

A dissertation submitted by

in partial fulfilment of the requirements

 for the degree

Escuela Técnica Superior de Ingeniería Informática

Universidad Nacional de Educación a Distancia

Directed by

June 2022

I would like to express my deepest gratitude to the team that has contributed to this

work: Mireia Farrús, Guillermo Cámbara, Jordi Luque and Juan Manuel Cigarrán.

Thank you all.

Curriculum learning (CL) is a machine learning technique that sorts the training

examples according to their difficulty and exposes them to the learner progressively. In

the field of automatic speech recognition (ASR) it has been successfully applied using

different approaches, but none of them has taken advantage of prosody effects to weight

the difficulty of data. In this work we present the first attempt to improve performance

of end-to-end ASR systems making use of a CL strategy based on prosody. We start by

evaluating transcriptions made by a pre-trained ASR model from a collection of

utterances and compare the accuracy achieved, in terms of WER, with 18 scalar prosodic

features extracted from each utterance. We find that transcriptions of utterances having

either a more pronounced pitch or intensity contour achieve, in average, a lower WER.

That is, these utterances are easier to transcribe. The standard deviation of the

fundamental frequency shows the reverse behaviour: transcriptions of utterances having

a large standard deviation achieve, in average, a higher WER. Then we train a new ASR

system from scratch using a curriculum based on pitch contour. Our results indicate that

curriculum learning based on this prosodic feature does help the system to learn but is

not powerful enough to compensate for the negative effects of feeding the system

gradually.

El Aprendizaje curricular (o CL, del inglés Curriculum Learning) es una técnica de

aprendizaje automático que ordena los ejemplos de entrenamiento según su grado de

dificultad y los pasa al alumno de forma progresiva. En el campo del reconocimiento del

inglés Automatic Speech Recognition) se ha aplicado con automática del habla (ASR,

éxito siguiendo distintas aproximaciones, pero ninguna ha aprovechado efectos prosódicos

para ponderar la dificultad de la señal vocal. En este trabajo presentamos el primer

intento de mejorar el rendimiento de sistemas ASR de extremo a extremo utilizando una

estrategia de CL basada en prosodia. Empezamos evaluando las transcripciones realizadas

por un sistema ASR pre-entrenado para una colección de declaraciones, y comparamos

la precisión alcanzada, en términos de WER, con 18 parámetros prosódicos extraídos de

cada declaración. Los resultados muestran que las transcripciones de declaraciones que

tienen un contorno de tono o intensidad más pronunciado tienen, en promedio, una WER

menor. Es decir, este tipo de declaración es más fácil de transcribir. La desviación

estándar de la frecuencia fundamental muestra el comportamiento opuesto: las

transcripciones de declaraciones con una desviación estándar elevada tienen, en promedio,

una WER mayor. En la segunda parte de la investigación entrenamos un nuevo sistema

ASR desde cero utilizando un currículum basado en el contorno de tono. Los resultados

obtenidos indican que la aplicación de una estrategia de CL basada en este parámetro

prosódico ayuda al sistema a aprender, pero no es lo suficientemente potente como para

compensar los efectos negativos que provoca el hecho de alimentar el sistema de forma

gradual.

1 Introduction ... 1

1.1 Motivation .. 2

1.2 Objectives ... 3

1.3 Structure of this document ... 4

2 Related work ... 5

2.1 Curriculum learning .. 5

2.1.1 Curriculum learning approaches .. 5

2.1.2 Curriculum learning in end-to-end ASR systems 7

2.1.2.1 Approaches using the original CL strategy .. 8

2.1.2.2 Approaches using Data-Level Generalized Curriculum 9

2.1.2.3 Generalized Curriculum Learning .. 9

2.1.2.4 Automatic methods ...10

2.2 The effect of prosody aspects in automatic speech recognition10

3 Case study ... 12

3.1 General procedure ..12

3.1.1 Selection of candidate prosodic features ...12

3.1.2 Curriculum learning experiments ...13

3.2 Prosodic features ...14

3.2.1 Fundamental frequency, F0 ..15

3.2.2 Intensity ...16

3.2.3 Harmonics-to-Noise Ratio (HNR) ...16

3.2.4 Jitter...17

3.2.5 Shimmer ...17

3.3 Evaluation ...18

3.4 Experimental set-up ..18

3.4.1 The dataset collection: LibriSpeech ..19

3.4.2 Prosodic features extraction: Praat and Parselmouth20

3.4.2.1 Praat ...20

3.4.2.2 Parselmouth ..22

3.4.3 ASR systems ..23

3.4.3.1 AR1: Hugging Face / Speechbrain ...23

3.4.3.2 ASR2: Fairseq S2T ...24

3.4.4 Curriculum learning module: Speacher ...26

3.4.5 The hardware ...26

4 Experiments and results .. 27

4.1 Selection of candidate prosodic features ..27

4.1.1 Extraction of prosodic features ...27

4.1.2 Evaluation of the transcription quality by a pre-trained model28

4.1.3 Selection of prosodic features for CL ..29

4.2 Experiments using curriculum learning ...34

4.2.1 Baseline ..35

4.2.2 Null hypothesis ...38

4.2.3 CL experiments using abs(mean_delta_f0) ...39

5 Conclusions and future work ... 42

Bibliography ... 45

Annex: Partitions of prosodic features .. 49

Figure 1. Sample inputs from the “easy” (top) and difficult (bottom) datasets in the

vision experiment by (Bengio et al., 2009). ... 2

Figure 2. Comparison between a standard hybrid ASR architecture 7

Figure 3. Procedure followed to select candidate prosodic features for a CL strategy.13

Figure 4: Training of an ASR system using a CL strategy based on one of the

prosodic features candidates as difficulty metric. ...14

Figure 5.Waveform of a Spanish [a] pronounced by the author of this work.15

Figure 6. Extract from file train-clean-100/5049/25947/5049-25947.trans.txt20

Figure 7. Audio sample 5049-25947-0060.flac as displayed by Praat.21

Figure 8. Voice report for the sample audio 5049-25947-0060 ..23

Figure 9. Statistical information of WER for transcriptions of utterances in dataset

train-clean-100 as predicted by ASR1. ...28

Figure 11. Prosodic features against WER for each sample in the train-clean-100

dataset. ..30

Figure 11. Average WER computed within quantiles of abs(mean_delta_f0).32

Figure 12. Fine-tuning of the learning rate for a baseline without warm-up.36

Figure 13. Fine-tuning of the weight-decay for a baseline without warm-up.36

Figure 14. Fine-tuning of the weight-decay for a baseline with warm-up.37

Figure 15. Fine-tuning of the learning rate for a baseline with warm-up.......................37

Figure 16. Comparison of accuracy evolution for baseline and null hypothesis,

without warm-up. ..38

Figure 17. Comparison of accuracy evolution for baseline and null hypothesis, with

warm-up. ..39

Figure 18. Comparison of accuracy evolution for CL and anti-CL strategies based

on abs(mean_delta_f0), without warm-up. ...39

Figure 19. Comparison of accuracy evolution for CL and anti-CL strategies based

on abs(mean_delta_f0), with warm-up. ..40

file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473494
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473494
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473495
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473496
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473497
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473497
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473498
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473499
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473500
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473501
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473502
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473502
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473504
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473505
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473506
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473507
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473508
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473509
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473509
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473510
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473510
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473511
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473511
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473512
file:///E:/TFM-PROVISIONAL/Memòria/Memoria%20TFM%20-%20NOVA.docx%23_Toc106473512

1. Table subsets in LibriSpeech ..20

2. Short datasheet of servers used in the project. ..26

3. Statistical information of prosodic features extracted from audio samples in

dataset train-clean-100. ..27

4. Linear regression between WER and each of the prosodic features considered.31

5. Subdatasets used in the CL strategy. ..35

6. Accuracies of experiments without warm-up ...40

7. Accuracies of experiments with warm-up ...41

1

Automatic Speech Recognition (ASR) is the technology that allows computers to

transcribe spoken language into text. It is the key piece of voice interfaces, which allow

the introduction of simple information into a system using our voice instead of a

keyboard. Domestic voice-enabled virtual assistants are becoming more and more popular

thanks to the efficiency and speed they offer to perform tasks such as keyword search,

phone dialling, data entry, or home appliances’ control. In the industry, voice interfaces

are being used to control robots, perform computer commands, or introduce simple

information to a database when hands and eyes are busy. As for commercial applications,

voice interfaces are nowadays the front gate in most call centres. An even more

challenging application is dictation of reports.

State-of-the-art ASR systems are based in artificial intelligence. Recently, the so-called

“end-to-end” models are picking up steam, not only in research but also in production

settings. These systems use a neural network-based model that directly maps sequences

of input acoustic features into sequences of words, without the need of an acoustic model,

lexicon, nor language model. As any other neural network-based architecture, this kind

of system needs to be trained to find the appropriate weights of the network and achieve

a correct mapping from inputs to outputs. Training requires having huge datasets, along

with substantial computer resources, and it is very time-consuming. Even with all this,

accuracies are often far from perfect. Improving the model performance and accelerating

the training process with smaller datasets are major objectives in machine learning

research. The field of ASR is not an exception.

A new technique that is being explored to train neural networks is Curriculum learning

(CL). The term refers to a general approach to optimize the learning process of a machine

learning system. The basic idea is to start small, learn easier aspects of the task or easier

sub-tasks, and then gradually increase the difficulty level. The method is inspired by

human teaching, where concepts are not introduced randomly but organized in a

meaningful order that illustrates gradually more concepts, and more complex ones.

The power of CL has been exploited in a wide range of supervised learning tasks,

including computer vision, natural language processing, healthcare prediction and graph

learning tasks. The application of this technique to improve the training time and final

transcription accuracy of ASR systems has also been addressed. A successful approach

has been to consider the length of utterance as a measure of difficulty: the longer the

utterance, the more difficult to transcribe. CL strategies based on this hypothesis apply

training schedules in which the system is first trained with short utterances and fed with

2

longer ones in later epochs. Alternative features that have been postulated to define “easy”

and “difficulty”, have been noise and word rarity.

As far of we know, prosody, i.e., the patterns of stress and intonation, has not been used

as a measure of difficulty for CL strategies. Yet prosody provides humans with important

markers both at word and syntactic level. Compare the stress in the word “present”, the

noun (/ˈprez.ənt/), with that of “present”, the verb (/prɪˈzent/), and see the difference

between the intonations of the sentence “I’d like to eat, mummy” and “I’d like to eat

mummy”. Not only for people is speech easier to understand if pronounced with a suitable

intonation; some studies have shown that accuracy in speech transcription made by

machines is also related with certain prosodic features. On the other hand, there is

evidence that babies are sensitive to prosodic markers of syntactic units, and they use

this sensitivity to recognize phrasal units, both noun and verb phrases, in fluent speech.

All this prompts us to pose the following question: could prosodic features be suitable

candidates to define CL strategies that improve the training of ASR systems? This work

is a preliminary attempt to answer this question. In particular, we intend to find prosodic

features that show a relationship with the accuracy at which an ASR system transcribes

speech, and use them in experiments that point the way forward for future research to

improve performance of ASR systems using CL.

