
Universidad Nacional
de Educación a Distancia

Escuela Técnica Superior de Ingeniería Informática

Speak2Subs: Evaluating
State-of-the-Art Speech

Recognition Models and Compliant
Subtitle Generation

Julio Antonio Fresneda García
Director/a: Jorge Pérez Martín
Co-director/a: Álvaro Rodrigo Yuste

Trabajo de Fin de Máster

Máster Universitario
en Ingeniería y Ciencias de Datos

Febrero 2024





Acknowledgments

To my amazing girlfriend and family who’ve braved my academic hibernation throughout
this project.

To Dire Straits.





Abstract

With recent advances in largue language models, the evolution of speech-to-text tasks has
been exponential. While state-of-the-art automatic speech recognition (ASR) models have
taken a big step in speech transcription, creating quality subtitles still requires human in-
tervention.

This project has two main aspects: evaluating cutting-edge ASR models for speech-to-
text, and developing a package that uses this ASR models to generate high-quality and
compliant subtitles.

ASR models do not inherently provide results suitable for subtitles. Therefore, one of
the primary objectives of this package is to utilize and enhance the output generated by
ASR models to create subtitles of a quality that requires minimal human modification. This
enhancement is necessary because ASR models alone are incapable of producing subtitles
that meet the required standards of quality.

Speak2Subs has achieved this goal, being a tool that produces high-quality subtitles with
minimal human interaction.

Keywords: ASR, LLM, Speech-To-Text, Subtitle.





Glossary

ASR Automatic Speech Recoginition is a technology that converts spoken language into
written text, enabling machines to transcribe and understand human speech. It plays
a crucial role in applications like voice assistants, transcription services, and subtitling..

Container A self-contained, portable unit of software that encapsulates applications along
with their dependencies, ensuring consistent and isolated execution across diverse com-
puting environments..

LLM Large Language Models (LLMs) are artificial intelligence models, characterized by
their extensive scale and complexity. These models, trained on vast amounts of data,
excel in understanding, generating, and processing human-like language. An example
is ChatGPT..

Python package A collection of Python modules and related resources organized in a
directory structure file, allowing for the encapsulation, reuse, and distribution of code
and functionalities. Packages facilitate modular programming and enable namespace
management within Python projects..

UNE Spanish Association for Standardization (Asociación Española de Normalización).
UNE develops and publishes technical standards in various fields to ensure consistency
and quality in products, services, and processes across Spain. These standards cover
areas such as industry, technology, safety, and environmental practices..

vii





Contents

Glossary vii

1 Introduction 1
1.1 Brief context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Proposal and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Evaluation of state-of-the-art ASR models . . . . . . . . . . . . . . . 2
1.3.2 Python package that generates compliant subtitles . . . . . . . . . . . 3

1.4 Contributions to the field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Automatic Speech Recognition: State Of the Art 5
2.1 Innovations in Subtitling Technology: An Examination of Recent ASR Research 6

2.1.1 State-of-the-art and recent ASR researchs . . . . . . . . . . . . . . . 6
2.1.2 ASR and subtitle compression . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Automatic Speech Recognition models . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Whisper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 WhisperX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 NVIDIA NeMo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 META Seamless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Vosk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Conclusion about the state of the art of the subtitle generation task . . . . 9

3 Evaluation Methodology 11
3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Error metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Weighted error metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Normalized error metrics . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Mismatch metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.5 NER metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.6 Execution time metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.7 Compliance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ix



3.2 Preprocessing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Voice Activity Detection . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Group Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Max speech duration . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Noise reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Materiales digitales accesibles . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Accesibilidad en la atención a clientes . . . . . . . . . . . . . . . . . . 18
3.3.3 Cómo formar sobre diseño para todas las personas . . . . . . . . . . . 18
3.3.4 MOOC Discapacidad y Defensa Legal Activa en la Era Digital . . . . 19
3.3.5 Móviles accesibles para todos . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 ’Default’ configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 ’No VAD’ configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 ’Sentences’ configuration . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.4 ’Raw audio’ configuration . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Metodology conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Speak2Subs package 23
4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Subtitle generation based on a reference template . . . . . . . . . . . 24
4.1.2 Subtitle quality evaluation . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.3 Subtitle generation without a reference template . . . . . . . . . . . . 25

4.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Install PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Install Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Install Speak2Subs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 How to generate subtitles . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 How to evaluate subtitles . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 How does it work: Subtitle Generator . . . . . . . . . . . . . . . . . . . . . . 28
4.4.1 Loading Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.3 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 How does it work: Subtitle Evaluator . . . . . . . . . . . . . . . . . . . . . . 38
4.5.1 Detect VTT files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



4.5.2 Calculate metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Development costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Development conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Analysis of results 43
5.1 Evaluating results using the configurations . . . . . . . . . . . . . . . . . . . 43

5.1.1 Configuration 1 - Default . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2 Configuration 2 - No VAD . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.3 Configuration 3 - Sentences . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.4 Configuration 4 - Raw audio . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Metric comparatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 Error rate comparative - WWER . . . . . . . . . . . . . . . . . . . . 47
5.2.2 Error rate comparative - NWWER . . . . . . . . . . . . . . . . . . . 48
5.2.3 Mislocation rate comparative . . . . . . . . . . . . . . . . . . . . . . 48
5.2.4 Execution times comparative . . . . . . . . . . . . . . . . . . . . . . 49
5.2.5 Memory consumption comparative . . . . . . . . . . . . . . . . . . . 50

5.3 Evaluation conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Evaluating subtitles without a template reference . . . . . . . . . . . . . . . 51
5.5 WhisperX vs Speak2Subs: A comparative analysis of subtitle quality . . . . 53

6 Conclusions and final thoughts 57
6.1 Speak2Subs VS State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 What has been achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 What can be improved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography and references 60





List of Figures

4.1 High level diagram of the use cycle . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Generation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Pre-processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Understanding local timestamps . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Evaluation pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 mda_1.mp4 video, at 1:41 with original subtitles . . . . . . . . . . . . . . . 51
5.2 mda_1.mp4 video, at 1:41 with generated subtitles . . . . . . . . . . . . . . 52

xiii





Table index

5.1 Configuration 1 - Default hyperparameters. Except exec time, each metric is
measured in percentage (%).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Configuration 2 - No VAD applied. Except exec time, each metric is measured
in percentage (%).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Configuration 3 - Sentences, grouping disabled. Except exec time, each metric
is measured in percentage (%).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Configuration 4 - Raw audio, no VAD and no segmentation. Except exec
time, each metric is measured in percentage (%).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 WWER comparative (%).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 NWWER comparative (%).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7 Mislocation rate comparative, in seconds.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.8 Execution time comparative, in seconds.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.9 Execution time ratios, Vosk in Conf 1 as reference.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.10 Memory consumption, in Gb. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.11 Compliance comparative (%)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.12 WhisperX vs Speak2Subs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xv





Chapter 1

Introduction

1.1 Brief context

The art of subtitle generation, like many other disciplines, has undergone significant evolution
in recent years. While tools have existed for quite some time to ease this task, it has
always demanded substantial human supervision and involvement. Technological progress
over the years has been noteworthy, and with the emergence of advanced language models
like ChatGPT 1, LLama [17], Whisper [14], and others, the field has experienced a remarkable
leap forward. These models now demonstrate exceptional accuracy in speech-to-text tasks,
an accuracy that was once unimaginable.

However, the creation of quality subtitles needs more than just accurate transcription.
Although we can obtain a precisely transcribed text with timestamps for each word, the art of
structuring these words into coherent subtitles still demands human intervention, presenting
a task that remains somewhat difficult to do.

This master’s thesis has two integral aspects. Firstly, it involves the development of
a robust package using the most advanced automatic speech recognition (ASR) models.
Leveraging the capabilities of the ASRs, this tool aims to generate high-quality subtitles
that adhere to specific conditions and checks, ensuring both proper readability and seamless
integration with the original source material. Secondly, this thesis has a comprehensive
evaluation and comparison of the current state-of-the-art ASR models, specifically those
available as open-source, specialized transcribing speech to text.

To carry out this evaluation, we have achieved a package that minimizes human inter-
vention to the greatest extent possible in the intricate task of subtitling. By bridging the
gap between cutting-edge ASR technology and the artistry of subtitling, this project seeks
to push the boundaries of automation and enhance the accessibility and efficiency of subtitle
creation.

1https://chat.openai.com

1

https://chat.openai.com


2 Introduction

1.2 Motivation

The motivation to make this idea of project into a real thing comes from two sources. There
is an inherent motivation in knowing that we can help to evolve this field and contribute
with something at the cutting edge of the art of generate subtitles.

This process demands a level of linguistic and contextual comprehension that tradition-
ally aligns with human capabilities. The intricacies embedded in linguistic nuances, cultural
references, and contextual awareness have, until now, posed a formidable barrier to auto-
mated systems. The human interaction seems inevitable in this task, but with the upraisal
of some news technologies, we have the oportunity to work in reduce this interaction to the
minimum. With this project, we can consider a humble step has been taken in this direction.

There is a personal motivation too. Within the academic realm, specifically at the Uni-
versidad Nacional de Educación a Distancia (UNED 2), there exists a pressing need for
an efficient tool that seamlessly generates subtitles with minimal human intervention. How-
ever, the current process of transmuting spoken content into subtitles poses a bottleneck that
slows down the institution’s commitment to providing accessible and inclusive educational
resources. The personal motivation to address this challenge lies in the quest for a tool that
would not only enhance the efficiency of content delivery but also contribute significantly to
reducing the workload on human transcribers.

In essence, the dual motivation to address the global challenge of transforming transcrip-
tions into subtitles and the specific needs of UNED, and the deep measure and evaluation
of state-of-the-art ASR models, converges in the quest for a out-of-the-box package that can
help in the task of making subtitles with excellent quality.

1.3 Proposal and objectives

The principal aim of the project is to enhance the quality of automatic subtitling. To achieve
this, we have developed a framework, a Python package, capable of generating high-quality
subtitles. These subtitles are designed to adhere to specific regulations while requiring
minimal human editing. Supporting this main goal, the project also involves a thorough
evaluation of various ASR models. This evaluation provides a comprehensive overview of
the current state of the art in transcription, further contributing to the improvement of
automatic subtitling.

1.3.1 Evaluation of state-of-the-art ASR models

To achieve the main goal, one of the steps we have to take is to understand the state of the
art in automatic subtitling.

2https://uned.es

https://uned.es


Introduction 3

To do this, we evaluate some of the most popular and cutting-edge ASR models that are
availible open-souce today, which are listed in Automatic Speech Recognition: State Of the
Art. The evaluation takes into account various combination of pre-processing steps (Pre-
processing), different datasets (Datasets), and enough metrics (Metrics) to have a precise
vision of which models are best suited for speech-to-text tasks. Since ASR models are not
inherently designed to generate subtitles, part of the aim of this project is to enhance them
with specific capabilities to comply with regulations focused on subtitle quality. Therefore,
we also evaluate metrics that measure the extent to which these recommendations are applied
to the generated subtitles. All of this is explained in Evaluation Methodology

1.3.2 Python package that generates compliant subtitles

To enhance the quality of automatic subtitling, and to evaluate the ASR models, we need
a tool that generates subtitles based on the transcriptions. Taking advantage of this need,
a package capable of generate subtitles of high quality which need the minimum human
finetuning is developed.

1.4 Contributions to the field

What novel contribution does this master’s thesis aim to provide to the field of ASR and
subtitling?

It proposes an exceptionally straightforward method for generating high-quality subtitles
by leveraging the latest models in ASR. This approach involves a combination of prepro-
cessing and postprocessing techniques that enhance the output and adapt the subtitles to
conform to policies that ensure outstanding quality, all of which can be accomplished using
a single command, performing as a black box to the final user.

This package should be able to use ASR models to generate subtitles without and with
original subtitles as reference, and should be able to evaluate the quality of the generated
subtitles. 4

In the array of studies and works examined in the following chapter, maybe Speak2Subs
isn’t the pioneer in utilizing ASR technology for crafting superior subtitles. However, it’s
important to note that Speak2Subs either matches or surpasses other models in versatility
and broader applicability. In comparison, other models often lack Speak2Subs’ breadth, cus-
tomization options, and adaptability. Unique features of Speak2Subs include Voice Activity
Detection, segmentation grouping, a selection from five ASR models, and post-processing
aligned with UNE 153010:2012 standards, distinguishing it from other reviewed projects.



4 Introduction



Chapter 2

Automatic Speech Recognition: State Of
the Art

Automatic Speech Recognition (ASR) and subtitle generation represent important domains
within the field of Natural Language Processing, addressing the complex task of converting
spoken language into written text. As of the latest developments, the state of the art in
ASR and subtitle generation has witnessed remarkable advancements driven by deep learning
methodologies, particularly Recurrent Neural Networks (RNNs [6]), Convolutional Neural
Networks (CNNs [6]), and transformer-based architectures [19].

ASR systems have evolved significantly, demonstrating top performance owing to the
adoption of end-to-end deep learning approaches. Traditionally, ASR pipelines comprised
multiple stages involving feature extraction, acoustic modeling, and language modeling. Con-
temporary systems, however, leverage neural network-based end-to-end models that directly
map acoustic signals to transcriptions [8]. This paradigm shift has been facilitated by the
success of deep neural networks, such as long short-term memory (LSTM [5]) networks and
transformer models, in capturing intricate patterns within sequential data.

Transformer architectures, originally designed for natural language processing tasks, have
particularly shown efficacy in ASR due to their ability to model long-range dependencies
and contextual information. Models like the Transformer Transducer (Transducer) and the
Listen, Attend, and Spell (LAS [3]) architecture have exhibited competitive performance in
ASR benchmarks.

