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Abstract 

The autonomous driving has been always a challenging task. A high number of 

sensors mounted in the vehicle analyze the surroundings and provide to the 

autonomous driving algorithm useful information, such as relative distances from 

the vehicle to the different obstacles. Some robotic paradigms, like the reactive 

paradigm, uses this sensorial input to directly create an action linked to the 

actuators. This makes the reactivate paradigm capable to react to unpredictable 

scenarios with relatively low computational resources. However, they lack a robot 

motion planning. This can lead to longer and less comfortable trajectories with 

respect to the hierarchical/deliberative paradigm, which counts with a motion 

planning module over a predefined horizon. Although a local optimization of the 

robot trajectory is now possible under static scenarios, the motion planning 

module comes at a high cost in terms of memory and computational power. The 

hybrid paradigm combines the reactive and hierarchical/deliberative paradigms 

to solve even more complex scenarios, such as dynamic scenarios, but the 

memory and computational resources needed are still high. This work presents 

the sense-think-act-learn robotic paradigm which aims to inherit the advantages 

of the reactive, hierarchical/deliberative and hybrid paradigms at a reasonable 

computational cost. The proposed methodology makes use of reinforcement 

learning techniques to learn a policy by trial and error, just like the human brain 

works. On one hand, there is no motion planning module, so that the 

computational power can be limited like in the reactive paradigm. But on the other 

hand, a local planification and optimization of the robot trajectory takes place, like 

in the hierarchical/deliberative and hybrid paradigms. This planification is based 

on the experience stored during the learning process. Reactions to sensorial 

inputs are automatically learnt based on well-defined reward functions, which are 

directly mapped to the safety, legal, comfort and task-oriented requirements of 

the autonomous driving problem. Since the motion planification is based on the 

experience, the algorithm proposed is not bound to any embedded model of the 

vehicle or environment. Instead, the algorithm learns directly from the 

environment (real or simulated) and therefore it is not affected by uncertainties of 

embedded models or estimators which try to reproduce the dynamics of the 

vehicle or robot. Additionally, the policy is learnt automatically. The state-of-the-

art algorithms invert many engineering hours to develop a policy or algorithm to 

fulfil all given requirements, while the method proposed in this work saves these 

costs and engineering time. Another interesting advantage of the proposed 

algorithm is the capability to adapt the logic under unknown scenarios. For that, 

an online learning process is implemented, but the memory and computational 

power required for that is high. 

 

Keywords: deep reinforcement learning, self-learning, autonomous driving, deep 

deterministic policy gradient, Q-learning, dynamic environment 
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1. Introduction 
 

This section is divided into two different parts. The first part gives a short overview 

about the different robotic paradigms and the usability of these paradigms 

depending on the requirements of the autonomous driving problem to be solved. 

To solve high complex autonomous driving scenarios where multiple 

requirements must be fulfilled, a motion planning algorithm is usually mandatory. 

Thus, the state-of-the-art solutions which make use of a motion planning module 

are highlighted, also introducing their main drawbacks. The second part briefly 

introduces the aim of this work and how the method proposed tries to find a 

solution to the main drawbacks of the state-of-the-art solutions highlighted in the 

first part. 

1.1. Background 

The autonomous driving is a domain of constantly research and evolution. One 

of the things that best represent this evolution are the different robotic paradigms 

that have emerged over time and continue to emerge today. New robotic 

paradigms have been created to better solve a specific problem inside the 

autonomous driving domain. However, there is no paradigm better than the other 

one. It all depends on the type of problem to be solved. Depending on the 

problem, one paradigm might fit better than the other ones. A problem in the 

autonomous driving domain can be defined by the following parts: 

• Type of the scenario: open scenario or closed scenario. A closed scenario 

is defined by spatial boundaries. For example, a vehicle travelling across 

the city is considered a closed scenario, because the vehicle is limited to 

the drivable space determined by the road boundaries. A robot inside a 

room with obstacles is also considered a closed scenario. On the other 

hand, an open scenario does not have in principle spatial restrictions. An 

example could be a robot exploring the surface or another planet. 

• Type of obstacles: static obstacles or dynamic obstacles. In case of 

dynamic obstacles, it is also important to define the unpredictability level 

of these moving obstacles. 

• Type of robot: holonomic or non-holonomic robot. 

• Requirements to be fulfilled by the robot. These requirements are sorted 

into 4 different areas: 
o Safety requirements: the main goal is to avoid crashing into 

obstacles and keep the vehicle inside the road boundaries. 

o Legal requirements: the main goal is not to exceed the maximum 

road speed limit. 

o Comfort requirements: the main goal is to keep the acceleration and 

the derivative of the acceleration (jerk) under a well-defined 

threshold to maximize the comfort feeling. 

o Task-oriented requirements: the main goal is to fulfil some 

predefined tasks, for example, drive the robot to the destination 
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pose or minimize the travelling time of the robot from the starting 

pose to the destination pose. 

The algorithm proposed in this work tries to find a solution for the most complex 

combination of the previous points: a non-holonomic robot interacting in a closed 

scenario with static and dynamic obstacles, while fulfilling at every moment 

safety, legal, comfort and task-oriented requirements. 

Methods based on the reactive paradigm perform well with holonomic robots 

under closed scenarios with static obstacles while fulfilling safety and legal 

requirements. However, non-holonomic robots might be difficult to integrate with 

the reactive paradigm since they need to plan ahead its movement in order to 

avoid the obstacles. Moreover, the control based on reactions to certain sensorial 

input (behaviors) without any local planning can lead to aggressive and long 

trajectories, making it difficult to integrate comfort or task-oriented requirements. 

On the other hand, the reactive paradigm demands low computational resources, 

which enables the usage of non-expensive microcontrollers. 

The hybrid paradigm has a planification layer and can better deal with task-

oriented requirements. However, the movement of the robot is still based on a 

reactive layer, making again difficult to integrate comfort requirements, especially 

for non-holonomic robots. Additionally, the hybrid paradigm demands high 

computational power and memory. 

Finally, the hierarchical/deliberative paradigm has the better approach to find a 

solution to the autonomous driving problem previously proposed. The 

hierarchical/deliberative paradigm has a robot trajectory planification stage 

(motion planning) before the actuation stage (motion control). The motion 

planning of a robot consists of the generation of a trajectory from the starting pose 

to the destination pose. This trajectory described by the robot, which consists of 

a path and velocity profiles (Figure 1.1), must fulfil safety, legal, comfort and task-

oriented requirements. 

 

Figure 1.1: Trajectory generation. The motion planning of an algorithm consists not only of generating a 
path connecting the starting pose with the destination pose, but also assigning a velocity profile to that 

path profile 
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Currently, the state-of-the-art of the motion planning algorithms consists of 

generating an extremely high number of possible trajectories to finally select one 

of them based on the evaluation of a cost function. This cost function ensures 

that these well-defined requirements are fulfilled in the selected vehicle trajectory 

(for example, the cost function penalizes non feasible trajectories or trajectories 

that collide with obstacles, among many other things). However, the state-of-the-

art solutions have three main drawbacks: 

• The design of the previously mentioned cost function can be hard and 

challenging. Combining the safety, legal, comfort and task-oriented 

requirements into a single cost function and getting the optimal calibration 

or weighing between these different requirements is a complicated task. 

• These algorithms demand a lot of computational resources (generating 

and evaluating thousands of trajectories every 100 milliseconds requires 

a high-performance computing unit, which usually costs a lot of money). 

• It is difficult to plan feasible trajectories when the vehicle reaches dynamic 

limitations, such as emergency braking or a driving condition where the 

vehicle dynamic control system is enabled to prevent the vehicle from 

skidding and losing the control. Non-feasible trajectories can be rejected 

by means of the cost function, but it can be quite complicated since models 

to predict the coefficient of friction between wheels and road or models to 

predict if the vehicle dynamic system will be enabled within the target 

trajectory are needed. 

• Dependency on embedded vehicles models, used either to reject 

unfeasible trajectories or to simulate the vehicle dynamics over a horizon 

to generate feasible trajectories. However, differences between modelling 

and reality might appear, coming back again to the problem of unfeasible 

trajectories. 

The rise of artificial intelligence has enabled new robotic paradigms offering 

interesting approaches to overcome the issues of the hierarchical/deliberative 

paradigm. For example, the paradigm sense-think-act can come up with driving 

strategies which can successfully handle driving conditions close to the limit. This 

is possible by analyzing big amount of data (from simulation or real driving 

conditions) to train a neural network which minimizes some cost function. 

However, the availability of these data can be limited, and the design of the cost 

function is still challenging as it was in the hierarchical/deliberative paradigm. The 

introduction of reinforcement learning techniques allows the definition of another 

robotic paradigm: sense-think-act-learn. Through the introduction of this new 

robotic paradigm, we try to overcome the main issues of the sense-think-act 

paradigm. First, the idea is to generate data on-the-go instead of being forced to 

have in advance a big database. And secondly, we try to avoid the definition of a 

single and extreme complex cost function. Instead, we learn the cost function 

(critic model) based on the definition of multiple but very simple reward functions. 
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1.2. Aim 

This work aims to study reinforcement learning techniques to easily come up with 

a high mature policy for complex autonomous driving scenarios. The state-of-the-

art solutions for the hierarchical/deliberative robotic paradigm spend many 

engineering hours to develop high mature software so that all well-defined 

requirements are fulfilled. This work aims to replace these over complicated 

algorithms by some other simpler method, which automatically learns the policy 

just by trial and error. Through the definition of simple and multiple reward 

functions and considering all the huge amount of data delivered by the perception 

system of a robot or vehicle, the idea is to automatically come up with a policy 

just by learning it from the environment (either from a simulated or real 

environment). Another big problem of the state-of-the-art solutions is the 

generation of feasible trajectories. Usually, these state-of-the-art solutions rely on 

embedded models of the robot dynamics and its environment to create feasible 

trajectories. However, differences between modelling and reality always appear, 

compromising the feasibility of the trajectories generated. The reinforcement 

learning techniques studied in this work are model-free algorithms, meaning that 

they will learn a policy exploring directly inside the environment (real or simulated) 

and therefore considering all dynamic constrains from the robot or vehicle. 

The learning process of these reinforcement learning techniques is similar to the 

one which takes place in our brain and involves trying multiple times and learning 

from the errors that we make. Within this work it will be highlighted how powerful 

the reinforcement learning techniques are by setting up some classical 

autonomous driving scenarios. The main advantage is that a simple definition of 

reward functions can automatically lead to highly mature policies, fulfilling safety, 

legal and comfort requirements of complex driving scenarios. Additionally, the 

policy obtained out of the learning process is not as computationally expensive 

as the state-of-the-art algorithms and can run on much less expensive computing 

units. 
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2. Related work 
 

The related work is split into two sections. First, the three classical robotic 

paradigms are described, highlighting the most common algorithms of each 

paradigm. A table at the end of this section summarizes the main advantages 

and disadvantages of the algorithms presented. The second section introduces 

the sense-think-act-learn paradigm, where the reinforcement learning techniques 

applied in this work belong to. It is highlighted how the sense-think-act-learn 

paradigm finds a solution for the main drawbacks presented in the first section. 

Additionally, a study of already existing algorithms using reinforcement learning 

techniques has been described, including all the citations to these works in the 

bibliography section. 

2.1. Classical robotic paradigms 

The autonomous driving is a domain where there is not a fixed algorithm that can 

be applied for every single use case. It all depends on the scenario, robot type 

and the requirements considered during the autonomous driving navigation 

(safety, legal, comfort and task-oriented requirements, as defined in section 1). 

If we think of motion planning and the previously described requirements, it is not 

always required to have a motion planning module inside our algorithm. For 

example, if the requirements to be considered are safety and legal requirements, 

the reactive paradigm (sense-act) fits well to solve the problem. The artificial 

potential fields [1] or the partial center of area [2] are good examples of the 

reactive paradigm. However, the artificial potential fields (Figure 2.1) can get 

trapped in local minima and the comfort requirements are difficult to integrate. On 

the other hand, Figure 2.2 shows the partial center of area method, which tries to 

follow the direction of the center of area. Although the center of area is a very 

robust and efficient algorithm, it still belongs to the reactive paradigm and lacks 

a motion planning stage, like the artificial potential field method. If additional 

requirements apart from safety and legal are to be implemented in the 

autonomous driving problem, the inclusion of a motion planning is highly 

convenient. The method proposed in this work can plan and select the most 

convenient trajectory based on the experience collected by exploring and trying 

multiple times different combinations to find out the best one. 

 

Figure 2.1: Artificial potential fields. The red line corresponds to the trajectory followed by the robot 
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Figure 2.2: Partial center of area method. The magenta spots represent the calculation of the center of 
area where the robot is safely guided to avoid the obstacles 

The reactive paradigm is no longer convenient if comfort or task-oriented 

requirements, such as minimize the travelling time, are to be integrated along the 

safety and legal requirements. In this case, a motion planning module fits very 

well to solve these new requirements. The motion will be planned for a predefined 

distance and only the best planned trajectory, which fulfils all the given 

requirements, will be selected. This is, trajectories with low comfort index will be 

discarded, so the comfort requirements can be also easily integrated. The robotic 

paradigm which includes a motion planning is the hierarchical/deliberative 

paradigm (sense-plan-act). Inside this paradigm, the Dijkstra algorithm [3] 

performs very good at avoiding obstacles and finding the shortest path. However, 

it is difficult to use with large grids because it is computationally expensive. The 

A* algorithm [4] was followed by the Dijkstra algorithm to reduce the 

computational load by using heuristic to find the solution faster (Figure 2.3). 

However, the Dijkstra and A* algorithms have also an additional and very 

important disadvantage: they do not consider the robot or vehicle dynamics in the 

motion planning. This means, the trajectory computed by these algorithms cannot 

be perfectly followed by non-holonomic robots, such as front steering vehicles. 

This is a very important problem because the planned trajectory cannot be 

perfectly followed by the robot and it could eventually collide with obstacles, not 

fulfilling therefore the safety requirements. The hybrid A* algorithm [5] tried to 

propose a solution for this problem. Although this method can consider some 

dynamic constrains, it does not consider all of them. It only considers a maximum 

and minimum limitation for the curvature of the path travelled by the robot (see 

Figure 2.4). 
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Figure 2.3: Trajectory determination using A* algorithm. The red line represents the final trajectory 
generated by the A* algorithm 

 

 

Figure 2.4: Comparison between regular A* (a) and hybrid A* algorithms (b). The hybrid A* algorithm 
generates a path profile with restrictions in the maximum and minimum curvature to respect the dynamics 

of the robot 

More sophisticated methods were created to fulfil safety, legal, comfort and task-

oriented requirements. One of these methods is the lattice planner [6]. Figure 2.5 

shows the result of applying the lattice planner to a front steering vehicle. 

Longitudinal and lateral waypoints are generated from the starting pose to the 

destination pose. Path profiles are generated between each pair of waypoints, 

and several velocity profiles will also be assigned for each path profile. From this 

point on, a cost function will evaluate the best possible trajectory among the 

generated ones. Non feasible trajectories which does not fulfil dynamic constrains 

could be generated by the lattice planner algorithm, but the cost function will 

assign them a poor score leading these trajectories to be discarded. The cost 

function can now evaluate more aspects than just the curvature of the path, like 

the hybrid A* method does (for example, trajectories with high values of the 

curvature’s derivative will be also rejected since the steering servo motor has 

limitations in the maximum angular speed, as implemented in [7]). On the other 

hand, the cost function can effectively reject non feasible trajectories under 

scenarios of low velocity, such as parking [8], or scenarios with moderate 

accelerations [9]. But scenarios close to the limit, like the road-tire friction limits 

or the activation of the vehicle dynamic system are difficult to consider under this 

approach. As it will be discussed later, some other approaches like model 

predictive control are more suitable for planning trajectories under conditions 
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close to the limit. Regarding the comfort requirements, they are easy to integrate 

by means of the cost function. However, it is hard to design and parametrize a 

single cost function valid for every traffic situation, as stated in [5]. We will see in 

this work that one of the main advantages of the methodology proposed is that 

the cost function (critic model) is learnt, and it is not necessary to manually design 

and implement it. Another disadvantage of the lattice planner is that the 

computational cost is still high in comparison with the reactive paradigm methods, 

as stated in [10]. If a high number of waypoints are generated, the computational 

cost will be high since Newton-Raphson iterative method must be applied to each 

pair of waypoints to create a path profile [6]. 

