Detection of cerebral ischaemia using transfer
learning techniques
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Abstract—Cerebrovascular accident (CVA) or stroke is one of
the main causes of mortality and morbidity today, causing perma-
nent disabilities. Its early detection helps reduce its effects and
its mortality: time is brain. Currently, non-contrast computed
tomography (NCCT) continues to be the first-line diagnostic
method in stroke emergencies because it is a fast, available,
and cost-effective technique that makes it possible to rule out
haemorrhage and focus attention on the ischemic origin, that is,
due to obstruction to arterial flow. NCCT are quantified using a
scoring system called ASPECTS (Alberta Stroke Program Early
Computed Tomography Score) according to the affected brain
structures. This paper aims to detect in an initial phase those CTs
of patients with stroke symptoms that present early alterations
in CT density using a binary classifier of CTs without and with
stroke, to alert the doctor of their existence. For this, several
well-known neural network architectures are implemented in the
ImageNet challenges (VGG, NasNet, ResNet and DenseNet), with
3D images, covering the entire brain volume. The training results
of these networks are exposed, in which different parameters are
tested to obtain maximum performance, which is achieved with
a DenseNet3D network that achieves an accuracy of 98% in the
training set and 95% in the test set.

Index Terms—Cerebral Ischaemia, Computed tomography,
Deep Learning, Transfer Learning, Ictus Dataset

I. INTRODUCTION

Stroke is the obstruction by a thrombus or embolus of
a cerebral artery that causes a lack of blood supply to the
territory irrigated by the vessel and, consequently, cellular
ischaemia, which may be reversible in the first few hours.
However, if the cause persists, neuronal death or infarction
occurs, which is irrecoverable. The most frequent location of
ischaemic stroke is the anterior circulation. The internal carotid
arteries and anterior cerebral arteries (ACA), and middle
cerebral arteries (MCA) belong to this territory. Occlusion
of the MCA is the most common. Its treatment (intravenous
thrombolysis) should be performed during the first 4-6 hours
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after the initial symptom because, at later times, haemorrhagic
complications increase [1], [2] and irreversible neuronal death
occurs.

The Alberta Stroke Program Early Computed Tomography
Score (ASPECTS) was described by Barber et al. [3] and was
designed to assess early signs of ischaemia in the anterior
circulation with non-contrast CT. The ASPECTS is a 0-10
scale on which points are deducted if computed tomography
(CT) hypodensity is observed in specific regions of the MCA-
supplied territory (6 cortical areas, insula, caudate, lenticular
and internal capsule) shown in the figure 1. A score of 10
implies a normal study, and a score of 0, diffuse involvement
of the entire territory supplied by the anterior circulation. A
score of 7 or lower predicts more haemorrhagic risk and a
worse prognosis. The presence of hypodensity affecting more
than one-third of the MCA territory is a contraindication for
thrombolytic therapy.

Fig. 1. Areas assessed in the Alberta Stroke Program Early CT Score
(ASPECTS). Six cortical areas (M1, M2, M3, M4, M5 and M6),
insula (I), caudate (C), lenticular (L) and internal capsule (CL).

The assessment of these hypodensities on an NCCT can



be challenging to diagnose as they are very faint, and their
detection is highly dependent on the observer and their expe-
rience. That is why machine learning and, more specifically,
deep learning for image classification can greatly help in their
detection and help the radiologist to perform a detailed search
of specific areas of the brain where the algorithm has detected
the possible presence of infarction.

The application of Machine Learning (ML) and especially
Deep Learning (DL) techniques to medical images allows
the automatic extraction of non-trivial and non-linear features
from image data and constitutes a very broad field of research
with more and more researchers involved and the emergence
of more and more applications for disease diagnosis.

