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Abstract

Characterization of left ventricle sarcomere properties
using deep learning

Dr. Miquel Crusells Girona

Independientemente de su origen, la disfunción diastólica está presente en la práctica
totalidad de las enfermedades estructurales del miocardio. Por ello, es de especial re-
levancia para la práctica cĺınica el conocer los cambios que pueden producirse en las
propiedades mecánicas del corazón en estas circunstancias, especialmente en el ventŕıculo
izquierdo, más propenso al fallo al trabajar a mayor presión. Actualmente, existen
modelos directos que relacionan las propiedades del sarcómero con las propiedades de
las cámaras y su función. No obstante, dado que las propiedades del sarcómero son
prácticamente imposibles de obtener in vivo o in silico, no existen modelos que solucio-
nen el problema de calibración inverso. La presente tesina tiene como objetivo evaluar
diferentes redes neuronales convolucionales que predigan las propiedades del sarcómero
en base a pares de variables hemodinámicas sintéticas, obtenidas mediante CircAdapt,
en una metodoloǵıa de transfer learning. Los resultados de estos análisis muestran que,
cuando las señales no incorporan ruido blanco, los niveles de exactitud son muy elevados,
alrededor del 90%, para cualquiera de las parejas de variables analizadas. Al introducir
ruido blanco en las señales, la combinación de presión y volumen del ventŕıculo izquierdo
mantiene este elevado nivel de exactitud. La precisión disminuye al 75% al sustituir estas
variables por otras surrogadas, que pueden obtenerse en la práctica cĺınica de manera no
invasiva, como el strain o la presión arterial, con una subida del error relativo hasta el
15% con una probablidad del 95%.

Irrespectively of its origin, diastolic disfunction is present in virtually all structural myo-
cardial diseases. For this reason, it is of high interest to clinicians to understand the
changes that occur in the mechanical properties of the heart, with a special interest in
the left ventricle, as it is more prone to failure given its high working pressure. Direct
models exist that can relate sarcomere properties to chamber properties and their func-
tion. However, since sarcomere properties are virtually impossible to measure in vivo or
in silico, no model exists to solve the corresponding inverse problem. The present thesis
assesses several convolutional neural networks that target sarcomere mechanical proper-
ties using different pairs of synthetic hemodynamical variables, which have been obtained
with the CircAdapt model, in a transfer learning approach. Results show that, when no
white noise is considered, accuracy levels above 90% are observed regardless of the hemo-
dynamical variables used in the training process. When white noise is introduced, LV
pressure and volume maintain the same level of accuracy. However, this accuracy drops
to 75% when the former variables are substituted by other surrogated ones, which can
be measured with non-invasive procedures, such as strain or arterial pressure, with an
increase in relative error of the parameters up to 15% with a 95% probability.
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Chapter 1

Introduction and state of the art

1.1 Motivation

Diastolic disfunction is present to some degree in virtually all structural myocardial
diseases and, independent of its primary cause, this condition has become a major source
of cardiovascular morbidity and mortality [21]. Diastolic disfunction is a generic term
encompassing different abnormalities of the mechanical chamber properties of the left
ventricle (LV). From a clinical perspective, this condition may resolve into elevated left
atrial pressure, resulting in upstream pulmonary congestion and, eventually, heart failure.

For this reason, it is of high interest to clinicians to understand the changes that occur
in the mechanical properties of the heart, since they are the major determinants of both
diastolic and systolic function. While it is difficult and risky to measure LV intrinsic
properties in vivo, an operating approach can be taken via catheterism by measuring and
analyzing the corresponding pressure-volume (PV) loops. Current methods of analysis
either attempt to isolate diastolic properties by focusing on specific temporal windows
of diastole, in which independent regressions are sought [19], or attempt to calibrate
properties with a global optimization method using complete pressure-volume curves for
diastole [4]. Even though significant improvements have been made in the understanding
of the relevance of diastolic chamber properties, up to this point all treatments to improve
clinical outcome on the basis of modifying these properties have been unsuccessful [4].

Owing to the fact that chamber properties are intrinsically related to the mechani-
cal behavior of sarcomeres, some multiscale models have been proposed to relate both
quantities in a direct way [1, 2]. However, since these sarcomere properties are virtually
impossible to measure in vivo and are decoupled from chamber ones, no model exists to
solve the corresponding inverse problem, and therefore the relation between sarcomere
properties and chamber properties is not fully disclosed.

While classical methods of optimization have proven useful for the calibration of
mechanical properties of the heart, new machine learning algorithms, in particular deep
learning techniques, are currently emerging in a multitude of medical disciplines [9]. It
is thus mandatory to analyze the accuracy and efficiency that these new methods may
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provide to the search of the relationship between sarcomere properties, chamber properties
and PV loops.

1.2 Anatomy and physiology of the cardiac muscle

To begin with, some preliminary concepts regarding the anatomy and physiology of
the heart are introduced in order to better understand the calibration problem at hand.

1.2.1 The heart and its physiology

The heart is a fist-sized organ that pumps blood throughout the body. Anatomically
speaking, the heart is composed by four main chambers that are made of cardiac muscle
and are powered by electrical impulses. These chambers are, as shown in Fig. 1.1, the
right and left atriums, and the right and left ventricles.

Figure 1.1: Anatomy of the heart [22].

The smallest functional unit of cardiac muscle, and striated muscle in general, is
the sarcomere, which corresponds to the segment of a myofribril between two Z disks, as
shown in Fig. 1.2. Sarcomeres are composed of long fibrous filament proteins that produce
contraction and relaxation of the muscle with the slide of thick filaments (myosin) past
thin filaments (actin).

As depicted in Fig. 1.1, venous blood returning from the body (1) drains into the
right atrium (2) via the superior and inferior vena cava and coronary sinus. The right
atrium pumps this blood through the tricuspid valve into the right ventricle (3) which,
in turn, pumps the blood through the pulmonary semilunar valve into the pulmonary
arteries (4,5) to be oxigenated in the lungs. Blood returning from the lungs via the four



CHAPTER 1. INTRODUCTION AND STATE OF THE ART 3

Figure 1.2: Configuration of the sarcomere [8].

pulmonary veins (6) drains into the left atrium (7), and this left atrium pumps the blood
through the mitral valve into the left ventricle (8). Finally, the left ventricle pumps the
blood through the aortic semilunar valve into the ascending aorta (9,10) and finally to
the systemic circulation. This process is known as the cardiac cycle and conforms the
main purpose of the heart: to be the blood pump for the human body.

Since filling and ejection of blood in the heart occur simultaneously in both sides
(left and right), the cardiac cycle is usually divided into two parts, which are of utmost
importance for the problem at hand: systole and diastole. During ventricular systole,
both ventricles contract and vigorously eject blood from the heart while the two atria
are relaxed (atrial diastole). On the other hand, during ventricular diastole, the heart
relaxes and expands, receiving blood into both ventricles (early diastole), followed by
the contraction of the two atria that pump blood into their respective ventricles (atrial
systole). As a result, ventricular systole is a succession of three steps: an isovolumetric
contraction followed by a rapid ejection of blood, with a final reduced ejection, and
often represents around 38% of the cardiac cycle in healthy patients. On the contrary,
ventricular diastole starts with an isovolumetric relaxation followed by a rapid filling,
and continues with a slower filling and a final atrial systole. Ventricular diastole lasts
about 62% of the cardiac cycle in healthy patients, and is hence responsible for the blood
filling of the heart. Fig. 1.3 shows a summary of the events and evolution of principal
hemodynamic variables during the cardiac cycle.

The cardiac function is often analyzed by means of four relevant properties that are
related to its correct performance:

� The end-systolic volume (ESV) is the volume of blood left in a ventricle at the end
of systole, and is usually around 40-60 mL.
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Figure 1.3: Summary of events and evolution of hemodynamic variables for the cardiac cycle
[14].

� The end-diastolic volume (EDV) is the volume of blood in a ventricle at the end of
diastole. Note that this is the maximum volume that can be stored in the heart,
normally around 120-130 mL.

� The stroke volume (SV) is the total volume of blood ejected by a ventricle during
systole, and can thus be computed by the difference SV = EDV −ESV . A typical
value is around 70 mL.

� The ejection fraction (EF) corresponds to the ratio of stroke volume to end-diastolic
volume and thus represents the total blood that is mobilized in a heartbeat. The
EF for healthy patients is usually between 60-65%.

