
Forensic Technologies to Automate the Acquisition
of Digital Evidences

David Garcı́a, Llanos Tobarra, Antonio Robles-Gómez, Rafael Pastor-Vargas
Departamento de Sistemas de Comunicación y Control

Escuela Técnica Superior de Ingenierı́a Informática
Universidad Nacional de Educación a Distancia (UNED)

Madrid, Spain
dgarcia2011@alumno.uned.es; {llanos,arobles,rpastor}@scc.uned.es

Abstract—The main goal of this work is to propose the
automatic acquisition of evidences in a remote way. This auto-
mated capacity becomes interesting for companies with extensive
networks and/or several locations, as it allows them to delegate
and centralize the acquisition task at a single point in their
structure, while saving time and travel costs. This research
has been carried out through the initial implementation of a
virtual laboratory made up of a network and different scenarios,
by including an experimentation process. The virtual network
includes both the machine from which automatic acquisitions
are performed and the devices from retrieving the evidence. The
group of devices will be made up of various experiments. The aim
is to analyze the viability of the acquisition in different scenarios,
since distributed networks are not homogeneous in the real world.

Index Terms—CSCI-RTCW, Forensic technologies, automa-
tion, digital evidence acquisition, security policies

I. INTRODUCTION

The generalization of the use of technology has led at the
same time to an increase in the number of crimes committed
through it. Therefore, digital evidence has gained fundamental
importance in fields as diverse as civil litigation, criminal
cases, administrative matters or military intelligence [1] [2].
The discipline that is responsible for dealing with this digital
evidence is forensic analysis. Kruse and Heiser indicated in
2002 that forensics analysis implies the preservation, identifi-
cation, extraction, documentation and interpretation of digital
data that, like any other discipline, must follow clear and well-
defined methodologies, maintaining enough flexibility when
facing unusual situations [3]. On the other hand, Sammons
defines forensics analysis as a discipline of forensic science,
the latter being the application of science to resolve a legal
problem [2], echoing the proposal of Ken Zatyko, who in
2007 defined forensic analysis as ”The application of com-
puter science and investigative procedures for a legal purpose
involving the analysis of digital evidence after proper search

Authors would like to acknowledge the support of the I4Labs UNED
research group, the CiberGID UNED innovation group with the CiberScratch
2.0 project, the SUMA-CITeL research project for the 2022-2023 period, as
well as the E-Madrid-CM Network of Excellence (S2018/TCS-4307). The
authors also acknowledge the support of SNOLA, officially recognized The-
matic Network of Excellence (RED2018-102725-T) by the Spanish Ministry
of Science, Innovation and Universities.

authority, chain of custody, validation with mathematics, use
of validated tools, repeatability, reporting, and possible expert
presentation” (Zatyko, 2007).” [4].

In addition to this, the acquisition of evidence must guaran-
tee that an acquired evidence is not compromised. To achieve
this, it is necessary to adhere to the current legal regulation.
This regulation in Europe is found in two standards. UNE
71506:2013 [5] establishes a methodology for preservation,
acquisition, documentation, analysis and presentation of digi-
tal evidences; and UNE-EN ISO/IEC 27037:2016 [6] is the
standard which contains the guidelines that must lead the
acquisition phase and, therefore, the model to follow. This
last standard establishes that digital evidence is governed by
principles of relevance, reliability and sufficiency, in addition
to emphasizing the need for a properly documented chain of
custody.

According to this, it is proposed in this work to use the
framework of Ansible, a configuration management tool, for
the execution of utilities that allow the acquisition of evidence
for forensic analysis in an automated way. This evidence
acquisition will be carried out using recognized tools for its
storage and guarantee of integrity. Everything following the
standards set by current regulations.

In short, our proposed solution will also be able to:
1) Collect evidence reducing the impact on the original.
2) Guarantee that the acquired evidence has not been

altered.
3) For all acquired evidence, identify at least where, when

and by whom they were acquired.
4) Preserve the collected evidence in a suitable storage

place.
Our proposal seeks, on the one hand, to minimize the

human factor in the acquisition process that may cause the
loss of probating value of the evidence, while reducing the
costs of forensic analysis, as well as using open source tools
saving costs in licenses. Finally, our proposal seeks to maintain
flexibility and scalability in the acquisition system.

