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1 Introduction

The intimate kinship between Continuum Mechanics and Differential Geom-
etry is apparent from the very fact that a continuum is, by definition, a dif-
ferentiable manifold. Moreover, just as in classical Analytical Mechanics the
configuration space of a system of particles is regarded as a finite-dimensional
differentiable manifold, so too the configuration space of a continuum can be
regarded as an infinite dimensional manifold of maps [6,15]. Thus, the kine-
matic aspects of the discipline are completely embraceable within a differential
geometric context. One of the seminal contributions of Walter Noll [14] was
the realization that the specification of a constitutive response of a materially
uniform body automatically endows the body with an additional differential
geometric structure that we call material geometry. This point of view is conso-
nant with the rich tradition of the theory of continuous distribution of defects,
pioneered earlier by Kondo [10], Kroener [11], Eshelby [7], Bilby [1], Frank [8],
and others. Noll’s original work was soon significantly extended by Wang [16]
and Bloom [2]. Furthermore, the formalism of G-structures [3] and groupoids
[4] was shown to be the natural tool to express the geometry associated with
the constitutive structure of uniform bodies of simple and structured media.
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Our objective in this article is to present a unified treatment of material
geometry from the vantage point of the geometric theory of groupoids. What
is gained in so doing is the awareness that to any constitutive response of
a body, whether uniform or not, one can uniquely associate a corresponding
material groupoid. If the body happens to be smoothly uniform, an associated
material Lie algebroid becomes available and plays a fundamental role in the
determination of homogeneity conditions. If, on the other hand, the body is
not uniform, we show that, under certain conditions of smoothness, a unique
singular material distribution can be defined that divides the body into parts
of various dimensions, each of which is smoothly uniform. Some of these results
have been separately introduced in recent publications [].

2 Constitutive response and material isomorphisms

The simplest example of a geometric material structure is provided by (first-
grade) elastic materials. The constitutive response at a point X of a body
manifold B is defined as follows. Let L(U, V ) denote the space of linear iso-
morphisms between two vector spaces U, V of the same finite dimension. A
constitutive response at X ∈ B is a (smooth) map

ψX : L(TXB,R3)→ R, (1)

where TXB is the tangent space of B at X and where R is the space of values.
The Cauchy stress, for example, takes values in the space of contravariant sym-
metric tensors on R3. The constitutive response of the body is the collection
of the constitutive responses of its points. A configuration κ of the body is an
embedding

κ : B → E3, (2)

where E3 is the standard Euclidean space, whose tangent space at each point
is precisely R3. For any configuration κ we can evaluate the field ψ (such as
the Cauchy stress field) in that configuration as the map ψκ : B → R given by

ψκ(X) = ψX(κ∗(X)), (3)

where κ∗(X) is the derivative of κ at X. Notice that κ∗(X) belongs indeed to
L(TXB,R3), as implied by Equation (2) and the notion of derivative of a map
between manifolds.

These definitions do not make use of any specific reference configuration.
If such a reference configuration, say κ0, is specified, then the constitutive
response with respect to that configuration can be deduced by composition
of maps. The use of a reference configuration is justified in practical applica-
tions by the need to have an explicit analytic expression for the constitutive
response, for which the terminology constitutive equation is usually applied.
Notice that the ‘master’ constitutive response ψ defined on the body mani-
fold guarantees the usual consistency rules between the subsidiary constitutive
equations referred to different reference configurations.
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Two body points, X,Y ∈ B are materially isomorphic if there exists a map
P ∈ L(TXB, TY B) such that

ψY (F) = ψX(FP) ∀F ∈ L(TY B,R3). (4)

The physical meaning of the existence of a material isomorphism P between
X and Y is that these two points are made of the same material. A body all
of whose points are mutually materially isomorphic is said to be materially
uniform. A body is smoothly uniform if it can be covered with materially
uniform open sets such that in each of them the material isomorphisms can
be chosen smoothly.

A material automorphism at a point X ∈ B is nothing but a material
symmetry of X. Under a material symmetry, the constitutive response remains
invariant, as implied by Equation (4) when setting Y = X. The collection of
all material symmetries at X forms a group GX , known as the symmetry group
at X. A group is essentially an algebraic structure. If it happens to be a Lie
group, GX also has the differential geometric structure of a smooth manifold.
Thus, every point of a material body endowed with a constitutive response
carries its own algebraic and/or geometric structure. In a celebrated imagery
[17], we may think of the body as a bathroom floor made of infinitesimal tiles,
each of which has some symmetries (rotations and reflections). These are local
symmetries. On the other hand, different tiles may also be compared with
each other. If two tiles are congruent, they can be mutually transplanted so
as to occupy each other’s former place. Under this action, the floor remains
invariant. It seems justifiable to call these congruences distant symmetries and
to ask the question as to whether there might exist an algebraic/geometric
structure that can encompass both local and distant symmetries under a single
umbrella enjoying properties similar, if not identical, to those of a group.

3 The geometry induced by the material isomorphisms

3.1 An intuitive view

Each material isomorphism P : TXB → TY B can be imagined as an arrow
with its tail at X and its tip at Y . Let Z denote the set of all these arrows
corresponding to a given constitutive response. This set is never empty. Indeed,
it contains at the very least the identity automorphisms idX : TXB → TXB
for all X ∈ B. In the arrow description, these are loop-shaped arrows, one at
each body point. Moreover, if a point X has additional non-trivial material
symmetries, we obtain a collection of loop-shaped arrows at X which embody
the local symmetry group GX .

