

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

Máster Universitario en Investigación en Inteligencia Artificial

Trabajo Fin de Máster

Self-Adaptive Polynomial Mutation in

 Multi-Objective Evolutionary Algorithms

Autor: JOSÉ LUIS CARLES BOU

Dirigido por: SEVERINO FERNÁNDEZ GALÁN

Curso 2021-2022 – Convocatoria de junio

Contents

Abstract 1

1 Introduction 2

2 Background and related work 3
2.1 Multi-objective optimization concepts 3
2.2 Parameter tuning and control . 4
2.3 Quality indicators . 6

2.3.1 Hypervolume . 7
2.3.2 Generalized spread . 8
2.3.3 Modified inverted generational distance 9

3 From static to self-adaptive polynomial mutation in NSGA-II 10
3.1 NSGA-II . 10
3.2 Static polynomial mutation . 11
3.3 Novel self-adaptive polynomial mutation 11

4 Experimental evaluation 15
4.1 Test problems . 15
4.2 Algorithm execution . 16
4.3 Results . 17

4.3.1 Hypervolume results . 18
4.3.2 IGD+ results . 18
4.3.3 ∆∗ results . 18
4.3.4 Tests summary . 20

5 Conclusions and future work 21

6 Acknowledgments 22

References 22

Self-Adaptive Polynomial Mutation in
Multi-Objective Evolutionary Algorithms

Jose L. Carles
MSc Student at UNED

May 23, 2022

Abstract

Evolutionary multi-objective optimization is a field that has experienced a
rapid growth in the last two decades. Although an important number of new
multi-objective evolutionary algorithms have been designed by the scientific
community, the popular Non-Dominated Sorting Genetic Algorithm (NSGA-
II) remains as a widely used baseline for performance comparison purposes.
Since every evolutionary algorithm needs several parameters to be set up in
order to operate, parameter control constitutes a crucial task for the effective
and efficient performance of multi-objective evolutionary algorithms. How-
ever, despite the advancements in parameter control for evolutionary algo-
rithms, NSGA-II has been mainly used in the literature with fine-tuned static
parameters. This paper introduces a novel and computationally lightweight
self-adaptation mechanism for controlling the distribution index parameter of
the polynomial mutation operator usually employed by NSGA-II in particu-
lar and by multi-objective evolutionary algorithms in general. Additionally,
the classical NSGA-II using polynomial mutation with a static distribution
index is compared with this new version utilizing a self-adapted parameter.
The experiments carried out over twenty-five benchmark problems using three
quality indicators (hypervolume, generalized spread, and modified inverted
generational distance) show that the proposed self-adaptive mutator variant
outperforms its static counterpart in most of the cases. This result supports
the potential of self-adaptive parameter control in multi-objective evolution-
ary algorithms.

Keywords: multi-objective evolutionary algorithm, NSGA-II, polynomial
mutation, distribution index self-adaptation

1

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

1 Introduction

A high percentage of real-world optimization problems are multi-objective by nature.
In this kind of problems, the objectives being optimized are usually in conflict with
each other. Thus, rather than a unique optimal solution, there is a set of them
known as the Pareto set. Multi-Objective Evolutionary Algorithms (MOEAs) have
the ability to effectively approximate this Pareto set, as reported in the scientific
literature over more than three decades.

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb
et al. in 2000 [DAPM00] as an exploration tool that employs a genetic algorithm to
solve multi-objective problems (MOPs). NSGA-II is nowadays one of the most used
and cited MOEAs. It has been applied to a broad variety of optimization problems
since its inception. The NSGA-II algorithm creates a random population, selects
individuals and applies genetic operations on them, ranks and sorts each individual
based on its non-domination level, and applies a crowding distance operation to keep
the evolving population diverse.

The fine-tuning of the parameters of an evolutionary algorithm is a key aspect
that directly impacts on both its efficacy and its efficiency. Obtaining the optimal
set of parameters for the problem at hand is a hard and time-consuming task.
Parameter tuning and control in evolutionary algorithms has been a relevant research
topic since their creation. In the literature, when NSGA-II is used as a baseline
algorithm in benchmarks, its parameters are usually configured with static values.
Normally, simulated binary crossover (SBX) and polynomial mutation (PLM) are
carried out with fixed probabilities and distribution indices. However, Hamdan
demonstrated in [Ham12] that the fixed distribution index utilized in PLM does
not always provide the best performance results. Furthermore, Deb et al. proposed
in [DSO07] a method for self-adapting the SBX operator in order to improve the
algorithm performance. Therefore, these two relevant works show that it is not fair
to use NSGA-II for comparative evaluation purposes when its parameters are kept
static.

This work proposes a novel and computationally lightweight mechanism that self-
adapts one of the parameters of the PLM operator, its distribution index ηm, pro-
ducing an increased efficacy over the results observed in traditional NSGA-II. We
compare the performance of this new algorithm variant to that of plain NSGA-II
utilizing the static configuration widely found in the literature. A set of twenty-five
benchmark problems from different test suites are used (DTLZ, WFG, ZDT, and
other key problems), which experimentally confirm that this novel technique pro-
vides better results for several quality indicators (hypervolume, generalized spread,
and modified inverse generational distance).

The rest of this paper is structured as follows. Section 2 introduces several concepts
on evolutionary multi-objective optimization and reviews related work. Section 3
describes the novel NSGA-II variant. Experimental results and analysis are pre-
sented in Section 4. Finally, Section 5 concludes the paper and suggests some future
research directions.

2

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

2 Background and related work

In the present section, we initially cover some important concepts used in multi-
objective optimization. Then, we review the latest work on: (i) parameter control
techniques in evolutionary algorithms and (ii) quality metrics for measuring and
comparing the performance of MOEAs.

2.1 Multi-objective optimization concepts

An MOP is defined as the simultaneous optimization of several objective functions
over a tuple of decision variables. Without loss of generality, if minimization is
considered for all the objectives, this can be formally expressed as follows:

minimize ȳ = f(x̄) = (f1(x̄), f2(x̄), ..., fm(x̄)) (1)

where x̄ = ⟨x1, x2, ..., xn⟩ ∈ X ⊆ Rn is called a decision vector, X is an n-dimensional
decision space, ȳ = ⟨y1, y2, ..., ym⟩ ∈ Y ⊆ Rm with m ≥ 2 is an objective vector, Y
represents an m-dimensional objective space, n is the number of decision variables,
m is the number of objective functions, and fi corresponds to the ith objective
function.

The set of decision vectors whose objectives cannot be improved in any direction
without the degradation of another direction is called the Pareto optimal set. The
concept of Pareto optimality can be defined as follows. Given a multi-objective
minimization problem and two decision vectors ā, b̄ ∈ X, then ā is said to dominate
b̄ (written as ā ≺ b̄) if and only if ā is no worse than b̄ in every objective and ā is
strictly better than b̄ in at least one objective:

∀i ∈ {1, 2, ...,m} : fi(ā) ≤ fi(b̄)

and ∃j ∈ {1, 2, ...,m} : fj(ā) < fj(b̄)
(2)

If neither ā dominates b̄ nor b̄ dominates ā, ā and b̄ are said to be non-comparable,
also stated as ā ∼ b̄. All the decision vectors which are not dominated by any
other in a given set are called non-dominated regarding the set. The non-dominated
vectors in the entire search space are called Pareto optimal solutions and form the
Pareto optimal solution set or just the Pareto set :

PS := {x̄ ∈ X : ∄ x̄′ ∈ X, x̄′ ≺ x̄} (3)

and the projection of the Pareto set in the objective space is known as the Pareto
front :

PF := {(f1(x̄), f2(x̄), ..., fm(x̄)) : x̄ ∈ PS} (4)

If we relax the domination condition, we can say that ā weakly dominates b̄, or ā ⪯ b̄,
if ā is no worse than b̄ in every objective:

∀i ∈ {1, 2, ...,m} : fi(ā) ≤ fi(b̄) (5)

3

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

We can also consider the concept of strict domination, saying that ā strictly domi-
nates b̄, or ā ≺≺ b̄, if ā is better than b̄ in every objective:

∀i ∈ {1, 2, ...,m} : fi(ā) < fi(b̄) (6)

The set of objective vectors A ⊂ Rm is called an approximation set if any of the
elements in A does not dominate any other vector in the set [HJ98]. Usually, the
ultimate objective when solving MOPs is not to find the real PF but a good approx-
imation to it [RLB15]. Several tools to evaluate the quality of these non-dominated
sets are explained in Section 2.3.

Even though the terms “solution” and “objective vector” have been used inter-
changeably [NLA+08, LAC16, IISN18], we prefer to keep the term solution for a
vector in the decision space and the term objective vector for a solution projected
into the objective space in order to avoid misunderstandings [TI20].

