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Attention to Traffic Forecasting: Improving
Predictions with Temporal Graph Attention

Networks
Raúl Gadea and José L. Aznarte

Abstract—Dynamic traffic flow forecasting remains an open
issue to this day. As other spatio-temporal problems, traffic pre-
diction deals with both temporal and spatial nonlinear relation-
ships, with the particularity that nearby points in the Euclidean
space might be allocated in different roads, adding another layer
of complexity. Traffic prediction has witnessed a revolution with
the appearance of deep learning, with graph neural networks
being prominently responsible for a steep increase in forecasting
accuracy.

In this paper, we consider the use of an automatic attention
mechanism in order to improve the prediction capabilities of
a traffic graph convolutional network. This model is based on
the composition of gated recurrent units and graph convolution
networks to model space and time simultaneously. To overcome
the spatial modelling limitations of the original model, our
proposal replaces the graph convolutional layer with a graph
attention mechanism. Our aim is to model spatial relations in an
automatic, more dynamic way.

In order to prove the validity and usefulness of our proposal,
we have performed a thorough experimentation over two known
traffic datasets used in previous research, plus a new, complex
one which we have curated and published. Our results portray
a clear and statistically significant advantage with the inclusion
of spatial attention, surpassing the performance of a wide set of
state-of-the-art models on every tested scenario.

I. INTRODUCTION

Dynamic traffic forecasting aims to predict future values
of traffic-related variables such as speed or intensity, given
historical and current values provided by sensors allocated
along the road. It has many important applications, such
as route selection, trip time estimation or better traffic flow
control to reduce its impact on air quality.

It is also a particularly complex modelling problem given
that it implies to model not only relations among points with
different timestamps, but also spatial relations between adja-
cent points. To make it even more interesting, nearby points
in Euclidean distance might be allocated in very different
road segments, making their spatial relationship weak or even
unexistent.

As an example, in Figure 1 both the spatial and temporal
correlations are shown for four urban traffic sensors of the
city of Madrid. Sensor 3598 appears in green, 6699 in red,
6700 in orange and 6770 in blue. All sensors present temporal
correlation, presenting a clear daily seasonality. However, the
spatial correlation is very particular. It can be seen how sensor
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Fig. 1. Spatial and temporal traffic intensity dependency of for sensors in
two different lanes

6699 presents a more similar curve to sensor 6700 than to
6770, even though they are farther in euclidean space. This
occurs because sensors 6699 and 6700 are connected in the
same lane, whereas 6770 is situated in a parallel lane pointing
on opposite direction. This same phenomena can be seen
between sensors 3598 and 6770.

Graph neural networks (GNN) [1] encode spatial relations
in a mathematical structure that can represent the actual
connections in the roads, and thus are in principle particularly
well suited for problems such as this one (although some
research questions this intuition [2]). These neural networks
allow to model spatial relationships beyond Euclidean ones,
making it a disruptive technique in the traffic forecasting
context.

Many different approximations using GNN to forecast
traffic-related variables have arisen over the last years. The
temporal graph convolutional network (T-GCN) [3] is one
of the simplest and more popular ones. It combines Gated
Recurrent Units (GRU) [4] to model time with a standard
graph convolutional network (GCN) [5] to model space.
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However, experience from other fields shows that standard
GCN is not always the best choice to capture inherent spatial
relations, and that attention mechanisms are a better approach
for this task. Accordingly, in this paper, an evolution of the T-
GCN is proposed. Instead of modelling space with a GCN, we
prove how modelling space with spatial attention mechanisms
through the use of a graph attention network (GAT) [6] results
in a better model, which we call temporal graph attention
network (T-GAT).

Our work tries to give answers to some of the main
challenges for traffic forecasting identified in [7]. That review
paper tried to set a landmark on the field by identifying a
set of needed future developments for a useful and feasible
prediction of traffic. Among those challenges, we deal with in-
creased data resolution, aggregation and quality (challenge 4),
temporal characteristics and spatial dependencies (challenge
6), model selection and testing (challenge 7) and, especially,
realizing the full potential of artificial intelligence (challenge
10).