Consider two different points X,Y that happen to be materially isomor-
phic. In that case, we include an arrow P(X,Y ) from X to Y . Since material
isomorphism is an equivalence relation, we must also include the reverse arrow
P(Y,X) = P−1(X,Y ). Moreover, if P(Y, Z) is an additional material isomor-
phism between Y and Z, by transitivity we must also include the composite
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arrow P(X,Z) = P(Y, Z) P(X,Y ), as suggested in Figure 1. In other words,
arrows are composed in the standard tip-to-tail fashion, and in no other way.
Two arrows cannot be composed unless the tip of the first coincides with the
tail of the second. We will call the collection P of all these arrows the material
groupoid associated with the given constitutive response, a terminology that
will be presently justified. At this stage we can state that

To any given material response ψX(·), whether or not continuous with
respect to X, we can associate a uniquely defined material groupoid.

P(X,Y) P(Y,Z)

P(X,Z)=P(Y,Z) P(X,Y)

X
Y

Z

B

Fig. 1 Material isomorphisms as groupoid arrows and their composition

3.2 Groupoids: definition and terminology

Following [12], a groupoid Z ⇒M consists of

- A total set Z, whose elements are called arrows;
- A base set M, whose elements are called objects;
- Two surjective projection maps, α : Z → M and β : Z → M, called the

source map and the target map, respectively;
- An injective map i :M→ Z, called the object inclusion map;
- An associative binary internal operation in Z called composition or product

defined for, and only for, all pairs u, v ∈ Z such that β(u) = α(v). The
result of the composition is denoted as vu.

The product, moreover, satisfies

- α(vu) = α(u) and β(vu) = β(v);
- α ◦ i(X) = β ◦ i(X) = X ∀X ∈M;
- u(i ◦ α(u)) = u and (i ◦ β(u))u = u ∀u ∈ Z;
- For each u ∈ Z there is an inverse u−1 ∈ Z such that α(u−1) = β(u),
β(u−1) = α(u) and u−1u = i ◦ α(u), uu−1 = i ◦ β(u).
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Although the overly formal statement of these properties is somewhat in-
timidating, they simply state that the source and target of a product are
provided by the source of one factor and the target of the other, and that
the object inclusion map acts as an assignation of a unit element (identity
arrow) to each point of the base set M. Finally, for each arrow u with source
at X = α(u) and target at Y = β(u), there is an opposite arrow u−1 with
source at Y and target at X. Their compositions, uu−1 and u−1u, produce the
respective units at the target and the source of u. It is not difficult to prove
that the units and inverses are unique.

For each object X ∈ M, the subsets ZX = α−1(X) ⊂ Z and ZX =
β−1(X) ⊂ Z are called the α-fibre and the β-fibre over X, respectively. Ac-
cordingly, the subset ZYX = ZX ∩ ZY is the collection of all arrows that start
at X and end at Y . Thus, ZXX is the collection of all loop-shaped arrows atX.
It is not difficult to conclude, from the rules for the product, that each of these
subsets ZXX is a group, known as the vertex group at X.

A groupoid is transitive if ZYX 6= ∅ for all pairs X,Y ∈ M. In a transitive
groupoid all the vertex groups are conjugate of each other in the sense that

ZYY = u ZXX u−1, (5)

where u ∈ ZYX . Any one of these conjugate groups can be declared to be the
structure group of the transitive groupoid.

A groupoid is totally intransitive if, for all X,Y ∈ M, it happens that
X 6= Y ⇒ ZYX = ∅. Put differently, no two distinct objects are connected by
an arrow.

We can always define an equivalence relation ∼ on M by stipulating that
X ∼ Y if, and only if, ZYX 6= ∅. The corresponding equivalence classes are
denoted by MX . The restriction ZX of Z to an equivalence class MX is
obviously a transitive groupoid, called the transitivity component of Z that
contains X. In short, every groupoid can be seen as the disjoint union of
its transitivity components. In particular, a totally intransitive groupoid is
precisely the disjoint union of its vertex groups. Some of these concepts are
illustrated, albeit naively, in Figure 2.

Just as in the case of a group, a groupoid is defined as a purely algebraic
structure. Topological and geometrical aspects are introduced whenever the
sets of arrows and objects, the maps relating them and the composition and
inversion operations enjoy further topological and differential properties. Thus,
a topological groupoid Z ⇒M is a groupoid for which Z and M are topolog-
ical spaces and the projections α, β, the inclusion map i and the operations
of composition and inversion are continuous in the respective topologies. A
Lie groupoid Z ⇒ M is a groupoid where Z and M are smooth manifolds,
the projections α, β are surjective submersions, the object inclusion map i is
smooth and so are the operations of composition and inversion.1

1 The assumption of smoothness of the inversion is not necessary, since it is implied by
the other properties. Mackenzie [12] distinguishes between Lie groupoids and differentiable
groupoids, the latter not being necessarily locally trivial.
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Fig. 2 A groupoid on a discrete base set. The transitivity components are clearly visible.