The idea of organizing training data into a schedule, or “curriculum”, based on the

easiness or difficulty of the samples was formalized and popularized by (Bengio et al.,

2009). In this work, several experiments are presented, involving vision and natural

language tasks, which show that pre-training with a CL strategy can improve

generalization and help to reach faster convergence. The vision task is very illustrative

of the method. Its final objective is to train a system in the classification of geometrical

shapes into 3 classes: rectangle, ellipse, and triangle. To this purpose, two datasets are

generated: a “difficult” one, which includes all kind of figures, and an “easy” one, which

Figure 1. Sample inputs from the “easy” (top) and “difficult” (bottom) datasets in the vision

experiment by (Bengio et al., 2009). Source: (Bengio et al., 2009)

3

only includes squares, circles, and equilateral triangles. An illustration of both datasets

is shown in Figure 1. The curriculum consists of a 2-step schedule: first, the system is

trained using the easy training set during a predefined number of epochs; then the

training continues using the difficult set. Experiments made using this 2-step schedule

outperformed the baseline, which corresponded to training only on the difficult set.

Curriculum learning has open new avenues of research in the optimization of neural

networks. If well designed, CL strategies can significantly improve the model performance

and accelerate the training process, two of the most desired objectives in machine learning

research. Technically, it can be implemented as an independent plug-and-play module,

what makes it easy to use.

In ASR, different approaches have been successfully tested, but none that uses prosody

as a measure of difficulty. Prosody refers to those properties of speech that can be

perceived when we listen to segments larger than phonemes, such as syllables, words, and

phrases. Examples of prosodic features are pitch, loudness, intonation, rhythm, voice

quality, pauses, speech rate and duration. Altogether, these features provide the effect of

melody. Prosodic boundaries represent a significant cue to recognize lexical candidates in

a sentence (Salverda et al., 2003), and human comprehension, in terms of cognitive load

and accuracy, is better when we listen to natural prosody, as opposed to monotone or

foreign prosody where word stress is missing or not as expected (Hahn, 1999). On the

other hand, there is evidence that infants as young as 6 months are sensitive to prosodic

markers of syntactic units and use them to recognize phrasal units in fluent speech

(Soderstrom et al., 2003), which suggests that prosody may be instrumental in human

language acquisition. If prosody plays a role in helping humans to understand speech and

babies to learn a language, it seems reasonable to believe that it might be important for

machines as well. Training of ASR systems may consequently benefit from CL strategies

based on prosodic features.

Given the importance of prosody in speech comprehension and language acquisition by

humans, it makes then sense to hypothesize that i) it might be easier/more difficult for

ASR systems to transcribe utterances that are modulated in a certain way; and ii)

prosodic features that make utterances easy/difficult to be transcribed are feasible

candidates to define CL strategies that improve performance of ASR systems.

In this work we intend to shed some light on these hypotheses. Concerning the first

hypothesis, we will assume that an utterance is “easy” if the transcription provided by a

pre-trained ASR system is accurate in terms of the number of errors. That is, the fewer

the errors of the transcription, the easier the utterance. We are interested in exploring

the relationship between certain prosodic features and the easiness to transcribe speech.

4

For instance: are utterances pronounced at a higher pitch easier to transcribe than

utterances pronounced at a lower pitch? Does the direction of the intonation contour

have some effect? Do features like harmonics-to-noise ratio, jitter and shimmer, which

are related to the quality of speech, have any influence?

With respect to the second hypothesis, our concern is to examine up to which point

prosodic features can be useful to train ASR systems using CL strategies. Does the

application of a schedule in which the system is first trained with utterances having

certain prosodic features improve training somehow? To face this question, we will train

a new ASR model from scratch organizing the training data into a schedule, or

“curriculum”, based on the previous results.

The structure of the document is as follows. In Section 2, “Related work”, we provide a

general review on CL and include our own survey of studies that have applied CL to end-

to-end ASR systems. We also present several works showing that prosodic features play

a role in speech recognition and related fields. In Section 3, “Case study”, we explain the

procedure that has been followed to carry out our experiments; introduce important

concepts related to prosody; describe the 18 prosodic features that will be analysed, as

well as the evaluation metrics that will be used; and give detail of the experimental set-

up. In section 4, “Experiments and results”, we provide insight of the experiments that

have been conducted and report results and their interpretation. Finally, in section 5,

“Conclusions and further work”, we summarize the work done and results achieved, draw

conclusions, and suggest ways of improvement.

5

Our proposal combines two concepts that have been studied independently and have

never, to our knowledge, been applied together, i.e., the advantages of training neural

networks using curriculum learning strategies and the influence of prosodic features in

automatic speech recognition. The following sections present an overview of the state-of-

the art of each of these lines of research.

Although there are previous studies on the idea of introducing a curriculum into the

training strategy of machine learning algorithm, such as (Elman, 1993), it was (Bengio

et al., 2009) who formalized and popularized it. This work hypothesizes that a well-chosen

curriculum strategy can both i) help to find better local minima of a non-convex training

criterion and ii) accelerate training because the learner wastes less time with noisy or

harder to predict examples. The work also illustrates the potential power of the method

through several experiments where simple curriculums are tested, such as the one

presented in section 1.1.

Since (Bengio et al., 2009), researchers have been exploiting power of CL in a wide range

of applications. The paradigm has also been extended to modified versions within the

spirit of “training from easier to difficult”. In the two following sections we introduce the

general frameworks that have been adopted under the paradigm “curriculum learning”,

following the classification by (X. Wang et al., 2020), and present our own survey of the

state-of-the art in the field of ASR.

(X. Wang et al., 2020) classifies the existing CL approaches in three types, depending on

what is understood for “curriculum”:

1. : A curriculum is a sequence of training criteria over

T training steps, C =〈Q1,...,Qt,...,QT〉. Each criterion QT is a reweighting of the target

training distribution P(z):

Qt(z)∝Wt(z)P(z) ∀ example z ∈ training set D.

such that the following three conditions are satisfied:

1- The entropy of distributions increases: H(Qt)< H(Qt+1) (this means that the

diversity and quantity of information of the training must increase)

6

2- The weight for any example stays the same or increases: Wt(z)≤Wt+1(z) ∀ z ∈ D

(weights of individual examples need to increase so that they can get added into

the training set).

3- The final criterion matches the complete training distribution: QT(z) = P(z).

2. : A curriculum is a sequence of reweighting of

target training distribution over T training steps. This version keeps condition (1) while

relaxing conditions (2) and (3) in order to enable CL strategies that change the task from

during training. The philosophy “training from easy to difficult” remains in the difficulty

of the current task, which gradually increases until reaching the target task.

3: : A curriculum is a sequence of training criteria

over T training steps. Each criterion Qt includes the design for all the elements in training

a machine learning model, such as tasks, model capacity, learning objective or loss

function.

There also exist different approaches to define the difficulty metric and schedule. Pre-

defined methods design them using human prior knowledge. The difficulty metric is

usually based on the data characteristics of specific task, and it is designed considering

complexity, diversity, and/or noise estimation. Some examples of difficulty metrics used

in literature are regularity in shape (Bengio et al., 2009), sequence length, number of

objects in images; number of coordinating conjunctions or phrases, information entropy,

signal to noise ratio, image intensity and human-annotation-based Image Difficulty

Scores. Concerning the schedule, we can classify them into two types: discrete schedules,

which add new data after a fixed number of epochs or convergence value, and continuous

schedules, which add training data subset at every epoch following a function λ(t), where

λ(t) is the proportion of easier examples to be included in the t-th epoch.

Several successful attempts have also been made using automatic methods, where the

curriculum is generated dynamically using data-driven models or algorithms. Some of

these methods are:

• methods, which let the model himself act as the

teacher and measure the difficulty of training examples according to its losses on

them.

• , which use a pre-trained teacher model to measure

the difficulty of training examples.

• , where a teacher makes dynamic data selection

according to the feedback from the student.

7

State-of-the-art ASR systems are mostly based on neural networks. One of the most

successful architectures is the Deep Neural Network – Hidden Markov Model (DNN-

HMM), a hybrid system composed of an acoustic, a lexicon, and language model. Most

recently, though, end-to-end systems have reached state-of-the-art performance and are

picking up steam, not only in research but also in production settings (Sainath et al.,

2020). Figure 2 compares these architectures. End-to-end systems directly map sequences

of input acoustic features into sequences of words. Common ASR end-to-end structures

are Recurrent Neural Network Transducers (RNNT) (Graves, 2012), Connectionist

Temporal Classification (CTC)-based systems (Graves et al., 2013; Hannun et al., 2014),

and attention-based models, such as Google’s Listen, Append, Spell (LAS) model (Chan

et al., 2016) and Fairseq S2T (C. Wang, Tang, et al., 2020).

Besides their conceptual simplicity, end-to-end systems offer some important advantages.

To begin with, the use of a single model, instead of three, makes them easier to train.

They are also less expensive to build and require less human labour because there is no

need of audio-word alignment nor of lexicon maintenance. Finally, they also bring

important benefits when it comes to production: they are smaller in size, making them

attractive for on-device ASR applications, and easier to optimize.

Figure 2. Comparison between a standard hybrid ASR architecture, composed of an

acoustic, a lexicon, and language model, and a sequence-to-sequence based end-to-end

model. Font: https://www.verbio.com/e2e-architectures-for-asr-systems/

8

There have been several successful attempts to train end-to-end ASR systems using CL

strategies. In the following sections we present some of the approaches that have been

explored, following the same classification as in Section 2.1.1.

The mostly used scoring parameter for CL in ASR systems has been, by far, the length

of the input sequences. For instance, in (Amodei et al., 2016) a module called SortaGrad

is designed which applies a CL strategy to train a RNN based ASR system for English

and Mandarin. The need of such strategy is motivated by the use of a CTC loss function,

which tends to be unstable. The strategy consists in iterating, during the first epoch,

through minibatches of the training set in increasing order of length of the longest

utterance in the minibatch. SortaGrad improves the stability of training and achieves

around 10% improvement in WER. On the other hand, (Kim et al., 2018) achieves a

7.8% WER decrease when training CTC-based speech recognition system by training it

first on a subset that consists of shorter length utterances. Once these are learnt, they

introduce the full training set. In (Zhang, Chang, Qian, & Watanabe, 2020) an end-to-

end model for multi-speaker speech recognition is trained applying a CL strategy based

on the length of the sequence during the first 3 epochs. During these epochs, the iteration

of minibatches within the training set is made in ascending order of sequence length; after

that, usual fine-tuning with random order of minibatches is done. They achieve a 10%

improvement in WER. (Isik et al., 2016) uses a similar approach, but instead of the

number of words they use the number of frames. In this case, the aim is to improve the

performance of a multi-speaker separation system based on a deep clustering architecture.

The study shows that pre-training with shorter segments followed by training with longer

segments boosts performance from 9.9 dB to 10.3 dB for two speaker separation.

