lyrical content is perceived and quantified.

4.7 Evaluation Metric

For evaluating the performance of our models, we utilize the F1 ’macro’ score as our
primary metric which provides a balanced measure of a model’s precision and recall by
taking their harmonic mean. This score reaches its best value at 1 (perfect precision and
recall) and its worst at 0. The formula used for the F1 score is:

F1 Score = 2× Precision× Recall

Precision + Recall

Particularly, we compute the F1 score independently for each class and then take the
average to obtain F1 ’macro’. This treats all classes equally, giving equal weight to the
performance on each class, regardless of its frequency. This is particularly important
in datasets with class imbalances, as it ensures that the performance on less frequent
classes contributes equally to the overall metric. The ’macro’ F1 score is calculated as:

F1 ’Macro’ =
1

N

N∑
i=1

F1i

where N is the number of classes, and F1i is the F1 score for the i-th class.
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Experimental Results

In the preceding chapters, we have delineated the theoretical underpinnings of our re-
search, outlined our methodology, and discussed the rationale behind our design choices,
including the development of models that underwent domain adaptation training. Re-
flecting the specialized preprocessing methodologies employed, these domain-adapted
models are prefixed with ”L”, symbolizing their tailored training to the analysis of lyri-
cal content. Following this prefix, the base model name is appended to clearly indicate
the foundational architecture upon which each domain-adapted model is built. Further-
more, to denote the specific preprocessing technique applied during domain adaptation,
the identification ’s’ (stanzas) or ’c’ (chunking) is included in the model name, signifying
the methodological nuances that distinguish our approach to leveraging semantic simi-
larity in song lyrics. Conversely, in the case of static models, they are identified by the
”SPL” suffix.

With these foundational elements and methodological nuances in place, we now turn
our attention to the empirical heart of our study—the experimental results. This chapter
presents the outcomes of our investigation, evaluating the effectiveness of various seman-
tic composition methods and supervised training strategies, including cross-encoders and
bi-encoders, which have been instrumental in setting new benchmarks in tasks requiring
a nuanced understanding of text pairs. Through a comprehensive analysis, we aim to
elucidate how these approaches perform in the specific context of identifying semantically
similar song lyrics, thereby contributing to the enhancement of music recommendation
systems. The findings discussed herein are pivotal, as they not only test our initial hy-
pothesis but also provide insights that could influence future directions in the application
of NLP techniques within the realm of music analytics.

5.1 ICDS and Binary Logistic Classifier

In the upcoming analysis, we delve into the practical application of our outlined method-
ology, employing an unsupervised approach to generate embeddings through the ICDS
framework. Upon generating these embeddings and quantifying similarity through the
chosen metrics, we leverage the Binary Logistic Classifier to classify pairs of song lyrics.
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(a) Contextual and Static
models.

(b) Multilingual and Monolin-
gual models.

(c) Base model and Domain
Adapted models.

Figure 5.1: Comparative analysis of performance score across various scenarios.

5.1.1 Contextual vs Static Embeddings

As depicted in Figure 5.1a, we conducted a comparative analysis between contextual
and non-contextual embeddings. In this specific setting, non-contextual models such as
Word2Vec and GloVe outperformed the transformer-based, contextual models, achieving
higher F1 scores, on average, when used in conjunction with a logistic classifier. This
suggests that non-contextual embeddings should not be overlooked, especially given their
lower computational requirements. In specific scenarios and tasks, they may even offer
performance advantages over their contextual counterparts.

Further analysis revealed that the performance disparity between the foundational
models and their domain-adapted iterations was marginal (Figure 5.1c), suggesting the
absence of statistical significance in the observed differences. This observation intimates
that the current dataset may not provide sufficient variance to conclusively assess the
impact of domain adaptation on model performance. Therefore, it posits that a more
extensive dataset would be requisite for a robust evaluation of the potential advantages
conferred by domain-specific model tuning. This insight prompts a reevaluation of the
scale and diversity of data necessary for future studies, aiming to delineate the condi-
tions under which domain adaptation might yield statistically significant performance
enhancements.

5.1.2 Multilingual and Monolingual models

Our findings indicate that multilingual models have an edge when it comes to assessing
song similarity. As illustrated in Figure 5.1b, multilingual models consistently outper-
formed their monolingual counterparts across various evaluation metrics. This suggests
that the capability to understand and encode linguistic nuances from multiple languages
into the embeddings is advantageous for the task of song similarity assessment.
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5.1.3 Composition Function and Direction

(a) Impact of composition function and direc-
tion on performance of contextual models.

(b) Composition function and direction on
performance of static models.

Figure 5.2: Comparative performance analysis of the composition function and direction.

The exploration of composition functions and their respective directionalities has
revealed distinct patterns in their efficacy for semantic vector composition. Notably, the
sum function (Fsum), which is direction-agnostic, demonstrated robustness in capturing
semantic content, as reflected by the consistently high F1 macro scores across various
granularities and models. This function’s direction neutrality suggests its strong capacity
for holistic semantic aggregation.

For directional composition functions, the impact of the processing sequence on per-
formance is evident in the independent (Find) and information (Finf ) functions, which
are sensitive to vector magnitude and alignment. Here, the right-to-left variants consis-
tently outperformed the left-to-right, particularly with methods, as highlighted by the
improved F1 macro scores in the right-to-left composition

Further insights are gleaned when examining static models. While the performance
results were comparable to those of contextual models, the average composition applied
in a left-to-right direction (avglr) resulted in an F1 macro score of 66.51, while a right-
to-left orientation (avgrl) decreased slightly to 62.35. This indicates that even subtle
shifts in directional processing can affect the outcome, highlighting the complexity in-
herent in capturing semantic nuances. Such results underscore the nuanced influence of
composition order on the quality of semantic representations, especially when dealing
with the layered meanings embedded within song lyrics.

In summary, while the sum function remains unaffected by directionality and ex-
cels in its application, the performance of other compositional functions notably varies
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with the direction, suggesting that the sequential ordering of information during vector
composition is a crucial consideration in modeling semantic relationships within NLP
frameworks.

5.1.4 Layer-wise Performance

In contrast with non-contextual models like GloVe and Word2Vec, which are based
on a single-layer architecture, contextual models based on the transformer architecture
utilizes a multi-layered framework, as explained in Section 4.3.4 (Experimental Setup:
Transformer Layer). Figure 5.3 provides an insightful look into how performance varied
across different layers of contextual models and how they perform with the available
composition functions. Interestingly, we found that the layer 0 of the transformer, which
contains positional embedding representations, achieves better results than the more
contextual, last layer of the architecture. This suggests that for the specific task of song
similarity assessment, the initial, less contextual layers may capture features that are
more salient, challenging the notion that deeper layers of the model may capture a more
useful representation.

Figure 5.3: Composition function and Layer

5.1.5 Granularity

When the entire corpus of song lyrics is considered, contextual models demonstrate en-
hanced performance in the Fsum, Find, and Finf composition methods. This is likely
attributable to their ability to integrate extensive contextual information, thereby lever-
aging the rich narrative and thematic layers present in full-length song lyrics. The Fsum
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(a) Composition function and granularity on
avg. F1 macro scores of contextual models.

(b) Composition function and granularity on
avg. F1 macro scores of static models.

Figure 5.4: Performance impact of the granularity.

method, aggregating semantic content, the Find method, assuming independence be-
tween linguistic forms, and the Finf method, which considers informational content, all
benefit from the broader context that full lyrics provide, as contextual models capture
the diverse semantic signals present within the text.

However, when applying the Favg and Fjnt composition methods, contextual models
do not maintain their lead. Instead, they perform better with stanzas and sentences,
with sentences yielding the most consistent performance across these composition meth-
ods. The Favg method, averaging semantic vectors, and the Fjnt method, representing a
joint probability distribution of meanings, appear to be more suitably applied at these
lower levels of granularity. This shift suggests that the averaging and joint distribution
processes align more closely with the concise and focused semantic information encap-
sulated within stanzas and sentences.