3.3 Correspondences with Continuum Mechanics

Combining the intuitive considerations developed in Section 3.1 with the for-
mal definition of a groupoid introduced in Section 3.2, we have at our disposal
the material groupoid P ⇒ B associated with the constitutive response ψX(·),
and we can assign to the maps α, β and i and to the operations of composition
and inversion the obvious physical meanings implied in the very definition of
material isomorphisms. The vertex group PXX is precisely the material sym-
metry group GX .

Comparing the concept of a materially uniform body with the definition
of a transitive groupoid we conclude that

A body B is materially uniform if, and only if, the material groupoid P
is transitive.

At the other extreme, a totally intransitive material groupoid describes a
situation in which no two material points of the body are made of the same
material. Between these two extreme cases, we can state that

A constitutive response partitions the body into uniform components,
each one corresponding to a transitivity component of the material groupoid.

Assume that the constitutive response ψX(·) is a smooth function of its
arguments and that the body B is considered as a smooth manifold. It may
appear that these properties imply that the resulting material groupoid is a Lie
groupoid, but this is not the case in general, as can be shown by counterexam-
ples. Even when the body is smoothly uniform, so that the material groupoid
is transitive, a proof that smoothness of the constitutive law implies that the
material groupoid is a Lie groupoid is not available, although counterexamples
have not been found.
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3.4 Subgroupoids

A map between two groupoids, Z1 ⇒M1 and Z2 ⇒M2 is a groupoid mor-
phism if it is consistent with the projections and the compositions. More pre-
cisely, a morphism consists of two maps, Φ : Z1 → Z2 and φ : M1 → M2,
such that

α2 ◦ Φ = φ ◦ α1 β2 ◦ Φ = φ ◦ β1, (6)

and

Φ(uv) = Φ(u)Φ(v) ∀u, v ∈ Z1. (7)

In Equation (6), α1, β1 and α2, β2 denote the source and target maps of
Z1 ⇒M1 and Z2 ⇒M2, respectively. It should be noted that, as a direct con-
sequence of (7), a morphism automatically preserves the identities. Moreover,
as a consequence of (6), the map φ is implied by the map Φ. A groupoid iso-
morphism is an invertible groupoid morphism whose inverse is also a groupoid
morphism. A Lie groupoid morphism is a differentiable morphism between two
Lie groupoids.

A subgroupoid Z ′ ⇒ M′ of a groupoid Z ⇒ M is a groupoid such that
Z ′ ⊂ Z andM′ ⊂M and such that the inclusion map is a groupoid morphism.
A Lie subgroupoid is defined similarly, except that Z ′ and M′ are required to
be submanifolds of Z and M, respectively, and the inclusion map is required
to be a Lie groupoid morphism.

A transitive Lie subgroupoid Z ′ of a transitive Lie groupoid Z is said to
be a reduction, if the base manifolds coincide. This terminology arises from
considering that the only difference between the two groupoids is that the
fibres have been curtailed. In other words, the structure group of the reduced
subgroupoid is precisely a subgroup of the structure group of the original
groupoid.

Remark 1 Given a groupoid Z ⇒ M, and given a subset U ⊂ M, the set
ZUU = {ZYX | X,Y ∈ U} is a subgroupoid of Z with base U . It is called the
restriction of Z to U , since it consists of only all the arrows that start and end
in U , the remaining arrows being discarded. Notice that if Z is transitive, so
is ZUU . In particular, for the material groupoid P ⇒ B, the restriction PUU of
P to a sub-body U is precisely the material groupoid of U .

3.5 The frame groupoid and homogeneity

An important example of a transitive Lie groupoid defined on a manifold
M is the frame groupoid F(M). Starting from the tangent bundle TM, we
consider each linear isomorphism z : TXM → TYM between the tangent
spaces at X,Y ∈ M as an arrow in the groupoid. The groupoid operation is
the ordinary composition of maps. The importance of the frame groupoid in
the context of Continuum Mechanics is that
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Every material groupoid is a subgroupoid of the frame groupoid of B.
Moreover, if the body is smoothly uniform and its material groupoid is a
Lie groupoid, the material groupoid is a reduction of the frame groupoid
of the body.

The frame groupoid F(U) of an open subset U ⊂ R3 plays an important role
in the definition of the concept of material homogeneity. We note that, by the
existence of a trivial translation, there is a natural Lie groupoid isomorphism
between F(R3) and the Cartesian product R3 × R3 × GL(3;R). Indeed, any
arrow of F(R3) consists of a pair of points of R3 and a non-singular 3 × 3
matrix. For any (Lie) subgroup G of the general linear group GL(3;R), we can
accordingly generate a reduction of F(U) by means of its natural isomorphism
with U × U ×G. This reduction, which is clearly a transitive Lie groupoid, is
called the standard flat reduction of F(U) to G.

To introduce the notion of homogeneity, we start by noting that the mate-
rial groupoid P defined on the body manifold B is isomorphic (as a groupoid)
to its representation in each configuration κ : B → E3. A uniform body is
said to be materially homogeneous if, for some configuration κ, its material
groupoid coincides with a standard flat reduction of F(κ(B)). In other words,
the canonical translations in that configuration are material isomorphisms! A
uniform body is locally homogeneous if it can be covered with homogeneous
subbodies.