1.2.2 Pressure-volume loop

A useful operating diagram of the cardiac cycle consists of representing the left-
ventricle (LV) pressure as a function of the left-ventricle (LV) volume. This plot is often
called a pressure-volume (PV) loop. Fig. 1.4 illustrates a typical PV loop for a healthy
patient. The PV loop representation allows one to rapidly identify the main parts of the
cardiac cycle.

� Phase I (segment AB) corresponds to the filling phase of the cardiac cycle. In this
part of the cycle, the LV pressure is low and approximately constant (around 2-3
mmHg), while the volume rises to EDV. This phase starts with the opening of the
mitral valve (point A) and finalizes with the closure of this same valve (point B).
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Figure 1.4: Typical PV loop for a healthy patient [14].

� Phase II (segment BC) corresponds to the isovolumetric contraction of the cycle.
In this part, the LV volume remains approximately constant at EDV while the
pressure increases rapidly to around 80 mmHg. This phase starts when all cardiac
valves are closed (point B) and ends with the opening of the aortic valve (point C),
point at which the diastolic blood pressure (BP) is measured.

� Phase III (segment CD) corresponds to the ejection phase of the cardiac cycle. In
this part, the LV volume decreases to ESV while pressure rises to a peak of around
120 mmHg and then slowly decreases to about 100 mmHg. This phase starts with
the opening of the aortic valve (point C) and reamins until its closure (point D).
The maximum pressure in this phase is the common measurement of systolic blood
pressure (BP).

� Phase IV (segment DA) corresponds to the isovolumetric relaxation of the cycle. In
this part, the LV volume remains approximately constant at ESV and the pressure
quickly drops to 2-3 mmHg. This phase starts with the closure of the aortic valve
(point D) and finishes at the opening of the mitral valve (point A).

The PV loop representation is extremely useful in so that it allows a precise mathe-
matical formulation of the cardiac cycle. From this mathematical formulation, the prin-
cipal mechanical properties of the left ventricle can be extracted.



CHAPTER 1. INTRODUCTION AND STATE OF THE ART 6

1.2.3 PV loop analysis: mechanical properties of the left
ventricle

From the PV loop, it is possible to derive some mechanical properties that will allow
clinicians to assess the cardiac performance of both chambers1.

The first relevant mechanical property is related to the end-diastolic pressure-volume
relationship (EDPVR). At end-diastole, the left ventricle is completely relaxed. If blood
is pumped inside this relaxed ventricle, there is no resistance at first, up to a volume
V0, usually called equilibrium volume or unstressed volume, which corresponds to the
maximum volume at which LV pressure is still zero. From this point on, an increasing
resistance is observed in order to expand the ventricle, which is defined in the relationship
between the end-diastolic pressure and volume, namely, the EDPVR. As a result, the
moment of end-diastole for a given heartbeat is necessarily a point of the EDPVR, as
shown in Fig. 1.5.

Figure 1.5: Relationship between the PV loop and the end-diastolic pressure-volume relation-
ship (EDPVR) [7].

In a similar way, one can analyze the capacity of the left ventricle to pump blood.
Analogously to the former definition, one can define the end-systole pressure-volume
relationship (ESPVR) as all possible points of end-systole. It is relevant to note that,
since a V0 volume is required for a positive pressure, ESPVR and EDPVR intersect at
point (V0, 0), as observed in Fig. 1.6.

As a result, the elastance E of the left ventricle can be defined as the derivative of
LV pressure with respect to LV volume, and is usually measured either at end-systole, in
order to assess the pumping capacity of the heart, or at end-diastole, in order to assess
its mechanical recovery

E =
∂P

∂V
(1.1)

1Note that, in the present work, we have only focused on the left ventricle.
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Figure 1.6: End-systolic and end-diastolic pressure-volume relationships [7].

The next relevant mechanical property refers to how fast LV pressure decreases during
isovolumetric relaxation (phase IV in Fig. 1.4). For this phase, one can plot LV pressure
as a function of time and mathematically fit the resultant curve, as shown in Fig. 1.7.

Figure 1.7: LV pressure as a function of time and constant time of relaxation [11].

Since the actual curve P (t) during isovolumetric relaxation approximately behaves
like an exponential, the mechanical property defining the relaxation process of the left
ventricle can be thought as the time constant of this decay. For this reason, the time
constant of relaxation, or simply the relaxation index, τ , is often defined as

τ = max
t

(
− P

dP/dt

)
(1.2)
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As will be discussed in subsequent sections, this exponential behavior admits two different
models: one with a zero asymptote and one with a non-zero asymptote. It is relevant to
note that both of these approaches are compatible with the definition in Eq. 1.2.

1.3 Characterizing mechanical properties of the left

ventricle: a state of the art

Due to the relevance that left-ventricle mechanical properties have in the assessment
of a healthy heart both in terms of systolic function and diastolic function, several models
have been proposed.

1.3.1 Theoretical model for diastolic pressure

A well-accepted model to describe diastolic pressure considers the addition of an active
pressure pa and a passive pressure pp, both acting through the full diastolic period [4].

In this model, active relaxation pressure pa is modeled by an exponential function

pa(t, V ) = (P0 − pp(V )) · e−t/τ (1.3)

where P0 measures LV pressure at the onset of diastole, t is the diastolic time measured
from end-systole to mitral valve closing and τ is the time constant of relaxation (Eq. 1.2).
Eq. 1.3 has an asymptote at pa → 0 when t → ∞. Oftentimes, this behavior is not
considered appropriate and a twitch independent tension, a resting tone Rt, is added to
the formulation, so that pa → Rt,

pa(t, V ) = (P0 − pp(V )) · e−t/τ +Rt (1.4)

Passive mechanical diastolic properties are governed by a piecewise PV logarithmic
relationship,

pp(t, V ) =


S− log

V − Vd

V0 − Vd

when V < V0

−S+ log
Vm − V

Vm − V0

when V > V0

(1.5)

where S− and S+ represent the stiffness constants for each piecewise function, Vd is the LV
dead volume asymptote and Vm is the maximal achievable volume asymptote. Note that,
when V = V0, pp = 0. Given that the slope of pp should be continuous for a relatively
homogeneous body undergoing elastic deformation, S− can be expressed in terms of S+

as

S− = S+
V0 − Vd

Vm − V0

(1.6)

and thus decreasing the number of independent parameters of the model by one.
Active and passive mechanical properties act simultaneously during the full diastolic

period, from aortic valve closure (AVC) to mitral valve opening (MVO). Therefore, the
estimated diastolic pressure P is a function of time t and volume V

P (t, V ) = pa(t, V ) + pp(t, V ) (1.7)
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Fig. 1.8 shows the contribution2 of the active and passive pressures to give the total
pressure for a PV loop.

Figure 1.8: Decomposition of total pressure into an active pressure pa and a passive pressure
pp [4].

1.3.2 Local vs global optimization

The equations presented in Section 1.3.1 define a model that can be calibrated for
the diastolic properties τ , V0, S+, Vm and Vd. Indeed, given a series of PV loops, a least-
squares regression can be implemented to approximate the former chamber properties.
Nonetheless, two approaches have been proposed to implement the regression of these
variables: a local [19] and a global optimization [4].

Given that passive volume-dependent forces are low during the isovolumetric period
of diastole, a local calibration of the rate of relaxation can be performed during this
particular time window of the cardiac cycle. Analogously, assuming that relaxation has
completed at end-diastole, parameters coming from passive pressure can be calibrated
close to end-diastole. Even though this local optimization procedure gives a relatively

2Note that, in order to generate the complete heartbeat, Psystole is added to the diastolic pressure
P = pa + pp.
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good approximation of the chamber properties, it is worth noticing that it penalizes
discriminatory power, since only a few data points are used to calibrate the properties,
while highly depending on the definition of the fitting windows.

In reality, both active and passive contributions act at the same time for the whole di-
astolic period. For this reason, a global optimization procedure was proposed by Bermejo
et al [4]. In this approach, the full pressure P (t, V ) (Eq. 1.7) is included in a global op-
timization algorithm with cost function C

C = ∥P (t, V )− Preal∥22 (1.8)

where Preal stands for the true measured pressure and ∥ · ∥2 is the L2-norm of the cor-
responding vector. It is interesting to note that this method can be used heartbeat-by-
heartbeat or it can fit a complete hemodynamic run of inferior vena cava (IVC) occlusion.

