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Abstract

For any body-time manifold R × B there exists a groupoid,
called material groupoid, encoding all the material properties of the
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evolution material. A smooth distribution, the material distribution,
is constructed to deal with the case in which the material groupoid
is not a Lie groupoid. This new tool provides a unified framework to
deal with general non-uniform evolution materials.
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1 Introduction

In this paper, we will use the approach developed by Walter Noll [6], based on
the notion of the so-called material diffeomorphism between pairs of points
in the body, namely, a map between the respective tangent spaces that
renders the constitutive responses identical. In Noll’s terminology, a body
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is said to be materially uniform if all of its points are mutually materially
isomorphic. In a uniform body, a smooth field of material isomorphisms is
nothing but a distant parallelism whose integrability is equivalente to the
homogeneity of the body. The existence of material symmetries works like a
gauge freedom for these parallelims, so that the geometric notion associated
to the body is the so-called G-structure, where G is a nodel for the group of
material symmetries.. In this context, local homogeneity is equivalent to the
integrability of the associated G-structure. However, this approach depends
on the choice of a linear frame (some archetype) and it cannot be used for
non-uniform bodies.

So, the natural extension of the theory was the consideration of a more
general kind of algebraic/geometric structures, say Lie groupoids. Indeed,
the point now is to consider all the material isomorphisms at the same time,
which provides just the so-called material groupoid. This theory has been
extensively developed in the book [3] (see also [17, 15, 16]) even for more
general materials where the material groupoid is not a Lie groupoid.

One of the contributions of the paper is the construction of groupoids
canonically associated with the evolution of a material [11, 12, 14], to present
a new framework. This has been done to study simple materials in previous
papers, but we now consider this new scenario. This technique will permit
us to define a type of global remodeling of non-uniform bodies (Definition
17) and a definition of differentiable global aging (Definition 23).

Recall that the infinitesimal approximation of a Lie groupoid is its Lie
algebroid, just as the tangent space to a manifold at a point is the linear
approximation of a neighborhood of the point. One of the constructions
we have developed in several previous papers is that of the characteristic
distribution associated to a subgroupoid of a Lie groupoid, even when
the subgroupoid is not differentiable. This construction is somehow a
generalization of the Lie algebroid associated to a Lie groupoid [17, 3].

The characteristic distributions associated to material groupoids are
constructed, which give rise to the respective foliations. Uniform aging is
also presented for the first time in this paper. It expresses that, although the
body ages, all material points age in the same way over time.

Instead to consider a simple body B as in simple materials, we consider
the so-called body-time manifold as the fibre bundle C = R × B over R.
The embbeddings are now fiber bundle embbeddings into the trivial fibre
bundle R × R

3 over R; such an embbedding Φ is called a history, since
for a given pòint X0 in B, the family Φt (X0) describes the history of the
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material point. The crucial point now is to consider the vertical subbundle
associated to the body-time manifold C, V, and the associated frame groupoid
Φ (V) ⇒ C. This groupoid will play a similar role of the 1-jets groupoid
Π1 (B,B) on B for elastic simple materials (see Part II). This permits to
define the corresponding material groupoid Ω (C) for a given constitutive law
as a subgroupoid of Φ (V), consisting just in those material isomorphisms,
connecting not only material points but also the different instants of time.
So, we may consider a temporal counterpart of uniformity called remodeling.
Indeed, a material particle X ∈ B is presenting a remodeling when it is
connected with all the instants by a material isomorphism, i.e., all the points
at R×{X} are connected by material isomorphisms; if this happen for all the
material points, then it is said that C presents a global remodeling. In other
words, the material properties of the body do not change along the time.
Particular cases are the phenomena of growth and resorption (remodeling
with volume increase or volume decrease of the material body). This kind
evolution may be found in biological tissues [26] or Wolff’s law of trabecular
architecture of bones [30]).

We also consider the aging phenomenum. The definition is very simple;
a material particle X ∈ B is presenting a aging when it is not presenting a
remodeling, i.e., not all the instants are connected by a material isomorphism.
In other words, the material response is not preserved along the time via
material isomorphisms, and the constitutive properties are changing with
the time. Our approach allow us to introduce the concept of smooth aging.

In a more technical way, these are some of the most relevant results
contained in the paper:

Corollary 21:

Let be a body-time manifold C with some (and hence all of them) state
uniform. C is presenting a smooth uniform remodeling if, and only if, Ω (C)
is a transitive Lie subgroupoid of Φ (V).

Theorem 22:

Let be a body-time manifold C. The body-material foliation F (resp.
uniform material foliation G) divides C into maximal smooth uniform
remodeling processes (resp. uniform remodeling processes).

Theorem 23:

Let be a body-time manifold C. C presents a smooth uniform remodeling
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process (resp. uniform remodeling) if, and only if, dim
(

AΩ (C)♯(t,X)

)

= 4

(resp. dim
(

AΩ (C)B(t,X)

)

= 4) for all instant t and particle X, with

AΩ (C)♯(t,X) (resp. AΩ (C)B(t,X)) the fibre of AΩ (C)♯ (resp. AΩ (C)B) at (t, X).

Roughly speaking, Corollary 21 establishes that the uniform
differentiable remodeling is equivalent to Ω (C) being a transitive Lie
subgrupoid of Φ (V). This clarifies the difference between remodeling and
uniform differentiable remodeling. Theorem 22 proves that there are two
maximal foliations of C separating the evolution of the material into uniform
remodeling and smooth uniform remodelings, respectively. On the other
hand, Theorem 23 shows that, using the material distribution, one can
imagine the shape of the foliation associated with the differentiable uniform
remodeling by calculating the dimensions of its leaves. In particular, if
the dimension is 4 at any material point, the evolution has a uniform
and differentiable remodeling. Thus, studying whether the evolution has
a uniform and differentiable remodeling is reduced to the study of the linear
equation (41).

On the other hand, Theorem 24 determines the material foliation by
uniformly differentiable components of the body at each of the instants. As
one can imagine, in Proposition 25 it is proved that if one freezes the
evolution in the leaves given by Theorem 22, the leaves of Theorem

24 are recovered. Finally, Theorem 26 is the analogue of Theorem 23

for differentiable remodeling, thus giving a computational condition (linear
equation) for studying differentiable remodeling.

Due to the length of this paper, it is important to note that Parts I and II
consist mainly of preliminaries to make the text as self-contained as possible.
Indeed, Part I introduces the basic concepts of groupoids, following the
references [21, 31]. It also includes a construction that is essential throughout
the paper, the so-called characteristic distribution, which was introduced for
the first time in [17]. Part II is devoted to a quick introduction to the
theory of simple materials and the concept of uniformity. A first use of the
characteristic distribution is shown in this part following [16, 15, 20] (see also
the book [3]). Finally, section 4 in part III is devoted to the introduction of
the concept of material evolution in a very abstract and setting. A reader
who is familiar with these topics could skip these two parts and go directly
to the three last parts of the paper where the new results are described.
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Part I

Groupoids and distributions

2 Groupoids

We will start with a very brief introduction on (Lie) groupoids which turns
out to be crucial to understand the results shown in this paper. Groupoids
are a natural generalization of groups which were presented in 1926 by Brandt
[2]. Furthermore, adding differential structures we obtain the notion of Lie
groupoid which was firtly introduced by Ehresmann in a series of articles
[7, 4, 5, 6] and redefined in [25] by Pradines.
We will follow the most relevant reference on groupoids [21]. In [10] and [34]
we can find a more intuitive view of this topic. The book [31] (in Spanish)
is also recommendable as a rigurous introduction to groupoids.

Definition 1. Let M be a set. A groupoid over M is given by a set
Γ provided with the maps α, β : Γ → M (source map and target map
respectively), ǫ : M → Γ (section of identities), i : Γ → Γ (inversion
map) and · : Γ(2) → Γ (composition law) where for each k ∈ N, Γ(k) is
given by k points (g1, . . . , gk) ∈ Γ× k). . . ×Γ such that α (gi) = β (gi+1) for
i = 1, . . . , k − 1. It satisfy the following properties:

(1) α and β are surjective and for each (g, h) ∈ Γ(2),

α (g · h) = α (h) , β (g · h) = β (g) .

(2) Associative law with the composition law, i.e.,

g · (h · k) = (g · h) · k, ∀ (g, h, k) ∈ Γ(3).

(3) For all g ∈ Γ,
g · ǫ (α (g)) = g = ǫ (β (g)) · g.

Therefore,
α ◦ ǫ ◦ α = α, β ◦ ǫ ◦ β = β.

Since α and β are surjetive, we have that

α ◦ ǫ = IdM , β ◦ ǫ = IdM ,

where the map IdM is the identity map at M .
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(4) For each g ∈ Γ,

i (g) · g = ǫ (α (g)) , g · i (g) = ǫ (β (g)) .

Then,
α ◦ i = β, β ◦ i = α.

These maps are called structure maps. The usual notation for a grupoid is
Γ ⇒ M .

M is denoted by Γ(0) and it is identified with the set ǫ (M) of identities
of Γ. Γ is also denoted by Γ(1). The elements of M are called objects and
the elements of Γ are called morpishms. Furthermore, for each g ∈ Γ the
element i (g) is called inverse of g and it is denoted by g−1.

Definition 2. Let Γ ⇒ M be a groupoid. The map (α, β) : Γ → M ×M is
called the anchor map. The space of sections of the anchor map is denoted
by Γ(α,β) (Γ).

Roughly speaking, a groupoid may be thought as a set of “arrows” (Γ)
joining points (M) next to a composition law with similar rules to the
composition of maps.

Definition 3. If Γ1 ⇒M1 and Γ2 ⇒M2 are two groupoids then a morphism
of groupoids from Γ1 ⇒ M1 to Γ2 ⇒ M2 consists of two maps Φ : Γ1 → Γ2

and φ : M1 → M2 satisfying the commutative relations of the following
diagrams,

Γ1 Γ2 Γ1 Γ2

M1 M2 M1 M2

Φ

α2

Φ

β2α1

φ

β1

φ

(Γ1)(2) Γ1

(Γ2)(2) Γ2

Φ(2)

·

Φ

·
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where,
Φ(2) (g1, h1) = (Φ (g1) ,Φ (h1))

for all (g1, h1) ∈ (Γ1)(2). Equivalently, for any g1 ∈ Γ1

α2 (Φ (g1)) = φ (α1 (g1)) , β2 (Φ (g1)) = φ (β1 (g1)) , (1)

where αi and βi are the source and the target maps of Γi ⇒Mi respectively,
for i = 1, 2, and preserves the composition, i.e.,

Φ (g1 · h1) = Φ (g1) · Φ (h1) , ∀ (g1, h1) ∈ Γ(2).

We will denote this morphism as Φ.

An immediate consequence is that Φ preserves the identities, i.e.,

Φ ◦ ǫ1 = ǫ2 ◦ φ,

where ǫi is the section of identities of Γi ⇒Mi for i = 1, 2.
Using the notion of morphism of groupoids, we may define a subgroupoid of
a groupoid Γ ⇒ M as a groupoid Γ′ ⇒ M ′ such that M ′ ⊆ M , Γ′ ⊆ Γ and
the inclusion map is a morphism of groupoids. More explicitly, Γ′ (⊆ Γ) ⇒
M ′ (⊆ M) is a subgroupoid of Γ ⇒ M if it is groupoid with the same structure
maps than Γ.

Example 1. A group is a groupoid over a point. Indeed, let G be a group
and e the identity element of G. Then, G ⇒ {e} is a groupoid, where the
operation law of the groupoid, ·, is the operation in G.

Example 2. For any set A, we shall consider the product space A×A. Then,
the maps,

α (a, b) = a, β (a, b) = b, ∀ (a, b) ∈ A× A

(c, b) · (a, c) = (a, b) , ∀ (c, b) , (a, c) ∈ A×A

ǫ (a) = (a, a) , ∀a ∈ A

(a, b)−1 = (b, a) , ∀ (a, b) ∈ A×A

endow A×A with a structure of groupoid over A, called the pair groupoid.
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Observe that, if Γ ⇒ M is an arbitrary groupoid over M , then the anchor
map (α, β) : Γ → M ×M is a morphism from Γ ⇒ M to the pair groupoid
of M .
Next, let us give the key example of groupoid in this paper.

