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Abstract 

Introduction: Language provides valuable information in early dementia recognition, as 

language impairment is a common characteristic of early dementia.  

Objectives: One current limitation is a disconnection between results in previous 

research and clinical applications. In this paper, we propose artificial intelligence methods 

that address this challenge: the generalizability of studies.  

Methods: We analyze language in two separate modalities: speech signal and linguistic 

information referring to grammar and semantics. For the first modality, we employ audio 

files, and for the second one, transcripts extracted from audio files. We employ a subset 

of the Pitt Corpus that contains early Alzheimer’s disease and Mild Cognitive Impairment 

patients. Our proposed methods include exploring deep transfer learning models and 

explainable feature sets that are language-independent; applying ASR tools to obtain 

automatic transcripts; fine-tuning end-to-end ASR models for our task; analyzing the 

smallest speech unit: phonemes; and validating the most promising models on 

conversational speech data from other data sources.  

Results: Results show that speech deep transfer learning approaches provide a content-

independent solution and outperform ASR transcripts-based methods. We also 

demonstrate that linguistic-based deep learning methods are more robust than speech-

based approaches in external validation procedures.  

Conclusion: This research highlights the need of suitable ASR-tools for dementia and 

exploration of conversational speech data. Our main contribution is to successfully fine-

tuning end-to-end and transfer learning methods in dementia recognition.  

 

 

Keywords:  

automatic speech recognition, artificial intelligence, early Alzheimer’s recognition, 

language impairment, mild cognitive impairment, natural language processing. 
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Resumen 

Introducción: Trastornos en el lenguaje se considera uno de los primeros signos del 

deterioro cognitivo.  

Objetivos: Un reto, sin embargo, es la desconexión entre los resultados obtenidos en 

previas investigaciones y su aplicación en contextos clínicos. Esto se debe, en gran parte, 

a la falta de estandarización y de datos en este campo. La propuesta de este trabajo es 

emplear técnicas de inteligencia artificial para abordar este reto: la generalización.  

Metodología: En este trabajo estudiamos el lenguaje en dos modalidades: el habla, que 

se refiere a la manifestación acústica del lenguaje y la información lingüística entendida 

como la gramática. Para la primera modalidad empleamos grabaciones y para la segunda 

transcripciones de las grabaciones. El conjunto de datos empleado es un subconjunto del 

Corpus Pitt que contiene pacientes con deterioro cognitivo leve y Alzheimer. Nuestra 

propuesta incluye explorar métodos de aprendizaje transferido y end-to-end tales como 

wav2vec, HuBERT, BERT y RoBERTa; aplicar herramientas de ASR para obtener 

transcripciones automáticas, explorar variables que sean independientes de la lengua y 

del contenido; analizar la unidad del habla más pequeñas: los fonemas; y por último, 

evaluar los métodos más prometedores en un conjunto de datos externo.  

Resultados: Los resultados demostraron que, en el caso de métodos de aprendizaje de 

transferencia, la modalidad acústica no solo proporciona una solución independiente del 

contenido lingüístico, sino que también obtiene un mayor rendimiento que aquellos 

métodos basados en transcripciones producidas mediante herramientas de ASR. Los 

resultados también demuestran que los métodos de la modalidad lingüística son más 

robustos que los de la modalidad acústica. 

Conclusión: Este trabajo destaca la necesidad de una herramienta ASR adecuada para la 

transcripción de demencia y de explorar el habla espontánea. La mayor aportación es la 

aplicación exitosa de modelos end-to-end y de aprendizaje transferido en la detección de 

demencia. 

 

Palabras clave:  

lenguaje, inteligencia artificial, aprendizaje transferido, enfermedad del Alzheimer, 

deterioro cognitivo leve.  
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1. Introduction  
 

1.1. Motivation  
 

Dementia disease is a general term for degenerative diseases of the brain that 

interfere in the ability to remember, think, comprehend, calculate, and communicate [1], 

[2]. This disease is considered incurable and has a progressive nature. According to [2], 

“currently there are over 55 million people with dementia worldwide and there are nearly 

10 million new cases every year” [2]. Moreover, “dementia is the seventh leading cause 

of death among all diseases and one of the major causes of disability among elderly 

people worldwide” [2].  

There are many types of dementia, of which Alzheimer’s disease (AD) accounts 

for 60-70% cases of dementia [2]. Other types of dementia are vascular dementia (VD), 

Lewy body dementia, frontotemporal dementia, among others. “Boundaries between 

different forms of dementia are indistinct and mixed forms often co-exist” [2].  

Advanced stages of dementia are characterized by the patient’s almost total 

dependency or inactivity and difficulty to recognize friends and relatives [2]. Behavioral 

changes such as aggression may also present themselves [2]. In addition, dementia disease 

not only has an impact on patients and their relatives but also carries social and economic 

implications in terms of medical care [2]. According to [2], “in 2019, the estimated total 

global societal cost of dementia was US $1.3 trillion, and these costs are expected to 

surpass US $2.8 trillion by 2030” [2].  

Due to the nature of this disease, an early diagnosis is considered to be key to 

delay the progress of the disease [3]. Nonetheless, this is challenging since patients 

usually do not visit the doctor until the disease is already in an advanced state [3], even 

though, according to [4], dementia cognitive deficits could be detected up to ten years 

before its onset. This is possible due to an intermediate state between the changes in 

cognitive natural aging and dementia disease [5] known as Mild Cognitive Impairment 

(MCI). Researchers consider this preclinical period a window of opportunity for early 

dementia detection [5], as “approximately, 32-38% of individuals with MIC will progress 

to a major form of dementia within 5 years” [6]. 

In spite of the importance of early dementia diagnosis, the current techniques for 

recognizing it are “time-consuming screening tests or tests that cannot diagnose 

preclinical states” [3]. Common methods to diagnose dementia are the Mini-Mental 

Status Examination, the Clock-Drawing Test and the Alzheimer’s Disease Assessment 
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Scale-Cognitive Subscale. According to [7], these tests have proved insufficient to 

accurately recognize MCI [7], [8]. Consequently, it becomes necessary to verify the tests 

results with diagnostic tools like Magnetic Resonance Imaging, cerebrospinal fluid and 

computed tomography. This, in turn, requires more resources and time which difficults 

early dementia recognition furthermore.  

Given the severity of the disease, it is imperative to find and provide early 

dementia diagnosis and treatment to improve patients’ living conditions. These methods 

should be practical, reliable and straightforward. A promising solution is language 

analysis, in which recent artificial intelligence growth has allowed researchers to find 

encouraging results [9], [10]. However, there are still key challenges to employ language 

as biomarker for dementia [10]. One of them is the potential applicability of a research in 

clinical scenarios, namely how to generalize approaches as much as possible.  

 

1.2. Objective 
 

As mentioned above, language analysis presents a potential improvement for early 

dementia recognition. In spite of recent developments in artificial intelligence, one key 

challenge remains: the generalizability of approaches. To tackle this issue, this paper’s 

main objective is to propose machine learning (ML) methods that are transcription-free, 

content and language-independent and that do not require a big amount of data. The best-

performing methods are evaluated on conversational data as well. The paper focuses on 

AD and MCI identification. Accordingly, we set the following objectives: 

- customize a balanced subset of the Pitt Corpus to study MCI, probable AD and 

control patients. Pitt Corpus is the most studied corpus on dementia in speech 

[10], however, previous research has mostly focused on only AD detection; 

- obtain non-human generated transcripts. Thus, we apply an Automatic Speech 

Recognition (ASR) tool to obtain transcripts; 

- identify relevant explainable acoustic and linguistic features to distinguish 

patients with early AD and MCI from healthy control (HC) group in English; 

- analyze the role of phonetic units in dementia detection; 

- evaluate feature-based and deep transfer learning-based methods for AD and MCI 

detection in language; 

- fine-tune end-to-end pre-trained ASR models to recognize MCI and AD; 
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- evaluate and compare methods employing hand-generated transcripts and ASR 

transcripts; 

- and after the initial evaluation, we propose to evaluate the deep learning methods 

on an external data set containing conversational speech. 

2. Related work  
 

2.1. Dementia in language 
 

In the past decades, researchers have focused on developing diagnostic tools for 

early dementia detection. One of the most investigated domains is the aspect of memory 

due to the high impact the disease has on it [10]. For instance, two common symptoms of 

dementia are to lose track of time and to forget old memories. Studies have proved that 

the presence of memory deficits is a consistent factor in the profile of dementia patients 

[11]. 

Closely related to memory, the language domain has gained interest in the 

research community since early types of dementia are characterized by language 

impairment, an abnormality understood as “deficits in the cognitive process of forming 

language with structure and meaning” [12]. For instance, dementia patients have trouble 

finding a word (anomia), word meanings, hypofluency, hyperfluency, repetition and 

naming, among others [8], [12], [13]. They also present longer speech pauses. Especially 

in the early stage of the disease, it is common to call language impairment “empty 

speech”, since the speech is correctly structured in terms of grammar but misses some 

words or contains unclear meanings [12], [13]. Later stages of dementia are characterized 

by a lack of verbal fluency and comprehension [13]. These symptoms make linguistic and 

speech analysis useful tools to identify early stages of dementia.  

Other advantages of using speech and linguistic information as biomarkers for 

dementia are: the simplicity and non-invasiveness of data collection [10] and “the fact 

that speech problems may be manifest at different stages of the disease, making it a life-

course assessment that has value unlimited by disease stage” [10]. Moreover, 

computerized analysis of speech and ML techniques have developed increasingly in the 

past years, which has attracted increasing interest in the field of dementia recognition in 

language [10], [14], [15]. Specifically, in 2020 and 2021 the INTERSPEECH conference 

presented two special sessions: Alzheimer’s Dementia Recognition through Spontaneous 

Speech (ADReSS) [15] and Detecting Cognitive Decline through Speech Only 
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(ADReSSo) [14], which “aim to develop methods that can assist in the automated 

prediction of AD from speech data” [15], [16]. These sessions have obtained high 

performance using state-of-the-art architectures both in the speech and linguistic domain.  

In this paper, we analyze language in two separate modalities: speech and 

linguistic information (such as grammar). Collecting dementia speech and linguistic data, 

however, is not an easy task in comparison to other language identification tasks [10], 

[14], due to several constraints involved such as recruiting elderly people. Generally, 

dementia in language is investigated through two main data types: spontaneous speech 

and elicited speech [14], [17]. In the first one, speakers have spontaneous conversations 

or monologues covering broad topics. Examples are dialogue data, in which the patient 

has a conversation with the physician. This data type represents spontaneous conversation 

that is neither limited by time nor by topic. One drawback of this type of data is that 

recordings may highly vary in length [17], leading up to data sets with imbalanced 

amounts of data from particular speakers.  

The second data type, elicited speech, is one of the most common techniques 

employed in dementia speech and linguistic analysis [10]. It provides a sample of 

discourse, where topic and length can be controlled by the interviewer [17]. A common 

approach consists of the patient describing a scene, such as the famous Cookie Theft 

Picture from the Boston Diagnostic Aphasia Examination [18]. In this Picture Description 

task, the participant sees an image of a kitchen in black and white and is asked to describe 

the scene (figure 1). This is a quick, objective and non-invasive assessment of an 

individual’s cognitive status [19]. Nevertheless, the task is unnatural and “limited 

richness and length” [17], [20]. In addition, the picture used is “an outdated depiction of 

domestic life” [17], [20] and the ability to describe it highly depends on cultural 

circumstances. 

 

Figure 1. The standardized Cookie Theft Picture. Image obtained from [18].  
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Nonetheless, given its simplicity and standardization [14], [15], it is one of the 

most used tasks in dementia linguistic and speech analysis [10], [14], [15]. For instance, 

studies have shown an accuracy of 81% using this task to distinguish between AD and 

healthy patients [21]. Deep learning models have achieved similar accuracy rates for this 

task. [19] fine-tuned a BERT-based text sequence classification that reached 83.3% 

accuracy [19]. 

Other approaches are to narrate a learned story and recall tests, in which patients 

are asked to recall and describe different routines they carry out [10] [17], for example, 

“the procedure for making a cup of tea” [17]. However, recall tests may result in a 

simplified speech as this type of discourse rarely occurs in everyday conversation [17]. 

In the two following sections, we explain in detail why speech and linguistic analysis are 

useful in dementia recognition and what previous research has reported. 