Additionally, transfer learning strategies, such as pre-training on vast amounts of unla-
beled data followed by fine-tuning on specific ASR tasks, have become prevalent, enhancing
the generalization capabilities of ASR models across diverse domains and languages.

5



6 Automatic Speech Recognition: State Of the Art

2.1 Innovations in Subtitling Technology: An Examina-
tion of Recent ASR Research

There are numerous articles and publications related to ASR models. It is true, however,
that there are significantly fewer focused on the use of ASR for subtitling purposes. This
section provides a concise overview of some particularly intriguing publications that endeavor
to progress in the challenging task of automatic subtitling. An overview of these articles and
publications can offer an insight into the current state-of-the-art in this field, providing
context and reference to objectively assess the advancements of Speak2Subs in the task of
automatic subtitling.

It’s necessary to differentiate a subtitle from a transcription. A transcription is simply
the result of converting audio into text. But a transcription is not a subtitle. A subtitle is
adapted to the medium, adjusted for correct reading, with appropriate breaks, size, and the
right number of characters. In summary, when we seek to subtitle, transcription is just the
beginning. But it’s a very important beginning, which is why we need to understand the
state of the art of this discipline.

2.1.1 State-of-the-art and recent ASR researchs

Speak2Subs is not the only endeavor to achieve high-quality subtitles. There are various
articles that attempt to address this issue. An example is ’Learning to Jointly Transcribe
and Subtitle for End-To-End Spontaneous Speech Recognition.’ [13] This article presents a
very interesting approach to TV subtitling.

This article presents a dual-decoder Transformer model for ASR and subtitling. The
model combines an ASR decoder, for verbatim transcription, with a subtitle decoder, both
sharing a common encoder. This approach allows the model to effectively utilize TV subti-
tle data, which are abundant but not verbatim, to improve ASR transcriptions. The model
shows improved performance in regular ASR and spontaneous conversational ASR by incor-
porating the subtitle decoder. It eliminates the need for preprocessing subtitle data, offering
a novel way to leverage such data in enhancing ASR systems.

There are additional articles that endeavor to tackle the challenge of subtitling, such as
’Video Subtitle Generation’ by Aishwarya Bakale [2] and other co-authors.

The article discusses a system for automatic video subtitle generation in four stages: ex-
tracting audio from video, dividing the audio into chunks, recognizing speech using Google’s
Speech Recognition API, and generating .srt subtitle files. This system is particularly ad-
vantageous for people with auditory problems or language barriers. It improves accessibility
and understanding of video content, eliminating the need for manual subtitle downloads.
The system’s effectiveness is highlighted by its accuracy in subtitle generation for various
videos.



Automatic Speech Recognition: State Of the Art 7

Another paper, "Automatic Subtitle Generation for Videos" [15], presents a system de-
signed to automatically generate subtitles for video content. The system focuses on improv-
ing accessibility for various user groups, including those with auditory challenges or language
barriers. It operates through a multi-stage process involving audio extraction from video,
speech recognition, and subtitle file creation. The system uses advanced speech recognition
tools like CMU Sphinx and DeepSpeech to transcribe audio into text, and then aligns this
text with the video to generate subtitles in a .srt format. The study compares the effective-
ness of these speech recognition tools and evaluates their performance based on factors like
Word Error Rate and system resource usage.

The paper titled "An automatic caption alignment mechanism for off-the-shelf speech
recognition technologies" [4] presents a novel system for aligning video captions using stan-
dard automatic speech recognition (ASR) applications. The proposed mechanism does not
require human-generated transcriptions or specialized software. It involves inserting a unique
audio markup into the audio stream before feeding it to an ASR application, and then con-
verting the ASR-generated plain transcript into a timecoded transcript for synchronized
caption display. The system is cost-effective and simplifies the captioning process, mak-
ing video content more accessible, especially for individuals with disabilities or those facing
language barriers.

2.1.2 ASR and subtitle compression

As has been previously discussed, transcription and subtitling are distinct processes. A
transcription without post-processing is unlikely to serve effectively as a subtitle, due to the
necessity of adjusting subtitle length and speed for proper readability. In this work, the
criteria set by UNE 153010:2012 are utilized, but there are additional solutions to enhance
the accurate reading of subtitles. An example could be the compression of subtitles without
loss of information.

The paper titled "Adapting End-to-End Speech Recognition for Readable Subtitles" [11]
focuses on enhancing automatic speech recognition (ASR) for subtitling by integrating output
compression. It addresses the issue of verbatim transcription reducing readability in subtitles
due to screen space and reading time constraints. The study explores both cascaded and
end-to-end ASR models, with an emphasis on a Transformer-based end-to-end model fine-
tuned with limited data for effective transcription and compression. This model improves
accuracy and paraphrasing, producing more concise outputs, and explicitly models length
constraints to enhance performance, proving useful for subtitling.

While it is true that this technique is highly beneficial for enhancing the quality and
readability of subtitles, it has the clear disadvantage of the subtitles not being a verbatim
transcription of what the speaker is saying. Perhaps for academic-themed media, this is an
excellent solution, but there are other types of media, such as series and movies, where a non-



8 Automatic Speech Recognition: State Of the Art

literal transcription could lead to a loss of nuances. Therefore, it might be more appropriate
to explore other types of post-processing.

2.2 Automatic Speech Recognition models

In the realm of subtitle generation, the advancements in ASR have naturally contributed
to improved accuracy and efficiency. Subtitle generation systems typically rely on the inte-
gration of ASR with natural language processing techniques for context understanding and
grammatical coherence. Transformer-based models, known for their success in sequence-to-
sequence tasks, have been adapted for subtitle generation, offering superior contextualization
and fluency in transcribing spoken content [12].

It is worth to describe in this section the five Automatic Speech Recognition models that
we are evaluating in this thesis, so the lector can have a specific context of what are we
evaluating or using in the rest of this document.

2.2.1 Whisper

Textually from their website 1 [14], Whisper is defined as an automatic speech recognition
(ASR) system trained on 680,000 hours of multilingual and multitask supervised data col-
lected from the web. The use of such a large and diverse dataset leads to improved robustness
to accents, background noise and technical language. Moreover, it enables transcription in
multiple languages, as well as translation from those languages into English.

Whisper is open-sourcing models and inference code to serve as a foundation for building
useful applications and for further research on robust speech processing. It currently have
seven different models (tiny, base, small, medium, large, large-v2 and large-v3) depending
on the size of the model (i.e., the number of layers, width, heads and parameters).2

2.2.2 WhisperX

WhisperX [1] is a model based on whisper, which have important and interesting capacities
and improvements out of the box.

WhisperX paper claims that whisper have some problems: The predicted timestamps
corresponding to each utterance are prone to inaccuracies, which is bad to generate subtitles.
WhisperX is a time-accurate speech recognition system with word-level timestamps that uses
two improvements: voice activity detection and forced phoneme alignment. We will see that
voice activity detection is implemented in Speak2Subs too, so we can use this feature with
any model.

1https://openai.com/research/whisper
2https://github.com/openai/whisper

https://openai.com/research/whisper
https://github.com/openai/whisper


Automatic Speech Recognition: State Of the Art 9

WhisperX proposes a Cut and Merges strategy that improves transcription quality and
enables a transcription speedup via batched inference. 3

2.2.3 NVIDIA NeMo

NeMo from NVIDIA 4 5 is not limited to ASR. In fact, NeMo is a powerful toolkit for building
new state-of-the-art conversational AI models. NeMo has separate collections for ASR, NLP,
and Text-to-Speech (TTS) models [9]. Each collection consists of prebuilt modules that
include everything needed to train on your data. Every module can easily be customized,
extended, and composed to create new conversational AI model architectures.

Focusing in ASR 6, NeMo have a variety of models. Each model has been pre-evaluated,
and the best one is the chosen to compare with the rest of ASR.

2.2.4 META Seamless

META Seamless 78 auto-defines as a foundational all-in-one Massively Multilingual and
Multimodal Machine Translation model delivering high-quality translation for speech and
text in nearly 100 languages. [16]

2.2.5 Vosk

Vosk 9 is very different for the previous ASR models. This speech recognition toolkit does
not use superheavy LLM models. In fact, the light models of Vosk are only 50mb each. It is
obvious that the precision of the transcriptions can’t be close to the rest of the ASR models,
but this toolkit have other qualities, like space and velocity. It is added to the comparation
to show the enormous difference in terms of subtitle quality are the new wave of ASR models
that are emerging right now.

2.3 Conclusion about the state of the art of the subtitle
generation task

The listed models belong to highly influential companies within the sector, instilling con-
fidence that these models can perform exceptionally well in transcribing speech to text.

3https://github.com/m-bain/whisperX
4https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/
5https://github.com/NVIDIA/NeMo
6https://nvidia.github.io/NeMo/asr/models.html
7https://ai.meta.com/research/topics/seamless-communication
8https://github.com/facebookresearch/seamless_communication
9https://alphacephei.com/vosk/

https://github.com/m-bain/whisperX
https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/
https://github.com/NVIDIA/NeMo
https://nvidia.github.io/NeMo/asr/models.html
https://ai.meta.com/research/topics/seamless-communication
https://github.com/facebookresearch/seamless_communication
https://alphacephei.com/vosk/


10 Automatic Speech Recognition: State Of the Art

However, as you may have noticed, none are specifically focused on subtitles. Hence, the
mere utilization of these models isn’t adequate to achieve high-quality subtitles.

Using off-the-shelf ASR models without adjusting their results clearly leads to transcrip-
tions that are not fit for high-quality subtitling. This issue arises partly because these models
do not incorporate specific changes in their output to conform it to the standards required
for subtitles. Key among these potential alterations are those recommended by the UNE
153010:2012 standards.



Chapter 3

Evaluation Methodology

This master’s thesis aims to evaluate Automatic Speech Recognition (ASR) models, focus-
ing on the assessment of their performance and capabilities. The evaluation process involves
understanding the significance and challenges associated with the use of ASR models, uti-
lizing various datasets and hyperparameters to facilitate comprehensive analyses, to derive
conclusions regarding the strengths and weaknesses of each model, drawing upon a range
of metrics obtained through systematic evaluation procedures. Understanding the accuracy,
robustness, and overall performance of these models stands as a fundamental objective.

In this chapter, we detail the metrics, datasets, and hyperparameters utilized for evalu-
ation purposes. A series of assessments are conducted, leading to specific conclusions about
the models employed in this study.

3.1 Metrics

3.1.1 Error metrics

In many tasks, success is evaluated. However, in this discipline, error is evaluated.
In ASR, error metrics [10] are used to quantify and evaluate the accuracy and performance

of the system in transcribing spoken language into text. Several key error metrics and
variants are commonly used in ASR evaluation.

There are some concepts that need to be explained before getting into specific metrics:
A substitution occurs when the ASR system incorrectly recognizes a word, replacing it

with a different word. For example, if the correct word in the speech was "cat" but the ASR
system transcribed it as "cap," this would be counted as a substitution error. Substitutions
can occur due to various factors like the speaker’s accent, background noise, or the system’s
limitations in understanding the context.

A deletion error happens when the ASR system fails to recognize and transcribe a word
that was spoken. For instance, if the original speech was "the quick brown fox" and the ASR
system transcribed it as "the brown fox," the word "quick" has been omitted, resulting in a

11



12 Evaluation Methodology

deletion error. Deletions can be caused by speech that is too quiet, fast, or unclear for the
system to detect accurately.

An insertion error occurs when the ASR system adds a word that was not present in
the original speech. For example, if the actual spoken phrase was "go home," but the system
transcribed it as "go right home," the word "right" is an extra word that was not spoken,
marking it as an insertion error. Insertions can happen due to background noises being
misinterpreted as speech or the system misinterpreting speech patterns.

The metrics described in the following paragraphs are commonly used for several reasons.
They are simple, intuitive, and easy to understand. They are consistent in comparison,
meaning they allow for direct comparison between models without the need for adjustment.
They are easy to implement. And, of course, they are the standard metrics that have been
used in this field for the last few years.

WER - Word Error Rate

WER [10] measures the ratio of the total number of errors (substitutions, deletions, inser-
tions) in the recognized output compared to the reference (ground truth) transcript.

WER =
(S +D + I)

N

S is the number of substitutions, D is the number of deletions, I is the number of inser-
tions, and N is the total number of words in the reference transcript. Lower WER indicates
higher accuracy.

MER - Match Error Rate

Evaluates the alignment between recognized speech output and the reference transcription at
the word level. MER [10] assesses the quality of the alignment by measuring the discrepancy
between the recognized transcript and the ground truth reference transcript.

MER =
(S +D + I)

(N +M)

Where S is the number of substitutions, D is the number of deletions, I is the number
of insertions, N is the total number of words in the reference, and M is the total number of
words in the recognized transcript.

WIL - Word Information Lost

Measures the loss of information during the transcription process, specifically focusing on
the content of the recognized words compared to the reference or ground truth transcription.

WIL =
(D + S)

(N + I)



Evaluation Methodology 13

where D is the number of deleted words, S is the number of substituted words, N is
the total number of words in the reference, and I is the number of inserted words in the
recognized transcript.

WIL quantifies the loss of information due to deletion and substitution errors in the rec-
ognized transcript compared to the reference transcript. Higher WIL values indicate a higher
degree of information loss, meaning that a larger proportion of words in the recognized out-
put are either substituted or missing compared to the reference. WIL complements metrics
like Word Error Rate (WER) and Character Error Rate (CER) by focusing specifically on
the informational content lost during transcription. It can provide insights into the overall
fidelity of the transcribed output in terms of preserving the original information from the
spoken utterance.

WIP - Word Information Preserved

Measures the proportion of correctly transcribed words in the recognized output compared
to the reference or ground truth transcription, focusing on the retention or preservation of
accurate information..

