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Abstract:

Open quantum systems can be represented as a system plus environment from the

Caldeira-Leggett Hamiltonian. The Langevin equation of motion associated with this

Hamiltonian is obtained. This equation of motion is transformed into the

Schrödinger-Langevin equation by two methods: the Kostin procedure, which is

generalised, and the Nottale scale relativity method. The Schrödinger-Langevin

equation is applied to the description of quantum Brownian motion in the Bohm

interpretation by considering as possible solutions of the equation Gaussian wave

packets with and without stretching factor. From this motion, the quantum

stochastic trajectories, the mean square displacement, the diffusion coefficient and the

associated uncertainty product are obtained.

Resumen:

Los sistemas cuánticos abiertos se pueden representar como un sistema más entorno a

partir del Hamiltoniano de Caldeira-Leggett. De este Hamiltoniano, se obtiene la

ecuación de Langevin del movimiento asociada. Esta ecuación del movimiento se

transforma en la ecuación de Schrödinger-Langevin mediante dos métodos, el

procedimiento de Kostin, el cual se generaliza, y el método de relatividad de escala de

Nottale. La ecuación de Schrödinger-Langevin se aplica a la descripción del

movimiento cuántico Browniano en la interpretación de Bohm considerando como

posibles soluciones de la ecuación paquetes de onda Gaussianos con y sin factor de

stretching. De este movimiento se obtienen las trayectorias estocásticas cuánticas, el

desplazamiento cuadrático medio, el coeficiento de difusión y el producto de

incertidumbre asociado.
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1 Introduction

Real systems are influenced by the outside world and the closed description of quantum

mechanics does not cover all situations. These situations are studied by open quantum

systems, which are local quantum systems interacting with an external quantum system

called bath or environment. The local system and the bath have unitary evolution and

the bath coordinates are deleted to obtain a closed equation for the total dissipative

system. The friction between the two parts of the system displays a transfer of energy

from the quantum system to the bath. The dynamic of open quantum systems is

stochastic, it means the evolution of the system has a random evolution, and it comes

from the environment is uncontrolled. There are three main approaches to the open

quantum systems: (i) effective time dependent Hamiltonian, (ii) non-linear Schrödinger

equation and (iii) the system plus bath model.

The purpose of this work is the theoretical development from the starting Hamiltonian

of the system plus bath to the non linear Schrödinger equation associated with open

quantum systems. This non linear equation is determined by three ways: the Kostin

procedure, its generalization and the scale relativity method.

The system plus bath model for a one dimensional system considered to start the

theoretical development of this work is the Caldeira-Leggett Hamiltonian [1]. The

system evolution for this Hamiltonian can lead to the generalized Langevin equation.

The Langevin equation is a stochastic differential equation describing a time evolution

of a set of the degrees of freedom. This equation was introduced by Langevin in 1908

to describe the motion of the Brownian particle according to Newton’s laws [2].

The Brownian motion was first described by Robert Brown in 1827 when he observed

under a microscope pollen grains immersed in water and their movement was a rapid

oscillatory motion. The main experimental features observed for this motion are the

irregularity, the independence of motion between particles, the density of the particles

does not matter, the motion never ends and the higher activity of the system with

lower particles, lower fluid viscosity or higher temperatures. Einstein predicted for

longer times the motion will be a diffusion motion.

The Brownian experimental features serve to build the Langevin equation in function

of the Newton laws. Then, there are considered two forces, a dynamical friction force
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and a rapidly fluctuating force. The fluctuating force comes from the impacts of the

molecules of the liquid on the particle, described as a white noise. The white noise is

an approximation for a process with correlation time approaching to 0.

The generalized Langevin equation is related to a non linear Schrödinger equation

for a open quantum system. In this situation, the non-linear Schrödinger equation

is known as Schrödinger-Langevin equation or Kostin equation and the dynamics of

open quantum systems can be described by this equation. The development to obtain

the non linear equation from the Langevin equation is demonstrated by Kostin [3]

with the Heisenberg position and momentum operators. This Kostin procedure is also

generalised in this work [4].

Another way to obtain the Schrödinger-Langevin equation is the scale relativity

method. This theory is developed by Laurent Nottale [5, 6] in which the Schrödinger

equation is obtained from the Newton laws with the principle of scale covariance. This

theory considers a differentiable space-time with fractal behaviour, which is not shown

in the classical regime. In this space-time, the quantum trajectories are continuous

but not differentiable. The quantum regime is divided in two sides associated with

the differentiable side and the fractal side. This theory describes Brownian motion

with a fractal dimension DF = 2 [7] and considers the stochastic motion of particles

associated with the fractal space-time.

After the theoretical development, the purpose is the application of this work to the

Brownian-Bohmian motion, a Brownian motion described by the Bohm interpretation

of the quantum mechanics. This motion is described for a Gaussian wave packet and

for a stretched Gaussian wave packet and the equation of motion for the center of the

wave packet and the width are obtained for the free particle. The importance of the

stretched Gaussian wave packet is that it has not been studied before in the literature.

For this reason, their results are compared to the results for the Gaussian wave packet.

The quantum mechanics interpretation in this work is the Bohm interpretation

[8, 9]. This interpretation explains the mechanics of the quantum systems in a closed set

of possible trajectories. Moreover, the trajectory is deterministic, but the probability

is in which trajectory the particle follows. The points of the configuration space can

be followed along the space, unlike the standard quantum mechanics. The difference

with the Newton equations is that a quantum mechanical potential associated with
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the wave function is considered. This interpretation is associated with the description

of quantum theory in hidden variables since in macroscopic physics the position and

momentum of each atom is not considered. For example, the uncertainty product is

understood like a problem to determine the trajectory followed by the particle along

the motion with the initial conditions.

The Bohm interpretation applied to the Schrödinger-Langevin equation gives the

Schrödinger- -Langevin-Bohm equation. It is obtained from the wave function described

in polar form. For this equation, two types of solution are considered, the Gaussian

wave packet and the stretched Gaussian wave packet which give the same types of

evolution for their respective wave packet centre and width. The wave packet centre

corresponds to the classical Langevin equation while the width evolution is described

with the damped Pinney equation, it is a Pinney equation with a friction term. This

equation can not be solved analytically while the solution for the undamped Pinney

equation was proposed in [10]. The Langevin equation gives random trajectories for

the individual particle because there is a stochastic force. For this reason, it is used to

describe the motion averaged quantities.

The averaged quantities to describe the motion for the free particle Gaussian

and stretched Gaussian wave packet evolution is the diffusion coefficient and the

mean squared displacement in the classical and quantum counterparts. The diffusion

coefficient is a key concept for the Brownian motion and must fulfill Einstein relation.

The diffusion coefficient is the rate at which the solute moves in the solvent. The

mean squared displacement is the average of the random trajectories the particle can

follow in the motion. The uncertainty product is also represented because it allows

the observation of the Heisenberg minimum uncertainty product to be fulfilled over all

time.

The organization of this work is in section 2 the theoretical development with the

following subsections. The section 2.1 gives a general description of the Caldeira-Legget

Hamiltonian. The next section 2.2 develops the Langevin equation of motion associated

to the Caldeira-Legget Hamiltonian. The section 2.3 describes the two different methods

to obtain the Schrödinger-Langevin equation from the Langevin equation with the

generalization of the Kostin procedure. The section 3 consists of the application for

the Brownian-Bohmian motion. The Gaussian wave packet is developed in section 3.1
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while stretched Gaussian wave packet in section 3.2. In section 3.3 the main feature

of the Brownian motion for a free particle is described for the two wave packets. The

results of the simulations are in section 4 and the final conclusions of this work are in

section 5. An appendix in section 6 is included with the relation of probability current

and the explained expected position.

2 Theoretical development

2.1 Caldeira-Leggett Hamiltonian

The system under study is coupled to a huge environment composed by a bath of

harmonic excitations around a steady state. The open system is divided into the

system, the reservoir and the interaction between the two. In this terms, the Hamiltonian

can be separated as

H = HS +HR +HI . (1)

The description of the different Hamiltonian terms are for the system

HS =
P 2

2M
+ V (q) , (2)

for the reservoir compound of a bath with N harmonic oscillators

HR =
N∑
α=1

(
p2α

2mα

+
1

2
mαw

2
αx

2
α

)
(3)

and for the interaction between the system and the reservoir which is described by the

reservoir coordinates

HI = −
N∑
α=1

Fα(q)xα + ∆V (q) . (4)

The extra term ∆V (q) depends on the reservoir variables mα , wα and the force

Fα(q). The term does not depend on the positions of the reservoir, xα. The origin of

the introduction in the description of the potential term ∆V (q) is to compensate the

renormalization of the potential V (q) caused by the linear coupling at the position xα

for the interaction Hamiltonian.