 

2.1.1. Speech analysis  

 

Speech corresponds to phonetics, i.e., the human voice production [22], and it can 

be understood as what has been said (paralinguistic). Due to speech requiring precise and 

complex movements controlled by brain functions [23], [24], it is well documented that 

speech can carry information about each speaker, for example, his cognitive and 

emotional state [23]. For instance, it has been found that in a patient with Parkinson’s 

disease the excessive loss of dopaminergic neurons leads to muscular rigidity, tremor and 

disturbances of gait and posture, which in turn leads to a more monotone speech [22], 

[25]. Another example is stuttering (speech disorder related to the flow of speech) which 

is associated to alterations in dopaminergic function [26]. It has been found that a person 

who stutters usually presents higher amounts of a dopamine precursor [22]. Regarding 

dementia, [26] found that “speech and orofacial apraxis are nearly always present in AD, 

regardless of disease stage” [26]. Apraxis (or apraxia) is a disorder that hinders a person’s 

ability to verbally communicate due to damage in the frontal lobe [26]. This disorder also 

worsens as the disease progresses [26].  

Speech analyses have mostly focused on the study of utterances and conversations 

[27]. However, in order to acquire a deeper understanding of how dementia affects 

speech, it is important to analyze specific speech units, i.e., phonemes. It has been proven 

that not these units do not pose the same relevance detecting cognitive diseases in speech 

[24], “since each one devices from a different narrowing, articulation and configuration 
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of the vocal tract” [24]. [28] stated that “AD presents articulatory difficulties at early 

stages of the disease” [28], [29]. Moreover, [29] found that “phonetic representations in 

transcripts can be understood as analogous to data augmentation”[29] and reported an 

accuracy of 77% by applying a FastText classifier [29]. Given that this research’s main 

objective is the generalizability of studies and most of the early dementia detection work 

was conducted in English, we aim to further study phonetic representations in dementia 

since phonemes are the smallest processing unit and, therefore, they “are more 

generalizable across languages” [10]. 

The variance of speech is captured in speech features, also known as acoustic or 

paralinguistic features. These features are well-studied [30] since they are robust and 

generalizable due to minimal pre-processing [31]. Nonetheless, a challenge of speech 

feature analysis remains as to “the majority of state-of-the-art speech features do not 

generalize between languages and therefore are probably not modeling language 

impairment in dementia as a neurocognitive function” [12]. 

 

 

Figure 2. Example of a spectro-temporal representation of speech from which acoustic features 

are computed. The red dots represent the formants of the speech signal. 

 

In general terms, one can identify two types of analyses of acoustic features: low-

level descriptors (LLDs) and high-level descriptors (HLDs). LLDs are closely related to 

the signal itself, such as fundamental frequency (F0), which refers to the frequency of 

voiced speech signals; jitter; shimmer; spectral and formants, “features known to model 

spoken content represented by position, amplitude and bandwidth” [32] (figure 2); and 

duration, “energy and intensity based on the amplitude in different intervals”  [32]. The 

final result of LLDs is a value over a short window of time.  

HLDs refer to statistical functionals of how the LLD have been extracted, such as 

the mean, median, standard deviance, variance, skewness, percentiles, quartiles ranges, 
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ratio, linear and quadratic regression coefficient, ranges, zero-crossing rate and centroid 

[32]. The final result of the HLD calculation is an “aggregated information over an entire 

utterance” [33]. 

There are multiple examples of successful studies employing acoustic features to 

distinguish between dementia speech and healthy speech [10], [12], [14]. For instance, 

[9] used LLDs to train supervised ML architectures such as Random Forest (RF), Support 

Vector Machine (SVM) and Bayes Network, in which the best-performing algorithm 

obtained 82% of accuracy in classifying early AD [9]. [3] applied the number of silent 

and filled pauses, the length of utterances and the speech tempo on a SVM and achieved 

a 74% accuracy classifying HC from patients with AD and MCI [3].  

Recently, also deep neural networks methods have shown potential in speech 

classification tasks among dementia recognition [10], [34]. These methods can be broken 

down into two broad categories: sequential and convolutional. Convolutional neural 

networks (CNNs) “operate on the basis of LLD as they can exploit the local correlations 

of the speech signals in both time and frequency dimensions” [35]. The focus lies on log-

Mel and Mel-Frequency Cepstral Coefficients (MFCCs) spectrograms, “as they 

transform speech signals to feature maps as in computer vision applications”  [35]. For 

example, [36] employed pre-trained models such as Inception v3, ResNet50, VGG16, 

AlexNet and Vision Transformer to classify AD and non-AD patients. The best-

performing model obtained an accuracy of 65% [36]. [35] also investigated the use of 

computer vision architectures to detect dementia in speech data by employing a pre-

trained ResNet18 model with 62% accuracy [35]. 

Finally, methods that utilize raw waveform on CNNs have also shown promising 

results [37]. These methods allow capturing information related to the speech production 

directly from raw audio files. [37] trained raw audio-based CNNs and achieved a 74% 

accuracy [37]. More recent approaches consist of adapting ASR models to dementia 

detection. [38], for example, used wav2vec 2.0 to “embed the raw audio into 

representations using the last hidden state of the pre-trained model and classify audio 

samples using these embeddings as input to classifiers” [38] like SVM and linear 

regression (LR). This resulted in a 67% accuracy [38]. [39] explored wav2vec 2.0 on 

dementia classification for Mandarin Chinese and reported a 77% accuracy [39].  
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Paper Dataset Language Task Method Acc. 

[3] MCI-mAD 

database 

Hungarian MCI and 

AD 

SVM 0.74 

[17] private 

dataset 

English MCI and 

AD 

SVM 0.76 

[35] ADReSS English AD ResNet-LSTM 0.625 

[36] ADReSS English AD Vision 

Transformer 

0.653 

[37] ADReSS English AD CNN 0.74 

[39] 2021 

NCMMSC 

dataset 

Mandarin 

Chinese 

MCI and 

AD 

wav2vec 0.798 

[38] ADReSS English AD SVM 0.67 

[9] Pitt Corpus English MCI and 

AD 

RF 0.65 

[40] ADReSS English AD CNN + gating 

mechanism 

0.64 

[41] private 

dataset 

French MCI and 

AD 

SVM 0.79 

Table 1. Summary of the latest previous work for speech-based approaches.  

LSTM stands for long-short term memory. 

 

2.1.2. Linguistic analysis  

 

As mentioned above, dementia not only affects how things are said (speech) but 

also what has been said (linguistic information), i.e., the system of words and symbols 

used in language, specifically the domains of semantics, syntaxis and morphology. The 

gradual degeneration of the various cortical areas caused by dementia have an impact on 

how to structure sentences, naming objects, recalling past experiences and word 

meanings, among others [10]. This linguistic analysis – in contrast to speech analysis – is 

based on transcripts either made by specialists or using ASR tools. 

The semantic field is concerned with the meaning of words. It is generally 

accepted that one of the first signs of impairment occur in the semantic domain [12], [13]. 

Common aspects in the study of dementia are fillers and hesitations [3] since dementia 

patients usually present more hesitations than healthy patients [3]. Also, word frequency, 

word length and word repetition are among the most studied semantic features [12]. Other 

features are frequency of keywords, frequency of unique words, type-to-token ratio 

(calculated by dividing all unique words by the total word count) and information units, 

which computes the number of unique entities that a person mentions. For example, [12] 

found 11 semantic features relevant to identify dementia in English and French such as 

percentage of keywords, number of unique keywords and number of unique information 

units [12].  
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Syntax and morphology represent the structure of language and word forms. This 

domain evaluates the sentence complexity and the use of parts-of-speech [12]. An 

analysis based on it is highly language-dependent [10], however, [12] found that some 

syntactic features can “represent syntactic impairment that overlap between languages” 

[12]. Syntax and morphology are also closely related to semantics since they depend on 

each other to form intelligible sentences, therefore, it is common that studies combine 

these domains [10]. As for dementia, [12] found that dementia patients use less nouns and 

adpositions [12]. [3] proved that patients with MCI often “substitute content words with 

fillers or indefinite pronouns, and they also appear to use a lot of paraphrases indicating 

uncertainty” [3].  

Furthermore, researchers used word embeddings to better capture linguistic 

information where words that have the same meaning have a similar representation. This 

technique has been proven useful in many natural language processing (NLP) tasks, 

among them dementia detection. For example, [42] trained a SVM to classify AD from 

non-AD using linguistic features and reported a 71% accuracy [42]. [43] used word 

embeddings to successfully identify MCI patients from English speech transcripts and 

obtained an accuracy of 60%. Other studies [44] measured lexical diversity to compare 

dementia versus AD [44].  

Parallel to the speech modality, this field has gained interest due to deep learning 

method development. For example, [16] extracted lexical information from transcripts to 

train a LSTM and achieved a 70% accuracy [16]. Other studies like [45] investigated text-

based CNNs and reported a 88% accuracy. [37] trained a bi-directional Hierarchical 

Attention Network on transcripts and found an 81% accuracy.  

Among these methods, it is important to mention transformers-architectures-

based pre-trained models, particularly BERT (Bidirectional Encoder Representations 

from Transformer) and RoBERTa (Robustly Optimized BERT Pretraining Approach) 

models [46], [47]. These pre-trained models allow researchers to “fine-tune on specific 

tasks by adding just one additional output layer” [46], [48]. Previous works have 

demonstrated promising results exploring these models. For example, [48] adapted a pre-

trained BERT model to detect AD from non-AD and achieved an 82.1% accuracy [48]. 

[49] reported an 87% accuracy on the ADReSS dataset using RoBERTa [49]. Another 

example is [50], who combined wav2vec and BERT to detect dementia in speech. They 

extracted semantic information from speech data adapting wav2vec and then classified 
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this information using BERT. They reported an 83% accuracy. [51] used BERT 

embeddings to train a RF classifier and obtained an accuracy of 85.4% [51].  

This domain has demonstrated better results than speech-based models [10], [29]. 

These results, however, are dependent on whether the transcripts are generated by a 

human observer or by an ASR system. As expected, the highest performance is obtained 

when the results are human-generated. However, this approach is time-consuming and 

requires domain-knowledge to achieve high accuracy. Unfortunately, previous work has 

mostly focused on human-generated transcripts (table 3).  

 

Paper Dataset Transcripts Language Task Method Acc. 

[3] MCI-mAD 

database 

human Hungarian MCI and 

AD 

SVM 0.82 

[49] ADReSS human English AD RoBERTa 0.87 

[50] ADReSS ASR English AD BERT 0.83 

[48] ADReSS human English AD BERT 0.821 

[37] ADReSS human English AD LSTM 0.84 

[35] ADReSS human English AD FastText 0.83 

[51] ADReSS human English AD RF 0.85 

[29] ADReSS human English AD FastText 0.77 

[39] NCMMSC 
dataset 

human Mandarin 
Chinese 

AD RoBERTa 0.75 

[39] NCMMSC ASR Mandarin 

Chinese 

AD RoBERTa 0.53 

[45] Pitt Corpus human English various 

types of 

dementia 

CNN 0.88 

Table 2. Summary of latest previous work for linguistic-based approaches. 

 

2.1.3. Linguistic fusion  

 

As seen in the previous two sections, speech and linguistic analysis are closely 

related and equally important in human communication. Recently, studies have addressed 

the fusion of these two main domains aiming to imitate how humans process language as 

accurately as possible. In other words, “in the real word, people often associate 

information from multiple forms, i.e., speech and linguistic modalities” [52]. This 

multimodal language analysis offers advantages such as “language disambiguation and 

language sparsity issues” [52].  

According to [33], “the dominant computational paradigm for fusing different 

modalities has been that of shallow fusion” [33]. This paradigm is generally divided into 

feature-level or early fusion and decision-level or late fusion [33], [53]. “Some 

researchers have also followed a hybrid approach by performing fusion at the feature as 

well as the decision level” [53].  
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The early fusion method consists of processing each modality independently and 

to merge them before training a single ML model, which could also, be understood as 

unimodal classification. In other words, features from each modality are extracted from 

the input and combined [53], [54]. This results in a high dimensionality feature vector 

that can be reduced through feature selection methods. One advantage of this approach is 

that “it can utilize the correlation between multiple features from different modalities at 

an early stage which helps in better task accomplishment”[53]. Disadvantages are that 

this approach “has to deal with many heterogeneous features” [54] and “it is hard to 

represent the time synchronization between multimodal features” [53].  