2.2 Parameter tuning and control

Once the general scheme of an evolutionary algorithm is established, the researcher
has to set the population size, choose the genetic operators for parent selection,
crossover, mutation and survivor selection, and fix their probabilities. These spe-
cific parameters, or configuration, determine the behavior of the algorithm, guide
its search and impact directly on the efficacy and efficiency achieved by the algo-
rithm [HBY22]. It has been experimentally demonstrated that the use of different
selection and variation operators as well as the setting of their parameters have an
influence on the performance of evolutionary algorithms [SP97, Ham12, DSO07]. It
is also true that the parameters might need distinct values at different stages of the
execution process in order to adapt the exploration and exploitation intensities to
the landscape it is dealing with [Bä92].

In the course of evolutionary algorithms history, different approaches to addressing
the necessity of parameter dynamism have been suggested. The first one, and prob-
ably the most extended in the literature, is the utilization of a static and promising
configuration (known as parameter tuning). Researchers use a well known set of op-
erators and parameter values that provide good results for the problem at hand or get
them adjusted after some trial-and-error search. But as the number of combinations
of tested parameters can be really huge for manual adjustment, several automated
tools have been developed. One of the most important tools used nowadays is irace,
where an iterated execution of the F-race algorithm [BYBS10, LIDLC+16] is imple-
mented relieving the researcher of the tedious and time consuming task of repetitive
manual parameter adjustment. Another interesting alternative is employing meta-
heuristic techniques, like the Meta-GA used by Grefenstette [Gre86], in which an
external evolutionary algorithm adjusts the algorithm parameters.

Starting just when evolutionary algorithms were created [Jon75, Gre86], but spe-
cially in the last thirty years, a lot of effort has been invested in methods for dy-
namically controlling the parameters during execution (parameter control). In 1995,
Angeline [Ang95] presented a taxonomy of these techniques differentiating the type
of control based on its level of application (over the full population, the individuals,

4

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

or their genes). Smith and Fogarty [SF97] proposed a new classification scheme
trying to differentiate what is being adapted (parameters or operators), the scope
of the adaptation (if it is applied to the full population, individual or gene level)
and the tools being applied to make the adaptation. Hinterding, Michalewicz and
Eiben [HME97, EHM99] introduced a new classification method based on the type
of adaptation and distinguished between deterministic, adaptive and self-adaptive
methods. Note that this is still the most widely used taxonomy and the basis, with
few and slight variations, of recent work [ZCZ+12, PPSN19, DD20]:

� Eiben et al. define deterministic control as the adjustment of a parameter us-
ing a deterministic rule that does not get any feedback from the search. Usu-
ally, it utilizes a rule based on the number of evaluations of the fitness function
or on the number of generations passed so far. This kind of methods are very
common due to the simplicity of implementation [MMPO09, HAA+19].

� Adaptive control uses some characteristic or feedback from the search pro-
cess to adjust the value of the parameters. Among the adaptive methods,
very well known and simple strategies like the 1/5 Rechenberg’s success rule
[Rec71] can be found. Alternatively, more complex methods are based on learn-
ing principles brought from fields like reinforcement learning or deep learning
[EHKS07, ASS+19].

� Self-adaptive control is close to the underlying idea of evolutionary optimiza-
tion as the parameters are encoded into the chromosomes and evolve with
the rest of variables by applying genetic operations. Thus, the best pa-
rameters generate high-quality solutions which survive in future generations
[SF96, DSO07, BCSP17, RW20].

Due to the vast amount of publications on parameter control in evolutionary algo-
rithms, several exhaustive reviews have been made available to researchers and prac-
titioners [EHM99, KHE15, AM16], and recent reviews can be found in [PPSN19],
[HLY20], [LPN+21] (also covering swarm inspired algorithms), and [HBY22] (fo-
cused on differential evolution). In addition, an interesting theoretical approach is
developed in [DD20]. Finally, a complete compendium on parameter control and
its application is offered in [Pap21] and an interesting compilation about parameter
setting is included in [LLM07].

NSGA-II [DAPM00], proposed by Deb et al. in 2000, is a well known, competent,
and extensively used genetic algorithm for solving MOPs that attains near-optimal,
diverse, and uniformly distributed solution sets [TCMG09, RGD+22]. Even though
NSGA-II is a mature algorithm, it is still being utilized as a baseline to test new
algorithms performance [IYM03, ZLZL19, LLJ22]. Its population size, crossover and
mutation operators and probabilities, selection pressure, and even the distribution
indices used by the original SBX and PLM operators have to be set in advance.

Although the number of publications about self-adaptation in MOEAs is relatively
low compared to single-objective algorithms [AM16], several authors have shown
that self-adaptation can improve the applicability of MOEAs to online decision
support in real-world problems [ZLD+10]. Deb et al. [DSO07] proposed a self-
adaptive method for adapting the distribution index under SBX crossover, SA-SBX,

5

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

used typically in NSGA-II due to the fact that a fixed index does not always produce
the best performance results, specially when dealing with multi-modal problems.
This parameter, ηc, defines the shape of the probability distribution function which
governs the spread of offspring solutions given the parents. The method, applied
both to mono and multi-objective problems, produced promising results. In 2010,
Zeng et al. [ZLD+10] improved Deb’s idea of a self-adapting distribution index in
the binary crossover operator by using the diversity of the offspring solutions to
dynamically control the parameter.

Despite the fact that several studies have focused on the mutation operator by
adapting the mutation rate [BS96, YU06], by changing the mutation probabil-
ity distribution function like in evolution strategies and evolutionary programming
[LY04, TY07], or even by changing the mutation operator itself during the evolu-
tion [KYL09], very few studied the idea of changing the probability distribution
index in PLM, ηm, as Deb did in SA-SBX for crossover. Furthermore, Hamdan
[Ham12, Ham14] demonstrated that different values for ηm from the ones found in
the literature provided better performance results.

Following the ideas of Deb, Zeng, and Hamdan, this work investigates whether
or not self-adapting the mutation distribution index of the typical PLM operator
used in NSGA-II could actually outperform the classical static configuration. In
this regard, Section 3 proposes a novel and simple self-adaptive mutation operator
which, as shown in Section 4, outperforms a static configuration when applied to
several benchmark problems.

2.3 Quality indicators

Trying to compare the outputs of two multi-objective optimizers is not trivial as
we are comparing two sets of non-dominated vectors or approximation sets. Several
performance metrics, or quality indicators, are defined over an approximation set
(unary metrics) or between two approximation sets (binary metrics) producing a
scalar value utilized to compare the quality of the output of different algorithms
when solving MOPs [ZTL+03, RLB15].

Ideally, the obtained non-dominated solutions of an approximation set should be as
close as possible to the Pareto front, well-distributed, and widely spread [OJS03].
Therefore, it is common to find the metrics capturing the quality of approximation
sets grouped as cardinality, accuracy, and diversity metrics:

� Cardinality metrics utilize the number of non-dominated vectors in an approx-
imation set, since algorithms producing larger approximation sets are usually
preferred.

� Accuracy metrics (or convergence metrics) measure the distance between the
approximation set and the theoretical optimal front or a reference set if the
real Pareto front is unknown [OJS03]. Several methods for calculating this
distance have been proposed, like the ones defined later in this section for the
GD, IGD, and IGD+ indicators.

� Diversity metrics try to capture how well the objective vectors in the approx-

6

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Figure 1: Hypervolume covering the shaded green area in a bi-objective minimization problem.

imation set are distributed (the relative distance between them) and spread
(the range of values covered by these vectors) [RLB15].

� Convergence-diversity metrics map both the proximity of the objective vectors
to the PF and the diversity of these vectors to a scalar value [JOZF14].

Over the last few decades, a large number of papers have been published studying a
vast list of available indicators. We remark some of the most cited surveys authored
by Riquelme et al. [RLB15] studying fifty-four indicators, Li and Yao [LY19] covering
one hundred indicators, and Audet et al. [ABC+20] describing fifty-seven metrics.
The papers published by Hansen and Jaszkiewicz [HJ98] and Zitzler et al. [ZTL+03]
are relevant for analyzing the theoretical aspects of these quality indicators in a
formal way.

Choosing the right indicator, or a set of them, to assess the performance of an
MOEA turns out to be as difficult as developing the MOEA itself. Several authors
[Kno02, KC02, OJS03, JOZF14, WAY+16] have criticized the usually misleading and
sometimes inconsistent results provided by these metrics, and help in the selection of
the right one. Following the information provided by these authors, we have finally
chosen three metrics from the myriad of them in order to evaluate our new algorithm:
the hypervolume indicator, the generalized spread measure and the modified inverted
generational distance.