Static models, on the other hand, lack the ability to leverage larger contextual scopes
effectively. However, they exhibit a consistent performance across different compositional
methods and granularities, with a marked advantage in stanzas and sentences. This
could be due to their invariant representations, which, while not capturing the dynamic
contextual shifts within a song, efficiently encode the semantic properties that are central
to the shorter, more bounded contexts of stanzas and sentences.
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Figure 5.5: Performance comparative by model and similarity metric.

5.1.6 Model

A detailed examination of the F1 macro scores across a variety of models (Figure 5.5,
with detail in Table 5.1), considering their respective configurations and the specific
similarity metrics employed, sheds light on significant trends in model performance.
The ALBERTI model showcases a wide performance range with an average F1 macro
score of 80.8 ± 8.5 for cosine similarity and 79.8 ± 8.0 for ICM similarity, illustrating
its adaptability across diverse semantic contexts, ranking the highest among contextual
models. This variability, with a peak at 88.49 and a minimum at 49.85, highlights
the model’s flexibility but also its potential sensitivity to task-specific parameters and
dataset characteristics.

Conversely, the GloVe model presents a more consistent and slightly superior per-
formance for ICM similarity, with an average F1 macro score of 81.8 ± 5.4, peaking at
86.89. This indicates a higher level of stability across various scenarios compared to the
ALBERTI model, positioning it as a reliable option for tasks that demand consistent
semantic interpretation.

The L STSB s model (adapted from STSB with stanzas preprocessing), with F1
macro scores of 79.1± 6.7 for cosine similarity and 79.0± 6.5 for ICM similarity, along
with the Glove-SPL and Word2vec-SPL models, which display similar average perfor-
mances around 78.3 to 80.9, reveal a competitive landscape among both static and
contextual models. These findings, especially pertinent to the domain of song lyrics
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Model Similarity Metric F1 Mean Score

Glove icm similarity 81.82
Glove-SPL icm similarity 80.96
ALBERTI cosine similarity 80.83
ALBERTI icm similarity 79.78
L STSB s cosine similarity 79.14

Table 5.1: Model performance on descending order (highest 5 scores).

analysis, demonstrate that while contextual models like ALBERTI can reach high levels
of performance, static models such as Glove and Word2vec-SPL offer notable robustness
and computational efficiency, making them particularly valuable.

This analysis underscores the criticality of selecting the appropriate model and met-
ric based on the specific demands of the semantic task at hand. While contextual models
may afford advantages in capturing deeper semantic nuances within complex datasets,
static models argue convincingly for their use in applications where consistency, compu-
tational efficiency, and a robust performance profile are paramount.

Figure 5.6: Histogram of pair-wise cosine similarity values for BERTIN model. The
values cluster in the [0.98, 1] range.

In our research, an intriguing effect was observed concerning the behavior of cosine
similarity when applied to certain models, particularly BERTIN and, to a lesser extent,
MARIA, both of which are built on the RoBERTa architecture and are monolingual
models. It was noted that their performance was substantially lower compared to that
of ICM metric. This behavior does not show signs of improvement after additional in-
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domain training, as seen in the scores of domain adapted models. Our experiments
revealed that the cosine similarity of vectors from these models tends to cluster in a
narrow range around 0.98, as highlighted in Figure 5.6. This clustering could have a
pronounced impact on the performance of cosine similarity metrics, which rely solely
on the angle between vectors. In contrast, ICM not only considers the angle but also
incorporates the magnitude of vectors in its calculation of similarity, potentially offering
a more discriminative measure that could account for the observed differences in per-
formance. This behavior underscores the importance of considering both direction and
magnitude when assessing the semantic similarity of embeddings, especially in models
based on RoBERTa architecture.

5.2 Cross-Encoder

Figure 5.7: Cross-Encoder performance scores.

In our second experimental phase, we scrutinized the efficacy of a cross-encoder
model, a sophisticated approach that has gained traction in a variety of NLP tasks for
its capacity to capture complex semantic relationships.

As seen in Table 5.2, the MARIA base model emerged as the top-performing model,
achieving an average F1 score of 88.65, indicative of its superior capability in accurately
classifying song similarity. This model exemplifies the strength of the cross-encoder
architecture in capturing intricate semantic relationships within the data.
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Conversely, the L Bertin s model displayed the least effective performance, with an
average F1 score of 85.21, suggesting that not all models benefit equally from the cross-
encoder design. This variance underscores the importance of model selection based on
the specific characteristics of the task at hand.

This bifurcation in performance, with contextual monolingual models achieving both
the highest and lowest scores, adds a fascinating dimension to our analysis. The dis-
crepancy in performance between two models, theoretically suited for the task and that
also share architecture, raises intriguing questions about the variability in how different
models capitalize on the cross-encoder’s capabilities.

Overall, the cross-encoder approach demonstrates the potential for high accuracy
in semantic classification tasks. However, the computational demands of such models
necessitate careful consideration, especially in scenarios where resources are constrained.

Model Name F1 macro

ALBERTI 85.93
BERT 87.72
BERTIN 86.17
MARIA base 88.65
MARIA large 87.74
STSB 85.32
L Alberti c 87.36
L Alberti s 88.36
L BERT c 86.07
L BERT s 86.87
L Bertin c 85.78
L Bertin s 85.21
L Maria base c 88.47
L Maria base s 88.27
L Maria large c 86.26
L Maria large s 86.73
L STSB c 88.37
L STSB s 87.65

Table 5.2: Model Comparison: Evaluated F1 Scores

5.3 Bi-Encoder

Building on the findings from our unsupervised analysis, the second experiment har-
nessed a supervised bi-encoder framework, which was calibrated using the Fsum com-
position function and lyric-level granularity, as these demonstrated robust performance.
This approach capitalized on the supervised setting to refine the representation space
and embeddings’ semantic composition for song similarity detection.
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Figure 5.8: Bi-Encoder performance by transformer layer.

In our study, the performance analysis of bi-encoder models across various configu-
rations unveiled noteworthy differences between the first and last layers, as illustrated in
Table 5.3. A particularly striking observation is the consistent high performance of the
first layer across several models, with the STSB model showcasing the highest first-layer
performance at 88.18. Conversely, the last layer performance varies more significantly
across models, with the domain-adapted L Maria base s model achieving the highest
last-layer performance at 86.04, indicating that domain adaptation, combined with spe-
cific data preprocessing techniques (denoted by the suffixes ’s’ and ’c’), might enhance
a model’s ability to leverage contextual information for improved semantic analysis.

In comparison to the unsupervised models (Figure 6.1, the supervised bi-encoder
demonstrated enhanced capability in discerning song similarity in most models, with
the exception of the two based on the BERT architecture (namely, BERT, ALBERTI
and their adapter counterparts). This was evident in the improved F1 scores, which
signifies a more refined understanding of the semantic nuances in the lyrics. The bi-
encoder’s performance underscores the value of supervision in embedding generation
and semantic composition for complex natural language processing tasks such as this.

The observed performance difference after training within our experiment presents
a notable and somewhat unexpected outcome, particularly when examining the efficacy
of bi-encoder models in adjusting the representation space of the model’s layers. Bi-
encoders are designed to fine-tune the representation space of the model last layer.
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However, our results indicated a consistent pattern where the first layer of the model, as
observed in the unsupervised approach, outperformed the last layer in terms of capturing
semantic similarities effectively. This was observed across all models, with the exception
of the two monolingual contextual models, as highlighted in Figure 5.8. For the two
monolingual contextual models, the exception to this trend could be attributed to their
specialized training and architectural nuances, which might enable their last layers to
capture and utilize the deep contextual information more effectively for same language
data.

model name layer
first last

ALBERTI 85.06 85.12
BERT 87.23 83.48
BERTIN 78.20 74.95
L Alberti c 85.85 84.02
L Alberti s 87.19 84.89
L BERT c 86.70 85.06
L BERT s 87.48 83.89
L Bertin c 79.74 84.55
L Bertin s 79.54 85.48
L Maria base c 80.42 84
L Maria base s 80.99 86.04
L STSB c 86.27 82.45
L STSB s 86.96 84.65
MARIA base 80.10 85.87
STSB 88.18 80.77

Table 5.3: Bi-Encoder Performance by Layer

Furthermore, an interesting development was observed in the alleviation of the clus-
tering issue of cosine similarity values through the bi-encoder training approach. Previ-
ously, models such as BERTIN and MARIA exhibited a clustering of cosine similarity
scores around 0.98, which posed a challenge for distinguishing semantic differences effec-
tively. The bi-encoder training, by using consine loss as objective function, diversified
the distribution of cosine similarity scores. This improvement speaks to the efficacy of
bi-encoder training in not just refining embedding quality but also in expanding the
models’ capacity to capture and differentiate subtle semantic nuances, marking a sig-
nificant advancement in the application of NLP models to complex tasks such as song
similarity detection.
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Figure 6.1: Comparative analysis of supervised and unsupervised methods’ score across
different models, for the ”sum” function, cosine similarity metric, lyrics (contextual) and
stanzas (static) granularity.