Example 3. Let us consider a vector bundle A on a manifold M . For each
z ∈ M , denote by Az the fibre of A over z. Then, Φ (A) is the set of linear
isomorphisms Lx,y : Ax → Ay, for x, y ∈M and it may be endowed with the
structure of groupoid with the following structure maps,

(i) α (Lx,y) = x

(ii) β (Lx,y) = y

(iii) Ly,z ·Gx,y = Ly,z ◦Gx,y, Ly,z : Ay → Az, Gx,y : Ax → Ay

This groupoid is called the frame groupoid on A. A particular relevant case
arises when we choose A equal to the tangent bundle TM of M . In this
latter case, the groupoid will be called 1-jets groupoid on M and denoted
by Π1 (M,M). Notice that any isomorphism Lx,y : TxM → TyM may be
written as a 1−jet j1x,yψ of a local diffeomorphism ψ from M to M such that
ψ (x) = y. Remember that the 1−jet j1x,yψ is given by that induced tangent
map Txψ : TxM → TyM . To study in detail the formalism of 1−jets see [27].

Definition 4. Let Γ ⇒M be a groupoid with α and β the source map and
target map, respectively. For each x ∈M , the set

Γx
x = β−1 (x) ∩ α−1 (x) ,

is called the isotropy group of Γ at x. The set

O (x) = β
(

α−1 (x)
)

= α
(

β−1 (x)
)

,

is called the orbit of x, or the orbit of Γ through x.

Notice that the orbit of a point x consists of the points which are “connected"
with x by a morphism in the groupoid while the isotropy group is given by the
morphisms connecting x with x. Of course, the composition law is globally
defined inside the isotropy groups. Thus, the isotropy groups inherits a bona
fide group structure.
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Definition 5. If O (x) = {x}, or equivalently β−1 (x) = α−1 (x) = Γx
x, then x

is called a fixed point. The orbit space of Γ is the space of orbits of Γ on M . If
O (x) =M for all x ∈M (or equivalently (α, β) : Γ → M ×M is a surjective
map) the groupoid Γ ⇒ M is called transitive. If every x ∈ M is fixed
point, then the groupoid Γ ⇒ M is called totally intransitive. Furthermore,
a subset N of M is called invariant if it is a union of some orbits.
Finally, the sets,

α−1 (x) = Γx, β−1 (x) = Γx,

are called α−fibre at x and β−fibre at x, respectively.

Definition 6. Let Γ ⇒M be a groupoid. We may define the left translation
on g ∈ Γ as the map Lg : Γ

α(g) → Γβ(g), given by

h 7→ g · h.

We may define the right translation on g, Rg : Γβ(g) → Γα(g) analogously.

Note that, the identity map on Γx may be written as the following translation
map,

IdΓx = Lǫ(x). (2)

For any g ∈ Γ, the left (resp. right) translation on g, Lg (resp. Rg), is a
bijective map with inverse Lg−1 (resp. Rg−1).

Different kind of structures may be imposed on a groupoid. In particular,
we are interested in the so-called Lie groupoids which are endowed with a
differentiable structure.

Definition 7. A Lie groupoid is a groupoid Γ ⇒M such that Γ is a smooth
manifold, M is a smooth manifold and the structure maps are smooth.
Furthermore, the source and the target map are submersions.
A Lie groupoid morphism is a groupoid morphism which is differentiable.
An embedding of Lie groupoids is a Lie groupoid morphism (Φ, φ) such that
Φ and φ are embeddings. A Lie subgroupoid of Γ ⇒ M is a Lie groupoid
Γ′ ⇒M ′ such that Γ′ and M ′ are submanifolds of Γ and M respectively, and
the inclusion maps iΓ′ : Γ′ →֒ Γ iM ′ : M ′ →֒ M become a morphism of Lie
groupoids. Γ′ ⇒M ′ is said to be a reduced Lie subgroupoid if it is transitive
and M ′ =M .
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It is not difficult to check that if there exists a reduced Lie subgroupoid
of a groupoid Γ ⇒M , then Γ ⇒ M is transitive.

Notice that the following statements are immediate:

• ǫ is an injective immersion.

• For each g ∈ Γ, the left translation Lg (resp. right translation Rg) is a
diffeomorphism, for all g ∈ Γ.

• For each k ∈ N, Γ(k) is a smooth manifold, for all k ∈ N.

• The β−fibres and the α−fibres are closed submanifolds of Γ.

Example 4. A Lie group is a Lie groupoid over a point.

Example 5. Let M be a manifold. The pair groupoid M ×M ⇒ M is a
Lie groupoid.

Example 6. The frame groupoid Φ (A) on a vector bundle A is a Lie
groupoid (see example 3). Indeed, let (xi) and (yj) be local coordinates on
open neighbourhood U, V ⊆M and {αp} and {βq} be local basis of sections
of AU and AV respectively. The corresponding local coordinates (xi ◦ π, αp)
and (yj ◦ π, βq) on AU and AV are given by

• For all a ∈ AU ,
a = αp (a)αp

(

xi (π (a))
)

.

• For all a ∈ AV ,
a = βq (a) βq

(

yj (π (a))
)

.

Then, it may be constructed a local coordinate system on Φ (A)

Φ (AU,V ) :
(

xi, yji , y
j
i

)

,

where, AU,V = α−1 (U) ∩ β−1 (V ) and for each Lx,y ∈ α−1 (x) ∩ β−1 (y) ⊆
α−1 (U) ∩ β−1 (V ),

• xi (Lx,y) = xi (x).

11



• yj (Lx,y) = yj (y).

• yji (Lx,y) = ALx,y
, where ALx,y

is the associated matrix to the induced
map of Lx,y by the local coordinates (xi ◦ π, αp) and (yj ◦ π, βq).

In the particular case of the 1−jets groupoid on M , Π1 (M,M), the local
coordinates will be denoted as follows

Π1 (U, V ) :
(

xi, yj, yji
)

, (3)

where, for each j1x,yψ ∈ Π1 (U, V )

• xi
(

j1x,yψ
)

= xi (x).

• yj
(

j1x,yψ
)

= yj (y).

• yji
(

j1x,yψ
)

=
∂ (yj ◦ ψ)

∂xi|x
.

The most important example of groupoid in this paper will be the material
groupoid which will be constructed as a subgroupoid of special cases of the
frame groupoid. In particular, we will deal with the 1−jets groupoid Π1 (B,B)
on a manifold B (body) and a frame groupoid Φ (V) of the vertical bundle V
of a given vector bundle C (material evolution).

3 Characterististic distribution

From now on, we will consider the following elements: Γ ⇒ M will be a Lie
groupoid and Γ will be a subgroupoid of Γ (not necessarily a Lie subgroupoid
of Γ) over the same manifold M .

We will also denote by α, β, ǫ and i the restrictions of the structure
maps α, β, ǫ and i of Γ to Γ (see the diagram below)

Γ Γ

M

j

12



where j is the inclusion map. Thus, we will construct the so-called
characteristic distribution AΓ

T
([3, 17]).

A (local) vector field Θ ∈ Xloc (Γ) on Γ will be called admissible for the couple
(

Γ,Γ
)

if it satisfies that,

(i) Θ is tangent to the β−fibres,

Θ (g) ∈ Tgβ
−1 (β (g)) ,

for all g in the domain of Θ.

(ii) Θ is invariant by left translations,

Θ (g) = Tǫ(α(g))Lg (Θ (ǫ (α (g)))) ,

for all g in the domain of Θ.

(iii) The (local) flow ϕΘ
t of Θ satisfies

ϕΘ
t (ǫ (x)) ⊆ Γ,

for all x ∈M .

So, roughly speaking, an admissible vector field is a left invariant vector field
on Γ whose flow at the identities is totally contained in Γ. We denotes the
family of admissible vector fields for the couple

(

Γ,Γ
)

by C(Γ,Γ) or simply C

if there is no danger of confusion.
Then, for each g ∈ Γ, AΓ

T

g is the vector subspace of TgΓ linearly generated by
the evaluation of the admissible vector fields at g. Observe that, for all g ∈ Γ,
the zero vector 0g ∈ TgΓ is contained in the fibre of the distribution at g,

namely AΓ
T

g (we remit to [3, 17, 20] for non trivial examples). Furthermore,
it satisfies that a vector field Θ of Γ holds conditions (i) and (ii) if, and only
if, its local flow ϕΘ

t is left-invariant or, equivalently,

Lg ◦ ϕ
Θ
t = ϕΘ

t ◦ Lg, ∀g, t.

Therefore, condition (iii) is equivalent to the following,

(iii)’ The (local) flow ϕΘ
t of Θ at g is totally contained in Γ, for all g ∈ Γ.

13



So, the admissible vector fields are the left-invariant vector fields on Γ whose
integral curves are confined inside or outside Γ.
The distribution AΓ

T
generated by the vector spaces AΓ

T

g is called
characteristic distribution of Γ. As an immediate result, we have that this
distribution is differentiable.

Remark 1. This construction of the characteristic distribution associated to
a subgroupoid Γ of a Lie groupoid Γ may be thought as a generalization of
the construction of the associated Lie algebroid to a given Lie groupoid (see
[21]).

♦

The algebraic structure associated to a groupoid allows us to define more
objects. Particularly, one of them is a smooth distribution over the base M
denoted by AΓ

♯
. The other is a “differentiable" correspondence AΓ which

associates to any point x ofM a vector subspace of Tǫ(x)Γ. Both constructions
are characterized by the following diagram

Γ P (TΓ)

M P (TM)

AΓ
T

Tαǫ

AΓ
♯

AΓ

where P (E) defines the power set of E. Therefore, for any x ∈M , the fibres
are characterized by,

AΓx = AΓ
T

ǫ(x)

AΓ
♯

x = Tǫ(x)α
(

AΓx

)

The distribution AΓ
♯
is called base-characteristic distribution of Γ.

Notice that, taking into account that AΓ
T

is locally generated by
left-invariant vector field, we have that for each g ∈ Γ,

AΓ
T

g = Tǫ(α(g))Lg

(

AΓ
T

ǫ(α(g))

)

,

14



i.e., the characteristic distribution is left-invariant.

Theorem 1 ([3, 17]). Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid
of Γ (not necessarily a Lie groupoid) over M . Then, the characteristic

distribution AΓ
T

is integrable and its associated foliation F of Γ satisfies
that Γ is a union of leaves of F .

This result is a consequence of the celebrated Stefan-Sussman’s theorem
[28, 29] which deals with the integrability of singular distributions.

So, the distribution AΓ
T

is the tangent distribution of a smooth (possibly)
singular foliation F . Each leaf at a point g ∈ Γ is denoted by F (g).
Furthermore, the family of the leaves of F at points of Γ is called the
characteristic foliation of Γ. Note that the leaves of the characteristic
foliation covers Γ but it is not exactly a foliation of Γ (Γ is not necessarily a
manifold). The foliation F satisfies that

(i) For any g ∈ Γ,
F (g) ⊆ Γβ(g).

Indeed, if g ∈ Γ, then

F (g) ⊆ Γ
β(g)

.

(ii) For any g, h ∈ Γ such that α (g) = β (h), we have

F (g · h) = g · F (h) .

In this way, without any assumption of differentiability over Γ, we have
that Γ is union of leaves of a foliation of Γ. This provides some kind
of “differentiable" structure over Γ. The following result provides us an
intuition about the maximality condition of the characteristic foliation.

Corollary 2. Let H be a foliation of Γ such that Γ is a union of leaves of
H and

H (g) ⊂ Γβ(g).

Then, the characteristic foliation F is coarser that H, i.e.,

H (g) ⊆ F (g) , ∀g ∈ Γ. (4)
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Proof. The result follows from the facts of that H is generated by
left-invariant vector fields and any of these left-invariant vector field Θ ∈ TH
is obviously tangent to the characteristic distribution.

As a consequence, the fibres Γ
x

are submanifolds of Γ for all x ∈ M if, and
only if, Γ

x
= F (ǫ (x)) for all x ∈M .