Late fusion, on the other hand, “corresponds to training separate models for each 

modality and combining their independent decisions” [33]. It is also known as rule-based 

fusion method because it “includes statistical rule-based methods such as majority voting 

and linear weighted fusion” [53]. These schemes “generally perform well if the quality 

of temporal alignment between different modalities is good” [53].  

Likewise, deep fusion modalities have gained interest. These procedures employ 

deep learning methods to learn multidimensional representations [33]. It is similar to 

shallow fusion with the difference that deep fusion “consists of several differential 

modules, some of them unimodal and others multimodal, which are jointly trained” [33].  

In recent years, both feature-based and deep fusion modalities have shown 

competitive performance in dementia detection in language. Especially ADReSS and 

ADReSSo [14], [15] have predominantly focused on multimodal analyses of acoustic and 

language data. [42] normalized scores obtained from SVM models trained on text and 

audio modalities and merged the scores by the average, achieving an overall accuracy of 

75% [42]. [19] found an 81% accuracy training a SVM model with acoustic and language 

features [19]. Another example is [17], who applied an early fusion approach by 

extracting various linguistic and speech features on the Picture Description task to train a 

SVM and reported a 76% accuracy [17]. 

 

2.2. Current challenges  
 

Even though dementia in speech and language has been thoroughly investigated, 

there are still important challenges to tackle. The first main challenge is data collection, 

which involves several constraints concerning participant recruitment and data type. This 

results in data scarcity – a common aspect in studies of pathological disorders – which in 
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turn leads to many data sets being imbalanced, that is, the number of participants for each 

class is not evenly distributed across the different categories [10], [24]. Moreover, 

demographic variables such as sex, age and education have shown impact on dementia 

diagnosis and development [10]. Therefore, these variables should also be considered 

when collecting dementia data [9], [10], [19], [38] since “conclusions drawn from 

imbalanced data are subject to a greater probability of bias, especially in small datasets” 

[10].  

This problem is related to the evaluation techniques reported when manipulating 

imbalanced data sets since accuracy is not always appropriate for the task as it is not 

robust for imbalanced classes [10]. Nevertheless, it is the most common performance 

metric. According to [10], evaluation metrics like F1, precision and recall are more fitted 

for clinical studies because they “summarize the rates of false positives and false 

negatives” [10]. Another relevant metric is AUC (Area Under the Curve) [10].  

Another main aspect to take into consideration when analyzing dementia in 

language is the variability and multi-faceted character of language [12]. As mentioned 

above, language depends on cognitive processes therefore changes in any language 

modality do not necessarily indicate an early stage of dementia but might also be caused 

by any other process involved in language, such as task performance. To avoid this, it is 

important to aim for robust feature sets that, ideally, are not language-dependent or task-

dependent. 

The third challenge is generalizability, which “is the degree to which a research 

approach may be attempted with different data, different settings or real practice”  [10]. 

This is an essential part in dementia recognition in language “as it shows how translatable 

research is” [10]. [10] found that the majority of previous studies present low 

generalizability. Reasons for this include dependency on content, such as either manual 

annotations or word content, and targeting only one linguistic aspect, “particularly if this 

aspect is language-dependent” [10]. Moreover, most studies neither validate the results 

on external data sets or collect the data in real life settings nor study conversational 

speech, which is “more representative of real speech” [10]. 

In this paper, we aim to address these challenges by proposing ML methods that 

are transcription-free, content and language-independent and that do not require a large 

amount of data. We analyze phonetic representations to classify AD and MCI from HC 

since the smaller the processing unit is the more generalizable the results are across 
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languages [10]. Furthermore, the best performing models are validated on an external 

data set containing conversational speech. 

 

3. Materials and methods  
 

3.1. Methodology 
 

To obtain our objectives, we define the following steps:  

- Data processing, where a data set is customized based on class labels. This data 

set contains audio files and transcripts obtained from recordings. The acoustic and 

transcript data is processed for further analysis. We also define the external 

validation set using conversational speech data.  

- Baseline approach, where we define a baseline method based on demographic 

variables: age and sex. 

- Feature extraction, in which we extract two types of features: acoustic and 

linguistic features. We focus on analyzing general feature sets that are less 

content-dependent and that have shown competitive results in other speech and 

linguistic tasks.  

- Feature selection, where two methods are used: a correlation-based filter method 

and a feature selection technique based on importance of weights.  

- Feature-based approach. We apply a SVM, a RF and a Gaussian Mixture Model 

(GMM) to both the acoustic and linguistic modality separately.  

- Multimodal fusion, where we explore early and late feature-based fusion.  

- Deep learning-based approach. The acoustic and linguistic modality are explored 

separately. For the acoustic modality, we propose three pre-trained computer 

vision CNNs and two self-supervised pre-trained ASR models: wav2vec XLSR 

and HuBERT. For the linguistic modality, we explore LSTM networks, FastText 

model and self-supervised pre-trained BERT model and RoBERTa model.  
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Figure 3. Overview of the paper’s methodology for dementia detection in language. 

 

3.2. Data set 
 

The data set used in this project is based on the Picture Description task explained 

in section 2.1.: the English Pitt Corpus [55] collected at University of Pittsburgh School 

of Medicine and available at DementiaBank (https://dementia.talkbank.org/). This 

longitudinal study was conducted over the span of four years. It contains 551 speech 

samples and hand-made transcripts, of which 309 samples belong to the dementia group 

and 243 to the HC group. HC consists of patients that present no signs of neurocognitive 

decline. There are 398 individual participants: 208 dementia patients, 104 HC and 85 

patients with unknown diagnosis. The dementia group contains probable AD, MCI and 

VD. According to [10], this is the “largest data set available for dementia recognition” 

[10].  

The audio and transcript data consists of three sections: responses to the Cookie 

Theft Picture task, responses to the Word Fluency task, and responses to a recall task [55]. 

The recordings were collected in interviews where two speakers can be identified: the 

interviewer and the participant. Speech samples have been enhanced using an 

implementation of spectral subtraction performed for the ADReSS Challenge [15].  

The ADReSS 2020 and ADReSSo 2021 challenges utilized a balanced subset of 

the Pitt Corpus containing only probable AD and HC samples. Nonetheless, since this 

paper’s focus is early dementia detection, we consider MCI and AD groups as a broad 

https://dementia.talkbank.org/
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group (“dementia”). Our motivation to jointly study MCI and AD samples is that, 

according to [10], “studies aiming for a three way classification have reported 

inconclusive results and present biases related to the quality of data set” [10]. In addition, 

classification accuracy tends to decrease in comparison to HC versus AD when more than 

one stage of dementia is considered [9]. This is, up to a great extent, due to the few 

available samples for MCI, an aspect that it is “consistent with the fact that distinguishing 

early stages of dementia from healthy speech is challenging even for trained experts” [9]. 

We consider this challenge makes the study of MCI an even more pressing matter.  

We process the original data set to ensure a balanced one following the next steps: 

first, we drop all missing values and select patients with probable AD and MCI from the 

dementia group. This gives us a subset containing 389 samples: 214 samples with 

probable AD, 27 with MCI and the rest 148 with HC. We include AD and MCI in the 

same class: dementia. This subset is further broken down into train and test sets. Each set 

is under-sampled to contain the same number of classes. The final training set contains 

118 control and 118 dementia samples while the testing set is composed of 30 control and 

30 dementia samples. For reproducibility purposes, the original audio samples and 

transcripts are available at DementiaBank upon request, while the exact specification of 

the subset is available at: https://github.com/monicagoma/masters_thesis_dementia.  

Regarding demographics, 62% of the samples correspond to females and 38% to 

males on the training and testing set both for dementia and HC samples. This means that 

sex is not balanced for class. However, as mentioned in [56], “it is estimated that 

worldwide, 61% of the people with dementia are women and 39% are men” [56]. 

Therefore, our data set’s distribution (figure 4) is proximate to a realistic representation. 

In both the train and the test set, the average age is 68 years for the two classes, the 

minimum age for HC is 47 years and 49 years for dementia, and the maximum age for 

HC is 80 years and 90 years for dementia. Age and sex are not balanced for class. We 

consider balancing these variables produce an even smaller data set. To compensate this 

statistical bias, we provide thoughtful evaluation metrics explained in section 3.6.  

 

https://github.com/monicagoma/masters_thesis_dementia
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Figure 4. Shows the age and sex distribution for the training set and held-out test set. 

 

3.3. External validation procedure 
 

As mentioned in section 1.1., one important challenge in dementia recognition in 

language is its generalizability. However, the majority of previous studies “present 

neither external validation procedures nor a system design that involves them” [10]. This 

is a constraint in potential applications since promising results may transfer poorly to real-

life scenarios. A straightforward solution is to evaluate the proposed methods on other 

databases. Nonetheless, there are few available data sets regarding dementia in language, 

of which the majority can be found at DementiaBank. As for the English language, there 

is no data set big enough to be used as an external validation set apart from the Pitt Corpus.  

Therefore, we customize a validation set by employing various data sets in 

English available at DementiaBank. Specifically, we use the Wisconsin Longitudinal 

Study (WLS) [57], the Lanzi data set [6] and the Kempler data set [58]. We select these 

data sets for the following reasons: 1. None of them is sufficiently large to be used as an 

external validation set. 2. They present different protocols for data collection in contrast 

to the defined train and test sets, which focus on the Picture Description task. 3. They use 

American English analogous to the Pitt Corpus. 4. For the three data sets, there are 

transcripts and audio files available. 5. These transcripts are human-generated and comply 

with CHAT transcription requirements [59], an aspect that eases data preprocessing and 

feature extraction.  

For the dementia group, we employ the Kempler and Lanzi data set. The Kempler 

data set contains seven conversations between investigators and participants diagnosed 

with AD. The range of age is between 65 and 87 years old. The Lanzi data set is composed 

of six files from semi-structured interviews. The interview is carried out using 11 open-
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ended questions. Participants present MCI [6]. Range of age is between 65 and 88. These 

two data sets use conversational speech data, which is considered “the most desirable data 

type in dementia detection” [10] since it is representative of spontaneous speech [10]. Up 

to our knowledge, previous work has not attempted to validate its results on external 

conversational speech data. 

For the HC group, we use the WLS data set, which is an extended study of a 

sample of 10,317 students graduating from high school in Wisconsin in 1957 [57]. There, 

“participants were interviewed up to six times across 60-years between 1957 and 2011” 

[48]. For this research, we only focus on the last collected samples, i.e., those from 2011. 

Participants performed several language tasks, among them the Cookie Theft Picture 

description task. Since “the metadata of WLS do not provide dementia related diagnoses” 

[48] but only a “limited set of cognitive test scores” [48], we follow [48] methodology to 

select a group of HC comparable to the HC group in the Pitt Corpus. We use “the verbal 

fluency scores and an answer of ‘yes’ to the question ‘Have you ever been diagnosed with 

mental illness?’ as inclusion/exclusion criteria” [48]. Those who reported no mental 

illnesses and obtained verbal fluency scores above the normative threshold are considered 

the control group. From the resulting files, we select 13 participants: seven females and 

six males with a range of age between 60 and 72 in the year 2011. This external validation 

set is balanced for class but not for age and sex (figure 5). 

 

 

Figure 5. Shows the age and sex distribution for the external validation set. 

 

3.4. Data processing 
 

The first processing step is to obtain a uniformed sampling rate of all acoustic 

files by either up-sampling or down-sampling. The Pitt Corpus has a sampling rate of 

44.1kHz, while the external validation set contains various sampling rates. We define 
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16kHz as the uniformed sampling rate since this is the sampling rate employed to pre-

train the ASR models, HuBERT and wav2vec.  

As mentioned above, the main data set and the external validation data set are 

extracted from interviews. Therefore, we carry out an acoustic segmentation based on 

speaker, also known as speaker diarization. Speaker diarization is the process of 

automatically identifying audio segments from different speakers. In other words, it is 

“answering the question: who spoke when?” [60]. This presents a challenging task 

especially due to background noises, overlapping utterances and the fact that speakers are 

rarely balanced during a conversation. In the case of the Pitt Corpus there are two 

participants: the interviewer and the patient. The first one asks the initial question but 

mostly remains silent as the patients describes the picture. This procedure, nonetheless, 

varies highly from interview to interview.  