2.3.1 Hypervolume

The hypervolume indicator (HV) was introduced by Zitzler and Thiele in 1999
[ZT99], and it is one of the most studied and used metrics due to some of its
mathematical characteristics. HV captures in one single value the convergence and
diversity of an approximation set, and it is a strictly monotonic metric with regards
to the Pareto dominance concept [KC02, BZ11]. Larger values of HV indicate that
the vectors in the approximation set are closer to the true PF and evenly distributed
over it [JOZF14].

7

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Figure 2: Examples of spread and distribution of vectors over the Pareto front.

HV calculates the hypervolume that is dominated by the objective vectors in the ap-
proximation set S bounded by a reference point r̄ (see Figure 1, where HV measures
the shaded green area). Although the selection of the reference point to calculate
HV is critical [ABBZ09, IISN18], it is accepted that a point slightly worse in every
objective than every point in S is enough to cover all the vectors in the approxima-
tion set. HV is calculated as follows:

HV (S, r̄) = Λ

(|S|⋃
i=1

vi

)
(7)

where Λ denotes the Lebesgue measure and vi represents the box defined by vector
i and reference point r̄. Larger values of HV indicate better approximation sets.

2.3.2 Generalized spread

The spread metric (∆), introduced by Deb et al. in 2000 [DAPM00], is another
commonly used indicator in bi-objective MOEAs that tries to measure how uni-
formly the objective vectors in an approximation set are distributed over the Pareto
front. Zhou et al. extended this indicator to m-objective problems in the generalized
spread metric (∆∗) [ZJZ+06] which is formulated as follows:

∆∗(S, P) =

∑m
i=1 d(ei, S) +

∑
x̄∈P |d(x̄, S)− d̄|∑m

i=1 d(ei, S) + d̄(|P | −m)
, (8)

where ei is the i-th extreme objective vector in the Pareto front P with the maximum
value for the i-th objective function and

d(x̄, P) = min
y∈P,y ̸=x

∥x̄− ȳ∥2, (9)

d̄ =
1

|P |
∑
x̄∈P

d(x̄, S) (10)

The ∆ and ∆∗ metrics, unlike HV , require a known Pareto front. We can observe
in Figure 2: (i) an example of a well distributed and well spread set of vectors in
the left-hand graph, (ii) an example of a well spread but not well distributed set in
the second graph, (iii) a well distributed but not well spread set of vectors in the

8

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Figure 3: GD, IGD and IGD+ calculation for an approximation set.

third graph, and (iv) a not well spread and not well distributed set in the right-
hand graph. Lower values for spread and generalized spread metrics indicate better
distributed and spread vectors.

2.3.3 Modified inverted generational distance

The generational distance metric (GD), proposed by Veldhuizen in 1998 [VL98], av-
erages the distance from each objective vector in the approximation set to the nearest
vector in the known PF (see the left-hand graph in Figure 3). Conversely, the in-
verted generational distance (IGD) [BT03, CS04] calculates the average distance
from each vector in the reference or known PF to its nearest point in the approxi-
mation front (see the central graph in Figure 3). The modified inverted generational
distance metric (IGD+) was introduced by Ishibuchi et al. in 2015 [IMTN15] (see

9

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

the right-hand graph in Figure 3). These three metrics are formulated in a similar
way but provide different results:

GD(A,Z) =
1

|A|
∑
ā∈A

min
z̄∈Z

d̂(ā, z̄) (11)

IGD(A,Z) =
1

|Z|
∑
z̄∈Z

min
ā∈A

d̂(ā, z̄) (12)

IGD+(A,Z) =
1

|Z|
∑
z̄∈Z

min
ā∈A

d̂+(ā, z̄) (13)

where the distance d̂ in GD and IGD is calculated as the Euclidean distance

d(ā, z̄) =
√∑m

i=1(ai − zi)2 and d̂+(ā, z̄) =
√∑m

i=1(max{ai − zi, 0})2 in IGD+.

Ishibuchi et al. [IMTN15] found that this latter distance calculation in IGD+ as-
sures that the indicator is always better for an approximation set that is dominating
another (Pareto compatibility), thus providing more accurate results than IGD in
some circumstances where this property does not hold. Lower values for this metric
indicate a better set of solutions in terms of both convergence and diversity [TI20].

3 From static to self-adaptive polynomial

mutation in NSGA-II

In this section, we first review the NSGA-II algorithm, which is widely used to
perform the benchmarking of MOEAs. Next, we focus on the mutation phase of
NSGA-II and explain the regular and the novel self-adaptive PLM operators in
turn.

3.1 NSGA-II

The general pseudo-code for the non-dominated sorting genetic elitist algorithm
(NSGA-II) is shown in Algorithm 1, and a graphical representation of how it works
is displayed in Figure 4. The main loop works as follows:

1. Parents are selected, usually with binary tournament, utilizing a comparison
based on non-domination ranking and crowding distance of parents. The non-
domination rank segments the individuals in different fronts: F1 is the set
(or front) of non-dominated individuals in the population, F2 is the set of
non-dominated individuals in the population after excluding F1, and so on.
The crowding distance, which is a density estimator of solutions surrounding
a particular one, is used to break the ties when solutions have the same rank.

2. Genetic operators are applied to generate an offspring population that is joined
to the original one (normally SBX is utilized for performing the recombination
of selected parents and PLM for mutating their descendants).

3. Each individual of this new extended population, which is commonly twice
the size of the original population, is evaluated to set its non-domination rank
and crowding distance.

10

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Figure 4: NSGA-II procedure, where {F1, ...,F5} represent the sub-populations sorted
by non-domination ranking. F1 is the set (or front) of non-dominated individuals in the
population, F2 is the set of non-dominated individuals in the population after excluding
F1, and so on.

4. A sorting of the new extended population based on individual non-domination
rank and crowding distance is performed.

5. A reduction to select the first half of the extended population is made.

6. The loop is repeated from 1 until the end condition is reached.

The use of non-domination rank and crowding distance comparisons in the selection
of parents and in the ordering of the extended population assures that dominating
individuals in less crowded regions are selected. Furthermore, the elitism is guaran-
teed by mixing the old population with the calculated offspring before performing
the ordering of the extended population and selecting its best individuals. We refer
the reader to the original paper [DAPM00] in order to get full details of the proposed
algorithm.

3.2 Static polynomial mutation

The polynomial mutation operator over a decision vector applies a polynomial prob-
ability distribution function to generate a new decision vector starting from the cur-
rent one. The pseudo-code is shown in Algorithm 2, where a perturbation following
this distribution is applied with probability pm to each variable of decision vector x̄.

Note that the distribution function depends on the mutation distribution index
ηm. Figure 5 shows an example of the impact of this parameter on the shape of the
probability distribution function for a point centered at x = 3, where the probability
of generating a closer point to the original value is larger when higher ηm values are
used. Smaller values for that index tend to produce points located far from the
original one.

3.3 Novel self-adaptive polynomial mutation

Following the findings of Hamdan [Ham12] mentioned in Section 2.2, we have verified
that using different values for ηm has actually a direct impact on the performance

11

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Algorithm 1 NSGA-II with traditional PLM
Input: populationSize = size of evolving population

offspringSize = size of descendant population
pc = crossover probability
pm = mutation probability
ηm = static mutation distribution index

1: pPopu← initializePopulation(populationSize)
2: pPopu← evaluateRankAndCrowdingDistance(pPopu)
3: while !endCondition do
4: qPopu← []
5: while sizeof(qPopu) < offspringSize do
6: parents← selectParents(pPopu)
7: child1, child2← crossover(pc, parents)
8: child1← mutate(pm, child1, ηm)
9: child2← mutate(pm, child2, ηm)

10: qPopu.add(child1); qPopu.add(child2)
11: end while
12: rPopu← pPopu ∪ qPopu
13: rPopu← evaluateRankAndCrowdingDistance(rPopu)
14: pPopu← nonDominationSortAndReduce(rPopu)
15: end while

Algorithm 2 PLM mutation of decision vector x̄
Input: x̄ = decision vector, pm = mutation probability, ηm = mutation distribution index

Output: x̄ = mutated decision vector
1: for each x ∈ x̄ do
2: if U(0, 1) < pm then
3: ▷ xl and xu are the lower and upper bounds of decision variable x

4: δ1 =
x−xl

xu−xl
, δ2 =

xu−x

xu−xl

5: r ← U(0, 1)
6: if r ≤ 0.5 then

7: δq = [2r + (1− 2r)(1− δ1)
ηm+1]

1
ηm+1 − 1

8: else
9: δq = 1− [2(1− r) + 2(r − 0.5)(1− δ2)

ηm+1]
1

ηm+1

10: end if
11: xm = xc + δq(x

u − xl)

12: if xm < xl then

13: xm = xl

14: end if
15: if xm > xu then
16: xm = xu

17: end if
18: x← xm
19: end if
20: end for

12

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Figure 5: PLM distribution function centered at x = 3 for different ηm values.

of the algorithm. For example, Figure 6 shows the output of an experiment over an
instance of a ZDT2 problem where the HV indicator captured and averaged over
30 runs is depicted for different values of ηm. We have observed that this behavior
takes place in other problems as well.