Proposition 3 (Consistency). Let be Γ ⇒ M , Γ′ ⇒ M ′ two Lie groupoids
and Φ : Γ → Γ′ an embedding of Lie groupoids. Consider a (non necessarily
Lie) subgroupoid Γ of Γ. Then, the image of the characteristic foliation F of
Γ by Φ is the chacteristic foliation of Φ

(

Γ
)

as a subgroupoid of Γ′.

Proof. First at all, notice that Φ (Γ) is Lie groupoid of Γ′ on φ (M), where φ
is projection of Φ on the base manifolds, because Φ is an embedding of Lie
groupoids.
Let Θ ∈ Xloc (Γ) be an admissible vector field for the couple

(

Γ,Γ
)

, i.e.,

• Θ is left-invariant.

• The (local) flow ϕΘ
t of Θ satisfies

ϕΘ
t (ǫ (x)) ⊆ Γ,

for all x ∈M .

Then, the pushforward Φ∗Θ is an admissible vector field for the couple
(

Φ (Γ) ,Φ
(

Γ
))

. In fact, since Φ is a morphism of Lie groupoids, we have
that Φ∗Θ is left-invariant.
On the other hand, the (local) flow of Φ∗Θ is given by Φ ◦ ϕΘ

t ◦ Φ−1, where
ϕΘ
t is the local flow of Θ. So, at each x = φ (y) ∈ φ (M), the local flow of

Φ∗Θ at the identity on y, Φ ◦ ϕΘ
t (ǫ (x)) is totally contained in Φ (Γ), i.e.,

Φ ◦ ϕΘ
t (ǫ (x)) ∈ Φ

(

Γ
)

, ∀t.

Analogously, given an admissible vector field Λ for the couple
(

Φ (Γ) ,Φ
(

Γ
))

,
the pushforward Φ−1

∗ Λ is an admissible vector field for the couple
(

Γ,Γ
)

.
Hence, we have proved that the image of the characteristic foliation F of Γ
by Φ is the chacteristic foliation of Φ

(

Γ
)

as a subgroupoid of Φ (Γ).
Finally, due to the fact that Φ (Γ) is a Lie subgroupoid of Γ′ and Φ

(

Γ
)

is
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contained in Φ (Γ), any admissible vector field Λ for the couple
(

Φ (Γ) ,Φ
(

Γ
))

may be (globally) extended, by using left translations, to an admissible
vector field Λ̃ for the couple

(

Γ′,Φ
(

Γ
))

. In fact, the extension Λ̃ is, by
construction, a left-invariant vector field on Γ′ and its flow at the identities
is completely contained in Φ

(

Γ
)

. On the other hand, analogously, the
restriction to Φ (Γ) of any admissible vector field Θ for the couple

(

Γ′,Φ
(

Γ
))

is an admissible vector field for the couple
(

Φ (Γ) ,Φ
(

Γ
))

. Therefore, the
characteristic distribution of Γ as a subgroupoid of Φ

(

Γ
)

is the restriction

of the characteristic distribution of Γ as a subgroupoid of Γ
′
.

Thus, this results show a consistency property in the definition of the
characteristic distribution. In particular, the characteristic foliation (resp.
distribution) does not depend on the “ambient space”.

Notice that, analogously to Theorem 1, we may proved that the
base-characteristic distribution AΓ

♯
is integrable. Thus, we will denote the

foliation which integrates the base-characteristic distribution over the base
M by F . For each point x ∈ M , the leaf of F containing x will be denoted
by F (x). F will be called the base-characteristic foliation of Γ.

Example 7. Let ∼ be an equivalence relation on a manifold M , i.e., a binary
relation that is reflexive, symmetric and transitive. Then, define the subset
O of M ×M given by

O := {(x, y) : x ∼ y}. (5)

Hence, O is a subgroupoid of M × M over M . In fact, this is equivalent
to the properties reflexive, symmetric and transitive. For each x ∈ M , we
denote by Ox to the orbit around x,

Ox := {y : x ∼ y}.

Notice that the orbits divide M into a disjoint union of subsets. However,
these are not (necessarily) submanifolds.
On the other hand, the base-characteristic foliation gives us a foliation F of
M such that

F (x) ⊆ Ox, ∀x ∈ M.
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So, consider a random equivalence relation on a manifold M . Maybe the
orbits are not manifolds but we have proved that we may divide M in a
maximal foliation such that any orbit is a union of leaves. This foliation is
maximal in the sense that there is no any other coarser foliation of M whose
leaves are contained in the orbits (see theorem 4 and corollary 5).

Next, we will show that the leaves of F may be endowed with even more
geometric structure. Indeed, we will construct a Lie groupoid structure over
each leaf of F .
For each x ∈M , let us consider the groupoid Γ (F (x)) generated by F (ǫ (x)).
Notice that, for each h ∈ F (ǫ (x)),

F (ǫ (x)) = F
(

h
)

= h · F
(

ǫ
(

α
(

h
)))

.

Hence,

F
(

h
−1
)

= h
−1

· F (ǫ (x)) = F
(

ǫ
(

α
(

h
)))

.

On the other hand, let be t ∈ F
(

ǫ
(

α
(

h
)))

. Therefore,

F
(

h · t
)

= h · F
(

t
)

= h · F
(

ǫ
(

α
(

h
)))

= F (ǫ (x)) .

i.e., h · t ∈ F (ǫ (x)) and, hence, t can be written as h
−1

·g with g ∈ F (ǫ (x)) .
So, we have proved that

F
(

ǫ
(

α
(

h
)))

⊂ Γ (F (x)) ,

for all h ∈ F (ǫ (x)). In fact, by following the same argument we have that

Γ (F (x)) = ⊔g∈F(ǫ(x))F (ǫ (α (g))) , (6)

i.e., Γ (F (x)) can be depicted as a disjoint union of fibres at the identities.
Furthermore, Γ (F (x)) may be equivalently defined as the smallest transitive
subgroupoid of Γ which contains F (ǫ (x)). Observe that the β−fibre of this
groupoid at a point y ∈ F (x) is given by F (ǫ (y)). Hence, the α−fibre at y
is

F
−1

(ǫ (y)) = i ◦ F (ǫ (y)) .

Furthermore, the groups F (ǫ (y)) ∩ Γy are exactly the isotropy groups of
Γ (F (x)).
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Theorem 4. For each x ∈ M there exists a transitive Lie subgroupoid
Γ (F (x)) of Γ with base F (x).

The proof of this result comes from some technical lemmas and may be
found in [3, 17].
Thus, we have divided the manifold M into leaves F (x) which have a
maximal structure of transitive Lie subgroupoids of Γ.

Corollary 5 ([3]). Let H be a foliation of M such that for each x ∈ M
there exists a transitive Lie subgroupoid Γ (x) of Γ over the leaf H (x)
contained in Γ whose family of β−fibres defines a foliation on Γ. Then,
the base-characteristic foliation F is coarser than H, i.e.,

H (x) ⊆ F (x) , ∀x ∈M.

Futhermore it satisfies that

Γ (x) ⊆ Γ (F (x)) .

As a consequence, we have that Γ is a transitive Lie subgroupoid of Γ if,
and only if, M = F (x) and Γ = Γ (F (x)) for some x ∈ M .

Let us consider now the following equivalence relation ∼ on M given by

x ∼ y ⇔ ∃g ∈ Γ, α (g) = x, β (g) = y.

Then, by example 7, we have a subgroupoid Γ
B

of the pair groupoid
M ×M . So, we may consider its associated base-characteristic distribution
AΓ

B
at M which is called the transitive distribution of Γ. The associated

base-characteristic foliation G of M will be called transitive foliation of Γ.

Corollary 6. The base-characteristic foliation F based on the groupoid Γ is
contained in the transitive foliation G of Γ.

Proof. For each x ∈ M , F (x) × F (x) defines a transitive Lie subgroupoid
of M ×M over F (x) and the result follows from corollary 5.

Summarizing, for a fixed subgroupoid Γ of a Lie groupoid Γ we have
available three canonical foliations, F , F and G. Roughly speaking, G divides
the base manifold into a maximal foliation such that each leaf is transitive
or, in other words, G divides the orbits of Γ into a maximal foliation of M .
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The main difference between the foliations G and F is that, with F , we are
not only requesting “differentiability” on the base manifold M but on the
groupoid Γ.
For instance, suppose that Γ is a transitive subgroupoid of Γ. Then, G
consists in one unique leaf equal to M . However, if Γ is not a Lie subgroupoid
of Γ the base-characteristic foliation F does not have (necessarily) one unique
leaf equal to M .
Apart from Example 7, we may study several relevant applications of the
characteristic distribution. In [3] we may find some of them. Here we are
mainly interested in one of them, the so-called material distributions, which
will be presented in what follows.

Part II

Elastic simple materials

We will start dealing with the notion of simple material. For a detailed
introduction to this topic we refer to the books [10, 33, 14]. Another
recommendable reference is [22].
A (deformable) body is defined as an oriented manifold B of dimension 3
which can be covered by just one chart. The points of the body B will be
called body points or material particles and will be denoted by using capital
letters (X, Y, Z ∈ B). A sub-body of B is an open subset U of the manifold
B.
The existence of the so-called configurations arises from the need of
manifesting the body into the “real world ”. Thus, a configuration is an
embedding φ : B → R

3. An infinitesimal configuration at a particle X is
given by the 1−jet j1X,φ(X)φ where φ is a configuration of B. The points on
the euclidean space R

3 will be called spatial points and will be denoted by
lower case letters (x, y, z ∈ R

3).
From now on, we will fix a configuration, denoted by φ0, called reference
configuration. The image B0 = φ0 (B) will be called reference state.
Coordinates in the reference configuration will be denoted by XI , while any
other coordinates will be denoted by xi.
A deformation of the body B is defined as the change of configurations
κ = φ1 ◦φ

−1
0 or, equivalently a diffeomorphism from the reference state B0 to

20



any other open subset B1 of R3. Analogously, an infinitesimal deformation
at φ0 (X) is given by a 1−jet j1φ0(X),φ(X)κ where κ is a deformation.

A relevant goal in continuum mechanics is to study the motion of a body.
Here, the internal properties of the body will play an important role (gum
or rock are not deformed equally under the same loading).
We may interpret this fact as the dymanical principles are not enough to
characterize the motion of a deformable body. Thus, following [24], the
mechanical response of the body to the history of its deformations is supposed
to be determined for the so-called constitutive equations.
For elastic simple bodies, or simply simple bodies, [33] we will assume that the
constitutive law depends on a particle only on the infinitesimal deformation
at the same particle. More explicitly, the mechanical response for an (elastic)
simple material B, in a fixed reference configuration φ0, is formalized as a
differentiable map W from the set B×Gl (3,R), where Gl (3,R) is the general
linear group of 3 × 3-regular matrices, to a fixed (finite dimensional) vector
space V . In general, V will be the space of stress tensors.
Indeed, in continuum mechanics, the contact forces at a particle X in a given
configuration φ are characterized by a symmetric second-order tensor

TX,φ : R3 → R
3

on R
3 called the stress tensor. A physical interpretation is that TX,φ turns the

unit normal of a smooth surface into the stress vector acting on the surface
at φ (X). Then, the mechanical response is given by the following identity:

W (X,F ) = TX,φ,

where F is the 1−jet at φ0 (X) of φ ◦ φ−1
0 .

At this point, we should introduce the rule of change of reference
configuration. In particular, let φ1 be another configuration and W1 be the
mechanical response associated to φ1. Then,

W1 (X,F ) =W (X,F · C01) , (7)

for all regular matrix F where C01 is the associated matrix to the 1−jet at
φ0 (X) of φ1 ◦ φ

−1
0 . Equivalently,

W (X,F0) = W1 (X,F1) , (8)
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where Fi, i = 0, 1, is the associated matrix to the 1−jet at φi (X) of φ ◦ φ−1
i

with φ a configuration. It is important to remark that Eq. (7) implies that
we may define W as a map on the space of 1-jets of (local) configurations
which is independent on the chosen reference configuration. In fact, for each
configuration φ we will define

W
(

j1X,xφ
)

= W (X,F ) ,

where F is the associated matrix to the 1−jet at φ0 (X) of φ ◦ φ−1
0 .

Notice that any sub-body inherits the structure of elastic simple body
from the body B. This local property permits us to compare the material
properties at the particles of the body. In particular, we may study when
two particles X and Y are made of the same material. To do this, we will
introduce the notion of material isomorphisms.