While the former two methods evaluate the chamber mechanical properties, it is
relevant to note that they lack information about the sarcomere function, which may
be of paramount importance for selecting the appropriate targets for pharmacological
treatments.

1.3.3 CircAdapt model and sarcomere properties

In order to include more sophisticated constitutive models, a multiscale model called
CircAdapt was proposed by Arts et al [1] based on the interaction of mechanics and
hemodynamics of the left ventricle [18]. This CircAdapt model simulates beat-to-beat
dynamics of the four-chamber heart with systemic and pulmonary circulation. Being a
multiscale model, it incorporates tissue mechanics and its adaptation to mechanical loads,
and thus takes into consideration a realistic relation between pressure and volume load.

As described in Ref. [1], the model is based on several rules to combine all levels of
the model.

1. For blood vessels: low shear stress dilates the wall, while tensile stress thickens the
wall.

2. For myocardial tissue:

� Strain dilates the wall material.

� Larger maximum sarcomer strength increases contractility.

� Contractility increases wall mass.

As far as the implementation is concerned, the CircAdapt model is formed by four
types of modules: chamber, tube, valve and resistance. Simulating human anatomy, the
heart contains four chambers, and their disposition consists of a large outer chamber
(right ventricle) encapulsating a high-pressure-generating inner chamber (left ventricle)
to accomodate right-to-left ventricle interaction. The large arteries and veins that are
connected to the heart are simulated by nonlinear compliant tubes with a nonlinear
characteristic impedance for pressure-flow waves. Chambers and tubes are connected by
valve elements whose formulation includes terms for inertia and Bernoulli losses. These
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Figure 1.9: Architecture of the CircAdapt model [1].

valve elements can also accommodate defects such as venous outflow into atria or septal
defects. The general architecture of the model is shown in Fig. 1.9.

From a computational point of view, the CircAdapt model is formulated by means of a
system of differential equations in state variables with respect to time, so that the model
generates traces of hemodynamic variables as a function of time for the cardiac cycle. The
constitutive equations3 for the sarcomere mechanics are also decomposed into an active
and a passive part. On the one hand, the active stress due to myofiber contraction σfa is
a function f of time t, sarcomere length ls, contractile element length lsi and contractility
C, multiplied by a scaling factor Sfact,

σfa = Sfact · f (t, ls, lsi, C) (1.9)

where C represents the density of cross-bridges per unit length and its dynamics depend
on time constants of rise (tr) and decay (td). From Eq. 1.9, one can define the sarcomere
properties of relaxation4 ηs and contractility ϵs by means of the decay time td and the
slope of the active stress σfa, respectively.

On the other hand, the passive stress, arising from internal structures such as titin
and the extracellular matrix surrounding the myocyte, is described as a nonlinear relation
depending on sarcomere length ls,

σfp = Sfpas ·

((
Is
Is0

)k1

− 1

)
(1.10)

where Sfpas is a scaling factor, ls0 represents stress-free fiber length and k1 is an exponent
which determines the degree of nonlinearity. Note that Eq. 1.10 allows one to define the
passive stiffness of the sarcomere ks as the slope of σfp.

3Developments for the present thesis only consider sarcomere properties; however, extensive detail
of the formulation for all components can be found in Ref. [1].

4The subscript ”s” will be dropped for simplicity in Chapter 3.
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The total fiber stress σf generated by the myocardial fibers is thus the composition
of the two contributions

σf = σfa + σfp (1.11)

As a result, the CircAdapt model becomes a useful tool in order to simulate PV loops
with the sarcomere properties as input variables. Obviously, these sarcomere properties
are extremely difficult - virtually impossible - to measure in real patients, and would thus
be a significant contribution to design an inverse algorithm to calibrate them from real
PV data.

1.4 Convolutional neural networks

Deep learning, a subfield of machine learning, has seen a dramatic increase in po-
pularity during the recent years, mostly because of the improvements in computational
power and the availability of massive datasets. The greatest successes in this field have
come from the area of computer vision, and healthcare and medicine have found good use
to it in the diagnostics of diseases with medical imaging [9]. In this regard, convolutional
neural networks (CNNs), a type of deep learning technique designed to process data with
spatial invariance, have been established as one of the most promising algorithms for
medical applications.

Convolutional neural networks (CNNs) are usually used for classification problems;
however, recent developments in deep learning use these type of networks to calibrate
parameters with time-dependent variables [5, 17, 20, 26]. As a result, it would be a
relevant contribution to assess the possibilities that these new methods may provide to
the inverse problem at hand.

1.4.1 Principles of convolutional neural networks

Traditional neural networks are modeled on the human brain, whereby neurons are
stimulated by connected nodes and are only activated when a certain threshold value
is reached. There are two main drawbacks of these networks when it comes to image5

processing.
First, these traditional networks process each image pixel by pixel. As a result, the

number of weights that are necessary to learn from the images rapidly grows unmanage-
able when the size of the image increases. Consequently, overfitting becomes a problem
when training these types of networks.

Another problem of traditional neural networks is that they are not translational
invariant. This statement means that these networks react differently to an image and
its shifted version. Given that pixels are processed one at a time, when a network that
has been trained with an image encounters a shifted version of this same image, it will
try to correct itself, instead of trying to learn the pattern that the figure includes. This

5The discussion is based on image processing; however, it applies to any grid-like structured data, as
is the case of spectrograms or any other sort of contour plots.
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phenomenon results in the weights being too sensitive to the particular image instead of
to the pattern that it represents, thus generating significant inaccuracy.

In order to solve the former disadvantages and induce the network to learn the pat-
terns instead of the pixels, the idea of using a convolution arised. A convolution is a
mathematical operation that acts as a filter in so that an array f , usually called the con-
volution filter, is multiplied elementwise by a portion of the image, as shown in Fig. 1.10.
As a result, convolution filters act as kernels in the processing of digital images [12]. It
is for this reason that convolutional architectures are used to detect patterns in images.
It is interesting to note though that the powerfulness of convolutional neural networks
is that the coefficients of the filters can in fact be trained, and thus patterns are learned
instead of looked for as in digital image processing.

Figure 1.10: Schematic representation of the convolution of an image and a filter [25].

As a result, concatenating convolution operations allows the network to detect pat-
terns with a relatively small number of parameters. This fact both reduces the probability
of overfitting and keeps the network simple.

1.4.2 Layers of convolutional neural networks

Convolutional neural networks (CNNs) always include the convolution operator at
some point in the architecture; however, they can be decomposed in several types of
layers that have different purposes.

The first and most important type of layer in a CNN is the convolutional layer. This
layer performs the convolution between a filter and an image, and its objective, as stated
before, is to extract patterns from the image. In this setup, filters are not preset, but
learned by the training set, and there are hence as many trainable parameters in the
layer as filter coefficients plus one bias parameter per node. This layer can also include
padding or use a stride. In the first case, extra rows and columns are used around the
image so that the size of the output does not decrease excessively, while in the second
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case the convolution operation jumps as many elements as the stride instead of following
consecutive elements from the input image. In terms of output size, if the input image is
n× n and the convolutional layer uses a square filter of dimension f with padding p and
stride s, the size S of the output image can be computed as

S =
n+ 2p− f

s
+ 1 (1.12)

Once the convolution is computed, an activation function is usually applied element-
wise. This activation function establishes a threshold to give a nonzero value at that
particular element. Traditional activation functions are used in convolutional layers, such
as rectified linear units (ReLU) or sigmoids, depending on the needs of each particular
application.

Another sort of layer that is often used in CNNs is a pooling layer. This layer is used
to condense the information of an image by summarizing its elements with a particular
rule. One possibility that is extensively used is max-pooling, for which the maximum
value of a subimage is selected. It is relevant to note that this type of layer does not
learn any feature of the image, as it only condenses the input information. As a result,
pooling layers do not have trainable parameters.

Another important layer that can be added to a CNN is a dropout layer. This layer
randomly sets input elements to zero with a predefined frequency dr at each step during
training, which helps prevent overfitting [3, 24]. It is relevant to note that, in order
to maintain the intensity of the image, inputs that are not set to zero are scaled up by
1/(1−dr), such that the sum over all inputs is unchanged. As a result, no parameters need
to be trained in this layer, and dr acts a hyperparameter that needs to be set beforehand
by the user.

