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Chapter 1

Introduction

This chapter presents the main information related to this project, explaining
the motivation of this work, the di�erent stages in the project and the goals set.

1.1 Motivation

Probabilistic graphical models (PGMs) are useful modeling tools for decision
making under uncertainty. Uncertainty appears to be an inescapable aspect of
most real-world applications. It is a consequence of several factors. We are often
uncertain about the true state of the system because our observations about it
are partial: only some aspects of the world are observed; for example, the
patient's true disease is often not directly observable, and his future prognosis is
not yet observed. The true state of the world is rarely determined with certainty
by our limited observations, as most relationships are simply not deterministic,
at least relative to our ability to model them. Thus, we need to consider di�erent
possibilities, and reason not just about what is possible, but also about what is
probable.

Most tasks require a person or an automated system to reason: to take the
available information and reach conclusions, both about what might be true in
the world and about how to act. For example, a doctor needs to take information
about a patient � his symptoms, test results, personal characteristics (gender,
weight) � and reach conclusions about what diseases he may have and what
course of treatment to undertake. PGMs allow us to deal with this big problems
that could not be addressed with traditional probabilistic methods. Medicine is
the �eld where more PGMs applications have been built.

Bayesian networks (BNs) and in�uence diagrams (IDs) are PGMs widely
used for building diagnosis- and decision-support expert systems. Explanation
of the reasoning is important for users in order to accept them as tutoring
systems. Unfortunately, most expert systems have virtually no explanatory ca-
pability [21]. This was one of the reasons why OpenMarkov was developed.
OpenMarkov is an open-source software tool for editing and evaluating proba-
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CHAPTER 1. INTRODUCTION 10

bilistic graphical models (PGMs) developed by the Research Center for Intelli-
gent Decision-Support Systems of the UNED in Madrid, Spain.

OpenMarkov is able to represent several types of networks, such as Bayesian
networks (BNs), Markov networks, or in�uence diagrams (IDs). After solving an
ID, the main output is the optimal strategy. Software tools for PGMs usually
present each optimal policy in the form of a policy table, which contains a
column for each con�guration of the informational predecessors of the decision.
One of the main drawbacks is that in some cases these tables can have a large
size. For example, in MEDIASTINET, a decision support-system (DSS) for the
mediastinal staging of non-small cell lung cancer [26], the biggest policy table
has 15,552 columns, most of which correspond to impossible scenarios. For a
human expert it is virtually impossible to draw any useful information from this
table. For this reason it is necessary to have an alternative representation that
summarizes the optimal policy in an understandable way.

1.2 Objectives

In this project we will focus on two decision analysis models: in�uence diagrams
and decision trees. We will use IDs as a model building tool. The purpose of
this project is to manipulate the policy tables resulting from the evaluation of
ID and return a compact strategy that can be used easily to make a decision.

We analyze di�erent algorithms for creating decision trees, such as Iterative
Dichotomiser 3 (ID3) [42]. In this work we propose Policy Trees (PTs) [26] as
an alternative representantion of policy tables. PTs have been mathematically
formulated by means of the algorithm ID3. During the interaction and imple-
mentation of our new algorithm, we felt the need for new methods that would
help us to compact the decision trees. Thus as a way of optimization, in this
report we propose two methods that reduce the size of the decision trees. Fi-
nally, after designing and implementing the new tree algorithm, we evaluate on
several in�uence diagrams.

1.2.1 Report Structure

This report is organized as follows:

Chapter 1: Introduction. The current chapter gives a short introduction to
this project, its motivation and its goals.

Chapter 2: State of the art: PGMs and Decision Trees. It describes
the main concepts about Probabilistic Graphical Models (PGMs), decision
trees, and the software tool OpenMarkov.

Chapter 3: Building and Optimizing Policy Trees. This chapter presents
the implementation of a new method of representation called Policy Trees
which is based on ID3.
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Chapter 4: Evaluation of the new algorithm. In this chapter there are
a total of �ve tryouts in order to show how our algorithm works with
di�erent IDs.

Chapter 5: Conclusions and Future Work. It summarizes the work done
during this project, exposes the main conclusions and proposes future
research lines.
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Chapter 2

State of the art: PGMs and

Decision Trees

As an introduction, this chapter begins with a section on the importance of
information visualization. This chapter provides the basic concepts of PGMs,
Decision trees, and also it introduces the reader to the software tool Open-
Markov. We consider the subclass of probabilistic networks known as Bayesian
networks (BNs) and in�uence diagrams (IDs). More speci�cally, this project
focuses on in�uence diagrams and thus they will be explained in detail. Finally
this chapter presents the ID3 algorithm [38, 35] for constructing classi�cation
trees.

2.1 Information visualization

Problem solvers in domains like physics and engineering make extensive use
of diagrams in problem solving. As Jean-Daniel Fekete and colleagues [11] sug-
gested, the most accepted de�nition of the Information Visualization comes from
Card et al. [6], who describe visualization as �the use of computer-supported,
interactive, visual representations of data to amplify cognition�. The last three
words of their de�nition communicate the ultimate purpose of visualization, to
amplify cognition. Is the ampli�cation of cognition something with a ground
truth that is easily and precisely measurable? Clearly it is not. Furthermore,
how does one quantify the bene�ts of an information visualization system? For
these and other reasons, information visualization is fundamentally challenging
to evaluate [34].

Information visualization augment human memory to provide a larger work-
ing set for thinking and analysis and thus become external cognition aids. Card
et al. [6] listed a number of key ways in which visuals can amplify cognition:

� Increasing memory.

� Reducing the search for information.

13



CHAPTER 2. STATE OF THE ART: PGMS AND DECISION TREES 14

� Enhancing the recognition of patterns.

� Enabling perceptual inference operations.

When two representations are informationally equivalent, their computational
e�ciency depends on the representation capabilities for recognizing patterns
and in the inferences they can carry out directly.

2.2 Basic concepts about PGMs

Bayesian networks and in�uence diagrams are ideally suited knowledge rep-
resentations for many situations under uncertainty. These models are often
characterized as normative expert systems as they provide model-based domain
descriptions, where the model re�ects the properties of the problem and prob-
ability is used as the calculus for uncertainty. A Bayesian network can be used
as the basis for performing inference about the domain. Decision options and
utilities associated with these options can be incorporated explicitly into the
model, in which case the model becomes an in�uence diagram, capable of com-
puting expected utilities of all decision options given the information known at
the time of decision. Bayesian networks and in�uence diagrams are applicable
to a very large range of domains with uncertainty.

2.2.1 Graphs and probability distributions

The graphical representation of a probabilistic network describes knowledge of
a problem domain in a precise manner. The graphical representation is intuitive
and easy to comprehend, making it an ideal tool for communication of domain
knowledge between experts, users, and systems. Probabilistic graphical models
use a graph representation as the basis for encoding a complex distribution over
a high-dimensional space.

A graph G = (V,E) consists of a �nite set of nodes V and a �nite set of
edges E. An edge is a pair of nodes (X,Y ), where X,Y ∈ V and X 6= Y ; if X
and Y are ordered in the edge (X,Y ) then it is said to be directed ; otherwise it
is undirected. A directed edge will be referred to as an arc. If every arc in E is
directed then G is a directed graph. On the other hand, if every arc is undirected
then G is said to be an undirected graph.

A path from a node X to a node Y in a graph G = (V,E) is a sequence
X =X0, X1, ..., Xn = Y of distinct nodes such that (Xi−1, Xi) is an edge in E
for each i such that 1 ≤ i ≤ n. The path is a directed path if (Xi, Xi−1) is a
directed arc from Xi−1 to Xi, for each i such that 1 ≤ i ≤ n.

A cycle is a path in which X0 = Xn, and a directed cycle is a directed path
with X0 = Xn. A directed graph with no directed cycles is said to be an acyclic
directed graph (ADG).

Given an arc (X,Y ) from X to Y , the node X is said to be a parent of Y and
Y is a child of X. The set of parents for a node Y is denoted by Pa(X). The set
of nodes from which there exists a directed path from X is named the ancestors
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of X (denoted by an(X)). Similarly, the set of nodes to which there exists a
directed path from X is termed the descendants of X (denoted by de(X)).

We brie�y de�ne some necessary terminology for describing trees (see [1] for
further details):

1. A directed (or rooted) tree is a directed acyclic graph satisfying the follow-
ing properties:

(a) There is exactly one node, called the root, which no edges enter. The
root node contains all the class labels.

(b) Every node except the root has exactly one entering edge.