Definition 8. Let B be a body. Two material particles X, Y ∈ B are said
to be materially isomorphic if there exists a local diffeomorphism ψ from an
open neighbourhood U ⊆ B of X to an open neighbourhood V ⊆ B of Y
such that ψ (X) = Y and

W (X,F · P ) =W (Y, F ) , (9)

for all infinitesimal deformation F where P is given by the Jacobian matrix of
φ0◦ψ◦φ

−1
0 at φ0 (X). The 1−jets of local diffeomorphisms satisfying Eq. (9)

are called material isomorphisms. A material isomorphism from X to itself
is called a material symmetry. In cases where it causes no confusion we often
refer to associated matrix P as the material isomorphism (or symmetry).

So, intuitively, two points are materially isomorphic if the constitutive
equation of one of them differs from the other only by an application of a
linear transportation, i.e., the are made of the same material.
It is remarkable that the relation of being “materially isomorphic" defines
an equivalence relation (symmetric, reflexive and transitive) over the body
manifold B.
We will denote by G (X) to the set of all material symmetries at particle X.
As a consequence we have that every G (X) is a group. Therefore, we may
prove that the material symmetry groups of materially isomorphic particles
are conjugated, i.e., if X and Y are material isomorphic we have that

G (Y ) = P ·G (X) · P−1,

where P is a material isomorphism from X to Y .
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Proposition 7. Let B be a body. Two body points X and Y are materially
isomorphic if, and only if, there exist two (local) configurations φ1 and φ2

such that
W1 (X,F ) =W2 (Y, F ) , ∀F,

where Wi is the mechanical response associated to φi for i = 1, 2.

Proof. Let j1X,Y ψ be a material isomorphism from X to Y . Then, we may
prove the result by imposing,

φ2 = φ1 ◦ ψ,

where φi is the reference configuration for Wi.

This result is crucial to understand the idea of material isomorphism.
Thus, two material points will be made of the same material if their
mechanical responses are the same up to a change of reference configuration.

Definition 9. A body B is said to be uniform if all of its body points are
materially isomorphic.

Intutively, a body is uniform if all the points are made of the same
material. Let B be a uniform body and a fixed body point X0; for any other
body point Y we may find a material isomorphism fromX0 to Y , say P (Y ) ∈
Gl (3,R). Then, we shall construct a map P : B → Gl (3,R) consisting of
material isomorphisms. However, P is not in general a differentiable map.

Definition 10. A body B is said to be smoothly uniform if for each pointX ∈
B there is a neighbourhood U around X and a smooth map P : U → Gl (3,R)
such that for all Y ∈ U it satisfies that P (Y ) is a material isomorphism
from X to Y . The map P is called a right (local) smooth field of material
isomorphisms. A left (local) smooth field of material isomorphisms is defined
analogously.

Let P be a right (local) smooth field of material isomorphisms. Hence,
the mechanical response of the sub-body U satisfies that

W (Y, F ) =W (X,F · P (Y )) ,
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for all Y ∈ U . Then, we may define

W (F ) = W (X,F ) .

Therefore,
W (Y, F ) = W (F · P (Y )) . (10)

Eq. (10) is interpreted as that the dependence of the mechanical response
(near to a material particle) of the body is given by a multiplication of F to
the right by a right smooth field of material isomorphisms.

Proposition 8. Let B be a body. Then, B is (smoothly) uniform if, and only
if, there exists a (differentiable) map W : Gl (3,R) → V satisfying Eq. (10)
for a (differentiable) map P : U → Gl (3,R).

Proof. Assume that Eq. (10) is satisfied for a map P and fix a material point
X. Then, consider

Q : U → Gl (3,R)

given by
Q (Y ) = P (Y )P (X)−1 . (11)

Therefore, Q is a left (smooth) field of material isomorphisms.

It is important to note that the smooth uniformity is the starting point of
the use of G−structures in [8] (see [9] or [32]; see also [1] and [23]). In fact, let
us consider a smoothly uniform body B. Fix Z0 ∈ B and Z0 = j10,Z0

φ ∈ FB
a frame at Z0. Then, the following set:

ωG0 (B) := {j1Z0,Y
ψ · Z0, : j

1
Z0,Y

ψ is a material isomorphism},

is a G0−structure on B (which contains Z0). This G0−structure has been
used to study simple material. However, it is defined only for smoothly
uniform materials and it is not canonically defined.

The use of groupoids solved these two points as may be found in [19, 13] (see
also [15, 18]). Let B be a elastic simple body with reference configuration
φ0, and mechanical response W : B × Gl (3,R) → V . Eq. (8) permits us to
define W on the space of (local) configurations in such a way that for any
configuration φ we have that

W
(

j1X,xφ
)

= W (X,F ) ,
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where F is the associated matrix to the 1−jet at φ0 (X) of φ ◦ φ−1
0 .

Indeed, composing φ0 by the left, we obtain that W may be described as a
differentiable map W : Π1 (B,B) → V from the groupoid of 1−jets Π1 (B,B)
(see example 3) to the vector space V which does not depend on the image
point of the 1−jets of Π1 (B,B), i.e., for all X, Y, Z ∈ B

W
(

j1X,Y φ
)

= W
(

j1X,Z

(

φ−1
0 ◦ τZ−Y ◦ φ0 ◦ φ

))

, (12)

for all j1X,Y φ ∈ Π1 (B,B), where τv is the translation map on R
3 by the vector

v. It is relevant to note here that, in contrast with the definition on the space
of local configuration, the definition of the mechanical response on Π1 (B,B)
does depend on the choice of the configuration φ0.
Therefore, we can say that, two material particles X and Y are materially
isomorphic if, and only if, there exists a local diffeomorphism ψ from an open
subset U ⊆ B of X to an open subset V ⊆ B of Y such that ψ (X) = Y and

W
(

j1Y,κ(Y )κ · j
1
X,Y ψ

)

= W
(

j1Y,κ(Y )κ
)

, (13)

for all j1Y,κ(Y )κ ∈ Π1 (B,B). In these conditions, j1X,Y ψ will be called a
material isomorphism from X to Y .
For any two points X, Y ∈ B, the collection of all material isomorphisms
from X to Y will be denoted by G (X, Y ). Then, the set

Ω (B) = ∪X,Y ∈BG (X, Y ) . (14)

is a subgroupoid of Π1 (B,B). This groupoid will be called material groupoid
of B.
The material symmetry group G (X) at a body point X ∈ B is simply
the isotropy group of Ω (B) at X. For any X ∈ B, the set of material
isomorphisms from X to any other point (resp. from any point to X) will be
denoted by Ω (B)X (resp. Ω (B)X). Finally, the structure maps of Ω (B) will
be denoted by α, β, ǫ and i which are just the restrictions of the corresponding
ones on Π1 (B,B).
As a consequence of the continuity of W we have that, for all X ∈ B, G (X) is
a closed subgroup of Π1 (B,B)XX and, therefore, we have the following result:

Proposition 9. Let B be a simple body. Then, for all X ∈ B the symmetry
group G (X) is a Lie subgroup of Π1 (B,B)XX .

This result could give us the intuition of that Ω (B) is a Lie subgroupoid of
Π1 (B,B). However, this is not true (see [17, 20] for some counterexamples).
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Proposition 10. Let B be a body. B is uniform if and only if Ω (B) is a
transitive subgroupoid of Π1 (B,B).

Next, by composing appropriately with the reference configuration,
smooth uniformity (Definition 10) may be characterized in the following way.

Proposition 11. A body B is smoothly uniform if, and only if, for each point
X ∈ B there is an neighbourhood U around X such that for all Y ∈ U and
j1Y,Xφ ∈ Ω (B) there exists a local section P of

αX : Ω (B)X → B,

from ǫ (X) to j1Y,Xφ.

For obvious reasons, (local) sections of αX will be called left fields of
material isomorphism at X. On the other hand, local sections of

β
X
: Ω (B)X → B,

will be called right fields of material isomorphism at X.
So, B is smoothly uniform if, and only if, for any two particles X, Y ∈ B
there are two open neighbourhoods U ,V ⊆ B around X and Y respectively
and P : U × V → Ω (B) ⊆ Π1 (B,B), a differentiable section of the anchor
map

(

α, β
)

. When X = Y we may assume U = V and P is a morphism of
groupoids over the identity map, i.e.,

P (Z, T ) = P (R, T )P (Z,R) , ∀T,R, Z ∈ U .

So, we have the following corollary of proposition 9.

Corollary 12. Let B be a body. B is smoothly uniform if and only if Ω (B)
is a transitive Lie subgroupoid of Π1 (B,B).

Proof. Assume that B is smoothly uniform. Consider j1X,Y ψ ∈ Ω (B) and
P : U × V → Ω (B), a differentiable section of the anchor map

(

α, β
)

with
X ∈ U and Y ∈ V. Then, we may construct the following bijection

ΨU ,V : Ω (U ,V) → B ×B ×G (X, Y )

j1Z,Tφ 7→
(

Z, T,P (Z, Y )
[

j1Z,Tφ
]−1

P (X, T )
)

where Ω (U ,V) is the set of material isomorphisms from U to V. By using
proposition 9, we deduce that G (X, Y ) is a differentiable manifold. Thus,
we can endow Ω (B) with a differentiable structure of a manifold. Finally,
the converse has been proved in [21]).
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This corollary is useful to understand the difference between smooth
uniformity and ordinary uniformity. Furthermore, it provides an intuition
about the lack of differentiability which could have the material groupoid.
Thus, it arises the need of using the characteristic distribution (see the
previous section).
Consider B as a simple body with W : Π1 (B,B) → V as the mechanical
response. Then, we have available the so-called material groupoid Ω (B)
which is a (non necessarily Lie) subgroupoid of the groupoid of 1−jets
Π1 (B,B). So, it makes sense to apply here the notion of characteristic
distribution.
Let Θ be an admissible vector field for the couple (Π1 (B,B) ,Ω (B)), i.e., its
local flow at the identity ǫ (X), ϕΘ

t (ǫ (X)), satisfies that

ϕΘ
t (ǫ (X)) ⊆ Ω (B)

for all X ∈ B and t in the domain of the flow at ǫ (X). Therefore, for any
g ∈ Π1 (B,B), we have

TW (Θ (g)) =
∂

∂t|0

(

W
(

ϕΘ
t (g)

))

=
∂

∂t|0

(

W
(

g · ϕΘ
t (ǫ (α (g)))

))

=
∂

∂t|0
(W (g)) = 0.

Hence, we obtain
TW (Θ) = 0 (15)

The converse is proved in a similar way.
So, the characteristic distribution AΩ (B)T of the material groupoid will be
called material distribution and it is generated by the (left-invariant) vector
fields on Π1 (B,B) which are in the kernel of TW . The base-characteristic
distribution AΩ (B)♯ (see Theorem 1) will be called body-material distribution
and the transitive distribution will be called uniform-material distribution.
The foliations associated to the material distribution, the body-material
distribution and uniform-material distribution will be called material
foliation, body-material foliation and uniform-material foliation and they will
be denoted by F , F and G, respectively.
For each X ∈ B, we will denote the Lie groupoid Ω (B) (F (X)) by Ω (F (X))
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(see theorem 4). Denote the groupoid of all material isomorphisms at points
in G (X) by Ω (G (X)). Recall that Ω (F (X)) is a subgroupoid of Ω (G (X)),
i.e., Ω (F (X)) ≤ Ω (G (X)). In fact, in the general case, the condition of
maximality on the leaves of G means that G is the coarsest foliation such
that, at each leaf G (X), the groupoid of all material isomorphisms at points
in G (X) is a transitive subgroupoid of Γ.
Observe that, in continuum mechanics a sub-body of a body B is given by
an open submanifold of B but, here, the foliation F gives us submanifolds of
different dimensions (not only dimension 3). Thus, we will follow [17, 20] for
a more general definition

Definition 11. A material submanifold (or generalized sub-body) of B is a
submanifold of B.

It is important to note that any generalized sub-body P inherits
certain material structure from B. Particularly, the material response of
a material submanifold P is measured by restricting W to the 1−jets of local
diffeomorphisms φ on B from P to P. However, it is easy to observe that a
material submanifold of a body is not exactly a body. See [16] for a discussion
on this subject.
Then, as a corollary of Theorem 1 and corollary 5, we have the following
result.