If the image needs to be stored in a unidimensional form, a flatten layer is usually
added to the CNN. As a result, the function of this layer is to simply relocate all pixels
of all channels of an image in a one-dimensional vector disposition. Consequently, no
parameters need to be trained in this layer.

Figure 1.11: Neural configuration used in a fully-connected layer [16].

Finally, a fully-connected layer is a layer that has weights wi for all possible connec-
tions between all elements xi of the input vector and each neuron, accommodating an
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activation function f that establishes a threshold to give a nonzero value, as shown in
Fig. 1.11. In fact, this layer acts as a traditional neural network, for which all weights
plus a bias in each neuron need to be trained.

In reality, a convolutional neural network includes one or several layers corresponding
to the types that have been detailed above. This structure is often known as the architec-
ture of the CNN, and, as experience demonstrates, is extremely application-dependant.
As an example, Fig. 1.12 shows a schematic representation of a typical convolutional
neural network combining the different types of layers.

Figure 1.12: Schematic representation of a typical convolutional neural network combining
different types of layers [23].

1.5 Objectives and scope

Some of the most relevant inputs that clinicians have to assess systolic and diastolic
function are the mechanical properties of the heart. However, the measurement of these
properties is usually complicated and requires invasive tests for patients. Because of this
reason, several models have been proposed to obtain these properties from real patients’
data by means of the least possible invasive techniques, such as ecocardiography imaging.
Furthermore, even though it is virtually impossible to measure sarcomere properties in an
experimental way, recent developments have found direct relationships between chamber
properties and sarcomere properties [1, 18], while no model has been derived for the
corresponding inverse problem.

Since recent deep learning applications have been successfully applied in calibration
problems with time-dependent variables [5, 17, 20, 26], the present thesis aims at finding
a useful convolutional neural network architecture that can be applied to PV loops’ data
in order to infer heart sarcomere properties. Since no real data is available to calibrate
the neural network, the CircAdapt model [1] is used to simulate numerous syntethic
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heartbeats, and these are used as input data for the calibration of the neural network in
a transfer learning approach.

With this methodology, the proposed thesis also assesses several combinations of
hemodynamical variables as explanatory variables to sarcomere properties in order to
find the most relevant model in terms of accuracy and clinical simplicity.
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Chapter 2

Methods and materials

2.1 Information technology

The following section presents the information technology that has been used to design
and train the proposed convolutional neural networks.

2.1.1 Code and libraries

The programming language that is mostly used to design and train deep learning
models is currently python, which is indeed the one that has been used in the present
work. In particular, the code has been compiled with python 3.11. There are, however,
two main deep learning libraries that are available in python: Tensorflow and Pytorch.
While the first one, developed by Google, was the very first package that allowed the
deployment of deep learning models, the second one, developed by Facebook, is getting
more and more attention in the present days. For the problem at hand, there are not
significant differences between the two, and Tensorflow has been selected for the coding.
In particular, the API tensorflow.keras is used to design the layers and train the network.

Apart from the deep learning library, several additional libraries are required to ma-
nipulate the data and compute the required quantitites. Other relevant libraries that are
used in the present work are listed below.

� numpy and scipy are used to perform mathematical operations. In particular, the
function spectrogram from the package scipy.signal is used to obtain the spectro-
grams of the different signals.

� pandas is used to structure results into dataframes.

� sklearn.train test split is used to fix a random split of the input sample into a train
and a test sample.
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2.1.2 Hardware

The second relevant IT aspect is the hardware in which the training and evaluation of
the CNN has been performed. All trainings of the CNNs that are assessed in the present
work have been performed in a local machine with 16 Gb of RAM and a CPU Intel(R)
Core(TM) i5-9400 CPU @ 2.90GHz. With this hardware, each CNN training has taken
about an hour of computation time.

2.2 Definition of input signals

The first step in the definition of a convolutional neural network (CNN) consists of
preparing the input variables in an appropriate format. Given that convolutional neural
networks require a vast amount of data to report meaningful results, and that sarcomere
properties are virtually impossible to measure in vivo or in silico, there have been no
possibility to train the proposed CNN with real data. For this reason, a transfer learning
approach has been selected. With this approach, input variables are obtained numerically
with the multiscale model CircAdapt [1], and are subsequently used to train the neural
network. This approach has indeed proven successful in calibration studies with time-
dependent variables [17, 20, 26].

2.2.1 Input signals

As mentioned previously, input variables are obtained with the multiscale model Cir-
cadapt [1]. Using different sarcomere properties (stiffness, relaxation and elastance) as an
input to this model, 44.315 heartbeats have been computationally simulated, and results
have been saved in a data structure with the following fields:

� LVP F corresponds to the pressure inside the left ventricle.

� AO P F corresponds to the aortic pressure, oftentimes referred to as arterial pres-
sure in this document.

� LVV F is the volume of the left ventricle.

� Septal Strain F represents the strain of the heart septum.

� LV Strain F is the strain of the left ventricle wall.

� time F corresponds to the time scale of the heartbeat.

� StiffLV F is the stiffness ks of the sarcomere according to Section 1.3.3, and corres-
ponds to the first target variable of the model.

� RelaxLV F is the relaxation ηs of the sarcomere according to Section 1.3.3, and
corresponds to the second target variable of the model.

� ElastanceLV F is the elastance or contractility ϵs of the sarcomere according to
Section 1.3.3, and corresponds to the third target variable of the model.
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Once the relevant data is stored, a data quality audit is performed to ensure that
it does not contain missing or invalid values, which is a crucial step in order to obtain
meaningful results with machine learning algorithms. In this process, problematic data
points were removed from the calibration sample.

Once the input data has been purged from errors, a random extraction of 37.000
heartbeats is selected to conform the input sample that will feed each CNN training.
This random selection is performed in order to include variability in the calibration of
the CNN. Indeed, since input variables have been obtained with a deterministic model,
namely CircAdapt, it will not be complicated for the CNN to obtain a combination of
weights that give a high accuracy1. As a result, to design a meaningful transfer learning
methodology, uncertainty needs to be incorporated into the data.

In order to challenge the transfer learning metodology, results obtained with the
former input sample will be compared with another CNN calibration including a different
random sample of 37.000 heartbeats in which white noise is to be added. To this purpose,
a white noise signal with µ = 0 and σ = 0.4 will be added to the pressure input variables,
while a white noise signal with µ = 0 and σ = 0.2 will be added to the volumetric
input variables. Fig. 2.1 shows, as a matter of illustration, three representative PV loops
without noise and including noise for different sarcomere properties. This figure shows
that a higher level of uncertainty is added to phases I and III of the cardiac cycle (Fig. 1.4),
while phases II and IV remain less afected.

Figure 2.1: Representative PV loops with and without noise used in the training of the CNN.

1This effect is indeed observed in the results of Chapter 3, for which all models that are calibrated
without noise reach an accuracy above 90%.
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2.2.2 Spectrogram and normalization

After having defined the input sample that will be used to train the CNN, 1D signals
for pressure and volumetric variables need to be transformed into 2D images, for which
convolutional neural networks are the most efficient [10]. A traditional method to perform
this transformation, which will be used in the present study, is by means of spectrograms.
A spectrogram is a visual representation of the frequency spectrum of a signal as a
function of time. In this representation, the x and y axes represent time and frequency,
respectively, while the color intensity of the point (x, y) depicts the power of frecuency y
at time x.

All signals that are simulated by the CircAdapt model and subsequently used to train
the proposed CNN are sampled at a frecuency ν = 1.573 Hz, forming a vector of size
l = 750 temporal data points, and the spectrogram of each of these signals is created
using a Hamming window of size w. Also, a percentage p of overlap between Hamming
windows together with an FFT resolution nft are considered. With this disposition, the
spectrogram will be an array of size nf × nt with

nf = int
(
1 +

nft

2

)
; nt = int

(
l − no

w − no

)
(2.1)

where int is the function that truncates a floating number to its integer part and no

is the number of overlaped points between Hamming windows, i.e. no = pw. For the
proposed CNN, these features are set to w = 75, p = 0.6, nft = 210 and, as a result, the
dimensions of the resulting spectrograms are nf = 513 and nt = 23. Fig. 2.2 shows a
representative spectrogram corresponding to a LV pressure signal with noise. From this
figure, one observes that spectrograms have relatively low frequency contributions that
are packed in a regular pattern, as expected.