The main contributions of this work are as follows:
• We prove the usefulness of attention mechanims for

traffic forecasting, introducing T-GAT, a new deep learn-
ing model which uses spatial attention to improve over
preexisting graph convolutional networks.

• We report on extensive experiments which show how
this approach obtains significant improvements over other
state-of-the-art baseline methods including the original T-
GCN.

• We gather, prepare, process and publish a dataset of
Madrid’s M30 Highway traffic flow speed measures, thus
creating a new graph forecasting dataset available for
further experimentation. We carefully imputed all missing
and erroneous data and created the adjacency matrix
using driving distance instead of Euclidean distance.

The rest of the paper is organized as follows. In Section
II a review of previous traffic flow forecasting methods is
presented. Section III introduces the original T-GCN design as
well as the modifications that lead to the novel T-GAT model.
Section IV includes all data wrangling necessary to prepare
the Madrid traffic intensity data for training and prediction.
Section IV explains all experiments and presents and analyze
their results. Section V presents our conclusions.

II. RELATED WORK

A. Traffic flow forecasting

Traffic flow forecasting is a classical problem in the trans-
port engineering field and is gaining more and more attention
every day. Solutions are categorized in two major groups:
Parametric and non-parametric approaches. Some of the most
conservative parametric models include historical average [8],
lineal regression [9] or Kalman filtering models [10].

One of the oldest and most used time series prediction
models is the autoregressive integrate moving average model
(ARIMA) [8], which is still relevant to this day. Over the years
ARIMA has been subject to modifications in order to improve
its prediction precision, such as Kohonen ARIMA [11], subset
ARIMA [12], seasonal ARIMA [13], and many more. Even

though these methods give fairly good results in general, they
depend on a stationarity hypothesis and therefore are not
sufficient for a more general solution in traffic forecasting.
Non-parametric methods can tackle this problem because of
their strong learning abilities given the adequate data, allowing
to learn non-stationary patterns. These methods include K-
nearest [14], support vector regression (SVR) [15], fuzzy logic
[16], Bayesian networks [17], and, finally, neural network
models.

Recently, neural networks and specially deep learning tech-
niques have been rapidly evolving, obtaining outstanding re-
sults in areas such as computer vision or natural language
problems. Given the sequential nature of traffic flow data,
Recurrent Neural Netowrks (RNN) are the most extended
technique for sequence modelling. The main problem with
plain RNNs is their inability to capture long-term depen-
dencies due to vanishing gradients. In order to correct this
problem, newer proposals such as long-short term memory
neural networks (LSTM) [18] and gated recurrent units (GRU)
[4] were developed in order to capture long dependencies using
memory mechanisms. In [19], the authors make a comparison
between ARIMA models and deep learning approaches such
as LSTM or GRU networks, resulting on a clear victory of the
latter.

These networks obtain great results when working with
temporal data, however they find it harder to address the
spatial side of the traffic forecasting problem. In order to
address this situation much of the work went to develop a
combination of RNNs architectures for time modelling with
convolutional neural networks (CNNs) for spatial modelling
[20]. One interesting example of this combination is given in
[21], where the authors develop a modular approach consisting
in a spatial module, a time module and the later combination
of both. Apart from being the state of art working with spatial
data such as images, CNNs are also a disrupting methodology
in time series prediction, being particularly suitable for spatio-
temporal data such as traffic forecasting. In [22] researchers
transform traffic data to an image representation in order to
obtain a prediction.

B. GNNs

The main issue using CNNs to capture spatial relations
among road points is that, in the standard representation where
convolution can be applied, every "node" appears as equidis-
tant and adjacently connected from one another. Needless to
say, city roads hardly ever meet this property.

In recent years, graph neural networks (GNNs) [1] have
regained attention, achieving exceptional results in many prob-
lems with a similar structure as traffic forecasting. This sort
of networks allow the computation of spatial relations in a
non-Euclidean space and therefore can create asymmetrical
representations of roads.