Medical images are inherently three-dimensional, so using
neural networks with 3D filters is natural, although they
require a higher computational cost than 2D ones. In addition,
advances in parallel and distributed computing, deep learning
algorithms, and the emergence of powerful GPUs have made
the increasingly extensive use of 3D models for medical image
segmentation and classification studies possible. [1]

In the case of stroke, there are already studies and also
some certified applications, such as e-ASPECTS, of private
property, which use supervised automatic learning using ma-
chine learning techniques for the analysis of stroke with
NCCT, based fundamentally on random forest algorithms,
manual segmentation by the radiologist, and using methods for
comparing the healthy cerebral hemisphere with the diseased
one [4]-[6]. However, the use of deep neural networks has yet
to be considered so far and is the subject of study in this paper.
Section II will show some applications of deep learning neural
networks in different medical imaging domains and how DL
has become a fundamental tool for decision-making. Section
IIT will briefly present the data used to develop the neural
network training experiments. At the same time, Section IV
will show the network design decisions (based on transfer
learning techniques) and the results obtained. Finally, section
V will show the conclusions obtained.

II. DEEP LEARNING AND MEDICAL IMAGES

Since the definition of the ANN (Artificial Neural Network)
concept, which was first introduced in 1943 by McCulloch
and Pitt [7], this area of artificial intelligence has evolved
very rapidly (especially in recent years). McCulloch and Pitt
presented a mathematical model of artificial neural networks
based on the fact that neurons operated on binary impulses and
formulated it as a threshold step function. A neural network
provides a method to obtain non-linear models by using the
neurons in the hidden layer (which use a non-linear activation
function). This non-linearity allows for capturing features
and patterns in the data used for training that would not
be possible with more traditional algorithms. One particular
type of deep neural networks are called Convolutional Neural
Networks (CNN), [8]. They are used intensively in image
data domains, such as medical imaging. These networks have
evolved rapidly, specifically for their different application
domains. Parallel to all this improvement in deep learning for

computer vision in image classification, advances in biological
and medical technologies have made it possible to obtain and
store large amounts of medical images, which we can classify
and test on different CNNs architectures for feature extraction
and pattern retrieval. Many proven applications in medicine
and biology have used CNNs for image classification and
segmentation, like in our case. They cover a very wide range
of problems, from cancer screening and disease monitoring
to suggesting personalised treatments and disease diagnosis.
Moreover, the origin of the data is very varied: X-rays, com-
puted tomography, magnetic resonance imaging, retinography,
pathological anatomy extensions, human genome sequences,
etc. [9].

The following are just a few applications that use medical
imaging with CNN construction, which give an idea of the
extensive field of research that is underway, which can be
applied to the classification of any disease, in any imaging
technique and with the use of a wide variety of convolutional
network architectures.

In the classification, detection and segmentation of lung
nodules in CT, deep learning techniques have been used with
2D and 3D convolutional networks, with different network
architectures, many of them with autoencoder construction,
achieving a diagnostic accuracy between 84-95% [10]-[17].

MICCAI-BRATS (Brain Tumor Segmentation Challenge)
holds annual brain tumour segmentation challenges. Its web-
site [18] publishes the winners of these challenges and their
results, primarily using data from Magnetic Resonance Imag-
ing (MRI) [19]-[21] studies. One of these studies proposes a
3D DenseNet neural network for predicting the IDH genotype
(related to prognosis and response to treatment) of gliomas,
achieving an accuracy of 84.6

2D and 3D CNNs have also been used for Alzheimer’s
disease classification with MR imaging [22]-[24].

ISLES (Ischemic Stroke Lesion Segmentation) proposes
challenges for ischemic brain lesion segmentation. Most of
them are currently performed on [25] MR images. On their
website [26], we can see the latest challenges that have been
proposed. The scientific papers currently published on machine
learning in the diagnosis of acute cerebral ischaemic lesions
in NCCT are based on techniques that analyse the symmetry
between brain hemispheres [4], [27], [28] or perform seg-
mentation with generative networks in contrast-enhanced CT
studies [29] and the least use 2D [30] and 3D [1] CNNs.

In the case of stroke, some works use different artificial
intelligence algorithms for stroke classification, segmentation
and diagnosis on NCCT and AngiographyCT images [4]
[5] [6]. Mokli et al. [31] present a review of commercially
available applications using automatic and semi-automatic
algorithms for image analysis to diagnose acute cerebral
infarction. However, there is very little specific information
on the technical details of the algorithms or details on training
and validation data available in the general information on the
applications’ websites [32].