 

Figure 2.5: Trajectory determination using lattice planner algorithm. Longitudinal and lateral waypoints are 
generated between the starting and destination poses. Path profiles are generated connecting each pair of 

waypoints and several velocity profiles are assigned to each path profile. Finally, the cost function 

evaluates all generated trajectories and select the best one 

In order to include into consideration more dynamic constrains and be able to 

generate feasible trajectories, the model predictive control approach [11] was 

proposed. Here, a model of the robot is used to generate the path and velocity 

profiles along a predefined horizon (Figure 2.6). Therefore, the trajectories 

generated by the model predictive control respects the dynamics given by the 

model. However, differences between the model and the reality might appear, 

running again into the problem of non-feasible trajectories. In [12], the parameters 

of the model are even updated over the prediction horizon under situations close 

to the limit based on a predictive friction estimate to obtain even more reliable 

and feasible trajectories. However, we still rely on models or estimators that might 

have differences with respect to the reality.  
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Figure 2.6: Model Predictive Control algorithm. An embedded model simulates the dynamics of the robot 
over a predefined horizon. The computed trajectory can therefore take into account the robot dynamics, 

but differences between the model and reality might appear 

This mismatch between modelling and reality can be solved with the introduction 

of artificial intelligence and the analysis of big data. Neural networks used to 

model the vehicle dynamics and nonlinear model predictive control (NMPC) have 

been combined to solve the problem of generating feasible trajectories. In [13], 

the problem of controlling a neural network with NMPC is addressed for the task 

of motion planning. However, NMPC demands high computational resources. In 

[14], a solution to this high computational effort is proposed by replacing the 

nonlinear optimization trajectory planner by a neural network. 

Additionally, the artificial intelligence is also extremely interesting to solve motion 

planning problems under complex driving scenarios (such as multiple dynamic 

obstacles in scenarios like intersections or highway autopilot). For this purpose, 

new robotic paradigms have emerged, like the sense-think-act paradigm [15]. 

One example of this paradigm is the neural network path planner [16], which uses 

temporal data with recursive neural networks (RNN) to generate feasible 

trajectories under scenarios with multiple dynamic obstacles. On the other hand, 

the main disadvantage of all methods featuring neural networks is that we need 

to count in advance with a large database to train the models, which is not always 

available. 

The method proposed in this work, unlike the model predictive control, is not 

bound to any model of the vehicle and the environment. Instead, the 

reinforcement learning algorithm proposed in this work is a model free algorithm, 

which means that it does not use any model of the vehicle inside its logic. The 

main benefic is that the algorithm learns directly from the environment (simulated 

or real), and it is not affected by uncertainties of embedded models or estimators 

which try to reproduce the dynamics of the vehicle or robot. And unlike the sense-

think-act paradigm, it does not require a big database in advance. It generates 

the data on-the-go, stores these data in a buffer and uses these recorded 
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experiences to update the policy based on the cumulative reward obtained along 

these experiences. 

The Table 2.1 gathers all the advantages and disadvantages of the main robotic 

paradigms previously mentioned: 

Paradigm Drawbacks Benefits 

Hierarchical/
deliberative 

High computational cost Local trajectory 
planning where safety, 
comfort, legal and 
task-oriented 
requirements can be 
optimized under static 
environments 

Difficult to plan trajectories under 
dynamic environments 

Challenging design of a cost 
function 

Difficult to plan feasible trajectories 
under situations closed to the limit 

Reactive 

No local trajectory planning Low computational 
cost 

Difficult to integrate comfort 
requirements if the robot reacts to 
unpredictable situations 

Robot is capable to 
react to unpredictable 
situations, even under 
dynamic environments 

Hybrid 

High computational cost Local trajectory 
planning where safety, 
legal and task-
oriented requirements 
can be optimized 
under static and 
dynamic environments 

Difficult to integrate comfort 
requirements if the robot reacts to 
unpredictable situations 

Robot is capable to 
react to unpredictable 
situations, even under 
dynamic environments 

Neural 
Networks 

Large amount of data must be 
available 

Can learn all 
dynamics effects 

Challenging design of a cost 
function 

Can solve complex 
driving scenarios 

Table 2.1: Comparison of robotic paradigms 

As mentioned before, there is no paradigm better than the other ones, and the 

selection of one or another depends on the requirements of the problem. 

However, none of the paradigms listed in the previous table is the best fitting 

when safety, legal, comfort and task-oriented requirements need to be 

considered at the same time at a reasonable computational power. The closest 

ones are the hierarchical/deliberative paradigm and the sense-think-act paradigm 

(neural networks). But the difficult design of the cost function and the 

computational power of the hierarchical/deliberative paradigm and the obligation 

to have big databases of the sense-think-act paradigm makes them challenging 

to implement. Therefore, the sense-think-act-learn paradigm will be presented in 
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this work with the aim to fix the disadvantages of the previous paradigms while 

keeping their advantages. 

2.2. Sense-Think-Act-Learn paradigm 

The sense-think-act-learn paradigm (Figure 2.7) uses reinforcement learning 

techniques to generate data on-the-go to train by trial and error and obtain a 

policy that drives the robot safely [17]. In case of deep reinforcement learning 

[18], neural networks are trained to perform the autonomous driving navigation. 

One advantage of this paradigm is that, instead of having to define a single and 

complex cost function, the reinforcement learning requires to define multiple but 

very simple reward functions [19] to automatically learn this cost function. These 

reward functions are directly mapped to safety, legal, comfort and task-oriented 

requirements. 

 

Figure 2.7: Sense-Think-Act-Learn paradigm 

To sum up, nowadays the best paradigm to approach a problem where a non-

holonomic robot is interacting in a closed scenario with static and dynamic 

obstacles, while fulfilling at every moment safety, legal, comfort and task-oriented 

requirements is either the hierarchical/deliberative paradigm or the sense-think-

act paradigm. Most of the state-of-the-art solutions for the hierarchical/ 

deliberative paradigm are based on a motion planning software module 

implementing lattice planner or model predictive control algorithms. However, as 

stated in this chapter and in section 1.1, these algorithms present challenges in 

the design of the cost function, in the interaction with dynamic environments and 

in the generation of feasible trajectories, apart from the computational 

consumption. The method proposed in this work tries to improve this situation 

while keeping the computational consumption low, like in the reactive paradigm. 

The Table 2.2 gathers all the drawbacks previously mentioned and how the 

method proposed in this work, based on the robotic paradigm sense-think-act-

learn, can propose a solution to them: 

Drawbacks Solution 

Challenging design of a cost function Cost function is learnt instead of 
designed based on multiple and 
simple reward functions 

Difficult to plan trajectories under 
dynamic environments 

Agent can learn from dynamic 
environments 

Difficult to plan feasible trajectories 
under situations closed to the limit 

Agent is free from embedded robot 
and environment models and learns 
directly from the environment 



UNED Borja Pintos Gómez de las Heras Page|18 

(simulated or real), being able to learn 
the right policy under situations closed 
to the limit 

High computational cost Low computational cost because 
there is no motion planning module, 
like in the reactive paradigm 

No local trajectory planning Agent learns a local trajectory 
planning based on the knowledge 
from multiple experiences 

Difficult to integrate comfort 
requirements if the robot reacts to 
unpredictable situations 

Easily included with simple reward 
functions 

Large amount of data must be 
available 

Data is generated on-the-go (learning 
from trial and error) 

Table 2.2: Strengths of sense-think-act-learn paradigm 

Some works have already investigated the benefits of the reinforcement learning 

techniques applied to the autonomous driving domain. [20] uses the Q-learning 

to find the shortest path from the starting pose to the destination pose. 

Reinforcement learning techniques with continuous actions and states are 

introduced in [21] with very promising results. Deep deterministic policy gradient 

(DDPG) was introduced in [22] to learn from a real scenario how to drive and 

keep the vehicle inside the road boundaries by providing just a single camera 

image of the road as input. However, this work only implements partial safety 

requirements (without obstacle avoidance) and does not consider any comfort, 

legal or task-oriented requirements. Additionally, the perception, motion planning 

and motion control modules are embedded in the deep neural networks of the 

deep reinforcement learning algorithm. In [23], the autonomous driving algorithm 

rely not only on input images of the cameras as in [22], but also on preprocessed 

data as velocities or relative distances. In [24], comfort requirements are included 

for lane change maneuvers as simple reward functions penalizing high lateral 

acceleration values and the Q-learning algorithm is used to control a single action 

(yaw acceleration) to perform the lane change. In contrast to [22], it separates 

the perception module from the reinforcement learning task, and the agent 

consumes already post processed signals from the perception module, such as 

vehicle velocities or relative distances, instead of images. The algorithm 

presented in this work tries also to keep the perception module and motion 

planning and control separated from each other. Images are not directly provided 

to the agent. Instead, all the relevant information from the perception module is 

provided to the agent, so that it can learn the best possible trajectory based on 

the cumulative reward. Additionally, this work tries to improve the previously 

mentioned algorithms by combining at the same time safety, legal, comfort and 

task-oriented requirements. For that, the action space will consider not only the 

angular velocity or steering angle, but also the longitudinal velocity by means of 

the pedal and brake (multi action space). Dynamic situations will be also validated 

with this algorithm, such as the overtaking maneuvering or lane keeping when 

the road is blocked by slow dynamic obstacles (section 5.2.4). Lane keeping with 

(section 5.2.1) and without obstacles (section 5.2.2) will be also validated. 
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Besides, it will be proved that this algorithm is also suitable for robots navigating 

in an open world from a starting pose to a destination pose, fulfilling at the same 

time the given requirements (section 5.2.4). 

The next sections will introduce and prove the effectiveness of the reinforcement 

learning techniques in cases where safety, legal, comfort and task-oriented 

requirements must be fulfilled together with the dynamic constrains of the robot 

used for the autonomous driving navigation. The sense-think-act-learn paradigm 

can be very useful for the case of autonomous driving applied for passenger 

vehicles (front steering vehicles). In this case, it is extremely important to fulfil all 

type of requirements while considering at the same time the vehicle dynamic 

constrains. 
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3. Reinforcement learning algorithms 
 

This section gives a short overview about the reinforcement learning methods 

used for the self-learning robot navigation proposed in this work. The theory of 

the q-learning and the deep deterministic policy gradient (DDPG) methods are 

explained, and the pseudocode is introduced at the end of each chapter. 

3.1. Q-learning 

The q-learning method is a model-free algorithm which learns the best action 

given a state. It is model free because the q-learning does not use any embedded 

model of the system dynamics in the algorithm. Instead, the q-learning algorithm 

learns directly from the environment. Therefore, the algorithm will eventually learn 

how to optimally deal with the dynamics of the environment by using the 

information stored in the so-called q-table after the learning process. The q-table 

evaluates the quality of each action inside a given state. Then, the action with the 

highest quality score is selected. Following the optimal policy, given by the 

optimal q-table, will eventually lead to the maximum cumulative reward. The 

cumulative reward is defined according to Equation 3.1: 

 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯ =∑𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑡=0

 Equation 

3.1 

The main goal of the q-learning algorithm is therefore to maximize the Equation 

3.1, which is the cumulative reward. The factor 𝛾 is called the discount factor. A 

discount factor closes to 1 will take into consideration the short-term and long-

term rewards on the cumulative sum. On the other hand, a discount factor closes 

to 0 will take into consideration only the short-term rewards, since the long-term 

rewards are almost reduced to 0 with the discount factor. 

We are almost ready to introduce the q-learning method. However, there is an 

additional property to be fulfilled if we want the process to be successful. It is 

essential to fulfil the Markov property (Equation 3.2): 

 𝑝(𝑆𝑡+1|𝑆𝑡) = 𝑝(𝑆𝑡+1|𝑆1, 𝑆2, … , 𝑆𝑡) 
Equation 

3.2 

The Markov property says that the future state only depends on the current state. 

That is, the current state has all the information from the history, so other states 

different from the current one are irrelevant for the future state. Let’s visualize this 

important property with one example. Let’s imagine an autonomous driving 

vehicle which is programmed to follow a reference line driving at a constant 

speed. The variable selected as state is the lateral distance from the vehicle to 

the reference line. Then, let´s assume three different cases represented in Figure 

3.1: 
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Figure 3.1: Example showing the Markov property. The observation for all 3 cases is the lateral distance 
𝑒𝑙𝑎𝑡. For case A, the optimal action is a smooth turn to the right, for case B a smooth turn to the left and for 
case C and hard turn to the right. Thus, the agent cannot compute the optimal action only by knowing the 

lateral distance. Then, it is said that the problem does not fulfil the Markov property 

The goal in the previous case is to follow the reference line without lateral error. 

In case A, the optimal action is to turn the steering to the right, so that the lateral 

distance can decrease to 0. However, for case B, the optimal action is turning to 

the left, although the state is the same as case A. In case C, which is under the 

same state as case A and B, the optimal action is turning to the right, like case A, 

but a little bit more strongly in comparison with case A. The problem here is that 

the q-table cannot decide which is the optimal action. In other words, knowing the 

lateral distance, do we need to steer to the right or to the left? We do not know 

since the heading of the vehicle is an unknown variable for the agent. If we would 

have known the history of the lateral distance, we could have deduced the vehicle 

heading, and therefore could have chosen the optimal action. But the q-learning 

algorithm depends only on the current state, and the state selected does not fulfil 

the Markov property. The consequence is that the learning process will not end 

up successfully. 

Now we are ready to introduce the q-learning method. As previously mentioned, 

the q-learning uses the action-value function. Equation 3.3 shows the action-

value function: 

 𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 
Equation 

3.3 

So, the action-value function will output the expected cumulative return 𝐺𝑡 starting 

from state 𝑠, taking action 𝑎 in state 𝑠, and after on following policy 𝜋. 

The action-value function has the advantage that is very easy to select the 

optimal action given the state 𝑠. Simply by looking which action maximizes the 

expected cumulative reward, the optimal action can be selected (Equation 3.4): 

 𝜋(𝑠) = argmax
𝑎

𝑞(𝑠, 𝑎) Equation 
3.4 

We can also easily calculate the value of a state out of the action-value function 

by means of Equation 3.5: 

 𝑉𝜋(𝑠) = 𝑞𝜋(𝑠, 𝑎 = 𝜋(𝑠)) = max
𝑎
𝑞𝜋(𝑠, 𝑎) 

Equation 

3.5 

Or if the policy is formulated with probabilities in a stochastic way, we use 

Equation 3.6: 
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𝑉𝜋(𝑠) = ∑𝜋(𝑎|𝑠)𝑞𝜋(𝑠, 𝑎)

𝑎∈𝐴

 
Equation 

3.6 

If we compute the optimal action-value function after the learning process, we will 

get the optimal policy as well (Equation 3.7): 

 𝜋∗(𝑠) = argmax
𝑎

𝑞∗(𝑠, 𝑎) Equation 

3.7 

Therefore, the key point of the q-learning is to obtain the optimal action-value 

function 𝑞∗(𝑠, 𝑎). As the q-learning method works with discrete states and actions, 

the action-value function is a table, called the q-table. The following image shows 

how the q-table looks like: 

q-table 
Actions 

𝐴1 … 𝐴𝑚 

States 

𝑆1 𝑞11 𝑞12 𝑞1𝑚 

… … … … 

𝑆𝑛 𝑞𝑛1 𝑞𝑛2 𝑞𝑛𝑚 

Table 3.1: Q-table 

To get the optimal action-value function 𝑞∗(𝑠, 𝑎), the q-learning method 

implements the Bellman equation. Equation 3.8 shows the formula for a 

deterministic environment: 

 𝑞𝜋(𝑆𝑡, 𝐴𝑡) = 𝑅𝑡+1 + 𝛾max
𝑎
𝑞𝜋(𝑆𝑡+1, 𝑎) 

Equation 
3.8 

The q-learning method guarantees the convergence to the optimal action-value 

function 𝑞∗(𝑠, 𝑎).  However, for the convergence to occur, all states in the q-table 

must have visited enough times (theoretically infinite). In addition, to make the 

process more stable, a learning rate parameter 𝛼 can be introduced to the 

Bellman equation (Equation 3.9). 

