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Abstract

The concept of material distribution is introduced as describing the geometric material structure of a general non-

uniform body. Any smooth constitutive law is shown to give rise to a unique smooth integrable singular distribution.

Ultimately, the material distribution and its associated singular foliation result in a rigorous and unique subdivision of the

material body into strictly smoothly uniform components. Thus, the constitutive law induces a unique partition of the

body into smoothly uniform sub-bodies, laminates, filaments and isolated points.
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1. Introduction

Since material bodies are modelled in terms of differentiable manifolds, it should not be surprising that many
of the constructs of modern continuum mechanics can be described in a faithful and rigorous way in the lan-
guage of modern differential geometry. The first formulation of the theory of uniformity and homogeneity in
modern differential geometric terms is that of Wang [1]. To a smoothly uniform body Wang assigns a reduction
of the principal bundle of frames, with a structure group equal to the typical symmetry group of the material.
This material G-structure is flat if, and only if, the material is homogeneous [2]. A further development [3, 4]
associates with every constitutive response of a body, whether uniform or not, a material groupoid. Uniformity
corresponds to a transitive groupoid. If a material transitive groupoid is also a Lie groupoid [5], then its asso-
ciated material Lie algebroid becomes available to investigate local conditions of homogeneity [6]. For certain
non-uniform solid bodies, corresponding in applications to functionally graded materials with point-wise con-
jugate symmetry groups, it is possible to develop a formulation [7] that, in many respects, mimics the uniform
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case. Conversely, for general non-uniform bodies, no differential geometric results are known, beyond the mere
existence of an associated material groupoid.1

In this paper, we propose the introduction of a new material structure, the material distribution, associated
with any given smooth constitutive law. This distribution is, in general, a singular distribution, whose definition
and properties are briefly reviewed in Section 4. A powerful theorem by Stefan and Sussman,2 which generalizes
the classical theorem of Frobenius for regular distributions, allows us to subdivide the body into a disjoint union
of uniform bodies of possibly different dimensions. Thus, we may encounter a body that is uniform over an
open sub-body and laminated over the rest of the body, even though the constitutive equation of departure is
perfectly smooth.3

2. Constitutive equations and material responses of material points

Given a body manifold B, a configuration is an embedding κ : B → R
3, whose derivative F(X ) at a point

X ∈ B is called the deformation gradient at X . If for convenience, as is often stated in textbooks, we identify
the body with one of its configurations, called a reference configuration κ0, the material properties of a simple
body at a point X are defined by means of a constitutive equation that may depend on the whole past history of
F and, possibly, other variables, such as the temperature. For definiteness, we can and will think of an elastic
material, for which the constitutive equation of each body point is specified in terms of the symmetric Cauchy
stress tensor t, namely,

t = f(F). (1)

Consider the space F of all possible smooth elastic constitutive equations, namely,

F = C∞
(

GL(3, R) → S(R3)
)

, (2)

where S(R3) is the space of contravariant symmetric second-order tensors in R
3. Each element of this space is

a possible descriptor of the material properties of an elastic material point. Conversely, since the constitutive
equation itself depends on the particular reference configuration chosen, we try to pin down the concept of
material response by considering a right action of the general linear group GL(3, R) on F . For each P ∈
GL(3, R) the action of P on F is the function

RP : F → F

RP(f(F)) 7→ f(FP) ∀F ∈ GL(3, R). (3)

A material response is identified with an orbit of this right action. In other words, the space of material
responses is the quotient space F/R. This definition corresponds exactly to the physical intuition that the mate-
rial response is a physical invariant, independent of the particular reference configuration adopted to describe
it. In this language, two points are said to be materially isomorphic4 if they have the same material response,
namely, if, in any reference configuration, their respective constitutive equations belong to same orbit in F .

