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LIE GROUPOIDS AND ALGEBROIDS APPLIED TO
THE STUDY OF UNIFORMITY AND HOMOGENEITY

OF MATERIAL BODIES

VÍCTOR MANUEL JIMÉNEZ, MANUEL DE LEÓN,
AND MARCELO EPSTEIN

Abstract. A Lie groupoid, called material Lie groupoid, is asso-
ciated in a natural way to any elastic material. The corresponding
Lie algebroid, called material algebroid, is used to characterize the
uniformity and the homogeneity properties of the material. The
relation to previous results in terms of G−structures is discussed
in detail. An illustrative example is presented as an application of
the theory.
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1. Introduction

In Continuum Mechanics a simple material body B is represented
by a three-dimensional differentiable manifold which can be covered
with just one chart (see for example [21, 22, 27, 31]). Given a simple
material body B we identify an embbeding φ0 : B → R

3 as a reference
configuration. A Lie groupoid, called material groupoid, can be nat-
urally associated to any material body (see for example [10], or even

Key words and phrases. Lie algebroid, Lie groupoid, homogeneity, uniformity,
material groupoid, material algebroid, G−structure, derivation.
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[8, 15] for Cosserat media). In particular, given two different points
X and Y of the material body B, a material isomorphism is a linear
isomorphism PXY : TXB → TYB such that the mechanical response at
X and Y is the same; more precisely, if W is the response functional
depending on the deformation gradient F at any point X of B, then,

W (FP,X) = W (F, Y ) ,

for any F . The collection of all material isomorphisms for all pairs of
points of B is just the material groupoid, which will be denoted by
Ω (B).
The theory of continuous distributions of defects based on the notion
of material isomorphism has been developed by W. Noll [25] (see also
[26, 27, 31, 30]). A structurally based theory had been originally con-
ceived by K. Kondo [16], D. A. Bilby [1], E. Kröner [17, 18], J.D.
Eshelby [12] and others, as the result of a limiting process starting
from a defective crystalline structure (see also the books by R. Lardner
[19] and F.R. Navarro [24]).
In Noll’s terminology, a body is uniform if all its points are mutually
materially isomorphic. In generalizing the work of Noll, the notion of
material groupoid encodes all the information pertaining to the local
and distant symmetries of a material body. In particular, material uni-
formity corresponds to the transitivity of the material groupoid. Since
transitive groupoids can be regarded as G−structures, previous treat-
ment in terms of G−structures were necessarily limited to uniform
bodies. This severe limitation is removed when using an approach
based on the theory of groupoids, thus making the theory applicable
to non-uniform bodies, such as functionally graded materials.
Another crucial point about this material groupoid is the availability of
the associated Lie algebroid, AΩ (B), which is the infinitesimal version
of Ω (B).
A uniform body is said to be locally homogeneous if for each body point
there exists a configuration whereby the Euclidean translations in an
open neighborhood of the point are material isomorphisms. It is a re-
markable fact that this homogeneity can be characterized through the
properties of AΩ (B). This is indeed accomplished, and related with
the earlier approach developed in [5] (see also [2]) in the framework of
G−structures.
Our paper is divided in three parts: The first part (Sections 1 and 2)
is a brief introduction to the fundamental concepts which we will need
in the paper. From the mathematical perspective, these concepts are:
Groupoids and Lie algebroids. The fundamental physical notions are
uniformity and homogeneity of simple bodies.
Section 3 is devoted to a purely mathematic development. We intro-
duce the notion of integrability of Lie subgroupoids of the 1−jet Lie
groupoid on a manifold M (Π1 (M,M)). We deal with this notion and
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we relate it with the corresponding one in the G−structures and Lie
algebroids contexts.
In Section 4 we use the results of Section 3 to characterize the unifor-
mity and the homogeneity of simple material bodies. Finally, we use
these results to deal with a class of examples, namely, simple liquid
crystals presented by Coleman [3] and Wang [29]. These are some of
the most common materials that, in the continuous limit, can be, and
have been, modeled as Cosserat media. An example of the study of
dislocations in these media can be found in [9]. It is possible also to
develop a theory of liquid crystals within the context of simple me-
dia at the price of losing some of their distinctive physical properties
[3]. One of our purposes in this example is to demonstrate how the
material algebroid can be constructed directly from the constitutive
equation in the case of simple materials (a model that may be apt for
the description of certain type A smectic materials).

2. Groupoids and Lie algebroids

Groupoids. In this first section we provide a brief introduction to the
notions of Lie groupoid and Lie algebroid. For details we mainly refer
to [20]. There are also good introductions to groupoids in [7] and [32].
Another recommendable book as an introduction to these two topics
is the book [28] (in Spanish).
Roughly speaking, the notion of groupoid is similar to the notion of
group, although the composition is not totally but only partially de-
fined. More specifically, a groupoid is given by two sets, M (base) and
Γ (total space), provided with the maps α, β : Γ → M (source map
and target map respectively), ǫ : M → Γ (identities map), i : Γ → Γ
(inversion map) and · : Γ(2) → Γ (composition law) where,

Γ(2) := {(g, h) ∈ Γ× Γ : α (g) = β (h)}.

The composition law should satisfy the associative property and the
identities and the inversions satisfy that for all g ∈ Γ,

g · ǫ (α (g)) = g = ǫ (β (g)) · g, g−1 · g = ǫ (α (g)) , g · g−1 = ǫ (β (g)) ,

where we are denoting by g−1 the image of g by i. These maps will
be called structure maps and the groupoid will be denoted by Γ ⇒M .
We will also denote by Γx (resp. Γx) the α-fibre α−1 (x) (resp. the
β-fibre β−1 (x)) and by Γyx the intersection α−1 (x) ∩ β−1 (y). For each
x ∈M , the group Γxx is called isotropy group at x.
A groupoid Γ ⇒ M is said to be transitive if the anchor map (α, β) :
Γ → M ×M is surjective. Equivalently, the sets Γyx are not empty for
every x, y ∈ M . Notice that, in this case, all the isotropy groups are
conjugated.
A groupoid morphism between two groupoids, Γ1 ⇒ M1 and Γ2 ⇒M2,
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consists of two maps Φ : Γ1 → Γ2 and φ : M1 → M2 such that for any
g1 ∈ Γ1

α2 (Φ (g1)) = φ (α1 (g1)) , β2 (Φ (g1)) = φ (β1 (g1)) , (2.1)

where αi and βi are the source and the target map of Γi ⇒Mi respec-
tively, for i = 1, 2, and preserves the composition, i.e.,

Φ (g1 · h1) = Φ (g1) · Φ (h1) , ∀ (g1, h1) ∈ Γ(2).

Observe that, as a consequence, Φ preserves the identities. We will de-
note this morphism as Φ (because, using equations 2.1, φ is completely
determined by Φ).
A Lie groupoid is a groupoid Γ ⇒M where Γ andM are manifolds, the
structure maps are differentiable and the source and the target maps
are submersions. It is remarkable that, in the case of Lie groupoids,
the sets Γx, Γ

x and Γyx are manifolds (indeed, submanifolds of Γ). In
fact, the isotropy groups are Lie groups.
A Lie groupoid morphism is a morphism between Lie groupoids which
is differentiable.
So, we define a (Lie) subgroupoid of a (Lie) groupoid Γ ⇒ M as a (Lie)
groupoid Γ′ ⇒ M ′ such that M ′ ⊆ M , Γ′ ⊆ Γ and the inclusion maps
induce a morphism of (Lie) groupoids. A reduction of a transitive Lie
groupoid is a transitive Lie subgroupoid over the same base.

Remark 2.1. There is a more abstract way of defining a groupoid. We
can say that a groupoid is a “small” category (the class of objects and
the class of morphisms are sets) in which each morphism is invertible.

If Γ ⇒ M is the groupoid, then M is the set of objects and Γ is the
set of morphisms.