Theorem 13. The body-material foliation F (resp. uniform material
foliation G) divides the body B into maximal smoothly uniform material
submanifolds (resp. uniform material submanifolds).

It should be observed that, in this case, “maximal” means that any
other foliation H by smoothly uniform material submanifolds (resp. uniform
material submanifolds) is thinner than F (resp. G), i.e.,

H (X) ⊆ F (X) (resp. G (X)) , ∀X ∈ B.

Therefore, the application of material distributions has been used to prove
this very intuitive result: Let B a general (smoothly uniform or not) simple
material. Then, B may be decomposed into “(smoothly) uniform parts” and
this decomposition is, in fact, a foliation of the material body.
The material distributions are useful to define new notions la graded
uniformity and generalized homogeneity (see [20]). However, here we are
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interested in another way of apply the characteristic distributions. In
particular, we want to study the notion of material evolution.

Part III

Material evolution

4 Body-time manifolds and material

isomorphisms

Now, we will present the evolution of the body along time mainly following
the references [11, 12, 14]. In our geometrical description of the theory of
simple bodies, the time has not played a role. Our body is, in some sense,
frozen. Nevertheless, it happens that in some practical applications, the
material properties of the body may change with time. A relevant example
is given by the volumetric growth and remodeling of biological tissues, such
as bone and muscle.
Thus, material evolution is, roughly speaking, the temporal counterpart of
the notion of material body. In the case of a material body, we compare the
constitutive response of two different material particles at the same instant
of time. On the other hand, in material evolution we study the constitutive
properties of different points at different instants of time.
Then, we consider a body-time manifold as the fibre bundle C = R× B over
R. By simplicity, time and space are supposed to be absolute, but may be
easily generalized to a general case.

Definition 12. A history is given by a fibre bundle embedding Φ : C →
R× R

3 over the identity.

Equivalently, Φ can be seen as a differentiable family of configurations
φt : B → R

3 such that

φ (t, X) = φt (X) = (pr2 ◦ Φ) (t, X) , ∀t ∈ R, ∀X ∈ B, (16)

where pr2 : R× R
3 → R

3 is the projection on the second component.
In this way Φ represent the evolution of the body in time t in such a way
that the configuration of B at time t is φt. Then, at each instant of time t,
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one may consider the infinitesimal configuration at time t, 1−jet j1X,φt(X)φt.
Next, we need to introduce the constitutive law of the material evolution.
In the framework of simple bodies, we will assume that, for a fixed reference
configuration φ0, the constitutive response at each material particle X and
at each instant of time t may be characterized by one (or more) functions
depending on the associated matrices F to the infinitesimal configurations
j1X,φt(X)φt at particle X and time t. So, the mechanical response will be a
differentiable map,

W : C ×Gl (3,R) → V,

where V is again a real vector space (generally, V will be assumed to be the
space of stress tensors). The definition of the mechanical response permit us
to compare material responses at different particles at different instants of
time.
Once again, the construction of the mechanical response seems to be
constrained to the fixed reference configuration. To clarify this dependence
we have the rule of change of reference configuration.
Thus, consider a different configuration φ1 and W1 its associated mechanical
response. Then, it will be imposed that

W1 (t, X, F ) =W (t, X, F · C01) , (17)

for all regular matrix F where C01 is the associated matrix to the 1−jet at
φ0 (X) of φ1 ◦ φ

−1
0 . Equivalently,

W (t, X, F0) = W1 (t, X, F1) , (18)

where Fi, i = 0, 1, is the associated matrix to the 1−jet at φi (X) of φ ◦ φ−1
i

with φ a configuration.
Therefore Eq. (17) permit us to define W over the space of (local) histories
which is independent on the chosen reference configuration. In fact, for each
history Φ = φt we will define

W (t, X,Φ) = W
(

j1X,xφt

)

= W (t, X, Ft) , (19)

where Ft is the associated matrix to the 1−jet j1φ0(X),x

(

φt ◦ φ
−1
0

)

at φ0 (X).
Reciprocally, for each point (t, X) any differentiable map W(t,X) on the space
of (local) histories defines a constitutive functional at (t, X) by Eq. (19)
satisfying the rule of change of reference configuration (17).
Observe that, for all t the manifold {t} × B inherits the structure of simple
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body by restricting the mechanical response W to the history of deformations
at the same instant t. This body will be called state t of the body B and it
will be denoted by Bt. As long as it invites no confusion, we will refer to the
simple body {0} × B as the material body B.
On the other hand, it is also important to say that the mechanical response
defines an structure of material evolution on any sub-body U of the body
B by restriction. Nevertheless, analogously to Definition 11, we will need to
relax the definition of “material evolution” to permit variation of material
submanifolds along time.

Definition 13. An evolution material for a material submanifold (or
body-time generalized sub-body) of C is a submanifold M of C.

Thus, for each instant t (such that there exists a particle X with (t, X) ∈
M) we have that the state t of the material submanifold is

({t} × B) ∩M = {t} ×Mt,

for a submanifold Mt of B. Hence, varying t we may see how the material
submanifold Mt changes along the time. Notice that, we do no impose that

M = I ×N ,

for an interval I and a material submanifold N because we are permitting
variations in the “shape” of N .

Definition 14. Let C be a body-time manifold. Two pairs (t, X) , (s, Y ) ∈ C
are said to be materially isomorphic if there exists a local diffeomorphism ψ
from an open neighbourhood U ⊆ B of X to an open neighbourhood V ⊆ B
of Y such that ψ (X) = Y and

W (t, X, F · P ) = W (s, Y, F ) , (20)

for all infinitesimal deformation F where P is given by the Jacobian matrix of
φ0◦ψ◦φ

−1
0 at φ0 (X). The 1−jets of local diffeomorphisms satisfying Eq. (20)

are called time-material isomorphisms (or material isomorphisms if there is
no danger of confusion) from (t, X) to (s, Y ) . A material isomorphism from
(t, X) to itself is called a time-material symmetry or material symmetry.

Roughly speaking, two pairs (t, X) , (s, Y ) ∈ C are materially isomorphic
if the material points X and Y are made of the same material at the instants
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t and s respectively. As a particular case, we may consider that (t, X) and
(s,X) are materially isomorphic for all t and s in an interval I. Then, the
constitutive properties of the material particle X do not change in the time
interval I.
We will denote by G (t, X) to the set of all material symmetries at (t, X).
Again, any G (t, X) is a group.

Proposition 14. Let C be a body-time manifold. Two body pairs (t, X)
and (s, Y ) are materially isomorphic if, and only if, there exist two (local)
configurations φ1 and φ2 such that

W1 (t, X, F ) = W2 (s, Y, F ) , ∀F,

where Wi is the mechanical response associated to φi for i = 1, 2.

Proof. Consider j1X,Y ψ a material isomorphism from (t, X) to (s, Y ). We will
choose φ1 = φ0 and

φ2 = φ1 ◦ ψ

Then,

W1 (t, X, F ) = W1 (s, Y, F · P )

= W2 (s, Y, F · P · C21)

= W2 (s, Y, F )

where P is the Jacobian matrix of φ1 ◦ ψ ◦ φ−1
1 at φ1 (X).

So, analogously to the case in which the body does not depend on
time, this result proves the intuitive idea of that two points are materially
isomorphic if their constitutive properties are the equal.

5 Evolution material groupoids

Now, let us consider the vertical subbundle associated to the body-time
manifold C, V, and the associated frame groupoid (see Example 3) Φ (V) ⇒ C.
Notice that, for all (t, X) ∈ C, we have that

V(t,X) = {0} × TXB.

At this point, it is important to highlight that the groupoid Φ (V) ⇒ C will
be relevant in what follows. In fact, the role of Φ (V) ⇒ C for material
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evolution is comparable to the role of the 1−jets groupoid Π1 (B,B) on B for
elastic simple material (see Part II).

The reader could now considering a natural question: why do we take
this groupoid instead of Π1 (C, C) or any other subgroupoid of this one?
The answer is simple: the elements of this groupoids may be identifyed
with the 1−jets of the so-called histories (see definition 12) via a reference
configuration.

Let Φ : C → C a (local) embedding of fibre bundles over the
identity on R. Then, an element of Φ (V) may be given by a triple
(

(t, X) ,Φ (t, X) , j1X,φt(X)φt

)

where

φ (t, X) = φt (X) = (pr2 ◦ Φ) (t, X) , ∀t ∈ R, ∀X ∈ B

Another, less intuitive but easier way to represent an element of Φ (V), is a
triple

(

t, s, j1X,Y φ
)

with s, t ∈ R, X ∈ B and φ a local automorphism on B
from X to Y . Then, the local coordinates of Φ (V) (see Eq. (6)) are given by

Φ (VU ,W) :
(

t, s, xi, yj, yji
)

, (21)

where, for each
(

t, s, j1X,Y φ
)

∈ Φ (VU ,W)

• t
(

t, s, j1X,Y φ
)

= t.

• s
(

t, s, j1X,Y φ
)

= s.

• xi
(

t, s, j1X,Y φ
)

= xi (X).

• yj
(

t, s, j1X,Y φ
)

= yj (Y ).

• yji
(

t, s, j1X,Y φ
)

=
∂ (yj ◦ φ)

∂xi|X
.

where (xi) and (yi) are local charts defined on the open subsets of B, U and
W respectively, and Φ (VU ,W) is given by the triples

(

t, s, j1X,Y φ
)

such that
X ∈ U and Y ∈ W.

Notice that, the space of (local) embeddings Φ : C → C of fibre bundles over
the identity on R is easily identified with the set of (local) histories by using
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the reference configuration. So, the groupoid Φ (V) ⇒ C encompasses all the
possible histories of the material evolution. Then, by using Eq. (19), we
may define W on the space Φ (V),

W : Φ (V) → V,

as follows,
W

(

t, s, j1X,Y φ
)

=W (t, X,Φ) ,

such that
Φ (s, Y ) = (s, φ0 ◦ φ (Y )) , ∀ (s, Y ) ∈ C,

where φ0 is the reference configuration. Then, W does not depend on the
final point, i.e., for all (t, X) , (s, Y ) , (r, Z) ∈ C

W
(

t, s, j1X,Y φ
)

= W
(

t, r, j1X,Z

(

φ−1
0 ◦ τZ−Y ◦ φ0 ◦ φ

))

, (22)

for all
(

t, s, j1X,Y φ
)

∈ Φ (V) where τv is the translation map on R
3 by the

vector v. This point of view will be useful for our purpose.

Definition 15. The material groupoid of a body-time manifold with
mechanical response W is defined as the largest subgroupoid Ω (C) ⇒ C
of Φ (V) such that leaves W invariant. More explicitly, an element of Φ (V)
(

t, s, j1X,Y φ
)

is in the material groupoid if and only if

W
(

t, r, j1X,Z (ψ · φ)
)

=W
(

s, r, j1Y,Zψ
)

,

for all
(

s, r, j1Y,Zψ
)

∈ Φ (V).

In other words, Ω (C) is the space of all (time-)material isomorphisms (see
Definition 14). This groupoid was first presented in [12].
The isotropy group at each (t, X) ∈ C will be denoted by G (t, X) and its
elements are the material symmetries at (t, X). Observe that, as in the
spatial case, the resulting groupoid does not have to be a Lie subgroupoid of
Φ (V) ⇒ C.

Definition 16. We will also define the (t, s)−material groupoid Ωt,s (B) as
the set of all material isomorphisms from the instant t to the instant s.
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Notice that, when t = s, the (t, t)−material groupoid Ωt,t (B) is a
subgroupoid of the material groupoid Ω (C). For each instant t, Ωt,t (B) is
called t−material groupoid and denoted by Ωt (B).
On the other hand, Ωt (B) may be consider as a subgroupoid of Π1 (B,B),
where we are identifying B with {t} × B. Notice that, indeed, Ωt (B) is the
material groupoid associated to simple body structure of the state t of the body
B, i.e., with this identification,

Ωt (B) = Ω (Bt) .

We will use both interpretations of Ωt (B) indistinctly along the paper.

As a transversal construction, we will define the (X, Y )−material groupoid
ΩX,Y (R).