3. Constitutive equations and material responses of material bodies

Having chosen a reference configuration κ0 for an elastic material body B, κ0(B) is an open set in R
3. The

constitutive equation of the body is a map

t : GL(3, R) × κ0(B) → S(R3), (4)

namely, a function
t = t(F, X ). (5)

Henceforth we will assume this function to be smooth in both arguments. An equivalent way to understand the
constitutive equation of a material body is as a map

t̂ : B → F . (6)

A body is materially uniform [10] if the image of t̂ is contained in a single orbit of F .
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At this point, it is convenient to provide some explicit conditions of smooth uniformity. From the various
definitions introduced, we conclude that a necessary and sufficient condition for material uniformity is that for
each point X ∈ B there exists a neighbourhood U and a smooth field of linear maps P(Y ) : TYB → TXB with
Y ∈ U such that

t(H, X ) = t(HP(Y ), Y ) ∀H ∈ GL(3, R). (7)

An infinitesimal version of this equation yields the necessary condition

−
∂tij

∂Fk
J

Fk
K0

K
JL +

∂tij

∂Y L
= 0 ∀Y ∈ U , Fk

K ∈ GL(3, R). (8)

In this equation we have used the notation

0I
JK = −

(

P−1
)I

M
PM

J ,K . (9)

Sufficiency can be argued as follows. Assume that equation (8) has a solution 0I
JK(Y ), independent of Fi

I .

Interpreting 0I
JK as the Christoffel symbols of a linear connection, if the associated curvature tensor happens to

vanish, we automatically have a parallelism on U . But even if the curvature does not vanish, let γ : [0, 1] → U

be a smooth parametric curve joining X with Y ∈ U . We can solve the system of ordinary differential equations

−
(

P−1
)I

M

dPM
J

ds
= 0I

JK

dγ K

ds
, (10)

where s is the curve parameter. The neighbourhood U may be reduced, if necessary, to satisfy the conditions of
the theorem of existence and uniqueness of solutions of ordinary differential equations. It can be easily verified
that all the points of the curve γ are materially isomorphic, via the solution PI

J (s) of equation (10). Indeed,

dtij(HP(s), Y (s))

ds
=
∂tij

∂Fk
L

Fk
K

(

P−1
)K

M

dPM
L

ds
+
∂tij

∂Y I

dγ I

ds

=

(

−
∂tij

∂Fk
L

Fk
K0

K
LI +

∂tij

∂Y I

)

dγ I

ds
= 0. (11)

This implies that
tij(HP(s), Y (s)) = constant = tij(HP(0), Y (0)) = tij(H, X ), (12)

for all H ∈ GL(3, R). In this way, all points in U are shown to be materially isomorphic to X . Notice that, once a
material isomorphism P is established, the groups at the corresponding points are automatically conjugate, thus
affording more freedom to choose material isomorphisms in a smooth way.

Remark 1. If the body is known a priori to be uniform and if a field of material isomorphisms P(Y ) is known,
then equation (9) delivers the Christoffel symbols of the corresponding material connection, as defined in
Noll [10] and Wang [11]. Here, however, this interpretation is possible only if equation (8) has a solution 0
independent of F. In other words, the existence of such a solution is a necessary and sufficient condition for
local uniformity.

Remark 2. Consider the space GL(3, R)×κ0(B) within which constitutive laws can be prescribed, as in equation
(5). A tangent vector at a point of this product space has a component representing a vector δX tangent to the
body manifold and another component δP representing a small matrix increment. Intuitively speaking, if the
body happens to be uniform and if we choose, at a point (F, X ) ∈ GL(3, R) × κ0(B), a vector (δP, δX ) such
that δP describes a ‘small’ (i.e., near to unity) material isomorphism between X and X + δX , we observe a
property of left invariance in the following sense. As we move to a point (F′, X ) ∈ GL(3, R) × κ0(B), the vector
corresponding to the same material isomorphism will have the same component δP as before. This is precisely
the meaning of equation (12), which is satisfied identically for all elements of the general linear group.