This study has unearthed intriguing performance disparities across various embed-
ding models and compositional strategies in the task of song similarity assessment. No-
tably, the unexpected superior performance of multilingual models over their monolin-
gual counterparts emerges as a significant finding, challenging the conventional expecta-
tion that monolingual models, being domain-specific, would inherently exhibit superior
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performance due to their focused training data. This phenomenon suggests that multi-
lingual models may possess a unique advantage in capturing and leveraging the nuanced
semantic relationships across languages, thereby providing a more holistic and robust
representation of song semantics. Such capability is particularly beneficial in the context
of song lyrics, which often embody a rich tapestry of cultural and linguistic nuances that
multilingual models are perhaps better equipped to interpret and encode.

During the examination of the comparative performance (Figure 6.1) between cross-
encoder and bi-encoder, cross-encoders demonstrated a notable increase in performance
metrics, showcasing their potential in capturing complex semantic relationships with
a high degree of accuracy. However, this increased performance was accompanied by
higher variability, particularly when compared to the unsupervised approach with static
models (GloVe, Word2Vec and adapted variants), a phenomenon that can be partially
attributed to the use of and additional untrained classifier head with random initial-
ized weights (cross-encoder’s classification layer). Such initialization can introduce a
level of unpredictability in performance outcomes, as it affects the model’s starting po-
sition in the gradient descent process. Furthermore, the performance advantage of both,
cross-encoders and bi-encoders, suggests that they may benefit substantially from larger
datasets. This characteristic underscores a potential limitation in contexts where data
availability is constrained, highlighting the importance of dataset size and quality in
leveraging the full capabilities of models for complex NLP tasks.

In terms of granularity, contextual models seemed to prefer larger contexts, indicat-
ing their design to capitalize on longer sequences for better contextual understanding.
Conversely, non-contextual models favored shorter contexts, likely due to their inherent
limitations in integrating broader semantic landscapes. This distinction underscores the
inherent design differences between these model types, with contextual models requiring
more extensive textual inputs to effectively infer semantic relations.

Moreover, the comparison between cosine similarity and ICM metrics revealed an in-
teresting dynamic. While cosine similarity generally performed better by focusing on the
angular difference between vectors, it encountered strong difficulties with certain mod-
els, such as BERTIN, due to its sole reliance on angular measures. ICM, by considering
both angle and magnitude (module) of vectors, provided a more nuanced assessment of
similarity, that consistently worked well across all configurations, highlighting the im-
portance of selecting appropriate metrics based on model characteristics and the specific
nature of the task. This effect on the cosine similarity was nonetheless alleviated when
models were trained in a bi-encoder setting. This training architecture introduced a
broader distribution in the cosine similarity values, effectively mitigating the clustering
of scores around a narrow range, as previously observed.

In an intriguing departure from expectations, the analysis across all models revealed
that the highest performance in terms of composition function direction was consistently
achieved with a right-to-left orientation. This outcome is particularly surprising given
the natural left-to-right progression of the writing and reading processes in many lan-
guages. One possible explanation for this phenomenon lies in the inherent structure and
processing dynamics of neural networks, which do not necessarily mimic human cognitive
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processes for language understanding, specially for transformer models based on the en-
coder block, since the self-attention is bidirectional in this architecture. The right-to-left
superiority suggests that the models might be capturing and prioritizing semantic infor-
mation differently, potentially due to the way terminal elements in sequences influence
context comprehension. In right-to-left processing, the model encounters the conclusion
or outcome of a sentence first, which could allow for a different form of semantic prim-
ing, enabling more effective integration of subsequent (or, in this orientation, preceding)
elements. This reverse processing could inadvertently align with certain linguistic struc-
tures where the resolution or key information appears toward the start, thus offering
an unexpected advantage in understanding and predicting the semantic totality of the
input. This finding invites a deeper exploration into the cognitive and computational
mechanisms underpinning semantic composition, challenging existing assumptions and
opening new avenues for model optimization.

Another aspect that merits discussion is the performance of domain-adapted models,
which did not exhibit the anticipated improvement over their non-adapted counterparts.
This outcome was somewhat surprising, given the prevailing notion that domain adap-
tation should inherently enhance model performance by aligning the model’s knowledge
base more closely with the specific characteristics of the target domain. A plausible
explanation for this observation could be the limitation posed by the dataset’s size. In
the realm of deep learning and particularly in tasks involving semantic understanding,
the volume and diversity of training data play a crucial role in enabling the model to
learn and generalize effectively. The lack of a sufficiently large and varied dataset for
domain adaptation could hinder the model’s ability to fully exploit the potential benefits
of domain-specific tuning, thereby resulting in a performance that does not noticeably
surpass that of non-adapted models.

Furthermore, the comparative analysis also sheds light on the nuanced dependencies
of model performance on factors such as architecture, training regimen, and compo-
sitional functions. For instance, the efficacy of static versus contextual embeddings
in unsupervised semantic composition, that could be attributed to a more isometric
representation space, underscores the complexity of choosing the optimal approach for
a given task. Conversely, the variable performance of contextual embeddings, influ-
enced by model architecture and training, highlights the importance of careful model
selection and optimization in leveraging the full potential of these more sophisticated
approaches. In the analysis of contextual models, it was observed that the embedding
layer consistently delivered the highest performance, a finding that might initially seem
counterintuitive. This phenomenon can be attributed to the intrinsic nature of the em-
bedding layer as being the least contextual among the model’s layers. Unlike deeper
layers, which progressively integrate more context and complex semantic relationships
as information propagates through the network, the embedding layer seems to retain a
closer alignment with the raw semantic inputs. This characteristic makes the embedding
layer particularly effective for tasks where the nuanced understanding of context derived
from subsequent layers does not necessarily translate to improved performance.

The findings of this study underscore the multifaceted nature of semantic composi-
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tion and model performance in NLP tasks, revealing that the path to optimizing song
similarity assessment is not straightforward. The unexpected efficacy of multilingual
models points to the value of cross-linguistic semantic understanding, while the nuanced
performance of domain-adapted models emphasizes the critical role of dataset size and
diversity in achieving effective domain adaptation. In addition, the consistency in per-
formance of static models in this task highlights their value, indicating they should not
be overlooked despite the allure of more complex systems. These insights contribute to a
deeper understanding of the challenges and opportunities in leveraging NLP techniques
for music information retrieval, paving the way for further research into optimizing
model selection and training strategies for enhanced performance in song similarity and
recommendation systems.
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Conclusions and Future Work

In this work, we have explored the viability of unsupervised and supervised semantic
composition methods for song similarity assessment, leveraging both static and con-
textual word embeddings. Employing a logistic classifier, we demonstrated that unsu-
pervised semantic composition, especially when utilizing word embeddings, presents a
competitive approach for enhancing song recommendation systems, which enabled us to
answer RQ1. This method benefits from computational advantages over supervised ap-
proaches and is particularly effective for datasets too small to train a classifier robustly,
thanks to the transfer learning capabilities inherent in pre-trained embeddings.

Our findings in regards of RQ2 suggest that both static and contextual embeddings
are effective in unsupervised semantic composition of sentences, including sentences,
stanzas, or complete lyrics, for encapsulating sentence semantics through an ICDS ap-
proach. Lyrics granularity performed the highest when paired with the sum composi-
tion function for contextual models, while it was stanzas in the case of static models.
These static models also consistently delivered solid performance across various archi-
tectural, and training configurations, offering computational efficiency and a degree of
semantic isometry conducive to the classification of song similarity levels (RQ2.1). In
contrast, contextual embeddings’ effectiveness, is highly dependent on model architec-
ture and training, with the embedding layer (the least contextual of the transformer
model) typically yielding the best results despite not preserving semantic isometry as
static embeddings do (RQ2.2).