Remark 2 It is important to note that, since the material isomorphisms must
of necessity transform according to the rules of change of configuration, the
groupoid isomorphisms brought about by any changes of configurations are
lifts of the respective deformations φ of the body, as shown schematically in
Figure 3. By the term ‘lift’ we mean that the map Φ between the groupoid
arrows is obtained from the derivative of the map φ between the set of objects.
This is possible only because we are restricting attention to subgroupoids of
the frame groupoid. Let P : TX (κ0(B)) → TY (κ0(B)) be a material isomor-
phism between points X and Y in the configuration κ0. Let φ = κ1◦κ−10 be the
deformation between κ0 and another configuration κ1. The material isomor-
phism P′ between the image points X ′ = φ(X) and Y ′ = φ(Y ) corresponding
to P is given by

P′ = φ∗(Y ) ◦P ◦ φ−1∗ (X ′). (8)

To summarize,

Homogeneity of a smoothly uniform body B is tantamount to the exis-
tence of a configuration κ such that the induced material groupoid co-
incides with a standard flat reduction of the frame groupoid of κ(B) ⊂
E3. Accordingly, homogeneity implies the existence of a configuration
(unique modulo a rigid-body motion) whereby the trivial Euclidean trans-
lations are material isomorphisms. Intuitively, a uniform body is ho-
mogeneous if it can be ‘straightened’ so that its constitutive equation is
independent of the (Cartesian) coordinates of its points. Local homo-
geneity requires only that this property be attainable chunk-wise.
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κ0(B)

κ1(B)

P

X

Y

X′

Y ′

P′
φ

Fig. 3 Schematic depiction of homogeneity

4 Lie algebroids

4.1 Introduction

As an algebraic structure, a groupoid can be colourfully described as a group
‘on steroids’. Indeed, a group can be regarded as the particular case of a
groupoid whose set of objects M is a singleton. All the elements of a group
can be mutually composed (multiplied) and there is a single, uniquely defined,
unit element e. In a general groupoid Z ⇒ M, on the other hand, M is an
arbitrary set, but, except for the totally intransitive case, Z is not just the
union of its individual vertex groups. The elements of Z are ‘arrows’ that may
have different sources and targets. Arrows can be composed only if they satisfy
the extra condition of being in tandem, tip-to-tail fashion. Moreover, rather
than a single unit element, each element X of the set of objects M carries its
own (unique) unit i(X), an arrow in the form of a loop, so to speak.

Recall that a Lie algebra is a vector space endowed with an antisymmet-
ric binary operation called a Lie bracket. Lie algebras are defined indepen-
dently from groups, but the fundamental work of Sophus Lie (1842-1899)
demonstrated the intimate connection that exists between Lie algebras and
Lie groups, that is, groups that are also manifolds in which the operations of
multiplication and inversion are smooth.

The Lie algebra of a Lie group represents an infinitesimal version of the
latter in a precise sense. Its underlying vector space can be identified with
the tangent space of the Lie group at the unit element. The vehicle to this
identification is provided by the notion of left- (or right-) invariant vector
fields on the Lie group. Similarly, the concept of a Lie algebroid can be in-
troduced independently and eventually related to the notion of Lie groupoid.
As an infinitesimal version of the latter, however, it involves certain tangent
spaces to the groupoid Z at each of its unit elements. Again, these notions
are intermediated via right- (or left-) invariant vector fields on the groupoid.
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As everything else pertaining to groupoids, these notions acquire a further
degree of sophistication as compared with their group counterparts. Although
certainly premature for this introduction, we take the liberty of depicting, in
Figure 4, a schematic drawing that may serve as an intuitive basis for a mental
representation of the concepts that will be advanced below in a more precise
fashion.

e

G

g

M

z

i(M)

β-fibres of Z

Fig. 4 A preliminary mental picture of the Lie algebroid z of a Lie groupoid Z (right)
as compared with the Lie algebra g of a Lie group G (left). The β-fibre at X ∈ M is the
collection of all the arrows arriving at X.

4.2 Definition

Let π : A → M denote a vector bundle over a base manifold M, and let
Γ (A) denote the space of its smooth global sections σ : M → A. A Lie
algebroid structure on this vector bundle is obtained by specifying a bilinear
bracket operation [·, ·] : Γ (A)× Γ (A) → Γ (A) and a vector-bundle morphism
] : A → TM, called the anchor map. These maps must satisfy the following
properties;

1. Skew-symmetry:

[ρ, σ] = −[σ, ρ] ∀ρ, σ ∈ Γ (A). (9)

2. Jacobi identity:

[ρ, [σ, τ ]] + [τ, [ρ, σ]] + [σ, [τ, ρ]] = 0 ∀ρ, σ, τ ∈ Γ (A). (10)

3. Consistency:

[ρ, σ]] = [ρ], σ]] ∀ρ, σ ∈ Γ (A). (11)

4. Leibniz rule:

[ρ, fσ] = f [ρ, σ] + ρ](f) σ ∀ρ, σ ∈ Γ (A), f ∈ C∞(M). (12)
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Remark 3 The first two properties are self-explanatory. The third property can
be shown to be a consequence of the other ones. For compactness of notation,
we have indicated by ρ] the image ](ρ) ∈ Γ (TM) of the section ρ ∈ Γ (A).
Moreover, the bracket appearing on the right-hand side of (11) and (12) is the
ordinary Lie bracket of vector fields in TM. The fourth property requires some
further clarification, as it displays the reason behind the need for an anchor
map. In an arbitrary vector bundle, there is in principle no canonical action
of the vectors in the bundle on a smooth real-valued function f ∈ C∞(M)
defined on the base manifold M. It is only in the tangent bundle TM that
such an action exists, providing us with the directional derivative v(f) of f in
the direction of v ∈ TM.