The second mostly studied scoring parameter in ASR is the signal-to-noise ratio (SNR,

the energy ratio between the target speech and the interfering sources). This approach is

used, above all, to improve speaker recognition in multi-speaker systems. The signal-to-

noise ratio has a great influence on the final recognition performance in multi-speaker

systems (Chang et al., 2019). When the speech energy levels for speakers in a conversation

are markedly different, the recognition accuracy of those having lower levels is very poor.

Following this criterium, (Zhang, Chang, Qian, & Watanabe. Shinji, 2020) and (Isik et

al., 2016) investigate ascending SNR as a score function using analogue strategies as the

ones described above for length-based strategies. They achieve improvements of 10% and

4% in WER, respectively. Similarly, (Chang et al., 2019) achieve a 12% improvement

when training MIMO-Speech, their end-to-end multi-channel multi-speaker speech

recognition proposed system, after applying a CL strategy that combines ascending

sequence length and ascending SNR.

9

The use of SNR as a score function to train single-speaker ASR systems dealing with

noise has been investigated by (Braun et al., 2017). In their experiments, two training

schedules are proposed: one which starts training the network on the lowest SNR (noisier)

samples and expands to high SNR samples in 5 dB steps; and the opposite one, i.e., a

schedule expanding from high SNR to low SNR. Contrary to what could be expected,

the best performance is achieved by the first schedule, which corresponds to the “anti-

curriculum” strategy (noisy examples first). The authors consider that this result shows

that noise allows the network to explore the parameter space more extensively at the

beginning. Research using near-field and far-field data as a measure of difficulty, which

is an indirect measure of noise (near-field data is less noisy) has been carried out by

(Ranjan & Hansen, 2021). They obtain opposite results to (Braun et al., 2017): the

proposed CL strategy, which consists in initiating the training with comparatively easier

near-field data and including more diverse far-field data progressively in later stages,

outperforms the baseline ASR system with relative reductions in WERs of up 10.1%.

Another feature used to define CL strategies in ASR has been the posterior probabilities

obtained using a previously trained model (Vydana et al., 2016). Here, they start by

training the network on the full training set. Then, the trained network is used to get

the predictions on the same training data. The examples that are correctly predicted are

considered as the easily examples. Then, they train the system again, now in two steps:

initially, with a set of easy examples, and afterwards with the full training set. The model

trained with proposed two-step CL learning strategy achieves a higher accuracy in a

smaller number of epochs.

Gender has also been used as a score function in some CL strategies to train multi-

speaker ASR systems (Zhang, Chang, Qian, & Watanabe. Shinji, 2020) and (Isik et al.,

2016). Compression ratio of audio files has been tested by (Kuznetsova et al., 2021). In

this case, the relevant improvement was not in precision, but in training speed. Finally,

in speech-to-text translation, word rarity has been used in (Platanios et al., 2019).

A curriculum learning strategy with varying tasks to train an end-to-end ASR system

has been investigated by (Kim et al., 2018). In their proposal, first, they reduce the

number of categories to four symbols: vowel, consonant, space, and blank. As the simpler

classification task is learned, the full character-based label set is restored and training

proceeds. This strategy improved performance but did not work as effectively as one the

that focused on short utterances, so no detailed results are provided.

Attempts of application of curriculum learning to the architecture of the system, have

been made in speech-to-text translation, a field closely related to ASR. In (Kano et al.,

10

2017), the authors build an end-to-end attention-based speech-to-text translation system

on syntactically distant language pairs. The authors build the system upon a standard

attention-based encoder-decoder network that consists of an encoder, a decoder, and

attention modules. They propose a structured-based curriculum learning strategy that

consist in training the attentional encoder-decoder architecture by starting from a simpler

task, switch a certain part of the structure (encoder or decoder), and set it to a more

difficult task. Experimental results demonstrate that the learning model is stable and

that the final translation quality outperforms that of the standard system. In (C. Wang,

Wu, et al., 2020) a curriculum pre-training method is proposed to improve the power of

the encoder in an end-to-end speech translation system. Traditional methods pre-train

the encoder on ASR data to capture speech features and learn the alignment between the

acoustic features and phonemes or words. In order to teach the model to understand the

sentence and incorporate the required knowledge as well, the authors add a second pre-

training phase with two extra courses: a frame-based masked language model (FMLM)

task and a frame-based bilingual lexicon translation (FBLT) task. The proposed method

significantly improves the "transformer + ASR" pre-train” baseline. They also pre-train

the model on ASR, FMLM and FBLT tasks in one phase. The result is worse than the

"transformer + ASR" pre-train” baseline, showing the importance of the curriculum

learning strategy.

As for automatic methods, (Kim et al., 2017) include in their paper a teacher-student

technique to initialize the training of their CTC-based speech recognition system. Here,

knowledge is transferred from a BLSTM offline model (teacher) to the final LSTM online

system (student), achieving a 12.2% improvement on WER over the baseline. When

combining this strategy with manual CL based on utterance length, the improvement

increases up to 19.0%.

In the previous chapter we have mentioned some features of speech that have an influence

in the average precision in which ASR and speech-to-text translation systems can

perform, such as the length of the sequence, the signal-to-noise ratio or word rarity.

Previous studies on these effects motivated the authors of the presented works to

undertake corresponding CL strategies. Factors related to prosody have also been shown

to be related with the difficulty experienced by ASR systems to recognize speech. In a

dedicated study on the relationship between the errors of two ASR systems and several

prosodic, lexical, and disfluency factors (Goldwater et al., 2010) showed that, in general,

prosodic features are strongly predictive of error rates. The prosodic features included in

11

their work were pitch (minimum, maximum and mean), intensity (minimum, maximum,

mean and range), speech rate (phones per second), duration and log jitter. Pitch,

intensity, and log jitter were extracted at word level; speech rate was computed at

utterance level and assigned to all words in the utterance. The analyses on those features

showed that precision decreased dramatically for fast speech. Mean pitch also had a large

effect, with higher error rates for words with higher pitch relative to gender averages.

Words with smaller ranges of pitch or intensity were more likely to be misrecognized, as

were words with higher minimum intensity. Jitter and intensity maximum were

associated with higher error rates at extreme values.

In fact, some prosodic features are already available in some ASR toolkits, such as Kaldi

(Povey et al., 2011). In 2014 Kaldi introduced new algorithms to the framework to extract

features for pitch, delta pitch and voicing (Ghahremani et al., 2014). These features can

be appended to the raw input vectors (MFCCs or PLPs) before being forwarded to the

classifier. In an experimental set-up, the addition of these prosodic features improved

performance in 6% on tonal languages (Vietnamese and Cantonese) on 2% on atonal

languages (Assamese and Bengali).

On the other hand, jitter and shimmer have been shown to play a role in several speech

related tasks. Some examples are detection of speaking styles (Salverda et al., 2003; Slyh

et al., 2008), age and gender classification (Wittig & Uller, 2003), emotion detection (Li

et al., 2007) and speaker recognition (Farrús et al., 2007).

12

The case study proposed in this work attempts, firstly, to find feasible candidates among

different kinds of prosodic features to define a CL strategy that helps improving

transcription accuracy in ASR systems; secondly, to test candidate prosodic features in

some experiments by training a new ASR model using the proposed CL strategy.

In the following sections we describe the general procedure that has been followed, the

prosodic features that have been included in the analysis, the evaluation methods, and

the experimental set-up.

Our research will start by analysing the relationship between the value of some prosodic

features for a collection of utterances and the accuracy that a trained state-of-the-art

ASR model achieves when transcribing these utterances. We will call this system ASR1.

Prosodic features showing a clearer relationship with the accuracy achieved by ASR1 will

become our candidates to design a CL strategy. Later, we will undertake some curriculum

learning experiments. We will design a CL strategy based on one of the previous

candidates and we will train a new ASR model from scratch using this strategy. We will

refer to the model trained using the CL strategy as ASR2. The final goal of this

experiment will be to evaluate if such training has any effect on the final performance of

the model.

Prosodic features are those features of speech that contribute toward acoustic and

rhythmic effects. In this work we will consider 18 different features related with pitch,

intensity, and voice quality. All of them are scalars, computed as the average along the

utterance being analysed. The complete list of features is included in section 3.2, along

with an introductory description of their meaning. Among the list of prosodic features

considered, the selection of candidates to define CL strategies will made by comparing

their value for each utterance in a dataset collection and the accuracy achieved by ASR1,

a pre-trained ASR system, in the transcription of those utterances.

13

Figure 3 shows the steps that will be followed. These steps are:

1- For each audio file in the dataset, values for

each prosodic feature will be extracted using a dedicated speech analysis software.

2- A sequence modelling toolkit with a pre-trained model,

ASR1, will be used to evaluate the dataset. The inputs to the model will be log-

mel spectrograms extracted from the raw audio files from the dataset, each

containing a speech utterance. As a result of this evaluation, each utterance will

be assigned a score based on the number of errors of the transcription. The lower

the accuracy, the easier an utterance will be considered.

3-

Values for each prosodic feature from step 1 will be plotted against

transcription accuracies from step 2 following different criteria.

4- Features showing a clearer relationship with

transcription accuracy will be selected as candidates for a difficulty metric.

The goal of this part of the research is to evaluate a CL strategy by training a new ASR

system, ASR2, from scratch. This strategy will be defined taking into account the results

Figure 3. Procedure followed to select candidate prosodic features for a CL strategy.

14

of the first part of the project and applied using an independent module appended to

ASR2. Figure 4 shows the architecture of the training system, which includes:

1. : This module takes the original dataset as

input and organizes the data according to the curriculum. Then, it feeds the model

gradually, following the schedule determined by curriculum.

2. : This includes a state-of-the-art end-to-end ASR model and

the necessary tools to train it and evaluate it.

In the following section we introduce some characteristics of sound that are used in the

field of prosody to describe speech and provide the list of prosodic features related to

each characteristic that will be considered in our experiments1.

1 Descriptions provided here are based on:

• Ladefoged, P (1996). Elements of Acoustic Phonetics. Chicago: University of Chicago Press

Figure 4: Training of an ASR system using a CL strategy based on one of the prosodic

features candidates as difficulty metric.

15

In acoustic phonetics, the fundamental frequency, also called first harmonic or F0, refers

to the lowest frequency component in the speech sound wave. It is based upon the number

of complete cycles of vibration of the vocal folds.

Figure 5 shows the waveform produced when pronouncing Spanish vowel [a]. As it can

be seen, the wave consists of an approximate repetition of the shaded pattern. The

duration of the repeated pattern is 0.004 seconds, that is, in one second it is repeated 250

times. This is equivalent to say that the fundamental frequency is 250Hz.

The fundamental frequency is of particular importance in studies of intonation, where it

displays a close correspondence with the pitch, the auditory sensation of “melody”.

Variations in pitch have phonological functions, as in word stress; syntactic functions, as

• Crystal, D. (2008). A Dictionary of Linguistics and Phonetics. Oxford: Blackwell.