A groupoid morphism is a functor between these categories, which
is a more natural definition.

As in the case of Lie groups, we can define the concept of translation
on a Lie groupoid: Let Γ ⇒ M be a groupoid. Then, for each g ∈ Γ
we may define the left translation on g as the map Lg : Γ

α(g) → Γβ(g)

such that

Lg (h) = g · h,

for all h ∈ Γα(g). The right translation Rg can be defined in a similar
way. Obviously, both maps are diffeomorphisms with inverses Lg−1 and
Rg−1 respectively.

Example 2.2 (Lie group). A Lie group G is a Lie groupoid over a
single point.
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Example 2.3 (Pair groupoid). Let M be a manifold. The product
M×M is a Lie groupoid overM such that the composition law is given
by

(y, z) · (x, y) = (x, z) ,

for all (y, z) , (x, y) ∈M×M . This groupoid is called the pair groupoid
on M .
Notice that, for any (Lie) groupoid Γ ⇒M the anchor map (α, β) is a
morphism of (Lie) groupoids from Γ to the pair groupoid on M .

Example 2.4 (Trivial groupoid). Let M be a manifold and G be a
Lie group. As a natural generalization of the previous two examples
(the Lie group and the pair groupoid) we have the groupoid M ×M ×
G ⇒ M . In this case, the composition is induced by the operation of
the group. In fact, for each two elements (y, z, g) , (x, y, h) ∈M×M×G
we have that

(y, z, g) · (x, y, h) = (x, z, g · h) ,

This groupoid is called the trivial groupoid on M with group G.

Next, we will present the 1−jets groupoid which will be one of the
most important objects in what follows.

Example 2.5 (1-jets groupoid). LetM be a manifold and Π1 (M,M)
be the set of all 1−jets j1x,yφ of local diffeomorphisms φ : U → V on

M . Then, Π1 (M,M) can be considered as a Lie groupoid over M
with the composition of 1−jets as the composition law of the groupoid.
Let (xi) and (yj) be local coordinates defined on two open subsets U
and V of the base M respectively, then we induce local coordinates on
Π1 (M,M) as follows

Π1 (U, V ) :
(
xi, yj, yji

)
, (2.2)

where, for each j1x,yψ ∈ Π1 (U, V )

• xi
(
j1x,yψ

)
= xi (x).

• yj
(
j1x,yψ

)
= yj (y).

• yji
(
j1x,yψ

)
=
∂ (yj ◦ ψ)

∂xi

∣∣∣∣
x

.

This groupoid will be called 1−jets groupoid of M .

Lie algebroids. Now, we will introduce the notion of Lie algebroid.
Lie algebroids can be seen as a generalization of the Lie algebras and, as
in the case of the Lie group, every Lie groupoid can be “infinitesimally”
described as a Lie algebroid.
A Lie algebroid over a manifold M is a triple (A→M, ♯, [·, ·]), where
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π : A→M is a vector bundle together with a vector bundle morphism
♯ : A→ TM , called the anchor, and a Lie bracket [·, ·] on the space of
sections, such that the Leibniz rule holds

[α, fβ] = f [α, β] + α♯ (f)β, (2.3)

for all α, β ∈ Γ (A) and f ∈ C∞ (M). We are denoting ♯ (α) by α♯. A
is transitive if ♯ is surjective.
One can now prove that the anchor map is a morphism of Lie algebras,
i.e.

[α, β]♯ = [α♯, β♯], ∀α, β ∈ Γ (A) . (2.4)

Notice that the bracket in the right side is just the Lie bracket of vector
fields. We will use the same notation for both brackets.
Next, we should introduce the definition of a Lie algebroid morphism.
However, the picture here is not so straightforward. The main prob-
lem is that a morphism between vector bundles does not, in general,
induce a map between the modules of sections, so it is not immediately
clear what should be meant by bracket relation. We will give a direct
definition in terms of (Φ, φ)−decompositons of sections which is easy
to use, and is amenable to categorical methods.

Let (A→M, ♯, [·, ·]), (A′ →M ′, ♯′, [·, ·]′) be Lie algebroids. Consider
a vector bundle morphism Φ : A′ → A, φ : M ′ → M between π : A →
M and π′ : A′ → M ′. We know that for each α′, β ′ ∈ Γ (A′), there
exists fi, gj ∈ C∞ (M ′) and αi, βj ∈ Γ (A) such that

Φ ◦ α′ =
k∑

i=1

fi (αi ◦ φ) ,
k∑

j=1

gj (βj ◦ φ) .

Thus, Φ is a morphism of Lie algebroids if it satisfies that

♯ ◦ Φ = Tφ ◦ ♯′, (2.5)

Φ◦[α′, β′] =
k∑

i,j=1

figj ([αi, βj ] ◦ φ)+
k∑

j=1

α′♯
′

(gj) (βj ◦ φ)−
k∑

i=1

β′
♯′
(fi) (αi ◦ φ) .

(2.6)

In fact, the right-hand side of Eq. (2.6) is independent of the choice of
the (Φ, φ)−decompositions of α′ and β ′.
It is easy to prove that the composition preserves Lie agebroid mor-
phisms and, hence, we can define the category of Lie algebroids.

Remark 2.6. In particular, if α′ ∼(Φ,φ) α and β ′ ∼(Φ,φ) β, then Eq.
(2.6) reduces to

Φ ◦ [α′, β ′] = [α, β] ◦ φ.
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On the other hand, if M =M ′ and φ = IdM then Eq. (2.6) reduces
to

Φ ◦ [α′, β ′] = [Φ ◦ α′,Φ ◦ β ′], ∀α′, β ′ ∈ Γ (A′) .

A Lie subalgebroid A′ of a Lie algebroid A is a vector subbundle such
that the inclusion is a morphism of Lie algebroids. A Lie subalgebroid
A′ of a transitive Lie algebroid A is said to be a reduction of A if it is
transitive and the base manifolds are equal.
Suppose thatM ′ ⊆M is a closed submanifold then, using the (iA′ , iM ′)−
decomposition and extending functions, it satisfies that for all α′ ∈
Γ(A′) there exists α ∈ Γ(A) such that

iA′ ◦ α′ = α ◦ iM ′.

So, Eq. (2.6) reduces to

iA′ ◦ [α′, β ′]M ′ = [α, β]M ◦ iM ′ , ∀α′, β ′ ∈ Γ(A′).

As a third step, let us give a sketch of the construction of the Lie
algebroid of a Lie groupoid. Let Γ ⇒ M be a Lie groupoid. Consider
the vector bundle ǫ∗ (Ker (Tβ)) : AΓ → M . Thus, the fibres will be
interpreted as the tangent space of the β−fibres at the identities.
Now, consider the family XL (Γ) of left-invariant vector fields on Γ, i.e.,
the vector fields Θ on Γ tangent to the β−fibres such that

ThLg (Θ (h)) = Θ (g · h) , (2.7)

for all g, h ∈ Γ with α (g) = β (h). Notice that, Eq. (2.7) implies
that the left-invariant vector fields are characterized by their image
at the identities. With this, and using in fact that the left-invariant
vector fields are tangent to the β−fibres, the space of sections of AΓ
is isomorphic to the space of left-invariant vector fields on Γ and this
fact gives us a Lie algebra structure over the space of section of AΓ.
It is important to remark that the space of left-invariant vector fields
on Γ is closed under the Lie bracket of vector fields. Finally, we will
construct the anchor ♯ by restricting the tangent induced map of α,
i.e.,

♯ (vx) = Tǫ(x)α (vx) ,

for all vx ∈ AΓx. It is not hard to prove that this three objects form a
Lie algebroid called the Lie algebroid of the Lie groupoid Γ ⇒ M and
denoted by AΓ.
It is remarkable that each morphism between Lie groupoids induces
a morphism between their respective Lie algebroids: mathematically
speaking, this will imply that the construction induces a functor from
the category of Lie groupoids to the category of Lie algebroids. In fact,
let Φ : Γ → Γ′ be a Lie groupoid morphism from the groupoid Γ ⇒M
to Γ′ ⇒ M over the identity map on M . Then, we can induce a map
AΦ from AΓ to AΓ′ in the following way:

AΦ (vx) = Tǫ(x)Φx (vx) , (2.8)
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for all vx ∈ Tǫ(x)Γ
x where Φx is the restriction of Φ to the β−fibre Γx.