We answered RQ3 about the application of domain-specific transfer learning to both
static and contextual embeddings by extending the training of base model with in-
domain data. The results revealed mixed outcomes. While some models experienced
performance degradation or stagnation, others showed notable improvement. However,
the average benefit was marginally better, prompting the need for further data to ascer-
tain the significance of these improvements.

Regarding supervised approaches, our study compared the effectiveness of cross-
encoders, logistic classifiers, and bi-encoders in song similarity classification. This ap-
proach allowed us to answer RQ4: cross-encoders exhibited the highest potential, achiev-
ing superior performance scores but with a dependency on model choice, training data
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volume, and the computational challenges posed by combinatorial explosion, where all
possible pairs need to go through the transformer machinery. Bi-encoders, nonetheless,
emerged as an attractive middle ground, balancing efficiency and performance, suggest-
ing their suitability. While computationally more efficient than the cross-encoder, this
method still requires a large amount of annotated data to shine.

As explained, certain research questions could not be conclusively answered within
the scope of this study due to limitations in data and computational resources. Future
work could further investigate these unresolved areas by employing larger datasets, ex-
ploring additional model architectures, and refining unsupervised semantic composition
techniques. Additionally, the exploration of novel approaches to reduce the computa-
tional demands of cross-encoder models without compromising their accuracy presents
an interesting avenue for research.

A pivotal discovery of our study was the pronounced competitiveness of static mod-
els in the realm of unsupervised semantic composition of sentences for encapsulating
sentence semantics via ICDS. Static models distinguished themselves by delivering con-
sistently robust performance, irrespective of variations in model architecture, layer con-
figurations, or training paradigms. This consistency, coupled with their inherent com-
putational advantages and a degree of semantic isometry, underscores the competitive
edge of static embeddings. Their lower dependence on the intricacies of model architec-
ture and the diminished computational demands they impose render them particularly
advantageous for scalable and efficient semantic analysis applications.

Another significant finding from our analysis is the robustness of the ICM metric.
Unlike traditional cosine similarity, which showed vulnerabilities by clustering values
too narrowly for certain models, thereby affecting its discriminative power, ICM demon-
strated a remarkable resilience to this issue. The inclusivity of both angle and magnitude
in its calculations allowed the metric to maintain consistent performance across a va-
riety of model outputs. Even in scenarios where it did not outperform other metrics,
its decline in performance was not as pronounced or detrimental as that observed with
cosine similarity. This stability makes ICM a more reliable metric for assessing semantic
similarity. This finding not only challenges the conventional reliance on cosine similarity
for all model outputs but also paves the way for more sophisticated metrics like ICM,
which can better account for the complex semantic landscapes modeled by advanced
neural architectures.

Potential future lines of work include investigating the impact of different linguistic
features on the performance of embedding models in song similarity tasks and exploring
the scalability of these models to other domains within NLP. Moreover, further analysis
on the threshold of data size and domain specificity required for effective transfer learn-
ing could provide valuable insights for optimizing the performance of both static and
contextual embeddings in unsupervised and supervised settings.

Lastly, for a more detailed exploration of our findings, the Appendix A.3 contains
a comprehensive table with the full results from our unsupervised experiment. This
additional data provides a clearer picture of how different models and configurations
performed throughout our study. Readers interested in a deeper dive into the specifics
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of our research will find this table particularly useful. It not only supplements the
discussions in this thesis but also offers a straightforward look at the data behind our
conclusions. We recommend checking out this appendix for anyone looking for a more
granular understanding of the effectiveness of semantic composition methods in assessing
song similarity.

7.1 Limitations

This study, while comprehensive in its approach to understanding song similarity, en-
counters limitations that must be acknowledged for a complete appraisal of its findings.

The first limitation pertains to the size of the dataset. Although substantial effort
was made to curate a diverse and representative collection of song lyrics, the dataset’s
size can influence the generalizability of the study’s results. Larger datasets may contain
more nuanced variations and subtleties in language use, which could affect the perfor-
mance and robustness of the models. Therefore, the findings presented here should be
considered with the caveat that they may not fully extend to larger or more varied
corpora.

Computational constraints also represent a significant limitation. The training and
fine-tuning of sophisticated models such as the cross-encoder are resource-intensive pro-
cesses. The models’ complexity necessitates considerable computational power, which
can be prohibitive, especially when scaling to extensive datasets or implementing the
models in real-time applications. These constraints can limit the practicality of employ-
ing the most accurate models in commercial or resource-limited settings.

Furthermore, the study’s reliance on computational resources such as GPUs and
cloud services, while enabling the handling of complex tasks, raises concerns about the
accessibility, reproducibility, and replicability of the research. Not all researchers or
practitioners in the field have equal access to such computational power, which could
hinder the broader adoption and further exploration of the findings.

Lastly, while the study endeavored to optimize model performance, it did not ex-
haustively explore all hyperparameter configurations or model architectures. The field
of NLP is rapidly evolving, with new models and approaches being developed continu-
ously. Therefore, the models and methods employed in this study represent a snapshot
of the current state of the art, which may be superseded by more advanced techniques
in the future.

In conclusion, while the study provides valuable insights into the applicability of NLP
models to song lyrics similarity, these insights must be contextualized within the scope of
the dataset size and computational capabilities employed in this research. Future work
should aim to address these limitations by incorporating larger datasets, exploring more
diverse computational strategies, and continuously adapting to the evolving landscape
of NLP methodologies.
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APPENDIX

A.1 Training Costs

In this study, a total of 18 representations were trained. The cost for each specific
representation is divided based on the expenses of the parameter optimization and rep-
resentation training phases. The expense associated with the fine tuning process can
fluctuate based on the instances utilized in SageMaker and EC2 (Amazon Elastic Com-
pute Cloud) from AWS (Amazon Web Service), and is contingent on the particular tasks
involved in the training process.

For domain adaptation, 6 models were trained using the two techniques described.
The parameter optimization task involves finding the optimal values for the hyperpa-
rameters of the model, which can significantly impact its performance. This task was
performed using EC2 instances and cost approximately $1,797. The instance used was
p4d.24xlarge, which provides 8 A100 GPUs with 40GB of memory per GPU, 320 cores
of 3rd generation NVIDIA Tensor Core with up to 250 TOPS, 192 vCPU, 768 GB of
RAM memory, and 3.8 TB of local NVMe-based SSD storage. The model training task
involves training the machine learning model using the optimized hyperparameters. This
task was also performed using the p4d.24xlarge instance. It is important to note that
the cost may vary depending on the size of the model and the length of the sequence.
In total, the cost for the pre-training MLM task was approximately $4,700 using the
p4d.24xlarge instance.

The fine tuning task for the cross-encoder was executed using EC2 instances for
approximately 20 hours at a cost of $250. The instance employed was a p3.8xlarge,
featuring 4 V100 GPUs with 16GB of memory per GPU, 32 vCPU, and 244 GB of RAM
memory.

The training task was also conducted using the same instance for roughly 8 hours at
a cost of $100. It should be noted that costs may vary depending on the representation’s
size and the sequence length.

In the case of the bi-encoder, a consumer grade machine was utilized, consisting of
a single NVIDIA RTX 4090 with 24GB of VRAM and 64GB of RAM. The training
took about 48 hours, with an estimated associated cost of $2. It is crucial to emphasize
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that these costs are approximate and may differ depending on the specific resources
employed in the training process. Nonetheless, by leveraging AWS and Hugging Face,
cost-effective and scalable training of machine learning representations was achieved,
allowing for comprehensive analysis and experimentation.

A.2 Domain Adaptation Training

Whole Word Mask (Devlin et al., 2019), where the whole word is masked if any of
its constituents tokens is selected for masking, was used for the MLM task, aiming to
improve the performance of the language models on the downstream task. To this end,
the implementation of HuggingFace was extended to accommodate other models with
different special tokens (e.g. Roberta and XLMRoberta tokenizers). This allowed us
to better capture the relationship between words within a sentence, and the model to
better asses the probability distribution of words, as entire words were masked at once
instead of just individual tokens or subwords.