Currently, five software platforms integrate machine learn-
ing algorithms for ictus detection: Brainomix e-ASPECTS



(Oxford, UK), Olea Medical (La Cio-tat, France), Siemens
Frontier (Erlangen Germany), iSchemaView RAPID (Rapid
Perfusion and Diffusion Processing, California, USA) and
Viz.ai (California, USA). [33].

The Viz.ai platform is based on head and neck CT angiog-
raphy analysis using a convolutional neural network artificial
intelligence platform to identify occlusion of large anterior
circulation vessels. [34].

The e-ASPECTS and RAPID ASPECTS platforms are
certified for clinical use and perform stroke diagnosis and
segmentation in NCCT. Of the two, e-ASPECTS has the most
validation studies, performing similarly to expert radiologists.
[31]. Medical software falls under the category of medical
devices. They are validated by the US FDA (Food and Drug
Administration) and MRD (Medical Device Regulation) in the
EU. These bodies are the ones that certify software products.

Frontier ASPECTS, is not certified at the time of writing.
[35]. Studies are comparing the performance of e-ASPECTS
and Frontier, with the former performing highly and the latter
moderately in agreement with the experts with whom they are
compared [36].

E-ASPECTS and RAPID ASPECTS aim to quantitatively
assess focal ischaemic damage using the ASPECTS score.
They contain the complete cranial CT in DICOM format and
visually highlight the affected region with heat maps. The
difference lies in the machine learning methods they use.
Brainomix first classifies and then segments using Random
forest learning throughout its procedure. RAPID ASPECTS
does skull and cerebrospinal fluid removal, apply atlases to
construct the 20 regions of the ASPECTS score (ten in
each cerebral hemisphere) and classifies and segments using
Random forest learning.

It follows from the above that the algorithms used by these
applications are either not public or do not use neural network
techniques. Therefore, the aim of this article is to provide
a CCN network model that radiologists can use for assisted
decision-making. A concrete Dataset is needed to achieve this
goal, which will be presented in the next section.

III. ICTUS DATASET

In the design of Al algorithms, it is necessary to have data,
usually already labelled (with or without Ictus, in this case). As
a first step, it is necessary to check if there are specific datasets
that can be used for the purpose of the paper. A search for
possible datasets in the field of stroke detection was carried
out, and two possible sources were found. As a reference
source, the website [37] was used. On this site, there is an
extensive collection of challenges that have been organised
in the area of medical imaging. Two possible datasets were
found. The first consists of segmentation of cerebral infarction
in CT Angiography and magnetic resonance images launched
by ISLES [26] in 2018, and the second one of intracranial
haemorrhage in non-contrast CT images proposed in Kaggle
[38] in 2019. None of these sources was valid for the proposed
objective (automated stroke detection), so it was decided to
build a specific dataset. To construct the dataset, it is necessary

to understand the structure and format of the images acquired
by CT.

A. Computed Tomography ( CT) and Hounsfiel Units (HU)

To train the neural networks, it is necessary to have a
data set (Dataset) containing the 3D images. These images
correspond to the cranial CT scans and the transformation
of the measurement of the radiation intensity of these scans
(which may vary according to the measuring equipment used)
into "Houndsfiel” units or attenuation coefficient numbers.
These units allow the elaboration of a density scale applicable
to any image obtained with any equipment. To elaborate
the scale, the attenuation produced by water under average
temperature and pressure conditions on a beam of rays was
taken as a reference and attributed a value of zero (0 HU). The
attenuation value of air under the same conditions is defined as
-1000 HU, extending up to +1000 for dense, attenuated tissue.
These values allow a grey scale for HU representation and,
thus, the creation of 3D and 2D images (axial slices of the 3D
image). The structure of the 3D image and the corresponding
2D images are shown in the figure 2.