Then, AΦ is a Lie algebroid morphism from AΓ to AΓ′.
In particular, a Lie subgroupoid Γ ⇒ M of a Lie groupoid Γ ⇒ M
induces a Lie subalgebroid AΓ of a Lie algebroid AΓ.
It is easy to realize that this construction generalizes the known one
for Lie groups. So, if the Lie groupoid is a Lie group G, the resulting
Lie algebroid is the associated Lie algebra g. On the other hand, for a
manifold M , it is immediate to check that the Lie algebroid of the pair
groupoid M ×M ⇒M is the tangent bundle TM (with the structure
of Lie algebroid induced by the Lie bracket of vector fields).
Finally, let M ×M × G be the trivial Lie groupoid on M with group
G. Then, the associated Lie algebroid can be interpreted as the vector
bundle A = TM ⊕ (M × g) →M such that

(i) The anchor ♯ : TM ⊕ (M × g) → TM is the projection.
(ii) Lie algebra structure over the space of sections is given by:

[Θ⊕ f,Ξ⊕ g] = [Θ,Ξ]⊕ {Θ (g)− Ξ (f) + [f, g]},

for all Θ⊕ f,Ξ⊕ g ∈ Γ (A).

This Lie algebroid is called the trivial Lie algebroid onM with structure
algebra g.
Notice that, for each Lie algebroid (A→M, ♯, [·, ·]) the anchor ♯ is a
morphism of Lie algebroids from A to the tangent algebroid TM .
Let us consider a Lie groupoid Γ ⇒ M and AΓ its associated Lie
algebroid. Then, the anchor ♯ of AΓ is the induced map of the anchor
(α, β) of Γ, i.e.,

A (α, β) = ♯.

So, Γ is transitive implies that AΓ is transitive. In fact, the converse
is also true and, hence, Γ is transitive if, and only if, AΓ is transitive.

Next, the 1−jets algebroid of a manifold M will be the Lie algebroid
AΠ1 (M,M) of the 1−jets groupoid Π1 (M,M) of M . We will give a
detailed description below.
Let (xi) be a local coordinate system defined on some open subset
U ⊆ M . Then, by using Eq. (2.8), we can consider local coordinates
on AΠ1 (M,M) as follows

AΠ1 (U, U) :
((
xi, xi, δij

)
, 0, vi, vij

)
∼=
(
xi, vi, vij

)
. (2.9)

Let Θ be a vector field on M . Denote by ϕΘ
t : Ut → U−t the (local)

flow of Θ. Then, for each t we can construct a diffeomorphism,

ΠϕΘ
t : Π1 (U−t,B) → Π1 (Ut,B) ,

such that

ΠϕΘ
t (g) = g · j1

ϕΘ
−t(α(g)),α(g)

ϕΘ
t .
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So, this flow induces a left-invariant vector field on Π1 (M,M) which
generates a section of AΠ1 (M,M) denoted by j1Θ. j1Θ is called the
complete lift of Θ on Π1 (M,M).

Let (xi) be a local chart ofM and
(
xi, yj, yji

)
be the induced local chart

of Π1 (M,M). Assume that, locally, Θ is written as follows,

Θ = Θi ∂

∂xi
.

Then, locally, j1Θ is expressed in the following way:

j1Θ = −Θi ∂

∂xi
+
∂Θj

∂xi
∂

∂yji
. (2.10)

Notice that j1Θ can be equivalently induced by a 1−jet of Θ. Thus,
AΠ1 (M,M) can be interpreted as the bundle of 1−jets of vector fields
on M .
As a last step, we will introduce a new Lie algebroid to give a another
interpretation of the 1−jets Lie algebroid.

Definition 2.7. LetM be a manifold. A derivation onM is a R−linear
map D : X (M) → X (M) with a vector field Θ ∈ X (M) such that for
each f ∈ C∞ (M) and Ξ ∈ X (M),

D (fΞ) = fD (Ξ) + Θ (f) Ξ.

We call Θ the base vector field of D. So, a derivation on M is charac-
terized by two geometrical objects, D and Θ.

A classical example of derivation is given by the bracket of vector
fields on a manifold M . In fact, let Θ be a vector field on M , the
operator given by fixing Θ in the Lie bracket

[Θ, ·] : X (M) → X (M) ,

is a derivation on M with Θ as base vector field.
Another example comes from the so called covariant derivatives. A
covariant derivative on M is a R−bilinear map ∇ : X (M)× X (M) →
X (M) such that,

(1) It is C∞ (M)−linear in the first variable.
(2) For all Θ,Ξ ∈ X (M) and f ∈ C∞ (M),

∇ΘfΞ = f∇ΘΞ + Θ (f) Ξ. (2.11)

Then, any vector field Θ ∈ X (M) generates a derivation on A, ∇Θ,
(with base vector field Θ) fixing the first coordinate again, i.e.,

∇Θ : X (M) → X (M) ,

such that

∇Θ (Ξ) = ∇ΘΞ, ∀Ξ ∈ X (M) .
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Associated to any covariant derivative ∇ there are two important ten-
sors:

• Torsion: T (Θ,Ξ) = ∇ΘΞ−∇ΞΘ− [Θ,Ξ] , ∀Θ,Ξ ∈ X (M) .
• Curvature: R (Θ,Ξ)χ = ∇Θ∇Ξχ−∇Ξ∇Θχ−∇[Θ,Ξ]χ, ∀Θ,Ξ, χ ∈
X (M) .

A covariant derivative is said to be flat if its curvature is zero.
We will use the well-known result:

Lemma 2.8. Let ∇ be a covariant derivative on a manifold M . ∇ is
flat and torsion-free if, and only if, there exists an atlas (xi) of M such
that

∇ ∂

∂xj

∂

∂xi
= 0.

In general, for each local coordinates (xi) on M ,

∇ ∂

∂xj

∂

∂xi
=
∑

k

Γki,j
∂

∂xk
.

The local functions Γki,j are called Christoffel symbols of ∇ respect to

(xi).

Now, the space of derivations onM can be considered as the space of
sections of a vector bundle D (TM) on M . We can endow this vector
bundle with a Lie algebroid structure.

• Let D1, D2 be derivations on M , we can define [D1, D2] as the
commutator, i.e.,

[D1, D2] = D1 ◦D2 −D2 ◦D1.

A simple computation shows that the commutator of two deriva-
tions is again a derivation, indeed, the base vector field of
[D1, D2] is given by

[Θ1,Θ2], (2.12)

where Θ1 and Θ2 are the base vector fields of D1 and D2 re-
spectively.

• Let D be a derivation on M , then D♯ is its base vector field.

Thus, with this structureD (TM) is a transitive Lie algebroid called the
Lie algebroid of derivations on M . The space of sections of D (TM),
the derivations on M , will be denoted by Der (TM).
Note that in this Lie algebroid the fibre-wise linear sections of ♯ are
C∞ (M)−linear maps from X (M) to Der (TM). So, the space of fibre-
wise linear sections of ♯ is, indeed, the space of covariant derivatives
on M . In fact, it is easy to see that a covariant derivative ∇ is a Lie
algebroid morphism (from the tangent algebroid to the algebroid of
derivations) if, and only if, ∇ is flat.
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Finally, it is turn to relate this algebroid with the 1−jets Lie algebroid.
Consider Λ ∈ Γ (AΠ1 (M,M)) and ΘΛ its associated left-invariant vec-
tor field on Π1 (M,M). Denote by ΦΛ

t : Ut → U−t the flow of ΘΛ.
Then, we can define a (local) linear map

(
ΦΛ
t

)∗
: X (M) → X (M)

satisfying

{
(
ΦΛ
t

)∗
(Θ)} (x) = ΦΛ

t (ǫ (x))
(
Θ
((
α ◦ ΦΛ

t

)
(ǫ (x))

))
,

for each Θ ∈ X (M) and x ∈ M . Thus, we can define the following
derivation on M ,

DΛ =
∂

∂t

(
ΦΛ
t

)∗
∣∣∣∣
t=0

.