Speaker diarization is carried out using pyAudioAnalysis [60], a Python package 

that applies speaker diarization by employing a clustering approach. The steps are as 

following: “MFCCs in a short-term basis and its corresponding means and standard 

deviation are extracted” [60] while keeping a window size of 50 milliseconds [60]. Then, 

a k-means clustering method is carried out. The user has to provide the number of clusters, 

which refers to the number of speakers. If it is unknown, the model will apply the process 

on a wide range of clusters [60]. Finally, a smoothing step is performed “combining a 

median filtering on the extracted cluster and a Viterbi Smoothing step” [60]. In this paper, 

given the interview setting, we set the number of clusters as 2.  

Moreover, to achieve full automation in AD and MCI detection pipeline, it is 

important to employ an ASR system for the transcriptions. Therefore, we propose two 

types of input: human-generated transcripts and ASR-generated transcripts. The former 

ones are available at DementiaBank database following CHAT transcription requirements 

[59]. We use the program CLAN version 10 to preserve the text information solely from 

the participant prescinding from the interviewer’s transcripts. These human-generated 

transcripts already contain all relevant information to identify speakers. They also provide 

morphological and syntactical cues to simplify language analyses.  

The latter use Google Cloud Speech-To-Text (STT) 

(https://cloud.google.com/speech-to-text). This is an open-domain ASR tool version 

3.8.1. We choose this tool because it claims to reach a word error rate of 4.9% [61], which 

means a high performance considering “human transcripts report an average a word error 

rate of 4%” [61]. The aim of ASR-generated transcripts is to further automate the process 

https://cloud.google.com/speech-to-text
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of dementia recognition. We expect, nonetheless, that human-generated transcripts 

outperform ASR transcripts because elderly speech is difficult to transcribe by ASR tools 

[62], since “they are optimized on non-domain data” [62]. Additionally, a characteristic 

of the speech of dementia patients is “an increased amount of agrammatical sentences 

and incorrect word inflections” [62] that are not properly recognized by the ASR tool.  

Given the small data set and due to memory constraints, we also perform a simple 

data augmentation method that consists of splitting the audio samples into small 

segments. This is carried out for each of the sets as implemented by [39]. Accordingly, 

the audio samples are cropped to a maximum duration of 8 seconds. As stated by [39], 

however, this method does not benefit neither acoustic feature-based nor transcript-based 

approaches. Thus, we decide to only use these samples for the acoustic deep learning 

methods and to obtain the ASR transcripts. Another reason to apply this method is that 

the proposed end-to-end ASR models not only are computationally expensive but also by 

using smaller segments performance may increase since it provides less dimensionality 

to the models [39].  

 

3.5. Evaluation techniques 
 

As we are employing a data set balanced for class, the proposed models are 

assessed in terms of accuracy, recall, precision and F1. We select these metrics since, 

according to [10], they are adequate to report the classification performance and clinically 

relevant to reduce potential bias [10]. Besides, these metrics have been reported in 

previous related research [14], [15].  

 Accuracy (Acc.) is the most reported metric in classification tasks because its 

understanding is intuitive. This metric is calculated using the following formula: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
.  

Precision shows the proportion of positive identifications that are correct. It refers 

to “the ratio of the number of true positives to the number of instances classified” [63]. 

This metric is reported per class: dementia and control. Mathematically, it is expressed 

as: 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
.  

 Recall is the proportion of true positives given the total number of instances. This 

metric is also known as sensitivity. It is reported per class as well. The formula to 

calculate it is: 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
. F1 score “is calculated by weighting precision 
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and recall equally and building an harmonic mean” [64]. The formula to calculate this 

metric is: 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. It is also reported per class. For the best-performing 

approaches, confusion matrices are available in Appendix. These figures illustrate the 

correct and incorrect predictions per class.  

Moreover, to further report the rate of true positives and false positives, we report 

AUC and plot the Received Operating Characteristic Curve (ROC). This metric is only 

explored in the deep learning approaches since this is where the focus of this research 

lies. In addition, it measures a binary classifier’s ability by considering different 

thresholds. AUC “measures the entire two-dimensional area underneath the entire ROC 

curve” [65]. ROC curves are plotted for the best-performing deep learning methods.  

To be consistent with the literature, each feature-based approach is evaluated 

using 5-fold Cross-validation (CV) as an attempt to “mitigate the potential bias caused 

by using a small dataset” [10]. The final 5-fold CV performance is the average result 

obtained in each fold. The final model’s performance is evaluated on the held-out test set 

that represents 20% of the subset.  

To prevent overfitting, deep learning approaches are also evaluated using 5-fold 

CV except for the models: BERT, HuBERT, wav2vec and RoBERTa and FastText. This 

decision is due to constraints of GPU memory since these models have been pre-trained 

on big data. This choice is also in line with previous literature employing these 

architectures [39], [64]. Deep learning models are evaluated on the held-out test set and 

on an external data set, which contains conversational speech (section 3.3). To account 

for stochastic initialization [48], values are averaged across three runs. 

 

3.6. Baseline model  
 

To compare our proposed methods, we present a baseline model. This model is 

implemented by training a SVM classifier on two demographic variables – sex and age – 

without a feature selection technique. We select SVM because, according to [10], this is 

not only the most common model used in prior work but also the supervised learning 

algorithm with the highest performance in previous studies [10], [34]. Parameter 

optimization resulted in: a linear kernel and C value equal to 1. The final model is 

evaluated on the held-out test set (table 3). 
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Approach Acc. F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

Baseline 5-fold CV .63 .70 / .55 .65 / .51 .63 / .63 

Baseline held-out test set .66 .69 / .64 .65 / .69 .73 / .60 

Table 3. Baseline results on 5-fold CV and held-out test set. 

 

3.7. Supervised learning  
 

3.7.1. Feature extraction and selection 

 

To obtain acoustic features, we focus on the temporal and prosodic characteristics 

of speech. Specifically, we automatically extract functionals of speech (section 2.1.1.) 

using the feature sets ComParE 2016 [66] containing 6,373 features and GeMAPS [67] 

composed of 62 functionals from the toolkit openSMILE 3.0 [30] (open-source Speech 

and Music Interpretation by Large-Space Extraction). These feature sets have been 

broadly studied and have shown competitive results in different speech classification 

tasks [10]. Examples for these features are MFCCs, F0, length of unvoiced segments, 

loudness, jitter, shimmer, among others.  

 In the case of linguistic features, we extract features using the FLUCALC toolkit 

from the CLAN program [59], which tracks the frequencies of the various fluency 

indicators available in the transcripts [59]. This toolkit extracts a total of 62 features such 

as word repetitions, blockings, retraces, monosyllabic repetitions, percentage of phrase 

repetitions and typical disfluencies [59]. Initially, this toolkit was created for stutter (i.e. 

diffluent speech) language analysis, which makes it especially suitable for dementia 

analysis since stuttering is usually present in early dementia [68].  

 Additionally, we extract linguistic features using the Core Variable Feature 

Extraction Feature Extractor (COVFEFE) tool [69]. This tool was introduced in [68] as a 

feature extraction tool for dementia recognition in speech and language. [17] applied 

COVFEFE’s features on a SVM classification model and reported a 76% accuracy on the 

Picture Description task. The toolkit provides a total of 472 features. Features include 

lexical richness, percentage of parts-of-speech, readability, grammatical constituents of 

the syntax tree, etc. [68].  

 In addition to CLAN and COVEFE features, we apply Bag-Of-Words (BOW), a 

simple sentence representation technique, using the count vectorizer function from the 

scikit-learn library version 1.0.1, which analyzes the frequency of words. To do so, we 

remove punctuations, drop stopwords and tokenize each sentence. We select this method 

since it has been thoroughly investigated in various text classification tasks. Regarding 



 26 

dementia, [70] trained an artificial neural network with BOW and reported a 0.91 AUC 

[70]. One drawback of this method is that it only counts the word frequencies without 

taking the word order and sentence structure into account [71].  

Given the large dimensionality of the features [72], we apply two feature selection 

methods: a filter method based on a statistical index of feature differences between 

classes, and a wrapper method based on weights. In the first method, we identify relevant 

features using the Analysis of Variance (ANOVA) ranking scheme, which is a common 

statistical method that analyses variables under various conditions. The threshold to select 

relevant features is to filter those features, of which the p-value is higher than 0.05 [73]. 

In the second method, we find the most relevant features according to the coefficients 

from fitting a Logistic Regression model defined with a maximum number of iterations 

of 1,000 [74]. The threshold for selecting the relevant features is a scaling factor: 

‘1.25*mean’ [74]. This intends to select those features whose importance is greater or 

equal than the threshold [74]. We select these two methods because they are simple 

feature selection techniques and have been widely investigated [75].  

 

3.7.2. Proposed ML classifiers 

 

We believe that, even though feature-based classifiers have not shown a 

performance as competitive as deep learning architectures in dementia in language (table 

1 and 2), they are worth exploring since it is possible to determine each feature importance 

in the classification task. This means that these methods are explainable. That is relevant 

to the generalizability of studies since it refers to the capacity with which parameters can 

justify the results. Therefore, we propose three supervised learning models: SVM, RF and 

Gaussian Naïve Bayes (GNB). SVM and RF have shown the highest performance for 

supervised learning (table 1 and 2) and [38] reported high accuracy using GNB [38]. 

These approaches are developed using scikit-learn version 1.0.1 in Python 3.7.12. Each 

model is optimized using hyperparameters selected via grid search 5-fold CV on the 

training set. The two feature selection methods optimize the number of features for each 

model, except for GNB, which employs the feature selection technique that obtains the 

most promising results in SVM and RF. For reproducibility purposes, Appendix presents 

a detailed list of all the hyperparameters obtained from the grid search 5-fold CV for each 

model.  

We also explore two multimodal approaches: early fusion and late fusion 

explained in section 2.1.3. To do so, we only focus on the best unimodal performing 
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models. Parameter optimization is also performed via grid search 5-fold CV on the 

training set. In the case of late fusion, we apply weighted and unweighted majority voting. 

Unweighted majority voting is a technique in which “the final decision is the one where 

the majority of the classifiers reach a similar decision” [53]. In the case of weighted 

majority voting, the decision is reached by weighting each classifier’s decision with the 

obtained accuracy. Majority voting approach is a well-known and broadly used technique, 

of which there are numerous examples of its successful application. For instance, [76] 

employed multiple classifiers for speaker identification and the “output scores of all 

classifiers were fused in a late integration approach to obtain the majority decision 

regarding the identity of the unknown speaker” [53], [76]. One advantage of this method 

is that “it works at the decision level by combining the prediction scores available for 

each modality” [54].  

 

3.8. Deep learning 
 

Feature-based approaches, nonetheless, usually “do not generalize well and often 

demand some level of domain expertise” [36]. Therefore, we explore deep learning 

models with special emphasis on transfer learning, which “refers to the use of existing 

knowledge in a different domain” [64]. This approach has allowed the development of 

many tasks where data collection is scarce, e.g., in health related ones. Given that this 

paper’s main objective is to propose generalizable methods with potential applications, 

we believe transfer learning can provide a solution for this challenge.  

In the case of the speech modality, we propose two methods: pre-trained CNNs 

of the computer vision domain and fine-tuning end-to-end ASR architectures. For the 

linguistic modality, we propose two types of input: human-generated transcripts and 

transcripts obtained from an ASR system. The reason is that, even though we expect 

human-generated transcripts to achieve a better performance, it is essential to explore 

ASR systems in order to reach a complete automation [10]. The two types of transcripts 

are applied to the following architectures: LSTM neural network, FastText and self-

supervised pre-trained models BERT and RoBERTa. In the case of FastText method, 

which is the only method that does not support transfer learning, we explore the relevance 

of phonetic representations.  

Deep learning models are developed using Pytorch version 1.10.0 in Python 

3.7.12. Experiments are conducted on Google Colab Pro using a 25GB NVIDIA Tesla 
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K80 GPU. All models expect ASR architectures and BERT, RoBERTa and FastText are 

evaluated using 5-fold CV. These approaches are also evaluated on a held-out test and on 

an external validation set. To account for stochastic initialization, overall performance is 

averaged across three runs.  

 

3.8.1. Acoustic modality  

 

According to [36], for dementia detection in speech “few works have employed 

pre-trained models of the computer vision domain such as ResNet or MobileNet” [36]. 