Since normalization of input data is critical for the training of convolutional neural
networks [6, 13], the input heartbeats and target variables are normalized to the interval
[0, 1]. This normalization, which is performed at the spectrogram level, is achieved by
dividing the spectrogram values of each signal by their maximum value. It is relevant to
note from this operation that the variable that is being normalized is frequency power,
and thus the level of the signal is dismissed in the process. This assumption, which will
be referred to as the normalization hypothesis, is a relevant assumption of the proposed
model. Nonetheless, this hyptothesis has a relevant advantage for the proposed network,
as it allows a fixed and independent range for the input images, making all spectrograms
comparable, and thus ensures a proper mathematical normalization2 for the CNN.

Finally, the pressure and volume-related spectrograms for each heartbeat are gathered
into a single 2-channel image that represents that heartbeat, and that will be fed to the
CNN for training.

2Note that the input images that are used to train the CNN do not consider RGB values, but
spectrogram values, which do not have an upper bound as opposed to RGB images.
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Figure 2.2: Representative spectrogram of a LV pressure signal with noise.

2.3 CNN architecture

As has been said, there are no applications of neural networks to the sarcomer proper-
ties problem to the best of the author’s knowledge. As a result, and since CNN architec-
tures are significantly problem-dependant, similar parameter calibration problems with
time-dependent variables from other fields have been studied. Literature in this regard
has been found in the field of Civil Engineering, for which histeresis loops’ parameters
have been successfully calibrated with CNNs ([17],[20]), as well as in the field of Electrical
Engineering, in which properties for power cells have also been calibrated with success
via CNNs [26].

In general terms, a basic principle needs to be followed in order to design the CNN
architecture. Namely, the CNN has to be as simple as possible. Indeed, including more
parameters than necessary or too deep a learning process may lead to better results in
terms of convergence, but may lack generalization and thus be susceptible of overfitting.
As a result, the choosing of hyperparameters is not an easy task in new problems. Since no
literature is at hand, the proposed architecture has been, in general, obtained with a trial
and error process, looking into the usual configurations of networks utilized for calibration
problems. Some hyperparameters of this structure are susceptible of investigation, while
others will remained fixed in order to permit a tractable problem.

The main characteristics of the proposed CNN are discussed in the following sections.

2.3.1 Structure

The proposed CNN has been structured into three 2D convolutional layers with 2D
max-pooling, a dropout layer, a flatten layer and three dense fully-connected layers:



CHAPTER 2. METHODS AND MATERIALS 22

1. The first layer of the network is a 2D convolutional layer that takes the input
spectogram, with size 513× 23× 2, and performs a 2D convolution with 32 filters
of size 3 × 3 with a 1 × 1 stride. As a consequence, the size of the output image
is 511 × 21 × 32. Additionally, the first layer contains a max-pooling layer with a
2× 2 padding, which reduces the size of the output image by two to 255× 10× 32.

2. The second layer of the network is another 2D convolutional layer that takes the
output of the previous layer and performs a 2D convolution with 64 filters of size
3× 3 and a stride of 1× 1. As a result, the size of the output image is 253× 8× 64.
The second layer also includes a max-pooling layer with a 2 × 2 padding, which
reduces the size of the output image by two to 126× 4× 64.

3. The third layer of the network is another 2D convolutional layer that takes the
output of the previous layer and performs a 2D convolution with 128 filters of size
3×3 and a stride of 1×1. As a result, the size of the output image is 124×2×128.
The third layer also includes a max-pooling layer with a 2 × 2 padding, which
reduces the size of the output image by two to 62× 1× 128.

4. The fourth layer of the network performs a dropout of 15% of the variables3, hence
changing no dimension of the image.

5. The fifth layer of the network flattens the input image, a 3D matrix, to a unidi-
mensional vector of dimension 62× 1× 128 = 7.936.

6. The sixth layer of the network is a fully-connected layer with 90 neurons, thus
reducing the dimension of the output vector to 90.

7. The seventh layer of the network is another fully-connected layer with 40 neurons,
hence outputting a 40-dimensional vector.

8. The eighth and last layer of the network is another fully-connected layer with 3
neurons, one per calibrated parameter, thus outputing the final 3-dimensional vector
of calibrated parameters.

Table 2.1 summarizes the structure of the proposed CNN.

2.3.2 Trainable parameters

CNN coefficients that are used to weigh the input variables in a neuron are widely
known as CNN parameters. These are chosen with an optimization algorithm in the
process that we call training. In the proposed CNN, model parameters depend on each
particular layer:

� The first convolutional layer has 9 filter elements (3 × 3) for a total of 32 filter
nodes, and an input image of 2 channels. As a result, the layer will have a total
of 2× 9× 32 + 32 = 608 parameters, including biases. Note that the max-pooling
layer does not add any additional parameters to the layer.

3Note that the dropout rate is thus 15%.
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Table 2.1: Proposed CNN architecture.

� Likewise, the second layer, which has 9 filter elements (3× 3) for a total of 64 filter
nodes, and an input image of 32 channels, will have a total of 32×9×64+64 = 18.496
parameters, including biases. As before, the max-pooling layer does not add any
additional parameters to the layer.

� The third layer has 9 filter elements (3×3) for a total of 128 filter nodes, and an input
image of 64 channels. As a result, this layer will have a total of 64×9×128+128 =
73.856 parameters, including biases. Once again, the max-pooling layer does not
add any additional parameters to the layer.

� Since the dropout and flatten layers do not learn from the data, they only put some
values to zero and rearrange the size of the image, no parameters are added to the
model for these layers.

� The sixth layer is a fully-connected layer with 90 neurons and an input vector of
dimension 7.936. For this reason, there are as many parameters as the product of
neurons times the input values plus biases, 90× 7.936 + 90 = 714.330.

� The seventh layer is another fully-connected layer with 40 neurons, and an input
vector of dimension 90. For this reason, this layer will have a total of 40×90+40 =
3.640 parameters, including biases.

� Finally, the last layer has 3 neurons with an input vector of dimension 40, and thus
has 3× 40 + 3 = 123 parameters including biases.
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In summary, the eight layers of the proposed CNN form a model with a total of 811.053
parameters. Since not one of these is restrained, there is a total of 811.053 degrees of
freedom that will need to be trained from the input data. Table 2.1 shows a summary of
the architecture with the associated parameters.

2.4 Training method

Once the architecture has been set, a training algorithm needs to be selected. Gen-
erally speaking, the training method requires three main features: the neural activation,
the loss function and the optimization algorithm.

2.4.1 Neural activation

A neural activation function needs to be selected for each layer of the network that
requires learning. As a result, for the CNN at hand, a neural activation function is to be
selected for each of the three convolutional layers and for each of the three fully-connected
layers. Note that the dropout layer and the flatten layer do not actively learn from the
data, and thus do not require any neural activation.

� For the three convolutional layers, the rectified linear unit in Fig. 2.3, also known as
ReLU activation function, is selected. Since these layers perform the convolutional
operation of the input image with several filters f , the output will be given by

z = ReLU(conv(x, f)) (2.2)

where x and z are the input and output values for each convolutional operation
(conv) and f is the filter used at point x. The advantage of the ReLU function
is that it allows a nonlinearity component to the output of the convolution while
allowing a distinction4 in the activation of different neurons.

� For the first two fully-connected layers, the rectified linear unit is also selected
according to the same advantages as in the previous case. In these cases, however,
each neuron performs a linear operation y = Ax+B, where x and y are the input
and output images to the neuron, respectively, and A and B are the matrices of
neural weights and neural biases. With the inclusion of a ReLU activation function,
a threshold is required for the neurons to be activated, in such a way that

z = ReLU(Ax+B) (2.3)

� For the last fully-connected layer, which gives the outputs of the model, the neural
activation function is set to be a sigmoid function. This selection owes to the fact
that disregarding negative values of Ax+B is not appropriate in the output layer
since it represents a loss of information, and hence a ReLU function has to be

4Note that the neuron does not activate for negative values of the input variable if a ReLU function
is used. This allows unrelated neurons to completely deactivate in a particular training step.
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discarded. In this regard, since the problem at hand is a calibration problem and
not a classification problem, a sigmoid function complies with the requirement5,
distributing all values of the real line. As a result, the output values for the last
layer are

z = Sigmoid(Ax+B) (2.4)

Figure 2.3: ReLU and sigmoid activation functions [16].