In other words, for each Θ ∈ X (M) and x ∈M we have

DΛΘ (x) =
∂

∂t

(
ΦΛ
t (ǫ (x))

(
Θ
((
α ◦ ΦΛ

t

)
(ǫ (x))

)))∣∣∣∣
t=0

.

Notice that, for all f ∈ C∞ (M)

DΛfΘ(x) =
∂

∂t

(
ΦΛ
t (ǫ (x))

(
f
((
α ◦ΦΛ

t

)
(ǫ (x))

)
Θ
((
α ◦ ΦΛ

t

)
(ǫ (x))

)))∣∣∣∣
t=0

=
∂

∂t

(
f
((
α ◦ΦΛ

t

)
(ǫ (x))

)
ΦΛ
t (ǫ (x))

(
Θ
((
α ◦ ΦΛ

t

)
(ǫ (x))

)))∣∣∣∣
t=0

= Λ♯ (x) (f)Θ (x) + f (x)DΛΘ(x) .

It is immediate to prove that for each Θ ∈ X (M) one has that

Dj1ΘΞ = [Θ,Ξ] , ∀Ξ ∈ X (M) . (2.13)

This construction gives us a linear map between the sections of the
1−jets Lie algebroid and the algebroid of derivations which induces a
Lie algebroid isomorphism D : AΠ1 (M,M) → D (A) over the identity
map on M .
Notice that using this isomorphism, we can consider a one-to-one map
from fibre-wise linear sections of ♯ in AΠ1 (M,M) to covariant deriva-
tives over M . Thus, having a fibre-wise linear section ∆ of ♯ in
AΠ1 (M,M) we will denote its associated covariant derivative by ∇∆.
Furthermore, ∆ is a morphism of Lie algebroids if, and only if, ∇∆ is
flat.
Next, we will show how locally the map D looks more natural:

Lemma 2.9. Let M be a manifold and Λ be a section of the 1−jets
algebroid with local expression

Λ
(
xi
)
=
(
xi,Λj,Λji

)
.

The matrix Λji is (locally) the associated matrix to DΛ, i.e.,

DΛ

(
∂

∂xi

)
=
∑

j

Λji
∂

∂xj
,
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and the base vector field of DΛ is Λ♯ which is given locally by (xi,Λj).

Let ∆ be a fibre-wise linear section of ♯ in AΠ1 (M,M) and ∇∆ be
its associated covariant derivative. Thus, for each (xi) local coordinate
system on M

∆

(
xi,

∂

∂xj

)
=

(
xi,

∂

∂xj
,∆j

i

)
,

where ∆j
i depends on

∂

∂xj
linearly. Thus, we will change the notation

as follows

∆j
i

(
xl,

∂

∂xk

)
= ∆j

i,k

(
xl
)
. (2.14)

Therefore,

∇∆

∂

∂xj

∂

∂xi
= D

∆





∂

∂xj





∂

∂xi
=
∑

k

∆k
i,j

∂

∂xk
,

where ∆

(
∂

∂xj

)
is the (local) section of AΠ1 (M,M) given by

∆

(
∂

∂xj

)
(x) = ∆ (x)

(
∂

∂xj

∣∣∣∣
x

)
.

So, ∆k
i,j are just the Christoffel symbols of ∇∆.

3. Uniformity and Homogeneity

A body B is a three-dimensional differentiable manifold which can
be covered with just one chart. An embedding φ : B → R

3 is called
a configuration of B and its 1−jet j1X,φ(X)φ at X ∈ B is called an
infinitesimal configuration at X . We usually identify the body with any
one of its configurations, say φ0, called reference configuration. Given
any arbitrary configuration φ, the change of configurations κ = φ◦φ−1

0 is
called a deformation, and its 1−jet j1φ0(X),φ(X)κ is called an infinitesimal

deformation at φ0 (X).

From now on we make the following identification: B ∼= φ0 (B).

For elastic bodies, the mechanical response of a material is com-
pletely characterized by one function W which depends, at each point
X ∈ B, on the gradient of the deformations evaluated at the point.
Thus, W is defined (see [5]) as a differentiable map denoted by the
same letter

W : Gl (3,R)×B → V,
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where V is a real vector space. Another equivalent way of considering
W is as a differentiable map

W : Π1 (B,B) → V,

which does not depend on the final point, i.e., for all X, Y, Z ∈ B

W
(
j1X,Y φ

)
=W

(
j1X,Z (τZ−Y ◦ φ)

)
, ∀j1X,Y φ ∈ Π1 (B,B) , (3.1)

where τv is the translation map on R
3 by the vector v. This map will

be called the response functional.

Notice that, using Eq. (3.1), we can define W over Π1 (B,R3), which
is the open subset of Π1 (R3,R3) given by the 1−jets of local diffeomor-
phisms from points of B to points of R3.

Now, suppose that an infinitesimal neighbourhood of the material
around the point Y can be grafted so perfecly into a neighbourhood of
X , that the graft cannot be detected by any mechanical experiment.
If this condition is satisfied with every point X of B, the body is said
uniform. We can express this physical property in a geometric way as
follows.

Definition 3.1. A body B is said to be uniform if for each two points
X, Y ∈ B there exists a local diffeomorphism ψ from an open neigh-
bourhood U ⊆ B of X to an open neighbourhood V ⊆ B of Y such
that ψ (X) = Y and

W
(
j1Y,κ(Y )κ · j

1
X,Y ψ

)
= W

(
j1Y,κ(Y )κ

)
, (3.2)

for all infinitesimal deformation j1Y,κ(Y )κ. The 1−jets of local diffeo-

morphisms satisfying Eq. (3.2) are called material isomorphisms.

These kind of maps are going to be important. Let us show that the
set of these maps can be endowed of a groupoid structure. For each
two points we will denote by G (X, Y ) the collection of all 1−jets j1X,Y ψ
which satisfy Eq. (3.2). So, the set of all material ismorphisms can be
written as follows,

Ω (B) = ∪X,Y ∈BG (X, Y ) .

Notice that the identities are material isomorphisms, and the compo-
sition and the inversion of 1−jets preserve Eq. (3.2). Hence, Ω (B) has
structure of groupoid over B which is, indeed, a subgroupoid of the
1−jets groupoid Π1 (B,B). We will denote α−1 (X) (resp. β−1 (X)) by
ΩX (B) (resp. ΩX (B)). The elements of the isotropy group G (X,X)
will be called material symmetries at X .

So, the following result is obvious.

Proposition 3.2. Let B be a body. B is uniform if, and only if, Ω (B)
is a transitive subgroupoid of Π1 (B,B).
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Notice that, at general, we cannot ensure that Ω (B) ⊆ Π1 (B,B) is
a Lie subgroupoid (see for instance [11, 13, 14]). Our assumption is
that Ω (B) is in fact a Lie subgroupoid and, in this case, Ω (B) is said
to be the material groupoid of B.
As we have seen, a body is uniform is the function W depends on the
point X precisely according to Equation (3.2). In addition, a body is
said to be homogeneous if we can choose a global section of the material
groupoid which is constant on the body, more precisely:

Definition 3.3. A body B is said to be homogeneous if it admits a
global deformation κ which induces a global section of (α, β) in Ω (B),
P , i.e., for each X, Y ∈ B

P (X, Y ) = j1X,Y
(
κ−1 ◦ τκ(Y )−κ(X) ◦ κ

)
,

where τκ(Y )−κ(X) : R
3 → R

3 denotes the translation on R
3 by the vector

κ (Y ) − κ (X). B is said to be locally homogeneous if there exists a
covering of B by homogeneous open sets.