Definition 17. The (X, Y )−material groupoid ΩX,Y (R) is defined as the set
of all material isomorphisms from the particle X to the particle Y varying
the time variable.

Again, we may notice that, when X = Y , the (X,X)−material groupoid
ΩX,X (R) is a subgroupoid of the material groupoid Ω (C). For each material
point X, ΩX,X (R) is called X−material groupoid and denoted by ΩX (R).
On the other hand, ΩX (R) may be consider as a subgroupoid of (R× R)×
Π1 (B,B)XX ⇒ R, where we are identifying R with R × {X}. Furthermore,
the structure of Lie groupoid of (R× R)× Π1 (B,B)XX is given by,

(

s, t, j1X,Xφ
)

·
(

r, s, j1X,Xψ
)

=
(

r, t, j1X,X (φ ◦ ψ)
)

,

for all
(

s, t, j1X,Xφ
)

,
(

r, s, j1X,Xψ
)

∈ R × R × Π1 (B,B)XX . Again, we will use
both interpretations of ΩX (R) along the paper.
Roughly speaking, the material groupoid Ω (C) ⇒ C encompasses the
global evolution of the body, the t−material groupoid Ωt (B) encodes all
the material properties of the body at the instant t and the X−material
groupoid ΩX (R) embraces all the evolution of the particle X.

Proposition 15. Let Ω (C) be the material groupoid. If Ω (C) is a Lie
subgroupoid of Φ (V), then for all instant t and all material point X we have
that Ωt (C) and ΩX (R) are Lie subgroupoids of Φ (V).
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Proof. Assume that Ω (C) is a Lie subgroupoid of Φ (V). Let us consider the
following submersions,

π1 : Ω (C) → B × B, π2 : Ω (C) → R× R,

given by

π1
(

t, s, j1X,Y φ
)

= (X, Y ) , π2
(

t, s, j1X,Y φ
)

= (t, s) ,

for all
(

t, s, j1X,Y φ
)

∈ Ω (C). Then

ΩX (R) = π−1
1 (X,X) , Ωt (C) = π−1

2 (t, t) .

So, the condition of “being a Lie groupoid” is stronger over the material
groupoid than over the t−material groupoids and X−material groupoids.

Notice that, all the defined canonical groupoids satisfy the following short
sequences of contents,

Ωt (B) ≤ Ω (C) ≤ Φ (V) , ∀t.

ΩX (R) ≤ Ω (C) ≤ Φ (V) , ∀X.

Then, we may construct the correspondent characteristic distributions.
We will start with the associated characteristic distribution AΩ (C)T to the
material groupoid, which will be called material distribution of the body-time
manifold C. So, in a similar way to the material distribution associated to a
spatial body B (see Eq. (15)), AΩ (C)T is generated by the (left-invariant)
vector fields on Φ (V) which are in the kernel of TW . Equivalently, the
material distribution of C is generated by the left-invariant vector fields Θ
on Φ (V) such that

TW (Θ) = 0 (23)

So, let Θ be a left-invariant vector field on Φ (V). Then,

Θ
(

t, s, xi, yj, yij
)

= λ
∂

∂t
+Θi ∂

∂xi
+ yilΘ

l
j

∂

∂yij
(24)
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respect to a local system of coordinates
(

t, s, xi, yj, yij
)

on Φ (VU ,V) with U

and V two open subsets of B and Φ (VU ,V) is given by the triples
(

t, s, j1X,Y φ
)

in Φ (V) such that X ∈ U and Y ∈ V. Then, Θ is an admissible vector field
for the couple (Φ (V) ,Ω (C)) if, and only if,the following equations holds,

λ
∂W

∂t
+ Θi∂W

∂xi
+ yilΘ

l
j

∂W

∂yij
= 0. (25)

Notice that, here λ, Θi and Θi
j are functions depending on t and

X. Thus, construct the material distribution is reduced to solve
Eq. (25). The base-characteristic distribution AΩ (C)♯ will be called
body-material distribution and the transitive distribution AΩ (B)B will be
called uniform-material distribution.
The foliations associated to the material distribution, the body-material
distribution and uniform-material distribution will be called material
foliation, body-material foliation and uniform-material foliation and they
will be denoted by F , F and G, respectively.

On the other hand, analogously, for an instant t, consider the t−material
groupoids Ωt (B) as the material groupoid of the state t of the material
body B. Therefore, (see Eq. (15)) the associated characteristic distribution
AΩt (B)

T to the t−material groupoid, which will be called t−material
distribution, is generated by the (left-invariant) vector fields on Π1 (B,B)
which are in the kernel of TWt, where Wt is given by

Wt : Π
1 (B,B) → V,

such that Wt

(

j1X,Y φ
)

= W
(

t, t, j1X,Y φ
)

for all j1X,Y φ ∈ Π1 (B,B). In other
words, the t−material distribution of C is generated by the left-invariant
vector fields Θ on Π1 (B,B) such that

TWt (Θ) = 0 (26)

Indeed, it satisfies that AΩt (B)
T is the material distribution of the state t of

the material body.
So, let Θ be a left-invariant vector field on Π1 (B,B). Then,

Θ
(

xi, yj, yij
)

= Θi ∂

∂xi
+ yilΘ

l
j

∂

∂yij
, (27)
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respect to a local system of coordinates
(

xi, yj, yij
)

on Π1 (U ,U) (see Eq. (3))
with U an open subset of B. Then, Θ is an admissible vector field for the
couple (Π1 (B,B) ,Ωt (B)) if, and only if, the following equations hold,

Θi∂Wt

∂xi
+ yilΘ

l
j

∂Wt

∂yij
= 0 (28)

Note that, here Θi and Θi
j are functions depending on X.

On the other hand, let us observe that, taking into account the consistency
proposition 3, as a subgroupoid of Φ (V), the groupoid Ωt (B) is generated by
the left-invariant vector fields Θ on Φ (V),

Θ
(

t, s, xi, yj, yij
)

= λ
∂

∂t
+Θi ∂

∂xi
+ yilΘ

l
j

∂

∂yij
(29)

such that λ|{t}×{t}×Π1(B,B) ≡ 0 and

Θi∂Wt

∂xi
+ yilΘ

l
j

∂Wt

∂yij
= 0 (30)

on any material point at the instant t. The base-characteristic distribution
AΩt (B)

♯ (see Theorem 1) will be called t−body-material distribution
and the transitive distribution AΩt (B)

B (see Corollary 6) will be called
t−uniform-material distribution.
The foliations associated to the t−material distribution, the t−body-material
distribution and t−uniform-material distribution will be called t−material
foliation, t−body-material foliation and t−uniform-material foliation and
they will be denoted by F t, Ft and Gt, respectively.

The characteristic distribution associated to the X−material groupoid
AΩX (R)T is called X−material distribution. Analogously, AΩX (R)T is
generated by the (left-invariant) vector fields on (R× R)×Π1 (B,B)XX which
are in the kernel of TWX , where WX is given by the restriction of W to
R× R×Π1 (B,B)XX ,

WX : R× R× Π1 (B,B)XX → V

In other words, the X−material distribution of C is generated by the
left-invariant vector fields Θ on R× R×Π1 (B,B)XX such that

TWX (Θ) = 0 (31)
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Notice that, the groupoid structure of (R× R) × Π1 (B,B)XX is the unique
groupoid structure such that it is a subgroupoid of Φ (V), i.e.,

(

s, t, j1X,Xφ
)

·
(

r, s, j1X,Xψ
)

=
(

r, t, j1X,X (φ ◦ ψ)
)

,

for all
(

s, t, j1X,Xφ
)

,
(

r, s, j1X,Xψ
)

∈ R× R× Π1 (B,B)XX .

So, let Θ be a left-invariant vector field on R× R× Π1 (B,B)XX . Then,

Θ
(

t, s, yij
)

= λ
∂

∂t
+ yilΘ

l
j

∂

∂yij
, (32)

respect to a local system of coordinates
(

t, s, yij
)

on R×R×Π1 (U ,U)XX with
U an open subset of B with X ∈ U . Then, Θ is an admissible vector field for
the couple (Φ (V) ,ΩX (R)) if, and only if, the following equations hold,

λ
∂WX

∂t
+ yilΘ

l
j

∂WX

∂yij
= 0 (33)

Observe that, here λ and Θi
j are functions depending on t.

On the other hand, taking into account the consistency proposition 3, as a
subgroupoid of Φ (V), the groupoid ΩX (R) is generated by the left-invariant
vector fields Θ on Φ (V),

Θ
(

t, s, xi, yj, yij
)

= λ
∂

∂t
+Θi ∂

∂xi
+ yilΘ

l
j

∂

∂yij
(34)

such that Θi

|R×R×Π1(U ,U)XX
≡ 0 and

Θi∂WX

∂xi
+ yilΘ

l
j

∂WX

∂yij
= 0, (35)

at any instant for a fixed material point X. The base-characteristic
distribution AΩX (R)♯ (see Theorem 1) will be called X−body-material
distribution and the transitive distribution AΩX (R)B (see Corollary 6) will
be called X−uniform-material distribution.
The foliations associated to the X−material distribution, the
X−body-material distribution and X−uniform-material distribution
will be called X−material foliation, X−body-material foliation and
X−uniform-material foliation and they will be denoted by FX , FX and
GX , respectively. It is important do not confuse FX (resp. FX and
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GX), the X−material foliation (resp. X−body-material foliation and
X−uniform-material foliation), with F (ǫ (X)) (resp. F (X) and G (X)), the
leaf at ǫ (X) (resp. the leaf at X) of the foliation F (res. F and G).

To summarize, around an evolution material C, we have constructed the
following canonical short sequences of groupoids

Ωt (B) ≤ Ω (C) ≤ Φ (V) , ∀t.

ΩX (R) ≤ Ω (C) ≤ Φ (V) , ∀t.

and the following canonical short sequences of distributions

AΩt (B)
T ≤ AΩ (C)T ≤ TΦ (V) , ∀t.

AΩX (R)T ≤ AΩ (C)T ≤ TΦ (V) , ∀t.

AΩt (B)
B ≤ AΩ (C)B ≤ TC, ∀t.

AΩX (R)B ≤ AΩ (C)B ≤ TC, ∀t.

AΩt (B)
♯ ≤ AΩ (C)♯ ≤ TC, ∀t.

AΩX (R)♯ ≤ AΩ (C)♯ ≤ TC, ∀t.

Part IV

Remodeling

As opposed to the uniformity in the spatial case, arise new material properties
associated to the evolution of the body. In particular, the temporal
counterpart of uniformity is a specific case of evolution of the material called
remodeling. This part will be focused on the study of global remodeling, as
one of the main contributions of this paper.

Definition 18. Let C be a body-time manifold:

• A material particle X ∈ B is presenting a remodeling when it is
connected with all the instants by a material isomorphism, i.e., all
the points at R× {X} are connected by material isomorphisms.
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• C is presenting a global remodeling or simply a remodeling when all the
material points are presenting a remodeling.

• We will say that C is presenting a uniform remodeling when it is
presenting a remodeling and some (and hence all) state is uniform.

• Growth and resorption are given by a remodeling with volume increase
or volume decrease of the material body B.

Intuitively, a material evolution presents a remodeling when the
constitutives properties of the material does not change with the time.
This kind evolution may be found in biological tissues [26]. Wolff’s law
of trabecular architecture of bones (see for instance [30]) is a relevant
example. Here, trabeculae are assumed to change their orientation following
the principal direction of stress. It is important to note that the fact of
that the material body remains materially isomorphic with the time does not
preclude the possibility of adding (growth) or removing (resorption) material,
as long as the material added is of the same type.

Proposition 16. Let C be a body-time manifold. A material particle X ∈ B
is presenting a remodeling if, and only if, the X−material groupoid ΩX (R)
is transitive. C is presenting a remodeling if, and only if, for all material
point X, the X−material groupoid ΩX (R) is transitive.

Corollary 17. Let C be a body-time manifold. the material groupoid Ω (C)
is transitive if, and only if, C is presenting a uniform remodeling.