These methods depend on spectrograms, which are obtained from slicing raw audio files 

into “overlapping windows of small-time frames and applying Fourier Transform to each 

window” [77]. “Fourier Transform decomposes a signal into its constituent frequencies” 

[77]. The result is an image (figure 7), which allows us to apply computer vision 

architectures to audio downstream tasks. The most common type of spectrogram is Mel-

spectrogram, in which the amplitude from a linear scale is transformed to Mel scale [77]. 

“Mel scale aims to mimic the non-linear human ear perception of sound” [77]. To obtain 

the spectrograms, we use librosa library version 0.8.0. Spectrograms are extracted with 

128 Mel bands, a hop length equal to 512 and a length of the Fast Fourier Transform 

(FFT) window of 2,048.  

 

 

Figure 6. Example of Mel-spectrogram used to feed pre-trained CNNs.  

 

One advantage of pre-trained CNNs on speech tasks is that these architectures “do 

not necessitate domain knowledge for their design” [78]. Consequently, this could lead 

to more successful models due to less assumptions taken regarding the task [78]. 

Drawbacks, nevertheless, are that this technique assumes that spectrograms are images 

instead of speech representations [78] and that during the spectrogram transformation 

some information from the wav file may be lost [78].  
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The pre-trained CNNs we propose are: VGG16, ResNet18 and ResNet152, which 

have been widely used in the computer vision domain [79]. VGG16 is characterized by 

adding more filters to increase the model’s depth [79]. We choose this model because 

[36] employed it to detect dementia using Log-Mel spectrograms from the ADReSS 

speech data set. [36] reported a 56.65% accuracy. We aim to improve this performance 

by using Mel-spectrograms besides exploring MCI and AD instead of only early AD as 

done by the ADReSS data set [15].  

ResNet18 and ResNet152 are residual neural networks introduced in [80]. These 

networks were trained on the ImageNet database – a data set that contains more than 

100,000 images [80]. We select ResNet18 because it has shown as promising results as 

deeper neural networks such as DenseNet201 while being less computationally 

demanding [81]. We choose ResNet152 to compare results obtained with ResNet18. 

Furthermore, up to our knowledge, these two networks have not yet been investigated in 

speech classification tasks for AD and MCI.  

In comparison to VGG neural networks like VGG16, ResNet has fewer filters and 

lower complexity [82]. It also uses less filters, which in turn makes them computationally 

faster than VGG [82]. These neural networks have many variants according to the number 

of layers. ResNet18 contains 18 deep layers and ResNet152 contains 152 deep layers. 

 

 

Figures 7 and 8. Figure 7 (left) shows the architecture defined for ResNet18 and ResNet152 

model, figure 8 (right) for VGG16. 

 

To train the CNNs, we keep the original structures and re-estimate the two last 

hidden layers to comply with our classification task (figures 7 and 8). After the second to 

last layer, a dropout layer is adopted with a rate of 0.3. We also set softmax as the 

activation function in the output layer. We define cross entropy loss as criterion since it 

is usually used to measure the difference between two likelihood distributions [79]. As 
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optimizer we use Adam with an empirically defined learning rate of 0.001. The batch size 

to load the images is set to 32. The number of epochs is defined empirically: for 

ResNet152 is 35, for ResNet18 is 70 and VGG16 is 22. 

In addition, given that our objective is to propose generalizable methods, we 

believe that the best practice to detect dementia in speech is by employing raw audio files 

without preprocessing steps like spectrogram transformation. This means using an end-

to-end methodology. Hence, we apply end-to-end self-supervised ASR frameworks, 

wav2vec 2.0 and HuBERT, which, up to our knowledge, have not yet been studied in our 

task except for wav2vec 2.0, which was investigated for AD and MCI classification for 

the Mandarin Chinese language [39] (table 1). None of these models have been previously 

applied on the English language. 

In the past two years, “speech representation learning has been increasingly 

dominated by self-supervised frameworks using contrastive loss” [83]. Among several, 

wav2vec 2.0 is the most common framework since it has shown a performance 

improvement and a decrease in training time [84]. This framework was initially 

developed as an ASR tool in order to tackle the lack of transcribed data. However, by 

fine-tuning pre-trained wav2vec 2.0, the model can be applied to downstream tasks.  

Wav2vec 2.0 framework, as illustrated in figure 9, “contains three modules: 

feature encoder, quantization module and contextualized encoder. The first module 

consists of multiple convolution layers represented by the blue trapezoids (figure 9) and 

self-attention layers” [85]. The input is a one-dimensional raw waveform. The 

convolutional layers output latent speech representations. In the second module, “latent 

speech representations are learned in an unsupervised way; as a consequence, one has to 

build a ground truth to calculate a loss to optimize the Transformer in training” [64]. This 

ground truth is “created by quantization that transforms the continuous latent speech 

representation into a discrete vector called quantized representation” [64].  

In the last module, some quantized representations are masked and fed into a 

Transformer. Transformers are built upon decoders and encoders, and they employ the 

concept of self-attention [64]. The model aims to predict the masked quantized 

representations using the contrastive loss function. The model’s goal is to “optimize the 

contrastive loss, which enforces the model to identify the true quantized latent speech 

representations” [86].  
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Figure 9. Illustrates wav2vec 2.0 framework. Taken from https://huggingface.co/. 

 

Building upon wav2vec 2.0, Facebook released wav2vec 2.0 XLSR, which 

presents a key difference compared to wav2vec 2.0: it can learn speech representations 

across multiple languages. This is possible by pre-training the model using multi-lingual 

data sets. [64] states that “the most significant benefit of sharing these representations is 

the possibility to use language features from another language without pre-training the 

model again on a new language” [64], [87]. In this paper, we focus on wav2vec 2.0 XLSR. 

The reason is that this model could be applied to other languages, even though our data 

sets employ American English. Specifically, we fine-tune ‘wav2vec2-large-xlsr-53’, 

which is, until now, the biggest model released by Facebook. This model is available in 

the HuggingFace’s Transformers library.  

 

 

Figure 10. Steps followed to fine tune wav2vec and HuBERT for dementia recognition. 

 

https://huggingface.co/
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For fine-tuning, the batch size set is 1 primarily due to memory constraints. To be 

consistent with previous work fine-tuning wav2vec, we employ mean as the pooling 

mode strategy applied to merge 3D representations from an audio into 2D representations 

[85]. On top of the model, two linear layers are added to map the representations of 

wav2vec into our classification task. Softmax activation function is the last layer defined. 

The learning rate is set to 1𝑒 − 4 and number of training epochs is empirically set to 10. 

We set a 0.3 dropout rate.  

The second self-supervised ASR model applied in this paper is HuBERT (Hidden 

Unit BERT), which is a recent ASR tool released in June 2021 [88]. This model has key 

differences compared to the wav2vec 2.0 architecture: HuBERT uses “an offline 

clustering step to generate noisy labels for Masked Language Model pre-training” (figure 

11) [86], [88]. This clustering is a “k-means clustering algorithm applied on 39-

dimensional MFCC features” [88]. Another difference is that it employs cross-entropy 

loss as criterion whereas wav2vec uses contrastive loss function, and it “re-uses 

embeddings from BERT encoder to improve targets” [89]. According to [88], “the 

HuBERT model is forced to learn both acoustic and language models from continuous 

inputs” [88].  

 

 

Figure 11. HuBERT framework. It “predicts hidden cluster assignments of the masked frames 

generated by one or more iterations of k-means clustering” [88]. Image taken from [88]. 

 

To employ HuBERT, we follow the same steps as in figure 10. We apply mean 

as the pooling mode strategy and two linear layers on top of the HuBERT representations. 

We set a 0.3 dropout rate and softmax as activation function. The pre-trained model used 

is ‘hubert-large-ls960-ft’ obtained from HuggingFace’s Transformers library. This model 

has been previously fine-tuned on 960 hours of Librispeech using the model ‘hubert-
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large-ll60k’. Audio files are loaded using a batch size of 1 and we empirically select the 

number of epochs for fine-tuning as 7. The final optimization steps are 880. We expect 

wav2vec 2.0 XLSR and HuBERT architectures to outperform pre-trained CNNs from the 

computer vision domain. The reason is that these two systems have been pre-trained 

specifically on audio.  

 

3.8.2. Linguistic modality 

 

As mentioned above, for the linguistic modality we propose two types of input: 

human-generated transcripts and ASR-generated transcripts. These two data types are 

applied on the same architectures. We hypothesize that the human-generated transcripts 

will obtain the highest performance and the ASR-generated transcripts will perform better 

than the baseline model. Our proposed architectures are: LSTM, FastText, BERT and 

RoBERTa. 

We explore LSTM neural network because this model has shown promising 

results in the task of dementia recognition, for instance, [37] obtained an 84% accuracy 

applying a bidirectional LSTM [37]. This is a popular recurrent neural network 

architecture, which is characterized by “adding an additional weight to the network to 

create cycles and maintain an internal state” [90]. This property enables us to capture long 

dependencies [90]. “One disadvantage of this network is that it struggles with long-range 

dependencies” [90].  

To train LSTM, we use a pre-trained GloVe model vector (Global Vectors for 

word representations) [91], specifically ‘glove.6B.100d’, to extract lexical 

representations. This model vector contains 6B tokens, 400K vocabulary words and 100 

dimensional vectors [91]. GloVe is “an unsupervised learning algorithm for obtaining 

word embeddings” [91]. The reason for selection this model vector is that it trains “on 

aggregated global word-word co-occurrence statistics from a corpus, and the resulting 

representations showcase interesting linear substructures of the word vector space” [91]. 

The model is initialized with the GloVe word embeddings, setting the size of the 

vocabulary with a maximum value of 725. The batch size is set to 30. The number of 

hidden nodes is 32 and the number of layers is 2. Bi-direction is set to true. In total, the 

model has 131,957 trainable parameters. The most suitable number of epochs is 

empirically defined as 40. The criterion is cross entropy loss and the optimizer is Adam, 

as performed in [37]. Dropout is defined with a rate of 0.5 and softmax activation function 

is defined as the last layer. 
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Figure 12. LSTM architecture 

 

The second proposed model, FastText, has previously obtained competitive 

performance in dementia detection [35]. Even though this model is content-dependent 

since it depends on n-grams, [29] found that the model is able to successfully learn 

phoneme embeddings [29]. We select this architecture because this finding suggests that 

FastText could be a useful architecture for potential clinical applications since the smaller 

the processing unit is, the more generalizable a study is across languages [10]. This 

architecture contains two layers: an embedding layer, in which the word embeddings are 

calculated, and a linear layer [35]. This model can train and evaluate faster than many 

other deep models [92].  

 

 

Figure 13. FastText architecture 

 

To train FastText, we use trigrams. We also conducted experiments for bigrams 

and 4-grams without an improvement in performance. As mentioned in [35], “this bag of 

trigrams acts as additional features to capture some information about the local word 

order” [35]. To be consistent with previous studies [29], we set the number of epochs to 

300 and a learning rate of 0.05. The embedding dimension is 100. To analyze the role of 
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phonetic representations, we apply two types of inputs: text and phonemes following 

[29]’s methodology. An example for the first one is: ‘the scene is in the kitchen’. The 

second one becomes: ‘DH AH0 IS IY1 N IH1 Z IH0 N D AH0 K IH1 CH AH0 N’. This 

phonetic transcription is carried out using the CMUDict library. We keep the vowel stress 

in the pronunciation, which is represented by the numbers appended to the phonemes 

[29]. The reason is that [29] found that removing the stress reduced performance [29].  

The third approach is the state-of-the-art BERT architecture. Recently, self-

supervised pre-trained models using language model (LM) or masked-language model 

(MLM) have achieved promising results on a large variety of NLP tasks. Among them, 

BERT is the most successful structure, which was initially released by Google in late 

2018 [46]. “BERT is built on Transformer networks to pre-train bidirectional 

representations of text by conditioning on both left and right contexts jointly in all layers” 

[19]. It is capable of learning dependencies beyond the fixed-length limitations [64]. 

 

 

Figure 14. Example of BERT architecture. Figure taken from [93].  