Disregarding the extra potential term, ∆V (q), the minimum position xα in the
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potential of the global system for the coordinate q is [1]

xα =
Fα(q)

mαw2
α

. (5)

When the extra potential term is considered, it is necessary to consider the renormalization

of the potential caused by the coupling, giving the following effective potential with a

harmonic approximation of the position

Vef (q) = V (q)−
N∑
α=1

F 2
α(q)

2mαw2
α

. (6)

If a linear force is considered Fα(q) = cαq, the second term of the effective potential

generates the following frequency shift [1]

(∆w)2 = −
∑
α

c2α
Mmαw2

α

, (7)

and generates the following perturbation of the frequency around the minimum of the

frequency, w2
0, as

w2
ef = w2

0 + (∆w)2 < 0 . (8)

This form of the effective potential with a value less than 0 changes the potential in a

qualitative way. If a dissipation effect is introduced and it is not only a renormalization

of V (q), there must be a balance to the second term of the effective potential as

∆V (q) =
N∑
α=1

F 2
α(q)

2mαw2
α

. (9)

After this explanation about the dissipation effect, the three components of the

Hamiltonian Eq.(2), Eq.(3) and Eq.(4) in Eq.(1) considering a separable force (Fα(q) =

cαF (q)) are

H =
P 2

2M
+ V (q) +

1

2

N∑
α=1

(
p2α
mα

+mαw
2
α

(
xα −

cαF (q)

mαw2
α

)2
)

. (10)

If the separable force is a linear force (Fα(q) = cαq), the Caldeira-Leggett Hamiltonian

5



Trabajo fin de máster Pedro Pablo Alarcón Gil. Página: 6

is

H =
P 2

2M
+

N∑
α=1

p2α
2mα

+ V (q, xα) , (11)

with the potential

V (q, xα) = V (q) +
1

2

N∑
α=1

mαw
2
α(xα −

cα
mαw2

α

q)2 . (12)

2.2 Langevin equation from Caldeira-Leggett Hamiltonian

The Hamilton equation
dH

dqj
= −Ṗj (13)

is applied to the Caldeira-Leggett Hamiltonian, Eq.(10), with the aim of obtaining the

equations of motion. The moment is the linear moment whose form is

Pj = mq̇ (14)

where q is the coordinate used for the equation of motion. The Hamilton equation is

for the system position coordinate q and for the reservoir positions coordinate xα. The

equation of motion of the position system coordinate is

dH

dq
= V ′(q) +

1

2

N∑
α=1

d

dq

(
−2xαcαF (q) +

c2α
mαw2

α

F 2(q)

)
= −Ṗj = −Mq̈ , (15)

and the final form of the equation of motion for the q coordinate is

Mq̈ + V ′(q) +
N∑
α=1

c2α
mαw2

α

F (q)F ′(q) = F ′(q)
N∑
α=1

cαxα . (16)

The reservoir positions coordinates give as many equations as there are degrees of

freedom in the reservoir. All the equations of the reservoir coordinates motion have

the same structure and their form come from the Hamilton equation, Eq.(13), as

dH

dxα
=

N∑
α=1

(mαw
2
αxα − cαF (q)) = −Ṗj = −

N∑
α=1

mαẍα . (17)

6
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Then, every equation of the reservoir coordinates motion is

mαẍα +mαw
2
αxα = cαF (q) , (18)

where the normalised equation respect to mass is

ẍα + w2
αxα =

cα
mα

F (q) . (19)

There are two types of equation of motion, the associated to the system, Eq.(16),

and the associated to the reservoir, Eq.(19). The reservoir equation is a second order

differential equation with an inhomogeneous term. First, the homogeneous equation

associated

ẍα + w2
αxα = 0 (20)

is solved

xα(t) = a cos(wαt) + b sin(wαt) , (21)

the coefficients a and b depend on the initial conditions of the system, x(0)α and p
(0)
α .

The coefficient a is

a = x(0)α (22)

and it is the a value because if the argument of the cosine is 0, the value of the cosine

is 1. For the coefficient b, the position equation is derived

ẋα(t) = −awα sin(wαt) + bwα cos(wαt) , (23)

where at the origin of time the equation is reduced to

ẋα(0) = bwα −→ b =
p
(0)
α

mαwα
. (24)

The result for the homogeneous part of Eq.(19) is

xhomα = x(0)α cos(wαt) +
P

(0)
α

mαwα
sin(wαt) . (25)

The inhomogeneous term is solved with the Green function, [11]. The Green’s

7
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function in the Eq.(19) is achieved through a Fourier transform and the differential

equation with the Green operator is

d2G(t, t′)

dt2
+ w2

αG(t, t′) =
1

m
δ(t− t′) . (26)

The next step is to define the relationship between the Green function space and the

reciprocal Green function space. The relationship between two spaces is made with a

Fourier transform

G̃(k, t′) =

∫ +∞

−∞
G(t, t′)e−iktdt , (27)

G(t, t′) =

∫ +∞

−∞
G̃(k, t′)eiktdk . (28)

The Green function expressed in reciprocal space applied to the differential equation,

Eq.(26), reads

[−k2 + w2
α]G̃(k, t′) =

e−ikt
′

mα

−→ G̃(k, t′) =
e−ikt

′

mα(w2
α − k2)

. (29)

After, the Green’s function is represented in initial space with the following expression

G(t, t′) =
−1

2πmα

∫ +∞

−∞

eik(t−t
′)

(w2
α − k2)

dk , (30)

this integral is solved with the residue theorem. This integral has two singularities,

k = ±wα, and the integral in the complex plane is

G(t, t′) =
−1

2π

∫
C

eik(t−t
′)

mα(k − wα)(k + wα)
dk =

−i
2mα

(Res[wα] +Res[−wα]) , (31)

where the residues for the integral are

Res[wα] = lim
k→wα

[
(k − wα)

eik(t−t
′)

(k − wα)(k + wα)

]
= lim

k→wα

[
eik(t−t

′)

(k + wα)

]
=
eiwα(t−t

′)

2wα
,

(32)

Res[−wα] = lim
k→−wα

[
(k + wα)

eik(t−t
′)

(k + wα)(k − wα)

]
= lim

k→−wα

[
eik(t−t

′)

(k − wα)

]
=
−e−iwα(t−t′)

2wα
.

(33)

Then, the Green function is determined as

G(t, t′) =
−i

mαwα

(
eiwα(t−t

′) − e−iwα(t−t′)

2

)
=

1

mαwα
sin(wα(t− t′))H(t− t′) , (34)

8
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where H(t− t′) is the Heaviside function. The range of the time values is [0,t] with t

definite positive and the Green operator reads

G(t, t′) =
sin(wα(t− t′))

mαwα
. (35)

The inhomogeneous solution is calculated with the Green function as

xin(t) =

∫ t

0

G(t, t′)
F (t′)

mα

dt′ =

∫ t

0

sin(wα(t− t′))
mαwα

cαF (q(t′))

mα

dt′ . (36)

Then, the final expression is

xin(t) =
cα

mαwα

∫ t

0

sin[wα(t− t′)]F [q(t′)]dt′ . (37)

The total position solution is

x(t) = xhom(t) + xin(t) = x(0)α cos(wαt) +
p
(0)
α

mαwα
sin(wαt) +

cα
mαwα

∫ t

0

sin(wα(t− t′))F [q(t′)]dt′ ,

(38)

and this solution is represented in the velocity of the system coordinates instead of the

position. The variable change is done by integration by parts

∫ t

0

dt′ sin(wα(t−t′))F [q(t′)] =
1

wα
[F [q(t)]− cos(wαt)F [q(0)]]−

∫ t

0

dt′
cos(wα(t− t′))

wα
.

(39)

The expression of the total position solution, Eq.(38), with the velocity of the system

coordinate is

x(t) = x(0)α cos(wαt)+
p
(0)
α

mαwα
sin(wαt) +

cα
mαw2

α

[F [q(t)]− cos(wαt)F [q(0)]]

− cα
mαw2

α

∫ t

0

dt′ cos(wα(t− t′))F ′[q(t′)]q̇(t′)
. (40)

The evolution of the position, Eq.(40), for the motion equation of the reservoir,

Eq.(19), is inserted in the motion equation of the system, Eq.(16).

Mq̈ + V ′(q) +

N∑
α=1

c2α
mαw2

α

F (q)F ′(q) = F ′(q)

N∑
α=1

cα

[
x(0)α cos(wαt) +

p
(0)
α

mαwα
sin(wαt)+

+
cα

mαw2
α

[F [q(t)]− cos(wαt)F [q(0)]]−
cα

mαw2
α

∫ t

0

dt′ cos(wα(t− t′))F ′[q(t′)]q̇(t′)
] , (41)

9
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this equation can be simplified as

Mq̈+
N∑
α=1

c2α
mαw2

α

F ′(q)

[
cos(wαt)F [q(0)] +

∫ t

0

dt′ cos(wα(t− t′))F ′[q(t′)]q̇(t′)
]

+ V ′(q) = F ′(q)
N∑
α=1

cα

[
x(0)α cos(wαt) +

p
(0)
α

mαwα
sin(wαt)

]
.

(42)

At this point, two new variables are introduced, the memory friction kernel and the

force. The mathematical description of these variables is [1]

γ(t− t′) = H(t− t′) 1

M

∑
α

c2α
mαw2

α

cos(wα(t− t′)) , (43)

ζ(t) =
N∑
α=1

cα

[
x(0)α cos(wαt) +

p
(0)
α

mαwα
sin(wαt)

]
. (44)

The motion equation with these variables is

Mq̈+V ′(q)+F ′(q(t))M

∫ t

0

dt′γ(t−t′)F ′[q(t′)]q̇(t′) = F ′(q)ζ(t)−MF ′[q(t′)]F [q(0)]γ(t) .

(45)

With the initial values x(0)α and p(0)α for the unperturbed reservoir (F (q) = 0), the

canonical classical equilibrium density at time origin is [1]

ρ
(0)
R = Z−1e−βH(0) = Z−1e−β

∑
α(
p
(0)
α

2

2mα
+
mαw

2
α

2
x
(0)
α

2) . (46)

The force ζ(t) is defined as a fluctuating force with colored noise and Gaussian statistical

properties

〈ζ(t)〉
ρ
(0)
R

= 0 〈ζ(t)ζ(t′)〉
ρ
(0)
R

= MkBTγ(t− t′) , (47)

where the second relationship is the fluctuation dissipation theorem.