(c) There is a unique path from the root to each node.

2. A node with no proper descendant is called a leaf (or a terminal). All
other nodes (except the root) are called internal nodes.

3. The depth of a node v in a tree is the length of the path from the root to
v.

Finally, we introduce some basic de�nitions about probability theory:
A random discrete variable is a variable that is subject to variations due to

random chance. When we have a set of variables {X1, ..., Xn}, we represent it
by X. The set x = (x1, ..., xn) represents the con�guration of X in which each
variable Xi takes its corresponding value xi.

A discrete probability distribution is a mapping of all the possible values of a
random discrete variable to their corresponding probabilities for a given sample
space. It is denoted as:

P (X = x) (2.1)

Given a set of discrete variables X = {X1, ..., Xn}, we de�ne the joint prob-
ability as the probability that all occur simultaneously:∑

x

P (x) =
∑
x1

...
∑
xn

P (x1, ..., xn) = 1 (2.2)

2.2.2 Bayesian networks

A Bayesian network (BN) [33] B = (G,P ) consists of two elements: an ADG
G = (V,E) in which each node X ∈ V (named chance node) is drawn as a
circle and corresponds to a chance variable X; and a probability distribution
over V, P(V), which can be factored as:

P (v) =
∏
X∈V

P (x|pa(X)), (2.3)

where pa(X) denotes a con�guration of the parents of X.
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The quantitative information of a BN B = (G,R) is given by assigning to
each node X ∈ V a conditional probability distribution P (X|Pa(X)). Con-
ditional probability distributions are also referred to as potentials. A poten-
tial is a real-valued function over a domain of �nite variables. The domain
φ = P (X|Pa(X)) is dom(φ) = {X}∪ Pa(X).

We assume that each variable X in V corresponds to a discrete chance
variable X with a �nite set of mutually exclusive and exhaustive states; the
domain of a variable X is denoted by dom(X) = (x1, x2, ..., xl).

Figure 2.1 shows the graph of a BN. The nodes of the network represent
the variables and the arcs of the network represent the properties of (condi-
tional) dependences and independences among the variables as dictated by the
distribution.

Smoking

Lung Cancer Bronchitis

X-ray Dyspnoea

Figure 2.1: The graph of a Bayesian network.

2.2.3 In�uence diagrams

An in�uence diagram (ID) is basically a BN augmented with decision nodes and
value nodes. Thus, an ID consists of an ADG G = (V,E), where the set V has
three types of nodes: chance nodes VC , decision nodes VD and utility nodes
VU .

Figure 2.2 shows the graph of ID. Chance nodes (drawn as circles) represent
chance variables, i.e., events which are not under the direct control of the deci-
sion maker. Decision nodes (drawn as rectangles) correspond to actions under
the control of the decision maker. Utility nodes (drawn as diamonds) represent
the preferences of the decision maker.

Tatman and Schacher (1990) [43] proposed an extended framework of IDs
with super value nodes (SVNs). They distinguished two types of utility nodes:
ordinary utility nodes, whose parents are decision and/or chance nodes, and
super value nodes, whose parents are utility nodes. We assume that there is a
utility node U0 that is a descendant of all the other utility nodes, and therefore
has no children.

There are three types of arcs in an ID depending on the type of node they
go into: arcs into decision nodes, named informational arcs, represent avail-
ability of information; arcs into utility nodes represent functional dependency
and arcs into super value nodes (whose parents are utility nodes) indicate that
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the associated utility function is a combination of the utility functions of the
parents.

Figure 2.2: An in�uence diagram involving two decisions, Dec: Test and Ther-
apy.

We assume that there is a path in the ID that includes all the decision
nodes, which induces a total order among the n decisions {D1, . . . , Dn} and
indicates the order in which they are made. Such order originates a partitioning
of VC into a collection of disjoint subsets C0,C1, ...,Cn, where Ci contains
every chance variable C such that there is an arc C → Di but there is not an
arc C → Dj , j < i; i.e., Ci is the subset of chance variables known for Di but
unknown for any previous decision. This induces a partial order ≺ in VC ∪VD:

C0 ≺ D0 ≺ C1 ≺ ... ≺ Dn ≺ Cn . (2.4)

An in�uence diagram is capable of computing the expected utilities of various
decision options given the information known at the time of the decision. The
values that are known making a decision Dj are known as its informational
predecessors and is denoted iPred(Dj).

A policy for a decision is a family of probability distributions for the options
of the decision, such that there is one distribution for each con�guration of its
informational predecessors, PD(d|iPred(D)). We will focus on policies in which
every probability is either 0 or 1, called a deterministic policy (see Figure 2.3).

A strategy is a set of policies, one for each decision in the in�uence diagram.
Each strategy has an expected utility, which depends on the probabilities and
utilities that de�ne the in�uence diagram and on the policies that constitute the
strategy. A strategy that maximizes the expected utility is said to be optimal.
A policy is said to be optimal if it makes part of an optimal strategy.

Finally, the resolution or evaluation of an in�uence diagram consists of �nd-
ing an optimal strategy and its expected utility, which is the maximum expected
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utility. Thus, the output of the resolution of an ID are the policy tables for each
decision node.

Figure 2.3: Policy table for the decision Therapy.

In real problems, optimal decision tables are very large and virtually impos-
sible to use in practice. In a symmetric decision problem with n variables, where
each variable has m possible values, there are mn scenarios. Given that the sizes
of the tables are exponential in the number of informational predecessors, the
task of �nding explanations is very complex from a computational point of view.

2.2.4 Compact representations of the optimal strategy for

an ID

Given that the size of the tables that result from the evaluation of IDs grows
exponentially with the number of variables, the search for explanations is not an
easy task from a purely computational viewpoint. Several knowledge extraction
techniques proposed in the literature might be used for this purpose, such as
those that are used to construct tree-based classi�ers [10], oblivious read-once
decision graphs [19], KBM2L lists [12], and to identify which nodes are relevant
for each decision node in an in�uence diagram [44, 22]. In this project we focus
on building decision trees [29] because it is one of the most widely used method
for inductive inference. Decision trees have been successfully used in expert
systems for capturing knowledge and furthermore they are intuitive and easy to
understand for the expert users.

2.3 Classi�cation Trees

2.3.1 Comparison between di�erent types of trees

In order to avoid confusion, we should mention that in this master thesis we
refer to three types of trees, which di�er in their purpose, their content, and the
way in which they are built.

Classi�cation trees: are used to classify instances described by a set of
attributes [38, 35]. Each inner node in the tree represent attributes; each branch
represents a possible value of the attribute. Leaf nodes represent classes. Clas-
si�cation trees are built from sets of classi�ed instances, usually in the form of
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a database, using an automatic learning algorithm, such as ID3 or C4.5. Once
they are built, they are used to assign a class to each new instance. Figure 2.4
shows an example of classi�cation tree.

Outlook

Humidity

sunny

Play Baseball: yes

overcast

Wind

rain

Play Baseball: no

high

Play Baseball: yes

normal

Play Baseball: no

strong

Play Baseball: yes

weak

Figure 2.4: Classi�cation tree. The attributes are: Outlook, Humidity, and
Wind; and the target attribute is Play Baseball. We want to decide whether
the weather is amenable to playing baseball.

Decision trees: are probabilistic models for decision analysis. Inner nodes
represent decisions and chance variables. The arcs outgoing from a chance node
represent all the possible outcomes of the associated variable, with the cor-
responding conditional probabilities. The arcs outgoing from a decision node
represent the options available for that decision. Utility nodes represent the
decision maker's values and preferences. Decision trees can be built manually,
i.e., by explicitly encoding its nodes and branches, or generated from a proba-
bilistic graphical model, such as an in�uence diagram [15]. The evaluation of
the decision tree returns the optimal strategy. Figure 2.5 shows an example of
decision tree.
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Figure 2.5: Decision tree equivalent to the ID in Figure 2.2. Each path from
the root node to a leaf node represents a scenario. A red box inside a node
denotes the optimal choice in the corresponding scenario. In this �gure only the
optimal paths are expanded, because we have collapsed the branches that are
suboptimal or have null probability.

Policy trees: represent strategies�in general the optimal strategy�for
decision models [26]. Their nodes represent decisions and chance variables.
Every chance node has several outgoing arcs that represent all the possible
outcomes of the associated variable. Every inner decision node has one outgoing
arc that represents the optimal option in that scenario; exceptionally, when there
is a tie, i.e., when several options have the same expected utility, a decision node
may have several outgoing branches. Every leaf node represents the last decision
made in a scenario. One way of building a policy tree is to build a decision tree,
evaluate it, prune suboptimal branches, and remove the numerical information,
namely, the probabilities and utilities. Another way, proposed in [26] and used
in this thesis, is to build it from the policy tables resulting from the evaluation
of a probabilistic graphical models, such as an in�uence diagram. Figure 2.6
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shows an example of policy tree.