Most taxonomies in this field classify GNNs depending on
the technique utilized to share information between nodes:
recurrent graph neural networks (RecGNNs) and convolutional
graph neural networks (ConvGNNs) [23] [24].
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1) Recurrent graph neural networks (RecGNNs): The first
ever published graphical neural network was developed under
the now common recurrent graph neural network label [1].
These networks represent nodes by using recurrent neural
networks as a message passing device. RecGNNs update node
states by exchanging neighbourhood information recurrently
until a stable equilibrium is reached. The first versions where
based on pure RNNs, but limits were found rapidly so more
refined RecGNNs where developed such as the GRU based
RecGNNs, known as gated graph neural network (GGNN)
[25].

2) Convolutional graph neural networks (ConvGNNs):
ConvGNNs are closely related to recurrent graph neural net-
works. However, ConvGNNs use a fixed number of layers to
address the architectural mutual dependencies between nodes,
which make them much faster and stable to train. They
fall under two different categories depending if the method
approached the problem in a spectral or spatial manner.

a) Spectral-based ConvGNNs: Spectral-based Con-
vGNNs are rooted in the mathematical foundations used in
graph signal processing. Each ConvGNNs differ from each
other on the filter used to de-noise the graph. Some of
the most famous methods developed under this category are
spectral CNNs or the ChebNet [26]. The most influential of
them all has been GCN [5], which inspired other scientist
to develop networks such as adaptive graph convolutional
network (AGCN) [27] or dual graph convolutional network
(DGCN) [28].

b) Spatial-based ConvGNNs: Spatial-based ConvGNNs
use a similar approach to CNNs to obtain node relationships.
However, instead of equally distributed and connected nodes,
Graphs can adapt convolutions to broader spectrum of typolo-
gies. In recent years, these methods have been developing
rapidly, and currently are without a doubt the most widely
used graphical neural networks. This is partly due to efficiency,
generality, and flexibility issues. Spatial-based models are
more flexible when handling multi-source graph inputs such as
edge inputs, directed graphs, signed graphs, and heterogeneous
graphs, because these graph inputs can be incorporated into
the aggregation function easily. Neural network for graphs
(NN4G) [29], was the first work towards spatial-based Con-
vGNNs. Distinctively different from RecGNNs, NN4G learns
graph mutual dependencies through a compositional neural
architecture with independent parameters at each layer. After
this, many other spatial-based ConvGNNs followed, such
as: contextual graph Markov model (CGMM) [30], diffusion
convolutional neural network (DCNN) [31] and GraphSAGE
[32].

Another important milestone in the development of spatial-
based convolutional GNNs was the addition of attention
mechanisms to the graph, allowing the network to learn the
importance of each edge while training. The Graph Attention
Network (GAT) [6] was the first work to introduce attention
into a graph neural network, later succeeded by GATv2 [33],
which refined this concept. On the other hand, Gated attention
networks (GaAN) [34] use a convolutional sub-network to
control each attention head’s importance, unlike the traditional
multi-head attention mechanism, which consumes equally all

attention heads.

C. Spatio-temporal Graph Neural Networks

In many real-world applications, graphs are dynamic both
in terms of structure and inputs. Spatio-temporal graph neural
networks (STGNNs) aim to learn hidden patterns from spatio-
temporal graphs by capturing its dynamics. This group of
methods are the state of art solving traffic flow forecasting
problems. Most of these methods are combinations of Con-
vGNNs or RecGNNs, with more classical temporal approaches
such as RNNs and CNNs.

1) RNN based approaches: Several RNN have been applied
to traffic forecasting. For instance, a model called graph
gated recurrent unit (GGRU) [34], with GaAN as a building
block, was developed to address the traffic speed forecasting
problem. Also the diffusion convolutional recurrent neural
network (DCRNN) [35] captures spatial dependencies using
bidirectional random walks on the graph, and the tempo-
ral dependency using the encoder-decoder architecture with
scheduled sampling. The temporal graph convolutional net-
work (T-GCN) [3] combines GNNs with a GRU architecture
to simultaneously capture both spatial and temporal depen-
dencies. Following this line of work, the attention temporal
graph convolutional network (A3t-GCN) [36] added a tempo-
ral attention mechanism on top of the T-GCN architecture,
achieving even better performance. Similarly as with plain
RNNs, these networks are usually computationally expensive
to train.