2.4.2 Loss function and optimization algorithm

Another important feature that needs to be selected to be able to train a CNN is the
loss function, which gives the error of the prediction made by the neural network at each
training step. Since the problem at hand is a calibration problem, the loss function L is
set to the Mean Square Error (MSE), which has the form

L =
1

N

N∑
i=1

(zpred − zreal)
2 (2.5)

where N is the number of data points in the sample, zpred is the predicted value for the
output z and zreal is the true value for the output z. This loss function has two main
advantages for the calibration problem at hand, namely:

1. It does not penalize overpredicting against underpredicting, or viceversa, since the
error is symmetric, i.e. (zpred − zreal)

2 = (zreal − zpred)
2.

2. It heavily penalizes outlier predictions, since their corresponding MSE makes the
loss function increase rapidly. It is worth noticing that this property is sometimes
seen as a downside, especially for the cases in which outlier predictions are not very
relevant to the output. Since the problem at hand deals with cardiac properties,
no outliers are to be allowed.

5It is interesting to note that the sigmoid function does not output mutually exclusive values for the
three neurons. This is appropriate in a calibration problem, but would not have been admissible in a
classification problem.
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After defining the loss function, an optimization algorithm needs to be selected. The
objective of this optimization algorithm is to look for the optimal parameters that mi-
nimize the total loss function L. Following recent developments in convolutional neural
networks, the Adam algorithm has been selected [15]. Adam, derived from adaptive mo-
ment estimation, is an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order moments. For this rea-
son, it requires very little memory while being robust and well-suited to a wide range of
non-convex optimization problems in the field machine learning.

2.5 Hyperparameters

Those CNN parameters that need to be defined beforehand by the user are known as
hyperparameters. Consequently, these will not be trained by the learning algorithm itself
and another, more manual, selecting procedure will need to be put in place. There are
two different types of hyperparameters: those depending on the nature of the layers and
those related to the learning algorithm. For the CNN at hand, the hyperparameters that
emerge from the layer architecture are:

� Technically speaking, the number of layers and their nature (convolution, fully-
connected, dropout) are considered as hyperpamaters of the network. Nevertheless,
since no literature is available for the problem at hand, the model architecture has
been obtained by a trial and error process, and will be considered as fixed for all
developments of this thesis. In this regard, the optimization of this architecture
remains as an interesting open question6.

� Convolutional layers have the following main hyperparameters: number of filter
nodes nf , filter size

7 f ×f and strides s1×s2. Furthermore, the max-pooling layers
have the size of the pooling, p1 × p2, as additional hyperparameters. The selection
of these has been based on the research done in the field of Civil Engineering [17,
20], together with an additional consideration: s1, s2, p1 and p2 need to be small,
since the input image size does not have a high-frequency resolution according to
Fig. 2.2. The proposed architecture hyperparameters are described in Section 2.3.1
and summarized in Table 2.2.

Layer nf f × f s1 × s2 p1 × p2

Convolution 1 32 3× 3 1× 1 2× 2
Convolution 2 64 3× 3 1× 1 2× 2
Convolution 3 128 3× 3 1× 1 2× 2

Table 2.2: Proposed hyperparameters for each convolutional layer.

6See Section 4.2 for a detailed description of aspects that remain open for the problem at hand.
7Since rectangular filters are rarely used in practice, only square filters of size f are considered in

the discussion.
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� The dropout layer requires a dropout rate dr, which relates to the number of input
variables that are set to zero in the next layer input image. Since this hyperpa-
rameter’s objective is to avoid overfitting [24], it tends to be lower in calibration
problems than in classification problems. For the problem at hand, dr has been set
to 0.15 according to the relevant recommendations related to small datasets and
calibration problems [3, 24].

� Fully-connected layers have essentially one hyperparameter, namely the number of
neurons nn. Its selection has been made in a trial an error basis, with the reference
of the two Civil Engineering papers [17, 20]. In this regard, more neurons have been
necessary to fully capture sarcomer characteristics than those used in the former
references. It is worth noticing that the last layer requires only three neurons, since
three parameters are required as the output of the network. Table 2.3 summarizes
the selected number of neurons for each layer.

Layer nn

Fully-connected 1 90
Fully-connected 2 40
Fully-connected 3 3

Table 2.3: Proposed number of neurons for each fully-connected layer.

The Adam optimization algorithm allows for multiple hyperparameters to be selected.
Nevertheless, almost all of them have been set to the keras default parameters, with two
exceptions:

� The learning rate has been set to 0.001.

� The train-test split of the sample is set to 25% for validation and 75% for training.

Both of these hyperparameters have been set according to common practice and the
reference literature [17, 20, 26].
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Chapter 3

Results and discussion

3.1 Learning results

The objective of the present thesis is to design a convolutional neural network (CNN)
that is capable of calibrating stiffness, relaxation and elastance of the cardiac sarcomere
by means of two variables, one that is related to the pressure of the chamber and one
that is related to its volume. The available data for these two variables, acquired with
CircAdapt, is:

1. Regarding the pressure variable, it is possible to train the CNN either with LV
pressure or with arterial pressure. It is worth noticing that the second one would
be preferable to the first one since it can be non-invasively obtained.

2. Regarding the volumetric variable, the available data to train the CNN is LV vo-
lume, septal strain and LV strain. These variables can be measured clinically with
a simple Doppler ecocardiography.

In order to train the best possible network, five groups of pressure-volume variables
are assessed, for a given heartbeat:

� LV pressure and LV volume

� LV pressure and septal strain

� LV pressure and LV strain

� Arterial pressure and septal strain

� Arterial pressure and LV strain

It is worth noticing from the previous pairs that the combination arterial pressure and
LV volume is not considered in the analysis since arterial pressure does not seem to be a
good predictor of the sarcomere properties and strain is a shifted version of LV volume.



CHAPTER 3. RESULTS AND DISCUSSION 29

According to the above-mentioned combinations of variables, two different samples of
37.000 heartbeats are used to train two CNNs for each pair, one in which white noise is
introduced according to Section 2.2 and one with direct output results from CircAdapt.
For validation purposes, a split of 25% is considered in all calibrated CNNs. The following
sections show the training results for each of the assessed models.

3.1.1 LV pressure vs LV volume

The first model uses the two variables that are the most difficult to obtain clinically:
LV pressure and LV volume. These, in fact, are the variables that, from an anatom-
ical point of view, are thought to best correlate to sarcomere stiffness, relaxation and
elastance. Learning results for the training of this CNN are shown in Fig. 3.1, both
considering and not considering noise.
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Figure 3.1: Learning convergence for LV pressure - LV volume.

From the former results, one first observes that the model without noise (solid lines)
obtains better predictions for the sarcomere properties than the model with noise (dashed
lines), as expected. Moreover, another property that emerges from the results in Fig. 3.1
is the fact that the validation sample closely accompanies the training sample both in
loss and in accuracy, owing to the fact that both samples obtain the parameters from the
CircAdapt software. Also, relevantly enough, it is observed that the difference between
the model with noise and the model without is very limited, with a final difference in
accuracy that is less than 1% according to the results shown in Table 3.1.

Given that real signals will have some degree of noise, it is interesting to investigate
the error that is commited in the parameters for the case with noise. Defining the error
ε as

ε = zreal − zpred (3.1)
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with z being the stiffness proportion k/kmax, the relaxation proportion η/ηmax or the elas-
tance proportion ϵ/ϵmax, of the validation sample, Fig. 3.2 shows the discrete probability1

of ε being in a particular bin of width 0.01.

(a) Error in stiffness k. (b) Error in relaxation η.

(c) Error in elastance ϵ.

Figure 3.2: Discrete probability of the error in k/kmax, η/ηmax and ϵ/ϵmax for LV pressure -
LV volume calibration.

From the results in Fig. 3.2, it is first observed that the stiffness is the property that
is best calibrated from the data, showing an error2 of ±1% almost 70% of the times. In
fact, one can observe that the error is lower than ±5% almost 99% of the times, which
is an extremely good result for clinical purposes. Relaxation is the next best calibrated
parameter from the data, with an error of ±1% almost 50% of the times, followed by
elastance, with an error of ±1% almost 31% of the times. From these results, it is also
interesting to note that there is no significant bias towards positive or negative errors.