 𝑞𝜋(𝑆𝑡, 𝐴𝑡) ← (1 − 𝛼)𝑞𝜋(𝑆𝑡, 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾max
𝑎
𝑞𝜋(𝑆𝑡+1, 𝑎)) Equation 

3.9 

To ensure that all states in the q-table are visited, an exploration methodology 

needs to be implemented. The epsilon-greedy policy is a simple method to 

balance exploration and exploitation by choosing between exploration and 

exploitation randomly. 

Finally, to sum up, the q-learning pseudocode implemented in python is shown in 

the following picture: 
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Figure 3.2: Q-learning pseudo code 

3.2. Deep Deterministic Policy Gradient (DDPG) 

The DDPG (Deep Deterministic Policy Gradient) algorithm has a lot of similarities 

with the q-learning algorithm. It learns a q-function (the q-learning method learns 

a q-table) and uses the Bellman equation (same as q-learning) to iteratively 

update the q-function. The DDPG method, like the q-learning method, is a model 

free algorithm. That means, both algorithms do not use any embedded model of 

the environment inside the agent logic. Instead, they learn the optimal policy 

directly from the environment. However, there are some differences in 

comparison with the q-learning approach. The principal difference is that the 

DDPG method is intended for environments with continuous states and actions, 

while the q-learning method is only used for discrete environments. 

If we recall from the previous section, the q-learning method finds the optimal 

action just by searching for the action which gives the maximum q-value, provided 

a state (Equation 3.4). For a discrete algorithm such as the q-learning, this 

problem is solved with a simple search inside the q-table. But now there is no q-

table anymore. Instead, there is a continuous q-function. Therefore, it would be 

computationally very expensive to go through all the continuous space of the 

actions and select the ones which maximize the q-value. On the other hand, we 

can take advantage from the properties of continuous functions and differentiate 

it with respect to the action. In other words, it is possible to find the maximum q-

value just by differencing the q-function with respect to the action.  

Let’s assume in Equation 3.10 a deterministic policy modelled by a neural 

network 𝜇 with weights 𝜃: 

 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃) = 𝜇𝜃(𝑠𝑡) 
Equation 

3.10 

Let’s also assume that the q-function is another neural network 𝑄 with weights 𝜙 

(Equation 3.11): 
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 𝑄(𝑠𝑡 , 𝑎𝑡|𝜙) = 𝑄𝜙(𝑠𝑡 , 𝑎𝑡) = 𝑄𝜙(𝑠𝑡 , 𝜇𝜃(𝑠𝑡)) 
Equation 

3.11 

The goal is then to learn a policy 𝜇𝜃 which maximizes the q-function 𝑄𝜙 (Equation 

3.12):  

 max
𝑎𝑡 

𝑄𝜙(𝑠𝑡 , 𝑎𝑡) = max
𝜃
𝑄𝜙(𝑠𝑡 , 𝜇𝜃(𝑠𝑡)) 

Equation 
3.12 

Since the q-function is continuous, we can take the gradient of the q-function and 

update the weights 𝜃 of the policy in the direction of the gradient. Different states 

might indicate different gradient directions, so we can average the value by taking 

an expectation with respect to the set of samples 𝒟 of the state (Equation 3.13): 

 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝔼𝑠∼𝒟[∇𝜃𝑄𝜙(𝑠, 𝜇𝜃(𝑠))] 
Equation 

3.13 

We apply the chain rule to the gradient in Equation 3.14: 

 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝔼𝑠∼𝒟 [∇𝑎𝑄𝜙(𝑠, 𝑎)|𝑎=𝜇𝜃(𝑠)
∇𝜃𝜇𝜃(𝑠)] 

Equation 
3.14 

   

The deterministic policy gradient theorem comes to the same results. Defining 

the objective function 𝐽 (Equation 3.15) as the cumulative discounted reward 

(Equation 3.16), the goal is to maximize this objective function: 

 𝐽(𝜇𝜃) = 𝔼[𝑟1
𝛾
|𝜇] Equation 

3.15 

 
𝑟𝑡
𝛾
=∑ 𝛾𝑘−𝑡𝑟(𝑠𝑘 , 𝑎𝑘)

∞

𝑘=𝑡
 

Equation 
3.16 

   

The deterministic policy gradient theorem computes the gradient of the objective 

function (Equation 3.15) which matches the previously computed gradient of the 

action-value function: 

 ∇𝜃𝐽(𝜇𝜃) = 𝔼𝑠∼𝒟 [∇𝑎𝑄𝜙(𝑠, 𝑎)|𝑎=𝜇𝜃(𝑠)
∇𝜃𝜇𝜃(𝑠)] 

Equation 
3.17 

   

Equation 3.18 expands the expectation considering a sample 𝒟 of transitions: 

 
∇𝜃𝐽(𝜇𝜃) =

1

𝑁
∑(∇𝑎𝑄𝜙(𝑠𝑖 , 𝑎𝑖)|𝑎𝑖=𝜇𝜃(𝑠𝑖)

∇𝜃𝜇𝜃(𝑠𝑖))

𝑖

 
Equation 

3.18 

   

Therefore, we can use Equation 3.18 to learn the weights 𝜃 of the neural network 

𝜇𝜃(𝑠𝑡). This neural network is also called actor network. Equation 3.18 makes 

use of the action-value function 𝑄(𝑠, 𝑎). So, we need also to approximate the 

action-value function by learning the weights 𝜙 of the neural network 𝑄𝜙(𝑠, 𝑎). 

This second neural network is also called critic network, because it evaluates how 

good the actions are, provided a specific state. Like the q-learning method, the 

Bellman equation is used to learn the critic network iteratively (Equation 3.19). 
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𝑄𝜙(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑠∼𝒟 [𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 max

𝑎𝑡+1 
𝑄𝜙(𝑠𝑡+1, 𝑎𝑡+1)] 

Equation 
3.19 

   

And since the actor network maximizes the critic network, Equation 3.19 can be 

rewritten as Equation 3.20: 

 𝑄𝜙(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑠∼𝒟[𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 𝑄𝜙(𝑠𝑡+1, 𝜇𝜃(𝑠𝑡+1))] 
Equation 

3.20 

If we build a mean squared error function, we can minimize this function and learn 

the weights 𝜙 of the critic network. The loss function is shown in Equation 3.21: 

 𝐿 = 𝔼𝑠∼𝒟 [(𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 𝑄𝜙(𝑠𝑡+1, 𝜇𝜃(𝑠𝑡+1)) − 𝑄𝜙(𝑠𝑡 , 𝜇𝜃(𝑠𝑡)))
2

]

=
1

𝑁
∑ (𝑟(𝑠𝑖 , 𝑎𝑖) + 𝛾 𝑄𝜙(𝑠𝑖+1, 𝜇𝜃(𝑠𝑖+1)) − 𝑄𝜙(𝑠𝑖 , 𝜇𝜃(𝑠𝑖)))

2

𝑖
 

Equation 
3.21 

   

Additionally, this actor-critic method uses two tricks to improve efficiency and 

make the learning process more stable: the replay buffer and the target networks. 

The replay buffer is a high dimension vector which stores experiences from the 

past. The dimension of the vector is called the buffer capacity. The experiences 

are defined according to the tuple (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). During the learning process, we 

can select a set of experiences from the buffer. This will improve the stability of 

the learning because we will not use constantly the most recent experiences 

which might be correlated between them. However, the replay buffer has a 

disadvantage: the higher the set of experiences are, the more memory is needed, 

and it can slow down the learning process. So, a trade-off between the memory 

usage and the learning stability is needed. 

The second trick is the target network. The target networks help to improve the 

stability of the training process. If we recall from the previous section, the Bellman 

equation is used to update the Q-function: 

 𝑦𝑖 = 𝑄𝜙(𝑠𝑖 , 𝑎𝑖) = 𝑟(𝑠𝑖 , 𝑎𝑖) + 𝛾 𝑄𝜙(𝑠𝑖+1, 𝜇𝜃(𝑠𝑖+1)) 
Equation 

3.22 

Like mentioned before, the loss function is defined as the mean squared error 

function. 

 
𝐿 =

1

𝑁
∑ (𝑦𝑖 − 𝑄𝜙(𝑠𝑖, 𝜇𝜃(𝑠𝑖)))

2

𝑖
 

Equation 
3.23 

   

That means, the learning algorithm will minimize the loss function by making 𝑦𝑖 

as close as possible to 𝑄𝜙(𝑠𝑖, 𝜇𝜃(𝑠𝑖)). The problem here is that the weights 𝜙 that 

we are trying to optimize affect not only the action-value function 𝑄𝜙(𝑠𝑖, 𝜇𝜃(𝑠𝑖)) 

but also the quantity 𝑦𝑖. This can make the learning process unstable, as both the 

quantity 𝑦𝑖 and the action-value function 𝑄𝜙(𝑠𝑖, 𝜇𝜃(𝑠𝑖)) are changing their value 

during the learning process. The idea to solve this issue is to make the quantity 

𝑦𝑖 independent from the weights 𝜙 which are optimized during the learning 

process. Following this idea, the quantity 𝑦𝑖 will keep the same value as we 

recalculate the weights 𝜙 to adapt the value of 𝑄𝜙(𝑠𝑖, 𝜇𝜃(𝑠𝑖)) and therefore 
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minimize the value of the loss function. Thus, target networks for the actor and 

critic networks are then introduced in the quantity 𝑦𝑖: 

 𝑦𝑖 = 𝑟(𝑠𝑖 , 𝑎𝑖) + 𝛾 𝑄′𝜙′(𝑠𝑖+1, 𝜇′𝜃′(𝑠𝑖+1)) 
Equation 

3.24 

The target critic network 𝑄′ is parametrized with the weights 𝜙′ and the target 

actor network is parametrized with the weights 𝜃′. Before ending a learning 

episode, the weights of the target networks are updated. The factor 𝜏 can move 

between 0 and 1 to select how fast we want to update the target weights from the 

actor (Equation 3.25) and critic networks (Equation 3.26). 

 𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′ Equation 
3.25 

 𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′ Equation 
3.26 

Let’s now take a closer look to the neural networks. Both the actor and critic 

neural networks need to learn a policy and an action-value function that are highly 

nonlinear. Therefore, it is necessary to have hidden layers in the neural network 

and the activation function of the neurons must be also nonlinear. The activation 

function selected is the ReLU function (Figure 3.3). 

 

Figure 3.3: ReLU activation function 

As shown in Figure 3.3, the activation function is nonlinear. The gradient is 0 for 

negative inputs and +1 for positive inputs. This has a positive impact during the 

backpropagation since the gradient will not vanish. The gradient of early layers is 

obtained by multiplying the gradient of later layers. The ReLU activation function 

has a constant gradient value of +1 for positive inputs. So, the gradient of early 

layers will not vanish with ReLU activation functions. On the other hand, the 

gradient of the sigmoid function tends to 0 if the weighted input of the neuron is 

a big positive or negative number (see Figure 3.4). Multiplying small numbers 

together will cause the gradient of early layers to vanish. 
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Figure 3.4: Sigmoid activation function 

Another typical problem during the training process of neural networks is the 

explosion of the gradient. If the gradient explodes, the values obtained for the 

gradient are too large and the learning process becomes unstable. We can avoid 

this situation with a proper initialization of the weights or by clipping the gradient 

value. The weights initialization will be discussed later. 

The activation function of the output layer of the actor and critic models cannot 

be a ReLU function. In case of the actor model, the outputs are normalized 

between -1 and 1 (or between 0 and 1). The ReLU function will output only values 

between 0 and +∞, so it does not fit very well. Instead, we can use the tanh 

function, which outputs values between -1 and 1 (or the sigmoid function for 

values between 0 and 1): 

 

Figure 3.5: Tanh activation function 

Normalizing the inputs and outputs of the neural network between -1 and +1 has 

shown better results than feeding the neural networks with raw signals without 

normalization. The only exception is the output of the critic network, which has 

not been normalized. The critic network evaluates how good a specific action is. 

This evaluation uses positive or negative numbers. An action will have a better 

quality if the critic network gives a larger number. For that reason, the activation 

function must output both positive and negative numbers and this output must not 

be limited. Thus, the linear activation function fits very well to the last neuron layer 

of the critic network. 
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Figure 3.6: Linear activation function 

Apart from the nonlinear activation functions, we need to provide the neural 

networks with hidden layers to learn highly nonlinear functions. The actor network 

has been set according to the following picture. The different symbols in bracket 

refers to the number of neurons in that specific layer: 

 

Figure 3.7: Actor network architecture 

The critic network looks a little bit more complicated than the actor network. This 

is because the critic network considers not only the state as input variable, but 

also the actions. Thus, the input layer merges the state and action variables. 

 

Figure 3.8: Critic network architecture 

As mentioned before, a proper initialization of the neural network weights is also 

required. A proper initialization sets the weights in such a way that the gradient 

will not vanish or explode. We have already prevented the gradient vanishment 

with the ReLU activation functions, but it can explode and cause problems during 

the learning process. The best results have been achieved with the Glorot uniform 

initialization function (Equation 3.27). Glorot initialization considers the size of the 

input layer (𝑛𝑖𝑛) and the size of the output layer (𝑛𝑜𝑢𝑡) to adjust the limits from 

where to sample the initial values of the weights (it samples values inside the 

interval [-limit, +limit]). In case of Glorot Normal (Equation 3.28), it adjusts the 

variance of the normal distribution: 
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𝐿𝑖𝑚𝑖𝑡[𝑊𝐿] = √
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
 

Equation 

3.27 

 
𝑉𝑎𝑟[𝑊𝐿] =

2

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
 

Equation 

3.28 

   

Once the variance or limits are determined, it samples the values of the weights 

for that specific layer. Adjusting the variance or limits for each layer of the neural 

network during the initialization ensures a smooth forward and back propagation 

of the information. 

Another important part of the reinforcement learning algorithm is the exploration 

and exploitation. If there is no exploration, given a specific state, the actor network 

will always output the same value. Therefore, we need to explore if any other 

different action gives more cumulative reward than the one initially calculated by 

the actor model. There have been implemented two different variants for the 

exploration. The first exploration variant implemented is a noise signal added to 

the actor network output (Equation 3.29). This exploration noise has a normal 

distribution of zero mean value. The amplitude of the exploration is controlled with 

the variance of the normal distribution. There are two main drawbacks of this 

variant: first, it is not suitable to work with real hardware, as the noisy exploration 

might cause damage to the actuators of the robot. Thus, it can be used only in 

simulated environments. The second drawback is that this exploration strategy 

does not allow big exploration maneuvers. It allows just a local exploration around 

a given state. 

 𝑎𝑡 = 𝜇𝜃(𝑠𝑡) +𝒩(0, 𝜎) =  𝜇𝜃(𝑠𝑡) +𝒩(0, 𝜎) 
Equation 

3.29 

The second variant for the exploration tries to overcome the previous two 

drawbacks. A low frequency sinusoidal wave is added to the actor response 

(Equation 3.30): 

 𝑎𝑡 = 𝜇𝜃(𝑠𝑡) + 𝑠𝑖𝑛(𝑎𝑚𝑝, 𝑓𝑟𝑒𝑞) =  𝜇𝜃(𝑠𝑡) + sin (𝑎𝑚𝑝, 𝑓𝑟𝑒𝑞) Equation 
3.30 

The higher the amplitude is, the wider is the area where the robot can explore. 

Additionally, due to the low frequency sinusoidal wave, this exploration strategy 

is suitable to be used with real hardware. 

As the learning process progresses and the actor and critic networks learn the 

optimal values, less and less exploration is needed. Therefore, a decay for the 

exploration has been programmed. This decay also helps to stabilize the learning 

process and not to get very noisy actor and critic networks. The decay factor is 

applied at the beginning of the learning episode according to Equation 3.31: 

 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑒𝑐𝑎𝑦 ∗ 𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 Equation 
3.31 
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The exploration is only used during the learning process. During the validation 

process, the exploration is removed since the model has already learnt the 

optimal action.  