A Lie algebroid is transitive if the anchor map ] is a submersion.2 It is
totally intransitive if the anchor is the zero map (assigning to each vector in
A the zero tangent vector at the corresponding point of the base manifold).
The reason for this terminology will become apparent later.

4.3 The Lie algebroid of a Lie groupoid

4.3.1 The β-bundle

Consider the disjoint union ZM of all the β-fibres of a transitive Lie groupoid
Z, that is,

ZM =
⋃

X∈M
ZX . (13)

This set, which we call the β-bundle, can be regarded as a fibre bundle over
the base manifold M with projection β. In terms of arrows, ZM looks like a
spider colony, each fibre ZX being a spider with legs arriving at X and issuing
from some point Y ∈ M, as shown schematically in Figure 5 [5]. Notice that
the total set of this fibre bundle is the same as the total set of the original
transitive groupoid Z. They both consist of the set of all arrows.

4.3.2 Left-invariant vector fields on a Lie groupoid

In any groupoid Z ⇒ M we can define the concept of left translation. Let
g ∈ Z and let z ∈ Z be such that β(z) = α(g). The left translation of z by g
is given by

Lg(z) = gz. (14)

It follows from this definition that Lg maps β-fibres into β-fibres, that is, the
spider at α(g) gets mapped to the fibre at β(g). Specifically,

Lg : Zβ(z) = Zα(g) → Zβ(g). (15)

2 Recall that a smooth map is a submersion if its derivative is surjective at each point.
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M

Fig. 5 The β-bundle ZM as a spider colony

If the groupoid happens to be a Lie groupoid, the left action is differentiable
and we can consider the tangent map (Lg)∗ : TZα(g) → TZβ(g). A vector field
V : Z → TZ on Z is left-invariant if

(Lg)∗(V (z)) = V (Lg(z)) ∀g, z ∈ Z. (16)

Of necessity, a left-invariant vector field must be β-vertical, that is, it must
dwell on the tangent spaces of the β-fibres of Z ⇒M.

A left-invariant vector field on a Lie groupoid is completely determined by
its values at the unit elements i(X), for all X ∈M. Indeed, setting z = i◦α(g)
in Equation (16), we obtain

(Lg)∗(V (i ◦ α(g))) = V (Lg(i ◦ α(g))) = V (g(i ◦ α(g))) = V (g). (17)

Recall that, given any smooth vector field V on a manifoldM, the funda-
mental theorem of the theory of ODEs guarantees the existence and uniqueness
of maximal smooth integral curves defined at each point of M. If γx = γx(t)
is the integral curve containing the point x ∈M, the curve parameter can be
adjusted by a mere translation such that γx(0) = x. By definition of integral
curve, we have

V (x) =
dγx(t)

dt

∣∣∣∣
t=0

. (18)

Moreover, every smooth vector field acts as the infinitesimal generator of a
local flow φVt . For each t in a certain interval of R containing the origin, φVt is
a diffeomorphism of M defined by the prescription

φVt (x) = γx(t). (19)

Clearly, φV0 = idM and φV−t =
(
φVt
)−1

. Applying these concepts to Equation
(16) we obtain the result of the following lemma.

Lemma 1 A β-vertical vector field V on a Lie groupoid is left invariant if,
and only if, its local flow commutes with left translations, that is,

Lg ◦ φVt (z) = φVt ◦ Lg(z), (20)

for all g, z such that α(g) = β(z).
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4.3.3 The associated Lie algebroid

After the foregoing properties of left-invariant vector fields on a Lie groupoid
Z ⇒M have been established, we introduce the vector bundle π : AZ →M
whose fibre at each X ∈ M is the tangent space to the β-fibre of Z at the
identity i(X). It is clear that a section of this vector bundle corresponds exactly
to a left-invariant vector field on Z. Since each map Lg is a diffeomorphism
between two β-fibres, and since the left-invariant vector fields are tangent to
these fibres, it follows that the ordinary Lie bracket between two left-invariant
vector fields is again left-invariant. Therefore, given two sections of AZ, we
can define a Lie-algebroid bracket operation by considering the Lie bracket of
the corresponding vector fields in Z and then considering its value at the unit
section. To complete the determination of the Lie algebroid associated with
the Lie groupoid Z, we declare the anchor map to be given by α∗ : TZ → TM.
An intuitive idea of the anchor map (and of the meaning of the Lie algebroid)
can be gathered from Figure 6. Starting from the identity loop-like arrow at
a point X ∈ M, we explore its vicinity in Z by keeping the tip of the arrow
fixed at X, so as to stay always in the same β-fibre β−1(X). If we keep the tail
of the arrow also at X (that is, if we explore just the loop-like neighbours),
we are clearly moving within the vertex group at X. As a result, we recover
the Lie algebra of this vertex group. In the case of the material groupoid P
introduced above, we obtain the Lie algebra of the material symmetry group at
X. Let us further explore the vicinity of the unit i(X) by considering an arrow
z with its tip at X, but with its tail elsewhere, at say X+dX. The differential
projection α(z) − α(i(X)) is precisely dX. Thus, intuitively enough, we see
how the map α∗ acts as the anchor of the algebroid. We see, moreover, that
the Lie algebra of the vertex group at X is precisely the kernel of the anchor at
X. Moreover, if α∗ is a surjective map, there are arrows between X and every
point in an open neighbourhood of X inM. This picture perfectly justifies the
terminology introduced above for transitive and totally intransitive algebroids.
In the case of the material groupoid P we conclude that a smoothly uniform
body has a transitive material Lie algebroid.