Observe that, analogously to uniformity, the definition of remodeling is
pointwise. Consider a material particle X0 which presents a remodeling or,
equivalently, there exists a map

P : R → Gl (3,R) (36)

such that, for all t ∈ R, P (t) is a material isomorphism from (t0, X0) to
(t, X0) for a fixed time t0. Nevertheless, the differentiability condition of P
is not guaranteed.

Definition 19. Let be a body-time manifold C. A material point X0 is said
to be presenting a smooth remodeling if for each point t ∈ R there is an
interval I around t and a smooth map P : I → Gl (3,R) such that for all
s ∈ I it satisfies that P (s) is a material isomorphism from (t, X0) to (s,X0).
The map P is called a right (local) smooth remodeling process at X0. A left
(local) smooth remodeling process at X0 is defined in a similar way.
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Mass consistency condition

Notice that the definition of material isomorphism does not include any
relation to the mass density of the body. However, it is desirable to impose
some kind of condition to be consistent with the mass density.
Thus, for each instant of time, a volume form is specified, i.e., we have ω (t) a
time dependent volume form on B. Let X0 be a material particle presenting
a remodeling. Without loss of generality, we assume that the remodelling
process P satisfies the initial condition,

P (0) = I.

Then, mass consistency condition ([14, 11]) consists of the imposition on the
remodeling process at X0 of that it preserves the volume form. In other
words, a (local) right smooth remodeling process P at X0 satisfies the mass
consistency condition, if and only if,

P (t)∗ ω (t) = ω (0) , ∀t ∈ I.

Then, equivalently, associated mass density, ρ (t) = |ω (t) |, should satisfy
that

ρ (t) = |JP (t)|
−1ρ (0) (37)

where JP (t) is the determinant of P (t). We will also assume that P is
orientation-preserving, i.e., JP (t) > 0.
Calculating the time derivatives of Eq. (37),

ρ̇ (t) =
˙(

J−1
P (t)ρ (0)

)

= −ρ (0)J−2
P (t)

[

J̇P (t)

]

= −ρ (0)J−2
P (t)

[

JP (t)Tr
(

P−1 (t) · Ṗ (t)
)]

= −ρ (0)J−1
P (t)Tr

(

P−1 (t) · Ṗ (t)
)

= −ρ (t) Tr
(

P−1 (t) · Ṗ (t)
)

The term LP (t) = P−1 (t) · Ṗ (t) is called remodeling velocity gradient.
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Proposition 18. Let C be a body-time manifold and X0 be a material
particle. A remodeling process P is producing growth if, and only if, the
trace of the remodeling velocity gradient is negative. Conversely, resorption
is equivalent to a positive trace of the remodeling velocity gradient.

Proof. The trace of the remodeling velocity gradient LP (t) = P−1 (t) · Ṗ (t) is
negative (resp. positive) if, and only if, ρ is an increasing (resp. decreasing)
function or, in other words, the volume of B respect to ω (t) is increasing
(resp. decreasing).

Several interesting examples of remodeling processes may be found in the
literature. In particular, in [14] it is used a model for orthotropic solids in
which the tensor P is proper orthogonal at all times. This model simulates
an evolution law in trabeculae bones.

Let us assume that B is uniform. Then, B is uniform in all its states. So, for
a fixed point (t0, X0) ∈ C we may find a map

P : C → Gl (3,R) (38)

such that, for all (t, Y ) ∈ C, P (t, Y ) is a material isomorphism from (t0, X0)
to (t, Y ). However, even when all the particles present smooth remodeling,
P does not have to be differentiable. In other words, roughly speaking, the
evolution of all the particles along the time could be “smooth”, but the change
from the time-evolution of one particle to another could still be “abrupt” (not
differentiable).
Thus, we cannot define smooth remodeling over the whole material evolution
as the smooth remodeling at all points, we still need a more restrictive
definition of smoothness on the evolution of the material body.

Definition 20. A body-time manifold C with some (and hence all of them)
state uniform is said to be presenting a smooth uniform remodeling if for each
point (t, X) ∈ C there is a neighbourhood U around (t, X) and a smooth map
P : U → Gl (3,R) such that for all (s, Y ) ∈ U it satisfies that P (s, Y ) is a
material isomorphism from (t, X) to (s, Y ). The map P is called a right
(local) smooth field of material isomorphisms. A left (local) smooth field of
material isomorphisms is defined analogously.

One could think that it is reasonable that a non-uniform body present
a smooth remodeling. However, the definition of this kind of smooth
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remodeling (more general) is not clear. One of the contributions of this
paper is the use of material distributions to define and characterize this kind
of smooth remodeling for non-uniform bodies (Definition 21).

Proposition 19. Let C be a body-time manifold such that some (and hence
all of them) state is uniform. Then, C is presenting a (smooth) uniform
remodeling if, and only if, there exist (differentiable) maps W : Gl (3,R) → V
and P : U → Gl (3,R) covering C satisfying,

W (s, Y, F ) = W (F · P (s, Y )) . (39)

Proof. The proof of this proposition is analogous to Proposition 8.

Let us consider now W as a map on Φ (V).

Proposition 20. Let be a body-time manifold C with some (and hence
all of them) state uniform. C is presenting a smooth uniform remodeling
if, and only if, for each instant t and each material point X there is an
open neighbourhood D ⊂ C around (t, X) such that for all (s, Y ) ∈ D and
(

s, t, j1Y,Xφ
)

∈ Ω (C) there exists a local section P of the source map α of

Ω (C) to the β−fibre Ω (C)(t,X),

α(t,X) : Ω (C)(t,X) → C,

from ǫ (t, X) to
(

s, t, j1Y,Xφ
)

.

For these reasons, (local) sections of α(t,X) will be called left local (smooth)
field of material isomorphisms at (t, X). On the other hand, local sections of

β
(t,X)

: Ω (C)(t,X) → C,

will be called right local (smooth) fields of material isomorphisms at (t, X).
Hence, C is presenting a smooth uniform remodeling if, and only if, for
any points (t, X) and (s, Y ), there are two open neighbourhoods D and E
respectively and a differentiable map

P : D × E → Ω (C) ⊆ Φ (V) ,

which is a section of the anchor map (α, β) of Φ (V). When t = s we may
assume D = E and P is a morphism of groupoids over the identity map, i.e.,

P ((r, Z) , (l, T )) = P ((m,S) , (l, T ))P ((r, Z) , (m,S)) ,

for all (r, Z) , (l, T ) , (m,S) ∈ D. These kind of maps are called local (smooth)
field of material isomorphisms.
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Corollary 21. Let be a body-time manifold C with some (and hence all of
them) state uniform. C is presenting a smooth uniform remodeling if, and
only if, Ω (C) is a transitive Lie subgroupoid of Φ (V).

Proof. Suppose that C is presenting a smooth uniform remodeling. Let be a
triple

(

s, t, j1Y,Xφ
)

∈ Ω (C) and a local (smooth) field of material isomorphism
through

(

s, t, j1Y,Xφ
)

,

P : D × E → Ω (C) ⊆ Φ (V) ⊆ Φ (V) .

Then, the local structure of manifold is given by the charts ΨD,E : Ω (D, E) →

R× R× Ω (C)(t,X)
(s,Y ) such that,

ΨD,E

(

k, l, j1Z,Tψ
)

=
(

k, l,P ((l, T ) , (t, X))
[(

k, l, j1Z,Tψ
)]

P ((s, Y ) , (k, Z))
)

,

for all
(

k, l, j1Z,Tψ
)

∈ Ω (D, E). Here, Ω (D, E) is the set of material
isomorphisms from D to instants at E .

Again, we have here a clear difference between a process of remodeling of
a uniform body and a process of smooth remodeling of a uniform body (see
Corollary 18).
Of course, the existence of fields of material isomorphisms is not canonical.
Indeed, for a (local) smooth field of material isomorphisms

P : D ×D → Ω (C) ⊆ Φ (V) ,

any other remodeling process Q satisfies that

Q ((s, Y ) , (k, Z)) ∈ P ((t0, X0) , (k, Z)) · Ω (C)(t0,X0)
(t0,X0)

· P ((s, Y ) , (t0, X0)) ,

for a fixed point (t0, X0) at D. Thus, the symmetry groups work of Ω (C)
as a measure of the degree of freedom available in the choice of the fields of
material isomorphisms.

Let Ω (C) be the material groupoid associated to the body-time manifold
C. Then, we may consider the material distribution AΩ (C), body-material
distribution AΩ (C)♯ and the uniform-material distribution AΩ (C)B and
their associated foliations, the material foliation F , body-material foliation
F and uniform-material foliation G, respectively.
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Theorem 22. Let be a body-time manifold C. The body-material foliation F
(resp. uniform material foliation G) divides C into maximal smooth uniform
remodeling processes (resp. uniform remodeling processes).

Notice that, the foliations F and G are foliations of the evolution material
C. Hence, each leaf is a submanifold of C, i.e., it defines a material evolution
of a material submanifold of B (see Definition 13). So, in general, it cannot
be properly written as a product space

R×N , (40)

with N a submanifold of B. Nevertheless, this impossibility turns out to be
the most natural (see below of Definition 13).
Notice that, the dimensions of the leaves of the body-material foliation F
(resp. uniform material foliation G) are the dimensions of the fibres of
AΩ (C)♯(t,X) (resp. AΩ (C)B(t,X)). So, may prove the following result:

Theorem 23. Let be a body-time manifold C. C presents a smooth
uniform remodeling process (resp. uniform remodeling) if, and only if,

dim
(

AΩ (C)♯(t,X)

)

= 4 (resp. dim
(

AΩ (C)B(t,X)

)

= 4) for all instant t and

particle X, with AΩ (C)♯(t,X) (resp. AΩ (C)B(t,X)) the fibre of AΩ (C)♯ (resp.

AΩ (C)B) at (t, X).

Therefore, this theorem bring us a computational condition of testing the
property of being a “process of remodeling”. In particular, we will have to
study Eq. (25),

λ
∂W

∂t
+ Θi∂W

∂xi
+ yilΘ

l
j

∂W

∂yij
= 0. (41)

where λ, Θi and Θi
j are functions depending on t and X. So, the material

evolution is presenting a process of remodeling if we may find 4 linearly
independent solutions to this equation.

For each instant t, let us recall the t−material distribution AΩt (B)
T , its

associated t−body-material distribution AΩt (B)
♯ and t−uniform-material

AΩt (B)
B and associated foliations t−material foliation F t, t−body-material

foliation Ft and t−uniform-material foliation Gt.
We have proved that the t−material groupoid Ωt (B) is just the material
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groupoid of the state t of the body B. Therefore, by using Theorem 13 we
have that,

Theorem 24. The t−body-material foliation Ft (resp. t−uniform material
foliation Gt) divides the state t of the body B into maximal smoothly uniform
material submanifolds (resp. uniform material submanifolds).

So, at any instant of time t, we have the body divided into “smoothly
uniform parts” and we can see how these parts change along time varying t.

Proposition 25. Let C be a material evolution and (t, X) be a point in C.
Then, it satisfies that,

({t} × B) ∩ F (t, X) = {t} × Ft (X) (42)

Proof. Notice that, by construction we have that,

{t} × Ft (X) ⊆ ({t} × B) ∩ F (t, X) .

On the other hand, let Θ be an admissible vector field for the couple
(Φ (V) ,Ω (C)). Then, Θ should satisfy Eq. (25), i.e.,

λ
∂W

∂t
+ Θi∂W

∂xi
+ yilΘ

l
j

∂W

∂yij
= 0. (43)

where,

Θ
(

t, s, xi, yj, yij
)

= λ
∂

∂t
+Θi ∂

∂xi
+ yilΘ

l
j

∂

∂yij
(44)

respect to a local system of coordinates
(

t, s, xi, yj, yij
)

on Φ (VU) with U an
open subset of B and VU given by the triples

(

t, s, j1X,Y φ
)

in Φ (V) such that
X, Y ∈ U . Let us consider two cases,

• T(t,X)ρ
(

Θ♯ (t, X)
)

= 0, for all projection Θ♯ of an admissible vector
field Θ for the couple (Φ (V) ,Ω (C)).