Finally, the DDPG pseudocode implemented in Python is shown in Figure 3.9: 

 

Figure 3.9: DDPG pseudo code 
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4. Environment model 
 

This chapter gives an overview about the project structure. The project structure 

organizes the software in software components to have a clean and intuitive 

software architecture. This project structure also defines folders to store different 

environment models and robot models, as well as dedicated folders for 

configuring the environments and store the output results. On the other hand, the 

different components of an environment are explained in this chapter (vehicle 

model, reward function and state variables). The motion control software module 

is also included as a part of the environment since the environment is everything 

that the reinforcement learning agent sees. Finally, the difference between online 

and offline learning is explained. 

4.1. Project structure 

The python GYM toolkit has been used for the implementation and comparison 

of different reinforcement learning algorithms under different environments. The 

folder structure of the project is shown in Figure 4.1: 

 

Figure 4.1: Project folder structure 

• smart-trajectory-planning: project’s folder 

• motioncontrol: implementation of low-level control algorithms to control the 

movement of the robot or vehicle 

• tools: folder to store helper functions 

• trajectoryplan: reinforcement learning algorithms storage folder 

• vehiclegym/envs/scene: folder to store the scene where the robot is 

moving and interacting. The scene is loaded in CoppeliaSim software 

• vehiclegym/envs/vehicle: folder to store the vehicle or robot used inside 

the scene. Connection with CoppeliaSim is needed 

• vehiclegym/qtable: folder to store the q-table after the q-learning process 
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• vehiclegym/weights: folder to store the weights of the neural networks after 

the DDPG learning process 

• vehiclegym/param: folder to store the parametrization used in the different 

test cases 

• main_<method>.py: script to launch the environment and learning process 

The trajectoryplan folder contains a python script with all the necessary functions 

for the q-learning and DDPG methods.  

The script main_<method>.py will register the selected environment and launch 

the learning process with the reinforcement learning method. It is also possible 

to give a policy as input and simulate the environment with the robot following 

that given policy. 

To define a custom GYM environment from scratch, we need to fulfill some 

standards and define 4 important functions: 

• Reset function: it will reset the state of the environment to the initial default 

state. Therefore, this function will be triggered at the beginning of the 

learning episode. An episode will be terminated every time that a terminal 

state is entered.  

• Step function: it will simulate the environment considering the current 

state, the action selected by the agent and the dynamics of the 

environment. 

• Render function: this function will visualize the current environment state. 

It is possible to render 3D elements in a graphical window to visualize the 

current state of the environment. This is an optional function, but very 

useful to get a first impression of what the agent and the environment are 

doing. 

• Init function: function which initialize all variables used to build the 

environment. 

 

4.2. Vehicle model  

This section describes the vehicle or robot models used in the experiments. There 

are two different types of models considered. First, a discrete robot model. The 

reason to use this simple model is because it is discrete, and the q-learning 

method can be used with it. The fact that it is discrete makes much simpler the 

debugging process. Secondly, a continuous differential robot. This model tries to 

reproduce the movements and dynamics of a real robot. Thus, the final 

reinforcement learning algorithm to control the robot will be validated with it. Since 

the model is continuous, the q-learning algorithm does not fit any more and deep 

reinforcement learning algorithms need to be implemented for this case. 

4.2.1. Discrete robot model 

The vehicle modelled inside this environment does not include any lateral or 

longitudinal dynamics. There are only 3 possible actions: move forward, turn left, 

or turn right, as represented in Figure 4.2: 
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Figure 4.2: Discrete actions of the robot model 

Thus, the vehicle will move instantly (without dynamics) from one state to the next 

one depending on the action taken. The principal advantage of this simplification 

is that the actions and the states are discrete. Discrete states and actions allow 

the usage of simple but powerful reinforcement learning methods. This is the case 

of the q-learning method, which works with discrete states and actions. 

The vehicle can freely move inside a circuit defined by the circuit boundaries. If 

the vehicle leaves the circuit boundaries, the learning episode gets terminated. 

4.2.2. Differential robot 

A differential robot is a robot with 2 independent driven wheels. Another free 

turning undriven wheel is mounted to stabilize the robot. The 2 driven wheels are 

connected to two electrical motors. The angular speed of these motors can be 

controlled (see next section 4.3) so that the robot can travel at a desired linear 

speed 𝑣𝑟𝑜𝑏𝑜𝑡 and a desired angular speed 𝑤𝑟𝑜𝑏𝑜𝑡. Figure 4.3 shows a picture of 

the differential robot kinematics: 

 

 

Figure 4.3: Differential robot kinematics 

The robot linear speed 𝑣𝑟𝑜𝑏𝑜𝑡 can be easily calculated by means of the formula 

𝑣𝑟𝑜𝑏𝑜𝑡  =  𝑤𝑟𝑜𝑏𝑜𝑡 ∗ 𝑅, where 𝑅 is the instantaneous radius of curvature (ICR = 

instantaneous center of rotation). In the same way, the left and right linear wheel 

speeds can be calculated according to Equation 4.1 and Equation 4.2: 

 
𝑣𝑙𝑒𝑓𝑡 = 𝑤𝑟𝑜𝑏𝑜𝑡 ∗ (𝑅 −

𝐷

2
) 

Equation 
4.1 
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𝑣𝑟𝑖𝑔ℎ𝑡 = 𝑤𝑟𝑜𝑏𝑜𝑡 ∗ (𝑅 +

𝐷

2
) 

Equation 

4.2 

 

Solving Equation 4.1 and Equation 4.2, the robot angular speed 𝑤𝑟𝑜𝑏𝑜𝑡 and the 

instantaneous radius of curvature 𝑅 can be obtained: 

 𝑤𝑟𝑜𝑏𝑜𝑡 = 
𝑣𝑟𝑖𝑔ℎ𝑡 − 𝑣𝑙𝑒𝑓𝑡

𝐷
 

Equation 
4.3 

 

 
𝑅 =

𝐷 ∗ (𝑣𝑟𝑖𝑔ℎ𝑡 + 𝑣𝑙𝑒𝑓𝑡)

2 ∗ (𝑣𝑟𝑖𝑔ℎ𝑡 − 𝑣𝑙𝑒𝑓𝑡)
 

Equation 
4.4 

 

And finally, the robot linear speed 𝑣𝑟𝑜𝑏𝑜𝑡 is obtained in Equation 4.5: 

 
𝑣𝑟𝑜𝑏𝑜𝑡  =  𝑤𝑟𝑜𝑏𝑜𝑡 ∗ 𝑅 =

𝑣𝑟𝑖𝑔ℎ𝑡 + 𝑣𝑙𝑒𝑓𝑡

2
 

Equation 
4.5 

Regarding the set of sensors mounted in the differential robot, they must provide 

measurements to all the variables that the reinforcement learning agent get from 

the environment. An encoder sensor is mounted in both powered wheels to 

measure the angular wheel speed and therefore calculate the robot linear and 

angular speeds according to Equation 4.3 and Equation 4.5. An accelerometer is 

also mounted to measure the robot angular and linear acceleration. Finally, a lidar 

sensor measures the relative position of the obstacles with respect to the robot. 

The lidar sensor covers 180 degrees. 

4.3. Motion control 

The motion control is responsible of controlling the actuators to realize the 

trajectory planned by the motion planning module. Therefore, the motion planning 

is directly connected to the motion control software module. Figure 4.4 shows the 

software architecture for autonomous driving vehicles and the connection 

between motion planning and motion control modules. 

 

Figure 4.4: ADAS software architecture 
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The motion control module commands the actuators of the vehicle. In case of a 

differential robot, the motion control will control the rotational speed of the two 

electrical motors mounted in each wheel. In case of front steering vehicles, the 

motion control will command the steering angle position, pedal position, and 

brake position. 

The motion control normally runs in an electronic control unit at a frequency of at 

least 100 Hz. This frequency is generally enough to control the actuators to the 

desired set point values. 

The motion control is included in the environment seen by the agent. The motion 

planning generates the robot’s linear speed and the robot’s angular speed. These 

two values are taken by the motion control and transformed into values to directly 

feed the actuators. Figure 4.5 shows the main signal flow between software 

modules: 

 

 

Figure 4.5: Motion planning and motion control signal interface 

In the case of a differential robot, the linear speed and angular speed are 

converted first into the left and right wheel speeds using Equation 4.6 and 

Equation 4.7: 

 
𝑣𝑙𝑒𝑓𝑡 = 𝑣𝑟𝑜𝑏𝑜𝑡 + 𝑤𝑟𝑜𝑏𝑜𝑡

𝐷

2
 

Equation 
4.6 

 
𝑣𝑟𝑖𝑔ℎ𝑡 = 𝑣𝑟𝑜𝑏𝑜𝑡 − 𝑤𝑟𝑜𝑏𝑜𝑡

𝐷

2
 

Equation 
4.7 

   

Figure 4.6 shows a differential robot and its main variables. 𝑣𝑙𝑒𝑓𝑡 is the linear 

speed of the left wheel, 𝑣𝑟𝑖𝑔ℎ𝑡 the linear speed of the right wheel, 𝑣𝑟𝑜𝑏𝑜𝑡 the linear 

speed of the robot, 𝑤𝑟𝑜𝑏𝑜𝑡 the angular speed of the robot and 𝐷 is the distance 

between the two wheels. 
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Figure 4.6: Differential robot geometry and linear velocities 

The linear speeds are converted in angular speed by means of the radius of the 

wheel: 

 𝑤𝑙𝑒𝑓𝑡 =
𝑣𝑙𝑒𝑓𝑡

𝑟𝑙𝑒𝑓𝑡
 

Equation 
4.8 

 

 𝑤𝑟𝑖𝑔ℎ𝑡 =
𝑣𝑟𝑖𝑔ℎ𝑡

𝑟𝑟𝑖𝑔ℎ𝑡
 

Equation 

4.9 
   

These two set point values of the wheel’s angular speed are controlled by two 

independent PID controllers. These PID controllers convert the angular speed 

into a duty cycle for a PWM signal. The PWM signal can adjust the voltage of the 

electrical DC motor to control its angular speed. The complete control diagram is 

shown in the following picture. The policy out of the deep reinforcement learning 

controls the position of the robot by adjusting the linear speed and the angular 

speed. On the other hand, these linear and angular speeds are converted into 

wheel rotational speeds and two PID controllers control the measured angular 

speeds to these values: 

 

Figure 4.7: Cascade motion control. The agent controls the position of the robot by adapting the linear and 
angular speeds based on the observation from the environment. Then, the motion control uses PI 

controllers to control the linear and angular speeds 



UNED Borja Pintos Gómez de las Heras Page|37 

From Figure 4.7 we can see a cascade control for the robot position. To make 

the system stable, the wheel speed control must be at least 5 times faster than 

the control of the position of the robot. Therefore, the proportional part, integral 

time, and derivative part of the PID controllers are calibrated to achieve this 

required fast dynamic response avoiding at the same time overshooting of the 

angular speed. 

4.4. Reward functions 

The reward functions are the key to the reinforcement learning algorithm. The 

reward function is not telling us which action to take, as the supervise learning 

would do. Instead, the reward functions are a measurement of how good or bad 

is to end up in a new state after taking an action. This measurement of good or 

bad is closely related to the sensation of pain or pleasure which takes place in 

our brain. For example, let’s take the case of a robot travelling at a constant speed 

towards an obstacle. An incorrect reward would be to say that if the robot 

continues driving straight, this will be a bad reward. In fact, at the beginning of 

the learning process we do not know if driving the robot towards the obstacle is 

good or bad. This information will be stored in the critic function (cost function) 

after the learning process. Instead, the reward must be related to the pain or 

pleasure produced by the actions taken. This is, if the robot performs and action 

and, as a result of it, the robot crashes, the reward obtained will be bad. Next 

time, the robot will try to avoid selecting this action for that given state, which 

results in the robot crashing into an obstacle and producing pain. This is because 

the critic function tells us that, for this given state, continue driving straight will 

end up in a bad situation (or bad cumulative reward). Therefore, the critic function 

gathers all the experience seen during the learning process to build a function 

that evaluates which action is better, given a specific state. 

Regarding the type of rewards, they have been divided into safety, legal, comfort 

and task-oriented requirements. The safety, legal and comfort requirements are 

based on the pain that the robot might suffer if they are not fulfilled. On the other 

hand, the task-oriented requirements are based on the sensation of pleasure that 

is obtained by fulfilling the proposed tasks. Therefore, depending on the robot 

mission, the task-oriented requirements can be built following different criteria. 

Finally, it is very important to follow some rules by the time of defining the reward 

functions: 

• In problems with continuous actions and states, or in case of too large 

discrete spaces, it is very convenient to shape the reward function instead 

of using sparse rewards. The reason behind is that the robot learns by 

means of exploration. If the robot starts randomly exploring, the probability 

of the robot seeing this sparse reward can be very low, leading to an either 

unsuccessfully learning process because the robot does not find the 

reward or to an extremely long learning process. On the other hand, in 

case of shaped rewards (rewards with smooth continuous gradient), the 

robot can adapt its actions in the direction of maximizing the cumulative 

reward right from the beginning. For example, let’s imagine a robot that 
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must avoid obstacles. Defining a negative reward if the robot hits an 

obstacle and otherwise no reward is not convenient. It can take a long 

learning time until the robot hits an obstacle to get the negative reward and 

learn from it. Instead, a safety margin around the obstacle can be defined 

to write a shaped reward function. If we consider another example of giving 

a positive reward at the destination pose and otherwise no reward, the 

situation can be even more critical, since the robot might never find the 

way to the destination pose by random exploration. 

• It is better to avoid pure negative rewards. If the reward functions are 

always negative, excluding the 0, the reinforcement learning might find a 

solution by terminating the learning episode as soon as possible rather 

than keeping on driving and therefore accumulating more negative reward. 

For example, if a robot is always penalized with negative rewards, the logic 

can decide to crash the robot to stop accumulating for a long period of time 

small negative rewards until it reaches the destination. 

• Positive rewards are also tricky, and they must be treated carefully. If the 

robot finds a positive reward, the logic might end up in a loop solution. For 

example, if the robot gets a positive reward as the robot approaches the 

destination, the logic might find a solution of the robot spinning around the 

destination without reaching it to continuously accumulate reward. In this 

work, positive rewards have been avoided. But in case of its usage, 

conditions to terminate loops or a large sparse positive reward at the 

destination might be needed. 

• Always carefully design the learning scenarios to facilitate finding rewards 

from a beneficial starting situation. For example, let’s think of a robot that 

starts getting negative reward at a distance lower than 1 meter of the 

obstacle. If we design a scenario with left and right walls separated less 

than 2 meters, the robot will get constantly negative rewards and it will face 

the problem described in the previous second point. Instead, start with a 

wall separation slightly higher than 2 meters. If the robot learns a right 

policy, later it will be able to generalize to bottle neck situations correctly, 

where the walls are closer than 2 meters. 

We can then conclude that depending on the actions taken, the robot obtains 

different rewards values, and these reward values are sum up until the end of the 

learning process. Therefore, the goal of the reinforcement learning algorithm is 

to find out the execution of series of actions that maximize the cumulative reward 

obtained until the learning process is terminated. 

4.4.1. Safety requirements 

The safety requirements implement a penalization or a negative reward if the 

robot or vehicle crashes into obstacles. Situations where the vehicle drives too 

close to the obstacle are also penalized although no contact between vehicle and 

obstacle happens. For that reason, a circular safety margin around the obstacle 

is defined. A very simple reward function (Equation 4.10) is therefore defined: 0 

if the vehicle drives outside the safety margin, and a linear interpolation between 

0 and -1 if the vehicle drives inside the safety margin (see Figure 4.8). 
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Figure 4.8: Safety requirements. A safety margin is defined around the obstacles. If the robot enters this 
area, the environment will send a negative reward to the agent 

 

𝑅𝑒𝑤𝑎𝑟𝑑𝑠𝑎𝑓𝑒𝑡𝑦 = {

0        , 𝑑 > 𝑑𝑙𝑖𝑚𝑖𝑡
𝑑 − 𝑑𝑙𝑖𝑚𝑖𝑡
𝑑𝑙𝑖𝑚𝑖𝑡

, 𝑑 ≤ 𝑑𝑙𝑖𝑚𝑖𝑡
 

Equation 
4.10 

 

4.4.2. Legal requirements 

The legal requirements are closely related with the road maximum speed. The 

clearest example is the road speed limit of a front steering vehicle. If the road 

maximum speed is 120 km/h, the vehicle must control its speed so that it does 

not exceed this value. In the same way, a robot might move in an area where its 

maximum speed must be limited to some predefined value. 