This paper is organized as follows. First, a review of existing
proposals is detailed in Section II. Additionally, Section III
presents details of our proposal for the automation of the
evidence acquisition process. Section IV discusses the first



results obtained in this work. A discussion is provided in
Section V. Finally, Section VI presents our conclusions and
further works.

II. STATE OF THE ART

A set of both commercial and open-source tools can be
found in the market that, although they cannot be considered
a complete solution, could be adapted to cover said needs.
For instance, ISEEK XtremeForensics [7] [8], which is a
tool developed for electronic discovery, forensics, malware
detection, and regulatory compliance.

Additionally, a commercial tool is Cortex XDR Foren-
sics [9]. It is integrated in the Cortex XDR suite, which is
oriented to incident response and that includes capacities for
collection and data analysis, search and correction of threats,
as well as event logging and a state-of-the-art antivirus.

Another commercial tool is IBM QRadar Incident Foren-
sics [10], offered by IBM, which constitutes a complete suite
with monitoring, detection, research and response capabilities.

The Panda Adaptative Defense 360 [11] service, offered by
the owners of Panda Security, WatchGuard, is a complete EDR
(Endpoint Detection and Response based on light agents and
with deployment in the cloud.

As an open-source tool, Velociraptor [12] stands out. Devel-
oped as a DFIR (Digital Forensic and Incident Response) tool,
Velociraptor is an open-source suite that enables endpoints
monitoring, forensic analysis and incident response.

All these tools combine various functionalities in the same
software. This has advantages such as centralization of infor-
mation and the elimination of the need to switch from one
application to another in each of the forensic analysis steps.

Our solution complies a modular proposal to allow flexibil-
ity when choosing between acquisition tools, thus avoiding the
introduction of dependency on a specific vendor and, on the
other hand, the need for incident response teams to abandon
the use of their favorite tools. Additionally, we have detected
the existing weaknesses of the current tools within the context
in which we are moving, there are still needs that are not
covered.

III. OUR PROPOSAL

The determining criteria for choosing Ansible as the tool to
perform configuration management and remote administration
are: 1) its ability to centrally manage a large number of
endpoints; 2) a minimum impact of configuration and training.
An inventory of the network on which the system has to act
will be carried out.

The system must check that the endpoint is ready so that the
acquisition can be carried out and, if not, it must ensure that
it is left in the appropriate state. For each type of evidence,
this preparation will be different, choosing in each case the
most convenient tool for the acquisition of the evidence. For
the experiments detailed in this work, LiME (Linux Memory
Extractor) is used to capture memory and The SleuthKit to
obtain file system information, both of them with Linux.

Fig. 1. Folder structure for stored evidences (1 node; 1 controller).

Fig. 2. Acquired memory dump viewed in a hex editor.

After that, the acquisition of evidence and the labeling will
be launched, identification and storage actions will be carried
out in such a way that the custody chain of the said evidence
can be maintained and its probating value is not lost. This
approach seeks to maximize modularity and flexibility. Thus,
any change in the requirement regarding the acquisition tools
will not imply a global change in the proposal.

As for the concrete experiment taken in this work, an
experiment for remote memory acquisition from a Linux node
is first designed. This experiment is performed on a virtual
network consisting of two machines, a node and a controller.
This core case allows us to confirm the suitable use of
LiME for memory acquisition by automating its execution
using Ansible. This experiment also confirms that the SSH
configuration on both the controller and the node is correct
Similarly, it is confirmed that the format of the inventory is as
expected.

As can be seen in Fig. 1, the ability to properly label and
store the acquired evidence is verified, thus maintaining its
probating value. The automation is achieved by making use
of several Ansible modules: apt, git, shell and fetch.



Fig. 3. Folder structure for stored evidences for several nodes.

As observed in Fig. 2, the file with the memory dump is
available, which, as can be analyzed with a forensic analysis
application or opened with a hex editor for review its content.
If the experiment is run for a second time some tasks are
skipped. The omitted tasks are those related to the LiME
installation. Once the node is ready and LiME is installed
on that node, there is no need to re-install it again.

In addition to this, this experiment allow us to adapt the
result to regulations, in such a way that a memory capture is
obtained, labeled with the type of evidence, date and hour
of acquisition, identification of the user who performs the
acquisition and the machine from which it is performed, in
addition to a hash value that guarantees the integrity of the
evidence.