BERT models have been found to improve during fine-tuning, achieving best perfor-
mance after 100k training steps (Sun et al., 2019). In this work, all models were trained
for 150k steps, which is comparable to he amount employed to train a model with an
unannotated dataset of 2M elements in biomedical domain adaptation (Alsentzer et al.,
2019). In the conducted experiments, up to 100 epochs (Gururangan et al., 2020) and
300k steps were explored; however, no additional enhancements were observed. Our pre-
training approach prevented the model from losing its generalization capacity despite
the risk of overfitting and catastrophic forgetting.

To train with 512 tokens, the warm-up value was reduced to 500 steps (de la Rosa
et al., 2022), with Adam optimizer and the same values of epsilon and beta as the
original BERT paper (Devlin et al., 2019). During training, the learning rate decayed
linearly. The training subset was composed of 80% of the entire original dataset, while
the validation subset was composed of the remaining 20%.

A.2.1 Hyper-parameters

For hyper-parameter selection a grid search was perform for 20k steps, to asses the best
set over the search space illustrated in Table A.1.

Parameters Values

Learning Scheduler Linear
Total steps 20k
Batch size range 32, 64, 1024
Learning rate range 1e-5, 2e-5, 3e-5, 5e-5, 1e-4
Weight decay range 0.01, 0.1
Granularity range stanzas/lyrics, chunks of 128/512 tokens

Table A.1: Hyperparameter ranges for model adaptation
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A.2.2 Training Evaluation Loss

When compared to the chunking approach, the utilization of stanzas or lyrics leads to
a reduced loss value during training across all models. This indicates that maintaining
document boundaries may offer certain benefits in terms of the model’s capacity to
learn the structure and semantic content of the text. In addition, as depicted in Figure
A.1a and Figure A.1b, a faster convergence rate was identified for monolingual models
as opposed to multilingual ones, a trend that aligns with the former being pre-trained
more prominently on a dataset with a greater degree of vocabulary overlap in relation to
Spanish songs. Likewise, monolingual models exhibit lower loss values. It is worth noting
that Alberti failed to outperform BERT, particularly when employing the chunking
technique, despite both models sharing a common architecture and Alberti being trained
on poetry.

(a) Evaluation loss for the first stage of training
with stanzas/lyrics

(b) Evaluation loss for the first stage of training
with chunking 128/512

Figure A.1: Evaluation loss for stanzas and chunking preprocessing techniques.

Model Loss F1 Precision Recall Accuracy

Alberti base chunking 1.576 0.684 0.694 0.689 0.689
BERT base chunking 1.527 0.691 0.701 0.696 0.696
Bertin base chunking 1.428 0.718 0.725 0.728 0.728
MarIA base chunking 1.460 0.715 0.722 0.726 0.726
MarIA large chunking 1.443 0.718 0.725 0.728 0.728

STSB chunking 1.602 0.681 0.692 0.687 0.687
Alberti base stanzas 1.530 0.700 0.711 0.705 0.705
BERT base stanzas 1.498 0.703 0.714 0.708 0.708
Bertin base stanzas 1.357 0.736 0.743 0.745 0.745
MarIA base stanzas 1.39 0.732 0.739 0.742 0.742
MarIA large stanzas 1.368 0.736 0.743 0.745 0.745

STSB stanzas 1.576 0.691 0.704 0.698 0.698
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A.3 Unsupervised Composition Full Results

op avg ind inf jnt sum
gran lyr sen sta lyr sen sta lyr sen sta lyr sen sta lyr sen sta

model layer dir sim

ALBERTI first lr ICM 58.29 59.31 57.64 78.04 78.79 79.35 77.64 79.91 81.15 73.23 78.3 77.9 81.18 82.87 82.28
cos 57.64 57.86 58.19 80.22 81.08 80.81 79.3 80.04 79.17 68.79 78.1 74.5 87.79 85.98 87.08

rl ICM 49.9 65.19 69.13 84.15 82.14 83.77 84.14 85.83 86.38 81.32 84.19 86.01 81.18 82.87 82.28
cos 49.85 65.87 67.3 88.49 85.97 87.26 88.12 86.5 87.27 81.61 84.85 86.73 87.79 85.98 87.08

last lr ICM 78.03 76.95 75.39 85.66 82.35 82.44 86.73 85.28 86.74 83.3 83.14 82.23 81.97 83.99 82.85
cos 78.25 75.83 75.17 85.77 85.67 87.43 86.33 84.76 86.71 84.38 84.06 84.21 87.04 88.45 86.85

rl ICM 84.04 75.38 80.98 86.17 84.7 82.97 87.43 86.72 85.11 85.1 81.32 83.13 81.97 83.99 82.85
cos 84.03 74.58 80.94 87.02 86.07 86.68 86.85 84.96 85.19 85.24 82.38 83.77 87.04 88.45 86.85

BERT first lr ICM 57.54 61.49 55.64 79.58 80.92 82.31 78.28 82.96 81.33 74.17 81.31 79.55 83.23 83.81 83.79
cos 57.54 58.29 56.29 83.26 84.71 82.41 83.08 83.48 81.51 73.28 81.55 77.75 88.11 86.97 86.84

rl ICM 48.94 68.56 71.46 85.81 84.01 85.25 85.99 85.99 85.64 82.37 84.88 86.73 83.23 83.81 83.79
cos 46.46 68.94 70.04 86.43 86.98 87.58 86.05 86.45 86.67 82.57 84.58 85.57 88.11 86.97 86.84

last lr ICM 71.48 73.83 74.19 78.76 83.69 83.99 80.43 83.07 81.33 74.15 79.84 80.08 80.97 82.94 81.52
cos 70.95 74.54 75.97 80.22 77.92 82.99 79.51 78.01 80.45 73.73 76.64 78.3 83.51 79.56 84.04

rl ICM 62.53 67.97 68.61 80.89 84.93 81.47 79.37 82.67 77.72 65.04 79.03 78.91 80.97 82.94 81.52
cos 63.05 68.2 68.48 79.56 78.57 79.84 75.78 75.43 76.71 65.91 70.34 73.84 83.51 79.56 84.04

BERTIN first lr ICM 64.18 70.26 67.23 78.24 81.67 77.78 77.3 78.06 70.75 69.15 74.05 69.14 81.7 82.41 80.81
cos 64.76 71.02 67.76 81.44 78.6 71.0 81.09 77.97 71.06 68.96 76.73 68.71 84.98 84.35 77.13

rl ICM 54.06 68.59 72.73 84.22 84.57 83.15 82.6 82.72 77.36 62.48 79.74 76.3 81.7 82.41 80.81
cos 53.11 68.86 71.25 81.24 84.94 81.26 80.15 82.25 79.46 60.48 77.54 75.17 84.98 84.35 77.13

last lr ICM 67.95 70.38 63.31 75.62 75.07 75.11 77.0 66.87 53.42 68.03 70.56 63.48 75.94 75.21 75.42
cos 52.24 36.46 38.99 46.22 37.32 38.42 47.55 36.22 37.07 51.71 36.13 38.99 43.89 35.91 40.11

rl ICM 54.89 60.15 62.87 76.17 75.24 74.93 77.34 67.0 53.4 55.59 59.95 64.34 75.94 75.21 75.42
cos 36.24 34.34 38.37 50.26 34.8 38.44 42.0 33.64 37.0 36.57 33.95 38.16 43.89 35.91 40.11

Glove first lr ICM 68.73 73.13 76.73 85.64 86.17 86.71 82.94 84.01 82.94 72.72 81.07 80.19 85.83 85.83 85.83
cos 69.47 71.48 75.59 76.18 76.97 78.24 75.06 73.7 77.47 70.11 73.14 75.97 80.26 80.26 80.26

rl ICM 71.66 79.88 81.3 84.71 86.53 86.89 84.34 86.71 84.56 73.74 84.72 85.64 85.83 85.83 85.83
cos 72.98 77.48 80.03 78.93 80.08 81.23 77.18 79.59 82.83 69.96 77.54 81.63 80.26 80.26 80.26

last lr ICM 68.73 73.13 76.73 85.64 86.17 86.71 82.94 84.01 82.94 72.72 81.07 80.19 85.83 85.83 85.83
cos 69.47 71.48 75.59 76.18 76.97 78.24 75.06 73.7 77.47 70.11 73.14 75.97 80.26 80.26 80.26

rl ICM 71.66 79.88 81.3 84.71 86.53 86.89 84.34 86.71 84.56 73.74 84.72 85.64 85.83 85.83 85.83
cos 72.98 77.48 80.03 78.93 80.08 81.23 77.18 79.59 82.83 69.96 77.54 81.63 80.26 80.26 80.26