The motion equation for a generalized force, Eq.(45), is restricted for the linear

force (F (q) = q) and the motion equation is reduced to

Mq̈ + V ′(q) +M

∫ t

0

dt′γ(t− t′)q̇(t′) = ζ(t)−Mγ(t)q(0) . (48)

10
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The stochastic motion equation does not match with the usual form of the Langevin

equation because there is an extra term, −Mγ(t)q(0). Then, a variable change reads

ξ(t) = ζ(t)−Mγ(t)q(0) . (49)

The new force ξ(t) does not disappear on average when it is taken respect to the density

defined in Eq.(46). The force ξ(t) is treated like a random Gaussian force and for this

purpose the canonical equilibrium density must consider the contribution associated

with the force

ρR = Z−1e
−β
∑
α

(
p
(0)
α

2

2mα
+
mαw

2
α

2
(x

(0)
α − cα

mαw
2
α
q(0))2

)
, (50)

where the statistical properties of the random force with the new canonical equilibrium

density are

〈ξ(t)〉ρR = 0 〈ξ(t)ξ(t′)〉ρR = 2MkBTγ(t− t′) . (51)

The new force applied to the motion equation gives the standard form of the

generalized Langevin equation

Mq̈ + V ′(q) +M

∫ t

0

dt′γ(t− t′)q̇(t′) = ξ(t) . (52)

2.3 Langevin equation to Schrödinger-Langevin equation

The standard Langevin equation is the classical equation of motion for particles. The

next step is to obtain the Schrödinger equation associated with the standard Langevin

equation of motion whose name is the Schrödinger-Langevin equation. It is an equation

with a remarkable non linear character. This section is separated in the three ways to

link the two equations: Kostin procedure, the generalization of the Kostin procedure

and Nottale scale relativity method.

2.3.1 Kostin procedure

The first development between these two equations was carried out by Kostin in [3].

It was developed by a heuristic method and it requires Heisenberg operators. The

11
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Heisenberg momentum operator reads

P = MẊ , (53)

where X as the Heisenberg operator for q. The Langevin equation Eq.(52) in function

of the Heisenberg momentum operator is

Ṗ = −αP − V ′(X) + ξ(t) , (54)

with

α =

∫ t

0

dt′γ(t− t′) . (55)

This Langevin equation in function of the averages values is

〈Ṗ 〉 = −α〈P 〉 − 〈V ′(X)〉+ 〈ξ(t)〉 . (56)

The purpose of this development is the Schrödinger equation to this system. For it,

the most generalized Scrödinger equation is

i~
dψ

dt
= − ~2

2M

dψ2

dx2
+ [V (x) + VR(x, t) + Vd]ψ(x, t) , (57)

where the different potentials are V (x) for the system potential, VR(x, t) for the random

force and Vd for the friction term.

The relationship with the Langevin equation comes from the average value of the

momentum. In Schrödinger theory, the average value for the momentum is the self

adjoint scalar product as

〈P (t)〉 = (ψ(t), Pψ(t)) , (58)

and for the time derivative of the average momentum is

d〈P (t)〉
dt

=

(
dψ(t)

dt
, Pψ(t)

)
+

(
ψ, P (

dψ

dt
)

)
. (59)

12
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Then, with the Schrödinger equation, Eq.(57), and the momentum operator as

P = −i~ d
dx

, (60)

the time derivative of the average momentum is

d〈P (t)〉
dt

= −〈dV
dx
〉 − 〈dVR

dx
〉 − 〈dVd

dx
〉 . (61)

The average momentum can be defined as

〈Ṗ 〉 =
d〈P 〉
dt

(62)

and it relates the Langevin equation of the Heisenberg momentum operator Eq.(56) to

the potentials of the Schrödinger equation. The averages potentials are

〈dV
dx
〉 = 〈V ′(X)〉 〈dVR

dx
〉 = −〈ξ(t)〉 〈dVd

dx
〉 = α〈P 〉 . (63)

The values of the system potential and the random potentials are easy to obtain and

the potentials read

V = V (X) VR = −xξ(t) . (64)

The friction potential requires the average momentum in function of the position.

For it, the scalar product of the average momentum Eq.(58) with the self adjoint

property and the momentum in the position coordinate Eq.(60) gives

〈P 〉 =

∫
−i~

2

[
dψ

dx
ψ∗ − ψdψ

∗

dx

]
dx . (65)

This average momentum is introduced in the equation to determine the friction potential

Eq.(63) as

〈dVd
dx
〉 =

∫
ψ∗
dVd
dx

ψdx = α

∫
−i~

2

[
dψ

dx
ψ∗ − ψdψ

∗

dx

]
dx (66)

and it is reduced to
dVd
dx

=
−iα~

2

[
1

ψ

dψ

dx
− 1

ψ∗
dψ∗

dx

]
. (67)

13
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The right term is better expressed in function of the logarithm with the property [6]

∇ ln(ψ) =
∇ψ
ψ

(68)

and the derivative of the friction potential is

dVd
dx

=
−iα~

2

d

dx
(ln(ψ)− ln(ψ∗)) . (69)

Then, the friction potential by integration is

Vd =
−iα~

2
ln

(
ψ

ψ∗

)
+W (t) . (70)

W (t) is a constant integration that represents the time dependence of the potential

in the position derivative. The value can be determined with the expected value of

mechanic energy. The mechanic energy of this system has the kinetic energy and the

potential energy with the system potential and the random potential. The average

energy in function of the kinetic and potentials is

〈E(t)〉 =
〈P 2〉
2M

+ 〈V (t)〉+ 〈VR(t)〉 . (71)

This average energy is also determined by the wave function and it reads

〈E(t)〉 = i~
∫
ψ∗
dψ

dx
dx , (72)

with the Schrödinger equation, Eq.(57), reads

〈E(t)〉 =

∫
ψ∗
[
− ~2

2M

d2

dx2
+ V (x) + VR(x, t) + Vd

]
ψdx . (73)

The average of the square momentum operator Eq.(60) is

〈P 2〉 = −~2
∫
ψ∗

d2

dx2
ψdx (74)

and if it is introduced in the average energy the equation gives the kinetic energy. The

three other contributions correspond to the potentials and the friction potential is not

considered at the initial average energy Eq.(71) and this contribution is the value of

14
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W (t). Then, the friction average energy is

W (t) = −
∫
ψ∗Vdψdx =

iα~
2

〈
ln

(
ψ

ψ∗

)〉
. (75)

The development of the Schrödinger-Langevin equation is fullfilled because the

different contributions of the Langevin motion equation are introduced as potentials in

the Schrödinger equation. The Schrödinger-Langevin equation is

i~
dψ

dt
= − ~2

2M

dψ2

dx2
+

[
V (x)− xξ(t)− iα~

2

(
ln

(
ψ

ψ∗

)
−
〈

ln

(
ψ

ψ∗

)〉)]
ψ(x, t) ,

(76)

2.3.2 Generalization of the Kostin procedure

This generalization considers the general form of the Schrödinger equation with a

number of unknown contributions to the potential. This development is a generalization

because it does not need the Heisenberg operators. These unknown potentials are

intended to be related to the different terms of the standard Langevin equation, Eq.(52).

With this consideration, the Schrödinger equation is [4]

i~
dψ

dt
=

[
1

2m

(
−i~ d

dx

)2

+ V (x) + Vd + Vr

]
ψ . (77)

The unknown potentials considered are a dissipative potential, Vd, and a random

potential, Vr. The heuristic method defines these potentials as a function of the terms

of the standard Langevin equation. For this purpose, the standard Langevin equation,

Eq.(52), is expressed as a function of the mean value of the components

M〈q̈〉+ 〈V ′(x)〉+Mα〈q̇(t′)〉 = 〈ξ(t)〉 . (78)

where α is from Eq.(55). If this equation is compared to the classical definition of the

force reads

〈F 〉 = M〈q̈〉 = −〈V ′(x)〉 −M
∫ t

0

dt′γ(t− t′)〈q̇(t′)〉+ 〈ξ(t)〉 , (79)
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with the force determined as

F = −dV
dx

. (80)

The potentials of the Schrödinger equation, Eq.(88), are related with their contributions

to the equation of motion. The potential of the system, V (x), generates the force V ′(x)

and its proof is trivial. The dissipative contribution is associated with the velocity of

the coordinate

〈−dVd
dx
〉 = −Mα〈q̇〉 . (81)

The average value of the velocity is written as a function of the probability current.

For that, it is necessary to define the probability current

J =
−i~
2M

[
ψ∗

d

dx
ψ − ψ d

dx
ψ∗
]

. (82)

The relationship between the average value of velocity and the probability current is

developed in the appendix.6.1 and the final relationship is

d

dt
〈x〉 =

∫
Jdx . (83)

Then, this expression is introduced in the dissipative potential, Eq.(81), and expressed

in integral form ∫
ψ∗
(
−dVd
dx

)
ψdx = −Mα

∫
Jdx . (84)

It results in a functional expression of the dissipative potential in terms of the wave

function [4]

Vd = Mα

∫
J

ψψ∗
dx . (85)

The random potential is considered with the random force of the motion equation

〈−dVr
dx
〉 = 〈ξ(t)〉 , (86)

and the final expression for the random potential is

Vr = −xξ(t) . (87)

After the dissipative potential, Eq.(85), and the random potential, Eq.(87), are
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established, the undetermined Schrödinger equation, Eq.(88), can be expressed as the

standard Schrödinger-Langevin equation

i~
dψ

dt
=

[
1

2m
(−i~ d

dx
)2 + V (x) +Mα

∫
J

ψψ∗
dx− xξ(t) +W (t)

]
ψ , (88)

with an extra term that does not depend on positions

W (t) = − < Vd > . (89)

This term can not be added before because only depends on time, and not in positions.

It is associated with the conservation of the total density probability along time. The

description of W (t) is known because in the Kostin procedure comes from considering

the average energy, but in this generalization it does not make sense. In the generalization,

the definition of the dissipative force is different because it is defined as a function of

the probability current and not as a function the logarithm of the wave function.