The implementation of this reward function is very simple as well. There are two 

speed thresholds. If the vehicle speed does not exceed the speed value of the 

lower threshold, the reward will be 0. If the vehicle speed is between the 

thresholds, the reward will be linearly interpolated between 0 and -1 (Figure 4.9). 

 

Figure 4.9: Legal requirements. A penalization band is defined for a range of linear velocities. Below the 
lower limit 𝑣𝑙𝑖𝑚𝑖𝑡1, the robot gets no penalization 
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𝑅𝑒𝑤𝑎𝑟𝑑𝑠𝑎𝑓𝑒𝑡𝑦 = {−

0        , 𝑣 < 𝑣𝑙𝑖𝑚𝑖𝑡1
𝑣 − 𝑣𝑙𝑖𝑚𝑖𝑡1

𝑣𝑙𝑖𝑚𝑖𝑡2 − 𝑣𝑙𝑖𝑚𝑖𝑡1
, 𝑣𝑙𝑖𝑚𝑖𝑡1 ≤ 𝑣 ≤ 𝑣𝑙𝑖𝑚𝑖𝑡2

−1       , 𝑣 > 𝑣𝑙𝑖𝑚𝑖𝑡2

 
Equation 

4.11 

 

4.4.3. Comfort requirements 

Comfort can be defined as a pleasant feeling of the people travelling inside a 

vehicle. The feeling of discomfort can come from different sources. The three 

main sources which can decrease the feeling of comfort are listed below: 

• High acceleration values (longitudinal and lateral/angular) 

• High jerk values (longitudinal and lateral/angular) 

• Low frequency acceleration over long periods of time 

The acceleration can be seen as a force if we apply it to person of mass 𝑚. The 

generated force due to the acceleration can be calculated as 𝐹 =  𝑚𝑎. The higher 

the acceleration is, the higher the force applied to a person travelling inside the 

vehicle. A high acceleration or force can be very uncomfortable. If the force is too 

high, the target person might not be able to stay still inside the vehicle, or even 

loose completely the control and crash into the interior of the vehicle, causing 

possible damage. Even if the person can control itself, there is a maximum value 

of the acceleration, above which the people will start to find themselves 

uncomfortable. Therefore, it is important to make sure that the vehicle 

acceleration never goes above a predefined maximum value or under a 

predefined minimum value. 

The second source of discomfort is the high jerk values. The jerk is defined as 

the derivative of the acceleration. Thus, the jerk can be seen as a changing force 

in a person. If the force changes too fast, even if the force magnitude along the 

process is not high, it could be possible that the person cannot even react on time 

to control its body and remain still. In the extreme case of steps in the 

acceleration, the person will feel these infinite impulse jerk values like a slap. 

Therefore, it is also required to control the maximum and the minimum values of 

the jerk. 

Finally, the third source of discomfort is the low frequency acceleration 

maintained over a long period of time. Low frequency forces applied to a person 

are associated to a feeling of sickness. Short period of time will not cause any 

issue, but a persistent low frequency signal over a long period of time can cause 

discomfort. In this case, the problematic range of frequencies must be detected 

and avoid long period of time under these conditions. 

In this work we are going to control only the first source of discomfort, the high 

angular acceleration values, which is also the most common one. To avoid high 

angular acceleration values, a simple reward function will be defined. The reward 

function defines a window given two acceleration values, 𝑤̇𝑚𝑎𝑥1 and 𝑤̇𝑚𝑎𝑥2. 

Accelerations below 𝑤̇𝑚𝑎𝑥1 will not be penalized (penalization is a negative 

reward). Accelerations within 𝑤̇𝑚𝑎𝑥1 and 𝑤̇𝑚𝑎𝑥2 will be penalized using a linear 
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interpolation. The maximum penalization value will be clipped if the acceleration 

is higher than 𝑤̇𝑚𝑎𝑥2. Figure 4.10 shows the acceleration window where the 

penalization is applied and a schematic of a robot and an IMU sensor, used to 

measure the acceleration values of the robot or vehicle. Equation 4.12 

implements the reward formula for the comfort requirements. 

 

Figure 4.10: Comfort requirements. A penalization band is defined for a range of angular accelerations. 
Below the lower limit 𝑤̇𝑚𝑖𝑛, the robot gets no penalization 

 

𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑜𝑚𝑓𝑜𝑟𝑡 =

{
 

 
−

0        , 𝑤̇ < 𝑤̇𝑚𝑎𝑥1
𝑤̇ − 𝑤̇𝑚𝑎𝑥1

𝑤̇𝑚𝑎𝑥2 − 𝑤̇𝑚𝑎𝑥1
, 𝑤̇𝑚𝑎𝑥1 ≤ 𝑤̇ ≤ 𝑤̇𝑚𝑎𝑥2

−1       , 𝑤̇ > 𝑤̇𝑚𝑎𝑥2

 
Equation 

4.12 

 

The longitudinal comfort has not been considered to keep the experiment simple, 

but it can be easily added just by replacing the angular acceleration by the 

longitudinal acceleration. 

4.4.4. Task-oriented requirements 

Task-oriented requirements are requirements intended to fulfil a specific task. It 

is possible to define multiple tasks and they strongly depend on the autonomous 

driving problem to be solved. For example, in the case of a front steering vehicle 

travelling in the highway, there might be a task-oriented requirement to reward 

the vehicle if it drives in the right lane when no overtaken maneuver is intended. 

In case of a differential robot which is exploring a room to reach a specific 

destination or location in the room, a task-oriented requirement could be to drive 

the robot to this desired destination. As a complement to this previous 

requirement, another task could be to reward the robot with higher speeds to 

decrease the travelling time. Since this work is making use of a differential robot, 

the last two tasks are going to be implemented. 

For the first task, the robot will be rewarded when facing the right direction to the 

target destination. The direction to the target destination 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 can be 

determined by visual sensors such as cameras or providing waypoints to the 
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robot with the target destination coordinates. Figure 4.11 shows the target 

heading angle 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 and the robot’s heading angle 𝜃𝑟𝑜𝑏𝑜𝑡. If the difference 

between these angles is not 0, the robot will be penalized according to Equation 

4.13. Notice that the penalization, like the other ones, is normalize between 0 and 

-1. 

 

Figure 4.11: Task-oriented requirements to reach a destination pose. The robot gets penalized if it does 
not face the direction of the destination pose 

 
𝑅𝑒𝑤𝑎𝑟𝑑𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = −

|𝜃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝜃𝑟𝑜𝑏𝑜𝑡|

𝜋
 

Equation 
4.13 

   

For the second task, a simple reward function will be defined (Equation 4.14). 

The robot will get penalized if the speed is 0 and it will get no penalization if the 

robot travels at the maximum target (legal) speed (reward is clipped to a minimum 

value of -1 and a maximum value of 0). Since the legal requirements are also 

implemented, if the robot exceeds the maximum legal speed, it will be penalized. 

 𝑅𝑒𝑤𝑎𝑟𝑑𝑠𝑝𝑒𝑒𝑑 = −
𝑣𝑟𝑜𝑏𝑜𝑡 − 𝑣𝑡𝑎𝑟𝑔𝑒𝑡

𝑣𝑡𝑎𝑟𝑔𝑒𝑡
 

Equation 

4.14 

Finally, the reward due to the task-oriented requirements is obtained by adding 

the single functions: 

 𝑅𝑒𝑤𝑎𝑟𝑑𝑡𝑎𝑠𝑘 = 𝑅𝑒𝑤𝑎𝑟𝑑𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 + 𝑅𝑒𝑤𝑎𝑟𝑑𝑠𝑝𝑒𝑒𝑑 

 

Equation 
4.15 

4.4.5. Final reward function 

The final reward function can be simply built by adding the single reward functions 

(Equation 4.16). Each reward function is normalized between -1 and 1 (negative 

reward values are a penalization and positive values are a reward). So, if we 

simply add together all the reward functions, we are giving the same level of 

importance to all the requirements represented by these reward functions. 

Instead, to give more importance to some requirements, a weighted addition of 

the single reward functions is performed: 

 𝑅𝑒𝑤𝑎𝑟𝑑 = 𝐾𝑠𝑎𝑓𝑒𝑡𝑦 ∗ 𝑅𝑒𝑤𝑎𝑟𝑑𝑠𝑎𝑓𝑒𝑡𝑦 + 𝐾𝑙𝑒𝑔𝑎𝑙 ∗ 𝑅𝑒𝑤𝑎𝑟𝑑𝑙𝑒𝑔𝑎𝑙
+ 𝐾𝑐𝑜𝑚𝑓𝑜𝑟𝑡 ∗ 𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑜𝑚𝑓𝑜𝑟𝑡 + 𝐾𝑡𝑎𝑠𝑘 ∗ 𝑅𝑒𝑤𝑎𝑟𝑑𝑡𝑎𝑠𝑘 

Equation 
4.16 
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In general, the order of importance within the requirements is the following: 

safety, legal, comfort and task-oriented. For that reason, the weights are selected 

so that the Equation 4.17 is fulfilled: 

 𝐾𝑠𝑎𝑓𝑒𝑡𝑦 ≥ 𝐾𝑙𝑒𝑔𝑎𝑙 ≥ 𝐾𝑐𝑜𝑚𝑓𝑜𝑟𝑡 ≥ 𝐾𝑡𝑎𝑠𝑘 Equation 

4.17 

The reinforcement learning algorithm is then implemented so that the cumulative 

reward of the previous reward function is maximized. 

4.5. State variables 

The state variables are essential during the reinforcement learning process, and 

they must be selected carefully. The state variables are those variables which the 

reinforcement learning agent observes from the environment. Therefore, the 

agent uses this information to learn the policy by trial and error. Figure 4.12 shows 

the classical reinforcement learning image where the agent gets from the 

environment an observation and a reward and uses this information to learn a 

policy and produce an optimal action. 

 

Figure 4.12: Agent-environment interaction 

The selection of the state variables must fulfil 4 important points: 

• State variables must be measurable signals 

First at all, the state variables must be signals that can be measured by physical 

sensors. For example, the robot linear speed can be easily measured with 

encoders in the wheels, and it can be used as a state variable for the agent. This 

is very important because the selection of simulated variables which cannot be 

measured in real life will not make possible to implement the reinforcement 

learning algorithm using real hardware. 

• State variables must be able to generalize to unseen scenarios 

State variables must be capable of generalization so that the policy obtained after 

the learning process can solve unseen scenarios. This property is very important 

because if the policy cannot generalize to unseen scenarios, we would be forced 

to generate infinite possible scenarios during the learning process, which is 

unfeasible. Figure 4.13 shows an example of a set of state variables that can 

generalize and another different set of state variables that are not able to 

generalize: 
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Figure 4.13: Generalization of the state variables. The left set of variables includes only relative distances. 
The agent can generalize to new unseen situations because, no matter where the obstacle and the robot 

are located, if the relative position is the same, the observation from the environment is identical. The right 
set of variables includes relative and absolute distances. The agent cannot generalize because it needs to 

learn the same policy for each absolute distance 

The left configuration of state variables are all relative distances from the robot to 

the obstacles. This will allow the robot to avoid the obstacle after the learning 

process. However, if the obstacle is in another location of the environment, the 

robot will still avoid it safely. Therefore, we do not need to generate infinite 

scenarios where the obstacle is placed in each location of the environment for 

the policy to avoid the obstacle. On the other hand, the right configuration has 

considered as a state variable the absolute distance travelled by the robot. In this 

case, a similar policy must be learnt for all the values of the distance travelled. 

Since the distance travelled is a continuous variable, it will mean having to 

generate infinite number of scenarios to learn the right policy. 

The generalization of the state variables has also an additional and important 

consequence. Since the generalized variables are relative distances, velocities, 

or angles with respect to the vehicle, we can end up in the very same state as we 

were before after taking an action. If we are working with continuous reward 

functions, this can cause a problem during the learning process. To explain the 

root cause of this problem, we can have a look to the Bellman equation which is 

used to iteratively update the action-value function: 

 𝑞𝜋(𝑆𝑡, 𝐴𝑡) = 𝑅𝑡+1 + 𝛾max
𝑎
𝑞𝜋(𝑆𝑡+1, 𝑎) 

Equation 
4.18 

Assuming that we are on the state 𝑆𝑡 and take the action 𝐴𝑡, due to the fact that 

the variables are generalized, we can end up in the same state, i.e., 𝑆𝑡+1  =  𝑆𝑡. 
Under this situation, if a reward is received from the environment, we run into the 

problem that the action-value function will grow up to infinite (or minus infinite). 

This unlimited cumulative reward brings instability to the learning process and the 

policy generated will not be able to fulfil the requirements. To limit the action-

value function, a discount factor less than 1 is needed. In cases where the 

variables are not generalized and absolute values are used as state variables, 

the discount factor is used to give more importance to instant rewards. For 

example, if we chose a discount factor less than 1 and absolute state variables, 
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the policy would find the path to the destination using the shortest way, since a 

delay arriving at the destination will cause the reward to be discounted and 

therefore be less quantity than arriving without delay. 

• State variables must fulfil the Markov property 

The theoretical part with a practical example has been already discussed under 

the q-learning chapter (section 3.1). The state variables need to fulfil the Markov 

property, otherwise the learning process will be unstable. If the Markov property 

is not fulfilled, the given state is not fully determined. This means that the 

selection of the optimal action depends on the history of states. Then, it is not 

possible to determine which action is the optimal one because we do not have 

information about this history of states. Figure 4.14 shows two cases, one where 

the Markov property is not fulfilled and another one where it is fulfilled. 

 

Figure 4.14: Markov property of the state variables. The left set of variables includes the linear and angular 
speeds. The missing of the linear and angular speeds in the right set of variables makes it necessary to 

know the history of relative distances to guess the direction of movement of the robot 

The left configuration of state variables fulfils the Markov property. Given the state 

variables and after the selection of one desired action, we can determine the next 

state of the robot. On the other hand, the right configuration, where the linear 

velocity and the angular velocity of the robot are not provided, does not fulfil the 

Markov property. Under this configuration of state variables and assuming an 

action provided by the policy, we cannot determine the next state of the robot. 

Considering two cases where the first case is the robot moving forward and the 

second case is the robot remaining standstill, the same action will result in very 

different states. As we do not know the history of states, it is not possible to 

determine the next state. Therefore, the policy will be also confused, and it will 

not be able to select the optimal action, as the policy does not know the history 

of states either. 

4.6. Online learning versus offline learning 

The main difference between online and offline learning is that offline learning 

resets the environment after the learning process is terminated, while the online 

learning does not reset it. Thus, the online learning makes possible to navigate 

and learn at the same time with a physical robot in a real environment. Therefore, 

the online learning must count with a powerful computing unit mounted directly in 

the robot or deploy edge computing architectures. 
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Table 4.1 shows the differences and the similarities between the online and offline 

learning: 

Offline learning Online learning 

Low computational cost High computational cost 

Suitable for microcontroller Suitable for GPUs or edge computing 
technologies 

Suitable to speed up learning process 
and generate high maturity policies 
(front loading) 

Suitable when the robot is working 
under environments of unknown 
dynamics (robot operating in another 
planet like Mars) 

It can learn from both simulation and real scenarios 
Table 4.1: Offline versus Online learning 

The sequence of the offline learning is as follows: 

1. Robot starts operation in the environment following current policy 

2. If obstacle is detected too close to the robot (or bumper sensor is 

activated) the robot stops and learning episode gets terminated 

3. Environment is reset (the position of the robot might change to a 

completely different location for the next learning episode) 

4. Restart new learning episode 

The sequence of the online learning is as follows: 

1. Robot starts operation in the environment following current policy 

2. If obstacle is detected too close to the robot (or bumper sensor is 

activated) the robot stops and learning episode gets terminated 

3. The robot backs up a little bit (predefined distance) 

4. The robot turns around a predefined angle 

5. Restart new learning episode 

For both the online and offline learning, the learning process must be terminated 

after some conditions are met. There are two conditions defined to consider that 

the policy is mature enough to fulfil the requirements. First at all, the number of 

total episodes must be greater than a minimum number. With this condition we 

ensure that the exploration rate has decayed until almost 0 to avoid very noisy 

and unstable policies, as discussed in the chapter 3.2. Secondly, no termination 

due to non-compliance of the safety, legal or comfort requirements must be 

detected for a minimum number of episodes to ensure proper learning. In order 

words, the termination of the learning episode must be only related to task-

oriented requirements, such as if the robot reaches the destination pose. If the 

episode gets terminated because the robot crashes into an obstacle or any 

acceleration value is greater than the maximum threshold, the counter to consider 

that the policy is ready gets reset to 0. 
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5. Experiments and results 
 

This section introduces the experiments and results of the self-learning 

navigation algorithm with reinforcement learning techniques under different 

driving scenarios and robot models. First, two different robot models are 

considered: a discrete robot model and a differential robot model. The reason 

behind using a discrete robot model is to make use of the q-learning algorithm. 