Symptom

Do test?

absent

Do test?

present

Result of test

yes

Therapy:no

negative

Therapy:yes

positive

Therapy:yes

no

Figure 2.6: Policy Tree. The chance nodes are drawn as yellow circles and
decision nodes as blue rectangles.

In the following section we describe in detail classi�cation trees, and the
algorithms for building them. In chapter 3 we show how to build and optimize
policy trees.

2.3.2 Algorithms for learning Classi�cation Trees

In this section we analyze di�erent classi�cation tree algorithms and show how
they di�er from each other.

In order to appreciate the complexity of the problem, consider the example
by Quinlan [37], in which there is a database with two classes and four discrete
attributes, two with two possible values each and two with three. That database
supports over 2.2× 1014 sensible trees. Even for such a simple database an ex-
haustive examination of all of these trees is impractical. In addition a related
problem of trying to �nd a classi�cation tree with the smallest total external
path length consistent with the training database is NP-complete [16]. In light
of this evidence there is a strong argument for the application of heuristic al-
gorithms to this problem. Most algorithms for learning classi�cation trees are
variations of a core algorithm that employs top-down, greedy search through
the space of possible classi�cation trees: the ID3 algorithm.

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan [35].
It creates a tree, �nding for each node (i.e. in a greedy manner) the
categorical attribute that yields the largest information gain for categorical
targets. It is based on entropy. One limitation of ID3 is that it is overly
sensitive to attributes with large numbers of values.

C4.5 [36] is an extension of the ID3 algorithm used to overcome its disadvan-
tages; it is able to:
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� handle training data with missing values of attributes,

� prune the classi�cation tree after its creation, and

� handle attributes with discrete and continuous values.

C5.0 is Quinlan's latest version of ID3, released under a proprietary license.
It uses less memory and builds smaller rule sets than C4.5, while being
more accurate.

CART (Classi�cation and Regression Trees) [5] is very similar to C4.5, but
supports numerical target variables (regression trees) and does not com-
pute rule sets. This software uses a non-parametric decision tree learning
technique that produces either classi�cation or regression trees, depending
on whether the dependent variable is categorical or numeric, respectively.
The CART algorithm looks for the best split by making use of a brute-
force (enumerative) procedure. All the possible splits for all the possible
variables are generated and evaluated. Such a procedure must be per-
formed everytime a node has to be split and can lead to computational
intractability.

SLIQ [27], FAST [31] and GUIDE [24] also use a greedy, top-down recursive
partitioning approach. They primarily di�er in the splitting criteria and
the ways to avoid over�tting.

Evolutionary algorithms (EAs) are inspired on biological evolution [14, 29].
They use random search to solve optimization problems. They navigate
the state-space and �nd near-optimal solutions. It has been shown that
training classi�ers with EAs takes longer than with traditional algorithms.
However EAs obtain really good accuracy in case of noisy data. In a re-
view, Kokol and colleagues [20], present multiple examples of evolutionary
decision-tree applications in the medical domain.

Wei-Yin Loh [25] introduced classi�cation algorithms and compared their capa-
bilities, strengths, and weaknesses.

In the section 2.4 we explain in detail the ID3 algorithm.

2.3.3 Criteria for evaluation Classi�cation Trees

There are three important criteria for evaluating a classi�cation tree: size, ac-
curacy, and understandability.

� Size: One should attempt to minimize the size of the induced tree, as
measured by the number of nodes or leaves, in order to save memory.
If the tree were too big, it would even be impossible to store it on the
working memory.

� Accuracy : This measure refers to the predictive ability of a tree in terms
of classifying an independent set of test data. One can measure this ability
in terms of the error rate, i.e., the proportion of incorrect predictions that
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a tree makes on the test data. The basic algorithm can produce a very
large tree in an e�ort to correctly classify every instance.

� Understandability : Part of the rationale for expert systems is that they
should represent knowledge explicitly so that the expert, and to a certain
extent the user, can readily understand it. Certainly this is one advantage
of trees over other statistical techniques that perform the same function.
Clearly deeper trees are more di�cult to understand by humans.

2.3.4 Appropriate problems for Classi�cation Trees

One of the reasons because classi�cation tree is attractive is because the in-
formation it contains can easily be examined. On the oter hand, one of the
weaknesses of the tree representation is its combinatorial explosion when there
are many variables.

Although a variety of classi�cation tree learning methods have been devel-
oped with di�erent capabilities and requirements, the classi�cation tree learning
algorithm is generally suited when:

� Instances are represented as attribute-value pairs.

� The target function has discrete output values.

� The training data contains errors.

� The training data contains missing attribute values.

Many practical problems have been found to �t these characteristics. For exam-
ple, classi�cation tree learning has been applied to problems such as classifying
medical patients by their disease or symptoms. In general, classi�cation trees
are commonly used for decision making.

Currently, there are software packages for building and evaluating proba-
bilistic graphical models which provide representations of classi�cation trees,
such as deal [4] and Weka [45]. These tools allow the user to build di�erent
models or prototypes and select the most suitable one.

2.4 The ID3 algorithm

ID3 begins with the question �which attribute should be tested at the root of
the tree?� To answer this question, each instance attribute is evaluated using
statistical test to determine how well it alone classi�es the training examples.
The best attribute is selected and used at the root node of the tree. A descendant
of the root node is then created for each possible values of this attribute, and
the training examples are sorted to the appropriated descendant node. The
entire process is then repeated using the training examples associated with each
descendant node to select the best attribute to test at that point in the tree.
This forms a greedy search for an acceptable classi�cation tree, in which the
algorithm never backtracks to reconsider earlier choices.
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The main ideas behind the ID3 algorithm are:

� Each non-leaf node at the three corresponds to an input attribute, and
each arc to a possible value of that attribute. A leaf node corresponds to
the expected value of the output attribute when the input attributes are
described by the path from the root node to that leaf node.

� Entropy is used to determine how informative a particular input attribute
is about the output attribute for a subset of the training data. Entropy is a
measure of uncertainty in communication systems introduced by Shannon
(1948)[41]. It is fundamental in modern information theory.

We summarize the ID3 algorithm (Algorithm 2.1). This algorithm grows the
tree top-down until the tree perfectly classi�es the training instances or until
all attributes have been used.

Algorithm 2.1 ID3 (Instances, Target_attribute, Attributes)
Instances are the training examples, Target_attribute is the attribute whose
value is to be classi�ed by the tree. Attributes is a list of the input at-
tributes. It returns a classi�cation tree that correctly classi�es the given in-
stances.

1: Create a Root node for the tree
2: if all Instances have the same value in Target_attribute then
3: return the single-node tree Root, with label = value
4: end if
5: if Attributes is empty then
6: return the single-node tree Root, with label = most common value of

Target_attribute in Instances.
7: end if
8: Otherwise Begin:
9: Choose the attribute A from Attributes that best (highest information gain)

classi�es Instances.
10: The attribute of Root is A.
11: for each possible value vi of A do
12: Add a new tree branch below Root, corresponding to the test A = vi. Let

Instancesvi be the subset of Instances that have value vi for A.
13: if Instancesvi is empty then
14: below this new branch add a leaf node with label = most common value

of Target_attribute in Instances.
15: else
16: below this new branch add the subtree: ID3(Instancesvi, Tar-

get_attribute, Attributes- {A} )
17: end if
18: end for
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2.4.1 Which Attribute is the Best Classi�er?

We want to select the attribute that is most useful for classifying examples at
each node in the tree. For that, ID3 de�ne a statistical property called infor-
mation gain, that measures how well a given attribute separates the training
examples according to their target classi�cation.

2.4.1.1 Entropy

In order to de�ne information gain, we begin by de�ning a measure called en-
tropy. In information theory, entropy is a measure of the uncertainty about a
source of messages. The more uncertain a receiver is about a source of messages,
the more information that receiver will need in order to know what message has
been sent.