• Teixeira, J.P., Oliveira, C., Lopes, C. (2013). Vocal Acoustic Analysis – Jitter, Shimmer and HNR

Parameters. Procedia Technology, 9, 1112-1122

• Praat’s webpage: https://www.fon.hum.uva.nl/praat/

Figure 5.Waveform of a Spanish [a] pronounced by the author of this work. The

shaded area shows a pattern that is repeated along the timeline; it corresponds to

the lowest frequency component of the wave sound, F0. The horizontal double

arrows show the intervals considered when computing Jitter. The vertical ones, the

values of the amplitude considered when computing shimmer.

16

in the effect produced by a comma; and statement-level functions, to distinguish clause

types (declarative, interrogative, imperative and exclamative).

The fundamental frequency at each point is computed considering a windows of a certain

time length. Variations are then computed comparing the mean fundamental

frequency consecutive windows. In our study, we have analysed the effect of the following

parameters related to the fundamental frequency:

• mean_f0: Average value of the fundamental frequency along the utterance.

• stdev_f0: Standard deviation of the fundamental frequency along the utterance.

• mean_delta_f0: Average of the variation of the fundamental frequency along the

sentence.

• stdev_mean_f0: Standard deviation of the variation of the fundamental frequency

along the sentence.

The intensity is the amplitude the signal of the audio sample. In speech, it corresponds

to the size of the vibrations of the vocal folds causing the variations in air pressure that

originate the sound wave. From prosodic perspective, intensity of signal is perceived as

loudness.

In our study, we have analysed the effect of the following parameters related to the

fundamental frequency:

• mean_delta_intensity: Average of the variation of the intensity along the sentence.

• stdev_mean_intensity: Standard deviation of the variation of the fundamental

frequency along the sentence.

The Harmonics-to-Noise Ratio (HNR) represents the degree periodicity. It is computed

as:

𝐻𝑁𝑅(𝑑𝐵) = 10 log
𝐸𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐

𝐸𝑛𝑜𝑖𝑠𝑦

where Eperiodic is the fraction of energy in the periodic part of the signal and Enoisy is the

fraction of energy in the noisy part. In speech, the periodical component arises from the

vibration of the vocal cords; the noisy one, from the glottal noise.

17

Jitter is a measure of the deviation from true periodicity of a presumably periodic signal.

It is defined as the period variation from cycle to cycle. When computed, a number N of

cycles must be taken into account:

𝑗𝑖𝑡𝑡𝑒𝑟(seconds) =
∑ |𝑇𝑖 − 𝑇𝑖−1|𝑁

𝑖=2

𝑁 − 1
 (1)

where Ti is the duration of the ith interval and N is the number of intervals.

In this work we have used the following metrics related to jitter:

• local_absolute_jitter: Average jitter over the utterance, i.e, N from Equation 1 is

the total number of periods in the utterance.

• local_jitter local_absolute_jitter, divided by the average period.

• rap_jitter: Relative Average Perturbation, which is a version of local jitter defined

in terms of three consecutive intervals.

• ppq5_jitter: Five-point Period Perturbation Quotient (PPQ5), which is also a

version of local jitter, this time defined in terms of five consecutive intervals.

• ddp_jitter: Relative mean absolute third-order difference of the point process (or,

equivalently, the second-order difference of the interval process).

Shimmer is defined as the amplitude variation from cycle to cycle. It is computed as the

average among a certain number of periods of the absolute base-10 logarithm of the

difference between the amplitudes of consecutive periods, multiplied by 20:

𝑆ℎ𝑖𝑚𝑚𝑒𝑟(dB) =
1

𝑁 − 1
∑ |20log (

𝐴𝑖+1

𝐴𝑖
)| (2)

𝑁−1

𝑖=1

where Ai is the amplitude of the -ith interval and N is the number of intervals considered.

The metrics related to shimmer analysed in this work are:

• localdb_shimmer Average shimmer over the utterance, i.e., N from Equation 2 is

the total number of periods in the utterance.

• local_shimmer Average absolute difference between the amplitudes of consecutive

periods, divided by the average amplitude.

• appq3_shimmer Three-point Amplitude Perturbation Quotient, the average

absolute difference between the amplitude of a period and the average of the

amplitudes of its direct neighbours, divided by the average amplitude.

18

• appq5_ shimmer Five-point Amplitude Perturbation Quotient, the average

absolute difference between the amplitude of a period and the average of the

amplitudes of its four closest neighbours, divided by the average amplitude.

• appq11_ shimmer 11-point Amplitude Perturbation Quotient, the average absolute

difference between the amplitude of a period and the average of the amplitudes

its ten closest neighbours, divided by the average amplitude.

In both types of experiments, selection of candidate prosodic features and curriculum

learning experiments, we will use the Word Error Rate (WER) to evaluate transcriptions.

WER is a common metric in the field of ASR. It works at word level, providing a measure

of how many “errors” are in the transcription text produced by system. It is computed

as2:

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁

where S is the number of substitutions, D, the number of deletions, I, the number of

insertions, and N, the number of words in the reference (gold transcription). Since it

computes errors, rather than hits, a high WER indicates low performance.

In the selection of candidate prosodic features, we will use WER to score the level of

difficulty of all utterances in the dataset collection: utterances for which ASR1 provides

transcriptions with low WER will be considered as “easy”. When reporting the

performance in the CL training experiments, we will use WER accuracy instead, which

is defined as:

𝑊𝐴𝑐𝑐 = 1 − 𝑊𝐸𝑅

The following sections describe the experimental set-up: dataset collection containing

speech utterances and gold transcriptions, speech analysis software used to extract

prosodic features, ASR models used to compute accuracy and carry out experiments, and

hardware.

2 Font: Wikipedia contributors. (2020, February 7). Word error rate. In Wikipedia, The Free Encyclopedia.

Retrieved 15:41, June 19, 2022, from https://en.wikipedia.org/w/index.php?title=Word_error_rate&oldid=939575741

19

LibriSpeech (Panayotov et al., 2015) is a corpus of read speech, based on LibriVox's

public domain audiobooks, built specifically to enable the training and testing of ASR

systems. The collection contains 1000 hours of speech sampled at 16 kHz, organized in

several subsets for training, evaluating, and testing. For each case, there are two kinds

of subset: those labeled as “clean” and those labeled as “other”.

The collection has been built making a careful alignment between the recordings from

LibriVox and the corresponding texts from the Project Guttenberg. The resulting pairs

have been split into short fragments of 35 seconds or less to facilitate training. The

selection of samples to be included in each subset has been made following these criteria:

• Subsets labeled with “clean” are, on average, of higher recording quality and with

accents closer to US English.

• For all subsets there is gender balance in terms of number of speakers and

available data.

• Subsets are speaker disjoint: all fragments corresponding to the same speaker are

assigned to one and only one subset.

For each speaker in the clean training sets the total amount of speech is limited to 25

minutes. For validation and test sets, approximately eight minutes of speech is used.

The entire collection includes these subsets:

• , - development and test set containing approximately 5

hours of "clean" speech.

• - training set, of approximately 100 hours of "clean" speech.

• - training set, of approximately 360 hours of "clean" speech.

• , - development and test set containing approximately 5

hours of speech more "challenging" to recognize.

• - training set of approximately 500 hours containing speech that

was not classified as "clean".

Table 1 includes detailed information of each subdataset.

20

Table 1. Table subsets in LibriSpeech

Inside each subset, samples are organized in folders according to readers and chapters.

For each reader and chapter, a text file with the transcription of the text fragments is

included. Audio samples are provided in .flac (Free Lossless Audio Codec) format, an

audio file format with lossless compression, and labelled with the ID of reader and the

ID of the chapter in the LibriVox’s database, plus a number indicating the fragment

within the chapter. For instance, audio sample 5049-25947-0060.flac from train-clean-100

subset corresponds to reader 5049, chapter 25947 and fragment 60. Its gold transcription

can be found in train-clean-100/5049/25947/5049-25947.trans.txt, shown in Figure 7. It

reads: “5049-25947-0060 “lieutenant thomas is badly wounded in here and we can't move

him”. Text files with metadata for books, chapters and speakers is also provided.

In this project, we have used the train-clean-100 subset for training and the dev-clean

subset for validation. Train-clean-100 contains 28,539 samples; dev-clean, 2,703.

Prosodic features have been extracted using the dedicated software described in the

following sections.

Praat (Boersma & Weenink, 2022) is an open-source computer program for speech

analysis in phonetics. It can analyse, synthesize, and manipulate speech. Particularly, it

provides a graphic interface and a set of tools to generate, edit and analyse waveforms,

spectrograms, intensity contours and pitch tracks.

Figure 6. Extract from file train-clean-100/5049/25947/5049-25947.trans.txt

21

Let’s see some of what the package offers with a practical example from our dataset

collection, the audio sample 5049-25947-0060.flac from the train-clean-100 subset of the

LibriSpeech collection. The sample corresponds to a fragment (sentence) of the book

Notes of a War Correspondent (Davis, 1910). The text read by the volunteer reader is

“lieutenant thomas is badly wounded in here and we can't move him”.

Figure 7. Audio sample 5049-25947-0060.flac as displayed by Praat.The screen

above corresponds to sentence “lieutenant thomas is badly wounded in here and we

can't move him”. In the screen below, the word “lieutenant” has been zoomed in.

22

Figure 7 shows some of the representations that the package can generate. All

representations are plotted against the same horizontal axis: the timeline of the audio

file. These representations are:

• : The waveform is the plot of the signal stored in the FLAC file after

decompression. Sound is a pressure wave; this signal reproduces the signal picked

up by the microphone when the audio was recorded.

• : The spectrogram is a representation of the energy density as a

function of time (horizontal axis) and frequency (vertical axis). Darker parts of

the spectrogram mean higher energy densities; lighter parts mean lower energy

densities.

• : Pulses represent periodic fragments of the waveform. They are plotted

as vertical blue straight lines on the waveform plot, at the maximum of each

fragment. Pulses are the base for further computations such as the fundamental

frequency, jitter or shimmer. They only exist if the waveform shows periodicity;

otherwise, the waveform is considered as noise and no further computations can

be done.

• : Pitch, or fundamental frequency, is shown as blue dots on the spectrogram

area. For each pulse, pitch is computed by counting the number of pulses within

a time window on both sides of the pulse mark, and dividing into the window

length.

• : The intensity, plotted as a yellow line on the spectrogram area,

represents the mean amplitude at linearly spaced time intervals.

With all the previous information, Praat can compute global parameters such as the ones

used in this work. Figure 8 shows, for instance, the Voice report for the sample audio

5049-25947-0060.

Parsemouth (Boersma & Weenink, 2021) is an open-source Python library that facilitates

access to core functionality of Praat in Python, allowing researchers to integrate

sophisticated acoustic analyses in their Python scripts. It uses the pybind11 library to

communicate with and access to Praat’s internal objects, memory, and code. The package

includes Praat as part of the library in order to provide immediate access to the raw data

calculated by Praat. This, together with the use of Numpy, makes it possible to use the

existing data without copying, which makes the computation faster.

Among other functionalities, Parselmouth can quickly code up batch operations over a

collection of files. This allows, for instance, to get a set of parameters for all audio files

in a dataset collection in one run.