The q-learning algorithm has a lot of similarities in comparison with the DDPG 

algorithm. But since the q-learning is for discrete states and actions, a problem 

that might happen in the DDPG algorithm can be debugged easily by setting up 

a similar experiment with the q-learning algorithm. On the other hand, the 

following experiments have been set up: 

• Circuit with obstacles: circuit whose drivable space is delimited by walls. 

Obstacles and traps are included inside the scenario. The goal of this 

scenario is to select the optimum number of laser beams between these 

possible options: 8, 45 or 180 laser beams. In each case, the lidar always 

covers 180 degrees. Traps like zigzags or U-traps are set up inside the 

scenario to prove if a reduction of laser beams can successfully drive the 

robot to the destination without getting trapped in the circuit. Only safety 

requirements are considered to keep the experiment only focus on the 

optimal selection of total number of laser beams. 

• Circuit without obstacles: after the selection of the total number of laser 

beams, a circuit without obstacles has been set up. The goal here is to 

keep the scenario as simple as possible and to stepwise include the 

different requirements. Four different use cases have been considered: 

first, only safety requirements. Second, safety and legal requirements. 

Third, safety, legal and comfort requirements. And finally, all requirements 

together, safety, legal, comfort and task-oriented requirements. Therefore, 

this experiment tries to demonstrate that the reinforcement learning 

algorithm can successfully find an optimal policy fulfilling all the given 

requirements. 

• Circuit with dynamic obstacles: after the number of laser beams selection 

and the successful commissioning of all autonomous driving requirements 

(safety, legal, comfort and task-oriented), a scenario with dynamic 

obstacles is considered. The goal of this experiment is to prove under 

complex driving scenarios that the reinforcement learning algorithm can 

find an optimal solution. 

• Room with obstacles: this scenario tries to reproduce an open world 

scenario where the robot must reach a destination pose from a starting 

pose. However, spatial boundaries have been introduced in the scenario 

by means of walls. The reason is to limit the area where the robot can 

explore until it finds the destination, and therefore decrease the total 

learning time, which is normally very high (more than 5 hours). The goal 

of this experiment is to prove that the reinforcement learning logic can 
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successfully perform in open world scenarios. Additionally, the online 

learning approach has been validated under this experiment. 

Some experiments implement two different versions of the target scenario. For 

example, the “circuit with obstacles” experiment implements two scenarios, 

where the distribution of the obstacles inside the circuit is different. On one hand, 

a first and simplified scenario is implemented for the learning process. On the 

other hand, once the learning process is completed, a more complicated scenario 

is created to validate the policy obtained during the learning process. It is very 

important to carefully prepare a simplified first scenario for the learning process. 

Otherwise, the learning process might not end up successfully. There are two 

general rules to pay attention to while designing a scenario for the learning 

process: 

• We must ensure that the robot sees a reward soon enough during the 

learning episode. For example, if we define a single reward value at the 

destination pose, the probability that the robot finds out this reward after 

following all the way to the destination is extremely low. The consequence 

is that the policy does not learn how to avoid crashing into the walls. Then, 

the robot will always crash into the walls before reaching the destination 

and getting the reward. Thus, the learning process will end up 

unsuccessfully. This is also closely related to the way that the robot is 

exploring the surroundings. The robot can explore new actions in the hope 

to find out rewards that later will shape the policy function to maximize the 

cumulative reward. But the exploration range defined in this work is local 

around the current position of the robot, either by using a gaussian noise 

function or by using a sinusoidal wave with a predefined amplitude. But 

the exploration does not have a large or global range. For example, the 

exploration is not defined in this work as a predefined path to take, where 

there might be a probability to reach the destination by choosing the 

correct random path. Therefore, as the exploration is locally defined 

around the current position of the robot, we must ensure that the robot 

sees rewards soon enough for a successfully learning process. 

• We must include in the scenario all the elements that later can result in a 

robust and complete policy, trying to cover all the range of sensor 

measurements. For example, if the robot is intended to avoid obstacles, it 

is always good to include an obstacle on the left part of the road and 

another obstacle on the right part of the road. If the robot finds the obstacle 

at the left or right position, the readings from the lidar sensor are 

completely different. Following this rule, the robot will generate a complete 

set of measurements covering all the range of the sensors and therefore 

the robot will learn a complete and robust policy. 

The previously mentioned experiments, together with the learning process of the 

reinforcement learning algorithm, have been run in a system with the following 

characteristics: 

• Processor: AMD Ryzen 5 2600 Six-Core Processor 3.40 GHz 
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• Installed RAM: 8 GB 

• GPU: Not installed 

Due to large learning times (see tables of total learning times inside this section), 

the learning process have been terminated before the optimal policy is 

determined. By letting the learning process run more time, more mature policies 

can be obtained. The conditions to terminate the learning process are explain in 

section 4.6. With a better and more appropriate setup for this type of experiments, 

the total learning time can be drastically reduced. A server with a dedicated GPU 

can speed up the neural network training process (GPU usage) as well as the 

robot and environment simulation (server with large RAM memory and high 

number of cores). 

The sections below explain in more detail the experiments previously mentioned. 

5.1. Discrete robot model 

The first model is a simplified and discretized robot model. The goal to start with 

a very simplified model of the robot is to justify that the reinforcement learning 

techniques can successfully solve complex autonomous driving problems. As the 

model of the environment is discretized, we are going to use the q-learning 

algorithm. 

The model of the robot is very simple and admits only 3 actions: turn left, move 

forward, or turn right (see section 4.2.1). The observation variables will include 

only relative distances from the robot to the obstacle (lateral relative distance and 

longitudinal relative distance). It is important not to include any absolute distance, 

like the longitudinal travelled distance. If so, the robot will not be able to 

generalize to new scenarios. This is, the robot will avoid the obstacles in the 

scenarios used during the learning process. However, if the scenario changes 

after the learning process is finished, the policy will not be able to avoid the 

obstacles. 

Another advantage of not including absolute distances is that the q-table is much 

smaller. Thus, it is easier to visit all the states enough times so that the q-table 

converges to the optimal policy. Additionally, there is no need to start the learning 

process far away from the destination since the longitudinal distance has been 

eliminated. In case of a definition of a final reward, this is also very beneficial, 

because sometimes the probability to see this final reward at the destination is 

very low if the path to travel is very long. The shorter the path to the destination 

is, the easier to get the final reward and the easier to converge to the optimal 

policy. 

Finally, the reward strategy is also very simple, as it considers only safety 

requirements. The robot will be rewarded with -1 if it hits any obstacle or leave 

the circuit boundaries defined by the border frame (safety requirements). If the 

robot hits any obstacle, leaves the circuit, or reaches the destination, the learning 

episode will be terminated. Figure 5.1 shows the discrete grid where the vehicle 

can move along. Depending on the action taken, the vehicle can jump to the spot 

in front of the actual pose, the spot in the front-left location, or the spot in the 
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front-right location. The red spots of Figure 5.1 denote the static obstacles and 

the gray spots denote the starting and destination poses. The numbers in bracket 

denote the absolute lateral distance and the absolute longitudinal distance. The 

absolute lateral distance can take any integer number from -2 to 2. On the other 

hand, the absolute longitudinal distance can take any integer number from -1 to 

19. The vehicle will leave the road boundaries if the lateral distance is either -2 

or 2. In this case, the road boundaries are considered like walls and therefore 

treated like static obstacles. 

 

Figure 5.1: Discretized environment. The red spot are obstacles, and the grey spots are the starting and 
destination poses. The first number in bracket is the lateral distance with respect to the midline, and the 

second one is the longitudinal distance 

After the learning process, the calculated policy has been validated with other 

obstacle distributions different from the one used during the learning process to 

prove that the policy is independent of the circuit or obstacle distribution used 

during learning. These new obstacle distributions have not been seen yet by the 

agent during the learning process, so that we can test if the policy can generalize 

to new unseen situations. The path travelled by the vehicle is highlighted in green 

in the following figures. The vehicle not only avoids all the obstacles, but also 

reaches the destination maximizing the cumulative reward. 

• Obstacle distribution used during the learning process 

 

Figure 5.2: Travelled path (green) for the obstacle distribution used during the learning process. The 

obstacles are marked in red. Starting and destination poses are marked in grey 

• Obstacle distribution 1 not seen during the learning process 

 

Figure 5.3: Travelled path (green) for obstacle distribution 1. The obstacles are marked in red. Starting and 

destination poses are marked in grey 

• Obstacle distribution 2 not seen during the learning process 
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Figure 5.4: Travelled path (green) for obstacle distribution 2. The obstacles are marked in red. Starting and 
destination poses are marked in grey 

• Obstacle distribution 3 not seen during the learning process 

 

Figure 5.5: Travelled path (green) for obstacle distribution 3. The obstacles are marked in red. Starting and 

destination poses are marked in grey 

The results show a very good behavior of the optimal policy, not only for the 

scenarios used during the learning process, but also for unseen scenarios by the 

agent during the learning process. Therefore, the characteristic of generalization 

of the optimal policy has been accomplished for this simplified setup with the q-

learning algorithm. 

5.2. Differential robot 

In this section, the robot driving around the environment is a differential robot. 

Unlike the previous section, the model of the robot is a continuous function. Thus, 

the q-learning algorithm is not any longer suitable for this type of environment. A 

reinforcement learning algorithm which can handle continuous states and actions 

is needed under this section. The deep deterministic policy gradient (DDPG) is a 

good approach for this problem. 

The continuous states variables are highlighted in Figure 5.6. Only relative 

distances of the laser beams from the robot to the obstacles are considered. A 

study of how many laser beams are to be considered to learn an optimal policy 

is performed in this work. Apart from the relative distances of the laser beams, 

the robot linear and angular speeds are considered. Additionally, the angular 

acceleration is also considered as state variable. All distances, speeds and 

accelerations are normalized between -1 and 1 (or 0 and 1). The normalization is 

important to bring stability during the learning process. 
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Figure 5.6: State variables of a differential robot 

5.2.1. Circuit with obstacles 

The first scenario to be considered is a circuit with obstacles. The circuit is 

surrounded by walls and the robot is supposed to drive always forwards avoiding 

crashing into the walls or obstacles. Considering the scenario only with the walls 

and without the obstacles along the way, it would be equivalent for validation the 

autopilot for front steering vehicles. The front steering vehicle detects the left and 

right lanes, which are equivalent here to the left and right walls. Figure 5.7 shows 

a schematic of the scenario used in CoppeliaSim. 

 

Figure 5.7: Circuit with obstacles 1 

As shown in Figure 5.7, there are two obstacles along the way. One on the left 

side of the robot, and another one on the right side. The robot must reach safely 
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the destination pose. For that, only the safety requirements will be considered 

under this experiment. The safety requirements are represented by a simple, 

linear reward function (see section 4.4.1). Having the reward function defined, the 

DDPG algorithm will update the actor and critic networks to maximize the 

cumulative reward. At the beginning of the learning process, the actor and critic 

networks are initialized randomly, so the robot will hit the walls. As the robot 

drives, the state variables and actions are recorded by the DDPG algorithm and 

used to learn a new actor and critic models which perform better than the old 

ones. To see how the algorithm records and updates the actor and critic 

networks, see section 3.2. Every time that the robot hits an obstacle or wall, the 

learning episode gets terminated. Since we are using offline learning for this 

scenario, the position of the robot is reset back to the starting pose, wherever the 

robot is located along the circuit when the episode gets terminated. The episode 

also gets terminated if the robot reaches the destination pose. The goal of this 

simplified scenario is to determine the optimal number of laser beams to be 

considered in the state variables. We are going to analyze 3 different possibilities: 

180, 45 or 8 laser beams. The configuration of the robot and state variables 

(number of laser beams), as well as the parametrization of the DDPG method is 

shown in Table 5.1: 

Scenario Circuit with obstacles 1 

Sensors Lidar + IMU 

Number of laser beams 180 

State variables Normalized laser distances and 
normalized angular velocity 

Actions Angular velocity 

Maximum number of episodes 100 

Exploration Gaussian noise 𝒩(0,0.5) 
Exploration decay 0.99 

Actor network hidden layers (500,500,500) 

Critic network hidden layers (500,500,500,500) 

Actor learning rate 0.00001 

Critic learning rate 0.0005 

Safety requirements 𝑑𝑙𝑖𝑚𝑖𝑡 = 1 

Type of learning Offline learning 
Table 5.1: Robot configuration with 180 laser beams 

Figure 5.8 shows the path travelled by the robot. As we can see, the robot avoids 

all the obstacles safely. From Table 5.1 we can read that the safety requirements 

generate negative rewards if the robot travels closer than 1 meter away from an 

obstacle (𝑑𝑙𝑖𝑚𝑖𝑡 parameter, see section 4.4.1). Since the distance between walls 

in the circuit is set to 2 meters, as shown in Figure 5.8, the robot will get maximum 

reward if it travels along the middle lane of the circuit. Therefore, the path 

travelled by the robot (blue line) shows a correction when an obstacle is coming, 

adapting the trajectory from the middle lane between walls to the middle lane 

between obstacle and wall. 
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Figure 5.8: Travelled path. Circuit with obstacles 1, robot with 180 laser beams. The robot collects more 
cumulative reward when it travels along the midline. Thus, there is a sharp turn at the beginning of the 

second obstacle to follow the midline between wall and obstacle 

Figure 5.9 shows the commanded angular speed and the angular acceleration. 

 

Figure 5.9: Angular speed and acceleration. Circuit with obstacles 1, robot with 180 laser beams. The 
angular speed and acceleration correspond to the path of Figure 5.8 

It can be seen from both graphs that the angular speed and therefore the angular 

acceleration are very aggressive. This can not only damage the actuators of the 

robot, but it also feels very uncomfortable in case of any passenger travelling 

inside the robot. The reason why the commanded angular speed looks so 

aggressive is because the comfort requirements are still not included in this 

section. We will see later that the policy will produce a much smoother response 

to fulfil the comfort requirements and extend the life of actuators. 
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Once the actor and critic networks are determined after the learning process, an 

additional scenario has been prepared to validate the policy and check if it is 

capable to generalize and solve unseen scenarios. The new scenario is also a 

circuit surrounded by walls. However, this scenario has 3 different traps that the 

robot must successfully overcome: 

1. U-trap 

2. Zigzag 

3. Bottle neck 

The robot is expected to turn soon enough to the right direction to avoid getting 

trapped in the U-trap. The zigzag is a sequence of obstacles where the robot 

must react very quickly in order not to hit the obstacles. Finally, the robot must 

still be able to drive at the middle lane of the bottle neck to maximize the 

cumulative reward. A bird view of the scenario is shown in Figure 5.10. 

 

Figure 5.10: Circuit with obstacles 2 

The results show that this configuration of 180 laser beams can successfully 

overcome the 3 different traps and the policy can generalize and solve these 

tricky situations. The path travelled by the robot can be checked in Figure 5.11. 

The path travelled (blue line) tries always to be located at the middle distance 

between obstacles. However, at the beginning of the U-trap, the robot does not 

manage to travel at the middle lane. This is because the robot gets confused 

about which path to take until the very end, when the robot discovers that there 

is more free space turning to the left than turning to the right, since the laser 

readings from the left side report longer distances. This is when the robot finally 

turns to the left, getting a little bit closer to the U-trap obstacle but without colliding 

into it (otherwise the simulation would have been terminated). A slightly pitching 

of the robot’s heading can also be seen when the robot performs a 90-degree 

turn. This effect will eventually vanish if more learning episodes are considered 

during the learning process. This is because the robot, by means of the 
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exploration, will find out that turning earlier in the direction of the curve will get 

earlier the heading in line with the straight lane, and therefore the cumulative 

reward will decrease. 