Glove-SPL first lr ICM 69.53 74.0 77.29 85.44 86.7 86.9 84.19 85.07 84.73 72.21 82.19 82.74 85.64 85.64 85.64
cos 69.8 70.08 77.64 77.65 77.33 79.87 76.8 75.08 79.3 70.52 73.75 76.99 79.67 79.67 79.67

rl ICM 64.34 76.04 73.79 85.25 86.35 86.53 83.61 85.46 85.28 69.02 82.01 80.38 85.64 85.64 85.64
cos 65.9 74.24 73.09 75.66 79.07 80.27 74.64 76.93 79.1 68.75 74.26 77.61 79.67 79.67 79.67

last lr ICM 69.53 74.0 77.29 85.44 86.7 86.9 84.19 85.07 84.73 72.21 82.19 82.74 85.64 85.64 85.64
cos 69.8 70.08 77.64 77.65 77.33 79.87 76.8 75.08 79.3 70.52 73.75 76.99 79.67 79.67 79.67

rl ICM 64.34 76.04 73.79 85.25 86.35 86.53 83.61 85.46 85.28 69.02 82.01 80.38 85.64 85.64 85.64
cos 65.9 74.24 73.09 75.66 79.07 80.27 74.64 76.93 79.1 68.75 74.26 77.61 79.67 79.67 79.67

L Alberti c first lr ICM 52.0 64.06 56.31 71.76 80.37 80.69 70.96 80.41 79.34 61.91 76.63 71.8 82.9 81.99 82.11
cos 51.68 61.13 57.31 74.7 81.73 79.89 70.77 80.17 78.1 54.98 77.76 68.44 86.86 85.49 84.87

rl ICM 48.07 66.59 70.38 85.1 83.82 84.72 85.28 86.36 83.12 79.18 83.67 84.23 82.9 81.99 82.11
cos 47.71 66.25 70.21 85.72 86.07 85.58 85.53 85.71 84.44 77.64 82.53 81.37 86.86 85.49 84.87

last lr ICM 58.08 72.78 67.33 79.61 80.51 81.3 79.55 83.67 80.62 65.14 82.25 77.03 82.34 81.61 82.15
cos 57.4 71.13 66.73 82.17 84.49 83.15 81.12 83.21 79.56 63.38 80.76 72.4 86.69 86.33 86.52

rl ICM 52.57 65.11 68.37 81.54 81.73 83.73 81.68 84.19 82.96 62.59 76.51 79.16 82.34 81.61 82.15
cos 51.55 63.34 67.48 83.05 84.15 86.32 81.44 83.06 83.29 61.58 77.9 77.93 86.69 86.33 86.52

L Alberti s first lr ICM 55.3 64.23 55.29 76.29 81.09 80.14 75.37 81.32 79.16 67.44 78.82 71.61 82.33 83.08 81.93
cos 55.51 62.64 54.74 78.65 83.04 80.25 76.68 81.47 78.64 60.6 78.82 68.06 86.55 86.8 85.25

rl ICM 46.81 65.81 71.63 84.91 83.62 85.08 84.36 86.72 84.57 81.33 84.39 86.01 82.33 83.08 81.93
cos 45.98 65.15 69.84 86.46 86.45 87.07 86.46 85.9 86.52 81.18 82.71 84.47 86.55 86.8 85.25

last lr ICM 60.69 73.09 71.44 79.43 81.96 83.58 80.61 82.6 83.86 66.76 81.89 80.62 82.11 81.75 82.83
cos 59.3 72.44 66.78 83.45 84.68 86.53 79.15 84.48 84.73 66.45 80.91 77.73 86.53 85.4 86.88

rl ICM 63.5 69.74 72.87 83.43 82.65 85.43 84.02 82.96 84.22 68.4 77.95 79.71 82.11 81.75 82.83
cos 63.5 70.67 72.91 83.97 84.48 85.8 82.53 83.03 83.97 68.61 77.86 80.07 86.53 85.4 86.88

L BERT c first lr ICM 50.79 64.45 56.53 72.52 81.45 80.68 72.63 81.47 79.53 61.17 79.51 75.77 84.36 83.08 82.32
cos 50.28 62.93 56.24 77.92 83.78 79.18 75.43 81.28 78.27 56.9 79.32 72.13 87.03 86.6 85.94

rl ICM 48.99 68.21 71.39 85.45 84.01 85.45 85.81 86.17 84.74 81.13 85.63 85.47 84.36 83.08 82.32
cos 45.55 67.7 70.51 85.89 86.98 86.86 85.54 85.35 86.86 80.79 84.21 84.49 87.03 86.6 85.94

last lr ICM 61.32 72.56 69.42 77.54 81.84 81.33 78.82 81.86 78.28 63.93 80.05 74.18 81.45 81.48 81.82
cos 60.74 71.15 67.14 80.76 83.48 80.43 78.24 81.5 78.82 61.98 77.11 69.68 87.57 87.74 86.64

rl ICM 57.63 69.07 69.1 81.7 81.57 83.02 82.57 83.86 82.78 63.19 76.34 77.87 81.45 81.48 81.82
cos 58.0 68.34 67.48 82.47 86.49 86.86 80.67 83.64 83.79 63.47 77.0 77.74 87.57 87.74 86.64

L BERT s first lr ICM 55.38 63.64 56.03 77.84 80.7 81.03 76.37 82.39 79.69 68.05 79.69 76.67 83.25 84.17 82.3
cos 54.03 59.91 54.81 82.05 83.68 80.62 80.79 81.7 78.8 66.79 80.5 73.95 87.24 86.8 85.41

rl ICM 49.41 66.55 71.08 84.71 84.53 86.16 84.9 86.34 84.2 82.05 85.07 86.37 83.25 84.17 82.3
cos 46.9 67.43 70.71 86.63 86.43 86.52 86.26 85.69 86.69 83.18 84.22 86.34 87.24 86.8 85.41

last lr ICM 60.73 73.3 71.02 79.96 81.48 82.42 80.18 83.66 82.6 69.11 82.4 76.68 82.51 82.52 82.89
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cos 59.08 71.58 69.87 83.93 84.97 86.35 81.97 83.72 84.19 69.23 81.78 75.18 87.94 87.77 87.75
rl ICM 66.1 73.61 77.76 82.61 81.56 83.17 82.93 84.58 84.76 70.16 80.46 80.61 82.51 82.52 82.89

cos 65.74 73.42 77.05 85.17 85.95 87.96 83.04 84.36 85.79 70.32 79.31 80.08 87.94 87.77 87.75
L Bertin c first lr ICM 63.82 70.45 67.06 78.41 81.32 77.74 77.29 78.05 70.16 68.43 74.23 68.97 81.7 82.77 81.16

cos 64.6 71.39 67.05 81.44 78.6 71.19 81.27 77.82 70.34 68.79 76.74 67.98 85.72 84.35 77.0
rl ICM 52.35 67.3 70.77 84.4 84.57 82.79 82.78 82.55 77.74 62.15 79.56 75.59 81.7 82.77 81.16

cos 51.95 67.74 70.54 81.64 85.13 81.27 80.34 82.97 79.82 59.7 77.02 74.47 85.72 84.35 77.0
last lr ICM 70.23 79.24 74.46 75.42 74.68 75.1 74.64 76.56 61.34 70.41 79.94 73.93 75.76 75.04 75.77

cos 37.17 38.05 39.1 33.25 33.64 33.25 33.25 39.42 38.78 36.44 39.3 39.1 33.25 33.25 33.25
rl ICM 57.19 67.7 73.82 75.98 74.66 75.1 74.29 75.71 56.11 56.85 67.67 75.08 75.76 75.04 75.77