On the other hand, our next experiment deals with the
remote acquisition from five Linux nodes. For this experiment,
the set of nodes is increased, being made up of a controller
machine and a group of five nodes, all of them with the
Ubuntu operating system. It seeks to confirm the ability of the
proposal to automate memory acquisition remotely in various
nodes (see Fig. 3). Again, the ability to properly label and
store the acquired evidence is also verified, thus maintaining
its probating value.

Finally, the remote acquisition of file system information
in Linux has been carried out. In this experiment, the size of

Fig. 4. Execution time (in seconds) for 5 nodes without a previous preparation.

Fig. 5. Execution time (in seconds) for 5 nodes with a previous preparation.

the network is expanded again, with a controller machine and
seven nodes, all of them with the Ubuntu operating system.
The aim is to confirm the ability of the proposal to acquire
other types of evidence, for which the The Sleuthkit suite will
be used.

IV. RESULTS

All the experiments have been carried out on a network
of virtual machines whose virtualization has been carried out
using VirtualBox 6.1. The machine that hosts this virtual
network is a Kubuntu 20.04 running on Intel© Core™ i7-
8750H 2.20GHz processor with 12 cores, 32GB of DDR4 at
2666MHz RAM and an SSD disk.

First, the remote memory acquisition from a Linux node
has been performed. The most remarkable finding of this ex-
periment is the confirmation of the possibility of acquiring the
evidence, in this case a complete memory dump, automatically
and remotely through the use of Ansible.



TABLE I
EXECUTION TIME (IN SECONDS) FOR 5 NODES WITHOUT A PREVIOUS PREPARATION

Task Exp 01 Exp 02 Exp 03 Exp 04 Exp 05 Mean
Gathering facts 1.13 2.35 1.2 1.31 1.15 1.43
Search LiME 0.48 0.46 0.58 0.51 0.52 0.51
Store checklime result 0.15 0.15 0.19 0.14 0.17 0.16
Install LiME 0.23 0.24 0.25 0.24 0.24 0.24
Install git 13.42 12.62 13.16 15.38 17.99 14.51
Clone LiME 1.92 2.13 1.91 2.29 1.99 2.05
Install dependences (make y build-essential) 20.05 18.93 20.04 19.91 20.06 19.80
Install dependences (linux-headers) 103.74 104.71 102.45 105.97 103.55 104.08
Compile LiME 6.29 8 6.61 5.8 6.19 6.58
Add time to labeling 0.15 0.16 0.16 0.17 0.17 0.16
Add user to labeling 0.16 0.16 0.16 0.17 0.16 0.16
Add node name to labeling 0.16 0.16 0.15 0.15 0.15 0.15
Download LiME from kernel 0.6 0.52 0.48 0.5 0.5 0.52
Acquire memory 14.21 13.21 14.02 13.47 13.42 13.67
Send acquisition to the manager 78.17 96.08 80.5 89.87 90.45 87.01
Remove local capture 0.77 0.74 0.73 0.73 0.82 0.76
Calculate hash of evidence 11.34 11.3 10.82 10.38 10.87 10.94

TABLE II
EXECUTION TIME (IN SECONDS) FOR 5 NODES WITH A PREVIOUS PREPARATION

Task Exp 01 Exp 02 Exp 03 Exp 04 Exp 05 Mean
Gathering facts 2.9 2.63 1.33 1.81 2.79 2.29
Search LiME 0.46 0.45 0.54 0.47 0.49 0.48
Store checklime result 0.16 0.17 0.16 0.15 0.17 0.16
Install LiME 0.15 0.16 0.16 0.15 0.15 0.15
Install git 0 0 0 0 0 0
Clone LiME 0 0 0 0 0 0
Install dependencies (make y build-essential) 0 0 0 0 0 0
Install dependencies (linux-headers) 0 0 0 0 0 0
Compile LiME 0 0 0 0 0 0
Add time to labeling 0.14 0.16 0.14 0.16 0.15 0.15
Add user to labeling 0.15 0.16 0.16 0.15 0.15 0.15
Add node name to labeling 0.14 0.14 0.15 0.15 0.14 0.14
Download LiME from kernel 0.5 0.51 0.52 0.5 0.5 0.51
Acquire memory 13.61 13.12 12.8 13.43 19.63 14.52
Send acquisition to the manager 65.96 72.89 65.1 57.45 82.67 68.81
Remove local capture 0.68 0.74 0.85 0.7 1.06 0.81
Calculate hash of evidence 9.68 10.53 10.24 9.63 10.49 10.11

The difference in execution time between machines pre-
pared for the acquisition and machines no prepared is shown
for the experiment carried out for five nodes and a controller.
As observed in Fig. 4 and Table I, the average acquisition
time is 4 minutes and 22 seconds for the case of unprepared
machines with previous installation.