WIP =
N − (D + S)

(N)

where N is the total number of words in the reference, D is the number of deleted words,
and S is the number of substituted words in the recognized transcript.

WIP quantifies the proportion of correctly transcribed words in the recognized transcript
compared to the reference transcript. A higher WIP value indicates a higher preservation
of accurate information, meaning that a larger proportion of words in the recognized output
match the reference.

WIP is a useful metric in evaluating ASR systems as it provides insights into how well
the system preserves the original information conveyed in the spoken utterance by accurately
transcribing the words. It complements metrics like Word Error Rate (WER) and Character
Error Rate (CER) by focusing specifically on the preservation of information rather than
overall error rates.

3.1.2 Weighted error metrics

WWER - Weighted Word Error Rate

Using a standard formula like WER may overlook how different errors affect the overall
outcome. Some errors might be more disruptive or harder to rectify than others. Also, the
formula doesn’t distinguish between specific types of errors; for instance, it can’t tell if an
error comes from a substitution or a combined deletion and insertion.



14 Evaluation Methodology

Hunt, in 1990 and which paper seems is not in public repositories [7], proposed a solution
by introducing a weighted accuracy measure. In this approach, errors resulting from substi-
tutions are considered the most crucial and are given full weight (a value of 1). However,
errors due to deletions and insertions are seen as less impactful and are weighted at 0.5 each.
This means that while substitution errors are fully accounted for in the evaluation, deletions
and insertions are considered less severe, receiving only half the weight of a substitution
error. This weighted approach helps prioritize the importance of different error types in
assessing the accuracy of speech recognition systems.

WER =
(S + 0.5D + 0.5I)

N

WMER - Weighted Match Error Rate

There is no specific paper defining WMER for the first time, but seems logic to use the same
principle as with Weighted WER, as long as it calibrates different error types.

WMER =
(S + 0.5D + 0.5I)

(N +M)

3.1.3 Normalized error metrics

In the context of measuring word error rate (WER) or other evaluation metrics in natural
language processing tasks, the use of uppercase and lowercase letters, punctuation marks,
as well as the presence of periods and commas can negatively impact precision. This is why
normalization is often necessary before conducting such evaluations.

By doing so, the evaluation process becomes more robust and less sensitive to superficial
differences in capitalization, punctuation, and other non-semantic aspects of the text. This
allows for a more reliable assessment of the model’s performance based on its ability to
produce correct and meaningful content.

The normalized metrics are named like the original metrics, with the ’N’ prefix: NWER,
NMER, NWIP, NWIL, NWWER and NWMER.

3.1.4 Mismatch metric

Mismatch metrics are specific to Speak2Subs and are designed to estimate the accuracy of
models in predicting correct timestamps for each word. When the beginning of an estimated
word falls within the timestamp range of a subtitle, but the end of the word falls within the
timestamp range of the next subtitle, it signifies that the model lacked precision in estimating
the correct timestamps. The mismatch ratio indicates the percentage of words assigned to
the subtitle before or after the correct one. Naturally, for this metric to be meaningful, the
timestamps of the original subtitle must be precisely defined with high accuracy.



Evaluation Methodology 15

There is no specific formula to this metric, instead the algorithm is explained in Error
metrics.

3.1.5 NER metrics

The NER metric specifically evaluates the performance of an ASR system in accurately
recognizing and transcribing named entities from spoken language. This metric assesses how
well the ASR system can capture and correctly transcribe important entities mentioned in
the audio content. Specifically, NER measures the impact of edition mistakes (same word
but with differences) and recognition mistakes (different word)

NER =
(N + E +R)

N

Where N is the total of words, E is the total of editions, and R is the total of recognitions.
The algorithm to calculate the NER metric is explained in chapter 4.

3.1.6 Execution time metrics

Precision measures are not the only measures that should be taken into account. Measuring
execution time is crucial in various fields of computing and software development for several
reasons. If we want subtitles in realtime in a streaming, we can’t wait too long to get the
subtitles.

Execution time is measured in seconds. VAD and segmentation are not being considered
because it does not take a significant amount of time.

3.1.7 Compliance metrics

Generating subtitles involves adherence to compliance standards to ensure quality, acces-
sibility, and interoperability. Compliance standards serve as a framework to regulate the
creation of subtitles, addressing issues such as accuracy, synchronization, and readability.

This project selectively incorporates applicable guidelines from the UNE (Spanish As-
sociation for Standardization) to establish a framework for its implementation. The UNE
153010:2012 [18] has a wide set of guidelines which, if followed, ensure that the subtitles
have the correct format and quality.

There are three guidelines of this framework that Speak2Subs is able to check in the VTT
files: Number of characters per line, number of lines, and number of characters per second.

UNE 153010:2012 4.3 - Number of Lines of Text

The subtitles should occupy a maximum of two lines of text.



16 Evaluation Methodology

UNE 153010:2012 4.6 - Number of characters per line

The maximum character limit per line should be 37.

UNE 153010:2012 5.1 - Subtitle text exposure speed

The exposition speed of the subtitle text should follow the rhythm of the original and facil-
itate comfortable reading. Normally, the maximum number of characters per second would
have to be 15 cps (characters per second).

3.2 Preprocessing parameters

Evaluating Automatic Speech Recognition models involves not only comparing different mod-
els but also understanding the influence of tuning various parameters within the tools or
packages utilizing these models. This is the case of Speak2Subs, which have some prepro-
cessing parameters that affects directly the model results. Therefore, evaluating the impact
of different preprocessing parameter configurations within Speak2Subs is crucial to under-
standing the sensitivity and robustness of the models across various settings.

Moreover, tuning preprocessing parameters enables the optimization of ASR models for
specific tasks or datasets. Different datasets may require distinct preprocessing parame-
ter configurations due to media duration, importante of the speech context, variations in
language, accents, background noise, or recording conditions.

Documenting the impact of preprocessing parameters contributes to establishing best
practices and guidelines. These findings serve as valuable references for practitioners and
researchers, guiding them in developing or fine-tuning ASR models effectively.

In conclusion, while comparing different ASR models remains fundamental, examining
the impact of diverse preprocessing parameter settings within Speak2Subs is equally crucial.

Therefore, tests have been conducted with different combinations of preprocessing pa-
rameters, which are listed below. A more deep explaination of every preprocessing parameter
can be found in chapter 4.3.2.

3.2.1 Voice Activity Detection

Voice Activity Detection (VAD) 1 refers to the process of identifying segments within an
audio signal where there is significant speech activity or the presence of a human voice. The
primary goal of VAD is to distinguish between speech and non-speech portions in an audio,
enabling more efficient processing and analysis by ASR systems.

1https://en.wikipedia.org/w/index.php?title=Voice_activity_detection&oldid=1177185607

https://en.wikipedia.org/w/index.php?title=Voice_activity_detection&oldid=1177185607


Evaluation Methodology 17

3.2.2 Segmentation

As previously mentioned, Voice Activity Detection (VAD) extracts segments from the audio
where speech is detected, with a typical segment corresponding to a phrase. If we want to
not use VAD and still get segments, we can use this preprocessing parameter.

With segmentation enabled, manual segmentation is performed, using the “max speech
duration” preprocessing parameter as a reference, generating a segment every “max speech
duration” seconds.

On the contrary, if neither VAD nor manual segmentation is desired, the result is a single
segment encompassing the entire audio duration.

3.2.3 Group Segments

By default, segments are organized in groups (see 4.3.2), and the ASR models uses each
segment group as a batch. If we don’t want to group the segments, and use each individual
segment, which uses to be a single sentence, as a batch for the ASR models, we can enable
this preprocessing parameter.

3.2.4 Max speech duration

Each group of segments must have a specific duration. The Max Speech Duration determines
the maximum duration (in seconds) of each segment group, aiming to create these groups
with a duration as close as possible to this preprocessing parameter without exceeding it.

3.2.5 Noise reduction

In the context of audio, noise reduction refers to the systematic process of minimizing or
eliminating unwanted sounds, often characterized as “noise" from an audio recording

3.3 Datasets

To evaluate the various ASR models, five datasets have been employed, each containing
a series of videos accompanied by their original subtitles. These datasets originate from
different classes or informative materials at UNED, but it should be noted that they are
not necessarily similar. The datasets incorporate diverse elements such as male and female
voices, distinct accents, and speech patterns.

One common factor among the five datasets is that they all comprise content in the Span-
ish language. Theoretically, the language used should not significantly impact the models,
assuming they are balanced in this aspect. Nevertheless, this aligns favorably with one of
the motivations behind this project—to utilize this software for the automatic translation of
UNED materials.



18 Evaluation Methodology

The five datasets are the following:

3.3.1 Materiales digitales accesibles

1. Code: mda

2. Eight media files

3. Same male voice for all eight media files.

4. Total aproximate length of 55 minutes

The voice belongs to a male with an Andalusian accent. This dataset serves as an
intriguing test to assess if ASR models can comprehend Spanish in all its variants and
dialects. This dataset presents a particular challenge as the Andalusian dialect isn’t as
straightforward to understand as standard Castilian Spanish. 2

3.3.2 Accesibilidad en la atención a clientes

1. Code: atc

2. Three media files

3. Each media file has a different female voice.

4. Total aproximate length of 22 minutes

It is worth noting that the female voice in the asset "atc_3.mp4" exhibits some speech
difficulties, posing a challenge for ASR models. Overcoming this challenge is of interest to
ensure accessibility and captioning for voices of any kind. 3

3.3.3 Cómo formar sobre diseño para todas las personas

1. Code: cdp

2. Four media files

3. Same female voice for all four media files.

4. Total aproximate length of 23 minutes

The dataset contains videos featuring a female voice without any distinctive attributes.
This dataset could be viewed as relatively straightforward for ASR models to interpret and
comprehend. 4

2https://canal.uned.es/series/5a6fa618b1111fd8068b4569
3https://canal.uned.es/series/5d9335f1a3eeb019478b456a
4https://canal.uned.es/series/61964058b6092324812d9235

https://canal.uned.es/series/5a6fa618b1111fd8068b4569
https://canal.uned.es/series/5d9335f1a3eeb019478b456a
https://canal.uned.es/series/61964058b6092324812d9235


Evaluation Methodology 19

3.3.4 MOOC Discapacidad y Defensa Legal Activa en la Era Digital

1. Code: ddl

2. Five media files

3. Different voice for each media file.

4. Total aproximate length of 50 minutes

Each media file of the dataset features a different individual. These recordings encompass
a variety of tones and nuances, including both male and female voices. 5

3.3.5 Móviles accesibles para todos

1. Code: mat

2. Four media files

3. Different voice for each media file.

4. Total aproximate length of 36 minutes

Two female voices and one male voice are included in the dataset. One of the female
voices exhibits some speaking difficulties, challenging the models in terms of accessibility for
all users. 6

3.4 Configurations

As mentioned in previous sections, five ASR models are evaluated: OpenAI Whisper, Whis-
perX, META Seamless, NVIDIA NeMo, and Vosk. To measure the potential of these models,
they undergo testing against a battery of datasets with different hyperparameter combina-
tions. The different parameter combinations are referred to as configurations.

Certain preprocessing parameters remain consistent across all configurations. These in-
clude Noise Reduction, by default, disabled, and Max Speech Duration, by default, set to
30 seconds.

In total, there are four configurations to be applied.

1. Conf 1. Default

2. Conf 2. No VAD

3. Conf 3. Sentences

4. Conf 4. Raw audio
5https://canal.uned.es/series/5ddfabea5578f2263425df27
6https://canal.uned.es/series/5a6f381db1111fac3a8b4569

https://canal.uned.es/series/5ddfabea5578f2263425df27
https://canal.uned.es/series/5a6f381db1111fac3a8b4569


20 Evaluation Methodology

3.4.1 ’Default’ configuration

• VAD: ON

• Segments: ON

• Group segments: ON

Configuration 1, ’default,’ employs default preprocessing parameters. It incorporates Voice
Activity Detection, splits the audio file into small speech segments, and groups them into
segment clusters. Since the maximum speech duration is kept at its default, these clusters
will have a total duration close to 30 seconds.

The goal of this configuration is to measure the models with optimal preprocessing:
VAD enhances speed by eliminating silences, improving precision by preventing the models
from confusing other sounds with speech. The grouping of segments, by creating longer
batches with more information, assists the models in having sufficient context in each phrase,
provided they can leverage it. Therefore, the results with this configuration should be
optimal.

3.4.2 ’No VAD’ configuration

• VAD: OFF

• Segments: ON

• Group segments: ON

Configuration 2, or the ’No VAD’ configuration, aims to assess the impact of applying Voice
Activity Detection (VAD) to ASR models. As the remaining preprocessing parameters are
kept at their default settings, we can gain a precise understanding of the actual impact of
VAD, both in terms of speed and quality. Instead of grouping speech segments, each segment
group is a ’Max Speech Duration’ segment, which is 30 seconds by default.

3.4.3 ’Sentences’ configuration

• VAD: ON

• Segments: ON

• Group segments: OFF

Configuration 3, or ’sentences’ configuration, is akin to the default setting, except for the
notable distinction that it does not group segments. Therefore, given the application of Voice



Evaluation Methodology 21

Activity Detection (VAD), models will need to perform speech-to-text on a sentence-by-
sentence basis, without grouping them and lacking extensive context. The primary objective
of this configuration is to assess the importance of context in transcription. If the results
do not deteriorate compared to the default configuration, it suggests that the models suffice
with listening to the individual sentence for transcription and do not require information
from preceding or subsequent sentences. Conversely, if there is a loss of precision, it implies
that models benefit from context, and consequently, longer batches improve the results.

