APPLICABILITY OF THE BAYESIAN METHODOLOGY TO THE STUDY OF LOW INCIDENCE DISEASES: EXAMPLE OF CHILD ANXIETY

Concepción San Luis1, Guillermo A. Cañadas5, Jesús Cantero2, Luis M. Lozano3, Emilia I. de la Fuente3 y Tatiana Lozano4

1 Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid
2 Facultad de Medicina, Universidad de Granada, Granada
3 Facultad de Psicología, Universidad de Granada, Granada
4 Centro de Salud Goya 2, SERMAS, Madrid
5 Escuela Universitaria de Ciencias de la Salud, Universidad de Granada, Granada

Abstract: This work is a cross-sectional quantitative study that provides information about anxiety symptoms from the CECAD questionnaire, applied to 500 students aged 8-12. Anxiety prevalence was estimated using three different procedures, both in the total sample and in a subsample of 10 children, randomly selected. Results showed a prevalence range of childhood anxiety for the three methods of 16.5%-23.5%, 16.7%-23.7%, and 18.3%-24%, when using the large sample. When the small sample size was used, the frequentist estimation method yielded impossible values, but results when using Bayesian methods were between 2.3% and 41.3% in the non-informative distribution, and between 17.9% and 27.4% in the informative distribution. The Bayesian method was found to be the procedure that provided better estimation, with improved results when informative distribution was used since it adds relevant information.

Keywords: Prevalence studies; child anxiety; low incidence; rare diseases; Bayesian empirical method.

During the last years, health sciences professionals have become more interested in improving the efficiency of quantitative and qualitative methods of research. Statistic procedures are the most used methods for data analysis and, amongst them, the interest in Bayesian methods is becoming more significant (Carlin & Louis, 2009; Travaglia, Westbrook & Braithwaite, 2009), because of the ability to interpret results.
from very small data sets with greater precision than the frequentist methods.

Today, these methods are essential in the biomedical field in order to estimate the efficiency of possible treatments, survival parameters, long-term prognoses, and others. This is especially so in epidemiological sciences, that are ranging over a much larger field larger than before, focusing on the study of risk factors in the population with a view to developing population health policies (Hernández-Aguado, Lumbreras & Jarrin, 2006; Nettleton, Woods, Burrows & Kerr, 2009). Health professionals are particularly interested in developing methodologies for a better study of diseases, especially rare and low-incidence diseases, in general and in endemic cases.

A disease is considered rare when it is difficult to diagnose, and when, in the European Union, it has a prevalence of less than 5 cases per 10,000 inhabitants (Zurriaga-Llorens et al., 2006; European Commission, 2004). When a rare disease has to be studied, researchers usually have only a small number of cases. In these situations Bayesian methodology could offer more precise results (Congdon, 2003a,b; Guardia, De la Fuente & Lozano, 2008).

Recent studies show that emotional disorders in children are frequent (Carrasco-Ortiz & Del Barrio, 2007; Frías, Carrasco, Fernández, García & García, 2009), which appears to be directly related to their adult life mental health (Iglesias & Romero, 2009; Pilgrim, Rogers & Bentall, 2009). Anxiety is amongst the most frequent disorders in this population.

However, the results of many studies are not very consistent (Lozano, García-Cueto & Lozano, 2007) and sometimes contradictory due to, amongst other reasons: (a) studies may consider the terms “fear” and “anxiety” interchangeable and focus on the evolutive nature of specific fears, obviating many aspects of anxiety; (b) state and trait anxiety are not differentiated; (c) recognizing and quantifying internal symptoms may prove difficult (Sandin, Chorot, Valiente & Lostao, 2009; Sandin, Chorot, Valiente & Chorpita, 2010); (d) the psychometric properties of some evaluation instruments are deficient (Greenhill, Pine, March & Birmaher, 1998); (e) child anxiety may be incorrectly perceived as a harmless and transient phenomenon (Benjamin, Costelo & Warren, 1990). All these matters generate problems when trying to realistically estimate the prevalence of childhood anxious symptomatology. As a consequence, several authors (Bernstein & Borchardt, 1991; Costello et al., 1996), estimate a prevalence range of 12-20% for childhood anxiety disorders, 8% of cases possibly needing clinical treatment.