The underlying idea of self-adaptive polynomial mutation follows the procedure
utilized in evolutionary programming and evolution strategies, where the strategy
parameters are stored in the genome of the population individuals and evolve with
the rest of variables during the execution of the algorithm. Thus, we need to extend
the representation of each individual from a decision vector ⟨x1, x2, ..., xn⟩ to a new
one including its specific mutation distribution index ⟨x1, x2, ..., xn, ηm⟩. The initial-
ization of individuals in the population (first generation) is performed by obtaining
xi and ηm values randomly chosen between their boundaries.

According to the new parameter self-adaptation strategy, we have slightly modified
the original PLM algorithm by separating it in two parts: one responsible for the
updating of the distribution index stored in the genome and a second one for up-
dating the decision vector according to this mutated index. Thus, the new proposed
scheme appears in Algorithm 3.

In Algorithm 3, it is important to note that the distribution index update of the
selected parents is performed in line 7 before applying the mutation to the generated
children in lines 9 and 10 that will use the specific ηm found in each child chromo-
some. The details of this updating procedure of the selected parents are included in
Algorithm 4. Specifically, we average the indices of the selected parents (crossover
phase) and apply a Gaussian perturbation to the averaged index (mutation phase).
The resulting value is repaired before updating all the selected parents with it in
order to avoid getting new ηm values outside of their bounds.

The main differences between the original proposal in Algorithm 1 and the novel one
in Algorithm 3 are, on the one hand, the parameter updating mechanism applied
in line 7 and, on the other hand, the use of the updated distribution index in lines

13

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Figure 6: HV performance over ZDT2 problem for different ηm values.

Algorithm 3 NSGA-II with self-adaptive PLM
Input: populationSize = size of evolving population

offspringSize = size of descendant population
pc = crossover probability
pm = mutation probability
ηlm, ηum = lower and upper bounds for ηm

1: pPopu← initializePopulation(populationSize, ηlm, ηum)
2: pPopu← evaluateRankAndCrowdingDistance(pPopu)
3: while !endCondition do
4: qPopu← []
5: while sizeof(qPopu) < offspringSize do
6: parents← selectParents(pPopu)
7: updateDistributionIndex(parents, ηlm, ηum)

8: child1, child2← crossover(pc, parents)
9: child1← mutate(pm, child1, child1.ηm)

10: child2← mutate(pm, child2, child2.ηm)
11: qPopu.add(child1); qPopu.add(child2)
12: end while
13: rPopu← pPopu ∪ qPopu
14: rPopu← evaluateRankAndCrowdingDistance(rPopu)
15: pPopu← nonDominationSortAndReduce(rPopu)
16: end while

14

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Algorithm 4 PLM Distribution Index update
Input: parents = selected solutions

ηlm, ηum = lower and upper bounds for ηm
Output: parents = vectors with updated distribution indices

1: function updateDistributionIndex(parents, ηlm, ηum)
2: mutPar ← 0
3: for each parent ∈ parents do
4: mutPar ← mutPar + parent.mutPar
5: end for
6: mutPar ← mutPar/sizeof(parents)
7: mutPar ← mutPar +N (0, 1)
8: mutPar ← repair(mutpar, ηlm, ηum)
9: for each parent ∈ parents do

10: parent.mutPar ← mutPar
11: end for
12: end function

9 and 10. The additional computational cost incurred when performing these two
operations is linear with the number of parents due to the loops in the distribution
index updating function (lines 3-5 and 9-11 of Algorithm 4).

4 Experimental evaluation

This section compares how the new self-adapted mutator performs with respect to
the regular PLM used in NSGA-II in terms of efficacy by using the three selected
quality indicators explained in Section 2.3. A diverse set of problems with different
features is employed to evaluate the consistency of the results obtained after several
independent executions.

4.1 Test problems

In order to analyze the performance of the new PLM implementation, we execute the
algorithms over well-established sets of problems found in many studies in the field.
We have used a significant number of problems, twenty-five, with different features:
shape and continuity of the PF, number of decision variables (n) and objectives (m),
and modality. This allows us to check the validity of our proposal and to determine
whether it has any deficiencies depending on one or more of these characteristics.

The diverse set of functions that we have used in the experiments consists of the
following families:

1. The scalable family of three-objective problem collection DTLZ 1-7 from Deb,
Thiele, Laumanns, and Zitzler [DTLZ02].

2. Bi-objective unconstrained problems from the Walking Fish Group (WFG)
test suite from Huband, Barone, While, and Hingston [HBWH05].

3. Bi-objective and unconstrained ZDT 1-4 and 6 problems from Zitzler, Deb
and Thiele [ZDT99].

15

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Table 1: Features of the tested problems: number of decision variables and objectives,
separable (S) or non-separable (NS), uni-modal (U), multi-modal (M), deceptive multi-
modal (D) and PF geometry.

Problem n m Separability Modality Shape

DTLZ1 7 3 S M Linear, connected
DTLZ2 12 3 S U Convex, non-convex, connected
DTLZ3 12 3 S M Convex, non-convex, connected
DTLZ4 12 3 S U Non-convex, connected, biased
DTLZ5 12 3 S U Linear, degenerate
DTLZ6 12 3 S U Linear, degenerate
DTLZ7 22 3 S M Disconnected
WFG1 6 2 S U Convex, non-convex, connected
WFG2 6 2 NS U Convex, disconnected
WFG3 6 2 NS U Linear, degenerate
WFG4 6 2 S M Non-convex, connected
WFG5 6 2 S D Non-convex, connected
WFG6 6 2 NS U Non-convex, connected
WFG7 6 2 S U Non-convex, connected, biased
WFG8 6 2 NS U Non-convex, connected, biased
WFG9 6 2 NS D Non-convex, connected, biased
ZDT1 30 2 S U Convex, connected
ZDT2 30 2 S U Non-convex, connected
ZDT3 30 2 S M Disconnected
ZDT4 10 2 S M Convex, connected
ZDT6 10 2 S M Non-convex, connected
Kursawe 2 3 NS M Disconnected, degenerate, convex, non-convex
Schaffer 2 2 NS U Disconnected, convex, non-convex
Srinivas 2 2 NS U Convex, connected
Tanaka 2 2 NS U Disconnected, convex, non-convex

4. Other bi-objective and unconstrained problems like Kursawe [Kur99], Schaffer
[Sch85], Srinivas [SD94], and Tanaka [TWFT95].

Table 1 shows the main features of the twenty-five selected problems. For each
problem, we include the number of decision variables and objectives, whether the
objective functions are separable or not, and its modality (uni-modal, multi-modal,
or deceptive1). We also include the PF shape or geometry indicating the cases
in which the PF is convex, non-convex or linear, whether the PF is connected or
disconnected, and whether it has degenerated parts (PF with a dimension smaller
than m− 1).

4.2 Algorithm execution

We have selected jMetal2, a Java framework for developing multi-objective opti-
mization algorithms created by Durillo and Nebro at the Universidad de Málaga
[DN11], as the environment to perform our experimentation. This framework pro-
vides a large library of tested algorithms and facilitates the development of new
ones. The hardware platform used to run the experiments was an Intel Core i5 with
8GB of RAM running Windows 11 operating system.

1A deceptive search space is characterized by the fact that most of it tends to guide the search
towards areas which are far from the global optimum, thus leading to a suboptimal local optimum.

2https://jmetal.github.io/jMetal/

16

https://jmetal.github.io/jMetal/

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

The baseline NSGA-II was parameterized using the default values suggested by
jMetal. These default values are the most commonly found in the relevant literature.
Specifically, we used the following parameter values:

� Population size was set to 300 individuals.

� The maximum number of evaluations was set to 25000.

� SBX was selected as the crossover operator.

� Probability pc = 0.9.

� Crossover distribution index, ηc = 20.

� Regular PLM was used as the mutation operator.

� Mutation probability, pm = 1/n.

� Static mutation distribution index, ηm = 20.

As far as the modified NSGA-II using the new mutation operator is concerned, it was
configured exactly as the regular NSGA-II with the traditional PLM operator but,
on this occasion, with a self-adaptive distribution index for the mutation process.
The lower and upper boundaries for ηm were set to 1 and 100 respectively.

4.3 Results

Tables 2 through 4 include the experimental results for each quality indicator (HV ,
IGD+, and ∆∗) when both algorithms are applied to the twenty-five problems in
Table 1. A summary of these results is displayed in Table 5.