 

BERT can take multiple sentences as input. “A special token, CLS, is prepended 

to the first segment, which can be used in an extra classification objective in addition to 

the MLM objective” [94]. “MLM enables BERT to learn to predict words within a 

sentence” without having to predict every next token [64]. Another special token, SEP, is 

inserted at the end of each segment to indicate segment boundaries [93]. Then, BERT 

masks 15% of the words [64] (figure 14). The aim is to predict the masked word and to 

“check if there is a word missing or an incorrect word in the sentence” [64].  
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One important difference between BERT and traditional neural networks is that it 

has access to the entire input whereas previous architectures such as LSTM usually have 

access to the input one by one. This means that BERT considers the words’ context rather 

than learning sequentially. This is possible due to the use of attention modules, “which 

take into account other words in a unit of text when generating a word representation 

during pre-training and subsequent tasks” [48].  

This model can be used in two different ways: as a high quality linguistic feature 

extractor or as a mean to fine-tune the model on a downstream task. In this paper, we 

focus on the second application because it allows us to explore a relevant transfer learning 

approach for linguistic data. BERT has also been proven successful for dementia 

detection, for example, [48] fine-tuned BERT and obtained an 81.9% accuracy. [50] 

combined wav2vec and BERT to detect dementia in speech. They reported an 83% 

accuracy. These studies have shown higher performance than those employing other 

types of word embeddings or handcrafted features.  

In this research, we use the model ‘bert-based-uncased’ to initialize the classifier, 

which has been pre-trained on English and introduced in [46]. This model consists of 12 

layers and was trained on BooksCorpus containing around 800 million words [46]. We 

add a classification layer at the end to map the BERT output to our task [19]. The 

maximum sequence length of the input is set to 512 tokens. Empirically, dropout is 

defined as 0.1. Batch size is set to 16 because previous work has defined this value as 

optimal for BERT [19]. We use Adam as optimizer and linear scheduling as learning rate. 

Theses parameters are chosen based on previous studies fine-tuning BERT, such as [19], 

[48]. During fine-tuning, we optimize the number of epochs to 5 within a range of 1 to 

10. According to prior studies, BERT does not need a lot of epochs but rather has shown 

competitive performance by employing few epochs even on small data sets [19]. Label 

probabilities are computed using softmax. 

Our fifth proposed method is RoBERTa architecture, which is built based on 

BERT’s language masking strategy. RoBERTa, however, presents a key difference: it 

“removes BERT’s next-sequence pre-trained objective and trains with much larger mini-

batches and learning rates” [47]. We select this model because it has shown competitive 

performance in studies using human-generated transcript [49] and we believe it is 

necessary to address this architecture using ASR-generated transcripts in order to ensure 

the generalizability of results. 
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The model is initialized with the pre-trained ‘roberta-base’ model from the 

HuggingFace’s Transformers Library. This model was pre-trained on five large corpora 

of English [47]. We add a two-dimensional linear layer with softmax activation function. 

Dropout is empirically defined as 0.3. We use cross entropy loss as the loss function and 

Adam as optimizer with a learning rate of 1𝑒 − 05. Batch size is defined as 16 and the 

maximum input length is 512, following BERT implementation details. After trying 

different number of epochs, we set the final value to 7. We expect that BERT and 

RoBERTa will obtain the most promising results not only on the human transcripts but 

also on the ASR transcripts.  

 

 

Figure 15. BERT and RoBERTa fine-tuning steps. 

 

4. Results 
 

4.1. Feature-based approach 
 

Appendix contains all parameters on which every model is trained on after parameter 

optimization and confusion matrixes for the best-performing models. 

 

4.1.1. Acoustic-feature-based approach  

 

Results on the 5-fold CV (table 4) and on the held-out set (table 5) show that the 

two feature sets, ComParE and GeMAPS, are successful at detecting dementia in speech 

since the two obtain results in line with previous work (table 1). The best-performing 

model – RF – employs the ComParE feature set. Moreover, results (table 5) suggest that 

the importance of weights is more effective than ANOVA. It is relevant to notice, 
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nonetheless, that half of the models do not outperform the baseline model which obtained 

an accuracy of .66 (table 3).  

 
Approach:  

5-fold CV  

FS Acc. F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

SVM GeMAPS weights .67 .67 / .65 .67 / .67 .45 / .85 

SVM GeMAPS ANOVA .62 .61 / .63 .63 / .62 .59 / .65 

SVM ComParE weights .72 .62 / .78 1 / .64 .45 / 1 

SVM ComParE ANOVA .67 .70 / .66 .66 / .71 .76 / .61 

RF GeMAPS weights .69 .70 / .67 .67 / .70 .71 / .65 

RF GeMAPS ANOVA .65 .67 / .64 .64 / .67 .69 / .61 

RF ComParE weights .72 .72 / .73 .73 / .72 .71 / .73 

RF ComParE ANOVA .70 .70 / .70 .69 / .71 .58 / .79 

GNB ComParE weights .64 .59 / .67 .67 / .61 .53 / .73 

GNB GeMAPS weights .65 .64 / .66 .66 / .65 .63 / .67 

Table 4. Five-fold cross-validation results on training set. FS stands for feature selection. The 

best-performing model is displayed in bold.  

 

Approach:  

held-out set 

FS Acc. F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

SVM GeMAPS weights .73 .75 / .71 .80 / .65 .77 / .70 

SVM GeMAPS ANOVA .63 .61 / .66 .57 / .70 .65 / .62 

SVM ComParE weights .73 .78 / .57 .69 / .78 .91 / .45 

SVM ComParE ANOVA .68 .42 / .42 .60 / .74 .92 / .30 

RF GeMAPS weights .63 .68 / .58 .69 / .57 .67 / .60 

RF GeMAPS ANOVA .61 .69 / .54 .66 / .57 .72 / .51 

RF ComParE weights .74 .79 / .67 .75 / .74 .79 / .67 

RF ComParE ANOVA .63 .68 / .56 .68 / .57 .69 / .55 

GNB ComParE weights .65  .72 / .54 .67 / .61 .77 / .49 

GNB GeMAPS weights .67 .71 / .61 .71 / .60 .70 / .62 

Table 5. Results obtained on the held-out test set for the acoustic modality. 

 

4.1.2.  Linguistic-feature-based approach  

 

Tables 6 and 7 demonstrate that most linguistic-feature-based models outperform 

the acoustic-feature-based models (table 5). From the three feature sets extracted, BOW 

obtains the highest performance outperforming the baseline model by a large margin 

(plus .12 accuracy). These findings suggest that the frequency of words is relevant to 

distinguish dementia language from control. Nonetheless, compared to previous work 

(table 2), performance is poorer. The reason is that most of the previous work has focused 

on deep learning techniques, for which we present results in section 4.2.2.  

 

 

 

 

 

 



 39 

 
Approach: 

5-fold CV 

FS Acc. F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

SVM COEVEFE weights .79 .78 / .80 .83 / .78 .75 / .83 

SVM COEVEFE ANOVA .73  .71 / .74 .75 / .71 .68 / .77 

SVM CLAN weights .65 .65 / .65 .66 / .64 .60 / .69 

SVM CLAN ANOVA .70 .67 / .72  .65 / .67 .62 / .78 

SVM BOW weights .69 .73 / .71 .72 / .77 .76 / .69 

SVM BOW  ANOVA .71 .57 / .69 .71 / .76 .77 / .65  

RF COEVEFE weights .69 .81 / .75 .73 / .88 .91 / .56 

RF COEVEFE ANOVA .76 .75 / .76 .78 / .74 .73 / .79 

RF CLAN weights .64 .63 / .63 .65 / .67 .65 / .62 

RF CLAN ANOVA .63 .59 / .64 .64 / .64 .62 / .64 

RF BOW weights .78 .77 / .79 .72 / .77 .75 / .80 

RF BOW ANOVA .74 .73 / .75  .74 / .75 .71 / .76 

GNB COEVEFE weights .70 .68 / .72 .75 / .68 .64 / .77 

GNB CLAN weights .74 .74 / .74 .74 / .74 .74 / .74 

GNB BOW weights .56 .55 / .57 .57 / .55 .53 / .59 

Table 6. Five-fold cross-validation results on training set.  

 
 

Approach: 

held-out test 

FS Acc. F1  

dementia / control 

Precision  

dementia / control 

Recall  

dementia / control 

SVM COEVEFE weights .62 .62 / .61 .62 / .61 .61 / .62 

SVM COEVEFE ANOVA .68 .72 / .55 .60 / .77 .88 / .43 

SVM CLAN weights .73 .75 / .71 .71 / .77 .80 / .67 

SVM CLAN ANOVA .75 .78 / .72 .70 / .83 .87 / .63 

SVM BOW weights .73 .73 / .74 .74 / .73 .71 / .75 

SVM BOW ANOVA .71 .59 / .76 1 / .62 .42 / 1 

RF COEVEFE weights .61 .64 / .59 .60 / .63 .68 / .55 

RF COEVEFE ANOVA .63 .67 / .59 .61 / .67 .75 / .52 

RF CLAN weights .67 .66 / .68 .68 / .66 .63 / .70 

RF CLAN ANOVA .74 .75 / .58 .62 / .87 .93 / .43 

RF BOW weights .74 .71 / .77 .79 / .71 .65 / .83 

RF BOW ANOVA .78 .79 / .78 .80 / .77 .77 / .79 

GNB COEVEFE weights .57 .58 / .56 .57 / .57 .59 / .55 

GNB CLAN weights .72  .74 / .69 .69 / .76 .80 / .63 

GNB BOW weights .52 .54 / .49 .53 / .50 .55 / .48 

Table 7. Results obtained on the held-out test set for the linguistic modality.  

 

4.1.3. Multimodal feature-based approaches 

 

Given the results obtained in each individual modality, we explore two fusion 

methods: early fusion and late fusion. The idea is to boost performance by combining 

acoustic and linguistic information. 

 

4.1.3.1.Early fusion  

 

Early fusion focuses on the best-performing algorithms (tables 8 and 9): SVM and 

RF algorithms. We exclude GNB since it obtains the lowest performance in unimodal 

classification. The highest performance (.78) is achieved by SVM implementing BOW 
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and ComParE feature sets using importance of weights as feature selection technique. 

The lowest accuracy (.65), however, is reached by the same architecture but using 

ANOVA as feature selection technique. Performance does not improve compared to 

unimodal linguistic classification (table 7). This finding encourages further exploration 

of acoustic feature sets. 

 
Approach:  

5-fold CV 

FS Acc. F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

SVM CLAN + GeMAPS ANOVA .70 .73 / .65 .66 / .76 .83 / .57 

SVM CLAN + GeMAPS weights .66 .60 / .70 .71 / .63 .52 / .79 

SVM CLAN + ComParE ANOVA .72 .73 / .72 .72 / .73 .75 / .70 

SVM CLAN + ComParE weights .74 67 / .79 .92 / .67 .52 / .96 

SVM BOW + ComParE ANOVA .77 .74 / .78 .80 / .74 .70 / .83 

SVM BOW + ComParE weights .77 .78 / .76 .73 / .81 .83 / .71 

RF CLAN + GeMAPS ANOVA .60 .63 / .61 .60 / .64 .65 / .58 

RF CLAN + GeMAPS weights .72 .75 / .70 .70 / .75 .79 / .65 

RF BOW + ComParE ANOVA .74 .68 / .79 .87 / .69 .57 / .92 

RF BOW + ComParE weights .89 .89 / .90 .95 / .85 .83 / .96 

RF CLAN + ComParE ANOVA .68 .53 / .72 .82 / .60 .39 / .91 

RF CLAN + ComParE weights .81 .82 / .80 .78 / .86 .88 / .75 

Table 8. Five-fold cross-validation results on training set. 

  
Approach:  

held-out set 

FS Acc. F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

SVM CLAN + GeMAPS ANOVA .72 .70 / .73 .74 / .70 .67 / .77 

SVM CLAN + GeMAPS weights .68 .74 / .64 .80 / .58 .70 / .70 

SVM CLAN + ComParE ANOVA .70 .71 / .69 .69 / .71 .73 / .67 

SVM CLAN + ComParE weights .73 .81 / .59 .75 / .71 .88 / .50 

SVM BOW + ComParE ANOVA .65 .67 / .63 .64 / .67 .70 / .60 

SVM BOW + ComParE weights .78 .79 / .78 .80 / .77 .77 / .79 

RF CLAN + GeMAPS ANOVA .66 .65 / .67 .68 / .64 .62 / .70 

RF CLAN + GeMAPS weights .75 .78 / .71 .86 / .63 .72 / .80 

RF BOW + ComParE ANOVA .74 .77 / .73 74 / .77 .81 / .69 

RF BOW + ComParE weights .72 .71 / .73 .73 / .72 .70 / .75 

RF CLAN + ComParE ANOVA .68 .73 / .61 .63 / .79 .87 / .39 

RF CLAN + ComParE weights .67 .82 / .51 .72 / .85 .96 / .37 

 Table 9. Results from the early fusion approach.  