If the target attribute can take on c di�erent values, the the entropy of a set
of instances S relative to this c-wise classi�cation is de�ned as

Entropy (S) =

c∑
i=1

−pi log2 pi (2.5)

where pi is the proportion of S belonging to class i. The logarithm is base 2
because entropy is a measure of the expected encoding length measured in bits.
Note that the entropy is 0 if all members of S belong to the same class, and the
entropy is 1 when the collection contains an equal number of examples of each
class. Figure 2.7 shows the form of the entropy function relative to a boolean
classi�cation, as pi varies between 0 and 1.
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Figure 2.7: The entropy function relative to a boolean classi�cation, where p is
the proportion of positive examples in S and varies between 0 and 1.

2.4.1.2 Information Gain

Given entropy as a measure of the impurity in a collection of training examples,
the information gain is a measure of the e�ectiveness of an attribute in classi-
fying the training data. It simply measures the expected reduction in entropy
caused by partitioning the examples according to this attribute.
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The information gain of an attribute A relative to a collection of examples
S, is de�ned as

Gain (S,A) = Entropy (S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy (Sv) (2.6)

where V alues (A) is the set of all possible values for attribute A, and Sv

is the subset of S for which attribute A has values v. Note the �rst term in
equation 2.6 is just the entropy of the original collection S, and the second term
is the expected value of the entropy after S is partitioned using attribute A. The
Gain (S,A) is therefore the expected reduction in entropy caused by knowing
the value of attribute A.

Information gain is the measure used by ID3 to select the best attribute at
each step in growing the tree. ID3 algorithm computes the information gain
for each attribute, and selects the one with the highest gain. In case of having
attributes with the same information gain, the algorithm selects randomly an
attribute.

2.4.1.3 Alternative Measures for Selecting Attributes

There is a natural bias in the information gain measure that favors attributes
with many values over those with fewer values. As an extreme example, let us
consider that the attribute Age takes 15 values, from 15 to 30 years old. If we
were to add this attribute to the data in Table 2.8 it would have the highest
information gain of any of the attributes because Age has so many possible
values that is bound to separate the training examples into very small subsets .
Because of this, it will have a very high information gain relative to the training
examples, despite being a very poor predictor. Thus, it would be selected as
the attribute for the root node and lead to a (quite broad) tree of depth.

To avoid this di�culty several alternative measures for selecting attributes
have been proposed. One alternative measure that has been used successfully
is the gain ratio [35]. This measure penalizes attributes such Age by adding a
term, called Split Information, that is sensitive to how broadly and uniformly
the attribute splits the data:

SplitInformation (S,A) = −
c∑

i=1

|Si|
|S|

log2
|Si|
|S|

(2.7)

where S1 through Sc are the c subsets of examples resulting form partitioning
S by the c-valued attribute A. The Gain Ratio measure is de�ned in terms of the
earlier Information Gain measure, as well as this Split Information, as follows

GainRatio (S,A) =
Gain (S,A)

SplitInformation (S,A)
(2.8)

Note that the Split Information term discourages the selection of attributes
with many uniformly distributed values.
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2.4.2 Example Classi�cation Tree

Figure 2.8: Optimal policy table as an example data set.

An example data set will be used to understand how a classi�cation tree is
built (Figure 2.8). This policy table comprises two parts: (1) a set of all vari-
able con�gurations (2) the table content, i.e. the optimal alternative. In this
dataset, there are eight training examples and four categorical attributes (the
term attributes will be used in the following instead of `variables'): IMC, Dia-
betes, Allergy ATB, and Do Implant?. We are interested in building a system
which will enable us to decide whether or not to Do an Implant on the basis
of the IMC, Diabetes, and Allergy ATB factors. From this point on, we will
consider the attribute we wish to predict or classify, i.e. Do Implant?, as the
output attribute or target attribute, and the other attributes as input attributes.

The �nal classi�cation tree learned by ID3 is shown in Figure 2.9.

Diabetes

Allergy ATB

absent

Allergy ATB

present

Do Implant?:yes

no

IMC

yes

Do Implant?:yes

no

Do Implant?:no

yes

IMC

no

Do Implant?:no

yes

Do Implant?:yes

no

Do Implant?:no

yes

Figure 2.9: A classi�cation tree for the target attribute Do Implant?.

According to the information gain measure, the Diabetes attribute provides
the best prediction of the target attribute, Do Implant?, over the training ex-
amples. Therefore, Diabetes is selected as the attribute for the root node, and
branches are created below the root for each of its possible values (i.e., absent
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and present).

2.4.3 ID3 Capabilities and Limitations

In terms of ID3 search space and search strategy, we can get the next features
[29]:

� ID3 searches complete hypothesis space, relative to the available attributes.
ID3 avoids one of the major risks of methods that search incomplete hy-
pothesis spaces.

� ID3 maintains only a single current hypothesis as it searches through the
space of decision trees. By determining only a single hypothesis, ID3
loses the capabilities that follow from explicitly representing all consistent
hypotheses.

� ID3 in its pure form performs no backtracking in its search. Once it selects
an attribute to test at a particular level in the tree, it never backtracks
to reconsider this choice. Therefore, it is susceptible to the usual risks
of hill-climbing search without backtracking: converging to locally optimal
solutions that are not globally optimal. A possible solution for this problem
is post-pruning the tree.

� ID3 uses all training examples at each step in the search to make statis-
tically based decisions regarding how to re�ne its current hypothesis. One
advantage of using statistical properties of all the examples (e.g., infor-
mation gain) is that the resulting search is much less sensitive to errors in
individual training examples.

� ID3 can have di�culties when an input attribute has many possible val-
ues, because the information gain tends to favor attributes which have a
large number of values. Quinlan (1986) [35] suggests a solution based on
considering the amount of information required to determine the value of
an attribute for a set data (see section 2.4.1.3).

� The computational time required by ID3 grows linearly with the number of
training examples and exponentially with the number of attributes.

2.5 OpenMarkov

OpenMarkov1 is an open-source software tool for editing and evaluating prob-
abilistic graphical models (PGMs) developed by the Research Centre for Intel-
ligent Decision-Support Systems of the UNED in Madrid, Spain. The develop-
ment language of OpenMarkov is Java, so that it can run on di�erent platforms.

1At www.openmarkov.org/ it is possible to obtain the source code, executable Java �les,

technical documents, and additional documentation about OpenMarkov.
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OpenMarkov is able to represent several types of networks, such as Bayesian
networks (BNs), Markov networks or in�uence diagrams (IDs). In OpenMarkov
a probabilistic network is represented as a generic data structure consisting
mainly of a graph, a set of variables, and a set of potentials. Three types of
variables can be used: �nite-states, numerical, and discretized. There are two
types of links: directed and undirected. It also has several types of potentials:
uniform, table, delta...

The graphical user interface (GUI) is very similar to those of other software
tools for PGMs. It has two main working modes:

� edition - for editing BNs and IDs graphically .

� inference - for �nding optimal policies, propagating evidence, and explain-
ing the results.
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Chapter 3

Building and Optimizing

Policy Trees

The �rst aim of this chapter is to present the implementation of a new method of
representation called Policy Trees (PTs) proposed in [26]. In this work, the PTs
have been mathematically formulated by means of the algorithm ID3. Secondly,
as a way of optimization we propose two methods to reduce the size of the PTs.

3.1 A new algorithm for building policy trees

A Policy Tree (PT) [26] consists of chance and decision nodes, and arcs labeled
with the states of the nodes. The leaves of the PT indicate the optimal decision
of the corresponding scenario. PTs only represent scenarios that are possible by
following the optimal strategy.

The problem of building a PT given the tables that result from the evaluation
of an in�uence diagram is similar to building a classi�cation tree (CT). Each
scenario in the PT, de�ned by a set of chance and decision variables, is equivalent
to an instance de�ned by a set of attributes in a classi�cation problem. However,
there are also important di�erences.

When viewing the set of scenarios of a decision problem as if they were
the instances of a classi�cation problem, we �nd that they have the following
features:

� All the �instances� are correctly classi�ed.

� All the attributes are discrete.

� There are no missing values.

� There is one and only one �instance� for each combination of the values of
the �attributes�.

� There are as many �classes� as options for the last decision.

31



CHAPTER 3. BUILDING AND OPTIMIZING POLICY TREES 32

� We need a 100% accuracy in the �classi�cation�, i.e., we need to build a
perfect tree [35].

Because of the similarity with CTs, we decided to use the ID3 algorithm to build
PTs, but that algorithm had to be adapted to this particular type of �classi�-
cation�. In particular, the requirement 100% accuracy prevents the application
of pruning techniques which might lead to suboptimal PTs.

We have used the Gain Ratio as the measure to select attributes in order to
avoid the natural bias in the Information Gain. The result of this adaptation is
the Algorithm 3.1. Note the requirement that the decision nodes should appear
in the PT in the same order as in the DI.