cos 34.39 33.25 33.25 37.96 33.25 33.25 34.67 33.25 33.25 34.39 33.25 33.25 33.25 33.25 33.25
L Bertin s first lr ICM 64.71 70.45 67.04 79.14 81.86 77.96 77.11 78.23 71.3 68.61 74.58 69.5 81.7 82.95 81.34

cos 64.43 71.01 67.92 81.61 78.79 71.57 81.27 78.37 71.26 68.97 77.51 68.89 85.35 84.52 78.6
rl ICM 52.38 68.22 71.3 84.4 84.39 83.5 82.97 82.36 78.27 62.46 79.74 76.32 81.7 82.95 81.34

cos 51.22 67.6 70.0 81.64 85.5 81.48 80.35 82.99 80.19 60.43 77.22 75.0 85.35 84.52 78.6
last lr ICM 65.26 78.37 77.5 75.42 74.68 75.1 73.54 74.24 51.49 65.26 79.65 77.49 75.76 75.4 75.77

cos 39.1 36.91 39.32 33.25 33.25 33.25 37.73 36.56 38.11 39.1 36.91 39.32 33.25 33.25 33.25
rl ICM 61.16 73.9 75.26 75.98 75.05 75.1 73.9 71.82 49.72 62.05 74.65 76.33 75.76 75.4 75.77

cos 35.44 33.64 35.16 37.26 33.25 33.25 35.06 33.25 33.25 35.44 33.64 35.16 33.25 33.25 33.25
L Maria base c first lr ICM 63.3 67.53 64.99 72.86 77.02 76.63 72.69 74.5 70.38 64.29 70.35 66.92 78.02 78.91 79.07

cos 63.13 66.97 64.84 75.77 74.94 68.33 74.88 73.39 67.23 66.12 71.72 64.68 79.83 78.7 74.46
rl ICM 52.72 66.15 70.17 81.64 81.09 77.87 81.33 80.55 75.94 80.22 79.83 80.45 78.02 78.91 79.07

cos 51.62 64.97 69.18 82.8 81.6 76.81 82.44 81.25 76.42 78.14 80.87 79.75 79.83 78.7 74.46
last lr ICM 67.11 75.85 76.39 80.59 80.4 82.02 79.1 80.0 74.6 72.38 80.6 79.47 78.83 78.12 77.93

cos 67.27 75.53 73.76 82.52 79.79 83.35 81.44 79.66 82.24 71.71 77.5 77.11 84.71 81.96 83.7
rl ICM 56.32 70.13 69.6 82.93 81.47 81.68 81.09 79.13 74.03 56.05 74.65 76.14 78.83 78.12 77.93

cos 56.07 65.5 69.59 81.07 80.21 82.48 79.11 76.73 80.97 56.8 70.27 73.84 84.71 81.96 83.7
L Maria base s first lr ICM 62.95 67.19 64.99 74.56 77.2 76.13 73.65 74.68 69.24 66.19 70.53 67.84 80.57 79.07 79.25

cos 62.77 66.63 64.28 77.37 75.92 69.6 77.2 74.14 67.96 67.99 72.24 65.82 81.08 79.31 75.2
rl ICM 51.87 65.98 69.79 82.9 81.45 77.37 82.74 81.11 77.75 80.78 80.2 81.52 80.57 79.07 79.25

cos 51.02 64.41 68.81 85.01 80.91 78.07 83.53 81.66 78.06 78.93 81.06 80.3 81.08 79.31 75.2
last lr ICM 63.6 79.3 72.08 80.76 81.31 81.28 78.53 81.66 73.09 67.18 82.75 74.82 78.83 78.12 78.12

cos 63.37 78.47 70.09 81.32 82.92 82.45 80.0 82.78 80.38 67.12 81.35 75.51 84.85 84.86 85.8
rl ICM 75.18 78.05 82.24 84.03 82.51 82.54 81.48 82.41 74.96 73.61 79.7 82.78 78.83 78.12 78.12

cos 73.28 76.83 80.46 82.89 84.68 82.62 81.09 84.01 82.81 74.11 79.21 80.97 84.85 84.86 85.8
L Maria large c first lr ICM 60.89 63.53 62.65 71.48 70.1 69.34 69.92 66.71 61.28 56.36 64.77 61.51 77.19 77.62 75.33

cos 60.72 63.5 62.31 71.92 66.33 59.17 70.19 65.15 58.78 56.74 64.98 59.9 78.95 73.72 65.0
rl ICM 57.23 67.43 71.79 82.07 80.07 78.43 81.53 78.97 69.87 66.66 80.58 78.63 77.19 77.62 75.33

cos 56.99 67.34 71.53 81.81 78.18 64.78 81.44 78.97 65.37 66.5 77.69 74.27 78.95 73.72 65.0
last lr ICM 66.57 71.84 71.62 78.38 77.46 78.62 77.21 73.62 67.58 67.65 73.3 73.84 76.67 75.41 75.78

cos 66.45 69.61 67.6 70.42 69.01 75.47 75.41 67.86 72.43 66.71 68.72 68.11 72.11 67.63 73.32
rl ICM 54.83 66.61 71.25 80.41 79.11 77.36 76.92 77.26 68.99 55.75 67.98 73.79 76.67 75.41 75.78

cos 53.74 65.13 64.89 74.21 66.94 71.73 71.97 65.8 69.31 53.67 65.81 64.94 72.11 67.63 73.32
L Maria large s first lr ICM 60.72 63.53 62.83 71.82 69.93 69.38 69.75 67.06 61.46 56.73 64.77 61.69 78.09 77.82 75.13

cos 60.72 63.33 62.5 71.56 66.34 59.23 68.9 65.15 59.77 56.92 64.82 60.47 79.33 73.73 65.0
rl ICM 56.5 67.61 71.07 82.07 80.07 78.24 81.53 78.92 70.26 66.83 80.41 78.28 78.09 77.82 75.13

cos 57.74 67.06 70.64 81.81 77.81 64.81 81.63 79.16 65.25 67.06 77.84 74.47 79.33 73.73 65.0
last lr ICM 65.26 71.88 71.27 78.06 77.55 78.46 77.96 74.83 69.05 65.6 73.15 71.32 76.31 75.4 75.96

cos 64.62 71.84 70.5 65.17 70.45 74.92 68.3 68.22 74.41 64.38 70.5 71.02 66.24 71.47 72.81
rl ICM 65.41 73.56 75.44 79.7 78.24 76.84 78.19 76.09 65.26 64.45 73.91 76.33 76.31 75.4 75.96

cos 60.32 60.7 62.99 72.7 70.99 70.29 69.11 64.4 64.81 60.39 60.86 62.51 66.24 71.47 72.81
L STSB c first lr ICM 66.41 72.13 67.68 78.95 80.92 76.41 79.02 78.77 71.63 73.8 75.0 70.02 82.9 81.07 79.17

cos 65.71 70.81 67.14 81.13 79.42 74.31 81.68 78.35 72.12 75.22 76.68 69.25 86.3 84.52 82.19
rl ICM 52.45 69.69 72.49 85.44 84.9 83.67 84.72 85.77 83.32 79.69 85.28 84.57 82.9 81.07 79.17

cos 52.09 69.13 72.16 85.7 84.72 85.56 85.89 84.9 84.86 76.33 84.03 84.48 86.3 84.52 82.19
last lr ICM 66.78 74.97 72.15 82.93 83.99 84.0 83.12 84.02 82.75 74.65 80.95 76.49 80.03 80.74 79.83

cos 65.31 75.35 70.81 79.56 81.62 83.23 80.56 82.25 81.32 75.45 80.65 77.28 83.02 83.23 84.02
rl ICM 59.96 64.98 69.29 85.1 83.29 83.12 84.37 80.43 83.85 68.39 75.06 76.44 80.03 80.74 79.83

cos 59.41 64.57 68.4 84.22 81.26 83.18 83.52 78.8 82.67 67.79 74.48 76.85 83.02 83.23 84.02
L STSB s first lr ICM 66.42 70.24 68.19 81.12 82.35 78.61 80.21 82.72 76.49 76.5 75.71 73.42 83.82 81.97 80.47