 

4.1.3.2. Late fusion  

 

Late fusion employs the predictions of the best-performing models on the held-

out test set from each individual modality: RF using ComParE and BOW (tables 5 and 

7). The late fusion approaches are unweighted majority voting and weighted majority 

voting explained in section 2.13. Results (table 10) show an improvement in performance 

by .01 compared to unimodal linguistic classification (table 7) applying weighted 

majority voting. Unweighted majority voting does not increase performance. This finding 

further stresses the exploration of other acoustic feature sets. 
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Approach Acc. F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

unweighted majority voting .76 .80 / .76 .85 / .62 .75 / .76 

weighted majority voting .79 .82 / .72 .87 / .67 .80 / .79 

Table 10. Results from weighted and unweighted majority voting. 

 

4.2. Deep learning approach 
 

4.2.1. Acoustic modality 

 

From the five approaches for the acoustic modality only three (VGG16, 

ResNet152 and HuBERT) outperform the baseline model when evaluated on the held-out 

test set (table 14) and neither of the models outperform the baseline model when evaluated 

on external conversational speech data (table 15), in which the highest accuracy is .65. 

Results from the ResNet152 and HuBERT methods are in accord with the current state-

of-art results (table 1). Table 13 suggests that VGG16 is overfitting. Results on the 

external validation set suggest that our proposed models are not robust enough to 

generalize on other types of data like conversational speech, except for ResNet152, which 

maintains a similar performance (table 13). Figure 16 displays the trade-off between true 

and false positives for HuBERT on the held-out and external validation set. 

 

Approach: 

5-fold CV 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

CNNs (VGG16) .61 .61 .38 / .72 .57 / 1 1 / .23 

CNNs (ResNet18) .54 .53 .14 / .68 1 / .52 .08 / 1 

CNNs (ResNet152) .71 .74 .64 / .79 1 / .65 .47 / 1 

Table 13. 5-fold CV results on the training set. 

 

Approach: 

held-out test set 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

CNNs (VGG16) .68 .68 .76 / .54 .61 / 1 1 / .37 

CNNs (ResNet18) .51 .51 .12 / .67 .67 / .51 .07 / .97 

CNNs (ResNet152) .68 .72 .76 / .61 .64 / .88 .93 / .61 

wav2vec XLSR .62 .63 .66 / .59 .66 / .59 .66 / .60 

HuBERT .74 .78 .77 / .72 .77 / .72 .77 / .71 

Table 14. Results for the acoustic modality on the held-out test. 

 

Approach:  

external validation set 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

CNNs (VGG16) .65 .66 .53 / .73 .83 / .60 .38 / .92 

CNNs (ResNet18) .50 .50 0 / .63 0 / .50 0 / 1 

CNNs (ResNet152) .69 .69 .73 / .64 .65 / .78 .85 / .54 

wav2vec XLSR .47 .47 .26 / .16 .85 / .09 .16 / .76 

HuBERT .53 .58 .68 / .14 .52 / 1 .08 / 1 

Table 15. Results for the acoustic modality on the external validation set.  
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Figure 16. Rate of true positives and false positives for the HuBERT model on the held-out test 

set and external validation set. 

 

4.2.2 Linguistic modality 

 

The linguistic modality explores two types of inputs: human-generated transcripts 

and ASR-generated transcripts. In the first case, results (tables 16 and 17) demonstrate 

accuracies are in line with previous work (table 2), except for LSTM GloVe and 

phoneme-based FastText. BERT (acc. .81) and RoBERTa (acc. .81) both achieve similar 

results. 

Performance on the external validation set (table 18) does not decrease but rather 

increases on all methods apart from phoneme-based FastText. This finding demonstrates 

that these models generalize well on conversational data. Recall results on the external 

validation set (table 18) display high results in the dementia class, which indicates that it 

is easier for the models to identify true positives in conversational speech data. Figure 17 

shows a better performance of BERT on the external validation set compared to the held-

out test set.  

  
Approach: 

5-fold CV 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

LSTM GloVe .65 .73 .71 / .59 .88 / .39 .42 / .85 

Table 16. Results for the linguistic modality on 5-fold CV train set. 

Transcripts are human-made. 

 
Approach: 

held-out set 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

LSTM GloVe .56 .65 .53 / .60 .58/ .55 .42 / .69 

BERT .81 .82 .79 / .81 .85 / .76 .73 / .87 

RoBERTa .80 .80 .78 / .82 .88 / .75 .70 / .90 

 FastText .75 .75 .75 / .73 .74 / .75 .76 / .73 

 FastText phonemes .66 .61 .65 / .67 .67 / .65 .63 / .70 

Table 17. Results for the linguistic modality on held-out test set.  

Transcripts are human-made. 
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Approach: 

external validation set 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

LSTM GloVe .72 .70 .76 / .66 .61 / 1 1 / .47 

BERT .85 .88 .86 / .83 .76 / 1 1 / .71 

RoBERTa .88 .82 .89 / .87 .80 / 1 1 / .70 

FastText .76 .76 .80 / .70 .66 / 1 1 / .53 

FastText phonemes .65 .63 .72 / .47 .57 / 1 1 / .30 

Table 18. Results for the linguistic modality on the external validation set.  

Transcripts are human-made. 

 

 

Figure 17. ROC curves for BERT on the held-out test set and external validation set.  

 

Regarding the ASR-generated transcripts, none of the methods (tables 19, 20 and 

21) outperform the baseline model. RoBERTa is the best-performing method with an acc. 

of .64 on the held-out test and .63 on the external validation. Compared to the human-

generated transcript results (tables 17 and 18), there is a decrease in performance by a 

large margin. For example, a comparison between BERT (table 17) and RoBERTa (table 

20) shows a drop of .17 acc. Figure 18 illustrates the low performance for the two sets. 

We assume this performance is due to the ASR tool used to obtain the transcripts. It is 

important to notice that the FastText model exploring phonemes as input achieves the 

lowest performance, which suggests that phonemes are not as effective as words 

embeddings to detect dementia. 

 
Approach:  

5-fold CV 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

LSTM GloVe .62 .63 .60 / .76 .51 / .78 .69 / .54 

Table 19. 5-fold CV on the training set. Transcripts are ASR-generated. 

 
Approach:  

held-out set 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

LSTM GloVe .61 .66 .54/ .68 .61/ .66 .63/ .59 

BERT .63 .63 .68 / .57 .65/ .61 .72 / .53 

RoBERTa .64 .56 .69 / .59 .67 / .63 .73 / .56 

 FastText .62 .62 .65 / .58 .65 / .58 .64 / .59 

 FastText phonemes .60 .53 .63 / .57 .64 / .56 .62 / .58 

Table 20. Results for the linguistic modality on the held-out set. Transcripts are ASR-generated. 
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Approach: 

external validation set 

Acc. AUC F1 

dementia / control 

Precision 

dementia / control 

Recall 

dementia / control 

LSTM GloVe .57 .56 .60/ .20 .56/ .58 .64/ .50 

BERT .58 .61 .86 / .26 0.92 / .19 .80 / .41 

RoBERTa .63 .60 .93 / .34 .93 / .37 .94 / .32 

 FastText .58 .57 .81 / .22 .91 / .14 .72 / .43 

 FastText phonemes .57 .56 .74 / .21 .92 / .13 .61 / .52 

Table 21. Results for the linguistic modality on the external validation set. 

Transcripts are ASR-generated. 

 

 

Figure 18. ROC curves for RoBERTa on the held-out test set and the external validation set. 

Transcripts are ASR-generated. 

 

5. Discussion and limitations 
 

5.1. Dementia in language  
 

As shown in this paper, language analysis provides a non-invasive and accessible 

method for dementia recognition. However, in this analysis there are some factors to take 

into consideration. The first aspect is the complexity of language processing. “Speech and 

linguistic processes do not work in isolation and are usually intertwined with other 

cognitive and physical processes” [12]. It means that a language analysis for dementia 

not exclusively concerns the cognitive state of the speaker but, among others, his age, 

culture, sex and emotional state. Particularly, the age of the participants should be taken 

into consideration. As mentioned in [95], “a person’s age can be predicted with fair 

accuracy by speech characteristics including voice tremor, pitch, speaking rate, loudness 

and fluency” [95]. This aspect becomes of special interest when working with imbalanced 

data sets, since risk of statistical bias arises. If dementia patients are significantly older 

than the control ones, models might only detect the participants’ age. 

This is also related to the Picture Description Task itself. As mentioned above, the 

Pitt Corpus employs this task to elicit speech samples from patients with an early type of 
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dementia and no signs of neurocognitive decline. This task does not exclusively display 

language impairment but "cognitive performance of multiple neurocognitive functions" 

[12]. Therefore, a person with AD or MCI may have problems performing the task by not 

recalling common words or stuttering not necessarily due to language deficits but 

concentration issues [12]. Moreover, the task is limited by its scope and setting, especially 

since the Cookie Theft Picture is “an outdated depiction of domestic life” [17], [20] and 

the ability to describe it highly depends on cultural circumstances. The best solution to 

avoid this limitation is to employ conversational speech [10], since it represents a more 

natural and open type of conversation. By that, it tackles the mentioned disadvantages of 

elicited speech. 

A further factor is model interpretability, which is essential for potential clinical 

applications as “clinicians' ability to interpret the model's decisions is crucial for adopting 

these technologies” [10]. Due to the scope of this paper, we have not addressed this issue. 

Future work should focus on inherently interpretable models such as decision trees and 

k-Nearest Neighbors [10]. 

Additionally, language in dementia presents various constraints in data collection. 

For example, recordings ought to be carried out in a medical context using adequate 

equipment and explicit consent from patients or relatives. These requirements, among 

other factors, cause the majority of available data sets to be relatively small compared to 

related fields such as emotion recognition [3], [8]. This limitation is distinctly noticeable 

in our external validation set, since it contains few samples and two different data types. 

This is important to take into consideration when drawing conclusions from the external 

validation results: They could have been influenced by the possibility of conversational 

speech being easier to identify than elicited speech. In addition, a small data set presents 

high variance. This constraint also causes incomplete data since participants might not 

finish the data collection process. The Pitt Corpus, for instance, has some participants 

with only one sample and some with more than one. This may add an additional bias to 

the obtained results. Moreover, our subset does not consider the education variable, 

which, according to [10], is a relevant factor in dementia. Future work should aim to 

consider years of education and ensure that participants are represented with a maximum 

of one sample in each the training set and the testing set. 
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5.2. Data preprocessing and baseline model  
 

As mentioned in section 3.4., acoustic data is segmented based on each speaker 

using the pyAudioAnalysis library. This segmentation is challenging due to factors such 

as background noises, speaker overlapping and imbalance [60]. Therefore, it is common 

to notice overlapping speech between patient and interviewer even after speaker 

diarization. We consider this a possible bias in our acoustic models. In fact, in the case of 

the Picture Description task, the interviewer’s speech contribution has shown an 

improvement in the dementia classification task [96]. This may be because “interviewers 

intuitively adapt their behavior to better communicate or interact with the patient” [96]. 

This influence of the interviewer’s contribution should be further investigated by future 

work. 

Our baseline model reaches a high accuracy (.66). This suggests that in the subset 

of the Pitt Corpus, even though the class is balanced, age and sex provide a relevant 

statistical bias to the data. This aspect could be avoided by either using a fully balanced 

data set like the ADReSS data set [15] or customizing a subset that is not exclusively 

balanced for class but also for education, age and sex. Due to the already small subset, 

we believe the second option is not feasible. To tackle this problem, we provide a 

thoughtful choice of evaluation methods (section 3.5.).  

 

5.3. Feature-Based models  
 

Acoustic feature sets, ComParE and GeMAPs, developed to detect emotions in 

speech [66], [67], are language-independent and do not rely on word content. Therefore, 

these feature sets offer a generalizable approach for dementia recognition. However, it is 

important to notice that acoustic features do not exclusively reflect the neurocognitive 

state of a person but the speaker’s education, age, sex and emotional state. In other words, 

not all relevant features can be considered speech features for AD and MCI but there 

could be many other factors involved. Our results are in line with previous studies 

applying the ADReSS data set, which, as mentioned in section 2.1., is a subset of the Pitt 

Corpus focusing solely on AD detection. This finding suggests that MCI and AD can be 

jointly explored. 