Our purpose in this paper is to address the question as to what is the most general situation that can arise
from the mere assumption of smoothness of the constitutive law of a material body. Our point of departure is
inspired by equation (12) in a uniform material. Given the constitutive equation (5), we will consider the (never
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empty) set of all smooth left-invariant vector fields on GL(3, R) × κ0(B) that annihilate the differential of the
constitutive law. These fields give rise, in general, to a singular distribution in GL(3, R) × κ0(B), which we call
the material distribution associated with the given constitutive equation. A theorem of Stefan and Sussman will
permit us to conclude that every smooth constitutive equation splits the body into a disjoint union of uniform
bodies of possibly different dimensions.

4. Distributions

4.1. Definition

A distribution D over a manifold M is obtained by assigning to each point x ∈ M a vector subspace Dx of the
tangent space TxM . The distribution is defined as the disjoint union

D =
⋃

x∈M

Dx. (13)

The distribution is said to be regular or of constant rank if the dimension of Dx is the same for all x ∈ M .
Otherwise, the distribution is called singular.5 We are interested in studying distributions, whether regular or
singular, which are smooth in a precise sense. To this end, recall that a vector field V on a manifold M is a
smooth section of the tangent bundle TM , that is, a smooth function V : M → TM such that π ◦ V = idM ,
where π is the tangent bundle projection and idM is the identity map in M . A vector field defined on some open
subset U ⊂ M is called a local vector field. We can, accordingly, consider the collection VD of all local vector
fields that belong to the distribution. Put differently, if a local vector field V is defined on an open subset U , then
V ∈ VD if, and only if, for each x ∈ U , we have that V (x) ∈ Dx. The distribution D is smooth if it is spanned by
VD. Equivalently, for every x ∈ M , Dx coincides with the set of all linear combinations of all vectors V (x) of all
local vector fields V ∈ VD defined at x.

4.2. Integral manifolds

An important question in the theory of smooth distributions is whether there are submanifolds whose tangent
spaces coincide everywhere with the local subspace in the distribution. In the case of a regular one-dimensional
distribution, the answer is always positive, as assured by the theorem of existence and uniqueness of solutions
of systems of ordinary differential equations. A simple counterexample in higher dimensions is obtained by
considering the smooth regular two-dimensional distribution in R

3 spanned by the two vector fields u = (1, 0, 0)
and v = (0, 1, x1), with the standard notation. At each point (x1, x2, x3) ∈ R

3, the two vectors span a plane, but
there is no surface ψ(x1, x2, x3) = 0 such that its tangent planes in some open subset of R

3 coincide with the
distribution.

An integral manifold of a distribution D in M is an immersed submanifold N ⊂ M , such that, at each point
x ∈ N , TxN = Dx. A maximal integral manifold is an integral manifold that is not contained in any strictly large
integral manifold. Given a distribution on M , it can be shown that each point x ∈ M that is contained in some
integral manifold is contained in a unique maximal integral manifold.

4.3. Integrable distributions

A smooth distribution D on a manifold M is said to be integrable if every point x ∈ M is contained in an integral
manifold of D and, hence, in a unique maximal integral manifold. It follows that an integrable distribution
induces a partition of the manifold M made up of all its maximal integral manifolds. This partition is known
as a foliation of M , with each maximal submanifold referred to as a leaf of the foliation. Notice that in a
strictly singular integrable distribution there will be leaves with different dimensions. To emphasize this fact,
we sometimes refer to the partition induced by a singular integrable distribution as a singular foliation. At
any rate, the use of the terminology ‘foliation’ is consistent with other uses of this terminology in differential
geometry. In particular, for each x ∈ M there exists a so-called distinguished chart (U ,φ) with the following
property: each inverse image of the set with constant components xn+1, . . . , xm, where m = dim M , falls within
a connected component of a leaf of dimension n. This means that, in spite of having required only that the
integral manifolds be just immersed submanifolds, the leaves of an integrable distribution fit well with each
other locally, like the layers of a cake. This property is guaranteed by the theorem of Stefan and Sussman.
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Theorem 1. (Stefan–Sussman) Let D be a smooth singular distribution on a smooth manifold M. Then the
following three conditions are equivalent:

1. D is integrable.
2. D is spanned by a family of local vector fields, with respect to which it is invariant.
3. D is the tangent distribution of a smooth singular foliation.