3.4.4 ’Raw audio’ configuration

• VAD: OFF

• Segments: OFF

• Group segments: OFF

Configuration 4, or the ’raw audio’ configuration, aims to assess models using untreated
audio. Without applying Voice Activity Detection (VAD), segmentation, or any other pre-
processing, this configuration solely evaluates the models’ capability to handle unprocessed,
long-duration audio. Some models may struggle with audio of such extended length, and
this, too, is a factor under evaluation.

3.5 Models

For each ASR tool, multiple models are available. In this evaluation, an effort has been
made to select the best models from each company. The chosen models are as follows:

• Whisper: openai/whisper-large-v3

• WhisperX: large-v2

• Seamless: facebook/seamless-m4t-v2-large

• Vosk: vosk-model-es-0.42

• NeMo: stt_es_conformer_ctc_large

These models have been chosen to represent each ASR tool in the evaluation, aiming to
utilize the most effective options available from each respective company. NeMo is a special
case, because it have a wide list of models. The chosen one is the model that best performed
in tests.



22 Evaluation Methodology

3.6 Metodology conclusions

Given the various combinations of hyperparameters, datasets, and models, it can be as-
serted that the evaluation methodology is sufficiently rigorous and comprehensive to yield
satisfactory results, allowing little room for error.



Chapter 4

Speak2Subs package

In this chapter everything about the package developed in this master’s thesis is going to
be fully explained. How to install it, what requirements are necessary, how to use it, what
hyperparameters are tuneable, etc.

Of course, there is a huge section explaining how does it work, what is happening inside
and what algorithms uses. Usually, code has been avoided, but some pseudo-code is necessary
to make some explanations clear.

In previous chapters it has been briefly described that this package has several features.
This chapter attempts to describe each of them so that the objective, use and internal
functioning of each of the features is understood.

A resumed view of the use cycle can be seen in Figure 4.1.

Figure 4.1: High level diagram of the use cycle

4.1 Features

Speak2Subs has three fundamental features: subtitle generation based on a reference tem-
plate, subtitle quality evaluation, and subtitle generation without a reference template. This

23



24 Speak2Subs package

section provides a concise introduction to each of these features, while subsequent sections
describe the installation process, usage, and internal mechanics in more detail.

4.1.1 Subtitle generation based on a reference template

One of the features is to generate subtitles. To correctly evaluate the ASR models on the
table, we need to put them to the test and generate captions from datasets. But it is not
enough to have subtitles, for the evaluation to be viable we need to compare them with
the already original, presumably correct, subtitles. This implies that the generated subtitles
must have the same timestamps as the original subtitles.

To make it clear, if our original subtitle contains the following entry:

[00:00:02.000] –> [00:00:06.000] Buenos días, esto es una prueba.

Our generated subtitle could not have the following structure:

[00:00:02.000] –> [00:00:03.000] Buenos días

[00:00:04.000] –> [00:00:06.000] Eso es una rueda.

Because when it comes to comparing texts, there is clearly no match. Obviously by
restructuring timestamps we obtain the equivalences:

[00:00:02.000] –> [00:00:06.000] Buenos días, esto es una prueba.

[00:00:02.000] –> [00:00:06.000] Buenos días, eso es una rueda.

In conclusion, to evaluate subtitles we need to previously load the original subtitles as a
template. So, one of the usage of this package, is to generate subtitles using a template.

As a disadvantage of using templates, the package is limited to the original structure, and
may not be able to adjust the compliance parameters as it would in templateless generation.

4.1.2 Subtitle quality evaluation

This package allows you to evaluate the quality of a subtitle file based on a reference file.
Although this feature is what has been used for the evaluation phase, it is not necessary
that the subtitles to be evaluated have been generated by this same package. The only
requirement is that both files share timestamps and number of entries.



Speak2Subs package 25

4.1.3 Subtitle generation without a reference template

Of course, you can also generate subtitles without a base template. In fact, it is the func-
tionality that gives value to the package beyond just as an evaluator.

With this functionality, the grouping of the transcribed words (tokens) into sentences and,
in turn, subtitles, must follow the compliance policies described in the evaluation section.
For this, an algorithm is used that is explained later.

A contraindication of these subtitles is that we cannot evaluate the error metrics, but we
do have information on generation time metrics and compliance with the UNE.

4.2 Installation

The package Speak2Subs is programmed in Python 3.10. It is available on GitHub 1.
Before installing the package, some requisites are needed.

4.2.1 Install PyTorch

PyTorch is an open-source machine learning library used for various tasks like natural lan-
guage processing, computer vision, and more. It provides tools for building and training
neural networks, offering flexibility and efficiency in experimentation due to its dynamic
computational graph feature. Speak2Subs needs Torch to be installed.

The command must be adjusted to your requirements 2

4.2.2 Install Docker

Docker is a platform designed to make it easier to create, deploy, and run applications
using containers. Containers allow developers to package up an application with all the
necessary parts (such as libraries and other dependencies) and ship it as a single unit.
Docker provides a way to automate the deployment of applications inside containers, ensuring
consistency across different environments, from development to testing and production. Since
Speak2Subs uses containerized ASR models, Docker needs to be installed 3.

1 $ pip install docker

4.2.3 Install Speak2Subs

Finally, Speak2Subs can be installed 4. The package has a few more dependencies, but they
are automatically installed at the same time.

1https://github.com/JulioFresneda/Speak2Subs
2https://pytorch.org/get-started/locally/
3https://docs.docker.com/engine/install/
4https://github.com/JulioFresneda/Speak2Subs

https://github.com/JulioFresneda/Speak2Subs
https://pytorch.org/get-started/locally/
https://docs.docker.com/engine/install/
https://github.com/JulioFresneda/Speak2Subs


26 Speak2Subs package

From Pypi

1 $ pip install speak2subs

From source code

Alternatively, this command pulls and installs the latest commit from this repository, along
with its Python dependencies:

1 $ git clone https :// github.com/JulioFresneda/Speak2Subs.git

2 $ cd Speak2Subs

3 $ pip install -e .

4.3 Usage

This package can be used directly via CLI, and in a Python script. You can look for usage
examples in the GitHub page.

This package can be utilized both via the command line and within a Python script, for
both generating subtitles and evaluating them. The package design is oriented towards a
dataset style, meaning it defaults to working with folders of files. However, it can also be
specified to generate or evaluate a specific file. The following sections will explain specific
examples.

4.3.1 How to generate subtitles

Speak2Subs supports MP4 and WAV files. When using MP4, it automatically converts them
to WAV format. Optionally, if original VTT files are available, similar timestamped subtitles
can be generated based on the original VTT as a template. To generate subtitles, all MP4 or
WAV files (and VTT files if desired) should be in the same folder. If VTT files are present,
they must share the same name as the media file, disregarding the extension. If no dataset
name is specified, the name of the folder containing the files is used. To export the results,
a folder needs to be specified where the generated VTT files will be exported.

Individual files are compatible too, the only difference in usage is that instead of using a
path for the dataset folder, a path for the media file is needed

Command Line Interface usage

If you want to generate subtitles

1 $ speak2subs --media_path="./ mydataset" --export_path="./ results"

You can choose the ASR models to use. Default is whisperx.



Speak2Subs package 27

1 $ speak2subs -mp="./ mydataset" -ep="./ results" --asr="nemo , whisper

"

If you want to generate subtitles and use original VTT as reference

1 $ speak2subs -mp="./ mydataset" -ep="./ results" --use_vtt_templates

If you want to generate subtitles for a particular file

1 $ speak2subs -mp="./ mydataset/media_1.wav" -ep="./ results" --

use_vtt_templates

If you want to get the full list of arguments

1 $ speak2subs --help

Python usage

It is as easy as with CLI to use this package in a python script.

1 from Speak2Subs import speak2subs

2

3 speak2subs.transcript('./mydataset',

4 export_path='./results',

5 asr='all',

6 use_vad=True,

7 segment=True,

8 group_segments=False,

9 max_speech_duration=30,

10 use_vtt_template=True,

11 reduce_noise=False)

4.3.2 How to evaluate subtitles

If subtitles have been previously generated, using the original subtitles as a reference, it
is possible to evaluate the outcomes without effort. Much like the process for generating
results, the original media folder is required to read the original subtitles, alongside the
results folder to read the generated subtitles. The sole distinction lies in the additional
parameter ’evaluate’ that must be utilized. As straightforward as that. The result is an
Excel file with all the metrics evaluated.

Command Line Interface usage

First we generate subtitles

1 $ speak2subs --media_path="./ mydataset" --export_path="./ results"

--asr="seamless , vosk"



28 Speak2Subs package

Then we evaluate them

1 $ speak2subs -mp="./ mydataset" -ep="./ results" --evaluate

We can evaluate a pair of VTT too

1 $ speak2subs --evaluate --ref_vtt_path="./ reference.vtt", --

pred_vtt_path="./ predicted.vtt"

If we chose to evaluate a pair of VTT instead of the results of a generation, instead of an
Excel with metrics, the result is an output on the terminal.

We can use more arguments, but it won’t take effect because the rest of them are focused
on the generation task.

Python usage

You can use it in python too.

1 from Speak2Subs import speak2subs

2 from Speak2Subs import speak2subs

3

4 # If we want to evaluate the generated subtitles for our dataset

5 speak2subs.evaluateFolder( "./mydataset", "./results")

6 # If we want to evaluate a specific pair of subtitles

7 result = speak2subs.evaluatePair("./media_1.vtt", "./media_1_PRED_.vtt")

8 # If we want to evaluate the compliance

9 compliance = speak2subs.evaluateCompliance("./media_1.vtt")

10

4.4 How does it work: Subtitle Generator

This section attempts to explain the internal gears of the package. How to install it and how
to use it has already been explained, but until now it has not been detailed what is done in
each step.

To generate subtitles, Speak2Subs does not limit itself to using the capabilities of ASR
models. We applied a very interesting pre-processing, and we left open the possibility of a
certain quite promising post-processing that perhaps could be implemented in the future.

In Figure 4.2 we see a global outline of what happens when generating subtitles. The
following sections detail what happens in each piece of the puzzle in depth.

4.4.1 Loading Dataset

Before starting the generation process, Speak2Subs needs to know the location of the files
to transcribe. Given that complex operations will be performed, simply loading the audio



Speak2Subs package 29

Figure 4.2: Generation pipeline

files is not sufficient.
Speak2Subs utilizes a series of classes to organize these files into objects.
The direct equivalent of a .wav or .mp4 file to be transcribed is the object of type Media.

This object contains crucial metadata of the file, such as its path, name, path of the original
subtitles, segment groups, and, upon completion of the process, the generated subtitles.
Later on, an explanation will be provided for what segments and segment groups are and
their respective purposes.

A Dataset is, therefore, a collection of Media objects. As explained in the usage of
Speak2Subs, one of the necessary parameters for subtitle generation is the directory of the
files. During the loading of datasets, the package detects all .wav, .mp4, and .vtt files.

Once detected, based on the file name, it assigns the original subtitle to each .wav file
(if it exists and has been requested to be loaded). If there is no .wav but a .mp4 exists, a
pre-transformation to .wav is performed.

In conclusion, during the loading phase, information is obtained for each audio file, with
a highly object-oriented approach.

4.4.2 Pre-processing

Figure 4.3: Pre-processing pipeline

The data preprocessing serves a purpose beyond preparing data for proper model utiliza-
tion. It is crucial for ensuring that the input data is in a format that models can effectively
utilize, thereby enhancing their performance. Proper preprocessing addresses issues such as
noise, irrelevant information, and varying data formats, ultimately improving the model’s
ability to extract meaningful patterns and insights.



30 Speak2Subs package

If this project were solely focused on model evaluation, this phase would be much simpler;
however, as previously mentioned, model evaluation is not the only objective of this project.
We also aim to generate high-quality subtitles. This necessitates the implementation of
various preprocessing capabilities designed to get superior results.

These capabilities, briefly outlined in other sections, include noise reduction, Voice Ac-
tivity Detection (VAD), segmentation, and grouping. Each of these capabilities will now be
described in more detail. A resumed step-by-step guide can be seen in Figure 4.3.

Each step is going to be explained in the following sections.

Noise Reduction In the context of audio, noise reduction refers to the systematic process of
minimizing or eliminating unwanted sounds, often characterized as "noise" from an audio
recording. This unwanted noise can originate from various sources, such as background
disturbances, electronic interference, or environmental factors, and it can significantly affect
the overall quality of the audio signal.

Noise reduction techniques in audio processing involve the application of algorithms or
filters to identify and reduce the amplitude of undesirable sounds while preserving the in-
tegrity of the desired audio content. These techniques aim to enhance the signal-to-noise
ratio, resulting in clearer and more intelligible audio recordings.

Thankfully, there are plenty of Python libraries and packages that can do this complex
task for us. In this case, Speak2Subs uses the noisereduce 5 package.

The impact on error metrics resulting from the activation of this capability has been
evaluated, and surprisingly, it has been observed that the impact is negative. This is because,
even in the presence of significant background noise, Automatic Speech Recognition models
can discern words from noise. In contrast, when noise reduction is applied, as it is not
perfect, it also affects the voices, rendering some words unintelligible. That is why it is
disabled by default, but is available in case it might be useful in a specific scenario.

Voice Activity Detection

Voice Activity Detection (VAD) refers to the process of identifying segments within an audio
signal where there is significant speech activity or the presence of a human voice. The primary
goal of VAD is to distinguish between speech and non-speech portions in an audio, enabling
more efficient processing and analysis by ASR systems.

VAD plays a crucial role in improving the performance and accuracy of ASR models
by reducing the amount of irrelevant information and noise introduced during non-speech
intervals. By accurately detecting speech segments, the ASR system can focus its resources
on transcribing the meaningful spoken content, leading to better overall recognition results.

5https://github.com/timsainb/noisereduce

https://github.com/timsainb/noisereduce


Speak2Subs package 31

This capability, which, by the way, WhisperX provides out of the box, not only has im-
plications for accuracy but also significantly enhances subtitle generation speed, as demon-
strated in our evaluation. That’s why it is enabled by default in Speak2Subs.