1Note that the total area under the histogram is equal to 1.
2Note that all reported errors are in terms of the maximum parameter kmax, ηmax and ϵmax.
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3.1.2 LV pressure vs septal strain

The second model uses LV pressure and septal strain to calibrate the properties of
the sarcomere. Learning results for the training of this CNN are shown in Fig. 3.3, both
considering and not considering noise.
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Figure 3.3: Learning convergence for LV pressure - septal strain.

From the previous results, it is observed that the calibration without noise (solid lines)
features a better learning convergence than the model considering noise (dashed lines),
as expected. Nonetheless, the average difference between the results obtained with and
without noise for this case is significantly larger than it was for the LV pressure - LV
volume case, as seen in comparison to Fig. 3.1. This may be anatomically explained by
the fact that the septal strain is more indirectly correlated to the sarcomere properties
than the LV volume is. Additionally, this case also shows that the validation results are
very similar to the training results, owing to the relationship that CircAdapt promotes
between the two samples.

Defining an error ε in terms of the maximum properties as in the previous section
(Eq. 3.1) allows us to investigate the error in which the predictions might incur. In this
regard, Fig. 3.4 shows the discrete probability of ε being in a particular bin of width 0.01
for the results including noise.

Results in Fig. 3.4 show an analogous tendency in the error estimates to the one
observed in the previous section. Indeed, the stiffness is yet again the property that
is best calibrated by the network, showing an error of ±1% almost 65% of the times.
Relaxation and elastance follow stiffness with similar errors, with the distribution for the
relaxation being slightly wider, at an error of ±1% nearly 32% of the times. Addionally,
results show that there is no apparent bias in the model towards positive or negative
errors.



CHAPTER 3. RESULTS AND DISCUSSION 32

(a) Error in stiffness k. (b) Error in relaxation η.

(c) Error in elastance ϵ.

Figure 3.4: Discrete probability of the error in k/kmax, η/ηmax and ϵ/ϵmax for LV pressure -
septal strain calibration.

3.1.3 LV pressure vs LV strain

The third model uses LV pressure and LV strain to calibrate the properties of the
sarcomere. Learning results for the training of this CNN are shown in Fig. 3.5, both
considering and not considering noise.

Results from Fig. 3.5 show, once again, that the learning convergence is best for
the model without noise (solid lines), as expected. In this regard, the observed average
difference between both calibrations, including and not including noise, is aligned with
the LV pressure - septal strain calibration, and thus being significantly larger than the
one for LV pressure - LV volume. Results in Fig. 3.5 also show that the validation sample
obtains similar convergence levels to the training sample in both calibrations, owing to
the relationship that CircAdapt promotes between the two.

With an analogous definition for the error ε as in previous seccions (Eq. 3.1), the
relative error referred to the maximum properties is investigated. Fig. 3.6 shows the
discrete probability of the error ε being in a particular bin of width 0.01 for the results
including noise. These results show an analogous tendency in the error estimates as
observed in the previous sections. Indeed, the stiffness becomes again the property that is
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Figure 3.5: Learning convergence for LV pressure - LV strain.

best calibrated by the CNN, showing an error of±1% almost 52% of the times. Relaxation
and elastance follow stiffness with similar errors, namely ±1% for nearly 26% and 25%
of the instances, respectively. Once again, no apparent bias is observed towards positive
or negative errors.

3.1.4 Arterial pressure vs septal strain

The fourth model uses arterial pressure and septal strain to calibrate the properties
of the sarcomere. Learning results for the training of this CNN are shown in Fig. 3.7,
both considering and not considering noise.

Results derived from Fig. 3.7 show that the learning convergence is best for the model
without noise (solid lines) for this CNN as well. Furthermore, the observed average
difference between both calibrations, including and disregarding noise, becomes larger
than in any of the previous studies, and thus showing that the combination of arterial
pressure - septal strain is much less effective than the former ones. Results from Fig. 3.7
also show that the validation sample and the training sample have similar losses, while a
more chaotic behavior is obtained in accuracy for the validation sample. It is also relevant
to note, in this case, that the validation sample obtains similar convergence levels to the
training sample in both calibrations, owing to the relationship that CircAdapt promotes
between the two.

Using an analogous definition of the error ε as in previous sections (Eq. 3.1), one can
investigate the relative error referred to the maximum properties. Fig. 3.8 shows the
discrete probability of the error ε being in a particular bin of width 0.01 for the results
considering noise. These results show the same tendency observed in previous section,
for which the stiffness is the best calibrated sarcomere property. In this case, however,
the error level is much larger than in previous studies, being ±1% nearly 17% of cases.
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(a) Error in stiffness k. (b) Error in relaxation η.

(c) Error in elastance ϵ.

Figure 3.6: Discrete probability of the error in k/kmax, η/ηmax and ϵ/ϵmax for LV pressure -
LV strain calibration.

Elastance follows stiffness in this calibration, showing an error of ±1% in a bit more than
14% of the instances. The worse-calibrated sarcomere property becomes the relaxation
in this case, with an error of ±1% in about 10% of the cases. Additionally, in this case,
one observes that the distribution width and skewness is slightly larger for relaxation and
stiffness than it is for elastance.

3.1.5 Arterial pressure vs LV strain

The last model uses arterial pressure and LV strain to calibrate the properties of the
sarcomere. Learning results for the training of this CNN are shown in Fig. 3.9, both
considering and not considering noise.

Results depicted in Fig. 3.9 show a similar tendency in loss and accuracy to the ones
observed in the previous section. Indeed, a better convergence is observed for the model
without noise than for the one considering noise, and a significant difference is observed in
the loss and convergence levels between the two calibrations. This consideration empha-
sizes yet again that the arterial pressure is not a very precise input variable to calibrate
sarcomere properties. Fig. 3.9 also shows signs of a slight overfitting for the calibration
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Figure 3.7: Learning convergence for arterial pressure - septal strain.

with noise, since the validation loss and accuracy reach the asymptote while the training
loss and accuracy still show a tendency to improve. This fact provokes a stagnation of
validation performance compared to training performance, which is oftentimes related to
overfitting. However, results for this calibration, as shown in Table 3.1, show that these
differences are still not too critical to invalidate the model.

With an analogous definition for the error ε as in previous sections (Eq. 3.1), the
relative error referred to the maximum properties is investigated. Fig. 3.10 shows the
discrete probability of the error ε being in a particular bin of width 0.01 for the results
including noise. These results show the same trend that has been observed in all previous
sections, with the stiffness being the best calibrated sarcomere property. In this case, the
probability of the stiffness error to be ±1% is about 14%, while the probabilities for
the same error are nearly 10% and 11% for relaxation and elastance, respectively. These
error levels show that this combination of input variables is the worst to be considered for
the calibration of sarcomere properties. Additionally, in this case one observes a slightly
wider probability distribution for the relaxation and stiffness than for the elastance.

3.1.6 Summary of learning results

Aiming at the discussion of the results for the previously-calibrated 10 CNNs, Ta-
ble 3.1 summarizes loss and accuracy for the converged solutions, both for training and
for validation samples. Additionally, in order to gauge the clinical correctness of the pro-
posed calibrations, Table 3.2 summarizes validation errors for 70% and 95% probabilites
for each sarcomere property.
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(a) Error in stiffness k. (b) Error in relaxation η.

(c) Error in elastance ϵ.

Figure 3.8: Discrete probability of the error in k/kmax, η/ηmax and ϵ/ϵmax for arterial pressure
- septal strain calibration.

Variables Training sample Validation sample
Press.-related Vol.-related Noise Loss Accuracy Loss Accuracy

LV press. LV vol.
No 5.842 · 10−4 91.46% 6.781 · 10−4 90.50%
Yes 9.077 · 10−4 90.55% 7.699 · 10−4 89.68%

LV press. Sept. strain
No 3.889 · 10−4 93.32% 4.360 · 10−4 93.52%
Yes 1.8 · 10−3 87.22% 1.8 · 10−3 86.89%

LV press. LV strain
No 3.475 · 10−4 91.27% 4.927 · 10−4 88.96%
Yes 2 · 10−3 87.16% 1.9 · 10−3 87.05%

Art. press. Sept. strain
No 4.852 · 10−4 92.73% 3.839 · 10−4 90.85%
Yes 5.5 · 10−3 74.97% 5.9 · 10−3 75.26%

Art. press. LV strain
No 4.035 · 10−4 91.95% 2.530 · 10−4 95.56%
Yes 5.2 · 10−3 75.09% 6.8 · 10−3 72.56%

Table 3.1: Summary of learning results for the assessed CNNs.
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Figure 3.9: Learning convergence for arterial pressure - LV strain.