23

In this work, two ASR models have been used. In the experiments aimed at finding

candidates for a CL strategy, ASR1, a pre-trained model, has been used to evaluate the

difficulty of utterances from the training dataset. In the curriculum learning experiments,

ASR2, a new model, has been trained from scratch using a CL strategy.

The ASR system used to assign a difficulty score to the samples in the training set has

been the repository speechbrain/asr-wav2vec2-commonvoice-en from HuggingFace

Transformers. Hugging Face Transformers (Wolf et al., 2020) is a toolkit designed to

easily develop state-of-the-art speech technologies, including systems for speech

recognition. The repository speechbrain/asr-wav2vec2-commonvoice-en provides all the

necessary tools to perform automatic speech recognition from an end-to-end system pre-

trained on Common Voice (English Language) (Ardila et al., 2020) within SpeechBrain

(Ravanelli et al., 2021). In the current work, we will refer to this system as ASR1.

Figure 8. Voice report for the sample audio 5049-25947-0060

24

The ASR system used to perform experiments on CL strategies has been built upon

Fairseq framework [Ott 2019], a state-of-the art, open-source sequence modelling toolkit

developed by Facebook AI. It is based on Pytorch and it allows to train custom neural

sequence end-to-end models for several text generation tasks such as machine translation,

summarization and language modelling. The library provides command line tools to pre-

process data, train and evaluate models, and generate output, together with a set of

parameters to define advanced training options and select tasks, models, criterions (loss

functions), optimizers and learning rate schedulers. The easiness and flexibility through

which all these options can be set up make this framework a very suitable one for both

research and production.

The Fairseq task that can be used as an ASR system is the speech-to-text task (S2T)

[Wang 2020]. This task has been designed for both automatic speech recognition and

speech-to-text translation.

In this report, we will refer to this system as ASR System 2. Since results concerning CL

experiments are highly dependent on training parameters other than those strictly related

to CL, we provide relevant information on the system configuration, so that results can

be contextualized and reproduced.

Physically, sound is a pressure wave. Recording a sound means converting this physical

waveform into an electrical representation by means of a microphone and storing it in

some medium. In the case of digital audio, the continuous electrical signal must be first

discretized (sampling) and the resulting values encoded into digital values (bits) of some

precision (bit-depth). The FLAC audio files from LibriSpeech are sampled at 16kHz (1600

samples per second) and 16 bit-depth.

Fairseq library includes tools to download and pre-process several ASR datasets

benchmarks. In our project, the LibriSpeech collection was downloaded and pre-processed

using the prep_librispeech_data.py method. The process followed these steps:

1. . Datasets for training, testing and evaluation were downloaded.

The original files are FLAC audio files, organised in folders according to the

speaker id.

2. . As most ASR state-of-the-art systems, the Fairseq

S2T task takes log-mel spectrograms as input. In this part of the process, Kaldi-

compliant (Povey et al., 2011) 80-channel log mel-filter bank features are

extracted from FLAC audio files and stored into numpy files via torchaudio.

25

3. : Filter banks are packed into a ZIP file for faster reading.

4. : A tabular separated values file (TSV) is generated with

the following information for each sample: the ID, the path to the filter bank, the

number of frames, the target text and the speaker ID.

5. : A vocabulary file with 10,000 unigrams is created via

SentencePiece (Kudo & Richardson, 2018) tokenizer.

6. : A YAML file is generated with online speech

data transforms and data-related settings, such as tokenizer type and vocabulary

path.

For the text data, Fairseq S2T makes online tokenization with the tokenizer defined in

the yaml file.

The model used to run our experiments was a vanilla transformer (Vaswani et al., 2017)

included in the Fairseq library, the s2t_transformer. This version includes a

convolutional downsampler before the positional embedding layer which reduces the

length of speech inputs by 3/4th before they are fed into the encoder. In order to perform

our experiments faster, the small configuration version of the model, s2t_transformer_s,

was chosen. This version has about 30M parameters and is 350MBs in size.

The loss function used to optimise the model parameters was cross-entropy. Adam

optimizer was used, with a learning rate decreasing with an inverse square root scheduler.

Before curriculum learning experiments, some fine-tuning for learning rate and weight

decay was done to set the baseline, as well as tests including and not including a warm-

up stage. The inclusion of a warm-up stage when training a vanilla Transformer from

scratch using any gradient-based optimization approach is crucial for the final

performance of the model [Xiong 2020]. These is because the vanilla Transformer places

the layer normalisation between the residual blocks, resulting in large-expected gradients

of the parameters near the output layer, which makes the training unstable. With the

warm-up stage, the optimization starts with an extremely small learning rate and

gradually increases up to a predefined maximum value in a predefined number of

iterations.

To create batches, Faiseq groups source and target sequences of similar length. This

minimises the sequences padding. The content batches stay the same throughout training;

26

batches themselves are shuffled randomly every epoch. The library also allows to

accumulate gradients from multiple mini-batches before updating, resulting in larger

effective batch sizes.

Fairseq provides support for both full precision (FP32) and half precision (FP16). When

setting the training to FP16, forward-backward computations are done in half precision,

while parameters remain in full precision. This technique accelerates the process and

preserves accuracy. A dynamic loss scale is applied to avoid underflows for activations

and gradients.

To feed the system using CL strategies a dedicated module, Speacher (Cambara, 2021),

has been used. Speacher (from “speech teacher”) takes dataset manifests files as input

and generates an output folder with subdatasets sampled according to difficulty criteria.

The tool has been designed to work with other speech recognition frameworks, like

Fairseq.

As part of the project, systems ASR1 and ASR2, along with their dependencies, were

installed in two servers at University of Barcelona and Universidad Nacional a Distancia.

Especially CL experiments, which consisted in training a state-of-the-art ASR model with

30M parameters for a considerable number of epochs, required the use of powerful GPUs.

Table 2 presents basic information of both servers.

Table 2. Short datasheet of servers used in the project.

 Server 1 Server 2

CPU Xeon W-2155@3.3GHz (10 cores) i9-10920X@3.50GHz (12 cores9

GPU 4x Nvidia RTX2080Ti of 12GB 2 Nvidia RTX 3090 of 24 GB

RAM 64Gb 128GB

Cuda version 10.1 11.5

27

In this section we present the two types of experiments conducted as mentioned above.

First, a collection of utterances from a dataset was analysed. Several prosodic features

were extracted from each utterance using a dedicated software, Parselmouth. In parallel,

a transcription for each utterance was generated and evaluated using ASR1, a pre-trained

ASR model. As a result of this evaluation, an accuracy score in terms of WER was

provided for each utterance in the dataset. Then, for each prosodic feature, we looked for

relationships with the accuracy achieved. Those prosodic features showing a relationship

with WER became candidates for the second kind of experiments. These latter

experiments consisted in training a new ASR model, ASR2, from scratch using different

strategies, in order to test whether the application of a curriculum based on one of the

selected prosodic features improved the final accuracy and/or the training speed. In what

follows we describe these experiments, as well as the results.

This part of the work includes the extraction of prosodic features, the evaluation of

transcriptions by ASR1, and the comparison between both results to find relationships.

Prosodic features described in section 3.2 were extracted for each of the 28,539 utterances

in the dataset collection, LibriSpeech train-clean-100, using the Parselmouth software.

Table 3 shows statistical information of the results.

Table 3. Statistical information of prosodic features extracted from audio

samples in dataset train-clean-100.Units are displayed in parentheses next-to

the name of the feature.

mean_f0 (Hz) 59.10 317.00 162.00 45.20

stdev_f0 (Hz) 1.64 122.00 39.20 14.60

mean_delta_f0 (Hz) -5.29 4.99 -0.11 0.31

stdev_delta_f0 (Hz) 0.26 22.50 6.13 2.58

mean_delta_intensity (dB) -1.23 2.76 0.00 0.05

stdev_delta_intensity (dB) 0.13 18.20 1.86 0.98

hnr (dB) -0.47 22.60 11.50 2.94

local_jitter 0.0098 0.0658 0.0239 0.0058

local_absolute_jitter (s) 0.00004 0.00076 0.00017 0.00008

rap_jitter (s) 0.002 0.031 0.010 0.003

28

ppq5_jitter (s) 0.003 0.038 0.011 0.003

ddp_jitter (s) 0.007 0.093 0.029 0.008

local_shimmer 0.023 0.226 0.098 0.021

localdb_shimmer (dB) 0.193 1.740 0.963 0.170

apq3_shimmer (dB) 0.009 0.120 0.036 0.011

aqpq5_shimmer (dB) 0.013 0.157 0.053 0.015

apq11_shimmer (dB) 0.025 0.561 0.098 0.026

dda_shimmer (dB) 0.026 0.360 0.107 0.034

ASR1, described in section 3.4.3.1, was used to generate a transcription for each of the

28,539 utterances in the dataset collection, LibriSpeech train-clean-100. Each predicted

transcription was evaluated by comparing it with its gold transcription. WER was used

as the accuracy metric. Figure 9 shows the statistical information of the results. Each bin

in the figure includes the number of utterances whose predicted transcriptions achieved

the accuracy indicated in the horizontal label. As it can observed, one half of the samples

in the dataset have WER lower than 10, and one third, lower than 20.

Figure 9. Statistical information of WER for transcriptions of utterances in dataset train-

clean-100 as predicted by ASR1.

29

Results from section 4.1.1 were compared with results from section 4.1.2 with the purpose

of finding connections. We adopted two approaches: scatter graph and bin partition. In

the scatter graph approach, 18 graphs were generated, one for each feature. The

horizontal axis represented WER; the vertical axis, the prosodic feature being considered.

For each utterance in the dataset, a dot was plotted in position (WER, prosodic feature

value) for that utterance. Figure 10 shows the 18 resulting graphs.

30

Figure 10. Prosodic features against WER for each sample in the train-clean-100 dataset.

Each graph corresponds to the prosodic feature indicated in the vertical axis. Units are

those showed in Table 3. Statistical information of prosodic features extracted from audio

samples in dataset train-clean-100.

As it can be observed, all graphs show a quite homogeneous relationship between WER

and the corresponding prosodic feature. Most dots are located along a horizontal band

within the WER interval [0,100], which is centred very close to the mean value of the

prosodic feature. This observation can be contrasted with the results of the linear

regression computed on pairs (WER, prosodic feature), shown in Table 4. In all cases the

slope is very close to zero. Its maximum value corresponds to stdev_f0 (0.00299), followed

by mean_f0 (0.00296), stdev_delta_f0 (0.00025), mean_delta_f0 (0.00018) and HNR (0.00018).

To perceive the centring of the band, we can compare values in column “mean value” in

Table 3 with values in column “intercept” in Table 4: they are nearly the same. The

Pearson correlation coefficient, which measures the strength of the linear relationship

between two variables, is also close to zero, confirming the lack of direct linear relation.