 

Figure 5.11: Travelled path. Circuit with obstacles 2, robot with 180 laser beams. The robot gets closer to 
the first obstacle due to a late detection of the true free space. The pitching of the heading can be 

improved considering more learning episodes and loading more scenarios during the learning process 

The second configuration of the robot under this scenario will consider 45 laser 

beams. Table 5.2 shows the parametrization of this second environment: 

Scenario Circuit with obstacles 1 

Sensors Lidar + IMU 

Number of laser beams 45 

State variables Normalized laser distances and 
normalized angular velocity 

Actions Angular velocity 

Maximum number of episodes 100 

Exploration Gaussian noise 𝒩(0,0.5) 
Exploration decay 0.99 

Actor network hidden layers (50,50,50) 

Critic network hidden layers (50,50,50,50) 

Actor learning rate 0.00001 

Critic learning rate 0.0005 

Safety requirements 𝑑𝑙𝑖𝑚𝑖𝑡 = 1 

Type of learning Offline learning 
Table 5.2: Robot configuration with 45 laser beams 

The results show a good behavior of the policy under the scenario used for the 

learning process (Figure 5.12), but if we compare the blue line (path travelled by 

the robot with 180 laser beams) with the red line (path travelled by the robot with 

45 laser beams), the red line does not perfectly follow the midline. The fact that 

the robot now does not perfectly follows the midline is not only due to a reduction 
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of laser beams. The number of neurons in the hidden layers have also been 

reduced, and they play an important role to produce high non-linear solutions. 

Therefore, the combination of less laser beams and, above all, the least number 

of neurons in the hidden layer, does not allow the robot to perfectly follow the 

midline. 

Regarding the validation scenario, the robot gets trapped in the U-trap, as shown 

in Figure 5.13. Here the number of laser beams is highly important, as the free 

space on the left part of the U-trap cannot be detected with 45 laser beams due 

to a too high angle between two consecutives laser beams. This high angle 

represents a penalization if the robot wishes to detect free spaces far away from 

the robot’s current position. 

 

Figure 5.12: Travelled path. Circuit with obstacles 1, robot with 45 laser beams (red) and robot with 180 
laser beams (blue). The 45 laser beams robot cannot perfectly follow the midline due to a reduction of 

laser beams and a reduction of the number of neurons in the hidden layers of the policy and critic networks 
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Figure 5.13: Travelled path. Circuit with obstacles 2, robot with 45 laser beams (red) and robot with 180 
laser beams (blue). The 45 laser beams version is not capable to detect the free space at the left part of 

the first obstacle 

Finally, the third configuration evaluates only 8 laser beams. The parametrization 

is shown in Table 5.3: 

Scenario Circuit with obstacles 1 

Sensors Lidar + IMU 

Number of laser beams 8 

State variables Normalized laser distances and 
normalized angular velocity 

Actions Angular velocity 

Maximum number of episodes 100 

Exploration Gaussian noise 𝒩(0,0.5) 
Exploration decay 0.99 

Actor network hidden layers (50,50,50) 

Critic network hidden layers (50,50,50,50) 

Actor learning rate 0.00001 

Critic learning rate 0.0005 

Safety requirements 𝑑𝑙𝑖𝑚𝑖𝑡 = 1 

Type of learning Offline learning 

Table 5.3: Robot configuration with 8 laser beams 

The results are very similar to the case of 45 laser beams, as we can check from 

Figure 5.14 and Figure 5.15. For the first obstacle scene, the path travelled by 

the robot of 180 laser beams (blue path) is very similar to the case of 45 laser 

beams (red path) and 8 laser beams (green path). In the U-trap, both 45 and 8 

laser beams configurations get trapped. 
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Figure 5.14: Travelled path. Circuit with obstacles 1, robot with 8 laser beams (green), robot with 45 laser 
beams (red) and robot with 180 laser beams (blue). The 8 and 45 laser beams versions output similar 

results 

 

Figure 5.15: Travelled path. Circuit with obstacles 2, robot with 8 laser beams (green), robot with 45 laser 
beams (red) and robot with 180 laser beams (blue). The 8 and 45 laser beams versions output similar 

results 

Therefore, the best configuration for the laser sensor are 180 beams since it has 

a better capability to detect small obstacles and thus a lower probability to get 

trapped between obstacles, such as the U-trap of the previous scene. The reason 

is because the angle between consecutive laser beams in the case of a total 

number of 45 or 8 is too large and a small obstacle can remain unseen between 

2 consecutive laser beams, leading the robot to take the wrong direction and 

getting trapped in the U-trap. Since it has been proved that 180 laser beams are 
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the best configuration for a proper and fine control of the robot, we are going to 

consider 180 laser beams for the next experiments. 

5.2.2. Circuit without obstacles 

The goal of this second experiment is to introduce in a stepwise manner the 

different requirements defined in section 4.4 (safety, comfort, legal and task-

oriented) and prove that the logic is working as intended. 

The scenario has no obstacles apart from the right and left walls. The robot is 

intended to follow the path indicated by the walls without crashing into them. 

Figure 5.16 shows a schematic of the scenario used under this section: 

 

 

Figure 5.16: Circuit without obstacles 

There are 4 different test cases proposed in this section: 

1. Single action. Safety requirements: An agent which controls only the robot 

angular velocity. The linear velocity is fixed to a predefined value. The 

requirements to be considered under this subsection are only the safety 

requirements. 

2. Multiple actions. Safety + legal requirements: An agent which controls the 

robot angular velocity and the linear velocity. The requirements to be 

considered in this test case are the safety and legal requirements. 

3. Multiple actions. Safety + legal + comfort requirements: An agent which 

controls the robot angular velocity and the linear velocity. The 

requirements to be considered in this test case are the safety, legal and 

comfort requirements. 

4. Multiple actions. Safety + legal + comfort + task-oriented requirements: An 

agent which controls the robot angular velocity and the linear velocity. The 

requirements to be considered in this test case are the safety, legal and 
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comfort requirements. Task-oriented requirement to stop the robot when it 

reaches the destination pose. 

The results obtained in each test case are shown below: 

1. Single action. Safety requirements 

The angular speed of the robot is controlled by the agent. The agent will get a 

negative reward every time that the robot gets too close to an obstacle or to the 

circuit boundaries. The policy is considered to be mature enough once the 

conditions to complete the learning process have been fulfilled (see section 4.6). 

The path travelled by the robot with the resulted policy after the learning process 

is shown in Figure 5.17: 

 

Figure 5.17: Travelled path. Circuit without obstacles, safety req. The robot collects more cumulative 
reward when it travels along the midline. The pitching of the heading can be improved considering more 

learning episodes and loading more scenarios during the learning process 

As seen from Figure 5.17, the robot gets to the destination pose avoiding at every 

moment the circuit boundaries. Like the previous experiment (section 5.2.1), 

there is a slightly pitching of the robot’s heading after the 90-degree curve. A 

longer learning process would have reduced this effect. On the other hand, the 

angular speed of the robot (and therefore also its derivative, the angular 

acceleration) is very nervous (see Figure 5.18). Since the comfort requirements 

are not yet applied during the learning process, the resulted policy in Figure 5.18 

looks very aggressive. 
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Figure 5.18: Angular speed and acceleration. Circuit without obstacles, safety req. The angular speed and 
acceleration correspond to the path of Figure 5.17 

2. Multiple actions. Safety + legal requirements 

Under this experiment the agent controls both the angular speed and the linear 

speed. Here, the robot gets penalized if the linear speed exceeds a predefined 

limit value. There is also a task-oriented requirement defined in this experiment: 

the robot shall drive close to the limit speed to try to reduce the travelling time. 

Therefore, the robot gets also penalized if the linear speed does not increase up 

to the target speed. The path travelled by the robot and the angular and linear 

velocities are shown in Figure 5.19 and Figure 5.20. There is still the pitching in 

the robot’s heading, which can be corrected, as mentioned previously, with more 

exploration and learning episodes. 
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Figure 5.19: Travelled path. Circuit without obstacles, safety + legal req. The robot collects more 
cumulative reward when it travels along the midline. The pitching of the heading can be improved 

considering more learning episodes and loading more scenarios during the learning process 

 

Figure 5.20: Angular speed, angular acceleration, and linear speed. Circuit without obstacles, safety + 
legal req. The angular speed, angular acceleration and linear speed correspond to the path of Figure 5.19 

The plot shows in red the angular speed and in blue the linear speed. The top 

plot belongs to the commanded angular and linear speeds by the agent. The 

middle plot shows the measured angular and linear speed with the sensors 

mounted in the robot. Finally, the angular acceleration is also plotted in the bottom 

figure. As we can see, the differential robot always travels at 0.2 m/s, which is the 

maximum speed allowed under this scenario. 

Regarding the state variables, the normalized linear speed has been included. 

This is because the reward must be a function of the state variables. 
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3. Multiple actions. Safety + legal + comfort requirements 

The difference with respect to the previous experiment is the introduction of the 

comfort requirements. The robot gets penalized if the IMU sensor of the robot 

reads an angular acceleration higher than a predefined limit value. Again, the 

path travelled by the robot and the commanded signals by the agent are plotted 

in Figure 5.21 and Figure 5.22: 

 

Figure 5.21: Travelled path. Circuit without obstacles, safety + legal + comfort req. The robot collects more 
cumulative reward when it travels along the midline. The pitching of the heading can be improved 

considering more learning episodes and loading more scenarios during the learning process, but it does 
not compromise the comfort because the angular acceleration values are below the limit, as seen in Figure 

5.22 

 

Figure 5.22: Angular speed, angular acceleration, and linear speed. Circuit without obstacles, safety + 
legal + comfort req. The angular speed, angular acceleration and linear speed correspond to the path of 

Figure 5.21 
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Now the robot reacts much smoother than in the previous experiments. The 

commanded signals sent to the actuators are smooth to avoid actuator damage 

and keep a good comfort feeling. The maximum acceleration limit where the robot 

starts to get penalized is 0.001 𝑟𝑎𝑑/𝑠2. Below this value, the robot does not get 

any penalization, as the comfort feeling is still ok for those low acceleration 

values. Additionally, the robot follows the midline perfectly. There is however 

some pitching in the robot’s heading after the 90-degree curves. However, this 

pitching does not compromise the comfort, because the angular acceleration 

values are below the predefined limit. Anyway, more learning episodes will 

improve the pitching and reduce even further the acceleration values. 

Regarding the state variables, the normalized angular acceleration has been 

included. 

4. Multiple actions. Safety + legal + comfort + task-oriented requirements 

Finally, a task-oriented requirement has been added to stop the robot exactly at 

the destination pose. The same reward function as in the second experiment has 

been used. However, there is a small modification to bring the robot velocity to 0 

at the destination pose. The distance from the robot to the destination pose is 

measured. For example, this variable can be measured by a camera. If the 

destination pose is indicated by an object with a color that the camera can 

recognize, the perception module can calculate the relative distance from the 

robot to the destination pose. If the camera does not detect the target color, the 

distance is set to the maximum value (equal to 1 if this distance has been 

normalized). The robot target speed can be then ramped down to 0, as the robot 

approaches the destination pose. 

 

Figure 5.23: Travelled path. Circuit without obstacles, safety + legal + comfort + task-oriented req. The 
robot collects more cumulative reward when it travels along the midline. The pitching of the heading can 

be improved considering more learning episodes and loading more scenarios during the learning process, 
but it does not compromise the comfort because the angular acceleration values are below the limit, as 

seen in Figure 5.24 
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Figure 5.24: Angular speed, angular acceleration, and linear speed. Circuit without obstacles, safety + 
legal + comfort + task-oriented req. The angular speed, angular acceleration and linear speed correspond 

to the path of Figure 5.23 

As we can check from Figure 5.24, the robot linear speed (blue line) gets down 

to 0 when the robot reaches the destination pose. Additionally, all other 

requirements are also fulfilled: the robot has not crashed into the circuit 

boundaries (safety requirements), the robot linear speed does not exceed the 

maximum predefined limit (legal requirements) and the angular acceleration does 

not exceed the maximum limit, above which there would be discomfort feeling 

(comfort requirements). The robot also follows the midline and the pitching of the 

robot’s heading after the 90-degree curve does not affect the comfort, since the 

angular acceleration values are below the predefined limit. 

The state variables also include the distance to the destination pose as an 

additional variable. 

All 4 experiments have run until the episodic reward has been maximized. Since 

all reward functions have been defined as penalization, the maximum cumulative 

reward that the robot can obtained after one episode is 0. Figure 5.25 shows the 

episodic reward. As learning progresses, the episodic reward tends to 0. 
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Figure 5.25: Episodic reward. Circuit without obstacles. The cumulative episodic reward keeps on 
increasing at the end of the plot, so there is still room for improvement if more learning episodes are 

considered 

Another interesting variable is the time needed until the learning process is 

completed. Table 5.4 summarizes the time needed for the previous 4 

experiments. 

Experiment Total time 

Single action. Safety req. 2.0 hours 

Multiple actions. Safety + legal req. 3.3 hours 

Multiple actions. Safety + legal + comfort req. 3.7 hours 

Multiple actions. Safety + legal + comfort + task-oriented req. 5.1 hours 
Table 5.4: Learning total time 

5.2.3. Circuit with dynamic obstacles 

This scenario is like the previous ones, but in this case the obstacles are dynamic. 

They move around the circuit with a fixed speed and direction, so the level of 

unpredictability of the obstacles is low. Here we can see how reinforcement 

learning techniques can successfully solve complex driving scenarios, generating 

automatically a high mature policy by trial and error that can be generalized to 

new unseen situations, as will be proved later. 

Figure 5.26 shows the configuration of the circuit, as well as the distribution of 

the static and dynamic obstacles. The dynamic obstacles are marked with green 

color. The position marked in the Figure 5.26 is the initial position. The magnitude 

and direction of the dynamic obstacles are also shown. In contrast with the 

previous scenarios, the distance of the safety requirements is set to 0.5 meters 

instead of 1 meter. In this way, the robot just gets penalized if it gets too close to 

the walls, in contrast with the two previous chapters that the robot was intended 

to travel along the middle lane between walls. 
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Figure 5.26: Circuit with dynamic obstacles 

Figure 5.27 shows the path travelled by the robot inside the circuit. Intermediate 

positions of the dynamic obstacles are also shown in the picture. 

 

Figure 5.27: Travelled path. Circuit with dynamic obstacles. The color of the obstacles is assigned with a 
position in the robot’s travelled path with a spot of the same color. In this experiment the robot is not 

intended to travel along the midline, like in the previous experiments. The robot just gets penalized if it gets 
too close to the obstacles. Therefore, there is no pitching anymore in the trajectory of the robot 

The robot can adapt both the linear and angular speeds to reach safely the 

destination while avoiding dynamic and static obstacles. Figure 5.28 shows the 

linear and angular speeds of the robot. 
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Figure 5.28: Linear and angular speeds and angular acceleration of the path shown in Figure 5.27. Circuit 
with dynamic obstacles. As seen in the acceleration plot, the robot travels under comfortable conditions. 

The 3 marks in the actuator plot are explained in detail in the text 

There are 3 interesting areas marked in the linear speed plot in Figure 5.28. In 

the area number 1, the robot travels at maximum legal speed (0.2 m/s) until it 

gets trapped between the static and dynamic obstacles. Then, in area number 2, 

the robot reduces the linear speed to match the speed of the dynamic obstacle 

(0.1 m/s). In this way, the robot follows the dynamic obstacle at a fixed distance, 

therefore avoiding crashing. This situation ends when the robot sees enough free 

space to get through between the dynamic obstacle and the right wall. In this 

point (area number 3), the robot increases its linear speed again up to the legal 

speed, as there is no danger to collide with any obstacle. The second dynamic 

obstacle, which is travelling at 0.05 m/s, is overtaken by the robot travelling at 

maximum speed (0.2 m/s), as there is no necessity to decrease the linear speed 

to safely overtake the dynamic obstacle. 