In order to verify this, the dissipative term of Eq.(88) is expanded with the probability

current of Eq.(82) as

Mα

∫
J

ψψ∗
dx =

−i~α
2

∫
[ψ∗∇ψ − ψ∇ψ∗]

ψψ∗
dx =

−i~α
2

∫ [
∇ψ
ψ
− ∇ψ

∗

ψ∗

]
dx , (90)

with the property for the gradient of a logarithm, Eq.(68), reads

−i~α
2

∫ [
∇ψ
ψ
− ∇ψ

∗

ψ∗

]
dx =

−i~α
2

∫
[∇ ln(ψ)−∇ ln(ψ∗)] dx =

=
−i~α

2
ln(ψ)− ln(ψ∗) =

−i~α
2

ln

(
ψ

ψ∗

)
,

(91)

where the definition in function of the logarithm of the wave function is the same of the

Kostin procedure. Furthermore, if the W (t) term is defined in the same way as in the

Kostin procedure, the generalization gives the same Schrödinger-Langevin equation,

Eq.(76), as in the Kostin procedure.

2.3.3 Scale relativity method

The scale relativity method was developed by Laurent Nottale. This theory exposes

a fractal space-time that is not visible in the classical regime, but it is visible in the
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quantum regime. This fractal space-time allow non differential trajectories, characteristic

of the quantum regime. At this point, the quantum regime can be separated into a

differential part and in a non differential part. The fractal dimension for the quantum

regime is DF = 2 while for the classical regime it is DF = 1.[5]

This difference between the two regimes is related to leaving complex velocity and

covariant derivative of time instead of the classical derivative of time. The covariant

derivative of time needs to consider that the fractal dimension is 2 and it causes second

order terms to be introduced. It is done with a Taylor expansion, where the first order

includes a gradient (first order derivative) while the second order involves a Laplacian

(second order derivative).[5] In the second order an imaginary unit from the complex

velocity is added. The general expression for the covariant time derivative of order two

is
D

Dt
=

d

dt
+ V ∗ ∇ − iD∆ . (92)

This section applies the scale relativity to the standard Langevin equation, Eq.(52).

The first step is to consider the covariant derivative for the acceleration expressed in

velocity terms[6]

M

[
d

dt
q̇ + (q̇ ∗ ∇)q̇ − iD∇q̇

]
+ V ′(q) +M

∫ t

0

dt′γ(t− t′)q̇(t′) = ξ(t) . (93)

The relationship between the velocity and the coordinate is

q̇ =
∇q
M

, (94)

where the mass terms oppose the velocity. The equation of motion with the velocity

reads

M

[
d

dt

∇q
M

+ (
∇q
M
∗ ∇)

∇q
M
− iD∆

∇q
M

]
+ V ′(q) +M

∫ t

0

dt′γ(t− t′)∇q(t
′)

M
= ξ(t) .

(95)

For the integration of this equation, all terms are written as a function of the gradient.[6]

For this purpose, the following identity for gradients, so useful in fluid mechanics, is

applied for the velocity

(∇q ∗ ∇)∇q = ∇
(

(∇q)2

2

)
−∇q × (∇×∇q) , (96)
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where the second part is the rotational for a gradient, which is 0 by the equality of the

cross derivatives. Then, the identity can be reduced as

(∇q ∗ ∇)∇q = ∇(∇q)2

2
. (97)

With it, the motion equation, Eq.(95), reads

∇ d

dt
q +∇(∇q)2

2M
− iD∇∆q +∇V (q) +∇αq −∇

∫
ξ(t)d~r = 0 , (98)

whose integration is

d

dt
q +

(∇q)2

2M
− iD∆q + V (q) + αq −

∫
ξ(t)d~r +W (t) = 0 . (99)

The term W (t) is added because it is a constant integration independent of position

and has non zero value when dissipation effects are considered. The integration of

the random force is simplified because the force does not depend on position and the

system is considered along one axis. The integration is

∫
ξ(t)d~r = xξ(t) . (100)

The next step is a Cole-Hopf transformation [6] in order to write the equation as a

function of the wave function and not as a function of the coordinate q. The Cole-Hopf

transformation is

q = −2iMD ln(ψ) , (101)

with the diffusion variable defined as [6]

D =
~

2M
, (102)

where ~ is the Planck constant introduced by the quantum regime. It must be inversely

proportional to the mass because in the classical world quantum effects are not seen.

The factor 2 is added by the Taylor expansion performed for the time covariant

derivative.

Then, the Cole-Hopf transformation, Eq.(101), with the diffusion coefficient, Eq.(102),

is introduced in the equation obtained after integration into the motion equation,
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Eq.(99). The resultant equation is

d

dt
(−i~ ln(ψ))+

(∇(−i~ ln(ψ)))2

2M
−i ~

2M
∆(−i~ ln(ψ))+V+α(−i~ ln(ψ))−xξ(t)+W (t) = 0

(103)

and can be simplified with the following properties of the gradient Eq.(68) and Laplacian

for a logarithm [6]

∆ ln(ψ) =
∆ψ

ψ
− 1

ψ2
(∇ψ)2 . (104)

The simplified equation is a Schrödinger equation

i~
d

dt
ψ =

[
− ~2

2M
∆ + V − i~α ln(ψ)− xξ(t) +W (t)

]
ψ . (105)

The possibility of complex variables specific to the quantum regime makes it necessary

to decompose the friction component, α, into α = αR + iαI . A restriction of the

dissipation component is necessary to the realisation of the local conservation of the

probability density function. The change is to consider only the real part of the

dissipative force with the relationship

− i~Re [α ln(ψ)] = ~Im [α ln(ψ)] , (106)

which is applied to the friction coefficient as

Im [α ln(ψ)] = αI ln |ψ| − 1

2
iαR ln

(
ψ

ψ∗

)
. (107)

The Schrödinger equation, Eq.(105), with the friction coefficient separated into real

and imaginary is

i~
d

dt
ψ =

[
− ~2

2M
∆ + V + ~αI ln |ψ| − ~

2
iαR ln

(
ψ

ψ∗

)
− xξ(t) +W (t)

]
ψ . (108)

Previously, the integration term, W (t), was defined as a term that is non zero when

there are dissipation effects. It appears by definition as a function of the average value

of the real friction coefficient. Then, the expression of this term is

W (t) =
~
2
iαR

〈
ln

(
ψ

ψ∗

)〉
. (109)
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With this definition, the Schrödinger equation reads

i~
d

dt
ψ =

[
− ~2

2M
∆ + V + ~αI ln |ψ| − ~

2
iαR

[
ln

(
ψ

ψ∗

)
−
〈

ln

〈
ψ

ψ∗

)〉]
− xξ(t)

]
ψ ,

(110)

and it becomes in the Schrödinger-Langevin equation when only real frictions are

considered, αI = 0 [12]. The standard Schrödinger-Langevin equation reads

i~
d

dt
ψ =

[
− ~2

2M
∆ + V − ~

2
iαR

[
ln

(
ψ

ψ∗

)
−
〈

ln

(
ψ

ψ∗

)〉]
− xξ(t)

]
ψ . (111)

It can be seen how the Kostin procedure (heuristic method) and the scale relativity

method give the same Schrödinger-Lagevin equation at the end.

3 Brownian-Bohmian quantum motion

After the Schrödinger-Langevin equation, Eq.(111), is obtained it is applied to study

the Brownian- Bohmian motion for a Gaussian wave packet and for a stretched Gaussian

wave packet. For this purpose, the wave function is represented in the polar or Bohm

form [12, 13, 9]

ψ(r, t) = |ψ(r, t)|e
iS(r,t)

~ . (112)

This wave function is introduced in the Scrödinger-Langevin equation by means of the

chain rule. The various derivatives needed to represent the equation in the Bohm form

are
dψ

dt
=
d|ψ(r, t)|

dt
e
iS(r,t)

~ +
i

~
dS(r, t)

dt
|ψ(r, t)|e

iS(r,t)
~ , (113)

∇2ψ = ∇
[
∇|ψ(r, t)|e

iS(r,t)
~ +

i

~
∇S(r, t)e

iS(r,t)
~

]
=[

∇2|ψ(r, t)|+ 2i

~
∇S(r, t)∇|ψ(r, t)| − (∇S(r, t))2

~2
|ψ(r, t)|

]
e
iS(r,t)

~

, (114)

ψ

ψ∗
=
|ψ(r, t)|e

iS(r,t)
~

|ψ(r, t)|e
−iS(r,t)

~

= e
2iS(r,t)

~ . (115)
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With the above, the Scrödinger-Langevin equation, Eq.(111), is written in the Bohm

form, Eq.(112), as

i~
d|ψ(r, t)|

dt
e
iS(r,t)

~ − dS(r, t)

dt
|ψ(r, t)|e

iS(r,t)
~ = − ~2

2M
∇2|ψ(r, t)|e

iS(r,t)
~ + [V − xξ(t)]ψ

− i~
M
∇S(r, t)∇|ψ(r, t)|e

iS(r,t)
~ +

(∇S(r, t))2

2M
|ψ(r, t)|e

iS(r,t)
~ + αR [S(r, t)− 〈S(r, t)〉]

(116)

and it can be separated into two equations, one for the real terms and other for the

imaginary terms of the equation. The two equations are
−dS(r, t)

dt
= − ~2

2M

∇2|ψ(r, t)|
|ψ(r, t)|

+
(∇S(r, t))2

2M
+ αR [S(r, t)− 〈S(r, t)〉] + [V − xξ(t)]

i~
d|ψ(r, t)|

dt
e
iS(r,t)

~ = − i~
M
∇S(r, t)∇|ψ(r, t)|e

iS(r,t)
~

(117)

The imaginary equation multiplying both components by the conjugate wave function

reads
d|ψ(r, t)|2

dt
+
∇S(r, t)

M
∇|ψ(r, t)|2 = 0 . (118)

Then, the velocity field is defined in a similar way as Eq.(94) and the density

operator is also introduced

v(r, t) =
∇S(r, t)

M
, (119)

ρ(r, t) = |ψ(r, t)|2 . (120)

With these two variable changes the set of two equations are [12]
−dS(r, t)

dt
= − ~2

2M

∇2|ψ(r, t)|
|ψ(r, t)|

+
(∇S(r, t))2

2M
+ αR [S(r, t)− 〈S(r, t)〉] + [V − xξ(t)]

dρ(r, t)

dt
+∇(ρ(r, t)v(r, t)) = 0

(121)

The second equation is the well-known continuity equation, and the first equation

is the modified Hamilton-Jacobi equation with a quantum potential and a dissipative

term. The quantum potential is [12]

Q = − ~2

2M

∇2|ψ(r, t)|
|ψ(r, t)|

. (122)
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This potential is a key concept in the Bohm interpretation of quantum mechanics as

it is said in the introduction.