Another important reason for inconsistencies is that prevalence rates vary according to who is reporting on the child’s anxiety (Berbel et al., 2010). A prevalence of 8% was found, based on parents’ interviews. However, teacher reports put it at 21.2%, and direct child interviews resulted in 22.9% (Rivas, Vázquez & Pérez, 1995). The prevalence of anxiety versus other disorders in children requiring mental health services was 13.3%, with a male/female ratio of 0.69 (Aláez, Martínez-Arias & Rodríguez-Sutil, 2000).

Other authors reported a high comorbidity between anxiety and other mental disorders (Lozano et al., 2007; Royo, 2002), such as depression. In fact, it is difficult to differentiate between the two disorders (DSM IV -R names similar symptoms for anxiety and depression), with a usual coexistence in 70-80% of cases (Kovacs & Devlin, 1998). Therefore, the study of the two disorders requires a clear delimitation between them and estimation of the correspondent prevalences is subject to this delimitation, otherwise leading to apparently contradictory results.

There are different methodological procedures capable of estimating the prevalence of a disorder: the methods used in frequentist statistics and those proposed by the Bayesian statistics perspective. Frequentist statistics have been traditionally used in epidemiological research and the use of Bayesian methods is much more recent, but these have clear advantages over the first (Guàrdia, de la Fuente & Lozano, 2008).

The main advantages of the use of Bayesian methods are: (a) the previous information obtained in other studies can be used and implemented in the statistical analysis; (b) the Bayesian methods, unlike frequentist statistics, are particularly suited for small samples; (c) these analytical procedures do not require verification.
of the parametric assumptions; (d) the accuracy of the parameter estimation is higher; (e) Bayesian credible intervals offer two boundaries for the parameter to be estimated with a certain probability, something that frequentist confidence intervals erroneously said to offer; (f) two or more hypotheses can be tested; (g) the Bayesian hypotheses are solved calculating the probability of the hypothesis in issue. In relation to the advantages mentioned, it is worth noting that in case of non significant results, the probabilities of all the hypotheses in the study can be known (De la Fuente, Cañadas, Guàrdia & Lozano, 2009).

The aims of this study were to estimate the range of prevalence values for anxiety disorder in children aged 8-12, and to compare the results of the estimations using three method procedures, one frequentist method and two Bayesian methods, using two different sample sizes.

METHOD

Participants

A cross-sectional quantitative study was carried out. The sample consisted of 500 children in primary education, selected from the public and private schools of the Principado de Asturias (Spain), aged 8-12 (mean = 10.33 years, and Standard Deviation (SD) = 1.45). Participants were interviewed with the consent of the parents.

Measures

All the children answered the CECAD (Clinical and Educational Questionnaire of Anxiety and Depression (Lozano et al., 2007), which includes values of anxiety, depression, uselessness, irritability, and thinking problems in Spanish children. However, in this work only the scores of the anxiety subscale were used. The questionnaire was applied by psychologists, specialized in group tests in children’s classrooms. Questions were read to the younger children in order to ensure that they understood them (as recommended in the questionnaire manual). After calculating the anxiety score of each child, anxious symptomatology was considered present in those with a score higher than the 95th percentile (Lozano et al., 2007).

Data analysis

The statistical program SPSS 15.0 was used for frequentist data analysis. We used the maximum likelihood estimation of the parameter prevalence of anxiety (θ). On the other hand, the WinBugs program was used (Spiegelhalter, Thomas, Best & Gilks, 1994; Spiegelhalter, Thomas, Best & Lunn, 2002; Guàrdia et al., 2008; Ntzoufras, 2009) for the Bayesian estimation of the prevalence of anxiety in order to compare results. We obtained the Bayes estimator of the prevalence without using information from previous research as well as the Bayes estimator which combines the previous information provided by Bragado (1995), with that contained in the data collected in this investigation. These options are called “non-informative” ($\theta_{\text{Non Inf}}$) and “informative” (θ_{Inf}), respectively. Informative prior distribution of the prevalence of anxiety disorder was calculated using the method suggested by Congdon (2003a; 2003b) that parted from the 22.9% reported by Rivas, Vázquez, and Pérez (1995) for children aged 8-12. Beta distribution (1,1) was used as non-informative prior distribution.