Variables Errors
Press.-related Vol.-related Noise Stiffness k Relaxation η Elastance ϵ

LV press. LV vol.
No ±1% (±3%) ±2% (±4%) ±2% (±4%)
Yes ±2% (±3%) ±2% (±4%) ±2% (±4%)

LV press. Sept. strain
No ±2% (±2%) ±2% (±3%) ±2% (±3%)
Yes ±2% (±7%) ±4% (±8%) ±4% (±8%)

LV press. LV strain
No ±1% (±3%) ±2% (±3%) ±2% (±3%)
Yes ±3% (±8%) ±4% (±8%) ±4% (±8%)

Art. press. Sept. strain
No ±2% (±2%) ±2% (±4%) ±2% (±4%)
Yes ±8% (±13%) ±9% (±16%) ±9% (±16%)

Art. press. LV strain
No ±1% (±2%) ±1% (±3%) ±1% (±3%)
Yes ±8% (±13%) ±10% (±17%) ±10% (±17%)

Table 3.2: Summary of errors (70% and 95% probabilities) obtained in the parameters
for the assessed CNNs.

3.2 Discussion of the results

With the aim of discovering the best possible convolutional neural network (CNN)
to calibrate sarcomere properties, ten different networks have been trained with different
pairs of pressure and volumetric variables. The training process has fed each CNN with
a different set of 37.000 hearbeats, leaving a 25% of the sample for validation purposes.

As was expected, all five CNNs that do not consider white noise achieve a better
performance than their counterparts considering noise. In fact, in all five cases that
disregard noise, calibrated CNNs perform at an astonishing level according to Tables 3.1
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(a) Error in stiffness k. (b) Error in relaxation η.

(c) Error in elastance ϵ.

Figure 3.10: Discrete probability of the error in k/kmax, η/ηmax and ϵ/ϵmax for arterial pressure
- LV strain calibration.

and 3.2, with accuracies above 90% and relative errors to maximum properties of less
than 4% with a 95% probability. This high performance is well-understood, since the
corresponding input and target variables are obtained with CircAdapt. This software,
which models the functioning of the heart at a multiscale level, embed deterministic
relationships in the processed data that are discovered by the CNNs.

With the objective of permitting a transfer learning of the CNNs, some indepedent
white noise, with µ = 0 and σ = 0.2 for volumentric variables and µ = 0 and σ =
0.4 for pressure variables, is incorporated in each signal. This noise emmascarates the
deterministic relationships within the data, and allows a more realistic evaluation of the
CNN performance. When considering noise, accuracy remains high for the LV pressure
- LV volume calibration, with levels around 90%, and an error in parameters of less
than 4% with a 95% probability. With the substitution of LV volume by strain (either
septal or LV), accuracy drops slightly to around 87%, keeping the error under 8% with a
95% probability. These error levels may in fact still be admissible in the clinical practice.
Finally, the inclusion of arterial pressure instead of LV pressure makes the accuracy of the
CNN plummet to 72− 76%. In this case, the commited error in the estimation becomes
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around 8−10% with a 70% probability and around 13−17% with a 95% probability. These
more inaccurate solutions, however, may lead to a less risky evaluation by the doctor,
since no invasive clinical procedure is required to obtain the input data. Nevertheless, as
it is not possible to measure the real values of the sarcomere properties inside the working
chamber, large trials should be conducted to assess patient’s normality and see how these
properties change in well-characterized disease scenarios.

Two additional considerations can be made regarding the error distributions for the
different sarcomere properties. To begin with, it is worth noticing that, for all assessed
CNNs, the stiffness is the best-calibrated property of all, with a relatively thin probability
distribution as summarized in Table 3.2. In contrast, the error distributions for relaxation
and elastance have a wider shape, which correlate to larger errors. Finally, no significant
bias is observed towards positive or negative errors, with a slight exception in relaxation
and stiffness for the case with arterial pressure and septal strain.
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Chapter 4

Conclusions and future research

4.1 Conclusions

Irrespectively of the root cause, diastolic disfunction is present in virtually all struc-
tural myocardial diseases. For this reason, it is of high interest to clinicians to understand
the changes that occur in the mechanical properties of the heart, since these active and
volume-mediated mechanical properties are the major determinants of diastolic function,
as well as systolic function. In this regard, direct models exist nowadays that can relate
sarcomere properties to chamber properties and cardiac cycle. However, since these sar-
comere properties are virtually impossible to measure in vivo or in silico, no model exists
to solve the corresponding inverse problem.

In order to contribute to this open problem, the present thesis assesses several convo-
lutional neural networks (CNNs) that target sarcomere mechanical properties (stiffness,
relaxation and contractility) by means of pairs of synthetic hemodynamical variables such
as left ventricle (LV) pressure or volume, left ventricle (LV) or septal strain, or arterial
pressure, and proposes the most relevant fit in terms of accuracy and clinical simplicity.
Since no real data is available for sarcomere properties, the calibration sample is obtained
via the CircAdapt model in a transfer learning approach.

The assessed CNNs are trained with 37.000 spectrograms corresponding to the tem-
poral Fourier decomposition of the time-dependent hemodynamical variables, and the
proposed architecture combines three 2D convolutional layers with max-pooling, followed
by a dropout layer and three fully-connected layers. Relatively small filters (3 × 3) are
necessary in the convolutional layers to obtain accurate pattern recognition, while two
internal fully-connected layers with 90 and 40 neurons suffice for the task.

For every pair of input variables, the training of the neural network, which considers
a 25% split for the validation sample, is performed with the raw results from CircAdapt
and with results in which white noise has been incorporated. As expected, all five as-
sessed CNNs (LV pressure/LV volume, LV pressure/septal strain, LV pressure/LV strain,
arterial pressure/septal strain, arterial pressure/LV strain) that do not consider white
noise perform at an astonishing level of accuracy above 90%, with relative errors in the
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predicted sarcomere properties of less than 4% with a 95% probability. This high perfor-
mance is well-understood, since the corresponding input and target variables are linked
by the embedded relationships of the multiscale model CircAdapt.

The masking of the CircAdapt relations with white noise allows a more realistic eva-
luation of the CNN performance. When considering noise, accuracy remains high for
the LV pressure - LV volume calibration, with levels around 90% and a relative error
in parameters of less than 4% with a 95% probability. With the substitution of LV
volume by strain (either septal or LV), accuracy drops slightly to around 87% while
controlling the error under 8% with a 95% probability. These error levels may in fact still
be admissible in the clinical practice. Finally, the inclusion of arterial pressure instead of
LV pressure makes the accuracy of the model plummet to around 74%. In this case, the
commited relative error in the estimation becomes around 15% with a 95% probability.
Despite these more inaccurate solutions, it is worth noticing that the cost for the patient
is virtually zero in these cases, since arterial pressure and strain can be obtained easily
with noninvasive tests.

Furthermore, all assessed CNNs demonstrate that the sarcomere stiffness is the best-
calibrated property of all, with a relatively thin probability distribution for the relative
errors. In contrast, relative error distributions for sarcomere relaxation and elastance
have a wider shape, which correlate with higher errors.

4.2 Future lines of research

The work that has been developed in the present thesis has left two main aspects to
which more research efforts could be destined.

First, the developments of this thesis have assumed that the sarcomere properties are
independent of the level of pressure and volume, since the spectrograms used to train
the CNNs have been normalized by their maximum. Even though the results that have
been obtained prove relevant accuracies, this hypothesis, which we call the normalization
hypothesis, shall be object of further analysis.

Also, given that CNNs trained with arterial pressure show the lowest level of accuracy
and the highest relative error, it would be interesting to assess whether this is caused by
an improvable architecture that could recognize patterns in a more efficient way, or it
is caused by the normalization hypothesis. It might be the case that arterial pressure,
which corresponds to a smoother pressure signal, requires the keeping of the level, and
thus a relationship of these low levels of accuracy and the former hypothesis might not
be surprising.
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