After that, a space derivative is introduced into the modified Hamilton-Jacobi

equation which gives

∇dS(r, t)

dt
+∇(∇S(r, t))2

2M
= −∇ [V − xξ(t) +Q]− αR∇S(r, t) , (123)

with the property for the gradient of Eq.(97) reads

d∇S(r, t)

dt
+

(
∇S(r, t)

M
∗ ∇
)
∇S(r, t) = −∇ [V − xξ(t) +Q]−αR∇S(r, t) . (124)

Then, the velocity field, Eq.(119), is introduced into the previous equation as[12]

(
d

dt
+ v(r, t) ∗ ∇

)
v(r, t) = − 1

M
∇ [V − xξ(t) +Q]− αRv(r, t) . (125)

This equation is a better way of expressing the evolution of the dynamics of the

quantum system for the Brownian quantum motion than the modified Hamilton-Jacobi

equation because it depends on the velocity field.

The set of equations in Eq.(121) gives the evolution of the system considered. The

system is described by the form of the wave packet density (Gaussian wave packet or

stretched Gaussian wave packet). From this point on, the study of the different wave

packets will be treated separately and for only one space dimension.

3.1 Gaussian wave packet

The density operator, Eq.(120), of a Gaussian wave packet reads [12, 13, 9]

ρ(x, t) =
1√

2πσ(t)
e
−(x−q(t))2

2σ2(t) , (126)

where the modulus of the wave function is defined as the square root of the density

operator

|ψ(x, t)| = 1√√
2πσ(t)

e
−(x−q(t))2

4σ2(t) . (127)

The velocity field of the Gaussian wave packet is defined by the continuity equation,
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Eq.(121). For this purpose, the time derivative of the density operator is

dρ(x, t)

dt
=

1√
2πσ(t)

[
4(x− q(t))σ(t)2q̇(t) + 4σ(t)σ̇(t)(x− q(t))2

4σ(t)4

]
e
−(x−q(t))2

2σ(t)2 ,

(128)

and its application in the continuity equation gives

ρ(x, t)v(x, t) = −
∫
dxρ(x, t)

(x− q(t))
σ(t)2

[
q̇(t) +

σ̇(t)

σ(t)
(x− q(t))

]
, (129)

where the part outside the brackets agrees with the space derivative of the Gaussian

wave packet. The velocity field is given by the integration as [12, 13, 9]

v(x, t) = q̇(t) +
σ̇(t)

σ(t)
(x− q(t)) . (130)

With the velocity field and the modulus of the wave packet, the purpose is the

representation of the motion equation as a function of the Gaussian variables (position

and width). Then, the velocity field, Eq.(130), and the quantum potential, Eq.(122),

are introduced for the Gaussian wave packet in the motion equation, Eq.(125).

The derivatives of the velocity in the motion equation for the Gaussian wave packet

are
dv

dt
= q̈(t) +

σ̈(t)

σ(t)
(x− q(t))− σ̇(t)2

σ(t)2
(x− q(t))− σ̇(t)

σ(t)
q̇ , (131)

v
dv

dx
=
σ̇(t)2

σ(t)2
(x− q(t)) +

σ̇(t)

σ(t)
q̇ . (132)

The quantum potential for the Gaussian wave packet is

d2

dx2
|ψ(x, t)| = 1

2σ(t)2
|ψ(x, t)|

[
(x− q(t))2

2σ(t)2
− 1

]
, (133)

Q =
−~2(x− q(t))2

8Mσ(t)4
. (134)

These velocity derivatives and the quantum potential are introduced in the motion

equation. After that, the equation is divided in terms of the dependence of the

trajectories as

(x− q(t))
[
σ̈(t) + αRσ̇(t)−

~2

4M2σ(t)3

]
+ (x− q(t))0σ(t)

[
q̈(t) + αRq̇(t) +

1

M
∇(V (x)− xξ(t))

]
= 0 .

(135)
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Now, the wave packet approximation is considered, which implies that the potential

changes very slowly around the classical trajectory q(t). With this approximation, a

first order Taylor expansion for the potential is realized [12, 13, 9]

dV

dx
=
dV

dx

∣∣
x=q(t) +

d2V

dx2
∣∣
x=q(t) (x− q(t)) . (136)

With it, the equation follows

(x− q(t))
[
σ̈(t) + αRσ̇(t)− ~2

4M2σ(t)3
+
σ(t)

M

d2V

dx2
∣∣
x=q(t)

]
+(x− q(t))0σ(t)

[
q̈(t) + αRq̇(t) +

1

M

dV

dx

∣∣
x=q(t) −

ξ(t)

M

]
= 0

. (137)

The decoupling of the center position and the width of the wave packet is applied

taking into account the linear independence between the terms. Thus, there are two

separate equations [12, 13, 9]

q̈(t) + αRq̇(t) +
1

M

dV

dx

∣∣
x=q(t) =

ξ(t)

M
, (138)

σ̈(t) + αR ˙σ(t)− ~2

4M2σ(t)3
+
σ(t)

M

d2V

dx2
∣∣
x=q(t) = 0 . (139)

The center of the wave packet evolution is described with the Langevin equation,

Eq.(52), where the friction coefficient is defined in Eq.(55). The width evolution is a

type of equation known as damped Pinney equation.

3.2 Stretched Gaussian wave packet

The probability density for the stretched Gaussian wave packet is

ρ(x, t) =
1√

2π(1 + η2)σ(t)
e
−(x−q(t))2

2σ2(t)(1+η2) , (140)

and the modulus of the wave function associated to this probability density is

|ψ(x, t)| = 1√√
2π(1 + η2)σ(t)

e
−(x−q(t))2

4σ2(t)(1+η2) . (141)

Following the same scheme as the Gaussian wave packet, the velocity field of the
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wave packet is established by the continuity equation, Eq.(121). Previously, the time

derivative of the probability density reads

dρ(x, t)

dt
= − e

−(x−q(t))2

2σ(t)2(1+η2)√
2π(1 + η2)σ(t)

[
−4(x− q(t))σ(t)2(1 + η2)q̇(t)− 4σ(t)σ̇(t)(1 + η2)(x− q(t))2

4σ(t)4(1 + η2)2

]
,

(142)

and the continuity equation associated is

ρ(x, t)v(x, t) = −
∫
dxρ(x, t)

(x− q(t))
σ(t)2(1 + η2)

[
q̇(t) +

σ̇(t)

σ(t)
(x− q(t))

]
. (143)

The velocity field of this equation gives the same velocity field as that obtained for

the Gaussian wave packet, Eq.(130). The derivatives for the velocity field with this

wave packet were defined in Eq.(131) and Ec.(132) in the previous section 3.1 for the

Gaussian wave packet. The quantum potential, Ec.(122), for this wave packet reads

d2

dx2
|ψ(x, t)| = |ψ(x, t)|

2σ(t)2(1 + η2)

[
(x− q(t))2

2σ(t)2(1 + η2)
− 1

]
, (144)

Q = − ~2(x− q(t))2

8Mσ(t)4(1 + η2)2
. (145)

With these derivatives and this quantum potential, the motion equation, Eq.(125), for

the stretched Gaussian wave packet reads

(x− q(t))
[
σ̈(t) + αR ˙σ(t)− ~2

4M2σ(t)3(1 + η2)2

]
+(x− q(t))0σ(t)

[
q̈(t) + αRq̇(t) +

1

M
∇(V (x)− xξ(t))

]
= 0 .

(146)

The wave packet approximation gets a first order Taylor expansion for the potential

as Eq.(136) by the same reason as the Gaussian wave packet. After that, the equation

is separated into a center position equation and in a width equation by the linear

dependence between the different powers of the trajectory, with the same procedure as

the Gaussian wave packet. Then, the set of equations is as follows

q̈(t) + αRq̇(t) +
1

M

dV

dx

∣∣
x=q(t) =

ξ(t)

M
, (147)

σ̈(t) + αR ˙σ(t)− ~2

4M2σ3(1 + η2)2
+
σ(t)

M

d2V

dx2
∣∣
x=q(t) = 0 . (148)
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The set of equations is similar to that obtained for the Gaussian wave packet, in

that the only difference is in the term associated with the quantum potential for the

width equation. The difference does not change the structure of the equations, the

position equation is a Langevin equation, Eq.(52), while for the width is a damped

Pinney equation.

The position equation is unchanged because the only difference between both wave

packets are in the width with the stretching factor 1 + η2. This factor perturbs the

quantum potential and it generates the difference between the evolution of the width

in the two types of wave packets. The stretched Gaussian wave packet recovers in the

wave packet and in the width equation the Gaussian wave packet if η is 0.