5 The material Lie algebroid and homogeneity

5.1 Lie-algebroid morphisms and Lie subalgebroids

A morphism φ : A→ A′ of two Lie algebroids π : A→M and π′ = A′ →M
over a common base manifoldM is defined as a vector-bundle morphism that
is consistent with the respective anchors and brackets. That is, in an obvious
notation,

] = ]′ ◦ φ, (21)

and

φ[ρ, σ] = [φ ◦ ρ, φ ◦ σ] ∀ρ, σ ∈ Γ (A). (22)
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M

X
X + dX

Fig. 6 Intuiting the Lie algebroid of a Lie groupoid. The identity i(X) is drawn as a solid
arrow, while elements in its vicinity are drawn as dashed arrows. The anchor map assigns
to each dashed arrow the opening between its tail and X.

Let A′ be a vector subbundle of A, and let the inclusion map incl : A′ ↪→ A
be a Lie-algebroid morphism. We say that A′ is a Lie subalgebroid of A. When
both A and A′ are transitive Lie algebroids, A′ is called a reduction of A.

Consider the frame groupoid F(R3) ≈ R3 × R3 × GL(3;R), which we
have already encountered. The β-fibre at X ∈ R3 consists of elements of the
form ({Y }, {X}, [A]), where {Y } is a triple containing the coordinates of the
variable tail and {X} are the coordinates of the common tip X, and where [A]
is a 3 × 3 non-singular matrix. A vector tangent to this fibre will, therefore,
have the component form ({v}, {X}, [B]), where {v} are the 3 components of
a tangent vector to R3 at X and where [B] is an arbitrary 3× 3 matrix. The
same reasoning applies to the standard flat reduction of F(R3) to a subgroup
G ⊂ GL(3;R). In other words, the Lie algebroid associated to this reduction is
TR3⊕

(
R3 × g

)
, where g denotes the Lie algebra of G. In the imagery suggested

by Figure 6, the first component corresponds to the opening of arrows with
tip at X, while the last component is spanned by al the loop-like arrows at X,
namely, the Lie algebra of the symmetry group.

5.2 Homogeneity and material connections

Following the lead of the groupoid treatment counterpart, we assert that a
smoothly uniform body B is homogeneous if its (transitive) material Lie al-
gebroid AP in some configuration κ coincides with the Lie algebroid of a
standard flat reduction of the frame groupoid of (an open subset of) R3. Local
homogeneity is defined accordingly.

Our intention in this section is to demonstrate the relation between this
definition of homogeneity and the notion of material connections introduced by
Noll [14] and Wang [16]. As a first step in that direction, consider a transitive
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Lie algebroid Z ⇒M and arbitrarily fix a reference or archetypal point X0 ∈
M. It is not difficult to verify that the disjoint union

Z0 =
⋃

X∈M
ZXX0

(23)

is a principal fibre bundle with structure group G equal to the vertex group
at X0 and with bundle projection β. A connection in a principal bundle is a
horizontal distribution, namely, the point-wise specification of a non-vertical
subspace H such that (i) the tangent space is the direct sum of H and the
(vertical) tangent space to the fibre; (ii) the horizontal distribution is invariant
under the right action of the structure group.

Let Λ : TM→ AZ be a vector-bundle morphism such that ] ◦ Λ = idTM.
One can directly verify that there is a one-to-one correspondence between such
vector-bundle morphisms and connections in the principal bundle Z0. In the
context of Noll’s formulation, local homogeneity is equivalent to the existence
of a (locally defined, say) material connection with vanishing torsion. We con-
clude, therefore, that local homogeneity is guaranteed by the existence of a
(local) vector-bundle morphism from the (restricted) material Lie algebroid to
the tangent bundle of the (sub-)body such that the associated connection is
torsionless.

6 The material distribution

6.1 General considerations

The material groupoid is essentially an algebraic entity based on the estab-
lishment of an equivalence relation between body points made of the same
material. This algebraic entity has also a definite topological and geometric
flavour arising from the fact that the elements of a groupoid can be visualized
as arrows connecting points. A differential geometric aspect is added when the
material groupoid is a Lie groupoid. In this last case, the study of its associ-
ated Lie algebroid is also of great relevance, particularly in the study of local
homogeneity conditions.

As already mentioned in Section 3.3, even when the constitutive response
is a perfectly smooth function, the resulting material groupoid is not neces-
sarily a Lie groupoid. This somewhat surprising fact leads us to introduce and
investigate a new differential geometric construct, called the material distri-
bution, that answers the question as to what is the most general differentiable
structure that can most faithfully reflect the consequences of having a smooth
constitutive response even in the absence of material uniformity.