This average time is considerably reduced in the case of
prepared machines to one minute and 22 seconds, as shown
in Table II and Fig. 5. This means a reduction of approximately
66%. For this reason, it is very relevant for companies to be
aware about the topic of forensic analysis.

The concrete tasks to be performed for this experiment are:

1) Gathering facts.
2) Search LiME.
3) Store checklime result.
4) Install LiME.
5) Install git.
6) Clone LiME.
7) Install dependencies (make y build-essential).

8) Install dependencies (linux-headers).
9) Compile LiME.

10) Add time to labeling
11) Add user to labeling.
12) Add node name to labeling
13) Download LiME from kernel.
14) Acquire memory.
15) Send acquisition to the manager.
16) Remove local capture.
17) Calculate hash of evidence.

After that, the remote acquisition of file system information
in Linux was performed. The contribution of this experiment
is the confirmation of the capacity of the proposal to acquire
various types of evidence. In this case, a text file is retrieved
for each of the target nodes that includes the list of partitions
for each node.

In this case, a set of the running tasks are different to the
previous experiment, which are:

1) Gathering facts.



Fig. 6. Execution time (in seconds) for 7 nodes without a previous preparation.

Fig. 7. Execution time (in seconds) for 7 nodes with a previous preparation.

2) Install sleuthkit.
3) Generate acquisition label.
4) Add time to labeling.
5) Add user to tagging.
6) Add node name to labeling.
7) Run sleuthkit commands.
8) List partitions.
9) Send evidence to controller.

10) Eliminate local evidence.
11) Calculate hash of evidence.

The average times for this type of acquisition in a 7-node
network are 25 seconds and 10 seconds, depending on whether
the machines are ready for the acquisition or not. These fact
are shown in Figs. 6 and 7. We can observe a time reduction of
a 60%. Tables III and IV show the detailed obtained values,
respectively, without and with a previous preparation.

V. DISCUSSION

In view of the experiments and tests carried out, it can be
stated that the following statements have been confirmed:

• The proposal is capable of performing memory acqui-
sition remotely. This objective has been covered thanks
to the use of shell module, which gives Ansible virtually
unlimited flexibility by allowing the use of any command
that Shell can execute. Ansible allows the preparation
of the node so that it has the necessary tools to carry
out the acquisition, executes the acquisition itself and
is responsible for sending the evidence to the controller
machine.

• The probating value of remote evidence is preserved.
Again, Ansible allows us to label and classify the ev-
idence in such a way that both the evidence and the
person who has acquired it can be uniquely identified. In
addition, it allows the calculation of the hash value of the
evidence at the time of its storage in order to guarantee
its integrity. With this, the objective can be considered as
covered.

• The proposal is capable of acquiring other types of
evidence remotely. As a proof of concept, the acquisition
of information from the file system of Linux nodes has
been achieved. For this, the Sleuthkit suite has been used
together with the capacity of the Shell module of Ansible.

• The viability of the designed solution is established. No
major impediments have been found that could indicate
the infeasibility of the proposed solution. Taking into
account the tests carried out, it can be stated that by using
Ansible is possible to automatically acquire evidence for
forensic analysis.

VI. CONCLUSIONS AND FUTURE WORKS

Our proposal covers the needs raised for this work, by
proposing a solution that automatically allows evidence ac-
quisition for forensic analysis from a controller machine.This
way, it eliminates, or at least reduces, the need to physically
move an incident response team to all the locations where it is
located a machine of the distributed network for the acquisition
of evidence.

Ansible provides power, based on the wide catalog of avail-
able modules, which cover most of the most common needs,
and flexibility, thanks to the command and shell modules. They
allow us to go where the rest of the modules have not arrive
yet, being able to execute commands of ad-hoc orders against
the node machine. Ansible’s learning curve is very smooth and
fast.