31

Table 4. Linear regression between WER and each of the prosodic

features considered.

mean_f0 0.0029700 162.00 0.0049

stdev_f0 0.0029900 39.10 0.0153

mean_delta_f0 0.0000953 -0.112 0.0230

stdev_delta_f0 0.0002540 6.120 0.0074

mean_delta_intensity -0.0000022 0.003 -0.0031

stdev_delta_intensity -0.0001220 1.860 -0.0093

hnr 0.0001780 11.50 0.0045

local_jitter -0.0000003 0.024 -0.0037

local_absolute_jitter 0.0000000 0.000 -0.0029

rap_jitter 0.0000003 0.010 0.0072

ppq5_jitter 0.0000001 0.011 0.0020

ddp_jitter 0.0000008 0.029 0.0072

local_shimmer 0.0000001 0.098 0.0004

localdb_shimmer 0.0000012 0.963 0.0005

apq3_shimmer 0.0000004 0.036 0.0027

aqpq5_shimmer 0.0000006 0.053 0.0030

apq11_shimmer -0.0000006 0.098 -0.0016

dda_shimmer 0.0000012 0.107 0.0027

As for the width of the band, we can notice its tendency to be narrower with increasing

WER. We believe, though, that this tendency does not show a relevant relationship

between prosodic features and WER but should be attributed to the WER distribution

among the dataset instead. The number of samples with low WER is considerably higher

than the number of samples with high WER. As mentioned before, one half of the samples

in the dataset have WER lower than 10, and one third, lower than 20. The concentration

of dots at the left of the graph is much higher than at the right, which makes it more

probable for feature values with high deviation from the mean to appear.

An observation we wish to make is the symmetry with respect to the zero value for

graphs corresponding to mean_delta_f0 and mean_delta_intensity. These features represent

variation among the sentence: a positive mean_delta_f0 indicates that the utterance ends

in a higher pitch than it starts, and a negative, the reverse. Similarly, a positive

mean_delta_intensity reveals that the volume at the end of the utterance is higher than at

the beginning. A high absolute value of either of these parameters might be a sign of

global intonation, regardless of if it is ascending or descending. In further experiments we

32

took absolute values of these features into account, instead of the original ones. We will

refer to the new features as abs(mean_delta_f0) and abs(mean_delta_intensity).

In the bin partition approach, we classified utterances into a set of bins according to the

value of the prosodic feature being considered. Then, the average of WER for each bin

was computed and plotted. For the sake of example, let’s have a look to Figure 11, which

corresponds to prosodic feature abs(mean_delta_f0). Six different partitions have been made,

each with a different number of bins: N=1, 2, 3, 4, 5, 6. Each bin in a partition contains

only those samples whose value for the prosodic feature being considered is within the

interval displayed in the horizontal axis. Intervals have been computed so that each bin

contains the same number of samples (quantile binning). In the first graph, where N=1,

only one bin is considered, which includes 28,539 samples, the whole dataset. The range

Figure 11. Average WER computed within quantiles of abs(mean_delta_f0).The

horizontal axis displays intervals of abs(mean_delta_f0); the vertical one, WER values.

Dots displayed in the graph correspond to the mean WER computed over all

utterances having a value of abs(mean_delta_f0) within the interval. For each dot, two

annotations are included: first, the number of utterances included in the bin; and

second, the value of the mean WER.

33

of values of abs(mean_delta_f0) for utterances in this bin expands from the minimum value

of this feature, 0, to its maximum, 5.291Hz. In the second graph, where N=2 (two bins),

each bin contains half of the dataset, that is, 14,269 or 14,270 utterances. The range of

values of the prosodic feature abs(mean_delta_f0) for the first and second bin are [0, 0.114)

and [0.114, 5.291], respectively. This means that the 14,270 samples in the dataset have

abs(mean_delta_f0)<0.114; the remaining 14,269 samples have abs(mean_delta_f0)≥0.114. The

average WER for utterances having abs(mean_delta_f0)<0.114 is 30.288, whereas that for

utterances having abs(mean_delta_f0) ≥0.114 is 23.997.

Using this approach, we do observe a relationship between feature abs(mean_delta_f0) and

WER: an increase in the value of abs(mean_delta_f0) involves a decrease, in average, of

WER. This is clearer for N≤4; for N>4, some deviations from this tendency appear.

Qualitatively, this indicates that utterances that start and end with a significantly

different pitch are, in average, easier to transcribe than utterances that start and end in

a similar pitch.

An analogue partition was made using each of the 18 prosodic features described in

Section 3.2. The resulting graphs can be consulted in Annex: Partitions of prosodic

features. Apart from abs(mean_delta_f0), two more features showed an either decreasing

or increasing relationship with WER: abs(mean_delta_intensity) and stdev_f0. Feature

abs(mean_delta_intensity) showed a similar tendency as abs(mean_delta_f0): in average, a

higher value of abs(mean_delta_intensity) resulted in a lower WER. That is, sentences

starting in a lower volume that they end, or the other way round, are easier to

transcribe than those starting and ending in similar values. By contrast, an increase of

feature stdev_f0 resulted in an increase of WER.

We are not surprised by the results concerning abs(mean_delta_f0) and

abs(mean_delta_intensity). They agree with results presented by (Goldwater et al., 2010),

and they endorse our initial hypothesis that more modulated sentences might be easier

to transcribe. However, results concerning stdev_f0 point to the opposite direction. This

feature is a measure of how different is pitch along the utterance. For monotonous speech,

pitch, that is, the fundamental frequency, is close to the mean all the time, so the

standard deviation should be low. Conversely, highly modulated speech means that pitch

deviate significantly from the mean at some moment, so the standard deviation should

be high. The fact that utterances with low stdev_f0 are, in average, better transcribed by

ASR1 seems to indicate that monotonous speech is easier to transcribe than more

modulated speech.

34

In this part of the work, we trained a new ASR model, ASR2, from scratch using a CL

strategy based on the previous results. We saw earlier that, when classified into bins

according to the values of abs(mean_delta_f0), abs(mean_delta_intensity) and stdev_f0, a

relationship with WER could be established. In particular, the average WER for subsets

of utterances having lower values of abs(mean_delta_f0) or abs(mean_delta_intensity) was

higher than that for subsets having higher values of abs(mean_delta_f0) or

abs(mean_delta_intensity), respectively. By contrast, subsets of utterances having lower

values of stdev_f0 had an average WER lower than that of subsets having higher values

of stdev_f0. Following the CL hypothesis raised at the beginning of this work, these

findings suggest that i) abs(mean_delta_f0), abs(mean_delta_intensity) and stdev_f0 might be

good candidates for CL strategies and ii) an appropriate schedule might be to feed the

system in N<=4 steps, adding a subdataset with more difficult samples each time.

Results concerning abs(mean_delta_f0) shows a parallelism with results reviewed by

(Esteve-Gibert & Prieto, 2018). According to the authors, there is evidence that the

direction of the intonation contour is used by pre-lexical infants to signal speech act

information and may play a role in language acquisition. As described above,

abs(mean_delta_f0) indicates the difference in pitch between the beginning and end of the

utterance, which can be defined, precisely, as intonation contour. This provided us

additional grounds to select this specific feature for our CL experiments. We believe that

similar reasoning could have been applied to abs(mean_delta_intensity). Note, also, that the

fact that the tendency shown by stdev_f0 contradicts what we would have expected

considering human language comprehension does not mean that it should be rejected as

a candidate for CL strategies. For any reason we do not know, it was easier for ASR1 to

transcribe sentences having high stdev_f0. Consequently, the CL hypothesis could have

been applied using this feature as a metric score as well.

Having all the above in mind, we undertook CL experiments using abs(mean_delta_f0) as

our difficulty metric and a partition method with N=4 as our schedule. Consequently,

the dataset was divided into 4 equal-sized subdatasets, each containing utterances whose

value of abs(mean_delta_f0) was included in the intervals shown in the graph in Figure 11

corresponding to 4 bins. Table 5Table 3 lists the resulting datasets. The training of the

system was made in 4 steps. In the first step, Dataset 1, which contained utterances with

the higher value of abs(mean_delta_f0), was used to train the system for a step-length of L

updates. In the second step, Dataset 2 was added, and training continued for another L

updates. In the third step, Dataset 3 was added, and training continued for another L

updates. Finally, in the fourth step, Dataset 4 was added, and training continued until a

total number of 300,000 steps or stabilization.

35

Table 5. Subdatasets used in the CL strategy.

Label Number of

utterances

Values of

abs(mean_delta_f0) (H z)

Dataset 1 7135 [0.000, 0.054)

Dataset 2 7135 [0.054, 0.114)

Dataset 3 7135 [0.114, 0.231)

Dataset 4 7134 [0.231, 5.291]

The strategy with N=1, that is, the inclusion of the whole dataset from the beginning of

the training, constituted our baseline. We also trained the system using a null strategy,

which consisted in making a partition with N=4, like that of the CL strategy, but

including random samples in each bin. The anti-curriculum approach, that is, training

the system by feeding it with difficult samples at the beginning was also made. We

undertook two types of training: with and without a warm-up stage. A warm-up stage is

a period at the beginning of the training were the learning rate increases up to a certain

value, before starting to decrease in the usual way. As we will see, the inclusion of a

warm-up stage when training a vanilla Transformer from scratch using gradient-based

optimization approach is crucial for the final performance of the model. However, it

includes some complexity to our experiments, since the warm-up period overlaps with

the curriculum learning one.

Altogether, our experiments can be summarised as follows:

1. Fine-tuning of two baselines, without and with warm-up.

2. Testing of null hypothesis, without and with warm-up.

3. CL and anti-CL experiments using a 4 bin-schedule based on abs(mean_delta_f0),

without and with warm-up.

For the interpretation of results, we must mention that they are based on isolated

experiments, i.e., no statistical approaches have been taken. Our purpose in this part of

the project was merely to test the ground for further experiments.

Before starting our CL experiments, we defined baselines based on the same ASR system

and training dataset. We fined-tuned a baseline without warm-up, and one with warm-

up. Two parameters were optimized: learning-rate and weight-decay. The values

achieving best performance were used in all further experiments.

36

We began by fine-tuning the learning rate for the no-warm-up case. The precision was

set to FP16 to speed up the process. The weight-decay was fixed to 0. Figure 12 shows

accuracy evolution when training with learning rates within 0.0008 and 0.002. Learning

rates from 0.01 resulted in gradient explosion and are not shown in figure. The best

accuracy was obtained for lr=0.002.

The next parameter we fine-tuned was weight-decay. Figure 13 shows accuracy evolution

when training in the same conditions as above, now with a fixed learning rate (0.002)

and changing the weight-decay. Setting the weight-decay to 0.2 improved training from

a final accuracy of 63.68 to 66.18 on the evaluation dataset, dev-clean.

A baseline for trainings using warm-up was also fine-tuned. Here, we first fixed the

learning-rate to 0.002 and changed the weight decay. Trainings with weight-decay equal

or higher than 0.3 resulted in gradient explosion and are not shown. Figure 14 shows

Figure 12. Fine-tuning of the learning rate for a baseline without warm-up.

Figure 13. Fine-tuning of the weight-decay for a baseline without warm-up.

37

accuracy evolutions for these experiments. As a result of these experiments, weight decay

for the warm-up case was set to 0.2.

Finally, lower learning rates were tested for the warm-up case to see if accuracy case

could be further improved. Figure 15 shows these experiments. As in the training without

warm-up, the best learning rate was 0.002.