As this work deals with stochastic algorithms, we average the captured quality indi-
cator values over 30 independent executions for each problem instance and present
them with their mean and variance. Figure 7 illustrates the statistical test method-
ology followed in order to guarantee that the obtained results are not due to random-
ness. We start by applying a Shapiro normality test to the data coming from each
algorithm. With a negative answer (they do not follow a Gaussian distribution)
a Wilcoxon test is then applied to see their means similarity. Otherwise, having
assured a normal distribution for the data, a Levene test is executed to check the
homocedasticity of the series; in the negative case where they do not have equal
variances, we end by running a Welch test to check the similarity of their means.
If, on the contrary, they have similar variances, we apply a paired Student t-test in
order to see if they have similar means. We always consider a level of confidence of
99% in the statistical tests used in this work. Thus, with a significance level of 1%
or p-value under 0.01, we are able to reject the null hypothesis of both algorithms
performing similarly.

As mentioned earlier in this section, Tables 2-4 incorporate the mean and variance
calculated over 30 independent executions of both algorithms. In the “Test result”
column of each table, a “+” sign indicates that the new PLM variation outperforms
the regular PLM with enough statistical confidence (as specified in the statistical
test methodology described earlier in this section); conversely, a “−” sign is utilized
when the regular PLM gives better results than the new PLM proposal. Finally,
the “=” sign indicates that no difference exists in the performance of both PLM
implementations.

17

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Figure 7: Statistical test methodology.

4.3.1 Hypervolume results

Table 2 collects the HV indicator results for the experiments. Notice that the self-
adaptive PLM performs better than the regular operator in 19 problems and gives
a similar performance regarding this indicator in other 4 problems. Worse results
are observed only for 2 problems, WFG5 and WFG8. We also observe an important
variance improvement in all the positive cases.

It is worth noticing the HV results obtained for DTLZ3 and DTLZ6 problems,
where we indicate a zero HV mean and variance for the traditional PLM run. A
zero HV is obtained when no solution is found inside the hypercube delimited by
the reference point for any of the algorithm executions (in a minimization problem).
However, the self-adaptive PLM is able to produce acceptable results in the same
number of runs.

4.3.2 IGD+ results

The data gathered for the IGD+ indicator are presented in Table 3. We observe
again that the self-adapted mutation operator performed equal to or better than
the regular PLM operator in almost every problem (24 out of 25). One more time,
WFG8 seems to be specially difficult to the new algorithm regarding this quality
indicator. Both algorithms produce similar results for WFG4, WFG7, WFG9, and
Srinivas problems.

We observe again similar variance improvements in the new algorithm, where we get
a variance reduction in all the positive instances. Notice that the performance of
the new algorithm for several of the positive cases is very remarkable (see DTLZ3,
DTLZ6, and Schaffer problems).

4.3.3 ∆∗ results

As reported in Table 4, when dealing with the spread and diversity of the generated
solutions, our new operator does not give as impressive results as those obtained for
the other two metrics. It performs better than the regular operator on 13 occasions,
similarly in 11 problems, and worse in 1 instance. Once again, WFG5 seems to be a

18

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Table 2: Hypervolume results obtained in the experiments (significance level α = 0.01).

NSGA-II + PLM NSGA-II + SA-PLM Test Statistical
Problem mean(variance) mean(variance) result test p-value

DTLZ1 7.59439e-01(3.41000e-02) 7.89361e-01(4.53831e-03) + Wilcoxon 1.73e-06
DTLZ2 4.13529e-01(2.86745e-03) 4.17602e-01(2.15274e-03) + Student 5.86e-08
DTLZ3 0.00000e+00(0.00000e+00) 1.96749e-01(1.21227e-01) + Wilcoxon 3.35e-03
DTLZ4 4.13958e-01(2.17084e-03) 4.15810e-01(2.17415e-03) + Student 1.64e-03
DTLZ5 9.51122e-02(8.74617e-05) 9.52667e-02(4.95633e-05) + Student 1.23e-11
DTLZ6 0.00000e+00(0.00000e+00) 9.62387e-02(4.28614e-05) + Wilcoxon 1.73e-06
DTLZ7 3.00091e-01(1.86355e-03) 3.12930e-01(1.26271e-03) + Student 5.62e-38
WFG1 4.97375e-01(6.43569e-02) 6.28866e-01(2.16320e-02) + Wilcoxon 1.73e-06
WFG2 5.63116e-01(1.48591e-03) 5.64961e-01(1.25583e-04) + Welch 1.81e-07
WFG3 4.96341e-01(8.75053e-04) 4.96995e-01(3.08140e-04) + Welch 4.50e-04
WFG4 2.21115e-01(1.85144e-04) 2.21198e-01(1.60946e-04) = Student 6.98e-02
WFG5 2.01125e-01(3.98137e-03) 1.98224e-01(6.72931e-05) − Wilcoxon 1.24e-05
WFG6 2.03611e-01(6.92356e-03) 2.07126e-01(6.81412e-03) + Wilcoxon 9.27e-03
WFG7 2.12706e-01(1.69775e-04) 2.12740e-01(7.24156e-05) = Wilcoxon 7.50e-01
WFG8 1.70780e-01(1.54466e-02) 1.55995e-01(1.56837e-02) − Wilcoxon 5.67e-03
WFG9 2.42450e-01(8.73721e-04) 2.42810e-01(8.09038e-04) = Wilcoxon 5.45e-02
ZDT1 6.53995e-01(1.07650e-03) 6.63513e-01(1.72262e-04) + Welch 3.10e-30
ZDT2 3.13921e-01(2.64180e-03) 3.29930e-01(5.96829e-04) + Wilcoxon 1.73e-06
ZDT3 5.07723e-01(1.17048e-03) 5.15760e-01(1.48757e-04) + Welch 1.17e-26
ZDT4 2.30579e-01(1.55613e-01) 5.55161e-01(1.11938e-01) + Wilcoxon 2.13e-06
ZDT6 1.57056e-01(2.41919e-02) 4.01091e-01(6.71092e-04) + Welch 5.69e-31
Kursawe 4.03120e-01(1.26516e-04) 4.03276e-01(5.75611e-05) + Welch 2.66e-07
Schaffer 3.74026e-01(2.18289e-01) 8.13777e-01(1.79589e-02) + Wilcoxon 1.73e-06
Srinivas 5.43385e-01(7.44869e-05) 5.43396e-01(6.32421e-05) = Student 5.14e-01
Tanaka 3.08598e-01(5.32528e-04) 3.10192e-01(2.82957e-04) + Welch 2.27e-18

Table 3: IGD+ results obtained in the experiments (significance level α = 0.01).

NSGA-II + PLM NSGA-II + SA-PLM Test Statistical
Problem IGD+ mean(variance) IGD+ mean(variance) result test p-value

DTLZ1 4.29294e-02(1.79080e-02) 2.52563e-02(3.46030e-03) + Wilcoxon 1.73e-06
DTLZ2 2.24472e-02(7.49704e-04) 2.03312e-02(6.22110e-04) + Student 3.38e-17
DTLZ3 6.31840e+00(2.14560e+00) 9.29473e-01(7.80514e-01) + Wilcoxon 1.73e-06
DTLZ4 1.84729e-02(1.87342e-03) 1.72746e-02(1.38996e-03) + Wilcoxon 8.22e-03
DTLZ5 1.29969e-03(9.20083e-05) 1.18259e-03(5.07067e-05) + Welch 2.16e-07
DTLZ6 1.45038e+00(9.45727e-02) 1.02208e-03(7.05488e-05) + Welch 3.56e-36
DTLZ7 2.28455e-02(8.48368e-04) 1.65048e-02(7.61342e-04) + Student 2.21e-37
WFG1 1.62578e-01(8.81688e-02) 4.24815e-03(1.44789e-02) + Wilcoxon 1.73e-06
WFG2 1.79572e-03(1.00515e-03) 5.68657e-04(8.42110e-05) + Welch 2.45e-07
WFG3 1.87519e-03(5.16401e-04) 1.52509e-03(1.81825e-04) + Welch 1.25e-03
WFG4 1.11489e-03(9.91284e-05) 1.09393e-03(9.13196e-05) = Student 3.98e-01
WFG5 2.44724e-02(3.20312e-03) 2.67584e-02(2.41543e-05) = Wilcoxon 2.43e-02
WFG6 7.32971e-03(5.32402e-03) 4.80630e-03(5.13637e-03) + Wilcoxon 7.73e-03
WFG7 1.16441e-03(1.15305e-04) 1.13743e-03(4.20012e-05) = Welch 2.36e-01
WFG8 2.74424e-02(1.08720e-02) 3.97090e-02(1.06094e-02) − Wilcoxon 2.11e-03
WFG9 2.05996e-03(5.22650e-04) 1.85940e-03(4.72033e-04) = Wilcoxon 5.98e-02
ZDT1 7.87085e-03(7.11770e-04) 1.68842e-03(9.80272e-05) + Welch 9.12e-30
ZDT2 1.23470e-02(1.83534e-03) 1.70104e-03(2.21003e-04) + Wilcoxon 1.73e-06
ZDT3 4.60996e-03(5.12205e-04) 9.99848e-04(5.51605e-05) + Welch 7.53e-27
ZDT4 3.83799e-01(1.95947e-01) 7.92631e-02(8.47617e-02) + Wilcoxon 2.13e-06
ZDT6 2.15281e-01(2.97713e-02) 2.85648e-03(3.97697e-04) + Welch 1.21e-26
Kursawe 9.45517e-04(5.39416e-05) 8.83722e-04(3.98815e-05) + Student 4.77e-06
Schaffer 3.96014e+00(7.55962e+00) 9.74580e-03(8.93751e-03) + Wilcoxon 1.73e-06
Srinivas 1.19705e-03(4.13415e-05) 1.21465e-03(3.84070e-05) = Student 9.29e-02
Tanaka 1.81649e-03(1.89739e-04) 9.63356e-04(8.69346e-05) + Welch 1.75e-24

19

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Table 4: ∆∗ results gathered in the experiments (significance level α = 0.01).