Axial images of a CT

Every pixel of the image
represents the medium attenuation
of a voxel

Véxel (3D)
A

Pikel (2D)

Fig. 2. Features of a CT image.

B. Dataset features and description

Obtaining the set of cranial CT data labelled with and
without stroke has been a slow and complex task, requiring
several steps. Imaging studies of any diagnostic modality, be it
tomography, ultrasound, MRI, retinography, etc., are usually
in DICOM format [39]. This format is the standard for the
exchange and representation of medical images and contains
not only the image but also the patient’s personal data, his
or her history number and other data referring to the machine
and place where it was taken. In order to comply with the data
protection law, the corresponding authorisation was requested
from those responsible for the digital imaging section of the
hospital to be able to store the CT studies in DICOM format.



Once this consent was obtained, access was provided to the
software necessary to obtain the CT studies anonymously.

The dataset of non-contrast CTs in DICOM format contains
images of hospital patients from June 2015 to September
2020, in which the stroke code is activated. Studies with
haemorrhage or other pathologies that cannot be classified as
ischaemic stroke are discarded. The studies are classified by
radiologists as normal or with signs of stroke. The data were
divided into two groups: group 0, with stroke, and group 1,
without stroke. All patients in group O had some degree of
ischaemic involvement in the MCA territory, either due to
direct obstruction of the MCA by thrombus or embolus or
secondary to obstruction of the ipsilateral carotid artery had
some territory with hypodensity in CT according to the AS-
PECTS classification. The data includes patient identification,
whether the patient belongs to group 0O or 1, affected regions,
ASPECTS score and affected cerebral hemisphere. Finally,
anonymised images are obtained in DICOM format and stored
in a secure cloud environment, on Google Cloud Storage. The
images are acquired with a thickness of 3mms in multidetector
CT equipment of 64 crowns. Some older isolated studies are
acquired on a helical CT with 5 mm slices.

In total, a dataset of 264 cases with stroke and 264 cases
without stroke has been created. Each case corresponds to a
3D image which can be divided into 2D axial slices. Each
image has a sufficient diagnostic resolution (256 x 256 x 80
pixels).

IV. RESULTS

As seen in the previous section, the data set that could
be constructed is limited (512 images), and therefore, it
was foreseeable that the results obtained with non-pre-trained
neural networks would not be significant in terms of accuracy
obtained in training and validation/testing. In fact, training
with various proposed Convolutional Neural Networks struc-
tures did not give reliable results (accuracies below 60%).

Thus, it was decided to employ transfer learning techniques
[40] with already pre-trained networks, especially those using
3D structures in a known way (in other fields of medical image
detection). The following pre-trained CNN were selected:
VGG, ResNet, DenseNet and NasNet.

The metrics used to assess the performance of our networks
are the accuracy and confusion matrix, standard measures for
evaluating the performance of any classifier. From this matrix,
we can also obtain other data that provide us with more precise
information, such as precision and sensitivity. We can use
either of the two metrics, sensitivity and precision. However,
depending on the problem we are considering, we may be
interested in minimising false positive cases, in which case
we would use precision, or on the other hand, we may be
interested in reducing false negative cases, in which case we
would use sensitivity. In this specific case of stroke detec-
tion, it is very important to minimise false negatives which
correspond to an incorrect stroke diagnosis. In other words,
we must pay special attention to sensitivity. Unfortunately,
improving on both metrics simultaneously is impossible, as
increasing sensitivity reduces accuracy and vice-versa. From
the confusion matrix, we can obtain two other metrics, which
are the specificity and the so-called F1-score, i.e. the weighted
harmonic mean of accuracy and sensitivity.

In the first training tests with the Ictus dataset, the VGG
and NasNet networks were discarded due to their excessive
memory requirements. This requirement is essential for the
possibility of incorporating the inference model into the radi-
ologist’s decision support software. Thus, the DenseNet and
ResNet networks were selected.