Note the improvement achieved when using a warm-up stage. At 300,000 updates, the

maximum allowed in our experiments, the best accuracy reached when training without

warm-up is 64.0, whereas in the warm-up case, an accuracy of 82.3 is achieved in one

tenth of that time, i.e at 30,000 updates.

Figure 14. Fine-tuning of the weight-decay for a baseline with warm-up.

Figure 15. Fine-tuning of the learning rate for a baseline with warm-up.

38

The null hypothesis consisted in training the system following the same 4-step schedule

as in the CL experiments. In this case, though, samples included in each subdataset were

selected randomly. The purpose of this experiment was to compare the effects of sorting

the data based in a difficulty metric and the simple effect of feeding the system in 4 steps.

The step-length, that is, the number L of updates of the first 3 steps of the curriculum

schedule, was set 10,000 for experiments without warm-up and 1,000 for experiments

with warm-up. As training without warm-up is so slow, we considered that a large step-

length was necessary to make the effects of curriculum learning evident. By contrast, in

the warm-up case, it was important to fit the schedule within the warm-up stage, so that

effects would not be mixed.

Figure 16 and Figure 17 show the evolution of the accuracy, evaluated on dev-clean

dataset. The effect of adding new samples in the null-hypothesis case can be clearly seen

in the no-warm-up case, were step-lengths are longer. Note that, in both the no-warm-

up and warm-up cases, accuracy when training with the null hypothesis is behind the

baseline, that is, feeding the system in 4 steps, adding a quarter of the data at each step,

decreases training efficiency. In the warm-up case, training using the null-hypothesis

speeds up between updates 6.000 and 15.000 reaching the baseline, but in the no-warm-

up case there are residual effects of this delay still in update 300,000. It does not surprise

us that training evolution goes behind at the beginning, when the number of samples fed

into the system is smaller. Recall that, in the null hypothesis, samples in each bin are

selected randomly and are not expected to be especially informative for the system.

Overall, during the first steps the system has less information to fit the model. What

should concern us is that, in the warm-up case, this effect is still significant after 300,000

updates.

Figure 16. Comparison of accuracy evolution for baseline and null hypothesis, without

warm-up.

39

 abs(mean_delta_f0)

In this part of the work, we tested a CL design using a 4-bin schedule based on the

prosodic feature abs(mean_delta_f0). Two schedules were tested. The first one, the “CL

schedule”, consisted in feeding the system with subdatasets from Table 5 in descending

order of abs(mean_delta_f0), that is, from “easier” samples to “more difficult” ones. In the

second schedule, the “Anti-CL schedule”, the reverse was followed: datasets were included

into the system in ascending order of abs(mean_delta_f0). Each pair of experiments were

conducted twice: without and with warm-up. In experiments without warm-up the step

length was fixed to 10,000; in those with warm-up, to 1,000. Figure 18 and Figure 19

show the evolution of the accuracy, evaluated on dev-clean dataset. In both figures, the

null hypothesis has been added, to allow comparison.

Figure 17. Comparison of accuracy evolution for baseline and null hypothesis, with warm-

up.

Figure 18. Comparison of accuracy evolution for CL and anti-CL strategies based on

abs(mean_delta_f0), without warm-up. The null hypothesis is also included.

40

Note that, during the first 70,000 and 8,000 updates in the no-warm-up and warm-up

cases, respectively, the CL strategy outperforms the null-hypothesis, whereas the Anti-

CL strategy underperforms it. Later, this effect is diluted. In the warm-up case, there is

no significant difference in accuracies achieved in later epochs. In the no-warm-up case,

the tendency even reverses, and the anti-CL strategy takes advantage. It should be

studied if this effect is directly related to CL, or it is a random effect appearing at

advanced stages, where the effects of the first epochs are somehow forgotten.

Table 6 and Table 7 summarize accuracy results for all experiments at updates 50,000

and 5,000 for the no-warm-up and warm-up cases, respectively. Results at the end of the

training are also included. As we can see, in the no-warm-up case, at step 50,000, accuracy

for the CL strategy is 5.9% above the null hypothesis and 9.7% above anti-CL; in the

warm-up case, at step 5,000, accuracy for the CL strategy is 2.71% above the null

hypothesis and 0.12% above anti-CL. Compared to the baseline, all experiments

underperform during the first epochs. In the warm-up case, though, null, CL and anti-

CL experiments reach the baseline at some point, so the final accuracy is quite similar.

In the no-warm-up case, the accuracy of the baseline is better from the beginning to the

end of the training, at 300,000 steps.

Table 6. Accuracies of experiments without warm-up

Baseline 35.7 66.21

Null hypothesis 22.39 59.86

CL 23.71 59.34

Anti-CL 20.41 61.67

Figure 19. Comparison of accuracy evolution for CL and anti-CL strategies based on

abs(mean_delta_f0), with warm-up.The null hypothesis is also included.

41

Table 7. Accuracies of experiments with warm-up

Baseline 71.53 82.29

Null hypothesis 65.38 82.19

CL 67.15 81.46

Anti-CL 65.46 81.98

These results seem to indicate that the CL hypothesis based on abs(mean_delta_f0) has

some positive effect in speeding up training during the first stages. However, this effect

is not powerful enough as to compensate the negative effect that feeding the system in

four steps produces. This effect can be isolated by comparing the baseline and the null

hypothesis. For the no-warm-up case, accuracy when using the null hypothesis is 37%

behind the baseline at update 50,000 and 9.6% at update 300,000. For the warm-up case,

it is 8.6% behind at update 5,000 and 0.12% at update 30,000. Figure 16 and Figure 17

above clearly show this effect.

42

In this work we have explored the possibility of improving performance of end-to-end

ASR systems using CL strategies based on prosody. In the field of ASR, CL has been

successfully applied using different approaches. This is the first attempt to take

advantage of prosody effects.

In the first part of the project, several prosodic features have been extracted from a

collection of 28,539 utterances. The same utterances have been transcribed using a pre-

trained ASR system. The percentage of errors in these transcriptions has been used as

difficulty metric and plotted against each prosodic feature using two different approaches:

scatter graph and bin partition. In the scatter graph approach each utterance of the

dataset was plot in position (x, y) of a 2-dimensional graph, where x was the number of

errors, expressed as WER, and y was the value of the prosodic feature being considered.

This approach did not allow us to detect any relationship between prosodic features and

WER. In the bin partition approach, the collection of utterances was classified into a set

of bins according to the value of the prosodic feature being considered. Then, the average

of WER for each bin was computed and plotted. In this approach, WER showed a

tendency to decrease with increasing values of features abs(mean_delta_f0) and

abs(mean_delta_intensity), and a tendency to increase with increasing values of stdev_f0. The

tendency of WER to either decrease or increase with ascending values of these features

was clearer when the number of bins in the partition was equal or less than four. Feature

abs(mean_delta_f0) corresponds to the absolute value of the mean variation of the

fundamental frequency along the utterance. It is a measure of intonation contour:

ultimately, it indicates the difference in pitch between the beginning and end of the

utterance. Similarly, abs(mean_delta_intensity), or the absolute value of the mean variation

of the intensity along the utterance, is a measure of volume contour. Feature stdev_f0

corresponds to the standard deviation of the fundamental frequency along the utterance.

In the second part of the project, a CL strategy was defined using feature

abs(mean_delta_f0) as the difficulty metric. The original dataset of 28,539 was divided into

4 subdatasets, each containing a quarter of the samples. The partition was made so that

in each subdataset there were utterances with value of abs(mean_delta_f0) within a certain

interval. Then, a new ASR system was trained from scratch using this CL schedule: first,

the system was trained using the dataset containing samples with the highest values of

abs(mean_delta_f0) (“easy utterances”, for either 1,000 or 10,000 steps, depending on

whether a warm-up stage was included. Then, a new subdataset, the one containing

utterances with the highest values of abs(mean_delta_f0) among the three remaining

datasets, was added. Training continued for another 1,000 or 10,000 updates. Then the

next dataset was added, and so on, until the whole collection was introduced.

Experiments using the reverse strategy, i.e., training in 4 steps beginning with the dataset

43

containing utterances with the lowest values of abs(mean_delta_f0) (“difficult utterances”),

were also done. We refer to this strategy as anti-CL. A strategy using the same partition

but including random samples in each subdataset was also tested. We refer to this

strategy as the null hypothesis. All these experiments were done twice, with and without

a warm-up stage. Results were compared with a baseline, which consisted in training the

system using the whole dataset from the beginning.

For both the warm-up and no-warm-up experiments, CL strategies outperformed the null

hypothesis and the anti-CL hypothesis at the beginning of the training. However, they

did not outperform the baseline. This indicates that curriculum learning based on

abs(mean_delta_f0) somehow helps the system to learn during the first stages, but this effect

is not powerful enough as to compensate the negative consequences that feeding the

system starting with a fraction of the dataset has.

Clearly, further experiments should be made before confirming or refuting the CL

hypothesis based on abs(mean_delta_f0). The effectiveness of CL is highly sensitive to the

mode of progression through the tasks (Graves et al., 2017).

The CL hypothesis is grounded on the idea that training with “easy” examples avoids

wasting time with noisy or harder to predict samples and helps the system achieve a

better generalization (Bengio et al., 2009) faster. However, “easy” examples might carry

too little information for the system to learn, delaying learning. The challenge behind the

definition of a CL strategy is to find a balance between these two effects, both by selecting

the appropriate difficulty metric and determining an efficient schedule. Apart from this,

applying CL implies starting training with a reduced dataset, which has proved to have

a negative effect. To reduce this effect, it might be more appropriate to use a 2-bin

schedule, instead of a 4-bin one. Such a schedule would also magnify the difference

between samples in the datasets, making the effect of CL more evident. The use of a

larger dataset could also help to prevent the learning delay at the beginning, caused to a

lack examples. Other step lengths, that is, the number of updates during which the system

is trained before more data is added, should also tested, as well as other types of

schedules, such as a continuous linear or exponential pacing.

On the other hand, alternative features could also be used to define new prosody-based

CL strategies. Experiments in the first part of the project showed that

abs(mean_delta_intensity) and stdev_f0 could be feasible candidates. A combination of

abs(mean_delta_f0), abs(mean_delta_intensity) and stdev_f0 could also be used. In fact, a plot in

the partition bin approach using the addition of normalised abs(mean_delta_f0)

abs(mean_delta_intensity) unveiled an more pronounced relationship with WER.

Finally, different prosodic features should be analysed. Two features that we intend to

explore in the future are mean(abs_delta_f0) and mean(abs_delta_intensity). Features

considered in this work, abs(mean_delta_f0) and abs(mean_delta_intensity), are computed by

44

first extracting local variations of an utterance, averaging over them, and finally taking

the absolute value of this average. With this method, positive and negative variations

within the utterance cancel out when computing the average, and only the difference

between the beginning and the end remains. However, for speech comprehension, internal

variations in intonation and volume are crucial, both at lexical (word stress) and

syntactical level. Considering local absolute variations and averaging over those would

provide a more significant scalar feature to give account of this important prosodic effect.