In the next section we explain how to implement a PT whit an example.

Algorithm 3.1 Policy trees (ID)
ID is the in�uence diagram. This algorithm returns a Policy Tree
(PT).

1: Identify the order of the decision nodes in the ID.
2: for the �rst decision node to the last decision node do
3: Read the optimal policy table of the decision node in order to get In-

stances.
4: Remove from Instances those cases of suboptimal policies or null proba-

bility.
5: if it is the �rst node then
6: ID3 (Instances, Target_attribute, Attributes) (algorithm 2.1). It

returns the tree structure (PT) corresponding to the decision
node.

7: else {for the remaining decision nodes}
8: for each branch of the PT created in the previous decision node do
9: Filter Instances in order to get Filtered Instances*.
10: ID3 (Filtered Instances, Target_attribute, Attributes) (algorithm

2.1). It returns the subtree structure corresponding to the decision
node.

11: Add at the end of the corresponding branch of the PT the new sub-
tree.

12: end for
13: end if
14: end for
15: return PT
* Filtered instances are obtained as a result of �ltering the optimal policy table
(Instances) for those values of the attributes that appeared in the corresponding
branch.
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3.2 Example Policy Tree

As an example, we explain how to build a PT for the in�uence diagram shown
in Figure 3.1 which has two decisions: Do test? and Therapy. The decision Do
test? must be made �rst because there is a directed path from it to Therapy.
The informational predecessors of Do test? are Sex and Symptom. Those of
Therapy are Sex, Symptom, Do Test?, and Result of Test.

Figure 3.1: Decide-Test in�uence diagram. Chance nodes: Sex, Symptom, Dis-
ease and Result of test ; Decision nodes: Do test? and Therapy.

The evaluation of this ID returns two policy tables: Table 3.1 for Do test?
and Table 3.2 for Therapy. These tables contain a row for each con�guration
of its informational predecessors. The last column in each table displays the
optimal decision for each scenario. The policy table for Therapy originally
contained 24 rows, which is the size of the state space of its informational
predecessors, but we have omitted the rows corresponding to suboptimal options
or null probability.

Sex Symptom Do Test?
Female Absent yes
Female Present no
Male Absent yes
Male Present no

Table 3.1: Policy table for Do Test?.
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Sex Symptom Do Test? Result of Test Therapy
Female Absent no not-performed no
Female Absent yes negative no
Female Absent yes positive yes
Female Present no not-performed yes
Female Present yes negative yes
Female Present yes positive yes
Male Absent no not-performed no
Male Absent yes negative no
Male Absent yes positive yes
Male Present no not-performed yes
Male Present yes negative yes
Male Present yes positive yes

Table 3.2: Policy table for Therapy (short version).

For the construction of the PT (Figure 3.2), �rst of all our algorithm calcu-
lates the subtree for the �rst decision node Do Test? following the ID3 algorithm
and considering its predecessors Sex and Symptom (see Figure 3.2 (A)). Later,
for each branch new subtrees for Therapy are calculated (see Figure 3.2 (B)
and (C)). The subtrees for Therapy are calculated following the ID3 algorithm
considering its predecessors except of Symptom and Do test? because these
attributes have been already used. The order in which the nodes are traversed
from top to down is the chronological order in which decisions are made and/or
outcomes of chance events are revealed to the decision-maker. Thus, the de-
cision tree gives a chronological and fully detailed view of the structure of the
decision problem. Note that, in this example the attribute Sex doesn't have
any in�uence over Do test? neither Therapy, which means that ID3 will not
consider irrelevant variables.

Symptom

Do test?

absent

Do test?

present

Result of test

yes

Therapy:no

negative

Therapy:yes

positive

Therapy:yes

no

(A)

(B) (C)

Figure 3.2: Decide-Test policy tree. The blue rectangles indicate subtrees for
each decision node, (A) for Do Test?, (B) and (C) for Therapy.
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Furthermore, our algorithm e�ectively ignores the impossible information
states for the decision and chance variables (i.e., Do Test? = yes, Result of test
= not-performed).

3.3 Policy Tree optimization

In order to reduce the size of the PTs, two methods (Policy Tree restructuring
and Policy Tree coalescing) have been implemented in this section. We are
assuming here that the following proposed methods are implemented during the
representation phase after the evaluation of an in�uence diagram and given a
policy tree.

PT      PT

algorithm      Restructuring      Coalescing

Figure 3.3: Block Diagram.

3.3.1 Policy Tree restructuring

Given a policy tree, we realized that a decision node might have the same value
(same optimal policy) in all its appearances in the PT. An example is showed
in the section 4.2.4. In this example, the PT recommends to perform the PET
and never to perform the MED, in every branch (see Figure 4.11).

We propose a restructuring method to simplify these kind of trees, moving
those decision nodes to the root of the tree, reducing the number of nodes. In
the previous example, the restructuring consists on moving the PET and MED
decision nodes to the root of the tree (see Figure 4.12). Note that, in these new
PT representation the decision nodes don't appear in the partial order.

3.3.2 Policy Tree coalescing

The policy tree solution can be made more e�cient by identifying coalescence
[32]. Coalescence can be a useful mechanism for depicting more compact and
convenient representations of decision trees. The use of coalescence has often
been ad-hoc for decision trees, and it has been di�cult to automate [3]. In Figure
3.4, the decision tree shows two sub-trees that are repeated once (marked in blue
lines) as well as two repeated leaves (marked in orange lines). We can exploit
this repetition using coalescence.
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Figure 3.4: Policy tree example. Marked in blue and orange lines those nodes
and branches that can be merged by coalescence.

The proposed algorithm for identifying coalescence is described in Algorithm
3.2. The algorithm recursively analyzes branches that are placed "near" in
order to �nd coalescence. Given two close branches, from the leaf nodes and
proceeding toward the root node, the algorithm merges only those nodes with
the same values and same children. In this project a coalescence index (ci) was
de�ned as the maximum distance between two branches that can be merged.
For example, if ci is equal to 1 (�rst order neighbor), it means that only adjacent
branches can be merged in case of coalescence. In the same way if ci is equal to
2 (second order neighbor), it means that in addition to those branches merged
by ci<2, if two branches are separated only by another one, they also can be
merged and so on. This way with ci=n, branches which are m-order neighbors
(being m<=n) are merged. The maximum value of coalescence index allowed
by this algorithm is equal to the half of the number of branches of the Policy
Tree.

ci =

{
1, 2, ...,

number of branches of PT

2

}
(3.1)
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Algorithm 3.2 Coalescence (Policy Tree, ci)
Coalescence is done during the representation phase given
a Policy Tree (PT) and ci is the coalescence in-
dex.

1: for each index = {1, 2, 3, ..., ci} do
2: for each branch(j) do
3: Comparison between branch(j) and branch(j+index). Identi�cation of

repetitive nodes between consecutive nodes in both branches, from the
leaf nodes toward the root node.

4: end for
5: end for
6: for each node of the PT do
7: if the nodej is within a branch(j) and has been identi�ed equal to another

nodek within a branch(k) then
8: if (children of nodej = children of the nodek) then
9: Both nodes will merge.
10: end if
11: end if
12: end for

Figure 3.5 shows the simpli�ed decision tree of Figure 3.4 after applying the
coalescence method with a coalescence index equal to 2. Note that, coalescing
Figure 3.4 to Figure 3.5 yields a saving in number of branches and nodes. The
resulted tree is not longer a rooted tree, but it is still a directed acyclic graph.
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present
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yes

Do test B?

negative
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Therapy:no
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Therapy:yes

positive
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Figure 3.5: Policy tree example after coalescing (ci = 2).
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Chapter 4

Evaluation of the new

algorithm

In this chapter there are a total of �ve tryouts in order to show how our algorithm
works with di�erent IDs.

4.1 Generation of IDs

For testing the proposed algorithm we have created three IDs (Example 1, Ex-
ample 2, and Example 3) using a method that creates random IDs. Furthermore
we have used two more IDs which re�ect realistic clinical models:

� Example 4: this example is a decision support-system called MEDIASTINET
for the mediastinal staging of non-small cell lung cancer. ML Gallego in his
thesis [26] describes how to built this graph, the variables of the problem,
their domains, and their relations between them.

� Example 5: this example is a decision support-system called ArthroNET.
It is an in�uence diagram with super-value nodes that represents the knee
arthroplasty process and diagnosis of preoperative prosthesis infection.
Diego León Guerra in his master thesis [23] describes how to built this
graph.