The VAD backend used is Silero VAD 6

Segments

A Segment is, quite redundantly, a portion of the file. Its metadata has a start timestamp,
an end timestamp, and upon completion of the process, predicted subtitles for this segment.

It is crucial to divide the file into segments because some ASR models lack native capacity
to process lengthy audio recordings. That’s why it comes activated by default. In fact,
WhisperX employs this very mechanism.

As previously mentioned, Voice Activity Detection (VAD) extracts segments from the
audio where speech is detected, with a typical segment corresponding to a phrase. But what
if we opt not to use VAD yet still need the audio in segments?

In such cases, manual segmentation is performed, using the "max speech duration" hy-
perparameter as a reference, generating a segment every "max speech duration" seconds.

On the contrary, if neither VAD nor manual segmentation is desired, the result is a single
segment encompassing the entire audio duration.

Segment groups

Dividing an audio into segments proves more manageable and efficient for ASR models, but
to what extent? If the segments are too small, such as having one per sentence, ASR models
may lose crucial information related to the context of the conversation. In fact, this aspect
is reflected in the evaluation.

Therefore, while segmenting audio is beneficial, it is also crucial to ensure that these
segments have a balanced duration. This is why we employ the segment grouping algorithm.

As illustrated in the pseudo-code, the algorithm aims to form groups of segments with
a total duration as close as possible to the MaxSpeechDuration hyperparameter, always
without exceeding this specified duration.

Once these segment groups are obtained, an audio file is saved per group in a local cache
directory. These groups will be utilized by ASR models for transcription. Naturally, the
original timestamps are retained to synchronize the generated subtitles with the original
audio.

4.4.3 Processing

Once Speak2Subs generates separate audio files in shorter tracks, formed by groups of seg-
ments (or a single track, depending on hyperparameters), the phase of using ASR models

6https://github.com/snakers4/silero-vad

https://github.com/snakers4/silero-vad


32 Speak2Subs package

Algorithm 1 Group segmentation algorithm
1: procedure GroupSegments(sentences) ▷ Generates groups of segments
2: SegmentGroups← []
3: CurrentList← []
4: for sentence ∈ sentences do
5: DurationSoFar ←

∑
(sg.end− sg.start), sg ∈ CurrentList

6: if DurationSoFar + sentence.duration ≤MSD then ▷ Sentence fits in
7: CurrentList[]← sentence
8: else ▷ Group full
9: SegmentGroups[]← CurrentList

10: CurrentList = [sentence]
11: end if
12: end for
13: return SegmentGroups
14: end procedure

begins.

ASR Containers

In the first graph of this chapter, it can be observed that even before preprocessing, there is
a stage where ASR containers start running. This has a reason. Each ASR model is from
a different company, developed under different conditions, and, of course, requires different
prerequisites and packages. Some models don’t even use similar versions of Python and
Torch.

This problem is easily addressed by using containers 7. For each ASR model, we have
a Dockerfile that installs all the prerequisites and libraries, and there’s an image hosted
on DockerHub (https://hub.docker.com/u/juliofresneda). These images come pre-installed
with ASR and the necessary scripts to obtain subtitles. When Speak2Subs needs the services
of an ASR model, it downloads the corresponding image and launches a container, which
remains active until its task is completed.

These containers have a shared volume with the local host, so there’s no need to copy the
audio files to the container or receive a response from it. Everything works on this volume,
housed in the temporary cache folder generated by the package.

It’s important to note that while some models are lightweight, like Vosk, there are models
that require a substantial amount of RAM. Seamless, for instance, may require more than
16GB of RAM, and Docker may terminate the process if there isn’t enough available.

With the containers ready to receive commands, Speak2Subs starts sending them. For
each ASR to be used, and for each Media file (audio), the ASR model performs its speech-
to-text operation for each segment group. The result is written to the shared volume.

7https://www.docker.com/resources/what-container/

https://www.docker.com/resources/what-container/


Speak2Subs package 33

Algorithm 2 Processing phase algorithm
procedure GroupSegments(sentences) ▷ Processing with ASR

2: for asr ∈ asrlist do
for media ∈ dataset do

4: for segmentgroup ∈ media do
ASR(asr, segmentgroup) ▷ Run in container

6: end for
CompileSubtitles(media, results)

8: ExportSubtitles(media, results)
end for

10: end for
end procedure

The pseudocode is not completely precise because the iteration of each group of segments
is actually carried out within the container itself, but the objective is to clarify the concept.

When the container finishes with all Media files, it concludes.
Except for Seamless, the result is a list of transcribed words, along with the local times-

tamps of each segment group. How these results are handled is explained later, but it can
be advanced that it is not a trivial task.

Compile Subtitles

The keen-eyed readers may have noticed a detail: If ASR models transcribe each segment
group separately, what happens with the timestamps provided by the ASR for each word?
The model lacks context of the original audio, so it will return "local" timestamps, where
the first word begins at second 0 (local), even if that’s not the case in the original audio. Not
only that, but what about the silences we deleted with VAD? This scenario is a bit complex,
so maybe it will be easier to grasp with figure 4.4.

There are two main problems to solve: keeping track of silences between segments and
keeping track of the silences between segment groups. To convert local timestamps into
global timestamps applicable to the original audio file, Speak2Subs applies the following
algorithm.

For each group of segments, iterate through the list of tokens (predicted words with local
timestamps). For each token, iterate through the list of segments of the current group.
Keep a count of seconds of silence since the start of the segments iteration. Silences can be
calculated by subtracting the end timestamp of the last segment from the start timestamp
of the current segment. Now, we can translate from local to global. Add the count of the
silence plus the start of the segment group (which is a real timestamp) to the local start and
end timestamps.

If these local timestamps fit between the start and end of the segment, it means that the
token (word) belongs to this current segment, so we can restart the count and move on to



34 Speak2Subs package

Figure 4.4: Understanding local timestamps

the next token.
The reality is that the algorithm described in the pseudocode differs from the actual

implementation in one thing. This discrepancy arises from the fact that the predicted times-
tamps for each word are not entirely accurate. In some situations, it may appear that a
word starts in one segment and ends in the next. To address this issue, the ’if’ statement
in line 13 only takes ’globalStart’ into consideration and not ’globalEnd’. The ’mismatch’
metric quantifies the impact of this issue on the predicted subtitles.

Seamless, by Meta, poses a challenge. Its timestamp predictions are not at the word
level but rather at the sentence level. To navigate this obstacle, attempts have been made to
estimate the timestamps for each word within the sentences, taking into account the number
of characters, commas, and periods. While it may not be an extremely precise estimation,
there is no better alternative solution at the moment.

Once we have all the words with the actual timestamps, the goal of generating subtitles
synchronized with the audio track is much closer. However, there are still a few extra steps
to fulfill the mission.

Export to VTT

Once the word predictions with their associated actual timestamps are obtained, the last
step remaining for creating subtitles in VTT format is determining how to order these words.
For this purpose, Speak2Subs offers two paths.

If, for some reason, we already have VTT files 8 associated with the media we want to
subtitle and we want the generated VTT files to share the same time structure, we simply

8https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API

https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API


Speak2Subs package 35

Algorithm 3 Local to global timestamps
procedure LocalToGlobalTimestamps(tokenLists,media)

for segmentGroup ∈ media.segmentGroups do
3: groupStarts ← segmentGroup.start

tokenList ← tokenLists[segmentGroup.name]
for token ∈ tokenList do

6: lastEnd ← groupStarts
silence ← 0
for segment ∈ segmentGroup do

9: silence ← segment.start− lastEnd
lastEnd ← segment.end
globalStart ← token.start+ groupStarts+ silence

12: globalEnd ← token.end+ groupStarts+ silence
if segment.start ≤ globalStart ≤ globalEnd ≤ segment.end then

token.start ← globalStart
15: token.end ← globalEnd

addToken(segment, token)
end if

18: end for
end for

end for
21: end procedure

activate the template usage hyperparameter, and Speak2Subs automatically detects these
original subtitles. One potential use of this feature is, as employed in the first part of this
thesis, evaluation. With two VTT files having the same structure, Speak2Subs allows us to
conduct an evaluation, using the original as a reference.

On the other hand, if we simply want to generate subtitles without the need for them
to be tied to a template, Speak2Subs generates them nonetheless, ensuring compliance with
standards to guarantee correct readability and display, thereby minimizing human effort in
adjusting the final product.

Export to VTT using a template as reference
The algorithm is quite straightforward. It involves loading the original template and iterating
through its subtitles. With the timestamps of the words generated by Speak2Subs, forming
subtitles that align with the timestamps of the original subtitles is a trivial task. Once the
estimated subtitles are formed based on the reference template, they can be exported in
VTT format.

Export to VTT without templates

Exporting subtitles in VTT format without a reference template adds a bit more com-



36 Speak2Subs package

Algorithm 4 Crafting subtitles based on a template reference
procedure GenerateFromTemplate(tokenList, templatePath)

templateSubtitles ← loadTemplate(templatePath)
predictedSubtitles ← []

4: for templateSub ∈ templateSubtitles do
predictedSubtitle ← ””
for token ∈ tokenList do ▷ For each predicted word

if templateSub.start ≤ token.end ≤ templateSub.end then
8: predictedSubtitle ← predictedSubtitle+ token.text

end if
predictedSubtitles.append(predictedSubtitle)

end for
12: end for

return predictedSubtitles
end procedure

plexity. Since it’s essential to ensure the proper visibility of subtitles, there are several
considerations to take into account. For instance, neglecting the display time of subtitles
may result in a large number of very short and rapidly changing subtitles. Conversely, group-
ing as many words as possible in a single subtitle may clutter the screen, making it difficult
for viewers to follow the media or read smoothly.

To ensure the production of high-quality subtitles with appropriate display times and
smooth subtitle transitions, several considerations have been taken into account, some of
which are recommended by the UNE policy framework, as previously mentioned.

It is appropriate to recall the recommendations provided by the UNE 153010:2012 policy
framework:

• 4.3 - Number of Lines of Text: The subtitles should occupy a maximum of two
lines of text.

• 4.6 - Number of characters per line: The maximum character limit per line should
be 37.

• 5.1 - Subtitle text exposure speed: The exposition speed of the subtitle text
should follow the rhythm of the original and facilitate comfortable reading. Normally,
the maximum number of characters per second would have to be 15 cps (characters
per second).

This last recommendation can´t be applied always, because the word timestamps are
fixed and innamovible. We can only prolongate the duration of the subtitle if the next one
starts after this prolongation, as a best effort.

In addition to those recommendations, two additional considerations are applied: Firstly,
whenever possible, subtitles should have a minimum display time of 1 second. Secondly, if



Speak2Subs package 37

a sentence ends with a period or semicolon, that subtitle concludes, and the next subtitle
begins. These two considerations enhance the quality of the subtitles.

Algorithm 5 Crafting subtitles
procedure Generate(tokenList)

predictedSubtitles← []
subtitle← ””
for token in tokenList do

5: if subtitle = ”” then
start← token.start

end if
if EVAL_4.6(subtitle+ token.text) or EVAL_4.3(subtitle+NEWLINE()) then

if EVAL_4.6(subtitle + token.text) then
10: subtitle← subtitle + token.text

else if EVAL_4.3(subtitle +NEWLINE()newline) then
subtitle← subtitle +NEWLINE() + token.text

end if
if EndOfSentence(subtitle) then

15: comply, SecondsToComply← EVAL_5.1(subtitle)
if not comply then

token.end← start + SecondsToComply
end if
predictedSubtitles← subtitle

20: end if
else

predictedSubtitles← subtitle
subtitle← token.text
start← token.start

25: if EndOfSentence(subtitle) then
comply, SecondsToComply← EVAL_5.1(subtitle)
if not comply then

token.end← start + SecondsToComply
end if

30: predictedSubtitles← subtitle
end if

end if
end for
return predictedSubtitles

35: end procedure

The algorithm may appear somewhat complex, but with a brief explanation, it can be
better understood. Starting with an empty subtitle, for each token (word), a series of checks
are performed:

1. If adding the token to the subtitle maintains compliance with the maximum character



38 Speak2Subs package

limit, it is added.

2. If the previous condition is not met but the token can be added on an additional line,
it is added on that line.

3. If, after adding the token through either point 1 or point 2, there is a sentence ending
(ending with a period or semicolon), a new subtitle is created. If this subtitle does not
meet the minimum duration requirement (5.1), but can do so, its duration is extended
until it complies.

4. If neither condition 1 nor condition 2 is met, it means the token belongs to the next sub-
title; therefore, the current subtitle is saved. Ultimately, similar to point 3, extending
its duration is considered.

In conclusion, the implementation of these conditions when generating subtitles leads to
an outcome of higher quality, rendering the subtitles in a more legible way.

4.4.4 Post-processing

With the boom of new LLM (Large Language Model) technologies, we now have increasingly
powerful and multidisciplinary tools. As expected, these tools can also be leveraged in
post-processing. As observed in the evaluation, models do not capture all details perfectly.
Common mistakes include the omission of commas, punctuation marks, or phonetically
similar but contextually inappropriate words within a sentence. How can such issues be
rectified in the post-processing phase? For instance, in the predicted sentence ’I am going
to eat nice with eggs’, it is evident that the correct word is ’rice’. Until now, there were not
sufficiently potent tools to detect and rectify such errors. However, with the advent of LLMs
like GPT or Llama, this possibility becomes available.

In Speak2Subs, a post-processing pilot has been programmed using Llama 2 [17]9, which
corrects sentences containing such errors. The only issue is that, being generative tools,
they function intermittently—correcting some instances while responding to others without
rectifying the intended phrase. Ultimately, the results are somewhat unpredictable, leading
to inconsistent post-processing. Implementing a reliable post-processing method with gen-
erative LLMs is beyond the scope of this project, but it is worth noting the potential and
challenges associated with it.