The table I show the accuracy data obtained as well as the
rest of the metrics used to compare the trained models. It can
be seen in the tables that in the case of the DenseNet structure,
the best result is obtained in the interaction/version 2.2 with an
accuracy of in the training part of 98% and in the test part of
95%. There is no overfitting of the network, the network has

DenseNet3D
. .. . . Accurac Confusion matrix .

Version | Optimizer | Learning Rate Loss Function } Train | ,[ye i } Sensibility | Specificity | Precision | FI-Score } Batch Size

1.0 SGD 0.001 Bin-ce 100% | 40% | - - - - 1

1.1 Adam 0.001 Bin-ce 100% | 50% | - - - - 1

1.1.1 Adam 0.001 Bin-ce 98% 78% | 80% 75% 77% 0.78 2

1.2 SGD 0.001 Cat-ce 100% | 36% | - - - - 1

1.2.1 SGD 0.001 Cat-ce 100% | 94% | 95% 93% 93% 0.93 2

1.3 Adam 0.001 Cat-ce 99% 82% | 88% 75% 79% 0.82 2

2.0 SGD 0.01 Cat-ce 95% 80% | 64% 96% 95% 0.76 15

2.1 SGD 0.001 Cat-ce 97% 87% | 77% 98% 96% 0.85 15

2.2 SGD 0.001/0.0001 epoch=80 | Cat-ce 98% 95% | 95% 96% 96% 0.95 15

2.3 SGD 0.001/0.0001 epoch=30 | Cat-ce 96% 91% | 90% 92% 92% 0.90 15

2.4 SGD 0.001/0.0001 epoch=20 | Cat-ce 97% 92% | 93% 91% 91% 0.91 15
ResNet3D

. - . . Accurac Confusion matrix .

Version | Optimizer | Learning Rate Loss Function } Train | '12; i } Sensibility | Specificity | Precision | FI-Score } Batch Size

1.0 Adam 0.001 Cat-ce 95% 68% | 69% 68% 69% 0.68 1

1.1 Adam 0.001 Cat-ce 87% 71% | 68% 74% 73% 0.68 2

2.0 Adam 0.001 Cat-ce 95% 79% | 75% 83% 82% 0.78 10

2.1 SGD 0.001 Cat-ce 100% | 76% | 77% 77% 78% 0.77 10
TABLE T

DENSENET3D AND RESNET3D, TRAINING AND EVALUATION WITH SEVERAL HYPERPARAMETERS
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Fig. 3. DenseNet3D 2.2 (top) and ResNet3D 2.0 (bottom) results

learned quite well and is able to make very good predictions
in the general case (test). Also, the sensibility is high, at 95%.
In the case of the ResNet network, only four tests were done,
and the best accuracy (version 2.0, 95%) is not so far from
the DenseNet neural network, but it is especially worse in the
accuracy obtained in the evaluation/test (79%).

Figures 3a, 3b, 3c and 3d, show the evaluation of the
training/testing accuracies of the two best networks DenseNet
and ResNet models. It can be seen that the training of the
DenseNet network converges faster than that of ResNet and
obtains better results.

Therefore, the model chosen is DenseNet 2.2, with the
parameters shown in Table L.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we have proposed the binary classification
of NCCT studies in cases with and without stroke. For this
purpose, a new dataset has been generated to train several
3D convolutional neural networks. To select the best network,
different parameters have been tested, and evaluation metrics
have been recorded. The results obtained with the DenseNet3D
network have been really good and show that deep learning
can be used as a possible assistant for decision-making.

In addition, a new dataset has been generated specifically for
stroke detection. The number of cranial CT studies is sufficient
to be able to apply transfer learning techniques to perform
the classification task. In addition, the DICOM format has
been used, a standard used worldwide for the storage and
communication of medical images, so that the construction
procedure is replicable and extensible to add new case studies
and validate the neural network.

Future work aims to expand the number of cases and use
higher resolutions for the 3D images. The resolution obtained
from the CT scans is higher but has been adapted to the
networks used in the study of the paper. Additionally, new
deep learning techniques will be applied, such as transforms
and/or attention mechanisms. This will allow an improvement
in the results obtained with the DenseNet network.
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