cos 66.25 70.38 68.75 82.37 82.73 76.46 82.38 80.33 76.11 77.58 79.29 72.68 86.14 84.73 83.97
rl ICM 54.11 68.79 73.22 85.81 85.82 85.28 85.45 85.95 83.67 81.85 84.55 86.18 83.82 81.97 80.47

cos 54.64 68.93 73.41 85.67 84.91 86.46 86.05 84.91 86.65 81.33 85.08 87.02 86.14 84.73 83.97
last lr ICM 63.83 73.14 70.2 83.66 82.59 84.93 84.56 83.68 83.14 74.15 80.97 79.2 81.56 79.75 81.19

cos 63.83 72.51 69.23 83.16 80.29 82.83 83.72 79.76 81.33 75.49 78.52 78.62 85.56 82.79 85.39
rl ICM 76.34 71.41 78.48 82.94 82.95 83.48 82.59 83.13 82.96 75.97 80.26 81.34 81.56 79.75 81.19

cos 76.34 70.78 78.48 85.37 80.98 83.74 83.94 79.18 82.13 77.17 77.03 80.41 85.56 82.79 85.39
MARIA base first lr ICM 62.75 68.05 65.0 73.9 77.17 74.9 72.63 74.33 67.99 60.7 70.72 67.14 79.7 78.94 78.75

cos 62.41 67.48 65.2 77.03 75.34 69.04 75.42 74.86 67.78 63.24 72.23 66.36 81.06 79.07 73.87
rl ICM 53.35 65.94 70.36 81.64 81.86 78.07 81.85 80.22 76.82 78.21 80.21 80.07 79.7 78.94 78.75

cos 53.39 65.11 69.34 83.52 80.79 77.48 83.15 81.41 77.98 75.52 80.3 80.43 81.06 79.07 73.87
last lr ICM 67.41 74.46 77.94 77.93 77.69 77.35 77.98 73.64 65.74 69.13 70.53 75.6 77.56 75.95 76.68

cos 63.57 70.51 70.76 78.62 74.24 80.64 76.04 72.06 77.07 67.24 70.28 70.94 80.3 74.51 79.17
rl ICM 73.18 69.76 77.67 80.15 79.17 77.54 80.36 71.94 62.92 71.87 68.63 75.34 77.56 75.95 76.68

cos 66.06 62.81 65.81 75.25 71.19 77.34 72.0 65.7 73.58 66.41 63.48 66.84 80.3 74.51 79.17
MARIA large first lr ICM 59.63 63.53 63.38 71.3 70.48 69.15 69.04 67.79 61.83 55.84 65.28 61.87 78.64 77.83 75.03
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cos 59.81 63.67 62.86 71.2 66.15 60.53 69.09 64.79 59.81 55.67 65.35 59.93 78.93 73.74 64.37
rl ICM 57.09 66.89 71.44 81.89 80.07 78.24 81.89 78.76 71.16 65.38 80.76 77.92 78.64 77.83 75.03

cos 57.37 66.59 70.62 81.81 77.98 65.12 81.82 79.14 65.59 67.01 76.73 74.05 78.93 73.74 64.37
last lr ICM 59.26 69.28 62.65 78.58 78.59 76.28 78.49 72.57 58.52 60.88 70.26 65.09 76.49 76.49 76.32

cos 56.49 62.42 58.66 64.95 68.74 59.72 64.28 67.0 59.41 57.42 63.52 59.33 67.05 67.89 62.36
rl ICM 69.94 74.75 72.09 79.51 78.77 77.0 78.7 71.22 55.32 69.56 74.6 71.93 76.49 76.49 76.32

cos 54.74 59.1 50.93 65.01 67.38 60.65 62.58 62.56 54.78 54.7 60.48 52.99 67.05 67.89 62.36
STSB first lr ICM 66.15 69.28 67.0 79.36 86.18 80.41 79.88 86.0 80.08 79.74 84.39 78.45 81.97 83.99 81.39

cos 66.51 68.56 65.16 84.16 87.52 80.8 84.17 85.86 79.9 79.38 85.3 76.64 88.12 88.45 87.39
rl ICM 62.0 73.98 75.21 86.17 86.36 86.35 86.36 86.89 87.62 82.59 86.35 87.08 81.97 83.99 81.39

cos 62.35 75.21 75.58 87.74 87.53 87.75 86.82 86.99 87.21 83.02 86.42 88.13 88.12 88.45 87.39
last lr ICM 75.39 59.76 65.7 76.01 73.7 75.28 74.84 69.6 73.04 74.48 65.51 70.36 77.37 75.65 76.96

cos 74.31 58.33 66.27 76.11 67.44 72.52 74.48 65.88 70.58 74.27 64.27 70.02 76.45 68.69 72.9
rl ICM 74.85 60.23 64.93 76.3 72.7 75.77 74.13 68.79 70.19 75.21 65.72 67.35 77.37 75.65 76.96

cos 75.02 60.08 64.78 75.38 67.32 70.93 73.57 64.39 68.04 74.84 62.91 67.12 76.45 68.69 72.9
Word2vec first lr ICM 56.25 63.75 66.78 77.18 77.89 78.06 77.17 77.78 78.88 73.77 77.74 78.38 78.69 78.69 78.69

cos 56.12 63.55 66.23 76.63 79.5 81.31 74.26 78.43 79.68 68.71 76.4 77.71 82.04 82.04 82.04
rl ICM 57.32 64.83 66.67 78.78 79.94 79.56 79.18 79.25 79.75 78.39 80.28 80.16 78.69 78.69 78.69

cos 58.29 66.95 67.62 82.21 81.86 82.39 81.48 80.76 80.77 77.17 78.42 80.04 82.04 82.04 82.04
last lr ICM 56.25 63.75 66.78 77.18 77.89 78.06 77.17 77.78 78.88 73.77 77.74 78.38 78.69 78.69 78.69

cos 56.12 63.55 66.23 76.63 79.5 81.31 74.26 78.43 79.68 68.71 76.4 77.71 82.04 82.04 82.04
rl ICM 57.32 64.83 66.67 78.78 79.94 79.56 79.18 79.25 79.75 78.39 80.28 80.16 78.69 78.69 78.69

cos 58.29 66.95 67.62 82.21 81.86 82.39 81.48 80.76 80.77 77.17 78.42 80.04 82.04 82.04 82.04
Word2vec-SPL first lr ICM 58.61 67.88 66.91 80.35 80.34 82.17 79.78 83.31 83.68 78.98 84.04 82.06 81.4 81.4 81.4

cos 57.94 66.12 64.96 86.18 85.65 86.18 85.83 85.82 85.27 82.22 85.28 83.65 84.9 84.9 84.9
rl ICM 60.22 65.16 66.41 81.34 82.7 82.51 80.8 81.27 83.13 79.14 80.78 82.22 81.4 81.4 81.4

cos 59.25 66.25 64.55 81.47 82.55 83.11 80.92 81.49 81.49 77.71 80.95 81.67 84.9 84.9 84.9
last lr ICM 58.61 67.88 66.91 80.35 80.34 82.17 79.78 83.31 83.68 78.98 84.04 82.06 81.4 81.4 81.4

cos 57.94 66.12 64.96 86.18 85.65 86.18 85.83 85.82 85.27 82.22 85.28 83.65 84.9 84.9 84.9
rl ICM 60.22 65.16 66.41 81.34 82.7 82.51 80.8 81.27 83.13 79.14 80.78 82.22 81.4 81.4 81.4

cos 59.25 66.25 64.55 81.47 82.55 83.11 80.92 81.49 81.49 77.71 80.95 81.67 84.9 84.9 84.9

Table A.2: Unsupervised Composition F1 Scores

A.4 Special Tokens Experiment Results

The figure below presents the results from our analysis of the impact of special tokens on the semantic
composition process within contextual models. This experiment was designed to compare three distinct
configurations: the inclusion of all special tokens within the sequence, the exclusion of special tokens
during inference, and the provision of all tokens to the model with subsequent removal of special
tokens before performing semantic composition operations.

Figure A.2: Comparative analysis of composition with different special token configurations.

Remarkably, the data clearly demonstrate that the variations in performance across different con-
figurations are minimal, with all observed differences falling within the established margin of error.
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