4.5 How does it work: Subtitle Evaluator

The Speak2Subs programming has been designed with a focus on creating subtitles and
their evaluation as entirely independent modules. While they share some methods, this

9https://ai.meta.com/llama-project

https://ai.meta.com/llama-project


Speak2Subs package 39

separation allows for the evaluation of files or datasets without relying on runtime-generated
information from the generation module. Although such information would have eased the
development process, the data obtained from VTT files proves to be sufficient. This part of
the package is much lighter than the generation module, but it also has interesting features
worth explaining.

There are three phases in the evaluation pipeline: Detecting VTT files, calculating met-
rics, and exporting to a final Excel. Figure 4.5 is a good overview of the evaluator pipeline.

Figure 4.5: Evaluation pipeline

4.5.1 Detect VTT files

Detecting the original and generated VTT files is a straightforward task, but it is crucial
to maintain the folder and file structure generated in the previous step. This means that
the original VTT files should remain in the dataset folder, and the generated VTT files
should stay in the folders created within the results path, where each ASR system has its
dedicated folder. While this approach may seem less flexible, the trade-off is a straightforward
automation, resulting in easy utilization from the command line interface (CLI) or scripts.
In any case, individual evaluations can always be performed without considering specific
names or paths.

4.5.2 Calculate metrics

The most crucial aspect of the evaluation is the calculation of metrics. It is important to
note that there are three types of metrics: error metrics, compliance metrics, and runtime
metrics. Each metric is calculated differently, so let’s go into the specific calculation process
for each one separately.

Error metrics

These metrics are computed by comparing each file, subtitle by subtitle. Therefore, it is a
prerequisite that both files have the same number of entries to avoid calculation errors. If
the prediction is generated using Speak2Subs and the original VTT is used as a template,



40 Speak2Subs package

there is no issue. After loading both templates, the subtitles are iterated over, and error
metrics are calculated.

Without delving into the specific list of metrics that compose the error metrics (which
can be found in their respective section), it is essential to emphasize the four types of error
metrics:

1. Non-normalized metrics

2. Normalized metrics

3. Mismatch metrics

4. NER metrics

The first two are calculated using the ’jiwer’ package (https://jitsi.github.io/jiwer/).
However, to obtain normalized metrics, a preprocessing step is performed, wherein uppercase
letters, punctuation marks, and other symbols are removed from both subtitles. Mismatch
and NER metrics are calculated using a custom algorithm.

The mismatch algorith is pretty simple, for each pair of subtitles, it looks if the first
word of some of them two matchs the last word of the previous subtitle of the pair. Before
comparing, the words are normalized. The algorithms keeps the count, and it calculates the
final rate of mismatch words.

Algorithm 6 Mismatch algorithm
procedure MismatchRate(referenceSubs, predictedSubs)

mislocated ← 0
total ← len(referenceSubs)
for i in 1 to total − 1 do

LastRefWord ← NORM(referenceSubs[i− 1][−1]
6: CurrentPredWord ← NORM(predictedSubs[i][0]

if LastRefWord ̸= CurrentPredWord then
mislocated ← mislocated+ 1

end if
CurrentRefWord ← NORM(referenceSubs[i][0]
LastPredWord ← NORM(predictedSubs[i− 1][−1]

12: if CurrentRefWord ̸= LastPredWord then
mislocated ← mislocated+ 1

end if
end for
return mislocated/total

end procedure

The NER metric, as it is explained in the metrics section, measures the impact of edition
mistakes (same word but with differences) and recognition mistakes (different word). So the
algorithm is pretty straightforward:



Speak2Subs package 41

Algorithm 7 NER metric algorithm
procedure CalculateNER(referenceSubs, predictedSubs)

N ← 0
E ← 0
R← 0
for (refSub, predSub) in (referenceSubs, predictedSubs) do

for predWord in predSub do
7: if predWord not in CurrentPredWord then

if NORM(predWord) in NORM(CurrentPredWord) then
E ← E + 1 ▷ Word edited

end if
else if predWord /∈ CurrentPredWord then

if NORM(predWord) /∈ NORM(CurrentPredWord) then
R← R + 1 ▷ Word not recognited

14: end if
end if
N ← N + 1

end for
end for
return N + E +R/N

end procedure

Execution times metrics

When generating subtitles, the runtime durations employed by each ASR model for every
audio file are recorded. This process ensures a comprehensive record of the processing speed
associated with each model and measures the impact of hyperparameter selection on said
model speed. These records are stored in the results folder, in a JSON file, and are organized
by the audio file name as the key, with all used ASR model times as values.

During the evaluation phase, Speak2Subs reads and parses this file, extracting the data
to integrate it into the metrics Excel spreadsheet as an additional column.

Compliance metrics

Compliance metrics show a distinctive characteristic, which is, by their inherent nature, that
they can be obtained without the reliance on a reference VTT file. Chapter 4 extensively
discusses the application of compliance policies to generated subtitles in the absence of a
reference template. In the evaluation phase presented here, given that the generated subtitles
faithfully replicate the structure of the original template, it is evident that this aspect does
not warrant further improvement.

Nevertheless, quantifying these metrics is straightforward and shows the extent of human
interventions that may be required for refinement. Pseudo-code doesn’t seem neccesary, a
brief description is enough to explain how the compliance metrics are obtained.



42 Speak2Subs package

1. 4.3 - The subtitles should occupy a maximum of two lines of text. For each subtitle, if
the text has more than one newline character, the counter adds one.

2. 4.6 - The maximum character limit per line should be 37. For each subtitle, if the text
has more than 37 characters, the counter adds one.

3. 5.1 - The maximum number of characters per second would have to be 15 cps. If the
division of the number of characters by the duration of the subtitle is greater than 15,
the counter adds one.

In the three of them, returns the counter divided by the total number of subtitles.

4.6 Development costs

This project has been developed using a rudimentary computer setup, without dedicated
graphics cards or any elements incurring extraordinary costs. Therefore, the only cost factor
to be considered would be the hypothetical cost of a developer working at an hourly rate
of X. Approximately 250 hours were invested in software development, with an additional
50 hours allocated to the composition of this project thesis. If this thesis is considered
the project’s documentation, it could be estimated that the hypothetical economic cost to
produce this project has been in the vicinity of 300*X, where X represents the gross hourly
wage of a software developer, scientist, or data engineer.

4.7 Development conclusions

The package developed for this thesis possesses a crucial characteristic: it operates as a black
box. With a single command, high-quality subtitles can be obtained from a multitude of
files. This feature stands as a significant advantage for potential users seeking out-of-the-box
functioning tools. In conclusion, it can be stated that the initial objective pertaining to the
package has been achieved.



Chapter 5

Analysis of results

In this section, the evaluation results are presented in detail. It is not enough to display
raw data; the goal is to derive meaningful conclusions by interpreting the results accurately.
Given that the comprehensive results have a substantial amount of information, this section
presents the global averages across all assets from the five datasets. Complete tables are
referenced and stored on the GitHub package repository.

The aggregated averages serve as a concise overview, offering insights into the overall
performance of the ASR models across various datasets. The detailed tables at the conclusion
of this document provide a more granular view of the results for those seeking a deeper
understanding of the evaluation outcomes.

What are the implications of using ASR models without the post-processing or pre-
processing that Speak2Subs employs? Does employing Speak2Subs actually offer any en-
hancement compared to utilizing the raw output from these models? To address these
inquiries, there is also a comparative analysis of subtitle quality, contrasting the raw out-
put from the most effective ASR models with the output generated by Speak2Subs. This
comparison does not assess accuracy in terms of transcription, as no template is used, but
evaluates the adherence to UNE standards for subtitles derived directly from the model, and
contrasts it with the subtitles produced by our package.

5.1 Evaluating results using the configurations

To conduct evaluation, the four configurations described in 3.4 are employed. Based on
the outcomes from each configuration, conclusions are drawn regarding the effectiveness of
diverse models and preprocessing techniques.

Full metrics can be download in the GitHub repository. 1

1https://github.com/JulioFresneda/Speak2Subs/blob/main/TestMetrics/

43

https://github.com/JulioFresneda/Speak2Subs/blob/main/TestMetrics/


44 Analysis of results

5.1.1 Configuration 1 - Default

The default hyperparameters represent the theoretically optimal configuration. This con-
figuration incorporates VAD, segmentation to alleviate computational effort, and grouping
segments to preserve contextual information. Theoretically, this configuration is the one
that should get better results.

The results are pointed out in Table 5.1. Lower is better, and the best result is written
in bold.

Table 5.1: Configuration 1 - Default hyperparameters. Except exec time, each metric is
measured in percentage (%).

Metric nemo seamless vosk whisper whisperx
wer 39 66 41 28 21
mer 37 59 39 26 20
wil 52 75 56 34 28
wip* 48 25 44 66 72
wwer 30 48 33 19 15
wmer 28 43 31 17 15
nwer 27 60 28 22 14
nmer 25 53 25 20 13
nwil 33 68 35 24 16
nwip* 67 32 65 76 84
nwwer 18 41 19 13 8
nwmer 16 37 18 12 8
mislocation rate 32 25 19 35 19
ner 85 65 82 87 89
exec time (s) 35 444 28 455 331

*In WIP and NWIP metric, a higher value indicates better performance.

With the default hyperparameters, there is a clear winner: WhisperX. This outcome is
not surprising, considering that WhisperX has established itself as a robust ASR system with
impressive results, even achieving 1st place at the Ego4d transcription challenge. It excels
in transcription accuracy. However, it’s worth noting that WhisperX lags behind in terms of
execution speed, where both NeMo and Vosk demonstrate significantly faster performance.

This observation highlights the trade-off between accuracy and speed among the evalu-
ated ASR tools. While WhisperX excels in accuracy, users may need to consider the specific
requirements of their applications and whether faster processing times are a critical factor
in their decision-making process.

It’s noteworthy that Whisper closely follows WhisperX in performance. Additionally,
the observation that WhisperX remains faster than Whisper is intriguing, considering that
WhisperX applies Voice Activity Detection (VAD) within its model. This implies that, with
these default hyperparameters, VAD is applied twice in the case of WhisperX. The fact



Analysis of results 45

that WhisperX maintains its speed advantage despite this double application of VAD is an
interesting aspect to consider.

This information underscores the efficiency of WhisperX and its ability to handle the
additional computational load introduced by dual VAD processing, which is crucial for ap-
plications where both accuracy and speed are essential considerations.

5.1.2 Configuration 2 - No VAD

Without VAD, the models will receive not only speech as input but also segments of silence.
Let’s explore the consequences of deactivating it.

The results are pointed out in Table 5.2. Lower is better, and the best result is written
in bold.

Table 5.2: Configuration 2 - No VAD applied. Except exec time, each metric is measured
in percentage (%).

Metric nemo seamless vosk whisper whisperx
wer 35 66 38 19 21
mer 34 59 36 18 20
wil 51 74 54 27 29
wip* 49 26 46 73 71
wwer 29 46 32 15 15
wmer 29 42 30 14 15
nwer 20 59 23 12 14
nmer 19 53 21 11 13
nwil 26 65 30 14 16
nwip* 74 35 70 86 84
nwwer 14 39 17 8 8
nwmer 13 35 16 7 8
mislocation rate 6 30 12 8 18
ner 86 67 83 91 90
exec time (s) 40 395 32 691 346

*In WIP and NWIP metric, a higher value indicates better performance.

In general, with VAD applied, the error results have improved. The significant benefi-
ciary is Whisper, showing a substantial improvement, reaching an impressive 8 NWWER!
The other models have improved slightly, but nothing remarkable. WhisperX maintains
almost the same results, which is logical since it already applies VAD natively. The down-
side of deactivating VAD is the execution speed. The following subsections will delve into
conclusions regarding this matter.



46 Analysis of results

5.1.3 Configuration 3 - Sentences

In this configuration, the goal is to test the importance of context in the speech-to-text task.
The models process independent phrases without having information about the rest of the
audio, requiring them to leverage those very few seconds to achieve satisfactory results.

The results are pointed out in Table 5.3. Lower is better, and the best result is written
in bold.

Table 5.3: Configuration 3 - Sentences, grouping disabled. Except exec time, each metric is
measured in percentage (%).

Metric nemo seamless vosk whisper whisperx
wer 34 38 38 20 24
mer 32 34 36 20 23
wil 50 48 54 31 36
wip* 50 52 46 69 64
wwer 29 28 32 17 20
wmer 28 26 31 16 19
nwer 18 29 23 11 14
nmer 17 26 21 10 13
nwil 25 34 31 14 17
nwip* 75 66 69 86 83
nwwer 13 19 17 7 9
nwmer 13 17 16 7 8
mislocation rate 5 23 11 6 13
ner 85 80 83 88 85
exec time (s) 39 480 68 1331 1247

*In WIP and NWIP metric, a higher value indicates better performance.

Whisper remains the winner. The results are almost identical to those of Configuration
2. There is a slight negative variation in the non-normalized metrics and a slight positive
variation in the normalized metrics. This could indicate that the models use context for
proper punctuation, such as periods, commas, and other punctuation marks. However, the
variation is so small that we cannot claim significantly relevant differences.

5.1.4 Configuration 4 - Raw audio

In this configuration, the objective is to assess whether the model exhibits sufficient capability
to transcribe audio of substantial length effectively or if it is necessary to segment the audio
into batches.

This configuration shows the incapacity of three out of the five models to process such
lengthy audio inputs. Whether due to computational limitations or inherent model con-
straints, Seamless, WhisperX, and NeMo have proven unable to provide results without
experiencing crashes. So, in this configuration, only Vosk and Whisper are used.