Remark 3. Condition 4.3 generalizes to singular distributions the condition of involutivity in the classical
Frobenius theorem, which is valid for regular distributions. The following elementary example [9] shows how
the fact that the subspaces of a singular distribution have different dimensions plays a role in making involutiv-
ity insufficient to guarantee integrability. Recall that the Lie bracket of two vector fields, u and v is the vector
field defined (in components of a local chart) as

[u, v]k = ui ∂vk

∂xi
− vi ∂uk

∂xi
, (14)

where the summation convention for diagonally repeated indices is in force. A distribution is involutive if the
Lie bracket of every pair of vector fields in the distribution belongs to the distribution. Consider the distribution
on R

2 spanned by the constant vector field ∂/∂x1 and by all vector fields in R
2\{O}, that is, the plane devoid

of its origin. This is clearly a smooth singular distribution, which assigns the whole tangent plane R
2 to each

point in R
2\{O}, and the line x2 = 0 to the origin. This distribution is not integrable, since it does not have

a (one-dimensional) integral manifold containing the origin. Indeed, this manifold should contain points other
than the origin, where the dimension of an integral manifold should be two. Conversely, the distribution is
trivially involutive. What fails, therefore, is not involutivity but stability, which is the meaning of condition 4.3.
A distribution is stable if it is invariant under the flow of any of its vector fields. Under the flow of the field
∂/∂x1, for any t 6= 0 some vector different from ∂/∂x1 will come to occupy the origin. The distribution is not
stable and, therefore, according to Theorem 1, it is not integrable.

5. The material distribution

5.1. Generation

As already remarked at the end of Section 3, we have at our disposal the whole family of local vector fields
over the (12-dimensional) manifold Z = GL(3, R) × κ0(B) that annihilate the differential of the constitutive
law. For pictorial purposes, let us represent the product manifold Z as shown in Figure 1, where the first factor
has been placed along the vertical direction for convenience, and let us consider a scalar-valued constitutive
function W : Z → R. The annihilation condition is tantamount to tangency of the vector fields to the level sets
of the function W . In a strictly uniform body, these level sets are invariant under the left action of the general
linear group. To understand why this is the case, recall that in a uniform body there exists at least one material
isomorphism between each pair of points. Let P(Y ) be a field of material isomorphisms between a fixed point
X ∈ B and all the points Y in a neighbourhood of X . Since W (FP(Y ), Y ) = W (F, X ) for all F ∈ GL(3, R),
a multiplication of F to the left by any H ∈ GL(3, R) leaves the equality unchanged and, therefore, translates
(multiplicatively) the whole level curve ‘vertically’ by the amount H. On the basis of this simple observation,
we declare as admissible only those local vector fields that satisfy both conditions: annihilation of dW and left
invariance, and we call the distribution generated by all such vector fields the material distribution associated
with the given constitutive law.

Note that, as a direct consequence of the left invariance, the dimension of the subspaces of the material
distribution at all points of Z that project on the same point of B is necessarily constant. If a point X ∈ B has no
neighbourhood with a non-vanishing admissible vector field, the subspace of the material distribution at each
point of the form (F, X ) ∈ Z is of dimension zero. Projecting the subspaces of the distribution in Z onto B, we
obtain a new singular distribution on B, which we call the body material distribution.