2) CNN based approaches: To tackle the RNNs issues, 1-
dimensional CNNs were also used to capture the temporal
dependencies. Spatio-temporal graph convolutional networks
(STGCN) [37] effectively capture comprehensive spatio-
temporal correlations by modelling multi-scale traffic net-
works. This model integrates 1D convolutional layers with
ChebNet or GCN layers. On the other hand, the graph
multi-attention network (GMAN) [38] and the attention-based
spatial-temporal graph convolutional network (ASTGCN) [39]
both incorporate an attention mechanism to better model
spatial temporal correlation. Finally, the graph wavenet [40],
uses a dilation convolution in order to capture long-term
relationships tackling one of the bigger problems in temporal
convolution, and introduces a self-learned adjacency matrix
witch learns nodes relations while training.

III. METHODOLOGY

In the following section our proposed work is introduced
and mathematically formulated. It consists in the update of the
T-GCN presented in section II-C1 with a spatial attention layer
GATv2 introduced in II-B2b. This change will presumably
allow the network to better capture the spatial relation between
nodes.

A. Problem definition

In this paper, the road network is represented as a weighted
directed graph G = (V ;E) where V represents nodes on
the graph and E are the connections between nodes. In this
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Fig. 2. The three different flavours of common GNN architectures.

particular scenario, each road sensor is represented as a node
V = {v1, v2, ..., vN}, where N is the number of nodes in
the graph. Sensors are connected using a driving distance
proximity measure by a set of edges represented with the
weighted adjacency matrix A ∈ RN×N . The adjacency matrix
contains 0 when there is no connection between nodes and a
real number between 0 and 1 otherwise, being 1 the strongest
connection possible.

The traffic univariate information variable, such as vehicle
speed, is represented with the matrix X ∈ RN×P , where P
denotes the length of the time series and Xi ∈ RN×i the traffic
information of the whole graph at time i.

The model goal is to obtain a function f that given the road
structure and the historic time series of traffic is able to predict
the traffic variable for T points into the future.

[Xt+1, Xt+2...Xt+T ] = f(G; (Xt−n, Xt−n+1, ..., Xt−1)),
(1)

where n represents the number of historic values used as input
for prediction and T the number of future output values to
predict.

B. Temporal dependence modelling

Temporal dependence modelling is a key part in any
forecasting problem. As stated above, there exists two main
approaches among deep learning techniques for such task: the
use of RNNs or CNNs. Each technique has its strengths and
weaknesses, however RNNs are more extended for sequence
modelling mainly due to their longer application history in this
domain. To better capture long time dependencies a GRU-
based network is proposed given that it has less gates and
therefore less parameters to train than the LSTM counterpart,
while usually achieving comparable results.

C. Spatial dependence modelling with attention

Spatial dependence modelling is the other main focus of
this paper. Given the structural disposition of traffic forecasting
problems, GNNs have risen as the main tool to perform spatial
convolutions in this non-Euclidean domain. Following the lit-
erature [41], GNNs can be categorized into 3 different flavours:
convolutional, attentional and message-passing. One important
thing to note is that there is a representational containment
between these approaches: convolutional ⊆ attentional ⊆
message-passing. Each one of them can be seen as a particular
case of the following one, being message-passing the most
general.

The aforementioned T-GCN model uses the convolutional
flavour as its spatial dependence modelling unit:

hu = φ

(
xu,

⊕
v∈Nu

cuvψ(xv)

)
, (2)

where φ and ψ are learnable affine transformations with activa-
tion functions,

⊕
is a permutation invariance non-parametric

operation such as the sum, mean or maximum, Nu corresponds
to the neighbourhood of the node u and cuv specifies the
importance of node v to node u’s representation. Its value
is the one presented in the weighted adjacency matrix A.

The T-GCN draws from [42] to define its convolutional
layer. A two layered network would then be as follows:

f(X,A) = σ
(
Â ReLU

(
ÂXW0

)
W1

)
, (3)

where X represents the feature matrix, A represents the
weighted adjacency matrix, Â = D̃−

1
2 ÃD̃−

1
2 denotes the

preprocessing step, Ã = A + I is a matrix with the self-
connection structure, D̃ is a degree matrix, with D̃ =

∑
j Ãij .