Suppose that B is homogeneous. Then, if we take global coordinates
(xi) given by the induced diffeomorphism κ, we deduce that P is locally
expressed by

P
(
xi, yj

)
=
(
xi, yj, δji

)
. (3.3)

If B is locally homogeneous we can cover B by local sections of (α, β)
in Ω (B) which satisfy Eq. (3.3). The (local) coordinates generated by
these κ′s will be called homogeneous coordinates.

4. Integrability

In this section we will do a purely mathematic development to study
the notion of integrability of reduced subgroupoids of the 1-jets
groupoid. This notion of integrability will be closely related with the
notion of integrability of G−structures.

Note that there exists a Lie groupoid isomorphism L : Π1 (Rn,Rn) →
R
n × R

n ×Gl (n,R) over the identity map defined by

L
(
j1x,yφ

)
=
(
x, y, j10,0 (τ−y ◦ φ ◦ τx)

)
, ∀j1x,yφ ∈ Π1 (Rn,Rn) ,

where τv denote the translation on R
n by the vector v ∈ R

n and we are
identifying Gl (n,R) with the space of linear isomorphisms from T0R

n

to T0R
n (i.e. the fibre of the frame bundle FRn at 0). So, if G is a Lie

subgroup of Gl (n,R), we can transport Rn × R
n × G by this isomor-

phism to obtain a reduced Lie subgroupoid of Π1 (Rn,Rn). This kind
of reduced subgroupoids will be called standard flat on Π1 (Rn,Rn).

Let U, V ⊆ M be two open subsets of M . We denote by Π1 (U, V )
the open subset of Π1 (M,M) defined by (α, β)−1 (U × V ). Note that
if U = V , then, Π1 (U, U) is, indeed, the 1-jets groupoid of U and, in
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this way, our notation is consistent.

Definition 4.1. A reduced subgroupoid Π1
G (M,M) of Π1 (M,M) will

be called integrable if it is locally diffeomorphic to a standard flat on
Π1 (Rn,Rn)

Before continuing with our discussion, we need to explain what we
understand by “locally diffeomorphic” in this case. Π1

G (M,M) is lo-
cally diffeomorphic to R

n × R
n ×G⇒ R

n for some Lie subgroup G of
Gl (n,R) if for all x, y ∈ M there exist two open sets U, V ⊆ M with
x ∈ U , y ∈ V and two local charts, ψU : U → U and ψV : V → V ,
which induce a diffeomorphism

ΨU,V : Π1
G (U, V ) → U × V ×G, (4.1)

such that ΨU,V =
(
ψU ◦ α, ψV ◦ β,ΨU,V

)
, where

ΨU,V

(
j1x,yφ

)
= j10,0

(
τ−ψV (y) ◦ ψV ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
, ∀j1x,yφ ∈ Π1 (U, V ) .

Notice that, Π1
G (U, V ) and U × V × G are Lie groupoids if, and only

if, U = V and U = V . Suppose that U = V and U = V , then, for all
x ∈ U ΨU,U

(
j1x,xId

)
∈ G. However, ΨU,U

(
j1x,xId

)
is not necessarily the

identity map and, hence, ΨU,U is not an isomorphism of Lie groupoids.

Proposition 4.2. Let Π1
G (M,M) be a reduced Lie subgroupoid of

Π1 (M,M). ΠG (M,M) is integrable if, and only if, we can cover M
by local charts (ψU , U) which induce Lie groupoid isomorphisms from
Π1
G (U, U) to the restrictions of the standard flat over G to ψU (U).

Proof. On the one hand, suppose that Π1 (M,M) is integrable. Let
x0 ∈ M be a point in M and ψU : U → U and ψV : V → V be local
charts through x0 which induced diffeomorphism

ΨU,V : Π1
G (U, V ) → U × V ×G.

For each y ∈ U ∩ V ,

ΨU,V

(
j1y,yId

)
= j10,0

(
τ−ψV (y) ◦ ψV ◦ ψ−1

U ◦ τψU (y)

)
∈ G.

Then, for all j1x,yφ ∈ Π1
G (U ∩ V, U ∩ V ), we have

j10,0
(
τ−ψU (y) ◦ ψU ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
=

j10,0
(
τ−ψU (y) ◦ ψU ◦ ψ−1

V ◦ τψV (y)

)
· j10,0

(
τ−ψV (y) ◦ ψV ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
∈ G.

Therefore, denoting U ∩ V by W , the map

ΨW,W : Π1
G (W,W ) → W ×W ×G,
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is, indeed, a Lie groupoid isomorphism over ψW where
ΨW,W =

(
ψW ◦ α, ψW ◦ β,ΨW,W

)
, ψW is the restriction of ψU to W

and for all j1x,yφ ∈ Π1 (W,W ),

ΨW,W

(
j1x,yφ

)
= j10,0

(
τ−ψW (y) ◦ ψW ◦ φ ◦ ψ−1

W ◦ τψW (y)

)
.

On the other hand, suppose that for each x ∈ M there exists a local
chart (ψU , U) through x which induces a Lie groupoid isomorphism
over ψU , namely

ΨU,U : Π1
G (U, U) → U × U ×G, (4.2)

such that ΨU,U =
(
ψU ◦ α, ψU ◦ β,ΨU,U

)
, where for each

j1x,yφ ∈ Π1 (U, U),

ΨU,U

(
j1x,yφ

)
= j10,0

(
τ−ψU (y) ◦ ψU ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
.

Take open sets U, V ⊆M such that there exist ψU and ψV satisfy Eq.
(4.2). Suppose that U ∩ V 6= ∅. Then, for all x, y ∈ U ∩ V , we have

j10,0
(
τ−ψU (y) ◦ ψU ◦ ψ−1

V ◦ τψV (y)

)
· j10,0

(
τ−ψV (x) ◦ ψV ◦ ψ−1

U ◦ τψU (x)

)
∈ G.
(4.3)

Fixing Z ∈ U ∩ V , we consider

j10,0
(
τ−ψU (Z) ◦ ψU ◦ ψ−1

V ◦ τψV (Z)

)
, A ∈ Gl (n,R) .

Furthermore, it is also true that

A ·G · A−1 = G. (4.4)

In fact,

G = {j10,0
(
τ−ψU (y) ◦ ψU ◦ φ ◦ ψ−1

U ◦ τψU (y)

)
/ j1y,yφ ∈ Π1

G (U, U)}.

So, we define the diffeomorphism ψV , A · ψV : V → A · V . Then,
using Eq. (4.3) for all y ∈ U ∩ V , we deduce that

j10,0

(
τ−ψV (y) ◦ ψV ◦ ψ−1

U ◦ τψU (y)

)
= j10,0A ·

(
τ−ψV (y) ◦ ψV ◦ ψ−1

U ◦ τψU (y)

)

= A · j10,0
(
τ−ψV (y) ◦ ψV ◦ ψ−1

U ◦ τψU (y)

)
∈ G. (4.5)

In this way, we consider

ΨU,V : Π1
G (U, V ) → U × A · V ×G
j1x,yφ 7→

(
ψU (x) , ψV (y) ,ΨU,V

(
j1x,yφ

))
.

where,

ΨU,V

(
j1x,yφ

)
= j10,0

(
τ−ψV (y) ◦ ψV ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
.

We will check that ΨU,V is well-defined. We fix j1x,yφ ∈ Π1
G (U, V ).

Then, we can consider two cases:
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(i) y ∈ U ∩ V . Then, using Eq. (4.5)

j10,0

(
τ−ψV (y) ◦ ψV ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
=

j10,0

(
τ−ψV (y) ◦ ψV ◦ ψ−1

U ◦ τψU (y)

)
·j10,0

(
τ−ψU (y) ◦ ψU ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
∈ G.