5.2. Integrability

To prove that the material distribution is always integrable, we only need to show that it is stable under the local
flows of its generating vector fields and then invoke Theorem 1. We recall that, when a group G acts (on the
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Figure 1. Admissible non-vanishing vector field. Since the left action is multiplicative, we may think of the vertical scale as logarithmic.

Only the level sets that are vertically parallel qualify as legitimate carriers of the desired non-vanishing vector fields.

left) on a manifold M , a vector field V on M is left-invariant if, and only if, its (local) flow φV
t commutes with

the group action, that is,
Lg ◦ φV

t = φV
t ◦ Lg, ∀g ∈ G, (15)

where Lg : G × M → M denotes the action of the group on the manifold.
Given two left-invariant vector fields, V and W, for each fixed value of t, consider the composite flow

φV
t ◦ φW

s ◦ φV
−t. At each point x ∈ M we have a parametrized curve γ , which is the image by φV

t of the

parametrized curve φW
s passing through the point φV

−t(x). The tangent vector to this curve is nothing but the

value of the vector field W by the image of dφV
t at the point φV

−t(x). Consequently, the tangent to γ at x is the

image of this vector under the flow φV
t . Thus, for each value of t we obtain a new vector field that is induced

(locally) on M by the image of W through the flow of V. Applying the action of G to its integral curves, we
obtain

Lg

(

φV
t ◦ φW

s ◦ φV
−t

)

= φV
t ◦ Lg

(

φW
s ◦ φV

−t

)

= φV
t ◦ φW

s ◦ Lg

(

φV
−t

)

= φV
t ◦ φW

s ◦ φV
−t ◦ Lg. (16)

Comparing this with equation (15), we conclude that, for each t, the local vector field associated with the flow
φV

t ◦ φW
s ◦ φV

−t is indeed left-invariant.
The result just derived is a general result for any left-invariant vector field induced by the flow of another

left-invariant vector field. Moreover, for the case of the material distribution, by construction, all the flow lines
involved dwell in level sets of the constitutive law. Consequently, the material distribution is stable under the
flow of any of its generating vector fields. Applying Theorem 1, we conclude that every material distribution is
integrable. Put differently, every material distribution is the tangent distribution to a smooth singular foliation.

As a projection of the material foliation, the body material distribution can be shown to be integrable. The
leaves of its associated singular foliation can be regarded as sub-bodies of various dimensions, each of which is
smoothly uniform, as suggested in Figure 2. This is a general conclusion that applies to any smooth constitutive
equation defined on a material body.

6. An example

Consider a body B placed in a reference configuration occupying the open cube (−1, 1)3 in R
3. Let its

constitutive law be characterized by a function W : Z → S(R3) given by a product of two functions as

t(F, X 1, X 2, X 3) = f (X 1)(FTF − I). (17)

In this equation, X 1, X 2, X 3 are the natural coordinates of R
3 and I is the identity thereat. The function f alters

the value of the material constants as X 1 varies. To obtain a meaningful example of a non-trivial singular
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Figure 2. Body material foliation as the projection of the material foliation.

material distribution, we adopt a C∞ function f : R → R

f (X 1) =

{

1 if X 1 ≤ 0

1 + φ(X 1) if X 1 > 0
, (18)

where φ(.) is non-negative, monotonic and differentiable, such as the function φ(x) = exp[−1/x]. A body with
this constitutive equation is not uniform, as can be directly verified by checking that equation (8) cannot possibly
be identically satisfied by any functions 0I

JL of the body coordinates for L = 1 and X 1 > 0.
To construct the vector fields that generate the material distribution, consider the differential of the

constitutive law, namely,

dtij = f (X 1)
(

δi
kFjJ + δ

j

kFiJ
)

dFk
J +

df

dX I

(

Fi
J FjJ − δij

)

dX I . (19)

In this equation, we are purposely using index notation to avoid any confusion. Since the coordinates, both in
the body (uppercase indices) and in space (lowercase indices), are assumed to be Cartesian, we can afford to be
liberal with the placing of subscripts and superscripts while obeying the summation convention. We are looking
for vector fields with components (dFk

J , dX I ) on Z that annihilate the differential (equation (19)) and that are at
the same time invariant with respect to the left action of the general linear group.