Analysis of results 47

The results are pointed out in Table 5.4. Lower is better, and the best result is written
in bold.

Table 5.4: Configuration 4 - Raw audio, no VAD and no segmentation. Except exec time,
each metric is measured in percentage (%).

Metric vosk whisper
wer 37 19
mer 35 18
wil 53 26
wip* 47 74
wwer 32 14
wmer 30 14
nwer 22 12
nmer 21 12
nwil 29 14
nwip* 71 86
nwwer 16 7
nwmer 15 7
mislocation rate 12 8
ner 84 92
exec time (s) 21 664

*In WIP and NWIP metric, a higher value indicates better performance.

Only Whisper and Vosk have successfully transcribed the lengthy audio inputs. Whisper
excels in subtitle precision, and Vosk y execution time. From this, we can infer that if, for
any reason, segmentation of the audio for transcription is not feasible, the choice would likely
be one of these two models. And depending of the task, would be suited a precise model like
Whisper or a fast one like Vosk.

5.2 Metric comparatives

It’s worth zooming in on specific metrics as valuable insights can be drawn. We can infer
some noteworthy conclusions.

5.2.1 Error rate comparative - WWER

The WWER comparative can be seen in Table 5.5. As always, lower is better, and the best
result is remarked in bold.



48 Analysis of results

Table 5.5: WWER comparative (%).

Configuration nemo seamless vosk whisper whisperx
Conf 1 - Default 30 48 33 19 15
Conf 2 - No VAD 29 46 32 15 15
Conf 3 - Sentences 29 28 32 17 20
Conf 4 - Raw audio N/A N/A 32 14 N/A

NeMo and Vosk exhibit remarkable stability; they are indifferent to processing informa-
tion with or without VAD and the duration of the segments. The close similarity in results
between NeMo and Vosk speaks either strongly against NeMo or in favor of Vosk, considering
that NeMo theoretically employs more advanced technologies and has a heavier model.

Additionally, there is an extraordinary improvement in the case of Seamless when dealing
directly with sentences. This makes sense since Seamless doesn’t generate word-level times-
tamps, and Speak2Subs provides a very rudimentary estimation. The shorter the segments,
the more accurate Seamless’s estimation becomes, leading to better results.

Whisper and WhisperX effectively leverage context, as both show a decline in perfor-
mance in Configuration 3, and the best result is Whisper, in config 4. Interestingly, without
VAD, Whisper experiences a four-point drop, equalizing with WhisperX.

5.2.2 Error rate comparative - NWWER

The NWWER comparative can be seen in Table 5.6. As always, lower is better, and the
best result is remarked in bold.

Table 5.6: NWWER comparative (%).

Configuration nemo seamless vosk whisper whisperx
Conf 1 - Default 18 41 19 13 8
Conf 2 - No VAD 14 39 17 8 8
Conf 3 - Sentences 13 19 17 7 9
Conf 4 - Raw audio N/A N/A 16 7 N/A

If we look at the normalized metric, there is a substantial overall improvement, which is
evident as we eliminate errors related to capitalization and punctuation. There are no major
conclusions that we haven’t already obtained in the previous section.

5.2.3 Mislocation rate comparative

The mislocation rate comparative can be seen in Table 5.7. As always, lower is better, and
the best result is remarked in bold.



Analysis of results 49

Table 5.7: Mislocation rate comparative, in seconds.

Configuration nemo seamless vosk whisper whisperx
Conf 1 - Default 32 25 19 35 19
Conf 2 - No VAD 6 30 12 8 18
Conf 3 - Sentences 5 23 11 6 13
Conf 4 - Raw audio N/A N/A 12 8 N/A

The ratio of words with incorrect timestamps is very useful for measuring the precision
of the models. It’s important to note that we are assuming the timestamps of the original
subtitles are accurate and correct. In general, there is a significant improvement when VAD
or grouping is disabled. In both scenarios, it makes sense:

1. With VAD disabled, there are far fewer audio cuts, specifically one every 30 seconds,
with perfectly placed timestamps. 2. With VAD enabled but without grouping, we still
have these segments, but without grouping, there’s no need to calculate periods of silence
between sentences. If there are small errors in these calculations, which accumulate, they
can lead to words with imprecise timestamps.

5.2.4 Execution times comparative

In table 5.8 a raw execution time comparative can be seen. As always, lower is better, and
the best result is remarked in bold. In table 5.9 we can see the execution time ratios, using
Vosk with Conf 1 as reference.

Table 5.8: Execution time comparative, in seconds.

Configuration nemo seamless vosk whisper whisperx
Conf 1 - Default 35 444 28 455 331
Conf 2 - No VAD 40 395 32 691 346
Conf 3 - Sentences 39 480 68 1331 1247
Conf 4 - Raw audio N/A N/A 21 664 N/A

Table 5.9: Execution time ratios, Vosk in Conf 1 as reference.

Configuration nemo seamless vosk whisper whisperx
Conf 1 - Default x1.25 x15.85 x1 x16.25 x11.82
Conf 2 - No VAD x1.42 x14.10 x1.14 x12.43 x12.35
Conf 3 - Sentences x1.39 x17.14 x2.42 x47.53 x44.53
Conf 4 - Raw audio N/A N/A x0.75 x23.71 N/A

The information on execution times is crucial. If speed is prioritized, it’s evident that
Vosk and NeMo should be the winning choices. They improve approximately by a factor of



50 Analysis of results

10 compared to the competition, regardless of the audio length. For Whisper and WhisperX,
the length of audio matters significantly: their execution times triple when used sentence by
sentence.

5.2.5 Memory consumption comparative

It is mandatory to have an idea of what amount of memory the user has to have in his
system. In table 5.10, it is reflected the average RAM consumption for the transcription
jobs.

Table 5.10: Memory consumption, in Gb.

Model Average RAM consumption
Whisper 6.6
WhisperX 3.6
Seamless 9.4
NeMo 0.5
Vosk 0.4

5.3 Evaluation conclusions

Several conclusions can be drawn from the available data. What is the best model? It
depends.

If you aim for excellence in subtitles, regardless of execution time, and want to mini-
mize human intervention, the best option is WhisperX with Configuration 2. If we look at
WWER, Whisper and WhisperX share the best results. Since WhisperX is faster, it could
be considered the top choice. Although Whisper has a slight advantage in normalized met-
rics, since the goal is to minimize human correction, it’s essential for the model to interpret
capitalization and punctuation correctly. On the other hand, sentence-level results don’t im-
prove enough when grouping to offset the substantial additional time used by Whisper and
WhisperX. Whisper with configuration 4 is not recommended because of the computational
cost. It is highly recommended to divide the audio into batches for security reasons.

If, however, speed is the priority, NeMo and Vosk would be the ideal choice. Vosk works
out of the box, while with NeMo, it might be necessary to evaluate different submodels;
some could improve results.

Regarding hyperparameter selection, VAD enhances speed by eliminating silences; whether
it compensates for the loss of quality is a decision for the end user. Sentences-level should
not be recommended to use, althought maybe is a good indicator of how the models could
perform real-time subtitulation.

Finally, it should be noted that the best result of the evaluation is for Whisper with
’mda_3’ audio, with an astounding score of 7% WWER and 1.5% NWWER. That’s almost



Analysis of results 51

a perfect score!

5.4 Evaluating subtitles without a template reference

The evaluation conducted in the preceding sections underscores the robust capabilities of
the models in generating subtitles, relying on original and presumably flawless subtitles as
a reference. However, when utilizing Speak2Subs to generate new subtitles, the norm is not
to have reference subtitles available.

As detailed in other sections of the document, Speak2Subs offers both template-based
and template-free modalities. Does this distinction yield differences in quality? The answer
is no.

The transcription remains consistent, whether a template is employed or not. The sole
disparity lies in the organization of sentences. In fact, generating subtitles without a template
presents an advantage: adherence to UNE 153010:2012 compliance recommendations. Given
Speak2Subs’ freedom to construct sentences, there is greater flexibility in subtitle creation.
This flexibility mitigates issues such as truncated sentences or subtitle continuations after
punctuation marks. Let us examine some examples.

Let’s watch ’mda_1.mp4’ video with the original subtitles:

Figure 5.1: mda_1.mp4 video, at 1:41 with original subtitles

In this video frames, the original subtitles exhibit a certain issue. While it may not seem
significant, for someone who needs to read subtitles for extended periods, it can lead to
mental fatigue more rapidly.

The problem lies in the subtitles being too brief, appearing within a very short timeframe.
If this pattern persists, the viewer is required to read constantly short and quickly appearing
subtitles. In essence, the original subtitles do not align with the compliance policies of the
UNE 153010:2012.

Let’s now examine the same frames, generated by Speak2Subs:
With the generated subtitles, in the first frame, an effort is made to include the maxi-

mum amount of text within the subtitle while adhering to UNE 153010:2012 policies 4.3 and



52 Analysis of results

Figure 5.2: mda_1.mp4 video, at 1:41 with generated subtitles

4.6. This approach allows the viewer to read the subtitle more comfortably. In the second
frame, upon completing a sentence with a period, the subtitle is truncated, reserving the
continuation for the next subtitle. This strategy enhances the overall readability and con-
forms to compliance policies, addressing the potential mental fatigue associated with rapidly
appearing and short subtitles.

This is an example, but to draw conclusions, it is necessary to scrutinize the metrics. To
clarify the table, the UNE 153010:2012 4.3 is called "Lines", the 4.6 is called "Line width"
and the 5.1 is called "Speed".

The table reflects percentages. Every track of the subtitles are evaluated, and 100% mean
that all of the subtitle tracks comply with the policy. For example, the original subtitle has
an 82% in Line width. That means that about 28 of 153 subtitle tracks (18%) have more
characters than recommended.

Table 5.11: Compliance comparative (%)
Subtitles Lines Line width Speed / Total subtitle tracks
Original 100 82 40 153
Generated 100 100 42 145

Upon examining the metrics, it becomes evident that the generated subtitles align per-
fectly the UNE 153010:2012 policies, whereas, in the original subtitles, adherence to these
policies is not a priority.

It is an example, but it can be extrapolated to the rest of the datasets. It is not neccesary
to evaluate all datasets because we will have similar results.

In conclusion, by not using a template, we maintain the same error rate and, additionally,
achieve a perfect percentage of compliance in 4.3 and 4.6, and a best effort in 5.1, with UNE
153010:2012 recommendations regarding subtitles.



Analysis of results 53

5.5 WhisperX vs Speak2Subs: A comparative analysis of
subtitle quality

In previous sections, the high quality of the tested models has been highlighted. The possi-
bility of evaluating the UNE 153010:2012 criteria has also been discussed, underscoring their
significant importance.

However, there remains an unresolved question. The reader might wonder whether it
is truly worthwhile to use Speak2Subs instead of directly employing an ASR model. Take
WhisperX, for instance, which not only performs speech-to-text to obtain the transcription
of each word with its associated timestamp but also applies native Voice Activity Detection,
resulting in batches of sentences with timestamps. The reader could think that perhaps it
is simpler to use WhisperX, which has proven to be exceptional, and use these sentences as
subtitles. And indeed, this is a practice that is employed. With such high precision results,
what advantage does using Speak2Subs offer over WhisperX?

Of course, a detailed response can be provided, but ideally, the answer should be quanti-
tative: In this section, the compliance with UNE 153010:2012 criteria of WhisperX’s native
output of sentences is compared with the output offered by Speak2Subs. This allows for an
analysis of whether there is a significant difference in subtitle quality.

WhisperX is used because of the excellent results and being able to generate "subtitles"
or complete sentences, not only words, which is a feature that not all ASR models have.

The comparison is shown in the following table. The percentage of compliance with
standards 4.3 (number of lines per subtitle), 4.6 (number of characters per line), and 5.1
(maximum subtitle speed) has been compared, on a scale of 0-1, where 1 represents perfect
compliance and 0 represents no compliance.



54 Analysis of results

Table 5.12: WhisperX vs Speak2Subs.

Dataset UNE 4.3 UNE 4.6 UNE 5.1

mda
WhisperX 1.0 0.09 0.06
Speak2Subs 1.0 1.0 0.22

mat
WhisperX 1.0 0.13 0.14
Speak2Subs 1.0 1.0 0.28

cdp
WhisperX 1.0 0.14 0.02
Speak2Subs 1.0 1.0 0.2

atc
WhisperX 1.0 0.11 0.06
Speak2Subs 1.0 1.0 0.26

ddl
WhisperX 1.0 0.09 0.06
Speak2Subs 1.0 1.0 0.3

From the previous table, quite interesting conclusions can be drawn. Looking at rule
4.3, which states that the maximum number of lines per subtitle track is 3, both WhisperX
and Speak2Subs meet this criterion perfectly. In the case of WhisperX, this is logical, as by
default the model does not insert line breaks in overly long sentences. Indeed, WhisperX’s
ability to meet this criterion is also a drawback for meeting 4.6, as it significantly exceeds
the maximum number of characters per subtitle. This can be problematic for viewers of the
subtitled multimedia file, as the subtitles will saturate the screen with overly long phrases.
This might be overlooked if the results for criterion 5.1 were good, as it would mean that
viewers have enough time to read such long subtitles.

However, this is not the case. As can be seen, the results are poor, which is a double
defect: on one hand, we have overly long subtitles, and on the other, little time is given
for reading them. In the case of Speak2Subs, both criteria 4.3 and 4.6 are always met 100
percent. This is not a coincidence, simply Speak2Subs applies a post-processing that forces
subtitles to meet these criteria algorithmically, by design they will always be met 100 percent.

This quality comes at a price, and that is criterion 5.1. Speak2Subs forces subtitles not
to be too long, and if the speaker is too fast, inevitably the subtitle tracks must follow at
that same speed, to maintain synchronization with the audio. In other words, Speak2Subs
sacrifices criterion 5.1 to achieve perfect scores in 4.3 and 4.6.