(ii) y /∈ U ∩ V . Then,

j1z,x
(
ψ−1
V ◦ τψV (z)−ψV (y) ◦ ψV ◦ φ

)
, j1z,xφz ∈ Π1

G (M,M) .

Hence,

j10,0

(
τ−ψV (y) ◦ ψV ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
=

A · j10,0
(
τ−ψV (y) ◦ ψV ◦ φ ◦ ψ−1

U ◦ τψU (x)

)
=

A · j10,0
(
τ−ψV (z) ◦ ψV ◦ φz ◦ ψ

−1
U ◦ τψU (x)

)
=

j10,0

(
τ−ψV (z) ◦ ψV ◦ φz ◦ ψ

−1
U ◦ τψU (x)

)
∈ G.

Thus, it is immediate to prove that ΨU,V is a diffeomorphism which
commutes with the restrictions of the structure maps.

Finally, if U ∩ V = ∅ we can find a finite family of local neighbour-
hoods {Vi}i=1,...,k such that

(i) U = V1
(ii) V = Vk
(iii) Vi ∩ Vi+1 6= ∅, ∀i

Thus, we can find ΨU,V following a similar procedure than above.
�

Using this result, we can prove that a reduced subgroupoid Π1
G (M,M)

of Π1 (M,M) is integrable respect to two different Lie groups G and G̃
if, and only if, G and G̃ are conjugated.
There is a special reduced subgroupoid of Π1 (M,M) which will play
an important role in the following. A trivial reduced subgroupoid of
Π1 (M,M) or parallelism of Π1 (M,M) is a reduced subgroupoid of
Π1 (M,M), Π1

e (M,M) ⇒ M , such that for each x, y ∈ M there exists
a unique 1−jet j1x,yφ ∈ Π1

e (M,M). So, equivalently, a parallelism can
be interpret as a section P :M ×M → Π1 (M,M) of (α, β) which is a
morphism of Lie groupoids (over the identity map on M). Using this,
we can also speak about integrable sections of (α, β).

Now, let us consider the induced coordinates given in Eq. (2.2).
Then, an integrable section P can be written locally as follows,

P
(
xi, yj

)
=
(
xi, yj, δji

)
,
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or equivalently

P (x, y) = j1x,y
(
ψ−1 ◦ τψ(y)−ϕ(x) ◦ ϕ

)
, (4.6)

for some two local charts (ϕ, U) , (ψ, V ) on M .

Next, analogously to the case of G−structures, we can characterize
the integrable subgroupoids using (local) integrable sections. However,
in this case it is not so easy because having a reduced subgroupoid we
do not have a fixed structured group G. Let Π1

G (M,M) be a reduced
subgroupoid of Π1 (M,M) and Z0 ∈ FM , where FM is the linear
frame bundle of M (see [4] for a detailed study on the geometry of
frame bundles), be a linear frame at z0 ∈M . Then, we define

G := {Z−1
0 · g ·Z0 / g ∈ Π1

G (M,M)z0z0} = Z−1
0 ·Π1

G (M,M)z0z0 ·Z0, (4.7)

Therefore, G is a Lie subgroup of Gl (n,R). This Lie group will be
called associated Lie group to Π1

G (M,M). Note that, as a difference
with G−structures, we don’t have a unique Lie group G but all of them
are conjugated.

Proposition 4.3. A reduced subgroupoid Π1
G (M,M) of Π1 (M,M) is

integrable if, and only if, for each two points x, y ∈ M there exist
coordinate systems (xi) and (yj) over U, V ⊆ M , respectively with x ∈
U and y ∈ V such that the local section,

P
(
xi, yj

)
=
(
xi, yj, δji

)
, (4.8)

takes values into Π1
G (M,M).

Proof. First, it is obvious that if Π1
G (M,M) is integrable then, we can

restrict the maps Ψ−1
U,V to U ×V ×{e} to get (local) integrable sections

of (α, β) which takes values on Π1
G (M,M).

Conversely, in a similar way to Proposition 4.2 we claim that for each
x ∈ M there exists an open set U ⊆ M with x ∈ U and P : U × U →
Π1
G (U, U) an integrable sections of (α, β) given by

P (x, y) = j1x,y
(
ψ−1
U ◦ τψU (y)−ψU (x) ◦ ψU

)
,

where ψU : U → U is a local chart at x.

Then, we can build the map

Ψ−1
U,U : U × U × {e} → Π1

G (U, U) ,

defined in the obvious way.

Now, let z0 ∈ U be a point at U , Z0 , j10,z0
(
ψ−1
U ◦ τψU (z0)

)
∈ FU be

a frame at z0 and G be the Lie subgroup satisfying Eq. (4.7). Then,
we can define

ΨU,U : Π1
G (U, U) → U × U ×G,

where for each j1z0,z0φ ∈ Π1
G (z0) and x, y ∈ U we define

Ψ−1
U,U

(
x, y, Z−1

0 · j1z0,z0φ · Z0

)
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= j1
0,ψ−1

U
(y)

(
ψ−1
U ◦ τy

)
· [Z−1

0 · j1z0,z0φ · Z0] · j
1
ψ−1

U
(x),0

(τ−x ◦ ψU) .

Hence the map ΨU,U : U × U × G → Π1
G (U, U) is an isomorphism of

Lie groupoids induced by ψU .

To end the proof, we only have to use Proposition 4.2. �

As we have noticed, this notion of integrability is closely related
with the integrability of G−structures. In fact, for each G−structure
ωG (M) on M we consider the following set,

G (ωG (M)) = {Ly · [L
−1
x ] / Lx, Ly ∈ ωG (M)}. (4.9)

It is not hard to prove that G (ωG (M)) is a reduced subgroupoid
of Π1 (M,M). Conversely, for all reduced subgroupoid Π1

G (M,M)
of Π1 (M,M) and all frame Z0 ∈ FM at z0 ∈ M , there exists a
G−structure,

ωG (M) = Π1
G (M,M)z0 · Z0,

such that

G (ωG (M)) = Π1
G (M,M) .

With this, we can claim that a G−structure ωG (M) is integrable if,
and only if, its associated Lie subgroupoid G (ωG (M)) of Π1 (M,M) is
integrable.

Now, we want to work with the notion of integrability in the asso-
ciated Lie algebroid of the 1-jets groupoid. Let U ⊆ M be an open
subset of M . We denote by AΠ1 (U, U) the open Lie subalgebroid of
AΠ1 (M,M) defined by the associated Lie algebroid of Π1 (U, U).

Definition 4.4. Let AΠ1
G (M,M) be a Lie subalgebroid ofAΠ1 (M,M).

AΠ1
G (M,M) is said to be integrable by G if it is locally isomorphic to

the trivial algebroid TRn ⊕ (Rn × g), where g is the Lie algebra of the
Lie subgroup G of Gl (n,R).

Again, “locally isomorphic” means that we are inducing local coor-
dinates from the base in the natural way. It is not hard to prove that
a Lie subalgebroid AΠ1

G (M,M) of AΠ1 (M,M) is integrable by G if,
and only if, it is the associated Lie algebroid of an integrable Lie sub-
groupoid Π1

G (M,M) of Π1 (M,M).

Analogously to the case of 1−jets groupoid, a parallelism of
AΠ1 (M,M) is an associated Lie algebroid of a parallelism of Π1 (M,M).
Hence, a parallelism is a section of ♯ which is a morphism of Lie alge-
borids. In this way, we will also speak about integrable sections of ♯.
Notice that, any morphism of Lie algebroid ∆ : TM → AΠ1 (M,M)
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can be integrated to a morphism of Lie groupoids from P :M ×M →
Π1 (M,M) such that

AP = ∆.

This is just an application of a generalization of the Lie’s second funda-
mental theorem from Lie groups to Lie groupoids (see for instance [23]).