So, any admissible vector field Θ for the couple (Φ (V) ,Ω (C)) satisfies
that λ (t, X) = 0 is the local expression (44). Hence, it satisfies the
equation

Θi∂W

∂xi
+ yilΘ

l
j

∂W

∂yij
= 0. (45)
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Therefore, by Eq. (28), Θ is an admissible vector fields Θ for the couple
(Φ (V) ,Ωt (B)), i.e.,

({t} × B) ∩ F (t, X) = F (t, X) ⊆ {t} × Ft (X) .

• T(t,X)ρ
(

Θ♯ (t, X)
)

6= 0, for some projection Θ♯ of an admissible vector
field Θ for the couple (Φ (V) ,Ω (C)).

Then, T(t,X)ρ
(

AΩ (C)♯
)

= R. Thus, we have that

T(t,X) ({t} × B) + T(t,X)F (t, X) = T(t,X)C,

i.e., ({t} × B) and F (t, X) are transversal submanifolds of C.
Therefore, ({t} × B) ∩ F (t, X) is a submanifold of C and

T(t,X) [({t} × B) ∩ F (t, X)] = T(t,X) ({t} × B) ∩ T(t,X)F (t, X) .

Thus, the tangent vector fields to ({t} × B) ∩ F (t, X) are the
projections Θ♯ of admissible vector fields Θ for the couple (Φ (V) ,Ω (C))
such that Θ♯ projected on R is zero, i.e.,

Θi∂W

∂xi
+ yilΘ

l
j

∂W

∂yij
= 0. (46)

where,

Θ
(

t, s, xi, yj, yij
)

= Θi ∂

∂xi
+ yilΘ

l
j

∂

∂yij
(47)

Then, by Eq. (28), Θ is an admissible vector fields Θ for the couple
(Φ (V) ,Ωt (B)).

In other words, in case we freeze an instant of time s in F (t, X), we
recover the leaf {s} × Fs (X). So, if could write F (t, X) as in Eq. (40), we
would be precluding the case in which the shape of leaves Fs (X) change
with the time, i.e., each of the leaves F (t, X) present a remodeling in which
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the uniform leaves can change.

Therefore, if the foliations Ft (resp. Gt) permits us to watch how
change the smoothly uniform leaves (resp. uniform leaves) of the body
with the time, the foliation F (resp. G) also show us how time is divided
optimally in such a way that at each interval the material evolution presents
a smooth remodeling (resp. remodeling) process of all the leaves at the same
time.

Finally, we will present a definition of (non-uniform) smooth remodeling is
inspired in Corollary 21.

Definition 21. Let be a body-time manifold C. C is presenting a smooth
remodeling if Ω (C) is a Lie subgroupoid of Φ (V) and, for all particle X, the
X−material groupoid ΩX (R) is a transitive Lie subgroupoid of Φ (V)

Notice that, taking into account Proposition 15, if Ω (C) is a Lie
subgroupoid of Φ (V), then for all particle X, the X−material groupoid
ΩX (R) is a Lie subgroupoid of Φ (V). So, the unique requirement on the
X−material groupoids is transitivity.
Definition 21 express mathematically the idea of that the material body varies
smoothly through the time and the intrinsecal properties does not change.
It is easy to check that the material points present a smooth remodeling. In
fact, ΩX (R) is a Lie subgroupoid of Φ (V) if, and only if, R can be covered
by local sections of the anchor of ΩX (R), these sections induce the smooth
remodeling process at X (see definition 19).
Roughly speaking, all the particles present a smooth remodeling (ΩX (R) is a
Lie subgroupoid of Φ (V)) and the variation at different points is also smooth
(Ω (C) is a Lie subgroupoid of Φ (V)).

Theorem 26. Let be a body-time manifold C. C presents a smooth remodeling
process if, and only if,

i) dim
(

AΩ (C)Tǫ((t,X))

)

is constant respect to (t, X)

ii) dim
(

AΩX (R)♯(t,X)

)

= 1, for all (t, X) ∈ C
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Here, AΩ (C)Tǫ((t,X)) (resp. AΩX (R)♯t) is the fibre of AΩ (C)T (resp. AΩX (R)♯)
at ǫ ((t, X)) (resp. t).

To prove this theorem we will need an auxiliary lemma.

Lemma 27. Let M be a manifold and a path-connected subset X of M .
Consider a regular foliation F of M such that

i) X is union of leaves of F .

ii) X is not a leaf of F .

Then, there exists a strictly coarser (singular) foliation of M satisfying i).

Proof. Assume that X is not a leaf of F . Let be a foliation ϕ = (y1, . . . , yn)
in a neighborhood U of x ∈ M ,

U := {−ǫ < y1 < ǫ, . . . ,−ǫ < yn < ǫ}, (48)

such that the k−dimensional disk {yk+1 = . . . = yn = 0} coincides with
the path-connected component of the intersection of F (x) with U which
contains x, and each k−dimensional disk {yk+1 = ck+1, . . . y

n = cn}, where
ck+1, . . . , cn are constants, coincides with the path-connected component of
the intersection of some F (y) with U . We may shrink ǫ enough to get that
U ∩X is path-connected.
Let be a point y in U∩X which is not contained in F (x) (i.e., F (y) 6= F (x)).
Then, there exists a differentiable path α : I → U ∩X, with I = [0, 1], such
that

α (0) = x, α (1) = y.

Then, we will consider

C := {z ∈M : F (z) ∩ α (0, 1) 6= ∅} (49)

In other words, C is the union of all the leaves in such a way that α cuts to
all leaves.
So, consider the path α : I → U , U = ϕ−1 (U ∩X), given by

α = ϕ−1 ◦ α.

Then, by using the local expression 48,
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C ∩ U : {−ǫ < y1 < ǫ, . . . ,−ǫ < yk < ǫ, yk+1 = αk+1 (t) , . . . , yk+1 = αn (t)}t∈(0,1),
(50)

where αi are the coordinates of α respect to ϕ. Using the rank theorem we
may transform ϕ to get that

C ∩ U : {−ǫ < y1 < ǫ, . . . ,−ǫ < yk < ǫ, yk+1 = t, 0, . . . , 0)}t∈(0,1), (51)

Consider the foliation G of M such that

• G (z) = F (z) for each z /∈ C.

• G (z) = C for each z ∈ C.

Obviously, G is a strictly coarser division of M and satisfies i). Furthermore,
it is an easy exercise to prove that G is a singular foliation (see Eq. (51)).

By separating within path-connected component we may prove the following
result.

Lemma 28. Let M be a manifold and a subset X of M . Consider a regular
foliation F of M such that

i) X is union of leaves of F .

ii) There is at least a path-connected component of X which is not a leaf
of F .

Then, there exists a strictly coarser (singular) foliation of M satisfying i).

Thus, roughly speaking, for each manifold M and any subset X which
is not a submanifold of M , the maximal foliation satisfying i) is necessarily
singular.

Proof of Proposition 26. Notice that, condition ii) is equivalent to that all
the X−material groupoids ΩX (R) are transitive Lie subgroupoids of Φ (V).
So, we only have to deal with condition i), i.e.,

dim
(

AΩ (C)Tǫ((t,X))

)

,

is constant respect to (t, X). Then, the material foliation F is regular.
On the one hand, F is maximal foliation whose leaves are contained in
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the β−fibres (see corollary 2). Then, taking into account Lemma 28, the
path-connected components of the β−fibres of Ω (C) have to be leaves of
the foliation. Finally, the local charts of the transitive Lie subgroupoids
Ω
(

F (x)
)

(see proof of Corollary 21) defines a structure on Ω (C) of Lie
subgroupoid of Φ (V).

Hence, Proposition 26 provides us a computational way of dealing with
the smooth remodeling processes. In other words, by Eq. (25) and Eq. (33),
C is presenting a smooth remodeling if, and only if, the space of solutions of
the equation,

λ
∂W

∂t
+Θi∂W

∂xi
+Θi

j

∂W

∂yji
= 0. (52)

where λ, Θi and Θi
j are functions depending on t and X, has constant

dimension and there exists a solution of,

λ
∂WX

∂t
+Θi

j

∂WX

∂yji
= 0 (53)

with λ 6= 0. Notice that, if it were satisfied Eq. (53), the space of solutions
of Eq. (52) has, at least, dimension 1.

Part V

Aging

Definition 22. Let C be a body-time manifold. A material particle X ∈ B
is presenting a aging when it is not presenting a remodeling, i.e., not all the
instants are connected by a material isomorphism. C is a process of aging if
it is not a process of remodeling.

Clearly, if the material response is not preserved along the time via
material isomorphism, the constitutive properties are changing with the time.
Altough it is something natural, there is not a proper definition of smooth
aging. The presentation of this definition is other of the contributions of this
paper (Definition 23).
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Proposition 29. Let C be a body-time manifold. A material particle X ∈ B
is presenting an aging if, and only if, the X−material groupoid ΩX (R) is not
transitive. C is presenting an aging if, and only if, for some material point
X, the X−material groupoid ΩX (R) is not transitive.

Corollary 30. Let C be a body-time manifold with some state uniform. C
is presenting an aging if, and only if, the material groupoid Ω (C) is not
transitive.

Then, we are ready to present a definition of smooth aging.
Analogously to smooth remodeling, to define smooth aging of the global

body-time manifold as the smooth aging of all the material particles is not
enough. We need also to impose smoothness on the variation along the
material particles.

Definition 23. Let be a body-time manifold C. C is presenting a smooth
aging if Ω (C) is a Lie subgroupoid of Φ (V) and, there is a particle X such
that the X−material groupoid ΩX (R) is a not transitive Lie subgroupoid of
Φ (V).

In other words, C is presenting a smooth aging if the variation of the
body is “smooth” (Ω (C) is a Lie subgroupoid of Φ (V)) and it is not a smooth
remodeling.
Observe that, taking into account Proposition 15, if Ω (C) is a Lie
subgroupoid of Φ (V), then for all particle X, the X−material groupoid
ΩX (R) is a Lie subgroupoid of Φ (V). So, the unique imposition is given
over the lack of transitivity of a X−material groupoids.

Consider Ω (C), the material groupoid associated to the body-time manifold
C. Then, we have available the material distribution AΩ (C), body-material
distribution AΩ (C)♯ and the uniform-material distribution AΩ (C)B and
their associated foliations, the material foliation F , body-material foliation
F and uniform-material foliation G, respectively.

Proposition 31. Let be a body-time manifold C. C presents a smooth aging
process if, and only if,

i) dim
(

AΩ (C)Tǫ((t,X))

)

is constant respect to (t, X)
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ii) For some X, dim
(

AΩX (R)♯t

)

= 0, for some t.

Here, AΩ (C)Tǫ((t,X)) (resp. AΩX (R)♯t) is the fibre of AΩ (C)T (resp. AΩX (R)♯)
at ǫ ((t, X)) (resp. t).

Proof. Notice that, if Ω (C) is a Lie subgroupoid of Φ (V), then, by
Proposition 15, all the X−material groupoids are Lie subgroupoids of Φ (V).

Then, dim
(

AΩX (R)♯t

)

does not depend on time at any instant t. Therefore,

ΩX (R) is not transitive if, and only if, dim
(

AΩX (R)♯t

)

= 0, for all t. Then,

the proof is analogous to theorem 26.

In this way, again, we present a result characterizing smooth aging of
the evolution material which gives a computational way of testing it.

Definition 24. Let C be a body-time manifold. The body B is said to be
undergone a uniform aging if for each t ∈ R all the points (t, X) ∈ C are
isomorphic and it is not presenting a uniform remodeling.

Intuitively, in a process of uniform aging the material properties change
equally at all the points.

Proposition 32. Let C be a body-time manifold. The body B presents
uniform aging if, and only if, for all t, the t−material groupoid Ωt (B) is
transitive and the material groupoid Ω (C) is not transitive.

So, a process of aging is uniform if all the states of the body are uniform
but the intrinsic properties of the body vary along the time.

Proposition 33. Let be a body-time manifold C. C presents a smooth
uniform aging process if, and only if,

i) dim
(

AΩ (C)Tǫ((t,X))

)

is constant respect to (t, X)

ii) For some X and t, dim
(

AΩX (R)♯t

)

= 0.

iii) For all t and some X, dim
(

AΩt (C)
♯
X

)

= 3.
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Notice that, by proposition 15, dim
(

AΩX (R)♯t

)

and dim
(

AΩt (C)
♯

X

)

are

constant on t and X, respectively.
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