A heuristic clue is gathered by thinking of the constitutive law ψ as a
function defined over the product κ0(B) × GL(3,R) of the body manifold in
a reference configuration κ0 times the general linear group (of non-singular
matrices) in 3 dimensions. Appropriately, the function ψ assigns to each ma-
terial point and each deformation gradient a value of the constitutive quantity.



16 M. Epstein, V. M. Jiménez and M. de León

Consider now a parametric curve γ(t) in B such that all the points along this
curve are smoothly materially isomorphic, so that there exists a (not neces-
sarily unique) smooth field P(t) of material isomorphisms from the point γ(0)
to the points γ(t), such that P(0) = I. This means that the function ψ, when
restricted to the curve, can be expressed as ψ(γ(t),F) = ψ(γ(0),FP(t)). For
each fixed value of the deformation gradient F we can lift the curve γ(t) to a
curve γ̂(t) in κ0(B)×GL(3,R) by using the value of FP(t) as the coordinate
along GL(3,R). By the assumed material isomorphism, the value of ψ will
remain constant along γ̂(t). Moreover, for two different values of F, the curves
will be “parallel” in the sense that they differ only by multiplication of their
matrix argument to the left by a different fixed factor F, while P(t) remains
unchanged.

Since a small piece of a curve is, in the limit, a tangent vector, the de-
scription just outlined leads us to consider the collection of all vector fields
in κ0(B)×GL(3,R) that are left invariant under the action of GL(3,R) and,
at the same time, annihilate the differential of the constitutive function ψ.
This approach was adopted in [9]. Here, we generalize this construction by
working directly on the frame groupoid F(B), rather than on the product
κ0(B)×GL(3,R). The local vector fields enjoying the properties outlined above
can be regarded as the generators of a unique singular distribution in F(B)
completely characterizing the smoothness of the constitutive law of departure
and its physical consequences in terms of a unique partition of the body into
disjoint smoothly uniform components.

6.2 Coordinate expressions

For the sake of clarity, let us record the representation of a left-invariant vec-
tor field on the frame groupoid of a manifold M in terms of local coordinates
induced by a reference configuration κ0. A variable element a in the β-fibre
at a point Y ∈ M has coordinates

(
Y I ,

(
XL, AJK

))
, where XL are the co-

ordinates of X = α(a) ∈ M. The unit element of this fibre has coordinates(
Y I ,

(
Y L, δJK

))
. Let b ∈ F(M) be an element such that α(b) = β(a), and let

its coordinates, as an element of the β-fibre at Z = β(b), be
(
ZI ,

(
Y L, BJK

))
.

The left action by b, as an element of the β-fibre at β(b) has the coordinate
representation

Lb(a) =
(
ZI ,

(
XL, BJMA

M
K

))
. (24)

A tangent vector V to the β-fibre at Y is expressed in components as

V
(
Y I ,

(
XL, AJK

))
=
(
Y I ,

(
XL, AJK

)
, 0, vM , vNQ

)
. (25)

This vector is mapped to the vector

(Lb)∗
(
V
(
Y I ,

(
XL, AJK

)))
=
(
ZI ,

(
XL, BJSA

S
K

)
, 0, vM , BNS v

S
Q

)
. (26)

For a left-invariant vector field this vector should be the same as the value
of the vector field at the point

(
ZI ,

(
XL, BJSA

S
K

))
. Let the vector field attain
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values at the units given in coordinates by

V
(
Y I ,

(
Y L, δJK

))
=
(
Y I ,

(
Y L, δJK

)
, 0, wM (Y ), wNQ (Y )

)
. (27)

Left-invariance demands that

V
(
ZI ,

(
Y L, BJK

))
=
(
ZI ,

(
Y L, BJK

)
, 0, wM (Y ), BNS w

S
Q(Y )

)
. (28)

6.3 Constitutive invariance

In a reference configuration κ0, a constitutive response such as (3) is expressed
as a function

ψ = ψ(F iI , X
J). (29)

It is convenient, however, to reinterpret this as a function ψ̃ defined over the
frame groupoid F(M). This interpretation is possible because, having chosen
a reference configuration κ0, the maps between tangent spaces can be regarded
as deformation gradients F if so desired. At the element

(
Y I ,

(
XL, AJK

))
of

the β-fibre at Y , the constitutive response is given by

ψ̃
(
Y I ,

(
XL, AJK

))
= ψ(AJK , X

L). (30)

We have exploited the fact that the constitutive response at a point does not
depend on the target point, since it is invariant under translations in E3. The
differential of the function ψ̃ is

dψ̃ =
∂ψ

∂XL
dXL +

∂ψ

∂AJK
dAJK . (31)

We are interested in finding the collection V of all the smooth local vector fields
V that satisfy three conditions: (a) they are everywhere tangent to the β-fibres;
(b) they annihilate the differential of the constitutive response; and (c) they are
left-invariant. Condition (a) is implied by (c). We shall call these vector fields
constitutively admissible, or just admissible. It is certainly possible to proceed
analytically so as to identify exactly what these vector fields represent from
the point of view of continuum mechanics. Instead, at the risk of some loss of
rigour, we will advance a more geometric argument.