From Figure 5.28 we can also check that the comfort requirements are also 

fulfilled, and the angular speed looks smooth (the angular acceleration never 

goes higher than 0.001 𝑟𝑎𝑑/𝑠2, which is how the comfort requirement has been 

defined). 

These successful results are obtained after the learning process. The episodic 

reward from Figure 5.29 shows how the episodic reward increases at the end of 

each episode after updating the policy. In this case, the total time needed to 

automatically learn the policy is 6.57 hours (the system info of the computer used 

during this learning process is mentioned in the introduction of section 5). 
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Figure 5.29: Episodic reward. Circuit with dynamic obstacles. The cumulative episodic reward seems very 
flat at the end of the episodes, but there is still room for improvement 

So far, the robot seems to perform very good under the scenario used for the 

learning process. But it is very important to validate the policy under new unseen 

scenarios, to ensure that the policy can properly generalize and solve new 

unseen situations. For this purpose, a new and more complicated dynamic 

scenario has been set up. Figure 5.30 shows the configuration of this scenario. 

 

Figure 5.30: Circuit with dynamic obstacles 2 

The path travelled by the robot and the intermediate positions of the dynamic 

obstacles are shown in Figure 5.31. 
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Figure 5.31: Travelled path. Circuit with dynamic obstacles 2. The color of the obstacles is assigned with a 
position in the robot’s travelled path with a spot of the same color. In this experiment the robot is not 

intended to travel along the midline, like in the previous experiments. The robot just gets penalized if it gets 
too close to the obstacles. Therefore, there is no pitching anymore in the trajectory of the robot 

The linear and angular speed profiles of the robot are plot in Figure 5.32. 

 

Figure 5.32: Linear and angular speeds and angular acceleration of the path shown in Figure 5.31. Circuit 
with dynamic obstacles 2. As seen in the acceleration plot, the robot travels under comfortable conditions. 

The 4 marks in the actuator plot are explained in detail in the text 

As in the previous scenario, the robot adapts its linear speed to follow the first 

dynamic obstacle (area number 1), as the robot gets trapped between the walls, 

the static obstacle, and the dynamic obstacle. After the robot detects enough 

space to get though the wall and the dynamic obstacle, the robot increases the 

linear speed to the legal maximum speed (area number 2). In the point number 

3, the robot gets shortly trapped again between the wall and the two dynamic 
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obstacles travelling at opposite speeds. Because of that, the robot shortly 

decreases the linear speed, therefore fulfilling the safety requirements. In point 

number 4, the robot gets squeezed between the dynamic obstacle and the right 

wall after turning in the corner. The robot accelerates shortly to move away from 

the dynamic obstacle, which was approaching the robot. 

This chapter proves the effectiveness of the reinforcement learning techniques 

under dynamic scenarios, which are usually the most complex to solve. The 

overtaking and the follow up maneuvers have been successfully tested under the 

previous scenarios. 

5.2.4. Room with obstacles 

The fourth scenario considered is a room with obstacles. The goal of this scenario 

is to test and validate the online learning methodology and prove how the robot 

can drive in open spaces from a starting pose A to a destination pose B. The 

policy, which is learnt online as the robot drives, will eventually fulfil the safety, 

legal, comfort and task-oriented requirements. As the robot learns online, it is 

even possible to overcome problems such as actuator malfunction or sensor 

aging. For example, let’s assume that the left wheel of the differential robot 

collects some dirt or dust, increasing the friction of the shaft. This increment in 

the friction can impact the behavior of the robot. If we think of the state-of-the-art 

solution provided by the lattice planner, the motion planning algorithm can 

calculate a trajectory that is no longer feasible and cannot be realized by the 

motion control software module. This is because the cost function is a fixed 

function, which does not have any input or information about any actuator 

malfunction or sensor aging. On the other hand, the online learning can adapt in 

an online way the policy, considering the new conditions of the environment 

(including actuator malfunction or sensor aging) to fulfil again the requirements. 

In case of a robot with redundant actuators (like a spider robot with multiple legs), 

the policy can still be adapted to fulfil the requirements even in case of completely 

actuator malfunction (completely lost of one leg due to electrical or mechanical 

damage). This characteristic is of special interest in applications where the robot 

cannot be driven home to get repaired, like a robot sent to a mission to another 

planet. 

The scenario considered is limited by walls which indicates the open space where 

the robot can drive. Driving outside these limits is not possible. Inside this open 

space, the robot is initially located in a starting pose. The destination pose that 

the robot must reach can be either provided in form of a waypoint in the memory 

of the robot or a camera installed in the robot can detect the direction where the 

destination is located. In this work, the second variant has been used. The 

destination is marked with a special green color that the camera can recognize, 

therefore being able to calculate the target direction of the destination (see 

section 4.4.4). A schematic of the scene is depicted in Figure 5.33: 
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Figure 5.33: Room with obstacles 1 

There are 2 test cases proposed in this section: 

1. Safety + task-oriented requirements: the goal is to reach the destination 

(task-oriented requirement) avoiding all obstacles (safety requirements). 

2. Safety + legal + comfort + task-oriented requirements: the goal is to reach 

the destination (task-oriented requirement) avoiding all obstacles (safety 

requirements), limiting the angular acceleration of the robot (comfort 

requirements) and not exceeding the maximum room speed (legal 

requirements) but travelling whenever is possible to that maximum speed 

to minimize travelling time (task-oriented requirement). 

The results of these 2 test cases are explained below: 

1. Safety + task-oriented requirements: 

The robot starts the learning process at the starting pose. However, the robot’s 

position does not get reset back to the initial pose if the learning episode gets 

terminated. Instead, if the learning episode gets terminated, the robot stops, 

backs up a predefined distance and turns around a predefined angle (see section 

4.6). After this sequence, a new learning episode starts from the current robot’s 

position. The learning process needs roundabout 200 episodes to get a policy 

mature enough to fulfil the requirements. 

Once the policy has been determined, it gets validated under the same scenario. 

The robot travels from the starting pose A to the 3 possible destinations inside 

the room. The path travelled by the robot is shown on the left part of Figure 5.34, 

Figure 5.35 and Figure 5.36 and the linear and angular speeds commanded by 

the agent and measured are shown on the right part. 
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Figure 5.34: Path travelled. Room with obstacles 1, destination 1. Safety + task-oriented req. The 
destination, marked in green, is safely reached, but under uncomfortable conditions 

 

Figure 5.35: Path travelled. Room with obstacles 1, destination 2. Safety + task-oriented req. The 
destination, marked in green, is safely reached, but under uncomfortable conditions 

 

Figure 5.36: Path travelled. Room with obstacles 1, destination 3. Safety + task-oriented req. The 
destination, marked in green, is safely reached, but under uncomfortable conditions 

The robot reaches all 3 destinations avoiding any contact with the obstacles. 

However, the commanded angular speed of the robot is very aggressive. The 

linear speed is also not limited to any value. The next test case will enable the 

comfort and legal requirements to solve these issues. 
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2. Safety + legal + comfort + task-oriented requirements: 

This second test case adds a penalization for angular acceleration higher than 

0.001 𝑟𝑎𝑑/𝑠2. In addition, the maximum room linear speed is set to 0.2 𝑚/𝑠. The 

resulted policy is tested under the same scenario of the learning process. Results 

are shown in Figure 5.37, Figure 5.38 and Figure 5.39 for the different destination 

poses: 

 

Figure 5.37: Path travelled. Room with obstacles 1, destination 1. Safety + legal + comfort + task-oriented 
req. Although the acceleration level has decreased with respect to the previous test case (safety + task-

oriented req.), there is still room from improvement, as the episodic reward can be further decreased (red 

line from Figure 5.44) 

 

Figure 5.38: Path travelled. Room with obstacles 1, destination 2. Safety + legal + comfort + task-oriented 
req. Although the acceleration level has decreased with respect to the previous test case (safety + task-

oriented req.), there is still room from improvement, as the episodic reward can be further decreased (red 
line from Figure 5.44) 
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Figure 5.39: Path travelled. Room with obstacles 1, destination 3. Safety + legal + comfort + task-oriented 
req. Although the acceleration level has decreased with respect to the previous test case (safety + task-

oriented req.), there is still room from improvement, as the episodic reward can be further decreased (red 

line from Figure 5.44) 

The level of angular acceleration has significantly decreased in comparison with 

the previous case. However, there is still room for improvement and get a smother 

response by considering more learning episodes. This can be checked from the 

episodic reward plot, which is shown later in Figure 5.44. 

The previous results confirm a good policy behavior under the same scenario as 

the learning process. But it is important to obtain a policy that can generalize to 

unseen scenarios. For that reason, a new scenario, which was not used during 

the learning process, has been used now for the validation of the resulted policy. 

The schematic of this new room distribution is in the following picture: 

 

 

Figure 5.40: Room with obstacles 2 

As before, the left part of Figure 5.41, Figure 5.42 and Figure 5.43 shows the path 

travelled by the robot and the right part the robot’s speeds and angular 

acceleration: 
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Figure 5.41: Path travelled. Room with obstacles 2, destination 1. Safety + legal + comfort + task-oriented 
req. Here the acceleration level has increasing in comparison with the scenario used for the learning 

process. One method to solve this problem is to include more scenarios during the learning process and 
therefore try to cover the complete range of measurements of the sensors 

 

Figure 5.42: Path travelled. Room with obstacles 2, destination 2. Safety + legal + comfort + task-oriented 
req. Here the robot gets too close to the first obstacle but manages to avoid it without contact. It is very 
likely that this combination of observations has not been seen during the learning process and therefore 

the result seems to be not very optimized 

 

Figure 5.43: Path travelled. Room with obstacles 2, destination 3. Safety + legal + comfort + task-oriented 

req. 
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The generalization of the policy has been successfully accomplished and proved 

with the previous results. However, the commanded angular speed seems to be 

a little bit more aggressive than in the scenario used for the learning process. 

Unseen scenarios can lead to areas in the actor (policy) and critic neural networks 

which have not been adapted due to lack of data during the learning process. For 

example, the validation scenario used previously reports readings in many laser 

rays. On the other hand, the learning scenario has a few obstacles and only a 

few laser rays report a reading lower than the maximum range. To improve the 

quality of the generalization, two main points can be considered: 

• Include the limitation of jerk values (derivative of acceleration) in the 

comfort requirements 

• Consider not only one but different scenarios during the learning process 

• Try to reduce the size and hidden layers of the neural networks used in 

the reinforcement learning algorithm (or prune the resulted neural 

networks) 

Regarding the episodic reward, Figure 5.44 contains the episodic reward of the 

first (safety + task-oriented req.) and second (safety + legal + comfort + task-

oriented req.) test cases. In both test cases, the episodic reward increases 

towards 0 after roundabout 200 learning episodes but there is still room for 

improvement, as the episodic reward is a little bit away from 0, which is the 

maximum possible episodic reward that can be obtained (i.e., the robot does not 

get any penalization along the way). Therefore, more learning episodes could 

have been considered to improve the maturity and quality of the policy. 

 

Figure 5.44: Episodic reward. Room with obstacles 1 

The learning total time of these two experiments performed are summarized in 

Table 5.5: 

Experiment Total time 

Room with obstacles 1. Safety + task-oriented req. 2.4 hours 

Room with obstacles 1. Safety + legal + comfort + task-
oriented req. 

6.1 hours 

Table 5.5: Learning total time room with obstacles 
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6. Conclusions 
 

If we think of autonomous driving for passenger cars, many requirements need 

to be considered, making the development of software a challenging task. Not 

only safety requirements need to be considered (lane keeping or avoid static and 

dynamic obstacles) but also comfort, legal (maximum road speed limit) and task-

oriented requirements are essential to be fulfilled. The state-of-the-art solutions 

produce thousands of possible trajectories to finally select the best one based on 

the score of a well-design cost function, such as the lattice planner introduced in 

[6]. However, many disadvantages come up with these state-of-the-art solutions. 

They are not only very computationally demanding, but they are also very 

challenging to implement to fulfil all predefined requirements. The new self-

learning navigation algorithm introduced in this work comes up automatically with 

a policy and a cost function that fulfils all predefined requirements at a reasonable 

computational cost, since the algorithm proposed does not count with a motion 

planning module, like in the reactive paradigm. These requirements are defined 

by multiple and simple reward functions. Therefore, a high mature autonomous 

driving logic or policy is obtained just by trial and error. This has been proved by 

setting up some classical scenarios for the autonomous driving domain. Section 

5.2.1 sets up a typical scenario for the validation of lane keeping algorithms. The 

reinforcement learning algorithm comes up automatically with a policy that 

perfectly follows the driving direction marked by means of walls (or with lanes 

painted on the ground in case of a front steering vehicle). Section 5.2.2 introduces 

not only the safety requirements from Section 5.2.1, but also legal, comfort and 

task-oriented requirements. Unlike some previous works like [24] that only 

include comfort and task-oriented (minimize travelling time) requirements, the 

methodology proposed also includes safety and legal requirements, apart from 

comfort and task-oriented requirements. Thus, the algorithm proposed can deal 

with continuous and multiple actions (linear and angular speeds) to fulfil the 

predefined requirements. On the other hand, section 5.2.3 introduces dynamic 

obstacles to the driving conditions. The state-of-the-art solutions like the lattice 

planner, based on the hierarchical/deliberative paradigm, struggle a lot under 

dynamic scenarios, making them difficult to apply under these conditions. The 

results achieved under section 5.2.3 prove that the reinforcement learning 

techniques are very powerful for complex scenarios with dynamic obstacles. Not 

only all the requirements are fulfilled, but also the policy is learnt automatically by 

trial and error. This learning process, which can be very time consuming, can be 

automated by simulation, loading different and complex driving scenarios. 

Additionally, the reinforcement learning algorithm produces a policy considering 

the dynamic constrains of the target vehicle or robot. This is because the agent 

interacts and learns directly from the environment where the robot belongs to, 

making it unnecessary to implement embedded models of the robot dynamics 

like in the model predictive control (such as [11], [12]). The observations and 

rewards delivered from the environment to the agent adapt the policy in a way so 

that the dynamic restrictions that the vehicle might have (limitation in radius of 
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curvature and its derivatives, friction tire-road, activation of dynamic control 

system under driving conditions close to the limit, etc.) are considered for every 

driving situation. Therefore, since the policy is generated automatically during the 

learning process, many engineering time and costs can be saved. Moreover, the 

neural networks produced by the algorithm are not very time consuming, making 

it even possible to run these already trained neural networks in a microcontroller, 

avoiding therefore high expensive computational platforms. Finally, section 5.2.4 

proves the advantages of the proposed methodology under open scenarios of 

unknown dynamics, where the robot must learn from itself how to drive without 

having any autonomous driving logic programmed in advance. This is possible 

thanks to the online learning methodology, where the robot learns while it 

explores the surroundings. Besides, in case of online learning, the robot itself can 

recover from critical situations such as sensor aging or actuator malfunction. The 

reinforcement learning algorithm can modify the policy in an online way if the 

performance is influenced by sensor aging or if suddenly an actuator gets 

damaged, in case of a robot with redundant actuators. However, this case would 

need a high-performance computational platform since a microcontroller does not 

have enough resources. 
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7. Future work 
 

There are 3 main branches of research and further investigation within the 

framework of this work. First, a more sophisticated and advanced setup for the 

learning process of the reinforcement learning algorithm can be created. The 

ideal setup would be the commissioning of a server with a dedicated GPU. The 

best configuration is to use multiple scenarios for the learning process, in contrast 

with the approach followed in this work, where a single scenario has been used 

for the learning process. Although the scenarios have been carefully designed to 

cover all the possible range of sensor measurements, it is challenging to 

accomplish this task with a single scenario. Second, a study considering hyper-

parameter variations can be performed to find out the best set of parameters in 

terms of the robot performance. It is important to investigate different types of 

neural network architectures to select the simplest one which is still able to 

successfully learn the non-linearities of the problem. Additionally, it is interesting 

to adapt the different parameters of the reward functions depending on the goal 

to be accomplished. And finally, bring the logic into a microcontroller and connect 

it with real hardware. A differential robot can be used in a first step to prove the 

algorithm under real conditions. It is also interesting to investigate an efficient way 

to bring the neural network models into the microcontroller (prune neurons with 

low weights, implement fixed point variables to save memory or split the neural 

network into sequential functions to improve CPU load). 
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