45

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C.,

Casper, J., Catanzaro, B., Cheng, Q., Chen, G., & others. (2016). Deep speech 2:

End-to-end speech recognition in english and mandarin. International Conference

on Machine Learning, 173–182.

Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R.,

Saunders, L., Tyers, F. M., & Weber, G. (2020). Common voice: A massively-

multilingual speech corpus. LREC 2020 - 12th International Conference on

Language Resources and Evaluation, Conference Proceedings, 4218–4222.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning.

Proceedings of the 26th Annual International Conference on Machine Learning, 41–

48.

Boersma, P., & Weenink, D. (2022). Praat: doing phonetics by computer (6.2.12).

http://www.praat.org/

Braun, S., Neil, D., & Liu, S.-C. (2017). A curriculum learning method for improved noise

robustness in automatic speech recognition. 2017 25th European Signal Processing

Conference (EUSIPCO), 548–552.

Cambara, G. (2021). Speacher. https://github.com/gcambara/speacher.

Chan, W., Jaitly, N., Le, Q., & Vinyals, O. (2016). Listen, attend and spell: A neural

network for large vocabulary conversational speech recognition. ICASSP, IEEE

International Conference on Acoustics, Speech and Signal Processing - Proceedings,

2016-May, 4960–4964. https://doi.org/10.1109/ICASSP.2016.7472621

Chang, X., Zhang, W., Qian, Y., le Roux, J., & Watanabe, S. (2019). MIMO-Speech:

End-to-end multi-channel multi-speaker speech recognition. 2019 IEEE Automatic

Speech Recognition and Understanding Workshop (ASRU), 237–244.

Davis, R. H. (1910). Notes of a war correspondent. Library of Congress Online Catalog.

Elman, J. L. (1993). Learning and development in neural networks: the importance of

starting small. Cognition, 48(1), 71–99. https://doi.org/10.1016/0010-

0277(93)90058-4

Esteve-Gibert, N., & Prieto, P. (2018). Early development of prosody-meaning interface.

The Development of Prosody in First Language Acquisition, 228–246.

Farrús, M., Hernando, J., & Ejarque, P. (2007). Jitter and shimmer measurements for

speaker recognition. Proceedings of the Annual Conference of the International

46

Speech Communication Association, INTERSPEECH, 2, 1153–1156.

https://doi.org/10.21437/INTERSPEECH.2007-147

Ghahremani, P., Babaali, B., Povey, D., Riedhammer, K., Trmal, J., & Khudanpur, S.

(2014). A pitch extraction algorithm tuned for automatic speech recognition.

ICASSP, IEEE International Conference on Acoustics, Speech and Signal

Processing - Proceedings, 2494–2498.

https://doi.org/10.1109/ICASSP.2014.6854049

Goldwater, S., Jurafsky, D., & Manning, C. D. (2010). Which words are hard to

recognize? Prosodic, lexical, and disfluency factors that increase speech recognition

error rates. Speech Communication, 52(3), 181–200.

Graves, A. (2012). Sequence transduction with recurrent neural networks. ArXiv Preprint

ArXiv:1211.3711.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., & Kavukcuoglu, K. (2017).

Automated curriculum learning for neural networks. International Conference on

Machine Learning, 1311–1320.

Graves, A., Mohamed, A., & Hinton, G. (2013). Speech recognition with deep recurrent

neural networks. 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing, 6645–6649.

Hahn, L. D. (1999). Native speakers’ reactions to non-native stress in English discourse.

University of Illinois .

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R.,

Satheesh, S., Sengupta, S., Coates, A., & others. (2014). Deep speech: Scaling up

end-to-end speech recognition. ArXiv Preprint ArXiv:1412.5567.

Isik, Y., Roux, J. le, Chen, Z., Watanabe, S., & Hershey, J. R. (2016). Single-Channel

Multi-Speaker Separation Using Deep Clustering. Proc. Interspeech 2016, 545–549.

https://doi.org/10.21437/Interspeech.2016-1176

Kano, T., Sakti, S., & Nakamura, S. (2017). Structured-Based Curriculum Learning for

End-to-End English-Japanese Speech Translation. Proc. Interspeech 2017, 2630–

2634. https://doi.org/10.21437/Interspeech.2017-944

Kim, S., Seltzer, M. L., Li, J., & Zhao, R. (2017). Improved training for online end-to-

end speech recognition systems. http://arxiv.org/abs/1711.02212

Kim, S., Seltzer, M., Li, J., & Zhao, R. (2018). Improved Training for Online End-to-end

Speech Recognition Systems. Proc. Interspeech 2018, 2913–2917.

https://doi.org/10.21437/Interspeech.2018-2517

47

Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language independent

subword tokenizer and detokenizer for Neural Text Processing. EMNLP 2018 -

Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, Proceedings, 66–71. https://doi.org/10.18653/v1/d18-2012

Kuznetsova, A., Kumar, A., & Tyers, F. M. (2021). A bandit approach to curriculum

generation for automatic speech recognition. http://arxiv.org/abs/2102.03662

Li, X., Tao, J., Johnson, M. T., Soltis, J., Savage, A., Leong, K. M., & Newman, J. D.

(2007). Stress and emotion classification using jitter and shimmer features. 2007

IEEE International Conference on Acoustics, Speech and Signal Processing-

ICASSP’07, 4, IV–1081.

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: an asr corpus

based on public domain audio books. 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 5206–5210.

Platanios, E. A., Stretcu, O., Neubig, G., Póczos, B., & Mitchell, T. M. (2019).

Competence-based Curriculum Learning for Neural Machine Translation. In J.

Burstein, C. Doran, & T. Solorio (Eds.), Proceedings of the 2019 Conference of the

North American (pp. 1162–1172). Association for Computational Linguistics.

https://doi.org/10.18653/v1/n19-1119

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann,

M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., & Vesely, K.

(2011). The Kaldi Speech Recognition Toolkit. IEEE Signal Processing Society.

Ranjan, S., & Hansen, J. H. L. (2021). Curriculum Learning based approaches for robust

end-to-end far-field speech recognition. Speech Communication, 132, 123–131.

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Subakan,

C., Dawalatabad, N., Heba, A., Zhong, J., Chou, J.-C., Yeh, S.-L., Fu, S.-W., Liao,

C.-F., Rastorgueva, E., Grondin, F., Aris, W., Na, H., Gao, Y., … Bengio, Y. (2021).

SpeechBrain: A General-Purpose Speech Toolkit. http://arxiv.org/abs/2106.04624

Sainath, T. N., He, Y., Li, B., Narayanan, A., Pang, R., Bruguier, A., Chang, S., Li, W.,

Alvarez, R., Chen, Z., & others. (2020). A streaming on-device end-to-end model

surpassing server-side conventional model quality and latency. ICASSP 2020-2020

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 6059–6063.

Salverda, A. P., Dahan, D., & McQueen, J. M. (2003). The role of prosodic boundaries

in the resolution of lexical embedding in speech comprehension. Cognition, 90(1),

51–89.

48

Slyh, R. E., Nelson, W. T., & Hansen, E. G. (2008). Analysis of mrate, shimmer, jitter,

and F/sub 0/ contour features across stress and speaking style in the SUSAS

database. 2091–2094 vol.4. https://doi.org/10.1109/ICASSP.1999.758345

Soderstrom, M., Seidl, A., Nelson, D. G. K., & Jusczyk, P. W. (2003). The prosodic

bootstrapping of phrases: Evidence from prelinguistic infants. Journal of Memory

and Language, 49(2), 249–267.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

& Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information

Processing Systems, 30.

Vydana, H. K., Srivastava, B. M. L., Shrivastava, M., & Vuppala, A. K. (2016). Starting

small learning strategies for speech recognition. 2016 IEEE Annual India Conference

(INDICON), 1–6.

Wang, C., Tang, Y., Ma, X., Wu, A., Okhonko, D., & Pino, J. (2020). fairseq S2T: Fast

Speech-to-Text Modeling with fairseq. http://arxiv.org/abs/2010.05171

Wang, C., Wu, Y., Liu, S., Zhou, M., & Yang, Z. (2020). Curriculum Pre-training for

End-to-End Speech Translation. http://arxiv.org/abs/2004.10093

Wang, X., Chen, Y., & Zhu, W. (2020). A Survey on Curriculum Learning. International

Journal of Computer Vision, 130, 1526–1565. http://arxiv.org/abs/2010.13166

Wittig, F., & Uller, C. M. (2003). Implicit Feedback for User-Adaptive Systems by

Analyzing the Users’ Speech. Proceedings of the Work-Shop on Adaptivit

̈at Und Benutzermodellierung in InteraktivenSoftwaresystemen (ABIS).

http://www.praat.org

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,

T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., Platen, P. von, Ma, C., Jernite,

Y., Plu, J., Xu, C., Scao, T. le, Gugger, S., … Rush, A. M. (2020). Transformers:

State-of-the-Art Natural Language Processing. 38–45.

https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.6

Zhang, W., Chang, X., Qian, Y., & Watanabe, S. (2020). Improving end-to-end single-

channel multi-talker speech recognition. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 28, 1385–1394.

49

50

51

52

	Acknowledgments
	Abstract
	Resumen
	Table of contents
	Figure Index
	Table Index
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of this document

	2 Related work
	2.1 Curriculum learning
	2.1.1 Curriculum learning approaches
	2.1.2 Curriculum learning in end-to-end ASR systems
	2.1.2.1 Approaches using the original CL strategy
	2.1.2.2 Approaches using Data-Level Generalized Curriculum
	2.1.2.3 Generalized Curriculum Learning
	2.1.2.4 Automatic methods

	2.2 The effect of prosody aspects in automatic speech recognition

	3 Case study
	3.1 General procedure
	3.1.1 Selection of candidate prosodic features
	3.1.2 Curriculum learning experiments

	3.2 Prosodic features
	3.2.1 Fundamental frequency, F0
	3.2.2 Intensity
	3.2.3 Harmonics-to-Noise Ratio (HNR)
	3.2.4 Jitter
	3.2.5 Shimmer

	3.3 Evaluation
	3.4 Experimental set-up
	3.4.1 The dataset collection: LibriSpeech
	3.4.2 Prosodic features extraction: Praat and Parselmouth
	3.4.2.1 Praat
	3.4.2.2 Parselmouth

	3.4.3 ASR systems
	3.4.3.1 AR1: Hugging Face / Speechbrain
	3.4.3.2 ASR2: Fairseq S2T
	Data pre-processing
	Model
	Optimization
	Batching
	Mixed precision

	3.4.4 Curriculum learning module: Speacher
	3.4.5 The hardware

	4 Experiments and results
	4.1 Selection of candidate prosodic features
	4.1.1 Extraction of prosodic features
	4.1.2 Evaluation of the transcription quality by a pre-trained model
	4.1.3 Selection of prosodic features for CL

	4.2 Experiments using curriculum learning
	4.2.1 Baseline
	4.2.2 Null hypothesis
	4.2.3 CL experiments using abs(mean_delta_f0)

	5 Conclusions and future work
	Bibliography
	Annex: Partitions of prosodic features