NSGA-II + PLM NSGA-II + SA-PLM Test Statistical
Problem ∆∗ mean(variance) ∆∗ mean(variance) result test p-value

DTLZ1 1.03000e+00(2.42294e-01) 7.83823e-01(2.53935e-02) + Welch 5.36e-06
DTLZ2 6.83813e-01(3.49377e-02) 6.85980e-01(2.57095e-02) = Student 7.85e-01
DTLZ3 1.18850e+00(1.41623e-01) 9.82180e-01(1.55223e-01) + Student 1.41e-06
DTLZ4 6.83076e-01(2.09105e-02) 6.69204e-01(2.87127e-02) = Student 3.66e-02
DTLZ5 5.00491e-01(7.34210e-02) 4.58849e-01(3.76746e-02) + Wilcoxon 7.27e-03
DTLZ6 8.06492e-01(3.08745e-02) 5.28644e-01(2.07721e-02) + Student 1.81e-44
DTLZ7 7.76200e-01(3.07696e-02) 7.60299e-01(2.81390e-02) = Student 4.11e-02
WFG1 7.78357e-01(6.96307e-02) 5.83607e-01(2.04473e-02) + Wilcoxon 1.73e-06
WFG2 8.47435e-01(6.38581e-03) 8.47032e-01(6.29434e-03) = Student 8.07e-01
WFG3 3.74635e-01(2.01767e-02) 3.73888e-01(2.03391e-02) = Student 8.87e-01
WFG4 3.91242e-01(1.61785e-02) 3.86159e-01(1.39361e-02) = Student 1.97e-01
WFG5 4.21736e-01(4.61604e-02) 4.39391e-01(1.71102e-02) − Wilcoxon 4.39e-03
WFG6 3.80974e-01(1.73058e-02) 3.80257e-01(1.82474e-02) = Student 8.77e-01
WFG7 3.85675e-01(1.29152e-02) 3.80295e-01(1.78018e-02) = Student 1.85e-01
WFG8 1.06876e+00(1.32272e-01) 7.92715e-01(8.13220e-02) + Student 8.24e-14
WFG9 4.01281e-01(1.53825e-02) 4.05325e-01(1.93257e-02) = Student 3.74e-01
ZDT1 3.82825e-01(4.24148e-02) 3.54789e-01(1.74185e-02) + Wilcoxon 2.26e-03
ZDT2 5.84850e-01(4.84450e-02) 3.70502e-01(4.29535e-02) + Wilcoxon 1.73e-06
ZDT3 8.06824e-01(1.59158e-02) 7.95947e-01(8.19819e-03) + Student 1.53e-03
ZDT4 8.08177e-01(7.25930e-02) 7.40472e-01(1.63474e-01) = Student 4.26e-02
ZDT6 6.88152e-01(4.29740e-02) 3.30043e-01(1.85386e-02) + Welch 2.56e-34
Kursawe 6.13962e-01(1.67108e-02) 5.95343e-01(1.16735e-02) + Student 5.56e-06
Schaffer 7.59430e-01(3.01218e-01) 6.77871e-01(1.48243e-01) = Wilcoxon 1.53e-01
Srinivas 4.50891e-01(2.49322e-02) 4.06597e-01(1.94923e-02) + Student 2.23e-10
Tanaka 1.21786e+00(3.63926e-02) 9.54866e-01(4.35326e-02) + Student 4.20e-33

hard problem for our new algorithm; however, to our surprise, it surpassed regular
PLM in the WFG8 problem.

The variance analysis produces similar conclusions. For all the problems where
the new algorithm outperforms the traditional one, an important reduction of the
variance is again measured.

4.3.4 Tests summary

The test results for each metric are compiled in Table 5, where we additionally
highlight the table cells with a dark grayed background when our algorithm gives
better results for a problem (and with a light grayed background when there is
no difference in performance between them). A white background means that our
algorithm is performing worse for that quality indicator.

It is easy to see that HV and IGD+ are suggesting a similar behavior of the new
algorithm. It surpasses the traditional one in 19 problems and provides similar
results for other 4 or 5 problems. There is only a divergence in WFG5 problem,
where HV indicates that the self-adaptive PLM is doing worse than the regular
operator. Anyway, it seems to be consistent with the negative ∆∗, as we know that
HV also captures the diversity of solutions.

Additionally, ∆∗ results are not as good as those provided by the other indicators,
but they are still quite encouraging. The new algorithm provides better results on
13 occasions, and in 11 cases it shows similar performance. Only in one problem,

20

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

Table 5: Tests summary for each problem and indicator.

Problem HV IGD+ ∆∗

DTLZ1 + + +
DTLZ2 + + =
DTLZ3 + + +
DTLZ4 + + =
DTLZ5 + + +
DTLZ6 + + +
DTLZ7 + + =
WFG1 + + +
WFG2 + + =
WFG3 + + =
WFG4 = = =
WFG5 − = −
WFG6 + + =
WFG7 = = =
WFG8 − − +
WFG9 = = =
ZDT1 + + +
ZDT2 + + +
ZDT3 + + +
ZDT4 + + =
ZDT6 + + +
Kursawe + + +
Schaffer + + =
Srinivas = = +
Tanaka + + +

+/ = /− 19/4/2 19/5/1 13/11/1

WFG5, the new operator provides poorer results. Reviewing the characteristics of
that problem, we could point to its deceptive characteristic. Probably, it is easier
for the new operator to fall in the deception front and not in the real PF.

5 Conclusions and future work

NSGA-II with a fine-tuned statically parameterized polynomial mutator is typically
used as a baseline when comparing the performance of MOEAs. In this work, a
novel and computationally lightweight polynomial mutator that self-adapts the dis-
tribution index ηm has been proposed. This new dynamic operator has been experi-
mentally compared to its static counterpart over 25 problems coming from different
well established test suites (DTLZ, WFG, ZDT, and other key problems) covering
diverse features of typical multi-objective problems. Furthermore, its performance
has been measured over three major quality indicators: hypervolume, generalized
spread, and modified inverted generational distance. The experiments provide a
clear indication that this proposed variation improves the efficacy of NSGA-II using
the traditional PLM on most of the tested problems (it only seems to have difficul-
ties with some highly deceptive problems like WFG5 and WFG8) and for all the
three indicators.

21

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

This work also emphasizes an algorithm comparison methodology whose main char-
acteristics are: (i) a large number of problems with different PS and PF features,
(ii) the use of several quality indicators to measure the algorithm performance, and
(iii) a strict statistical test procedure to analyze the output data.

Additionally, this paper remarks the importance of parameter setting in EAs and
specially in MOEAs. It has been experimentally demonstrated that dynamically
adapted parameters can improve the algorithm efficacy without implying a signif-
icant increase of computational cost. Simple dynamic methods, like the proposed
self-adapted operator, can improve the performance of an MOEA and, potentially,
alter the benchmarking results obtained using statically configured baselines (as
observed using NSGA-II with regular PLM).

One direction of future work is studying how the algorithm could be improved when
dealing with highly deceptive problems. Another future research direction is to ver-
ify if the results of the new self-adapted operator are maintained in many-objective
scenarios. Finally, understanding why the algorithm makes only moderate perfor-
mance improvement regarding the spread and diversity of the obtained solutions is
another interesting research line.

6 Acknowledgments

We sincerely thank Prof. Mohammad M. Hamdan from the Yarmouk University
in Jordan for the valuable comments regarding his articles about the distribution
index used in polynomial mutation.

I am specially grateful to Dr. Severino F. Galán from UNED for all the guidance
and support to develop this work. Thanks a lot for being always there.

References

[ABBZ09] Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler. Theory of the
hypervolume indicator: optimal µ-distributions and the choice of the reference point.
Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algo-
rithms - FOGA ’09, 2009.