4.2 Experiments performed

The evaluation of every ID yielded a decision table for every decision variable
of the ID. Each one contain the optimal decision for each combination of at-
tributes in the tables. For each experiment performed we show the Policy Tree
corresponding to the policy table of the last decision node.

Due to the understandability of a tree is di�cult to quantify or measure,
in the present study, the number of nodes and leaves have been selected as

39
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the measure of the tree sizes. For each PT we record the size of the tree and
computing time. The features of the used laptop are: Intel® Core� i5-3210M
CPU (2.60GHz 1600MHz 3MB), Memory 8GB PC3-12800 DDR3 SDRAM 1600
MHz.

Policy Trees will be sketched by Graphviz [13]. Graphviz is open source
graph visualization software. In this tree representation, chance nodes will be
drawn as yellow circles and decision nodes as blue rectangles.

About the coalescence index, as a rule we choose a value equal to the half
of the number of branches of the PT, due to it is the maximum value allowed
in the proposed algorithm.

4.2.1 Example 1

The in�uence diagram in this example is formed by: two chance nodes (Disease
and Result of test), two decision nodes (by order: Do test? and Therapy) and
two Utility nodes (Health state and Cost of test). The Figure 4.1 shows the
in�uence diagram after computing the posterior probability of each chance and
decision node and the expected utility of each utility node. The global maximum
expected utility of the in�uence diagram is 9.43 (value of the super-value node).

Figure 4.1: Example 1 - Evaluation of the in�uence diagram.

Observe that on one hand, the optimal policy for the decision node Do Test?
is to always do the test. On the other hand, the Therapy should be applied when
the test is done and gives a positive result, and should not be applied when the
test is done and gives a negative result (see Figure 4.2).
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Figure 4.2: Example 1 - Policy Tables for Do Test? and Therapy.

Finally, after evaluating this ID with our algorithm, we obtain the PT that
it is shown in Figure 4.3. Note that, as the optimal policy for the decision node
Do Test? is to always do the test, the probable scenario (but not optimal): Do
Test? = no and Therapy = no, is not represented in the PT.

Do test?

Result of test

yes

Therapy:no

negative

Therapy:yes

positive

if( Do test? == "yes") {
if( Result of test == "negative") {

Therapy = "no";
} else if( Result of test == "positive") {

Therapy = "yes";
}

}

Figure 4.3: Example 1 - Optimal strategy. Policy Tree and inference rules.
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4.2.2 Example 2

The in�uence diagram in this example is formed by: four chance nodes (GenA,
GenB, Enfermedad_Cancer, and Resultado_Prueba), two decision nodes (by
order: Prueba and Quimioterapia) and two Utility nodes (Vida_en_salud and
Coste_prueba). The Figure 4.4 shows the in�uence diagram after computing the
posterior probability of each chance and decision node and the expected utility
of each utility node. The policy table for the decision Quimioterapia has 24
columns, which is the size of the state space of the Quimioterapia informational
predecessors (GenA, GenB, Resultado_Prueba, and Prueba).

Figure 4.4: Example 2 - Evaluation of the in�uence diagram.

The policy tree is shown in Figure 4.5. In contrast to the 24 columns of the
Quimioterapia policy table, this PT has 10 nodes of which 4 are leaves.
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GenA

GenB

ausente

Prueba

presente

Prueba

ausente

Prueba

presente

Resultado_Prueba

si

Quimioterapia:no

negativo

Quimioterapia:si

positivo

Quimioterapia:si

no

Quimioterapia:si

no

Figure 4.5: Example 2 - Optimal strategy. Policy Tree.

Finally, we have applied the coalescing method to the previous PT in order
to reduce the size of the tree, Figure 4.6. In this example, using a coalescence
index (ci) equal to 2, the tree has reduced its size to 7 nodes of which 2 are
leaf nodes. As was mentioned before, the resulting tree is not a rooted tree any
longer, but it is still a directed acyclic graph.

GenA

GenB

ausente

Prueba

presente

Prueba

ausente presente

Resultado_Prueba

si

Quimioterapia:no

negativo

Quimioterapia:si

positivo

no

Figure 4.6: Example 2 - Policy Tree after coalescing (ci = 2).
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4.2.3 Example 3

The in�uence diagram in this example is formed by: eight chance nodes (X1,
X2, X3, X4, X5, X6, X7, and X8 ) and three decision nodes (by order: D1,
D2, and D3 ). The Figure 4.7 shows the in�uence diagram after computing the
posterior probability of each chance and decision node and the expected utility
of the utility node U0. The policy table for decision D3 has 1,152 columns,
which is the size of the state space of the informational predecessors of D3 (X2,
X3, X4, X5, X6, X7, X8, D1, and D2 ).

Figure 4.7: Example 3 - Evaluation of the in�uence diagram.

The policy tree in Figure 4.8 shows the whole optimal strategy. The X3
variable is located at the root of the PT because this variable classi�es better
the training data of the decision D1. Notice that X4 is irrelevant for the decision
D1 as well as X6 is irrelevant for the decision D2. This PT has 36 nodes of
which 15 are leaves, thus it is easier to interpret in contrast to its policy table.
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X3

D1

absent

D1

present

D2

no

D3:yes

no

X4

yes

X2

absent

D2

present

D2

absent

X5

present

D3:yes

no

D2

absent

D2

present

D3:yes

no

X7

yes

D3:no

negative

X8

positive

D3:yes

absent

D3:no

present

X7

yes

X2

negative

X6

positive

D3:no

absent

X5

present

D3:no

absent

X8

present

D3:yes

absent

D3:no

present

D3:yes

negative

X2

positive

D3:yes

absent

X5

present

X8

absent

D3:yes

present

D3:yes

absent

D3:no

present

Figure 4.8: Example 3 - Optimal strategy. Policy Tree.

The PT after coalescing using a coalescence index (ci) equal to 7, is depicted
on Figure 4.9. This tree has reduced its size to 19 nodes of which 2 are leaf
nodes. Thus by coalescing, the PT has reduced its number of nodes to a 52%.
This reduction in number of nodes is at expense of having crossing paths, that
make harder the tree interpretation. However, this new PT shows clearly the
behavior of the X8 node in the optimal strategy: when the value of X8 is absent
D3 takes the state yes, and when the value of X8 is present D3 takes the state
no.

Finally, the running time for building the PT after applying the coalescence
method was only 3 seconds.
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X3

D1

absent

D1

present

D2

no

D3:yes

no

X4

yes

X2

absent D2

present

absent X5

present

absent

D2

present

X7

yes

D3:no

negativeX8

positive

absent present

X7

yes

X2

negativeX6

positive

absent

X5

present

absent

present

negative

X2

positive

absent

X5

present

present

absent

Figure 4.9: Example 3 - Policy Tree after coalescing (ci = 7).
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4.2.4 Example 4

Figure 4.10 shows a decision support-system for the mediastinal staging of non-
small cell lung cancer. The in�uence diagram in this example is formed by:
eight chance nodes (N2_N3, CT_scan, TBNA, PET, EBUS, EUS, MED, and
MED_Sv) and �ve decision nodes (by order: Decision_TBNA, Decision PET,
Decision_EBUS_EUS, Decision_MED, and Treatment). The policy table for
the Treatment decision has 15,552 columns, which is the size of the state space
of the informational predecessors of Treatment.

Figure 4.10: Example 4 - In�uence Diagram (MEDIASTINET).

The policy tree in Figure 4.11 shows the whole optimal strategy. This PT
has 33 nodes of which 9 are leaves and it is easier to interpret in contrast to the
15,552 columns of its policy table. Note that the PT recommends to perform
the PET and never to perform the MED, in every branch. Thus, after applying
the restructuring method, the PT has reduced the number of nodes to 27 (see
Figure 4.12). In this new tree, the decision nodes don't appear in the partial
order although, as we have explained before, the PT has been calculated using
this order.
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CT_scan

Decision_TBNA

negative

Decision_TBNA

positive

Decision_PET

no

PET

yes

Decision_EBUS_EUS

negative

Decision_EBUS_EUS

positive

Decision_MED

no_test

Treatment:thoracotomy

no

Decision_MED

ebus

EBUS

no

Treatment:thoracotomy

negative

Treatment:chemotherapy

positive

Decision_PET

yes

TBNA

yes

PET

negative

PET

positive

Decision_EBUS_EUS

negative

Decision_EBUS_EUS

positive

Decision_MED

no_test

Treatment:thoracotomy

no

Decision_MED

ebus

EBUS

no

Treatment:thoracotomy

negative

Treatment:chemotherapy

positive

Decision_EBUS_EUS

negative

Decision_EBUS_EUS

positive

Decision_MED

ebus

EBUS

no

Treatment:thoracotomy

negative

Treatment:chemotherapy

positive

Decision_MED

no_test

Treatment:chemotherapy

no

Figure 4.11: Example 4 - Optimal strategy. Policy Tree.