3.3 Free particle

The free particle assumes that there is not potential, V (x) = 0. For this, the Langevin

position equation for both wave packets in this work is

q̈(t) + αRq̇(t) =
ξ(t)

M
, (149)

while for the width the Gaussian equation and the stretched Gaussian equation are


σ̈(t) + αR ˙σ(t)− ~2

4M2σ(t)3
= 0

σ̈(t) + αR ˙σ(t)− ~2

4M2σ(t)3(1 + η2)2
= 0

. (150)

The Langevin position equation, Eq.(149), is an inhomogeneous second order differential

equation and it can be considered as a first order if it is expressed in function of the

velocity. The equation expressed as a function of the velocity of the transformed space

reads

(sq̇(s)− q̇(0)) + αRq̇(s) =
ξ(t)

M
−→ q̇(s) =

q̇(0)

s+ αR
+

ξ(t)

M(s+ αR)
, (151)

and the solution requires an inverse Laplace transform of 1/(s + αR) which value is
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exp(−αRt) [14]. The velocity is

q̇(t) = q̇(0)e−αRt +
1

M

∫ t

0

dτξ(τ)e−αR(t−τ) , (152)

and the position evolution by integration is

q(t) = q(0) + q̇(0)
1

αR
(1− e−αRt) +

1

MαR

∫ t

0

dτξ(τ)e−αR(t−τ) . (153)

The average values of the positions and velocities are separated in the deterministic

term and in the stochastic term where it is applied the properties of Eq.(51). The

general structure for this decomposition is

〈a〉 = ad + 〈as〉 . (154)

The average position and velocity only has deterministic term by the properties of the

stochastic force, Eq.(51), which is Gaussian statistics. These averages are

〈q(t)〉 = q(0) + q̇(0)
1

αR
(1− e−αRt) , (155)

〈q̇(t)〉 = q̇(0)e−αRt . (156)

The average squared position and the average squared speed have a stochastic term.

First, the stochastic component for the average squared position is

〈qs(t)2〉 = 〈 1

M2α2
R

∫ t

0

dt′
[
1− e−αR(t−t′)

] ∫ t−t′

−t′
dτξ(t′)ξ(τ)

[
1− e−αR(t−t′−τ)

]
〉 ,

(157)

where the average only affects for the random force with the value defined in Eq.(51).

Then, the average square position is

〈qs(t)2〉 =
2kBT

MαR

∫ t

0

dt′
[
1− e−αR(t−t′)

] ∫ t−t′

−t′
dτ
[
1− e−αR(t−t′−τ)

]
δ(t′ − τ) =

=
2kBT

MαR

∫ t

0

dt′
[
1− e−αR(t−t′)

]2
.

(158)
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This integral gives the following average squared position for the stochastic component

〈qs(t)2〉 =
2kBT

Mα2
R

[
αRt−

3

2
+ 2e−αRt − 1

2
e−2αRt

]
. (159)

For the average squared velocity the mathematical calculation is

〈q̇s(t)2〉 = 〈 1

M2

∫ t

0

dτ

∫ t

0

dτ ′ξ(τ)ξ(τ ′)e−αR(2t−τ−τ
′)〉 =

=
e−2αRt

M2

∫ t

0

dτ

∫ t

0

dτ ′〈ξ(τ)ξ(τ ′)〉eαR(τ+τ ′) ,

(160)

with the properties of Eq.(51) it becomes

〈q̇s(t)2〉 =
2kBTαRe

−2αRt

M

∫ t

0

dτ

∫ t

0

dτ ′δ(τ ′ − τ)eαR(τ+τ
′) =

=
2kBTαRe

−2αRt

M

∫ t

0

dτe2αRτ =
kBT

M
(1− e−2αRt) .

(161)

Then, the average squared position and the average squared velocity are

〈q(t)2〉 =

(
q(0) + q̇(0)

1

αR
(1− e−αRt)

)2

− kBT

Mα2
R

(3+e−2αRt−4e−αRt−2αRt) , (162)

〈q̇(t)2〉 = q̇(0)2e−2αRt +
kBT

M
(1− e−2αRt) . (163)

The following calculation is another average over the initial velocities, q̇(0) = 0,

respect to the initial average described before, giving a double average. For it, the

average initial values of the velocity are defined as

〈q̇(0)〉 = 0 , (164)

〈q̇(0)2〉 =
kBT

M
. (165)

With these initial conditions, the double averages for positions and velocities are

〈〈q(t)〉〉 = q(0) , (166)

〈〈q̇(t)〉〉 = 0 , (167)

〈〈q(t)2〉〉 = q(0)2 +
2kBT

MαR
(t− 1− e−αRt

αR
) , (168)
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〈〈q̇(t)2〉〉 =
kBT

M
. (169)

3.3.1 Diffusion coefficient

The diffusion coefficient is defined in Einstein’s relation as [12]

D =
kBT

MαR
. (170)

The diffusion coefficient at long times (t >> α−1R ) is related with the mean square

displacement for a one dimensional motion as

〈(q(t)− q(0))2〉 ' 2Dt , (171)

where the mean squared displacement is considered as Eq.(168) the Einstein’s relation

is accomplished. The classical time dependent diffusion coefficient reads

Dcl(t) =
kBT

MαR
(1− 1− e−αRt

αRt
) . (172)

The mean squared displacement can be determined from the Bohmian stochastic

trajectories. First, the Bohmian stochastic trajectories are obtained from an integration

of the velocity field, Eq.(130). The Bohmian stochastic trajectories are

x(x(0), t) = q(t) +
σ(t)

σ(0)
(x(0) − q(0)) . (173)

The difference between this function and the initial conditions is

x(x(0), t)− x(0) = q(t)− q(0) +

(
σ(t)

σ(0)
− 1

)
(x(0) − q(0)) . (174)

Then, the double average of the mean squared displacement with initial conditions

is

〈〈(x(x(0), t)−x(0))2〉〉 = 〈〈(q(t)− q(0))2〉〉+ 2〈〈(q(t)− q(0))〉〉
(
σ(t)

σ(0)
− 1

)
(x(0) − q(0))

+

(
σ(t)

σ(0)
− 1

)2

(x(0) − q(0))2 .

(175)
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After that, it is necessary to obtain the diffusion coefficient an average over the

possible initial values of the Bohmian position

〈〈(x(x(0), t)− x(0))2〉〉 =

∫
dx(0)ρ(x(0), 0)〈〈(x(x(0), t)− x(0))2〉〉 . (176)

The initial distribution used is the stretched Gaussian wave packet, Eq.(140),

because the Gaussian distribution can be recovered with the stretching factor equal

to 0. The double average value of the position defined in Eq.(168). It is considered the

double average of Eq.(166) for the linear term that becomes null.

〈〈(x(x(0), t)− x(0))2〉〉 =
∫
dx(0)

2kBT
MαR

(t− 1−e−αRt
αR

) +
(
σ(t)
σ(0) − 1

)2
(x(0) − q(0))2√

2π(1 + η2)σ(0)
e
− (x(0)−q(0))2

2σ(0)2(1+η2) .

(177)

The integration of this equation needs a change of variable determined as u =

x(0) − q(0) and the following Gaussian integrals

∫
dxe−

x2

2a =

√
2π

a

∫
dxx2e−

x2

2a =

√
2π

a

1

a
(178)

Then, the mean squared displacement of the Bohmian stochastic trajectories with the

stretched Gaussian wave packet is

〈〈(x(x(0), t)− x(0))2〉〉 =
2kBT

MαR
(t− 1− e−αRt

αR
) + (σ(t)− σ(0))2 (1 + η2) . (179)

The diffusion coefficient defined with the mean squared displacement, Eq.(171), and

with the resulting classical diffusion coefficient, Eq.(172), are compared. The Gaussian

wave packet is shown in the first equation and for the stretched Gaussian wave packet

is the second equation.
Dq(t) = Dcl(t) +

1

2t
(σ(t)− σ(0))2

Dq(t) = Dcl(t) +
1

2t
(σ(t)− σ(0))2(1 + η2)

. (180)

The result shows that the diffusion coefficient of Bohmian trajectories defined as

quantum diffusion has an extra term dependent on the width of the wave function. This

extra term can disappear if the width does not change with time, where the quantum

diffusion coefficient recovers the classical diffusion coefficient form.
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Another way to find the value of the diffusion coefficient is with the velocity

autocorrelation function [14]. It starts with the velocity function, Eq.(152), and the

equation is changed to be defined as a function of the velocity autocorrelation function

〈q̇(0)q̇(t)〉 = 〈q̇(0)2〉e−αRt +
1

M

∫ t

0

dτ〈q̇(0)ξ(τ)〉e−αR(t−τ) , (181)

where the second term is 0 because the two variables are not correlated. The first term

requires the mean squared velocity, Eq.(169), and the velocity autocorrelation function

reads

〈q̇(0)q̇(t)〉 =
kBT

M
e−αRt . (182)

The diffusion coefficient is determined by time integration of the velocity autocorrelation

function [12]

D =

∫ +∞

0

dt〈q̇(0)q̇(t)〉 =
kBT

MαR
. (183)

The Einstein relation is recovered with the velocity autocorrelation function.

3.3.2 Uncertainty product

The uncertainty product gives a measure of the evolution of the system. The operators

required for the uncertainty product are the position and momentum operators and

their squares. The development is with the stretched Gaussian wave packet, Eq.(140),

because it is a generalization of the Gaussian wave packet, Eq.(126), which it can be

recovered with the stretching factor equals to 0.