A point and by interval estimation of the anxiety parameter was obtained using the three different techniques. Analyses were made for the total sample ($N = 500$), and for a subsample of 10 children randomly selected, in order to study the divergence of estimations for a large or small sample size. For the Bayesian analyses (informative and non-informative), the quadratic loss function to obtain the point estimations was used.

Results

Table 1 shows the results of the estimations using the three methods for the total sample ($N = 500$), and the subsample ($n = 10$).
The smallest interval is obtained with the Bayesian estimation with initial information, giving this method the greater precision (see Figure 1). These estimations are shown in Figure 1, which represents the point estimations of the prevalence of anxiety, using both the frequentist and Bayesian methods, in the two samples used (estimations in triangles, circles and squares, in black and white). The precision of the estimations is reflected by a segment around the cen-

Table 1 also shows that the lower limit of estimation using the frequentist statistical method gives negative values for the subsample of 10 children. This result is impossible, since the minimum possible value must be 0. This does not occur when Bayesian procedures (informative or non-informative) are applied. It is important that the interval amplitude (the difference between the lower and upper limit) is smaller when Bayesian estimation is used. The

![Figure 1. Point estimations of the prevalence of anxiety, using frequentist and Bayesian methods, in a subsample (n = 10 children) and the total sample (N = 500 children). ML= maximum likelihood; NIB= non-informative Bayesian method; IB= informative Bayesian method.](image-url)
Frequentist statistical procedures may produce erroneous results when only very small samples are available, because the asymptotic theory underlying these techniques requires large sample sizes.

Knowing the magnitude of anxiety prevalence in children is important for establishing preventive programs. The aim of these programs should be twofold: in the first place, to reduce anxiety, and, in the second place, to teach emotional education to avoid the appearance of high anxiety levels. Individualized medical and psychological assessment to differentiate between children with symptoms of anxiety and those with clinical anxiety disorders is recommended.

DISCUSSION

The results of our study showed the prevalence of anxious symptoms in children aged 8-12 to be between 18.3% and 24%, with a point estimation of 21.1%. These high values are worrying and indicate that prevention programs for this disorder in childhood are needed. On the other hand, the results showed that Bayesian methods provided better estimations with small sample sizes and with greater precision.

It is worth noting that, as proposed by Bayarri and Cobo (2002), the possibility to integrate prior knowledge with empirical information obtained from other data sets improved the results considerably, offering a 18.6% more accurate estimation than the classical confidence interval.

Health sciences research often has to work with small samples. Thus an important result of the study is that in the randomly selected small sample, of only 2% of the total sample, the Bayesian estimations were found to be more precise than the frequentist method, especially with the prior information method.

Therefore, Bayesian methodology appears a more than viable option in the study of rare and low incidence diseases (Hernández-Aguado et al., 2006; Zurriaga Llorens et al., 2006). Prior information should be used to improve the efficiency of the method and, therewith, the results (Bayarri & Cobo, 2002; Álamo, Vázquez & Rodriguez, 2002).

Frequentist estimation not only provided impossible values in the interval estimation, but also produced very different estimations for the total sample ($N = 500$) or the small sample ($n = 10$). The estimated prevalence using Bayesian procedures, however, produced very similar values for the large sample and the small sample. When informative Bayesian analysis was used, both estimations were found to be almost equal.

REFERENCES

© Asociación Española de Psicología Clínica y Psicopatología

Revista de Psicopatología y Psicología Clínica 2011, Vol. 16 (1), 61-66