Consider first the open half cube with X 1 < 0. Since all the partial derivatives of the function f vanish
thereat, any vector field of the form (0, dX I ) is a generating vector field. This is clearly another way of stating
that this sub-body is uniform. Each vector can be considered as a small material parallelism. There are, however,
other generating vector fields in this sub-body. They are obtained by supplementing the vectors just discussed
with vector fields of the form (FkS�SJ , 0), where � is an arbitrary skew-symmetric matrix in the reference
configuration. These are clearly the infinitesimal generators of the full orthogonal group. In other words, these
vectors represent infinitesimal material symmetries of the constitutive law.

Proceeding to the analysis of the open half cube X 1 > 0, we discover that, whereas the infinitesimal symme-
tries are preserved, this is not so for the infinitesimal material parallelisms. Indeed, when dX 1 6= 0, there are no
vector fields that annihilate the differential of the constitutive law while being left-invariant with respect to the
action of the general linear group. We conclude that the infinitesimal material parallelisms are arbitrary vectors
with a vanishing dX 1 component.

The plane X 1 = 0 deserves special treatment. On an open neighbourhood of a point lying on this plane,
the admissible smooth vector fields cannot admit a component dX 1 different from zero. In other words, the
admissible vector fields on this plane are of the same kind as in the open half cube X 1 > 0, in spite of the fact
that the points on the plane are materially isomorphic to the points in the open half cube X 1 < 0.

Summarizing these results, the material distribution can be described as follows:
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Figure 3. Body material foliation for the example.

1. On the set Z1 = GL(3, R) × (−1, 0) × (−1, 1)2, the distribution subspaces are given by the product
Fg × R

3, where g is the Lie algebra of the symmetry group (in this case the orthogonal group O(3)).
2. On the complementary set Z \ Z1 the distribution subspaces are given by the product Fg × R

2.

The corresponding material foliation consists of the leaves O(3) × R
3 for X 1 < 0 and O(3) × R

2 for X 1 ≥ 0.
Finally, the body itself sustains as a body material foliation the open left half cube and the material planes
X 1 = constant ≥ 0, as shown in Figure 3.
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Notes

1. For an early attempt at a general geometric treatment, see Elżanowski and Epstein [8].

2. For a concise proof see, e.g., Michor [9]. A singular distribution is a perfectly smooth geometric structure. From the group-

theoretic point of view, it may be said that it generalizes the notion of the Lie algebroid.

3. Clearly, laminated bodies can be manufactured by gluing together a finite number of layers of different materials. Here, however,

we are analyzing the most general situation that can arise when the constitutive law of the body depends smoothly on position

within the body.

4. The notion of material isomorphism comes from Noll [10].

5. We follow Michor [9].
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[3] Epstein, M, and Elżanowski, M. Material inhomogeneities and their evolution: a geometric approach. Berlin: Springer-Verlag,

2007.

[4] Epstein, M, and de León, M. Geometrical theory of uniform Cosserat media. J Geom Phys 1998; 26: 127–170.

[5] Mackenzie, K. Lie groupoids and Lie algebroids in differential geometry (London Mathematical Society Lecture Note Series,

vol. 124). Cambridge, UK: Cambridge University Press, 1987.

[6] Jiménez, VM, de León, M, and Epstein, M. Lie groupoids and algebroids applied to the study of uniformity and homogeneity of

material bodies. arXiv:1607.04043v2, 2016.



Jiménez et al. 9

[7] Epstein, M, and de León, M. Homogeneity without uniformity: towards a mathematical theory of functionally graded materials.

Int J Solids Struct 2000; 37: 7577–7591.
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