Decision_PET

Decision_MED

yes

CT_scan

no

Decision_TBNA

negative

Decision_TBNA

positive

PET

no

Decision_EBUS_EUS

negative

Decision_EBUS_EUS

positive

Treatment:thoracotomy

no_test

EBUS

ebus

Treatment:thoracotomy

negative

Treatment:chemotherapy

positive

TBNA

yes

PET

negative

PET

positive

Decision_EBUS_EUS

negative

Decision_EBUS_EUS

positive

Treatment:thoracotomy

no_test

EBUS

ebus

Treatment:thoracotomy

negative

Treatment:chemotherapy

positive

Decision_EBUS_EUS

negative

Decision_EBUS_EUS

positive

EBUS

ebus

Treatment:thoracotomy

negative

Treatment:chemotherapy

positive

Treatment:chemotherapy

no_test

Figure 4.12: Example 4 - Policy Tree after restructuring.

Finally, we have applied the coalescing method to the previous PT in order
to reduce the size of the tree, Figure 4.13. In this example, using a coalescence
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Decision_PET

Decision_MED

yes

CT_scan

no

Decision_TBNA

negative

Decision_TBNA

positive

PET

no

Decision_EBUS_EUS

negative

Decision_EBUS_EUS

positive

Treatment:thoracotomy

no_test EBUS

ebus

negative

Treatment:chemotherapy

positive

TBNA

yes

negative

PET

positive

negative

Decision_EBUS_EUS

positive

no_test

Figure 4.13: Example 4 - Policy Tree after restructuring and coalescing (ci =
4 ).

index (ci) equal to 4, the tree has reduced its size to 14 nodes of which 2 are
leaf nodes.

In order to understand the reasons behind the Treatment, the PT in Fig-
ure 4.13 reveals easily the clinical interpretation. For example, Scenario 1 (
Decision PET: yes, Decision_MED: no, CT_scan: positive, Decision_TBNA:
yes, TBNA: positive, PET: negative, Decision_EBUS_EUS: ebus, EBUS:
negative, and Treatment: thoracotomy) compared to Scenario 2 (Decision PET:
yes, Decision_MED: no, CT_scan: positive, Decision_TBNA: yes, TBNA:
negative, PET: positive, Decision_EBUS_EUS: ebus, EBUS: negative, and
Treatment: thoracotomy) reveals that, the suggested optimal strategy is the
same either with TBNA: positive and PET: negative, or TBNA: negative and
PET: positive.

In Table 4.1, we show that after applying the restructuring and coalescing
methods, the �nal PT has reduced its number of nodes to a 42%, resulting a
more compact tree. The running time for building the whole PT was only 2
seconds.
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Number of Nodes Number of leaf Nodes Time [seconds]
PT 33 9 2

PT restructuring 27 9 2
PT restructuring

14 2 2
& coalescing

Table 4.1: Example 4 - Comparison between PT sizes and time computing after
applying the restructuring and coalescing methods.
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4.2.5 Example 5

The in�uence diagram ArthroNET (Figure 4.14) is formed by eleven chance
nodes (IMC, Diabetes, AlergiaATB, Isquemia, Infección PTR, CC_Drenaje,
PCR, VSG, Movilidad, Ga67 Tc99, and Cortes Congelados) and four decision
nodes (by order: Realizar Implante, Realizar Gammagrafías, Realizar Biopsia
Sinovial, and Tratar Infección PTR).

Figure 4.14: Example 5 - In�uence Diagram (ArthroNET).

The policy table for decision Tratar Infección PTR has 41,472 columns and
the �nal policy tree after evaluating this ID with our algorithm has 673 nodes
of which 214 are leaf nodes (the PT �gure is not represented due to the huge
size of the tree).

In this example �rst of all we will show the PT after coalescing with a
coalescence index equal to 3. After applying the coalescing method (ci = 3) the
size of the the PT is 264 nodes of which 16 are leaf nodes, reducing the number
of nodes to a 41,4%. A section of this �nal PT is depicted on Figure 4.15. Note
that this reduction in number of nodes is at expense of having crossing paths.
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Figure 4.15: Example 5 - A section of the Policy Tree after coalescing (ci = 3 ).
The whole tree size is 264 nodes.
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Figure 4.16 depicts on the PT tree size (A) and computing time (B), as
a result of using di�erent values of coalescence indexes (from 1 to 100). The
reduction of nodes in the PT after applying di�erent coalescence indexes is
exponential. The minimum size of the coalescing PT is with coalescence index
equal to 100 and the computing time in this case is 60 seconds. This PT is
depicted on Figure 4.17 (Part 1) and Figure 4.18 (Part 2) and its size is 76
nodes, reducing the number of nodes to a 11.3%. Note that in this case only
there are 2 leaf nodes, one for each state of Tratar Infección PTR.
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Figure 4.16: (A) Number of nodes and (B) computing time, for di�erent coa-
lescence indexes.
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Figure 4.17: Example 5 - Part 1 - PT after coalescing (ci = 100). The whole
tree size is 76 nodes.
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Figure 4.18: Example 5 - Part 2 - PT after coalescing (ci = 100). The whole
tree size is 76 nodes.
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Although the interpretation of the PT in Figure 4.17 and Figure 4.18 is ar-
duous, it enhances the recognition of patterns in the ending nodes of the tree.
Clinicians may be interested in examining and comparing scenarios to under-
stand the reasons behind the treatment Tratar Infección PTR. For example,
Table 4.2 and Table 4.3 present 4 scenarios of optimal strategies that can be
extracted easily from the PT. The clinical interpretation of Scenario 1 (Realizar
Implante: si, Realizar Gammagrafías: si, Realizar Biopsia Sinovial: no,
Tratar Infección PTR: no) compared to Scenario 2 (Realizar Implante: si, Re-
alizar Gammagrafías: si, Realizar Biopsia Sinovial: si, Tratar Infección
PTR: no) reveals that, the di�erence between them can be explained by noting
that the Ga67 Tc99 is di�erent for both scenarios. On the other hand, the
clinical interpretation of Scenario 3 (Realizar Implante: si, Realizar Gamma-
grafías: si, Realizar Biopsia Sinovial: no, Tratar Infección PTR: no) compared
to Scenario 4 (Realizar Implante: si, Realizar Gammagrafías: si, Realizar Biop-
sia Sinovial: no, Tratar Infección PTR: no) reveals that, despite of the di�erent
combination of values of PCR and VSG the optimal strategy is the same.

# Scenario Description
Scenario 1 Diabetes: ausente, IMC: no, Realizar Implante: si, Aler-

giaATB: si, CC_Drenaje: mayor 800 cc y menor 1000 cc,
Isquemia: menor 1 hora y media, Movilidad: ROM < 65,
PCR: valor > 10 mg/l tras 3 semanas, VSG: valor =<
30 mm/h tras 6 meses, Realizar Gammagrafías: si, Ga67
Tc99: negativo , Realizar Biopsia Sinovial: no, and
Tratar Infección PTR: no.

Scenario 2 Diabetes: ausente, IMC: no, Realizar Implante: si, Aler-
giaATB: si, CC_Drenaje: mayor 800 cc y menor 1000 cc,
Isquemia: menor 1 hora y media, Movilidad: ROM < 65,
PCR: valor > 10 mg/l tras 3 semanas, VSG: valor =<
30 mm/h tras 6 meses, Realizar Gammagrafías: si, Ga67
Tc99: positivo,Realizar Biopsia Sinovial: si, Cortes
Congelados: =<5 PMFN, and Tratar Infección PTR:
no.

Table 4.2: Two scenarios of optimal strategies. The decision variables of the
ID are shown in blue and the di�erences between Scenario 1 & Scenario 2 are
shown in bold face.
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# Scenario Description
Scenario 3 Diabetes: ausente, IMC: no, Realizar Implante: si, Aler-

giaATB: si, CC_Drenaje: mayor 800 cc y menor 1000 cc,
Isquemia: menor 1 hora y media, Movilidad: ROM < 65,
PCR: valor >10 mg/l tras 3 semanas, VSG: valor
=< 30 mm/h tras 6 meses, Realizar Gammagrafías: si,
Ga67 Tc99: negativo , Realizar Biopsia Sinovial: no, and
Tratar Infección PTR: no.