The position and momentum operators are calculated with the first Gaussian integral

considered in Eq.(178) and read [12]

x̂ =

∫
dxxρ(x, t) =

∫
dx

x√
2π(1 + η2)σ(t)

e
− (x−q(t))2

2σ(t)2(1+η2) = q(t) , (184)

p̂ = −i~
∫
dxψ∗

d

dx
ψ = −i~

∫
dx

[
(x− q(t))

σ(t)2(1 + η2)
+
i

~
dS

dx

]
ρ(x, t) . (185)

The action S(x, t) is related to the two different definitions of the velocity field, Eq.(130)

32



Trabajo fin de máster Pedro Pablo Alarcón Gil. Página: 33

and Eq.(119), and the momentum operator applied for this is

p̂ =

∫
dx

[
−i~(x− q(t))
σ(t)2(1 + η2)

+M [q̇(t) +
σ̇(t)

σ(t)
(x− q(t))]

]
e
− (x−q(t))2

2σ(t)2(1+η2)√
2π(1 + η2)σ(t)2

. (186)

With a variable change as u = x− q(t) and the integration of an odd power multiplied

by an exponential is 0 and the first Gaussian integral, Eq.(178), gives

p̂ = Mq̇(t) . (187)

The squared position operator is

x̂
2

=

∫
dxx2ρ(x, t) =

∫
dx

x2√
2π(1 + η2)σ(t)

e
− (x−q(t))2

2σ(t)2(1+η2) =

=

∫
dx

(u+ q(t))2√
2π(1 + η2)σ(t)

e
− (u)2

2σ(t)2(1+η2) ,

(188)

and the squared position operator with the Gaussian integrals, Eq.(178), follows

x̂
2

= q(t)2 + σ(t)2(1 + η2) . (189)

The squared momentum operator is

p̂
2

= ~2
∫
dx

∣∣∣∣dψdx
∣∣∣∣2 = ~2

∫
dx

[
−(x− q(t))

2σ(t)2(1 + η2)
+
i

~

(
dS

dx

)]2
ρ(x, t) . (190)

The velocity field is introduced from the action, Eq.(119), with the velocity field,

Eq.(130). Then, the absolute value operator is

p̂
2
=

∫
dx

[
~2(x− q(t))2

4σ(t)4(1 + η2)2
+M2

(
q̇(t)2 + 2

˙q(t)σ̇(t)

σ(t)
(x− q(t)) + σ̇(t)2

σ(t)2
(x− q(t))2

)]
ρ(x, t) .

(191)

The integral with the correspondent variable change u = x − q(t), with the Gaussian

integrals, Eq.(178), and with value of the integral 0 for odd powers multiplying. Then,

the squared momentum operator is

p̂
2

=
~2

4σ(t)2(1 + η2)
+M2q̇2 +M2σ̇(t)2(1 + η2) . (192)

The next step is the double average of the variances of the position and momentum
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with the operators, Eqs.(184,187,189,192). [12]

(〈〈∆x〉〉)2 = 〈〈x̂2〉〉 − 〈〈x̂〉〉2 = 〈〈q(t)2〉〉 − 〈〈q(t)〉〉2 + σ(t)2(1 + η2) , (193)

(〈〈∆p〉〉)2 = 〈〈p̂2〉〉−〈〈p̂〉〉2 = M2
(
〈〈q̇(t)2〉〉 − 〈〈q̇(t)〉〉2 + σ̇(t)2(1 + η2)

)
+

~2

4σ(t)2(1 + η2)
,

(194)

and it is expressed better with the average relations, Eqs.(166,167,168,169)

(〈〈∆x〉〉)2 =
2kBT

MαR
(t− 1− e−αRt

αR
) + σ(t)2(1 + η2) , (195)

(〈〈∆p〉〉)2 = kBTM +M2σ̇(t)2(1 + η2) +
~2

4σ(t)2(1 + η2)
. (196)

The uncertainty product is defined as [12]

U(t) =
√

(〈〈∆x〉〉)2(〈〈∆p〉〉)2 , (197)

which for the Brownian motion in a stretched Gaussian distribution is

U(t)2 =
~2

4
+M2σ(t)2σ̇(t)2(1 + η2)2 +

2(kBT )2

αR
(t− 1− e−αRt

αR
)

+kBT

[
Mσ(t)2(1 + η2) +

2

MαR
(t− 1− e−αRt

αR
)

(
M2σ̇(t)2(1 + η2) +

~2

4σ(t)2(1 + η2)

)] ,

(198)

while for a Gaussian distribution is

U(t)2 =
~2

4
+M2σ(t)2σ̇(t)2 +

2(kBT )2

αR
(t− 1− e−αRt

αR
)

+kBT

[
Mσ(t)2 +

2

MαR
(t− 1− e−αRt

αR
)

(
M2σ̇(t)2 +

~2

4σ(t)2

)] . (199)

There is a minimum constant with the same value as the minimum Heisenberg

uncertainty value , U = ~
2
, for both types of wave packets . The result without random

force and width change corresponds with a minimum uncertainty wave packet regardless

the stretching factor.
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4 Results

The Brownian-Bohmian motion is described for the Gaussian wave packet and the

stretched Gaussian wave packet with the Bohmian stochastic trajectories, the mean

squared displacement, the diffusion coefficient and the uncertainty product. The

numerical calculations have been done with natural units (~ = 1,M = 1).

The system evolves according to the Langevin equation, Eq.(149), for the two types

of wave packets. The Langevin equation is solved by applying the algorithm proposed

in [15] where the random force is considered with random values whose mean value is 0.

The initial conditions for the algorithm are q(0) = 0 and q̇(0) = 0. The number of steps

of the algorithm is 4000, the number of stochastic trajectories considered are 4 and the

total time evolution is 40. The Langevin equation evolution, Fig.1, shows a different

evolution for each stochastic trajectory with a random local evolution generating a

random evolution in each trajectory. The temperature changes the intensity of the

motion along the coordinate, but the evolution over time is analogous.

(a) kBT = 0.01. (b) kBT = 0.2.

Figure 1: Langevin equation evolution for four stochastic trajectories with algorithm
[15] considering 4000 steps and the equation variables αR = 0.2, the random force
kBT = 0.01 and kBT = 0.2 and the initial values q(0) = 0 and q̇(0) = 0.

The width evolution has been solved in MAPLE with the initial conditions σ(0) = 1

and σ̇(0) = 0, considered at the same value as [13]. The time evolution of the width

and its derivative is shown in Fig.2 only for the Gaussian wave packet. The width
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always grows and it tends to a asymptotically value at infinite time.

(a) Width. (b) Width derivative.

Figure 2: The time evolution of the Gaussian wave packet for the width and for its
derivative with the initial conditions as σ(0) = 1 and σ̇(0) = 0. The friction coefficient
is αR = 0.2.

The Bohmian stochastic trajectories, Eq.(173), have a contribution to the centre of

the wave packet solved by the Langevin equation and a contribution to the width solved

by the undamped Pinney equation. The initial position of the Bohmian stochastic

trajectory is x(0) = 1. Bohmian stochastic trajectories are realized for two temperatures,

kBT = 0.01 in Fig.3 and kBT = 0.2 in Fig.4 where the Gaussian wave packet and

the stretched Gaussian wave packet are considered. The two wave packets have an

analogous evolution, but the Gaussian wave packet has higher trajectories values than

the stretched Gaussian wave packet as it can be seen in the end of the black or the red

stochastic trajectories. The stochastic trajectories has a random behaviour influenced

by the stochastic force and it implies every stochastic trajectory is different from the

others.

The influence of the stochastic force with the temperature is a greater randomness

over time for every stochastic trajectory and a greater difference from the width

evolution, which is the evolution for the trajectories without stochastic force.

The random behaviour of each Bohmian stochastic trajectory implies this variable

as a bad way to analyze the Brownian-Bohmian quantum motion. Then, the Brownian-

Bohmian quantum motion is studied with averaged variables. In particular, with
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(a) Gaussian wave packet (b) Stretched Gaussian wave packet.

Figure 3: Bohmian stochastic trajectories with αR = 0.2, kBT = 0.01 and x(0) = 1
for a Gaussian wave packet and a stretched Gaussian wave packet with η = 1. The
number of Bohmian stochastic trajectories are four.

(a) Gaussian wave packet (b) Stretched Gaussian wave packet.

Figure 4: Bohmian stochastic trajectories with αR = 0.2, kBT = 0.2 and x(0) = 1 for a
Gaussian wave packet and a stretched Gaussian wave packet with η = 1. The number
of Bohmian stochastic trajectories are four.

the mean squared displacement, the diffusion coefficient and the uncertainty product

defined in the section 3.3. At this point, the Gaussian wave packet and stretched

Gaussian wave packet are considered separately.
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4.1 Gaussian wave packet

The mean squared displacement and the diffusion coefficient have been considered with

two different temperatures, kBT = 0.2 and kBT = 0.5, and with a friction coefficient,

αR = 0.2, for their classical and quantum description. The results for the Gaussian

wave packet are the same as those obtained in [13].

The mean squared displacement in its quantum framework is Eq.(179) with the

stretching factor as 0 and in the classical framework without the width term. The

mean squared displacement is plotted in Fig.5. The result shows that the mean

squared displacement always grows with time. The quantum regime is greater than the

classical regime and both increase with the temperature, but not the difference between

them. After the initial time, the mean squared displacement seems linear and the slope

depends on the temperature. The dependence on time agrees with the characteristic

of the Brownian motion.

Figure 5: The mean squared displacement for the quantum values are the dotted curves
and for the classical values are the solid curves. The red curves are for kBT = 0.5 and
the black curves for kBT = 0.2. The friction coefficient is αR = 0.2.