As future work, we plan to evaluate deeply the defined
experiments, as well as incorporate additional experiments
with others operating systems, such as Windows. In this
case, with Windows nodes, it will be interesting to check the
connection capacity via WinRM and, additionally, to study if
the use of this connection protocol is viable for the proposed
use or if, on the contrary, other alternatives must be sought.
It will also be interesting to see how the acquisition tools
available for Windows perform.



TABLE III
EXECUTION TIME (IN SECONDS) FOR 7 NODES WITHOUT A PREVIOUS PREPARATION

Task Exp 01 Exp 02 Exp 03 Exp 04 Exp 05 Mean
Gathering facts 1.81 4.15 4.34 1.83 1.80 2.79
Install sleuthkit 20.46 25.51 13.96 14.87 15.93 18.15
Generate acquisition label 0.26 0.20 0.21 0.20 0.20 0.21
Add time to labeling 0.24 0.19 0.20 0.19 0.19 0.20
Add user to tagging 0.27 0.18 0.19 0.20 0.18 0.20
Add node name to labeling 0.28 0.17 0.19 0.22 0.17 0.21
Run sleuthkit commands 0.41 0.25 0.23 0.25 0.24 0.28
List partitions 1.50 1.22 0.89 1.02 1.05 1.14
Send evidence to controller 1.31 0.96 1.00 0.91 0.91 1.02
Eliminate local evidence 1.04 0.85 1.08 0.86 0.87 0.94
Calculate hash of evidence 0.83 0.66 0.78 0.71 0.60 0.72

TABLE IV
EXECUTION TIME (IN SECONDS) FOR 7 NODES WITH A PREVIOUS PREPARATION

Task Exp 01 Exp 02 Exp 03 Exp 04 Exp 05 Mean
Gathering facts 2.68 1.78 1.77 1.79 1.78 1.96
Install sleuthkit 3.97 4.04 4.45 4.13 4.16 4.15
Generate acquisition label 0.27 0.22 0.21 0.24 0.21 0.23
Add time to labeling 0.20 0.20 0.19 0.20 0.19 0.20
Add user to tagging 0.19 0.20 0.19 0.22 0.19 0.20
Add node name to labeling 0.18 0.20 0.20 0.21 0.19 0.20
Run sleuthkit commands 0.23 0.25 0.22 0.25 0.22 0.23
List partitions 0.90 0.94 0.84 0.95 0.88 0.90
Send evidence to controller 0.77 0.84 0.80 0.89 0.80 0.82
Eliminate local evidence 0.76 0.77 0.77 0.78 0.79 0.77
Calculate hash of evidence 0.56 0.56 0.57 0.59 0.58 0.57

REFERENCES

[1] M. W. Graves, Digital Archaeology: The Art and Science of Digital
Forensics. Addison-Wesley, 2014.

[2] J. Sammons, The Basics of Digital Forensics, 2nd edn. Syngress, 2014.
[3] J. G. Heiser and W. G. Kruse, Computer Forensics: Incident Response

Essentials. Addison-Wesley, 2002.
[4] K. Zatyko, “Commentary: Defining digital forensics,” Forensic Maga-

zine, pp. February/March(2007), 1–5, 2007.
[5] “UNE-EN ISO/IEC 71506:2013 - Information Technologies (IT).

Methodology for the digital evidences forensic analysis,” 2013.
[6] “UNE-EN ISO/IEC 27037:2016 - Information technology - Security

techniques - Guidelines for identification, collection, acquisition and
preservation of digital evidence,” 2016.

[7] R. Adams et al., “Iseek, a tool for high speed, concurrent, distributed
forensic data acquisition,” The Proceedings of 15th Australian Digital
Forensics Conference 5-6 December 2017, pp. 19–25, December 2017.

[8] “Iseek the intelligent agent,” 2021,
https://www.xtremeforensics.com/iseekdiscovery-1, visited in October
2022.

[9] “Cortex xdr forensics,” 2021, https://www.paloaltonetworks.com/resources/datasheets/cortex-
xdr-forensics, visited in October 2022.

[10] “Ibm security qradar xdr,” 2021, https://www.ibm.com/es-es/qradar, vis-
ited in October 2022.

[11] “Panda advanced endpoint security,” 2021,
https://www.watchguard.com/wgrd-resource-center/docs/adaptive-
defense-360, visited in October 2022.

[12] “Velociraptor documentation,” 2021, https://docs.velociraptor.app/docs/,
visited in October 2022.