Why, even sacrificing the speed criterion, does it achieve better results than WhisperX,



Analysis of results 55

which does not make this sacrifice? Because Speak2Subs uses additional specific post-
processing for this criterion. Among other things, it detects occasions when a subtitle track
is preceded by silence, and takes advantage of this to extend the duration of that subtitle,
as it will not overlap with the next. In this way, Speak2Subs can give the viewer a breather
and allow them to read the subtitle until the next one arrives.

In conclusion, while the accuracy of WhisperX’s and other models’ transcriptions is
excellent, their out-of-the-box use to obtain subtitles is not advisable without adequate
post-processing, as they do not meet minimum criteria for proper readability and viewer
comfort. Therefore, if the task is specifically to obtain subtitles, it is recommended to use
Speak2Subs over unprocessed models like WhisperX.



56 Analysis of results



Chapter 6

Conclusions and final thoughts

If we employ out-of-the-box Automatic Speech Recognition (ASR) models without any mod-
ifications to the outcomes, it is evident that the transcription is unsuitable for use as high-
quality subtitles. This is due, among other reasons, to the lack of consideration for cer-
tain modifications in the output to tailor it to the subtitle format. Among these potential
modifications are those suggested by the UNE 153010:2012 standards, some of which are
implemented by Speak2Subs.

6.1 Speak2Subs VS State-of-the-art

As can be seen in 2.1, there are particularly interesting examples of the use of ASR for
subtitling, which highlights that Speak2Subs is not the only project attempting to subtitle
using ASR models. However, there are some differences between Speak2Subs and the models
described in 2 citations. For example, the article [13] focuses on subtitling for TV programs,
which typically have default subtitles of medium to low quality. The model in this article
utilizes these existing subtitles, whereas Speak2Subs does not have this capability. Therefore,
for this specific task, the model proposed in the article is more suitable than Speak2Subs.

Evidently, Speak2Subs does not share the same objective as the model in the article;
Speak2Subs aims for a more global application, is much more versatile, and does not depend
on reference subtitles to achieve exceptional results.

The article [15] adopts an approach similar to Speak2Subs, and there are phases that are
alike: the extraction of audio from the video, division into chunks, application of the ASR
model to obtain tokens with their timestamps, and the creation of a subtitle file suitable
for addition in any media player. While the results are commendable, and it is a robust
model, there are several features that differentiate Speak2Subs from this work. These include
Voice Activity Detection (VAD), the selection of the ASR model to be used, post-processing
adjustments in line with UNE 153010:2012 standards, and some additional hyperparameters.

In the article[4], the approach is indeed intriguing, and its model operates in a manner

57



58 Conclusions and final thoughts

somewhat similar to Voice Activity Detection. Instead of dividing the entire audio at silences
as VAD does, it marks the audio by annotating where there are silences, that is, subtitle
breaks. This presents an interesting alternative to the use of VAD and UNE 153010:2012
criteria. However, as a trade-off, it slightly reduces the precision of the transcriptions, by
about 2-3

While this examples shares a similar objective with Speak2Subs, it is evident that this
examples, among many others, attempts to address the problem in a considerably lighter,
less comprehensive, and less thorough manner compared to Speak2Subs.

The article described in 2.1.2 is very interesting too. In the case of Speak2Subs, subtitle
compression is not utilized, instead it tries to adhere to specific criteria that yield very good
results in terms of readability, without the need for information loss or compression.

As we have seen in numerous papers and articles, Speak2Subs is not the first project
to attempt to use ASR models to generate high-quality subtitles. Without intending to
overstate the capabilities of Speak2Subs, a one-to-one comparison with the various models
and projects presented in 2.1 section reveals that either Speak2Subs is compatible with more
generic tasks than those for which the comparative model is designed, or the comparative
models lack the depth, customizability, and adaptability offered by Speak2Subs. The op-
tional use of Voice Activity Detection, segmentation grouping, the choice among five different
ASR models, and post-processing according to UNE 153010:2012 criteria are some of the
features that Speak2Subs offers, which have not been reflected in any other paper or project
we have reviewed.

6.2 What has been achieved

In conclusion, the project’s objectives have been successfully achieved on multiple fronts.

Firstly, a comprehensive comparison of state-of-the-art ASR models has been conducted,
yielding clear and insightful conclusions. The performance of each model, its strengths, and
weaknesses has been thoroughly examined. Depending on the end user’s specific require-
ments, this comparative analysis provides a clear understanding of which models are better
suited for their particular use case.

Simultaneously, the development of a package capable of generating subtitles with out-
standing quality has been accomplished. Unlike the use of unmodified ASR models, Speak2Subs
does apply certain adjustments to the output, ensuring that the result is suitable for use
with minimal subsequent processing. This package operates as a black box, allowing users to
effortlessly obtain perfectly synchronized VTT format subtitles with minimal errors, with-
out necessitating specialized knowledge. The package’s installation is straightforward and
does not demand a high-powered computing environment. In summary, the initial project
objectives have been satisfactorily resolved.



Conclusions and final thoughts 59

6.3 What can be improved

While the quality of the results is satisfactory, there is always room for improvement. As
explained in earlier sections, post-processing 4.4.4 with a Language Model (LLM) layer
applied to each subtitle could notably enhance the final outcomes.

Another potential enhancement, though contemplated but not implemented, is a vot-
ing system. For each subtitle, all five models could work concurrently, predicting results
and selecting each word based on majority votes. This idea has not been executed due to
computational constraints, but it remains an open avenue that could be explored in the
future.

Lastly, an improvement for the future involves the incorporation of new ASR models.
Given that Speak2Subs utilizes containers, integrating a new ASR model simply requires
adding a new image without the need for substantial code modifications. There is always
room for improvement, and as technology advances, new ideas emerge.

Regarding the UNE 153010:2012 standards, it is important to note that many of the
recommendations fall outside the scope of Speak2Subs due to its inherent nature. Visual
recommendations, such as contrast and color selection, for example, are obviously not ap-
plicable to this project. However, some recommendations, such as indicating the speaker
in a dialogue involving multiple people, are feasible for implementation. Perhaps in the
future, this package might be capable of identifying different speakers, thereby making the
application of such recommendations viable.



60 Conclusions and final thoughts



Bibliography

[1] Max Bain et al. WhisperX: Time-Accurate Speech Transcription of Long-Form Audio.
July 11, 2023. doi: 10.48550/arXiv.2303.00747. arXiv: 2303.00747[cs,eess].
url: http://arxiv.org/abs/2303.00747.

[2] Aishwarya Bakale et al. “Video Subtitle Generation”. In: ().

[3] William Chan et al. “Listen, attend and spell: A neural network for large vocabulary
conversational speech recognition”. In: 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 2016, pp. 4960–4964. doi: 10.1109/
ICASSP.2016.7472621.

[4] Maria Federico and Marco Furini. “An automatic caption alignment mechanism for
off-the-shelf speech recognition technologies”. In: Multimedia Tools and Applications
72.1 (Sept. 1, 2014), pp. 21–40. issn: 1573-7721. doi: 10.1007/s11042-012-1318-3.
url: https://doi.org/10.1007/s11042-012-1318-3.

[5] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural com-
putation 9.8 (1997), pp. 1735–1780.

[6] J. Howard and S. Gugger. Deep Learning for Coders with Fastai and Pytorch: AI Ap-
plications Without a PhD. O’Reilly Media, Incorporated, 2020. isbn: 9781492045526.
url: https://books.google.no/books?id=xd6LxgEACAAJ.

[7] Matthew J. Hunt. “Weighted WER for Speech Recognition”. In: Unknown (1990).

[8] Shuai Li et al. “Recent Advances in End-to-End Automatic Speech Recognition”. In:
arXiv preprint arXiv:2111.01690 (2021). url: https://ar5iv.org/html/2111.
01690.

[9] Jingzhou Liu et al. An Approach to Improve Robustness of NLP Systems against ASR
Errors. 2019. arXiv: 1909.09577 [cs.CL].

[10] Andrew Morris, Viktoria Maier, and Phil Green. From WER and RIL to MER and
WIL: improved evaluation measures for connected speech recognition. Oct. 4, 2004. doi:
10.21437/Interspeech.2004-668.

[11] Author Names. “Adapting End-to-End Speech Recognition for Readable Subtitles”. In:
arXiv preprint arXiv:2005.12143 (2020). url: https://arxiv.org/abs/2005.12143.

61

https://doi.org/10.48550/arXiv.2303.00747
https://arxiv.org/abs/2303.00747 [cs, eess]
http://arxiv.org/abs/2303.00747
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1007/s11042-012-1318-3
https://doi.org/10.1007/s11042-012-1318-3
https://books.google.no/books?id=xd6LxgEACAAJ
https://ar5iv.org/html/2111.01690
https://ar5iv.org/html/2111.01690
https://arxiv.org/abs/1909.09577
https://doi.org/10.21437/Interspeech.2004-668
https://arxiv.org/abs/2005.12143


62 BIBLIOGRAPHY

[12] Jakob Poncelet and Hugo Van hamme. Learning to Jointly Transcribe and Subtitle for
End-to-End Spontaneous Speech Recognition. 2022. arXiv: 2210.07771 [cs.CL].

[13] Jakob Poncelet and Hugo Van Hamme. “Learning to Jointly Transcribe and Subtitle
for End-To-End Spontaneous Speech Recognition”. In: 2022 IEEE Spoken Language
Technology Workshop (SLT). 2023, pp. 182–189. doi: 10 . 1109 / SLT54892 . 2023 .
10022420.

[14] Alec Radford et al. Robust Speech Recognition via Large-Scale Weak Supervision. Dec. 6,
2022. doi: 10.48550/arXiv.2212.04356. arXiv: 2212.04356[cs,eess]. url: http:
//arxiv.org/abs/2212.04356 (visited on 12/09/2023).

[15] Aditya Ramani et al. “Automatic Subtitle Generation for Videos”. In: 2020 6th Inter-
national Conference on Advanced Computing and Communication Systems (ICACCS).
2020, pp. 132–135. doi: 10.1109/ICACCS48705.2020.9074180.

[16] Seamless: Multilingual Expressive and Streaming Speech Translation | Research - AI at
Meta. url: https://ai.meta.com/research/publications/seamless-multilingual-
expressive-and-streaming-speech-translation/ (visited on 12/09/2023).

[17] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. July 19,
2023. doi: 10 . 48550 / arXiv . 2307 . 09288. arXiv: 2307 . 09288[cs]. url: http :
//arxiv.org/abs/2307.09288 (visited on 12/09/2023).

[18] UNE 153010:2012. https : / / www . une . org / encuentra - tu - norma / busca - tu -
norma/norma?c=N0049426. Subtitling for Deaf and Hard-of-Hearing People. 2012.

[19] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.,
2017. url: https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

https://arxiv.org/abs/2210.07771
https://doi.org/10.1109/SLT54892.2023.10022420
https://doi.org/10.1109/SLT54892.2023.10022420
https://doi.org/10.48550/arXiv.2212.04356
https://arxiv.org/abs/2212.04356 [cs, eess]
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
https://doi.org/10.1109/ICACCS48705.2020.9074180
https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/
https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/
https://doi.org/10.48550/arXiv.2307.09288
https://arxiv.org/abs/2307.09288 [cs]
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0049426
https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0049426
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Glossary
	Introduction
	Brief context
	Motivation
	Proposal and objectives
	Evaluation of state-of-the-art ASR models
	Python package that generates compliant subtitles

	Contributions to the field

	Automatic Speech Recognition: State Of the Art
	Innovations in Subtitling Technology: An Examination of Recent ASR Research
	State-of-the-art and recent ASR researchs
	ASR and subtitle compression

	Automatic Speech Recognition models
	Whisper
	WhisperX
	NVIDIA NeMo
	META Seamless
	Vosk

	Conclusion about the state of the art of the subtitle generation task 

	Evaluation Methodology
	Metrics
	Error metrics
	Weighted error metrics
	Normalized error metrics
	Mismatch metric
	NER metrics
	Execution time metrics
	Compliance metrics

	Preprocessing parameters
	Voice Activity Detection
	Segmentation
	Group Segments
	Max speech duration
	Noise reduction

	Datasets
	Materiales digitales accesibles
	Accesibilidad en la atención a clientes
	Cómo formar sobre diseño para todas las personas
	MOOC Discapacidad y Defensa Legal Activa en la Era Digital
	Móviles accesibles para todos

	Configurations
	'Default' configuration
	'No VAD' configuration
	'Sentences' configuration
	'Raw audio' configuration

	Models
	Metodology conclusions

	Speak2Subs package
	Features
	Subtitle generation based on a reference template
	Subtitle quality evaluation
	Subtitle generation without a reference template

	Installation
	Install PyTorch
	Install Docker
	Install Speak2Subs

	Usage
	How to generate subtitles
	How to evaluate subtitles

	How does it work: Subtitle Generator
	Loading Dataset
	Pre-processing
	Processing
	Post-processing

	How does it work: Subtitle Evaluator
	Detect VTT files
	Calculate metrics

	Development costs
	Development conclusions

	Analysis of results
	Evaluating results using the configurations
	Configuration 1 - Default
	Configuration 2 - No VAD
	Configuration 3 - Sentences
	Configuration 4 - Raw audio

	Metric comparatives
	Error rate comparative - WWER
	Error rate comparative - NWWER
	Mislocation rate comparative
	Execution times comparative
	Memory consumption comparative

	Evaluation conclusions
	Evaluating subtitles without a template reference
	WhisperX vs Speak2Subs: A comparative analysis of subtitle quality

	Conclusions and final thoughts
	Speak2Subs VS State-of-the-art
	What has been achieved
	What can be improved

	Bibliography and references