For the linguistic modality, the best-performing feature set is content-dependent 

(table 7). This suggests results would likely differ if applied to other data types (e.g., 

spontaneous speech) and languages or if transcripts were generated using an ASR system. 
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The CLAN feature set, which depends on fluency indicators, achieves a performance 

poorer than related work. Early and late fusion – against previous expectations – do not 

outperform the unimodal linguistic classification. This finding encourages further 

exploration of acoustic feature sets.  

Concerning generalizability, one advantage that feature-based models offer is 

explainability, since they allow to determine each feature’s importance in the 

classification tasks. Therefore, there is need for more curated features since our results 

are not promising enough, especially regarding acoustic features. 

 

5.4. Deep Learning models  
 

Our proposed deep learning approaches mostly focus on transfer learning since 

this method does not require a large amount of training data. Concerning the acoustic 

modality, the proposed methods show promising results on the held-out test set but a drop 

in performance when evaluated on external data except for ResNet152. This suggests that 

these three deep transfer learning models do not generalize well on conversational data. 

Moreover, VGG16 show signs of overfitting, this suggests other CV techniques should 

be considered.  

As the results show, wav2vec XLSR does not outperform our proposed baseline 

model. HuBERT model reaches the highest accuracy on the held-out test set but presents 

a drop in performance on the external set. This is in line with [86]: “efforts on applying 

wav2vec and HuBERT to speech classification tasks have not yet proved a higher 

performance than traditional models” [86]. We hypothesize HuBERT outperforms 

wav2vec due to a key difference: the loss function. As mentioned in section 3.8.1., 

HuBERT employs cross-entropy loss whereas wav2vec uses contrastive loss, which is a 

more complex, but less stable loss function [88], [97]. We believe further research in this 

direction is necessary. 

Another potential explanation for these results is that wav2vec and HuBERT have 

been trained on non-domain data. In order to properly fine-tune these two models on 

dementia detection, one would need to train them on dementia speech samples. This task 

is currently unfeasible since there are no big data sets for dementia available. 

A further possible cause is the potential external noise created by the down-

sampling and up-sampling techniques. These sampling techniques align the sampling rate 

of an audio file by reducing or increasing it. Wav2vec XLSR and HuBERT have been 
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trained on raw audio files with a sampling rate of 16k Hz whereas the Pitt Corpus was 

recorded with a sampling rate of 41k Hz. Therefore, a down-sampling process is carried 

out (section 3.4.). This process can add external noise, which can interfere in the pre-

trained ASR model implementation. 

Furthermore, the lack of CV may lead to overfitting. Unfortunately, given 

memory constraints, CV techniques exceed our resources. Finally, ASR-based models 

might perform better with longer speech samples. In this paper, we employ a data 

augmentation method that consists of splitting the audio samples in 8-second segments. 

These models, however, were originally trained on segments which are around 1 minute 

long [88]. This suggests that wav2vec XLSR and HuBERT require segments longer than 

8 seconds to learn speech representations.  

It is important to highlight that neither wav2vec nor HuBERT models have been 

previously investigated in dementia detection in the English language. On that account, 

we cannot contextualize our results with previous studies. We believe that further 

research is needed since these methods offer a solution that does not require a lot of fine-

tuning data, is end-to-end, content-independent and – in the case of wav2vec XLSR – 

language-independent. 

For the linguistic modality, BERT and RoBERTa (using human-generated 

transcripts) achieve the best results on the held-out test set and external validation set. 

They outperform by a large margin, for example, BERT AUC outperforms LSTM GloVe 

by .17 on the held-out test set. These findings are in line with previous work and suggest 

that both models are robust enough to generalize on other data types. Similar to wav2vec 

XLSR and HuBERT, the lack of CV in BERT and RoBERT may lead to overfitting. 

ASR-generated transcripts, on the other hand, present poor performance 

compared to human-generated transcripts. A possible explanation is that the Google 

Cloud STT ASR-tool may not be suitable to transcribe dementia speech since it is 

characterized by filled pauses, hesitations and “empty speech” (section 2.1) [62]. A 

solution on how ASR tools can improve the transcription is by adding speech pauses and 

punctuation [62]. These results highlight the relevance of either employing a 

transcription-free methodology – an acoustic-based approach – or developing ASR tools 

specifically for dementia speech recognition.  

FastText using phoneme embeddings does not improve performance in 

comparison to the use of word embeddings. This finding suggests that phonetic 

representations do not augment dementia recognition. This is not line with what [29] 
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reported. Therefore, we believe that future work should further explore the role of 

phonemes in dementia. 

It is important to notice as well that, when evaluated on the external validation 

set, all proposed models are better at correctly classifying MCI and AD samples than 

those from the HC group. This could be a consequence from the subset used since the 

dementia group is defined using conversational speech whereas the control group 

contains only Picture Description task samples. 

 

5.5. Future work and conclusion 
 

This paper’s objective is to propose ML methods that address the generalizability 

of results. Our study demonstrates that:  

- AD and MCI can be jointly analyzed in comparison to HC. This joint analysis 

obtains performance in line with previous work based on AD.  

- Transfer learning is a promising solution for the generalizability of results in 

dementia detection. Especially pre-trained CNNs from the computer vision 

domain (ResNet152) and pre-trained BERT and RoBERTa models. 

- Linguistic-based approaches generalize well on external validation procedures 

using conversational speech. This methodology has not been previously applied 

in dementia recognition. 

- The widely used Google Cloud STT ASR tool might not be suitable for 

automatically transcribing dementia speech.  

- Fine-tuning end-to-end pre-trained HuBERT model shows potential to be a huge 

contribution to improve generalizability since it does neither depend on transcripts 

nor on content. This architecture has not been previously explored in dementia 

detection.  

- Phonetic representations do not augment dementia recognition.  

- Explainable linguistic features outperform explainable acoustic features.  

- Acoustic features do not improve performance in an early and late multimodal 

fusion.  

To support the obtained results, future work should replicate this study with 

balanced data sets. Our plan for future projects is to employ BERT and HuBERT 

embeddings in a deep multimodal fusion approach on our proposed subset of the Pitt 

Corpus and on the ADReSS data set. The aim is to combine the best-performing models 
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in order to increase performance and tackle the main challenges identified in the two 

modalities: poor generalizability in the HuBERT model and a drop in performance of the 

BERT model when using ASR-transcripts. Additionally, to address these challenges, 

future work should also focus exclusively on conversational speech data and investigate 

other languages than English. BERT and wav2vec XLSR already provide a technique to 

apply the same models to different languages. Follow-up work should also focus on 

improving ASR transcriptions for dementia speech. 
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7. Appendix  
 

A. 

Hyper-parameters are tuned using 5-fold grid search cross validation on the 

customized training set (section 3.2.). The SVM has the following parameters: a radial 

basis function (rbf) or linear kernel and a C value: 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 

1.5, 2, 2.5, 3, 10, 1000, 100. All other parameters are set to default. The GNB classifier 

is fit with variance smoothing coefficients of 1 𝑒 − 10, 1 𝑒 − 9, 1𝑒 − 8. RF parameters 
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are: number of estimators as 50, 100, 300, 500, 800 and 1000; criterion either gini or 

entropy with a minimum samples per split of either 2, 3 or 4. Bootstrap was set to False 

and True. All other parameters are set to default.  

 

Approach FS Hyperparameters 

SVM GeMAPS weights C = 0.05 

Kernel = linear 

SVM GeMAPS ANOVA C = 2 

Kernel = linear 

SVM ComParE weights C = 1 

Kernel = rbf 

SVM ComParE ANOVA C = 0.005 

Kernel = linear 

RF GeMAPS weights Criterion = Gini 
Minimum samples per split = 2 

Number of estimators = 500 

Bootstrap = False 

RF GeMAPS ANOVA Criterion = Entropy 

Minimum samples per split = 2 

Numbers of estimators = 500 

Bootstrap = False 

RF ComParE weights Criterion = Gini 

Minimum samples per split = 3 

Numbers of estimators = 3000 

Bootstrap = False 

RF ComParE ANOVA Criterion = Entropy 

Minimum samples per split = 3 

Numbers of estimators = 500 

Bootstrap = False 

GNB ComParE weights variance smoothing coefficient = 1 e-10 

GNB GeMAPS weights variance smoothing coefficient = 1 e-9 

Table 22. Hyper-parameters settings for each acoustic feature-based model. 

 

Approach FS Hyperparameters 

SVM COEVEFE weights C = 0.1 

Kernel = linear 

SVM COEVEFE ANOVA C = 100 

Kernel = rbf 

SVM CLAN weights C = 3 

Kernel = linear 

SVM CLAN ANOVA C = 0.01 

Kernel = rbf 

SVM BOW weights C = 0.001 

Kernel = linear 

SVM BOW ANOVA C = 0.01 

Kernel = linear 

RF COEVEFE weights Criterion = Gini 

Minimum samples per split = 2 
Numbers of estimators = 100 

Bootstrap = True 

RF COEVEFE ANOVA Criterion = Gini 

Minimum samples per split = 2 

Number of estimators = 100 

Bootstrap = False 

RF CLAN weights Criterion = Gini 
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Minimum samples per split = 3 

Number of estimators = 300 

Bootstrap = True 

RF CLAN ANOVA Criterion = Gini 

Minimum samples per split = 3 

Number of estimators = 500 

Bootstrap = True 

RF BOW weights Criterion = Gini 
Minimum samples per split = 4 

Number of estimators = 300 

Bootstrap = True 

RF BOW ANOVA Criterion = Gini 

Minimum samples per split = 3 

Number of estimators = 100 
Bootstrap = False 

GNB COEVEFE weights variance smoothing coefficient = 1 e-10 

GNB CLAN weights variance smoothing coefficient = 1 e-9 

GNB BOW weights variance smoothing coefficient = 1 e-9 

Table 23. Hyper-parameters settings for each linguistic feature-based model. 

 

Approach FS Hyperparameters 

SVM CLAN + GeMAPS ANOVA C = 2.5 

Kernel = linear 

SVM CLAN + GeMAPS weights C = 1.5 

Kernel = rbf 

SVM CLAN + ComParE ANOVA C = 0.05 

Kernel = linear 

SVM CLAN + ComParE weights C = 3 

Kernel = rbf 

SVM BOW + ComParE ANOVA C = 0.001 

Kernel = linear 

RF CLAN + GeMAPS ANOVA Criterion = Entropy 

Minimum samples per split = 2 

Numbers of estimators =300 

Bootstrap = True 

RF CLAN + GeMAPS weights Criterion = Gini 

Minimum samples per split = 3 

Numbers of estimators = 300 

Bootstrap = False 

RF BOW + ComParE weights Criterion = Gini 

Minimum samples per split = 4 
Numbers of estimators = 50 

Bootstrap = True 

RF CLAN + ComParE weights Criterion = Gini 

Minimum samples per split = 2 

Numbers of estimators = 50 

Bootstrap = True 

RF CLAN + ComParE ANOVA Criterion = Entropy 

Minimum samples per split = 3 

Numbers of estimators = 50 

Bootstrap = False 

Table 24. Hyper-parameters settings for each multimodal feature-based model. 
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B. 

 This section presents confusion matrices for the best-performing models in each 

approach. It compliments results reported in section 4.  

 

 

Figure 19. Confusion matrix obtained from the baseline model evaluated on the held-out test set.  

 

 

Figure 20. Confusion matrix for RF with feature set ComParE and weights as FS method. 

 

 

Figure 21. Shows the confusion matrix given by RF using BOW and ANOVA as FS method.  
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Figure 22. Confusion matrix given by weighted majority voting. 

 

 

Figure 23 and 24. Figure 23 (left) is the confusion matrix given by ResNet152 on the held-out 

test set, figure 24 (right) is given by ResNet152 on the external validation set. 

 

 

Figures 25 and 26. Figure 25 (left) is the confusion matrix given by the BERT model evaluated 

on the held-out test, figure 26 (right) is the confusion matrix given by the BERT model evaluated on the 

external validation set. Transcripts are human-made. 