[ABC+20] Charles Audet, Jean Bigeon, Dominique Cartier, Sébastien Le Digabel, and Ludovic
Salomon. Performance indicators in multiobjective optimization. European Journal
of Operational Research, 292(2):397–422, 2020.

[AM16] Aldeida Aleti and Irene Moser. A Systematic Literature Review of Adaptive Pa-
rameter Control Methods for Evolutionary Algorithms. ACM Computing Surveys
(CSUR), 49(3):1–35, 2016.

[Ang95] Peter J. Angeline. Adaptive and Self-Adaptive Evolutionary Computations. In
Marimuthu Palaniswami and Yianni Attikiouzel, editors, Computational Intelligence:
A Dynamic Systems Perspective, pages 152—163. IEEE Press, 1995.

[ASS+19] Anne Auger, Thomas Stützle, Mudita Sharma, Alexandros Komninos, Manuel López-
Ibáñez, and Dimitar Kazakov. Deep reinforcement learning based parameter control
in differential evolution. Proceedings of the Genetic and Evolutionary Computation
Conference, pages 709–717, 2019.

22

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

[Bä92] Thomas Bäck. The Interaction of Mutation Rate, Selection, and Self-Adaptation
Within a Genetic Algorithm. In Parallel Problem Solving from Nature 2, PPSN-II,
Brussels, Belgium, September 28-30, 1992. Elsevier, 1992.

[BCSP17] Peter A N Bosman, Andres Felipe Cruz-Salinas, and Jonatan Gomez Perdomo. Self-
adaptation of genetic operators through genetic programming techniques. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pages 913–920.
Association for Computing Machinery, 2017.

[BS96] Thomas Bäck and Martin Schütz. Intelligent mutation rate control in canonical
genetic algorithms. In Lecture Notes in Computer Science, volume 1079, pages 158–
167. Springer, 1996.

[BT03] Peter A. N. Bosman and Dirk Thierens. The Balance Between Proximity and Di-
versity in Multiobjective Evolutionary Algorithms. In IEEE Transactions on Evolu-
tionary Computation, volume 7, no. 2, pages 174–188, 2003.

[BYBS10] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-race and
iterated f-race: An overview. In Experimental Methods for the Analysis of Optimiza-
tion Algorithms, pages 311–336, Berlin, Heidelberg, 2010. Springer.

[BZ11] Johannes Bader and Eckart Zitzler. HypE: An Algorithm for Fast Hypervolume-
Based Many-Objective Optimization. Evolutionary Computation, 19(1):45–76, 2011.

[CS04] Carlos A. Coello Coello and Margarita Reyes Sierra. A Study of the Parallelization
of a Coevolutionary Multi-objective Evolutinoary Algorithm. In MICAI 2004: Ad-
vances in Artificial Intelligence, Third Mexican International Conference on Artificial
Intelligence. Springer, 2004.

[DAPM00] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Mayarivan. A Fast Elitist
Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-
II. In Parallel Problem Solving from Nature PPSN VI. PPSN 2000, volume 1917 of
Lecture Notes in Computer Science, pages 849–858. Springer Berlin Heidelberg, 2000.

[DD20] Benjamin Doerr and Carola Doerr. Theory of Parameter Control for Discrete
Black-Box Optimization: Provable Performance Gains Through Dynamic Parameter
Choices. In Theory of Evolutionary Computation, Recent Developments in Discrete
Optimization, Natural Computing Series, pages 271–321. Springer, 2020.

[DN11] Juan J. Durillo and Antonio J. Nebro. jMetal: A Java framework for multi-objective
optimization. In Advances in Engineering Software, volume 42, no. 10, pages 760–771.
Elsevier, 2011.

[DSO07] Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe. Self-adaptive simulated bi-
nary crossover for real-parameter optimization. In Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’07, page 1187–1194.
Association for Computing Machinery, 2007.

[DTLZ02] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable Multi-
Objective Optimization Test Problems. In Proceedings of the 2002 Congress on Evo-
lutionary Computation. CEC’02, volume 1, pages 825–830. IEEE, 2002.

[EHKS07] A. E. Eiben, Mark Horvath, Wojtek Kowalczyk, and Martijn C. Schut. Rein-
forcement Learning for Online Control of Evolutionary Algorithms. In Engineering
Self-Organising Systems, 4th International Workshop, ESOA 2006, pages 151–160.
Springer, 2007.

[EHM99] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

[Gre86] John J. Grefenstette. Optimization of Control Parameters for Genetic Algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, 16(1):122–128, 1986.

23

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

[HAA+19] Ahmad Hassanat, Khalid Almohammadi, Esra’a Alkafaween, Eman Abunawas, Awni
Hammouri, and V B Surya Prasath. Choosing Mutation and Crossover Ratios
for Genetic Algorithms—A Review with a New Dynamic Approach. Information,
10(12):390, 2019.

[Ham12] Mohammad M. Hamdan. The Distribution Index in Polynomial Mutation for Evolu-
tionary Multiobjective Optimisation Algorithms: An Experimental Study. Proceed-
ings of International Conference on Electronics Computer Technology, 2012.

[Ham14] Mohammad M. Hamdan. Revisiting the Distribution Index in Simulated Binary
Crossover Operator for Evolutionary Multiobjective Optimisation Algorithms. 2014
Fourth International Conference on Digital Information and Communication Tech-
nology and its Applications (DICTAP), pages 37–41, 2014.

[HBWH05] Simon Huband, Luigi Barone, Lyndon While, and Phil Hingston. A Scalable Multi-
objective Test Problem Toolkit. In Evolutionary Multi-Criterion Optimization, Third
International Conference, EMO 2005, volume 3410 of Lecture Notes in Computer
Science, pages 280–295. Springer, 2005.

[HBY22] Changwu Huang, Hao Bai, and Xin Yao. Online algorithm configuration for differ-
ential evolution algorithm. Applied Intelligence, pages 1–19, 2022.

[HJ98] Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the quality of ap-
proximations to the non-dominated set. Technical University of Denmark, Technical
Report IMM-REP-1998-7, 1998.

[HLY20] Changwu Huang, Yuanxiang Li, and Xin Yao. A Survey of Automatic Parameter
Tuning Methods for Metaheuristics. IEEE Transactions on Evolutionary Computa-
tion, 24(2):201–216, 2020.

[HME97] Robert Hinterding, Zbigniew Michalewicz, and Agoston E. Eiben. Adaptation in
Evolutionary Computation: A Survey. In Proceedings of 1997 IEEE International
Conference on Evolutionary Computation (ICEC ’97). IEEE, 1997.

[IISN18] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. How to Specify
a Reference Point in Hypervolume Calculation for Fair Performance Comparison.
Evolutionary Computation, 26(3):411–440, 2018.

[IMTN15] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. Modified distance calculation
in generational dis tance and inverted generational distance. In Proc. of 8th Inter-
national Conference on Evolutionary Multi-Criterion Optimization, pages 110–125.
Springer, 2015.

[IYM03] Hisao Ishibuchi, Tadashi Yoshida, and Tadahiko Murata. Balance Between Genetic
Search and LocalSearch in Memetic Algorithms for Multiobjective Permutation Flow-
shop Scheduling. IEEE Transactions on Evolutionary Computation, 7(2):204–223,
2003.

[Jon75] Kenneth A. De Jong. Analysis of the beavior of a class of genetic adaptive sys-
tems. PhD thesis, Computer and Communication Sciences Department, University
of Michigan, 1975.

[JOZF14] Siwei Jiang, Yew-Soon Ong, Jie Zhang, and Liang Feng. Consistencies and Contra-
dictions of Performance Metrics in Multiobjective Optimization. IEEE Transactions
on Cybernetics, 44(12):2391–2404, 2014.

[KC02] Joshua Knowles and David Corne. On Metrics for Comparing Nondominated Sets. In
Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02, volume 1,
pages 711–716. IEEE, 2002.

[KHE15] Giorgos Karafotias, Mark Hoogendoorn, and A. E. Eiben. Parameter Control in Evo-
lutionary Algorithms: Trends and Challenges. IEEE Transactions on Evolutionary
Computation, 19(2):167–187, 2015.

24

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

[Kno02] Joshua D. Knowles. Local-Search and Hybrid Evolutionary Algorithms for Pareto
Optimization. PhD thesis, Department of Computer Science, University of Reading,
2002.

[Kur99] Frank Kursawe. A Variant of Evolution Strategies for Vector Optimization. In Parallel
Problem Solving from Nature, PPSN VIII, volume 3242 of Lecture Notes in Computer
Science, pages 193–197. Springer, 1999.

[KYL09] Imtiaz Korejo, Shengxiang Yang, and Change Li. A Comparative Study of Adaptive
Mutation Operators for Genetic Algorithms. In The VIII Metaheuristic International
Conference, Hamburg, Germany, 2009.