Scenario 4 Diabetes: ausente, IMC: no, Realizar Implante: si, Aler-
giaATB: si, CC_Drenaje: mayor 800 cc y menor 1000 cc,
Isquemia: menor 1 hora y media, Movilidad: ROM < 65,
PCR: valor =< 10 mg/l tras 3 semanas, VSG: valor
> 30 mm/h tras 6 meses, Realizar Gammagrafías: si,
Ga67 Tc99: negativo , Realizar Biopsia Sinovial: no, and
Tratar Infección PTR: no.

Table 4.3: Two scenarios of optimal strategies. The decision variables of the
ID are shown in blue and the di�erences between Scenario 3 & Scenario 4 are
shown in bold face.

4.3 Discussion and related work

The main drawback of representing the optimal policy in the form of policy
tables is that these tables can have a large size and for a decision maker it can
be impossible to draw any useful information from them. In OpenMarkov it is
possible to expand this tables into an equivalent decision tree. The strengths
of the decision tree representation method are its simplicity and its �exibility.
Decision trees are based on the semantics of scenarios and each path in a deci-
sion tree from the root to a leaf represents a scenario. These semantics are very
intuitive and easy to understand. One of the weaknesses of the decision tree rep-
resentation method is its combinatorial explosiveness in problems in which there
are many variables. It stems from the fact that the number of scenarios is an
exponential function of the number of variables in the problem. In a symmetric
decision problem with n variables, where each variable has m possible values,
there are mn scenarios. Since a decision tree representation depicts all scenarios
explicitly, it is computationally infeasible to represent a decision problem with
many variables.

Policy trees have been proposed as an alternative representation to policy
tables and decision trees. Whe have demonstrated that PTs provide a powerful
formalism for representing comprehensible optimal policies. Furthermore, we
have shown that, if a variable of the ID is not relevant in the optimal strategy,
the PT simply ignores this variable. As regards time computing, the top down
method that is used for constructing PTs is computationally undemanding.

Other authors [8, 12, 2] deal with the problem of the size of policy tables,
turning the tables into minimum storage lists (called KBM2L). From the point
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of view of the decision maker, these lists are less intuitive than PTs. But these
authors found that a good organization reduces the memory requirements to
store optimal decision tables and also it extracts qualitative information about
variables.

Due to the exponential growth of the tree representation, the PTs are limited
to small problems. Coalescence can be a useful mechanism for depicting more
compact representations of policy trees. The higher the coalescence index is,
the more compact the tree is. But on the other hand, in case of having IDs with
many variables, the higher the coalescence index is, the more crossing paths
the tree can have. Thus, compacting a tree by coalescence can result in an
intricate tree in those cases. Although the coalescence method seems to fail
in big problems like in example 5, the human expert can use this method for
enhancing the recognition of patterns and comparing scenarios.

In the literature, one of the used methods to improve the induction and the
size of classi�cation trees is the use of evolutionary algorithms (EAs) [20]. ID3
is able to generate only a suboptimal tree because anytime a split is chosen a
certain subspace of possible trees is not investigated anymore by the algorithm.
The power of EAs o�ers the capability of enhancing the desired characteristics
such as accuracy while minimizing the size of the classi�cation tree. On the
other hand, it has been shown that training classi�ers with EAs takes longer
than with traditional algorithms like ID3.



Chapter 5

Conclusions and Future Work

This chapter analyzes the work done during this master thesis, extracting the
main technical conclusions. Besides, this chapter pretends to guide readers
interested in continuing and extending this work. As in any research project,
the work that has been presented in this thesis can be both improved and
extended.

5.1 Technical work and conclusions

The main output after solving an ID is the optimal strategy. Software tools such
as OpenMarkov usually present each optimal policy in the form of a policy table,
which contains a column for each con�guration of the informational predecessors
of the decision. One of the main drawbacks is that in some cases these tables
can have a large size.

In OpenMarkov it is possible to expand this tables into an equivalent decision
tree, but as this decision tree depicts all scenarios explicitly, it is computationally
infeasible to represent a decision problem with many variables. This evidence,
brings to light the need of having an alternative representation to policy tables
that could summarize the optimal policy. We have implemented Policy trees
(PT) as a compact way of representing the results of the DI on best policies.
The visualization of the policy tables as policy trees helps to reduce search for
information and enhances the recognition of patterns. Furthermore, if a variable
is not relevant in a scenario, the PT simply ignores this variable.

We have shown how one could construct a Policy Tree using the ID3 algo-
rithm. For ID3, the two key concepts are entropy (measurement of uncertainty)
and information gain. Using these parameters, we created a top-down tree that
the decision maker can traverse in order to make a decision given a new data set.
The recursive partitioning algorithms (like ID3) make use of greedy heuristics
to reach a compromise between the tree quality and the computational e�ort.
This kind of greedy approach, that splits the data locally (i.e., in a given node)
and only once for each node, allows to grow a tree in a reasonable amount of

59
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time. On the other hand, this rule is able to generate only a suboptimal tree
because anytime a split is chosen a certain subspace of possible trees is not in-
vestigated anymore by the algorithm. If the optimal tree is included in one of
those subspaces there is no chance for the algorithm of �nding it.

If a PT has several identical subtrees, then the solution process can be
made more e�cient by coalescing the subtrees [32]. The notion of coalescence
is well known for decision trees, and decision tree �gures from the literature
often depict coalescence for compactness. It should be noted that automating
coalescence in decision trees is not easy because it involves constructing the
complete uncoalesced tree and then recognizing repeated subtrees. In this study
we have implemented a coalescing method that, on one hand it reduces the
number of nodes in the policy tree. However, on the other hand as a drawback,
we have shown that in case of having trees of huge dimensions the coalescence
method can create a complex tree. In those cases, this coalescing method can
be used for recognition of patterns and comparisons between scenarios.

To sum up, the main advantage of the PT is that once the tree has been
built, the information it contains (optimal strategy) can easily be examined and
it enhances the recognition of patterns. This is an important advantage with
respect to black box machine learning techniques, such as neural nets. However,
the PTs created through complicated policy tables are often so large that the
models they represent are too complex to be understood and the advantage of
decision trees is lost.

5.2 Future research lines

� One of the requirements of ID3 is that all attribute values must be discrete
values. Thus, for handling attributes with continuous values, C4.5
[36] might be used in order to overcome this ID3 disadvantage.

� In this project the Gain Ratio measure was used for selecting attributes.
However, a variety of measures for selecting attributes have been
proposed in the literature [28, 18, 9, 7, 17]. Mingers et al. (1989) [28], pro-
vides an experimental analysis of the relative signi�cant di�erences in the
sizes of the unpruned trees produced by the di�erent selection measures.
He reports signi�cant di�erences in the sizes of the unpruned trees.

� The ID3 algorithm computes the Gain Ratio for each attribute and selects
the one with the highest gain. In case of having attributes with the same
gain, the algorithm selects randomly an attribute. In order to get the most
compact tree, we might need to consider all those equiprobable attributes
and by backtracking check the best attribute.

� In previous studies [8, 12, 2], the authors propose turning the decision
tables into minimum storage lists (called KBM2L), which include the
same knowledge but are much more compact. These authors found that
a good organization reduces the memory requirements to store optimal
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decision tables and also it extracts qualitative information about variables.
Thus, as there is a growing interest in �nding explanations and optimizing
the storage space of the decision tables, the future work can involve this
research line.

� ID3 is a greedy algorithm that is able to generate only a suboptimal tree.
Therefore it seems reasonable to apply alternative methods of optimization
to this problem. Taking these considerations into account, we propose
Evolutionary Algorithms to try to �nd best exploratory trees [30, 20,
39, 40].

� A policy for a decision is a family of probability distributions for the op-
tions of the decision. In this project, we focused on a policy in which every
probability is either 0 or 1, called a deterministic policy. However, after
evaluating an ID, the policy for a decision node could be an equiproba-
ble probability for each of its values when there is not an unique optimal
policy. For those cases, the decision node in the PT should show all its
possible values as optimal decisions. In Example 1 if the Do test? deci-
sion node did not have an unique optimal policy, the PT would be as it is
shown in Figure 5.1.

Do test?

Result of test

yes

Therapy:no

no

Therapy:no

negative

Therapy:yes

positive

Figure 5.1: Policy Tree proposal for equiprobable
strategy of Do Test?.
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