Let (xi) be a local coordinate system defined on some open subset
U ⊆ M . Notice that each integrable section of (α, β) in Π1 (M,M),
P , is a Lie groupoid morphism. Hence, P induces a Lie algebroid
morphism AP : TM → AΠ1 (M,M) which is a section of ♯. So, taking
into account that, locally,

P
(
xi, yj

)
=
(
xi, yj, δji

)
,

we have that each integrable section can be written locally as follows

AP

(
xi,

∂

∂xi

)
=

(
xi,

∂

∂xi
, 0

)
.

Now, using Proposition 4.3, we have the following analogous propo-
sition.

Proposition 4.5. A reduced subalgebroid AΠ1
G (M,M) of AΠ1 (M,M)

is integrable by G if, and only if, there exist local integrable sections of
♯ covering M which takes values on AΠ1

G (M,M).

Equivalently, for each point x ∈ M there exists a local coordinate
system (xi) over an open set U ⊆ M with x ∈ U such that the local
sections

∆

(
xi,

∂

∂xi

)
=

(
xi,

∂

∂xi
, 0

)
,

are in AΠ1
G (M,M).

Finally, we will use the algebroid of derivations on TM . Thus, taking
into account that the map D : Γ (AΠ1 (M,M)) → Der (TM) defines
a Lie algebroid isomorphism D : AΠ1 (M,M) → D (TM) over the
identity map on M and using Lemma 2.8 we can give another charac-
terization of the integrability over the 1−jets algebroid.

Proposition 4.6. Let ∆ be a fibre-wise linear section of ♯ in the 1−jets
Lie algebroid, AΠ1 (M,M). Then, it is integrable if, and only if, the
covariant derivative ∇∆is flat and torsion-free. Equivalently, a ∆ sec-
tion of ♯ which is a morphism of Lie algebroids is integrable if, and only
if, the covariant derivative ∇∆ is torsion-free.

This permits us to say that a reduced subgroupoid Π1
G (M,M) of

Π1 (M,M) is integrable if, and only if, M can be covered by (local)
torsion-free flat covariant derivatives which takes vales in
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D (AΠ1
G (M,M)).

5. Application to material bodies

This section is devoted to apply our results to the theory of material
bodies.
Let B be a body. Taking into account the definition of homogeneity
(see Definition 3.3) and the above result we can state the following
proposition:

Proposition 5.1. Let B be a uniform body. If B is homogeneous then
Ω (B) is integrable. Conversely, Ω (B) is integrable implies that B is
locally homogeneous.

Notice that Eq. (4.9) proves that our definition of homogeneity
(which is given using the material groupoid) is, indeed, equivalent to
that used in [5] (see [6] or [30]; see also [2] and [22]) where the authors
use G−structures to characterize this property.

Next, let us consider the induced subalgebroid of material groupoid,
AΩ (B). This Lie algebroid will be called material algebroid of B.

Take Λ ∈ Γ (AΩ (B)). So, the flow of the left-invariant vector field
XΛ, {ϕ

Λ
t }, can be restricted to Ω (B).

Hence, for any infinitesimal deformation g, we have

W
(
ϕΛ
t (g)

)
= W

(
ϕΛ
t (g · ǫ (α (g)))

)
= W

(
g · ϕΛ

t (ǫ (α (g)))
)
=W (g) .

Thus, for each g ∈ Π1 (B,B), we deduce

TW (XΛ (g)) =
∂

∂t

(
W
(
ϕΛ
t (g)

))∣∣∣∣
0

=
∂

∂t
(W (g))

∣∣∣∣
0

= 0.

Therefore,
TW (XΛ) = 0. (5.1)

Conversely, it is easy to prove that Eq. (5.1) implies that Λ ∈
Γ (AΩ (B)).

In this way, the material algebroid can be defined without using the
material groupoid by imposing Eq. (5.1). Thus, we can characterize
the homogeneity and uniformity using only the material Lie algebroid.

Proposition 5.2. Let B be a simple body. Then, B is uniform if, and
only if, AΩ (B) is transitive.

Let us assume that a section Λ of the material algebroid AΩ (B) has
the following local expression,

Λ
(
xi
)
=
(
xi,Λi,Λji

)
,
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for a given local coordinates (xi) on B. Then, Eq. (5.1) can be written
as follows,

Λk
∂W

∂xk
+ F r

mΛ
m
l

∂W

∂xrl
= 0. (5.2)

So, the uniformity of the material is linked to the properties of Eq.
(5.2).

Proposition 5.3. Let B be a uniform body. If B is homogeneous, then,
AΩ (B) is integrable by a Lie subgroup G of Gl (n,R). Conversely, if
AΩ (B) is integrable by G then B is locally homogeneous.

Using Proposition 4.5, this result can be expressed locally as follows.

Proposition 5.4. Let B be a uniform body. B is locally homogeneous
if and only if for each point x ∈ B there exists a local coordinate system
(xi) over U ⊆ B with x ∈ U such that the local section of ♯,

∆

(
xi,

∂

∂xi

)
=

(
xi,

∂

∂xi
, 0

)
,

takes values in AΩ (B).

Therefore, denoting by D (B) to the Lie subalgebroid of the deriva-
tion algebroid on B, D (AΩ (B)) ≤ D (TB), we can give the following
result:

Theorem 5.5. Let B be a uniform body.

(i) B is homogeneous, if and only if, there exists a (global) torsion-
free and flat covariant derivative on B which takes values in
D (B).

(ii) B is locally homogeneous if, and only if, B can be covered by
(local) torsion-free and flat covariant derivatives which takes
vales in D (B).

6. Example

We will use Proposition 5.4 to work with an example. We will con-
sider a model of a so-called simple liquid crystal. These simple materials
were introduced by Coleman [3] and Wang [29].

LetB be a simple body (we will assume thatB is an open subset ofR3

by taking the image by the reference configuration) with a mechanical
response W : Π1 (B,B) → V such that for all h = j1X,Y φ ∈ Π1 (B,B)
we have

W (h) = Ŵ (r (h) , J (h)) ,

where, denoting by F the associated matrix to j1X,Y φ (with respect to
the canonical basis of B),
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• r
(
j1X,Y φ

)
= g (Y ) (TXφ (e (X)) , TXφ (e (X)))

• J
(
j1X,Y φ

)
= det (F )

with e ∈ X (B) a vector field which is not zero at any point and g
a Riemannian metric on R

3. Notice that the tangent bundle TB is
canonically isomorphic to B × R

3. So, for each Y ∈ B, g (Y ) can be
seen as a inner product on R

3. Then, the expression of r turns into the
following,

r
(
j1X,Y φ

)
= g (Y )

(
F ·
(
ei (X)

)
, F ·

(
ei (X)

))
,

where, by using the canonical isomorphism TB → B × R
3, for all

X ∈ B e (X) = (X, ei (X)). We will use both expressions with the
same notation.
Now, we want to study the condition which characterizes the material
algebroid: A left-invariant vector field Θ ∈ XL (Π

1 (B,B)) restricts to
a section of AΩ (B) if, and only if,

Θ (W ) = 0.

So, we should study TW over left-invariant vector fields. Let Θ ∈
XL (Π

1 (B,B)) be a left-invariant vector field and consider the canonical
local system of coordinates (X i) in R

3. We will denote by
(
X i, Y j, F j

i

)

the induced local coordinates of (X i) in Π1 (B,B). The local expression
of Θ will be denoted as follows,

Θ
(
X i, Y j, F j

i

)
=
((
X i, Y j , F j

i

)
, δX i, 0, F j

l δP
l
i

)
.

Now, we will begin given the derivatives of r and J . For each W ∈
gl (3,R) and v ∈ R

3 we have that,

(i)
∂r

∂X
(v)

∣∣∣∣
j1
X,Y

φ

= 2g (Y )

(
TXφ (e (X)) , TXφ

(
∂e

∂X
(v)

∣∣∣∣
X

))
.