The diffusion coefficient for the quantum regime, Eq.(180), and for the classical

regime, Eq.(172). The diffusion coefficient is represented in Fig.6. The diffusion

value grows with time until asymptotic times are reached, where the value is constant

as predicted by Einstein relation. Temperature increases the quantum and classical

diffusion coefficient as their asymptotic values. For the same temperature, the quantum
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coefficient diffusion is bigger than the classical one over the whole time and the quantum

asymptotic values are slightly larger than the classical one. It implies that the quantum

contribution does not disappear with time.

Figure 6: The diffusion coefficient for the quantum values are the dotted curves and
for the classical values are the solid curves. The red curves are for kBT = 0.5 and the
black curves for kBT = 0.2. The friction coefficient is αR = 0.2.

In the uncertainty product, two different studies are realized. One for the temperature

and one for the friction coefficient. Both studies follow the evolution of Eq.(199) and

both studies are represented in Fig.7. The minimum value in the graphics is 0.5, in

line with the Heisenberg minimum uncertainty product.

Without the random force dependence, kBT = 0, the uncertainty product is ruled

by the width derivative as the similar time evolution in a initial growth and a decrease

after the maximum value to the asymptotic value at infinite time. For the uncertainty

product, the asymptotic value is obtained when the width derivative reaches 0. The

higher friction coefficient reduces the maximum value and is achieved earlier. The

higher friction coefficient lowers the asymptotic value, but it is still greater than 0.5.

The influence of the temperature obtains a growth at all times without an asymptotic

value. This influence it is not observed for temperatures below kBT = 0.03, then for

higher temperatures the dynamics is more similar to a free dissipation dynamics where

the uncertainty product always increases with time.
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(a) Friction coefficient (b) Temperature

Figure 7: In the left panel, the uncertainty product used kBT = 0 and the different
friction coefficients are αR = 0.1, blue curve, αR = 0.12, red curve,αR = 0.15, green
curve,αR = 0.18, orange curve. In the right panel, there is αR = 0.2 and the different
temperatures are kBT = 0, blue curve, kBT = 0.01, red curve, kBT = 0.03, green
curve, kBT = 0.05, orange curve, kBT = 0.1, black curve.

4.2 Stretched Gaussian wave packet

The stretching factor changes the width amplitude and it makes a different evolution

for the system while the Langevin equation remains unchanged.

For the mean squared displacement and the diffusion coefficient, the stretching

factor has values between 0 and 1, while the temperature and friction coefficient have

the same values considered for the Gaussian wave packet. In this case, the time

evolution for different temperatures is divided into two different plots to have a better

evaluation from the contribution of the stretching factor.

The mean squared displacement is given in Fig.8. The effect of the stretching factor

reduces the difference between the classical and quantum regime. The stretching factor

can be considered when the width value is not clearly defined and gives a possible

spectrum of values.

The diffusion coefficient is in Fig.9. The stretching factor reduces the difference

between classical and quantum regime as in the mean squared displacement. The

asymptotic value is still greater in the quantum regime than in the classical regime.

The uncertainty product uses the stretching factor η = 1 to compare with the

40



Trabajo fin de máster Pedro Pablo Alarcón Gil. Página: 41

(a) kBT = 0.2 (b) kBT = 0.5

Figure 8: The mean squared displacement with αR = 0.2 for the quantum values
are the dotted curves and for the classical values are the solid curves. The different
stretching factor are η = 0 in black, η = 0.5 in green, η = 0.9 in blue and η = 1 in red.
The temperature is indicated below the image.

(a) kBT = 0.2 (b) kBT = 0.5

Figure 9: The diffusion coefficient with αR = 0.2 for the quantum values are the dotted
curves and for the classical values are the solid curves. The different stretching factor
are η = 0 in black, η = 0.5 in green, η = 0.9 in blue and η = 1 in red. The temperature
is indicated below the image.

Gaussian wave packet. For this, there is a study for the friction coefficient and one for

the temperature in Fig.10. The analysis of the form for the time evolution is the same

as the Gaussian wave packet, but the amplitude of the maximum of the different friction
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coefficient is reduced about half respect the initial value. The different temperatures

are more separated at the initial time between them respect to the Gaussian wave

packet.

(a) Friction coefficient (b) Temperature

Figure 10: The uncertainty product for stretching factor η = 1. In the left panel, it
used kBT = 0 and the different friction coefficients are αR = 0.1, blue curve, αR = 0.12,
red curve,αR = 0.15, green curve,αR = 0.18, orange curve. In the right panel, there
is αR = 0.2 and the different temperatures are kBT = 0, blue curve, kBT = 0.01, red
curve, kBT = 0.03, green curve, kBT = 0.05, orange curve, kBT = 0.1, black curve.

5 Conclusions

This work proves the non linear Schrödinger equation for open quantum systems from

the Caldeira- Leggett Hamiltonian. The non linear becomes a system with stochastic

force modelling the behaviour of the environment and a friction term associated with

the contact between the system and the reservoir. After that, this equation is applied

to describe the Brownian-Bohmian motion.

The theoretical development has been satisfying because the Kostin procedure

with its subsequent generalization and the scale relativity method obtain the same

Schrödinger- Langevin equation from the Langevin equation of motion. The Kostin

procedure is a heuristic method which is very intuitive with the quantum mechanics

operators. The generalization uses a classical description to obtain a similar development,

but it becomes incomplete because it does not give the form of W (t). The scale
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relativity method is an alternative theory with a high potential because it relates

the classical mechanics with the quantum mechanics by a fractal description of the

space-time.

The application of the work to the Brownian motion has also been good. The wave

packet center for the Gaussian and stretched Gaussian wave packets has the same

evolution as the classical equation derived from the Caldeira-Leggett Hamiltonian.

Then, the general center of the wave packet distribution can be considered classical

and the quantum regime is shown in the width, which contains the different information

between the Gaussian and stretched Gaussian wave packet. It implies the quantum

behaviour of the particle depends on its width.

The Bohmian stochastic trajectories are an important result from the Brownian-Bohmian

motion and they come from the classical stochastic Langevin equation of the wave

packet with the damped Pinney equation related to the width evolution. The importance

of the stochastic force is seen in the randomness of the trajectories with a higher values

of the temperature. This randomness of the trajectories displays the importance of

the averaged quantities because it is impossible to take good measures for only one

stochastic trajectory.

Regarding the results for the wave packets, the studied characteristics of Brownian

motion have been correctly shown because the diffusion coefficient and the mean

squared displacement are higher with the temperature. The diffusion coefficient has an

asymptotic value for higher times as the Einstein relation indicates. The Heisenberg

minimum uncertainty product is corroborated and the Gaussian distribution is proved

as the minimum uncertainty wave packet since the asymptotic values without random

force is the minimum value.

The description of the stretched Gaussian wave packet has not been done before

in the literature. The equations of motion obtained are a Langevin equation for the

center position, Eq.(147), and a Ermakov generalized or damped Pinney equation for

the width, Eq.(148). The damped Pinney equation is a new generalization and it has

not been defined in previous research. With these equations, the numerical calculations

for the Brownian-Bohmian motion has been performed where the coefficient diffusion

has a dependence on the stretching factor for the quantum regime while the classical

one is the same as the Gaussian wave packet, Eq.(180). The coefficient diffusion for
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the quantum regime and the uncertainty product study for this type of wave packet,

Eq.(198), is original of this work.

The results for the stretched Gaussian wave packet have not shown significance

differences in behaviour over time. The diffusion coefficient approaches the evolution

of the classical regime with the higher values of stretching factor, so the stretching

factor tends to infinity can be considered as a possible classical approximation.

The stretched Gaussian wave packet is a generalization of the Gaussian wave

packet where the mathematical issues have the same complexity. It can be used as

Gaussian system with undetermined width where the stretching factor can model this

indeterminacy.

The ways to continue this work is the representation of other applications of the

theoretical work development in this paper such as Zeno effect or the application of a

electromagnetic field. It can be considered the study of the stretching factor tends to

infinite as classical limit, where the space probability to find the particle is expanded

as a more delocalised distribution. The stretched Gaussian wave packet can be applied

to other types of motion beyond the Brownian motion.

6 Appendix

6.1 Expected position and probability current

The expected position for an operator is

〈x〉 =

∫
ψ∗xψdx , (200)

with the time derivative associated

d

dt
〈x〉 =

∫ [
dψ∗

dt
xψ + ψ∗x

dψ

dt
+ ψ∗

dx

dt
ψ

]
dx . (201)

For the wave function and the complex conjugate, the time derivative can be determined

by the Schrödinger equation
dψ

dt
=
−i
~
Hψ (202)
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and the time derivative with the Schrödinger equation is

d

dt
〈x〉 =

∫ [
i

~
Hψ∗xψ + ψ∗x

(−i)
~

Hψ + ψ∗
dx

dt
ψ

]
dx . (203)

The Hamiltonian considered in this work is

H =
1

2m
(−i~ d

dx
)2 + V , (204)

where the first term is the kinetic part and the other is a potential considered real.

With this Hamiltonian, the expected position value can be reduced as

d

dt
〈x〉 =

∫
i

2m~

[
(i~

d

dx
)2ψ∗xψ − ψ∗x(−i~ d

dx
)2ψ

]
dx+

∫
ψ∗
dx

dt
ψdx . (205)

It reads
d

dt
〈x〉 =

∫
−i~
2m

[
d

dx
ψ∗ψ − ψ∗ d

dx
ψ

]
dx+

∫
ψ∗
dx

dt
ψdx . (206)

At this point, the definition of the probability current, Eq.(82), is introduced

d

dt
〈x〉 =

∫
Jdx+ 〈dx

dt
〉 , (207)

and with the final consideration that the average value of the velocity is centered on

the origin
d

dt
〈x〉 =

∫
Jdx . (208)
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