We commence by noticing that condition (b) implies that these vector
fields are, by construction, everywhere tangent to the level sets of the function
ψ̃. As a consequence of this simple observation, we conclude that the integral
curves of the admissible vector fields are entirely contained in these level sets.
By condition (a), the desired integral curves belong to the intersection of the
level sets of ψ̃ with the β-fibres. Moreover, because of the already noticed
independence of ψ̃ on the target point, we observe that the picture of the
integral-curve-portraits in each and every β-fibre are all identical. Finally,
the left invariance condition (c) means that, under the action of an arbitrary
element z of the frame groupoid, integral curves are mapped into integral
curves.
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If z(t) is the parametric representation of an integral curve of V, by con-
dition (a) we have necessarily β(z(t)) = constant. On the other hand, the
projected curve α(z(t)) consists entirely of mutually materially isomorphic
points in B. Indeed, by conditions (b) and (c) above, they respond in “par-
allel” ways to all possible left translations in the frame groupoid. The main
conclusion of this observation is that the set of integral curves of V and the
material groupoid are intimately related according to the following statement.

If the material groupoid has a point (that is, an arrow z) in common
with an integral curve of V, then the whole integral curve belongs to the
material groupoid.

6.4 Singular distributions

A distribution D over a manifold M is obtained by assigning to each point
x ∈ M a vector subspace Dx of the tangent space TxM . The distribution is
defined as the disjoint union

D =
⋃
x∈M

Dx. (32)

The distribution D is said to be regular or of constant rank if the dimension
of Dx is the same for all x ∈M . Otherwise, the distribution is called singular
[13]. Consider the collection VD of all local vector fields that belong to the
distribution. The distribution D is smooth if it is spanned by VD. Equivalently,
for every x ∈ M , Dx coincides with the set of all linear combinations of all
vectors V (x) of all local vector fields V ∈ VD defined at x.

An integral manifold of a distribution D in M is an immersed submanifold
N ⊂ M such that, at each point x ∈ N , TxN = Dx. In the case of a regular
one-dimensional distribution, every point is contained in an integral manifold.
A distribution of higher dimension need not have any integral manifolds. A
maximal integral manifold is an integral manifold that is not contained in any
strictly large integral manifold. Given a distribution on M , it can be shown
that each point x ∈M that is contained in some integral manifold is contained
in a unique maximal integral manifold.

A smooth distribution D on a manifold M is said to be integrable if every
point x ∈M is contained in an integral manifold of D and, hence, in a unique
maximal integral manifold. An integrable distribution induces a partition of
the manifold M into its maximal integral manifolds. This partition is known
as a foliation of M , with each maximal submanifold referred to as a leaf of
the foliation. Notice that in a strictly singular integrable distribution there
will be leaves with different dimensions. To emphasize this fact, we sometimes
refer to the partition induced by a singular integrable distribution as a singular
foliation. The following theorem establishes necessary and sufficient conditions
for integrability of a singular distribution.
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Theorem 1 (Stefan-Sussman) Let D be a smooth singular distribution on a
smooth manifold M . Then the following three conditions are equivalent:

1. D is integrable;
2. D is spanned by a family of local vector fields, with respect to which it is

invariant;
3. D is the tangent distribution of a smooth singular foliation.

Condition 2 generalizes to singular distributions the condition of involutiv-
ity in the classical Frobenius theorem, which is valid for regular distributions.
For singular distributions, involutivity is insufficient to guarantee integrabil-
ity. What may fail is not involutivity but stability, which is the meaning of
condition 2 above. A distribution is stable if it is invariant under the flow of
any of its generating vector fields.

6.5 The material distribution and its body projection

The collection V of admissible vector fields introduced in Section 6.3 gen-
erates, by considering all point-wise linear combinations, a smooth singular
distribution, denoted by AP, called the material distribution. The following
proposition is crucial to obtain relevant physical results.

Proposition 1 The material distribution AP is integrable.

Proof According to Theorem 1, we only need to prove that the image of any
admissible vector field by the flow of any other admissible vector field is again
an admissible vector field. Let V and W be two admissible vector fields and
denote by W ′ the image of W by the (derivative of) the flow of V . By definition
of derivative, the field W ′ is everywhere tangent to the image of the integral
curves of W by the flow of V . At a point z ∈ F(B), the mapped integral curve
is, accordingly, given by

φW
′

s (z) = φVt ◦ φWs ◦ φV−t(z). (33)

Since the vector fields of departure, V and W , are left invariant, their re-
spective flows commute with the left translation and, therefore, so does their
composition on the right-hand side of Equation (33). Consequently, the flow of
W ′ also commutes with left translations. By Lemma 1, we conclude that W ′

is left-invariant. Moreover, since the function ψ̃ is constant on each integral
curve, it is also constant on the integral curves of W ′, so that the field W ′ is
admissible.

Having just proved that the material distribution is always integrable, we
can invoke the third part of Theorem 1 to conclude that there exists a smooth
singular foliation S in F(B) such that AP is its tangent distribution. This fact
has important ramifications, stemming from the fact that it can be shown that
each leaf of the foliation is entirely contained in a β-fibre of F(B). Moreover,
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if z ∈ P then the leaf containing z is entirely contained in a β-fibre of P. We
call the collection of all the leaves of S that are contained in P the material
foliation, denoted by S(P). This terminology is slightly misleading, since S(P)
is technically not a foliation of P, which may not even be a manifold.
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