[LAC16] Edgar Manoatl Lopez, Carlos A, and Coello Coello. IGD+ -EMOA: A Multi-
Objective Evolutionary Algorithm Based on IGD+. In 2016 IEEE Congress on
Evolutionary Computation (CEC), pages 999–1006, 2016.

[LIDLC+16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birat-
tari, and Thomas Stützle. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3:43–58, 2016.

[LLJ22] Qiang Long, Guoquan Li, and Lin Jiang. A novel solver for multi-objective optimiza-
tion: dynamic non-dominated sorting genetic algorithm (DNSGA). Soft Computing,
26(2):725–747, 2022.

[LLM07] Fernando G. Lobo, Cláudio F. Lima, and Zbigniew Michalewicz. Parameter Setting in
Evolutionary Algorithms, volume 54 of Studies in Computation Intelligence. Springer,
2007.

[LPN+21] Marcelo Gomes Pereira de Lacerda, Luis Filipe de Araujo Pessoa, Fernando Buar-
que de Lima Neto, Teresa Bernarda Ludermir, and Herbert Kuchen. A systematic
literature review on general parameter control for evolutionary and swarm-based al-
gorithms. Swarm and Evolutionary Computation, volume 60, 2021.

[LY04] Chang-Yong Lee and Xin Yao. Evolutionary Programming Using Mutations Based on
the Lévy Probability Distribution. IEEE Transactions on Evolutionary Computation,
8(1):1–13, 2004.

[LY19] Miqing Li and Xin Yao. Quality Evaluation of Solution Sets in Multiobjective Opti-
misation: A Survey. ACM Computing Surveys (CSUR), 52(2):26, 2019.

[MMPO09] Efrén Mezura-Montes and Ana Gabriela Palomeque-Ortiz. Self-adaptive and Deter-
ministic Parameter Control in Differential Evolution for Constrained Optimization.
In Constraint-Handling in Evolutionary Optimization, volume 198 of Studies in Com-
putational Intelligence, pages 95–120, 2009.

[NLA+08] Antonio J. Nebro, Francisco Luna, Enrique Alba, Bernabé Dorronsoro, Juan J.
Durillo, and Andreas Beham. AbYSS: Adapting Scatter Search to Multiobjective Op-
timization. IEEE Transactions on Evolutionary Computation, 12(4):439–457, 2008.

[OJS03] Tatsuya Okabe, Yaochu Jin, and Bernhard Sendhoff. A Critical Survey of Perfor-
mance Indices for Multi-Objective Optimisation. In The 2003 Congress on Evolu-
tionary Computation, 2003. CEC ’03, volume 2, pages 878–885. IEEE, 2003.

[Pap21] Gregor Papa. Applications of dynamic parameter control in evolutionary compu-
tation. In 2021 Genetic and Evolutionary Computation Conference Companion
(GECCO ’21 Companion), Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion, Lille, France, 2021. ACM.

[PPSN19] Rafael Stubs Parpinelli, Guilherme Felippe Plichoski, Renan Samuel Da Silva, and
Pedro Henrique Narloch. A review of techniques for online control of parameters in
swarm intelligence and evolutionary computation algorithms. International Journal
of Bio-Inspired Computation, 13(1):1, 2019.

[Rec71] Ingo Rechenberg. Evolutionsstrategie; Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. PhD thesis, Department of Process Engi-
neering, Technical University of Berlin, 1971.

25

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

[RGD+22] Iman Rahimi, Amir H Gandomi, Kalyanmoy Deb, Fang Chen, and Mohammad Reza
Nikoo. Scheduling by NSGA-II: Review and Bibliometric Analysis. Processes,
10(1):98, 2022.

[RLB15] Nery Riquelme, Christian Von Lücken, and Benjamı́n Barán. Performance Metrics
in Multi-Objective Optimization. In 2015 Latin American Computing Conference
(CLEI). IEEE, 2015.

[RW20] Amirhossein Rajabi and Carsten Witt. Self-Adjusting Evolutionary Algorithms for
Multimodal Optimization. In Proceedings of GECCO ’20, pages 1314–1322. ACM
Press, 2020.

[Sch85] J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. In Proceedings of the 1st International Conference on Genetic Algo-
rithms, pages 93–100. L. Erlbaum Associates Inc., 1985.

[SD94] N. Srinivas and Kalyanmoy Deb. Muiltiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[SF96] J. Smith and T.C. Fogarty. Self adaptation of mutation rates in a steady state genetic
algorithm. In Proceedings of 1996 IEEE International Conference on Evolutionary
Computation, pages 318–323. IEEE, 1996.

[SF97] J. E. Smith and T. C. Fogarty. Operator and parameter adaptation in genetic algo-
rithms. Soft Computing, 1(2):81–87, 1997.

[SP97] Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces. Journal of Global Opti-
mization, 11(4):341–359, 1997.

[TCMG09] K.C. Tan, S.C. Chiam, A.A. Mamun, and C.K. Goh. Balancing exploration and
exploitation with adaptive variation for evolutionary multi-objective optimization.
European Journal of Operational Research, 197(2):701–713, 2009.

[TI20] Ryoji Tanabe and Hisao Ishibuchi. An Analysis of Quality Indicators Using Ap-
proximated Optimal Distributions in a 3-D Objective Space. IEEE Transactions on
Evolutionary Computation, 24(5):853–867, 2020.

[TWFT95] M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino. GA-based decision support
system for multicriteria optimization. In 1995 IEEE International Conference on
Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, volume 2,
pages 1556–1561. IEEE, 1995.

[TY07] Renato Tinós and Shengxiang Yang. Self-Adaptation of Mutation Distribution in
Evolutionary Algorithms. In 2007 IEEE Congress on Evolutionary Computation,
pages 79–86. IEEE, 2007.

[VL98] David A. Van Veldhuizen and Gary B. Lamont. Evolutionary Computation and Con-
vergence to a Pareto Front. In Late-breaking papers book at the Genetic Programming
1998 Conference (GP-98), pages 221–228. Stanford University Bookstore, 1998.

[WAY+16] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen. A Practical Guide
to Select Quality Indicators for Assessing Pareto-Based Search Algorithms in Search
Based Software Engineering. In IEEE/ACM 38th IEEE International Conference on
Software Engineering. IEEE, 2016.

[YU06] Shengxiang Yang and Şima Uyar. Adaptive mutation with fitness and allele distribu-
tion correlation for genetic algorithms. In Proceedings of the 2006 ACM symposium
on Applied computing - SAC ’06, pages 940–944. ACM, 2006.

[ZCZ+12] Jun Zhang, Wei-Neng Chen, Zhi-Hui Zhan, Wei-Jie Yu, Yuan-Long Li, Ni Chen, and
Qi Zhou. A survey on algorithm adaptation in evolutionary computation. Frontiers
of Electrical and Electronic Engineering, 7(1):16–31, 2012.

[ZDT99] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective
Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–
195, 1999.

26

José L. Carles Self-Adaptive PLM in Multi-Objective Evolutionary Algorithms

[ZJZ+06] Aimin Zhou, Yaochu Jin, Qingfu Zhang, Bernhard Sendhoff, and Edward Tsang.
Combining Model-Based and Genetics-based Offspring Generation for Multi-
Objective Optimization Using a Convergence Criterion. In 2006 IEEE International
Conference on Evolutionary Computation, pages 892–899. IEEE, 2006.

[ZLD+10] Fanchao Zeng, Malcolm Yoke Hean Low, James Decraene, Suiping Zhou, and Wen-
tong Cai. Self-Adaptive Mechanism for Multi-objective Evolutionary Algorithms. In
Proceedings of the International MultiConference of Engineers and Computer Scien-
tists 2010, volume I, pages 7–12, 2010.

[ZLZL19] Zhibiao Zhao, Bin Liu, Chunran Zhang, and Haoran Liu. An improved adaptive
NSGA-II with multi-population algorithm. Applied Intelligence, 49(2):569–580, 2019.

[ZT99] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

[ZTL+03] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane
Grunert da Fonseca. Performance Assessment of Multiobjective Optimizers: An
Analysis and Review. IEEE Transactions on Evolutionary Computation, 7(13):117–
132, 2003.

27

	Abstract
	Introduction
	Background and related work
	Multi-objective optimization concepts
	Parameter tuning and control
	Quality indicators
	Hypervolume
	Generalized spread
	Modified inverted generational distance

	From static to self-adaptive polynomial mutation in NSGA-II
	NSGA-II
	Static polynomial mutation
	Novel self-adaptive polynomial mutation

	Experimental evaluation
	Test problems
	Algorithm execution
	Results
	Hypervolume results
	IGD+ results
	Generalized spread results
	Tests summary

	Conclusions and future work
	Acknowledgments
	References