(ii)
∂r

∂F
(W )

∣∣∣∣
j1
X,Y

φ

= 2g (Y )
(
F ·
(
ei (X)

)
,W ·

(
ei (X)

))
.

(iii)
∂J

∂F
(W )

∣∣∣∣
j1
X,Y

φ

= det (F )Tr
(
F−1 ·W

)
.

Here F is the Jacobian matrix of φ at X and
∂e

∂X
(v)

∣∣∣∣
X

is the vector

at X such that
∂e

∂X
(v)

∣∣∣∣
X

=

(
X,

∂ei

∂X l

∣∣∣∣
X

vl
)
.

Hence, Θ restricts to a section of the material algebroid AΩ (B) if, and
only if,
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0 = 2
∂Ŵ

∂r

∣∣∣∣∣
j1
X,Y

φ

g (Y )

(
TXφ (e (X)) , TXφ

(
∂e

∂X

(
δX i (X)

)∣∣∣∣
X

))
+

+2
∂Ŵ

∂r

∣∣∣∣∣
j1
X,Y

φ

g (Y )
(
F ·
(
ei (X)

)
, F j

l δP
l
i (X) ·

(
ei (X)

))
+

+det (F )
∂Ŵ

∂J

∣∣∣∣∣
j1
X,Y

φ

Tr
(
δP j

i (X)
)
,

for all j1X,Y φ ∈ Π1 (B,B). So, a sufficient but not necessary condition
would be,

(1) Tr
(
δP j

i (X)
)
= 0.

(2) g (Y )

(

F ·

(

ei (X)
)

, F r
m ·

(

∂e

∂X

(

δXi (X)
)

∣

∣

∣

∣

X

+ δP
j
i (X) ·

(

ei (X)
)

))

= 0,

for all 1−jets of local diffeomorphisms j1X,Y φ on B. By using that g
is non-degenerate and e (X) is non-zero, we turn these conditions into
the following

(1)’ δP i
i = 0.

(2)’
∂ej

∂X l
δX l + δP j

l e
l = 0, ∀j,

where ej are the coordinates of e respect to (Xj).
Let us now study the uniformity of the material. By using Proposition
5.2 B is uniform if, and only if, the material algebroid of B is transitive.
Let VX = (X, V i) be a vector at X ∈ B. Then, we should find a (local)
left-invariant vector field Θ such that

• Θ (W ) = 0.
• Tǫ(X)α (Θ (ǫ (X))) = VX ,

where ǫ and α are the identities map and the source map of the material
groupoid respectively.
Let us fix the local expression of Θ as follows,

Θ
(
X i, Y j, F j

i

)
=
((
X i, Y j , F j

i

)
, δX i, 0, F j

l δP
l
i

)
.

Then,

Tǫ(X)α (Θ (ǫ (X))) =
(
X i (X) , δX i (X)

)
.

So, it should satisfy that,

δX i (X) = V i, ∀i.

By taking into account identities (1)’ and (2)’, it is enough to find

a family of (local) maps Aji from the body to the space of matrices
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satisfying that

(1)” Aii = 0.

(2)”
∂ej

∂X l
V l = −Ajl e

l, ∀j,

It is just an easy exercise to prove that there are infinite solutions Aji
of the equations (2)’ and (2)’ and, hence, B is uniform.

From now on, we will assume that Ŵ is an immersion. In that way,
(1)’ and (2)’ are also necessary conditions.

Next, we will study the condition of (local) homogeneity. As we know
(Proposition 5.4) B is (locally) homogeneous if, and only if, there exists
a local system of coordinates (xi) such that the local section of ♯,

∆

(
xi,

∂

∂xi

)
=

(
xi,

∂

∂xi
, 0

)
,

takes values in the material algebroid AΩ (B). Equivalently,

∂W

∂xi
= 0, ∀i. (6.1)

So, let us study this equality. Notice that,

∂W

∂xi
=
∂Ŵ

∂r

∂r

∂xi
+
∂Ŵ

∂J

∂J

∂xi
.

Thus, by using that Ŵ is an immersion, (xi) are homogeneous coor-
dinates if, and only if,

(1)”’
∂r

∂xi
= 0, ∀i.

(2)”’
∂J

∂xi
= 0, ∀i.

Observe that the form of Ŵ is not important to evaluate the (local)

homogeneity of B as long as Ŵ is an immersion.
Let (xi) be a system of homogeneous coordinates on B. Then, for each
j1X,Y φ ∈ Π1 (B,B)

r
(
j1X,Y φ

)
= g (Y ) (TXφ (e (X)) , TXφ (e (X)))

= g (Y )

(
TXφ

(
ei (X)

∂

∂xi

∣∣∣∣
X

)
, TXφ

(
ej (X)

∂

∂xj

∣∣∣∣
X

))

= ei (X) ej (X)
∂φk

∂xi

∣∣∣∣
X

∂φl

∂xj

∣∣∣∣
X

gkl (Y ) ,
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where, in this case, ej are the coordinates of e respect to (xi). So,
considering the induced coordinates

(
xi, yj, yji

)
of (xi) on Π1 (B,B) we

have that

r ◦
(
xi, yj, yji

)−1
(
X̃, Ỹ , F̃

)
= ei (X) ej (X) F̃ k

i F̃
l
jgkl (Y ) , ∀

(
X̃, Ỹ , F̃

)
.

In this way,

∂r

∂xk

∣∣∣∣
j1
X,Y

φ

= 2
∂ei

∂xk

∣∣∣∣
X

ej (X) F̃ k
i F̃

l
jgkl (Y ) .

Hence, by using the non-degeneracy of g we have that
∂r

∂xk
= 0 if, and

only if,
∂ei

∂xk
= 0, ∀i. (6.2)

With this, (1)” is satisfied if, and only if, the vector field e is constant
respect to (xi), i.e.,

e = λi
∂

∂xi
, λi ≡ Const. (6.3)

Next, we will study condition (2)”. Notice that,

∂J

∂xi
=

∂J

∂F l
m

∂F l
m

∂xi
.

Using the derivative of J (which we have shown above), we have that

∂J

∂F l
m|F̃

= det
(
F̃
)(

F̃−1
)l
m
.

Then, (2)” is satisfied if, and only if,

∂F l
m

∂xi
= 0, ∀i, l,m. (6.4)

Observe that

∂F l
m

∂xk

∣∣∣∣
j1
X,Y

φ

=
∂F l

m ◦
(
xi, yj, yji

)−1

∂Xk

∣∣∣∣∣
(X̃,Ỹ ,F̃)

= ∂

∂Xk





∂Xl
◦

(

yj
)

−1

∂Xk

∣

∣

∣

∣

∣

Ỹ

· F̃ k
r ·

[

∂Xr
◦

(

xi
)

−1

∂Xm

∣

∣

∣

∣

∣

X̃

]

−1




∣

∣

∣

∣

∣

∣

(X̃,Ỹ ,F̃)

.

i.e.,
∂F l

m

∂xk

∣∣∣∣
j1
X,Y

φ

= 0,
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if, and only if,

∂

∂Xk

(
∂Xm ◦ (xi)

−1

∂X i

∣∣∣∣∣
X̃

)∣∣∣∣∣
X̃

= 0.

So, (2)” is tantamount to,

∂Xm

∂xi
≡ Const, ∀i,m.

This fact implies that,

e (Xm) ≡ Const, ∀m.

i.e.,

e = µi
∂

∂X i
, µi ≡ Const.

Notice that, by using Eq. (6.3), this implies, indeed, that the canonical
basis is a (global) system of homogeneous coordinates on B. So, we
extract the following conclusions

(a) B is (locally) homogeneous if, and only if, the vector field e is
constant respect to the canonical basis of R3.

(b) The homogeneity of B implies that the canonical coordinates
are homogeneous coordinates.

(c) B is locally homogeneous if, and only if, B is global homoge-
neous.
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