W0 and W1 represent the weight matrix in the first and second
layer, and σ() and ReLU() are activation functions.

On the other hand, in order to overcome some limitations
of the T-GCN, our proposed model uses the attentional flavour
as its spatial dependence modelling unit:

hu = φ

(
xu,

⊕
v∈Nu

a(xu, xv)ψ(xv)

)
. (4)

As seen in equation 4 the main difference between the
convolutional and attentional flavours is that in the convolu-
tional case cuv has a fixed value, whereas in attention-based
networks it is a trainable function a(xu, xv). The attentional
layer used for our model is the GATv2 [33], which is a refined
actualization of the famous GAT [6], in which

fu = σ

( ∑
v∈Nu

a(xu, xv)Wxv

)
, (5)

a(xu, xv) =
exp(e(xu, xv))∑

w∈Nw
exp(e(xu, xw))

, (6)

and
e(xu, xv) = a>LeakyReLU(W · [xu||xv]). (7)

D. T-GAT

Elaborating over previous equations, the specific calculation
process for the T-GAT is as follows. The update gate, ut, is:

ut = σ

(
Wuf(A, [Xt, ht−1]) + bu

)
, (8)

where f is the equation 7 explained above, A is the adja-
cency matrix, Xt the feature matrix for a specific timestamp,
ht−1 the previous hidden state and Wu and bu are trainable
parameters. On the other hand, the memory gate is given by:

rt = σ

(
Wrf(A, [Xt, ht−1]) + br

)
, (9)
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Fig. 3. Schematics of the T-GAT general architecture, with n historical input
values, in blue, for a T horizon forecasting, in green. First, in yellow, a spatial
attention convolution is applied to the concatenation of the historical value
with the hidden state of the previous layer. Then, in purple, the gated recurrent
unit calculates next hidden state to repeat the process all over again. The initial
hidden state is set to zero.

where Wr and br are trainable parameters. The new hidden
state candidate is:

ct = tanh

(
Wcf(A, [Xt, r ∗ ht−1]) + bc

)
, (10)

where Wc and bc are also trainable parameters and the new
hidden state is given by:

ht = ut ∗ ht−1 + (1− ut) ∗ ct. (11)

Its overall architecture can be seen in figure 3.

IV. DATA

All models have been tested over two previously published
datasets plus a new, unpublished, one. In this section, the two
standardized datasets as well as all data wrangling to create
the M30 Dataset are detailed.

A. Standardized datasets

These datasets are the same ones tested in the original T-
GCN paper:
• SZ-traffic dataset: This dataset corresponds to traffic

speed measures of the city of Shenzhen from 01/01/2015
to 31/01/2015 for a selection of 156 sensors, one sensor
per street.This dataset contains an adjacency matrix of
156 × 156 containing the relationship among nodes and
a historic feature matrix for all traffic speed measures
with a resolution of 15 minutes. The mean of connections
between nodes is 3.41 with a standard deviation of 1.19.

• Los-loop dataset: This dataset corresponds to traffic
speed measures of the highway in Los Angeles county
from 01/03/2012 to 07/01/2012 for a selection of 207
sensors along the road. This dataset contains a weighted
adjacency matrix of 207×207 containing the relationship
among nodes based on euclidean distance and a historic
feature matrix for all traffic speed measures with a res-
olution of 5 minutes. The mean of connections between
nodes is 13.69 with a standard deviation of 5.01. Data
has been imputed exactly like in the original paper.

B. M30 Dataset

1) Data analysis: The M30 dataset is obtained as a subset
of two main data sources:
• Madrid Traffic Flow Dataset: This is the main data

source of the project. It is provided by the Municipality
of Madrid through its open data portal [43]. This dataset
contains historical measurements of traffic intensity, in
number of cars per hour, and speed in meters per second
for over 4.000 sensors of the city of Madrid, with a 15
minute resolution for at least 8 years of history at the time
of writing. Every sensor is located by their coordinates
(longitude and latitude).

• Open Street Map: The Open Street Map Portal [44] has
been used to create the graph in order to calculate driving
distances between points rather than just using Euclidean
distance.

The remote sensing network of the city of Madrid has
been improved over the years, adding sensors and measures.
The M30 is a circular highway with a length of 32.5 Km
and an average radius of 5.17 Km, supporting an average
traffic intensity of around 300.000 vehicles per day. The
published dataset comprises 1 month of historical data of
sensors corresponding to the M30 highway. For the selected
period, from 01/01/2018 to 31/01/2018, only sensors that are
consistent in position and time are used. After applying this
filter, the dataset consists on 349 sensors.

2) Data imputation: Before doing any modelling, it is
crucial to assert that there exists a measure point for every
timestamp. Unfortunately, sensors regularly provide faulty
measures, in the form of NaN values or long periods of the
same constant value, see Figure 4.

In order to solve this problem it is necessary to both
identify and correct this behaviour. Two thresholds have been
developed to locate faulty repeated measures, one for the
zero measure and another for every other value. This is done
due to the fact that repeated zero values are not always
erroneous and therefore do not need imputation, however
repeated measures of values different than zero are highly
unlikely given the measure precision. This thresholds are fixed
as 24 repeated values for zero and 5 repeated values otherwise.
After identifying faulty measures they are deleted and prepared
for imputation.

The imputation method selected is based on the additive
Facebook’s prophet library [45], which is able to capture
three main model components: trend, seasonality and holidays.
Contrary to RNNs, Prophet can predict with NaN values in its
historic, and therefore can be used as an imputation method
based on trendy and seasonal interpolation. An example of this
imputation can be seen in figures 4 and 5. Nevertheless, only
data with 95% informed points are used for modelling as data
quality minimum criterion.

3) Driving distance: Another important task is to obtain
driving distances between nodes rather than Euclidean distance
to construct the graph, since two sensors close in space
might be further away in driving distance. In figure 6 it
can be seen how two near sensors in different driving lanes
are not connected. Furthermore, despite Euclidean distance
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Fig. 4. Raw data example.

Fig. 5. Imputed data example.

Fig. 6. Nearby sensors are not connected when allocated in different lanes.

is commutative, driving distance is not. The trajectory from
point A to point B might be longer than from point B to
point A. This property allows to work with a directed graph
rather than with an undirected one. The Open Street Map
API [44] has been used for this task. However, obtaining
all driving distance for every node among each other is too
computationally expensive without better performance. Thus,
the API call is only performed for the 10 nodes closer to each
other in Euclidean distance.

4) Temporal Graph creation: The graph is structured as a
static temporal graph, meaning that all connections and nodes
are static through time. In order to create the connections for
each node, as well as its weight, we compute the pairwise road

Fig. 7. Final M30 computed graph.

network distances between sensors and build the adjacency
matrix using the thresholded Gaussian kernel [46] used in
other traffic forecasting related papers [31]. In order to avoid
the graph to establish connections between nodes that already
have another node between them, a maximum connections
parameters is set to 3. After this, a weighted adjacency matrix
of 349 × 349 is produced, with a node connection mean of
2.88 and with a standard deviation of 0.39. In Figure 7 the
M-30 Highway graph built with this methodology can be seen.

V. EXPERIMENTS

The data and the code used for experimentation in this paper
can be accessed in https://github.com/raulgadea/T-GAT.

A. Evaluation metrics and benchmark models

In order to compare and contrast the proposed modifica-
tion capabilities with the original T-GCN, the same standard
metrics have been used:

1) Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(Yt − Ŷt
2
) (12)

2) Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|Yt − Ŷt| (13)

Likewise, to keep our comparison comprehensive and in
order to validate our results with a variety of different ap-
proaches, we have kept the benchmarking models used by the
original proposal, while also considering the aforementioned
GAT:

1) Historic Average (HA): Uses the average traffic values
of each node as its prediction.
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2) Support Vector Regressor (SVR): A regression model
based on support vector machines. This implementation
uses de linear kernel and the penalty term 0.001.

3) Graph Convolutional Network Model (GCN): A
graph convolutional model with historic values encoded
as variables. [5]

4) Graph Attentional Network Model (GAT): A graph
attentional model with historic values encoded as vari-
ables. [33]

5) Gated Recurrent Unit model (GRU): A gated recurrent
neural network treating each node as a disconnected
entity. [4]

6) Temporal Graph Convolutional Neural Network (T-
GCN): A combination of Graph convolutions with a
gated recurrent unit. [3]

B. Experimental design

T-GCN experimental design has been replicated to better
capture the impact of the inclusion of the graph attention layer
in the architecture. Four forecasting horizons have been tested:
15, 30, 45 and 60 minutes.

Regarding training, data has been normalized between [0, 1]
and split into a 80% for training and 20% for testing. Hyper-
parameters are the same as in T-GCN original paper: Adam
optimizer with a learning rate of 0.001, batch size of 64, a L2
regularization with λ = 1.5 · 10−3 and hidden dimensions of
100, 64 and 128 for Shenzhen, Losloop and M30 respectively.
The only exception occurs with the application of the T-GAT
model in the Losloop dataset, which required a more delicate
tuning.1

C. Results

Tables I, II and III present RMSE and MAE performance of
the Temporal Graph Attention Network against the baselines
for the Shenzen, Losloop and M30 datasets respectively. All
deep neural networks include a standard deviation parameter
given that results are forecast in batches. Additional informa-
tion about the error distribution can be seen in figures 8, 9 and
10. In figure 11 the temporal evaluation of the RMSE is also
provided.

It can be seen how the application of graph attention
networks improve the performance in every scenario. The
comparison of plain graph convolutions with and without
spatial attention, results in a exceptional improvement. GAT
not only surpasses GCN performance but also competes with
other, more sophisticated solutions involving recurrent neural
networks. Moreover, the temporal graphical convolution archi-
tecture also improves in every scenario with the addition of
spatial attention.

In order to provide statistical evidence of the results ob-
tained some non-parametric tests have been performed. Firstly,
a Friedman rank test has been applied to determine if there
exists any different performance error between the GCN, GAT,
GRU, T-GCN and T-GAT models among all datasets and
forecasting horizons. A Friedman statistic of F = 41.6 for

1lr = 0.0002 and Weight decay regularization wd = 10−6

RMSE and F = 35.4 for MAE has been obtained, resulting
on a Pvalue = 2.02 · 10−8 and Pvalue = 3.84 · 10−7
respectively. These values are much smaller than the usual
threshold α = 0.05, meaning there is statistical evidence
that there exists different performances between at least two
models of the collection.

Given that Friedman’s null hypothesis was rejected, two
post-hoc pairwise non-parametric-based comparison were car-
ried out to check the differences between the proposed T-
GAT model and the baselines. These procedures are the
Conover [47] and the Nemenyi [48] post-hoc tests. Statistical
significance for α = 0.05 is achieved in every scenario, with
the exception of the Nemenyi test against T-GCN. This is due
to the fact that these non-parametric tests work with the rank
value, so the more models that are tested the more difficult it
is to obtain statistical significance. When GCN and GRU are
dropped from the test, the null hypothesis is rejected in every
scenario for both tests.

Another testing approach is to perform the Wilcoxon test
[49] for individual comparison between models, which is
the non-parametric equivalent of the paired t-test. With this
technique, statistical significance below α = 0.05 is achieved
against every model. All hypothesis test values can be seen in
Table IV.

After applying different non-parametric tests it can be
concluded that the addition of spatial attention to the original
T-GCN network leads to a performance improvement with
more than 95% of confidence.

VI. CONCLUSIONS

Through this work, the impact of the addition of a spatial
attention mechanism to a deep learning model designed to
forecast traffic intensity has been measured. The resulting
T-GAT model outperforms a wide set of preexisting state-
of-the-art models in all tested scenarios with a great degree
of confidence. This evidence suggests that the general use
of attention mechanisms could be beneficial in the traffic
forecasting problem.

Future work will be oriented to further refinements of the
inclusion of attention mechanisms, both in space and in time,
which will allow to improve predictions over longer horizons.
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